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Abstract 14 

In this study, a new equation is proposed to compute the maximum axial load carrying 15 

capacity of FRP bar reinforced concrete columns under axial compression. The equation 16 

proposed in this study was critically compared with the equations proposed in the previous 17 

research studies using a wide range of experimental data taken from the available literature. 18 

In general, it was found that computing the contribution of the FRP longitudinal bars in 19 

concrete columns based on the modulus of elasticity (stiffness) of the FRP bars provides 20 

more rational predictions than computing the contribution of the FRP longitudinal bars 21 

based on the ultimate tensile strength of the FRP bars. It was also found that using a 22 

concrete compressive strength-based empirical equation in estimating the axial strain in the 23 

FRP longitudinal bars in concrete columns provides more accurate predictions of the 24 

contribution of the longitudinal FRP bars in the axial load sustained by the FRP bar 25 

reinforced concrete columns.  26 
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1 Introduction 30 

The main function of a reinforced concrete column is to sustain axial loads with or without 31 

bending moments. The axial load carrying capacity of steel bar reinforced concrete 32 

columns decreases over the design (service) life of the concrete structures due to the 33 

corrosion of steel bars, especially in coastal regions or in harsh environments. The cost of 34 

rehabilitation and repair of deteriorated concrete structures is significantly high [1]. The 35 

National Association of Corrosion Engineers (NACE) International reported that the 36 

United States of America spends about two billion dollars annually to replace and repair 37 

the piers of the concrete bridges and about one billion dollars annually for maintaining 38 

marine piling systems [2].  39 

 40 

The review of the literature found that Fibre Reinforced-Polymer (FRP) composites can be 41 

used in a wide range of civil/structural applications. The FRP composites have various 42 

structural forms that can be classified into two main classes: 1) External reinforcement 43 

(FRP jacketing) and 2) Internal reinforcement (FRP reinforcing bars) [3-4]. The FRP 44 

composites including FRP bars possess many advantageous characteristics such as the 45 

resistance to the harsh environmental conditions, light weight and high tensile strength [5-46 

6]. Hence, FRP bars have the potential to replace steel bars and overcome the deterioration 47 

of concrete structures associated with the corrosion of steel reinforcement. However, the 48 

use of FRP bars as reinforcement in compression concrete members is still not 49 

recommended. This is because the ultimate compressive strength of the FRP bar is 50 

considerably lower than its ultimate tensile strength [7]. Chaallal and Benmokrane [8] 51 
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tested GFRP bars of three different diameters (15.9, 19.1 and 25.4 mm) and observed that 52 

the average compressive strength of the GFRP bars was 77% of the tensile strength. 53 

Kobayashi and Fujisaki [9] reported that the strength of the Aramid-FRP (AFRP), Glass-54 

FRP (GFRP) and Carbon-FRP (CFRP) bars under axial compression were about 10%, 30-55 

40% and 30-50% of their tensile strength, respectively. Deitz et al. [10] tested GFRP bars 56 

with a diameter of 15 mm under axial compression and observed that the ultimate 57 

compressive strength of the GFRP bars was approximately equal to 50% of their tensile 58 

strength. 59 

 60 

The acceptance of FRP bars as longitudinal reinforcement in concrete compression 61 

members such as concrete columns requires the development of design guidelines. In this 62 

regard, experimental and analytical research studies were conducted to investigate and to 63 

understand the behaviour of concrete columns reinforced longitudinally with FRP bars. 64 

Generally, the load carrying capacities of the FRP bar reinforced concrete columns under 65 

concentric and eccentric axial loads are lower than the load carrying capacities of steel bar 66 

reinforced concrete columns having same dimensions and reinforced with the same 67 

longitudinal and transverse reinforcements. The reason for this is mainly attributed to the 68 

lower ultimate compressive strength and the lower modulus of elasticity of FRP bars in 69 

compression compared to those of conventional steel bars in compression [2, 11-16]. 70 

Alsayed et al. [11] reported that the direct replacement of the longitudinal steel 71 

reinforcement with an equivalent amount of GFRP reinforcement reduced the axial load 72 

carrying capacity of the concrete columns by about 13%, irrespective of the type of the 73 

transverse reinforcement (steel or GFRP). Choo et al. [12] observed through an analytical 74 

study on FRP bar reinforced square concrete columns that ignoring the contribution of the 75 

longitudinal FRP bars in the compression region of the concrete columns may be overly 76 
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conservative. Tobbi et al. [13] and Afifi et al. [14] reported that GFRP and CFRP 77 

longitudinal bars can contribute up to 10% and 13% of the axial load carrying capacity of 78 

the concrete columns, respectively. Hadhood et al. [15] reported that GFRP longitudinal 79 

bars contributed about 5% of the axial load carrying capacity of GFRP bar reinforced high 80 

strength concrete (HSC) columns. A similar contribution for GFRP bars in HSC columns 81 

was also reported in Hadi et al. [16]. 82 

 83 

Due to the variances in the reported ultimate compressive strength of the FRP bars and 84 

their contribution as longitudinal reinforcement in concrete columns, no theoretical 85 

equation was recommended in the CAN/CSA S806-12 [17] or in ACI 440.1R-15 [18] to 86 

predict the maximum axial load carrying capacity of FRP bar reinforced concrete columns. 87 

Nonetheless, several theoretical equations were proposed in the previous research studies 88 

to predict the maximum axial load carrying capacity of FRP bar reinforced concrete 89 

columns. However, these equations have not been adequately assessed using a wide range 90 

of experimental data. 91 

 92 

In this study, a new equation is proposed to predict the maximum axial load carrying 93 

capacity of concrete columns reinforced longitudinally with FRP bars. The theoretical 94 

equations, proposed in this study and in the previous studies, were critically assessed using 95 

a wide range of experimental data taken from the available literature. The observations 96 

reported in this study can help in establishing guidelines for designing FRP bar reinforced 97 

concrete compression members  98 

 99 

 100 

 101 
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2 Conceptual assumptions  102 

The analysis of conventional steel bar reinforced concrete members is based on several 103 

basic assumptions, which are essential to compute the load carrying capacity of these 104 

members under different loading conditions. It was reported that these assumptions might 105 

be applicable to be used for GFRP bar reinforced concrete members [12, 15, 19]. Therefore, 106 

the assumptions were presented first and were used to analytically investigate the 107 

behaviour of GFRP bar reinforced circular concrete columns under concentric axial loads. 108 

The basic assumptions are: 109 

1. The maximum strain, 𝜀𝑐 , in concrete does not exceed an assumed ultimate concrete 110 

compressive strain, 𝜀𝑐𝑢. 111 

2. A perfect bond exists at the interfaces between the GFRP bars and the surrounding 112 

concrete. 113 

3. The axial strain in the concrete, 𝜀𝑐 , and the axial strain in GFRP reinforcing bars, 𝜀𝑓 , 114 

are equal at any concentric axial load. 115 

 116 

3 Maximum axial load carrying capacity of reinforced concrete columns  117 

This study mainly focuses on the development of a theoretical equation for predicating the 118 

maximum axial load carrying capacity of FRP bar reinforced concrete columns, which 119 

occurs when columns are subjected to pure compression loads (axial loads with zero 120 

eccentricities). The proposed equation for the maximum axial load carrying capacity of 121 

FRP bar reinforced concrete columns can be incorporated in the future design codes for 122 

composite structures. The effects of the combined axial and flexural loads on the behaviour 123 

of FRP bar reinforced concrete columns are considered beyond the scope of this study. 124 

 125 

 126 
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3.1 Steel bar reinforced concrete columns  127 

The maximum axial load carrying capacity, 𝑃𝑜 , of conventional steel bar reinforced 128 

concrete columns under concentric axial load can be predicted using Eq. 1 [20-21]. 129 

 130 

(1) 131 

 132 

(2) 133 

 134 

(3) 135 

 136 

Equation 1 represents the summation of the axial loads sustained by the concrete and steel 137 

longitudinal bars. The 𝑃𝑐 represents the contribution of the concrete considering the gross 138 

area of the columns 𝐴𝑔 as shown in Eq. 2. The  𝑃𝑏𝑎𝑟,𝑠𝑡 represents the contribution of the 139 

longitudinal steel bars. The 𝑓𝑦 and 𝐴𝑠𝑡 are the yield strength and the total cross-sectional 140 

area of the longitudinal steel bars. It is noted that in Eq. 1 - Eq. 3, the effect of shear 141 

reinforcement has not been taken into account for calculating the maximum axial load 142 

carrying capacity of reinforced concrete columns under concentric axial loads [20].  143 

 144 

The compressive strength of plain concrete in full-scale concrete columns tested under 145 

concentric axial loads is generally lower than the compressive strength of standard 146 

concrete cylinders. The differences between the compressive strength of concrete in 147 

columns and the compressive strength of standard concrete cylinders are commonly 148 

attributed to the differences in the shape, size and concrete casting process between 149 

columns and cylinders. In Eq. 2, the parameter α is a reduction factor that represents the 150 

ratio between the in-place compressive strength of concrete in actual concrete columns to 151 

𝑃𝑐 = 𝛼𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠𝑡) 

𝑃𝑜 = 𝑃𝑐 + 𝑃𝑏𝑎𝑟,𝑠𝑡  

𝑃𝑏𝑎𝑟,𝑠𝑡 = 𝑓𝑦𝐴𝑠𝑡 
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the compressive strength of standard concrete cylinders. Extensive experimental 152 

investigations were carried out on reinforced concrete columns and the parameter α was 153 

recommended to be taken equal to 0.85 [22]. The recommended value for the parameter α  154 

was considered in ACI 318-14 [20] to determine the contribution of the concrete in the 155 

maximum axial load carrying capacity of conventional steel bar reinforced concrete 156 

columns (Eq. 4). 157 

 158 

(4) 159 

 160 

3.2 FRP bar reinforced concrete columns 161 

Different equations were proposed in the previous research studies to predict the maximum 162 

axial load carrying capacity of FRP bar reinforced concrete columns. It is important to note 163 

that the contribution of the concrete, in the analytically computed axial load carrying 164 

capacity of FRP bar reinforced concrete columns, remains similar in all of the proposed 165 

equations. In other words, the differences in the analytically computed values of 𝑃𝑜  for 166 

FRP bar reinforced concrete columns are primarily due to the different concepts adopted in 167 

different proposed equations for calculating the contribution of the FRP longitudinal bars 168 

(𝑃𝑏𝑎𝑟,𝐹𝑅𝑃).  169 

 170 

The compressive strength of FRP bar is considerably lower than its tensile strength and the 171 

behaviour of FRP bar under compressive loads differs significantly, as mentioned above. 172 

Hence, ACI 440.1R-06 [23] recommends not to reinforce concrete columns longitudinally 173 

with FRP bars and ACI 440.1R-15 [18] provided no recommendations in this regard. The 174 

CAN/CSA S806-12 [17] permits reinforcing concrete columns longitudinally with FRP 175 

bars. However, CAN/CSA S806-12 [17] recommends neglecting the contribution of the 176 

𝑃𝑜 = 0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠) + 𝑓𝑦𝐴𝑠 
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FRP longitudinal bars when predicting the maximum axial load carrying capacity of the 177 

FRP bar reinforced concrete columns. Based on the recommendations in the CAN/CSA 178 

S806-12 [17], the maximum axial load carrying capacity of FRP bar reinforced concrete 179 

columns can be predicted using Eq. 5.  180 

 181 

(5) 182 

 183 

where 𝐴𝑓 represents the total cross-sectional area of GFRP longitudinal bars. 184 

 185 

However, a considerable number of research studies observed that disregarding the 186 

contribution of FRP longitudinal bars in compression, as in Eq. 5, might result in a large 187 

difference between the analytically computed and the experimentally obtained axial load 188 

carrying capacity of the FRP bar reinforced concrete columns [14, 24-25]. Therefore, two 189 

approaches were considered to compute the contribution of FRP longitudinal bars in the 190 

maximum axial load carrying capacity of FRP bar reinforced concrete columns. In the first 191 

approach, the axial load sustained by FRP longitudinal bars is calculated using the tensile 192 

strength of the FRP bars, 𝛼𝑓𝑓𝑓𝑢𝐴𝑓 (Eq. 6). In the second approach, the axial load sustained 193 

by FRP longitudinal bars is calculated using the axial strain in the FRP bars and the 194 

stiffness (modulus of elasticity) of the FRP bars, 𝜀𝑓𝐸𝑓𝐴𝑓 (Eq. 7).  195 

 196 

(6) 197 

 198 

(7) 199 

 200 

𝑃𝑜 = 0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑓) + 𝛼𝑓𝑓𝑓𝑢𝐴𝑓  

𝑃𝑜 = 0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑓) + 𝜀𝑓𝐸𝑓𝐴𝑓 

𝑃𝑜 = 0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑓)   
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In Eq. 6, the  𝛼𝑓 is a reduction factor that represents the ratio between the strength of FRP 201 

bar under compression and the strength of the FRP bar under tension. Different values for 202 

𝛼𝑓  were recommended in the previous studies. Alsayed et al. [11] suggested taking 𝛼𝑓 203 

equal to 0.6. Later, Tobbi et al. [13] recommended taking 𝛼𝑓 equal to 0.35 based on 204 

experimental observations reported in Kobayashi and Fujisaki [9]. Also, 𝛼𝑓  was 205 

recommended to be taken equal to 0.35 in Afifi et al. [26] for GFRP bar reinforced circular 206 

concrete columns. However, for CFRP bar reinforced circular concrete columns, Afifi et al. 207 

[14] recommended taking 𝛼𝑓 equal to 0.25. 208 

 209 

In Eq. 7, different values were also suggested for the axial strain in the FRP longitudinal 210 

bars, 𝜀𝑓 , at the maximum axial load carrying capacity of the concrete columns. Mohamed 211 

et al. [2] suggested taking  𝜀𝑓  equal to 0.002, explaining that this value (𝜀𝑓 = 0.002) 212 

represents the axial strain in the FRP longitudinal bars at the initiation of the micro-cracks 213 

in the plastic stage of the concrete. However, Hadi et al. [25] recommended taking 𝜀𝑓 equal 214 

to 0.003, which represents the ultimate strain of the concrete, 𝜀𝑐𝑢.   215 

 216 

It is obvious that different research studies proposed different equations based on a limited 217 

number of experimental data. Therefore, there is no consensus in the previous research 218 

studies on a unified equation for predicting the maximum axial load carrying capacity of 219 

FRP bar reinforced concrete columns, which may also be attributed to the variances in the 220 

response of the FRP bars under axial compression.  221 

 222 

In this study, the axial load sustained by FRP longitudinal bars, 𝑃𝑏𝑎𝑟,𝐹𝑅𝑃,  was predicted 223 

based on the stiffness (modulus of elasticity) of the FRP bars because the modulus of 224 

elasticity of FRP bars in compression is approximately similar to the modulus of elasticity 225 
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of FRP bars in tension [8, 10]. On the other hand, the compressive strength of the FRP 226 

longitudinal bars corresponding to their ultimate tensile strength tends to fluctuate 227 

significantly, depending on the manufactures and the type of the FRP bars (AFRP, GFRP 228 

and CFRP). The significant fluctuations in the compressive strength of the FRP bars can be 229 

considered one of the main reasons why different values for the reduction factor 𝛼𝑓 were 230 

proposed in different research studies. Hence, simply changing the value of the reduction 231 

factor 𝛼𝑓 in Eq. 6 might not provide reasonable predictions for the maximum axial load 232 

carrying capacity of FRP bar reinforced concrete columns. The axial strain in the FRP 233 

longitudinal bars 𝜀𝑓 at the maximum axial load carrying capacity of the concrete columns 234 

was considered to be equal to the concrete axial strain at peak stress 𝜀𝑐𝑜 . The concept 235 

adopted in this study is consistent with the third assumption in Section 2, which states that 236 

the axial strain in the concrete and the axial strain in longitudinal FRP reinforcing bars are 237 

equal at any concentric axial load. Accordingly, the maximum axial load carrying capacity 238 

of FRP bar reinforced concrete columns can be predicted using Eq. 8: 239 

 240 

  (8) 241 

 242 

Based on a considerable number of theoretical and experimental research studies, several 243 

empirical formulas were proposed in the past few decades for computing the concrete axial 244 

strain at peak stress, 𝜀𝑐𝑜 . In this study, four of the available, applicable and widely 245 

accepted formulae (Eq. 9 - Eq. 12) were used to compute 𝜀𝑐𝑜 in Eq.8. 246 

 247 

 (9) 248 

 249 

(10) 250 

𝑃𝑜 = 0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑓) + 𝜀𝑐𝑜𝐸𝑓𝐴𝑓 

𝜀𝑐𝑜 = 735 (𝑓𝑐
′)0.25 × 10−6 

𝜀𝑐𝑜 = 780 (𝑓𝑐
′)0.25 × 10−6 



18/12/2018                                                                                                                             Page 11 of 28 
 

 251 

(11) 252 

 253 

(12) 254 

 255 

Equation 9 was proposed in Popovics [27] for normal strength concrete with compressive 256 

strength of up to 50 MPa. whereas Eq. 10, proposed in Wee et al. [28], covered concrete 257 

with a compressive strength of up to 125 MPa. Legeron and Paultre [29] proposed Eq. 11 258 

for concrete  with  compressive strength ranging between 20 and 125 MPa, while Eq. 12, 259 

proposed in Yang et al. [30], is applicable to concrete with  compressive strengths ranging 260 

between 10 and 180 MPa. Although Eq. 9 is applicable for normal strength concrete, an 261 

average difference of only 6% was observed between the values of the concrete axial strain, 262 

𝜀𝑐𝑜, obtained from using Eq. 9 and Eq. 10. But, the values of 𝜀𝑐𝑜 obtained using Eq. 9 and 263 

Eq. 10 were consistently below the values of 𝜀𝑐𝑜  obtained using Eq. 11 and Eq. 12, 264 

especially for concrete having compressive strength greater than 100 MPa. 265 

 266 

4 Critical assessment of the proposed equations  267 

The equation proposed in this study was critically reviewed using a wide range of 268 

published experimental data (Table 1). The equation proposed in Tobbi et al. [9] was also 269 

examined. Hadi et al. [25] recommended assuming 𝜀𝑓 equal to 𝜀𝑐𝑢. The equation proposed 270 

in Hadi et al. [25] was also assessed, firstly by taking 𝜀𝑐𝑢 equal to 0.003 as defined in the 271 

ACI 318-14 [20] and secondly by taking  𝜀𝑐𝑢 equal to 0.0035 as defined in the CSA A23.3-272 

14 [21].  273 

 274 

𝜀𝑐𝑜 = 0.0005 (𝑓𝑐
′)0.4 

𝜀𝑐𝑜 = 0.0016 exp(240 𝑓𝑐
′ 𝐸1⁄ ) 
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Table 2 presents the ratios between the analytically predicted and the experimentally 275 

obtained axial load carrying capacity (𝑃𝑜/𝑃𝑒𝑥𝑝.) for the experimentally tested specimens 276 

presented in Table 1. The analytically predicted axial load carrying capacity,  𝑃𝑜 , was 277 

calculated using either Eq. 6 by taking 𝛼𝑓 equal to 0.35, as recommended in Tobbi et al. 278 

[13] or using Eq. 8, in which the value of 𝜀𝑐𝑜 was either computed using the formulas 279 

presented in the above section (Eq. 9 - Eq. 12) or taken equal to 𝜀𝑐𝑢 (0.003 or 0.0035 as 280 

defined in the ACI 318-14 [20] and CSA A23.3-14 [21], respectively). 281 

 282 

In Table 2, the accuracy of the equations proposed in this study and in the previous 283 

research studies in predicting the maximum axial load carrying capacity of FRP bar 284 

reinforced concrete columns was examined using four different mathematical 285 

measurements: Mean value (𝜇); Standard Deviation (𝑆𝐷); Coefficient of Variation (𝐶𝑂𝑉) 286 

and the Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸). The Mean value (𝜇) represents the 287 

central value of the discrete set of  𝑃𝑜 values. The Standard Deviation (𝑆𝐷) was used to 288 

quantify the level of variation (dispersion) for the values of 𝑃𝑜. High standard deviation 289 

indicates that the predicted axial load carrying capacities of the FRP bar reinforced 290 

concrete specimens are spread out over a wider range of values (less reliable) and vice 291 

versa. The standard deviation (𝑆𝐷) indicates to an absolute term of how much the values of 292 

 𝑃𝑜 are spread. The values of  𝑃𝑜  were then assessed as a percentage of how far away they 293 

spread from their mean value using the Coefficient of Variation  (𝐶𝑂𝑉) . The lower 294 

the 𝐶𝑂𝑉 , the lower the dispersion of  𝑃𝑜  is from the mean value. The Mean Absolute 295 

Percentage Error (𝑀𝐴𝑃𝐸) is also used as a measurement to examine the accuracy of the 296 

equation proposed in this study and the equations proposed in previous research studies for 297 

the maximum axial load carrying capacities of the FRP bar reinforced concrete columns. 298 

The lower the 𝑀𝐴𝑃𝐸, the better predictions provided by the proposed equation. 299 
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Table 2 presents the comparison between the experimental and theoretical axial load 300 

carrying capacity of FRP bar reinforced concrete columns.  It was found that Eq. 8, in 301 

which the contribution of the FRP bars is computed based on the stiffness of the FRP bars, 302 

provides more reliable and safer predictions for 𝑃𝑜  compared to Eq. 6, in which the 303 

contribution of the FRP bars is computed using the tensile strength of the FRP bars. This 304 

might be mainly attributed to the fact that the modulus of elasticity of the FRP bars in 305 

tension is approximately equal to the modulus of elasticity of FRP bars in compression, 306 

while there is a large difference between the tensile and the compressive strength of the 307 

FRP bars. It was also found that, in Eq. 8, the use of the formula proposed by Legeron and 308 

Paultre [29] (Eq. 11) in computing 𝑃𝑏𝑎𝑟,𝐹𝑅𝑃  provides lower discrepant values of 𝑃𝑜 , as 309 

shown in Fig. 1, giving a standard deviation and a coefficient of variation of 0.071 and 310 

7.71, respectively. On the other hand, taking the concrete axial strain at peak stress 𝜀𝑐𝑜 311 

equal to 0.003 when computing 𝑃𝑏𝑎𝑟,𝐹𝑅𝑃  provided predictions for 𝑃𝑜 with the lowest 312 

percentage of error giving a mean absolute percentage error 𝑀𝐴𝑃𝐸 of 7.542. Furthermore, 313 

taking 𝜀𝑐𝑜 equal to 0.0035 when computing 𝑃𝑏𝑎𝑟,𝐹𝑅𝑃 provided predictions with the highest 314 

but rather safe mean value 𝜇 for (𝑃𝑜/𝑃𝑒𝑥𝑝.) of = 0.97, which is very close to the unity, but 315 

with high 𝑆𝐷 and 𝐶𝑂𝑉 of 0.082 and 8.47, respectively  (Fig. 1). 316 

 317 

Figure 2 shows the relationship between the (𝑃𝑜/𝑃𝑒𝑥𝑝.) for the specimens presented in 318 

Table 2 and the compressive strength of the concrete. In Fig. 2, the 𝑃𝑜 was either obtained 319 

from Eq. 6 assuming 𝛼𝑓 equal to 0.35 as recommended in Tobbi et al [13] or from Eq. 8 320 

taking 𝜀𝑐𝑜 equal to 0.003 or 0.0035 or computed using the formula proposed by Legeron 321 

and Paultre [29]. 322 

 323 
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Assuming 𝛼𝑓 equal to 0.35 (Eq. 6), as recommended in Tobbi et al [13], over-predicts the 324 

axial load carrying capacity for most of the FRP bar reinforced NSC and HSC columns 325 

presented in Table 1, as shown in Fig 2a. However, using Eq. 8, assuming 𝜀𝑐𝑜  equal to 326 

0.003 for computing the contribution of the FRP bar over-predicts the axial load carrying 327 

capacity of 23% of the FRP bar reinforced specimens. But in general it provides reasonable 328 

predictions with mean value 𝜇  for (𝑃𝑜/𝑃𝑒𝑥𝑝.) of 0.95. On the other hand, using Eq. 8, 329 

considering the formula proposed in Legeron and Paultre [29] (Eq. 11) for 𝜀𝑐𝑜  in 330 

computing the contribution of the FRP bar over-predicts the axial load carrying capacity of 331 

only 6% of the total number of the specimens presented in Table 2 with a mean value 𝜇 for 332 

(𝑃𝑜/𝑃𝑒𝑥𝑝.) of 0.93, hence, it provides reliable and safe prediction for nearly all the FRP bar 333 

reinforced NSC and HSC column specimens (Fig 2d).  334 

 335 

5 Conclusions 336 

The present study proposes a theoretical equation for predicting the maximum axial load 337 

carrying capacity of FRP bar reinforced concrete columns. In the proposed equation, the 338 

contribution of the FRP longitudinal bars was computed based on the axial strain and the 339 

stiffness (modulus of elasticity) of the FRP longitudinal bars. An empirical equation based 340 

on the concrete compressive strength was developed to compute the axial strain in the FRP 341 

longitudinal bars at the maximum axial load carrying capacity of the FRP bar reinforced 342 

concrete columns. The proposed equation was validated using a large set of experimental 343 

data available in the literature. The equation proposed in this study provided more accurate 344 

and safe predictions of the experimentally tested FRP bar reinforced columns. The 345 

theoretical equation proposed in this study can be easily applied in predicting the axial load 346 

carrying capacity of normal strength and high strength concrete columns reinforced with 347 

different types of FRP bars. 348 
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Table 1: Experimental data of FRP bar reinforced concrete columns taken from available previous research studies. 

 

 

Research study Specimen cross-section FRP longitudinal reinforcement Concrete 

Specimen Column shape Dimensions* (mm) Type No. of bars Diameter (mm) 𝑓𝑓𝑢 (MPa) 𝐸𝑓 (MPa) 𝑓𝑐
′ (MPa) 

Afifi et al. [14] 

SP-1 Circular 300 CFRP 6 12.7 1899 140000 42.9 

SP-2 Circular 300 CFRP 10 12.7 1899 140000 42.9 

SP-3 Circular 300 CFRP 10 12.7 1899 140000 42.9 

SP-4 Circular 300 CFRP 10 12.7 1899 140000 42.9 

SP-5 Circular 300 CFRP 10 12.7 1899 140000 42.9 

SP-6 Circular 300 CFRP 10   12.7 1899 140000 42.9 

SP-7 Circular 300 CFRP 10 12.7 1899 140000 42.9 

SP-8 Circular 300 CFRP 10 12.7 1899 140000 42.9 

SP-9 Circular 300 CFRP 14 12.7 1899 140000 42.9 

          

Afifi et al. [26] 

SP-10 Circular 300 GFRP 4 15.9 934 55400 42.9 

SP-11 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-12 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-13 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-14 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-15 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-16 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-17 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-18 Circular 300 GFRP 12 15.9 934 55400 42.9 

          

Mohamed et al. [2] 

SP-19 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-20 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-21 Circular 300 GFRP 8 15.9 934 55400 42.9 

SP-22 Circular 300 CFRP 10 12.7 1899 140000 42.9 

SP-23 Circular 300 CFRP 10 12.7 1899 140000 42.9 

SP-24 Circular 300 CFRP 10 12.7 1899 140000 42.9 
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Table 1: (Continued)  

 

 

 

 

Research study Specimen cross-section FRP longitudinal reinforcement Concrete 

Specimen Column shape Dimensions* (mm) Type No. of bars Diameter (mm) 𝑓𝑓𝑢 (MPa) 𝐸𝑓 (MPa) 𝑓𝑐
′ (MPa) 

Karim et al. [31] 

  

SP-25 Circular 205 GFRP 6 12.7 1600 66000 32 

SP-26 Circular 205 GFRP 6 12.7 1600 66000 32 

SP-27 Circular 205 GFRP 0 0 0 0 32 

SP-28 Circular 205 GFRP 0 0 0 0 32 

          

Hales et al. [32] SP-29 Circular 305 GFRP 6 16 715 44000 90 

          

Hadhood et al. [15] 
SP-30 Circular 305 GFRP 8 15.9 1289 54900 70.2 

SP-31 Circular 305 GFRP 12 15.9 1289 54900 70.2 

          

Hadhood et al. [33] SP-32 Circular 305 CFRP 8 15.9 1680 141000 35 

          

Hadi et al. [16] 
SP-33 Circular 210 GFRP 6 12.7 1548 67800 85 

SP-34 Circular 210 GFRP 6 12.7 1548 67800 85 

          

Tobbi et al. [13] 

SP-35 Square 350 x 350 GFRP 8 19.1 728 47600 33 

SP-36 Square 350 x 350 GFRP 12 15.9 751 48200 33 

SP-37 Square 350 x 350 GFRP 4+4 12.7,  15.9 1040,  751 46300,  48200 33 

SP-38 Square 350 x 350 GFRP 8 12.7 1040 46300 33 

* Represents the diameter for circular columns and the length times the width of the square columns 

𝑓𝑓𝑢= The ultimate tensile strength of FRP bars 

𝐸𝑓= The modulus of elasticity of FRP bars 

𝑓𝑐
′= The compressive strength of the concrete 
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Table 2: Comparison between the experimental and theoretical axial load carrying capacity of FRP bar reinforced concrete columns available in 

the previous research studies 

Study Specimen  𝑷𝒆𝒙𝒑.
 a 𝑷𝒐 𝑷𝒆𝒙𝒑.⁄  b 

Eq. (8) Eq. (6) 

Popovics  
[23] c, e 

Wee et al. 

[24] c, e 

Legeron and 

Paultre  [25] c, e 

Yang et al.  

[26] c, e 

ACI 318-

14 [16] d 

CSA A23.3-

14 [17] d 

Tobbi et al. 

[9] f 

Afifi et al  [14] 

S-1 2905 0.95 0.95 0.96 0.96 0.99 1.01 1.05 

S-2 3148 0.91 0.92 0.93 0.93 0.97 1.00 1.07 

S-3 2948 0.97 0.98 0.99 0.99 1.04 1.07 1.14 

S-4 3070 0.93 0.94 0.95 0.95 1.00 1.03 1.10 

S-5 3013 0.95 0.96 0.97 0.97 1.02 1.05 1.12 

S-6 2981 0.96 0.97 0.98 0.98 1.03 1.06 1.13 

S-7 3147 0.91 0.92 0.93 0.93 0.97 1.00 1.07 

S-8 2941 0.97 0.98 1.00 0.99 1.04 1.07 1.15 

S-9 3107 0.96 0.97 0.99 0.99 1.05 1.09 1.19 
          

Afifi et al  [26] 

S-10 2826 0.93 0.93  0.94  0.94  0.95 0.96 0.99  

S-11 2951 0.90 0.91 0.92 0.92 0.94 0.96 1.03 

S-12 2857 0.93 0.94 0.95 0.95 0.97 0.99 1.06 

S-13 2964 0.90 0.91 0.92 0.92 0.94 0.95 1.03 

S-14 2920 0.91 0.92 0.93 0.93 0.95 0.97 1.04 

S-15 2804 0.95 0.96 0.97 0.97 0.99 1.01 1.08 

S-16 3019 0.89 0.89 0.90 0.90 0.92 0.94 1.01 

S-17 2865 0.94 0.94 0.95 0.95 0.97 0.99 1.06 

S-18 2998 0.90 0.92 0.93 0.93 0.96 0.98 1.09 
          

Mohamed et al. [2] 
S-19 2840 0.95 0.95 0.96 0.96 0.98 1.00 1.07 

S-20 2871 0.94 0.94 0.95 0.95 0.97 0.98 1.06 

 



18/12/2018                                                                                                                             Page 25 of 28 
 

Table 2: (Continued) 

Mohamed et al. [2] 

S-21 2935 0.91 0.92 0.93 0.92 0.95 0.96 1.04 

S-22 2869 1.00 1.01 1.02 1.02 1.07 1.10 1.18 

S-23 2960 0.96 0.97 0.99 0.99 1.03 1.06 1.14 

S-24 3008 0.95 0.96 0.98 0.97 1.02 1.05 1.12 
          

Karim et al. [31] 

S-25 1220 0.79 0.80 0.80 0.81 0.84 0.86 1.07 

S-26 1309 0.73 0.74 0.74 0.75 0.79 0.80 1.00 

S-27 1063 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

S-28 1170 0.77 0.77 0.77 0.77 0.77 0.77 0.77 
          

Hales et al. [32] S-29 7126 0.78 0.79 0.79 0.79 0.79 0.80 0.81 
          

Hadhood et al. [15] 
S-31 4709 0.94 0.95 0.96 0.95 0.96 0.97 1.06 

S-32 4716 0.95 0.96 0.97 0.97 0.98 0.99 1.12 
          

Hadhood et al. [33] S-30 3090 0.82 0.83 0.84 0.84 0.91 0.94 0.99 
          

Hadi et al. [16] 
S-33 2721 0.94 0.94 0.96 0.95 0.96 0.97 1.05 

S-34 2398 1.06 1.07 1.09 1.08 1.09 1.10 1.19 
          

Tobbi et al. [13] 

S-35 4297 0.87 0.88 0.88 0.89 0.91 0.92 0.97 

S-36 4615 0.81 0.82 0.83 0.83 0.85 0.86 0.91 

S-37 4212 0.88 0.88 0.89 0.89 0.90 0.91 0.94 

S-38 3900 0.94 0.95 0.95 0.95 0.96 0.97 1.02 
          

Mean 
  

0.91 0.92 0.93 0.93 0.95 0.97 1.05 

SD 
  

0.068 0.068 0.071 0.070 0.076 0.082 0.096 
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Table 2: (Continued) 

COV (%)   7.39 7.45 7.71 7.55 7.99 8.47 9.17 

MAPE   9.642 9.305 8.614 8.612 7.542 7.478 9.692 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  𝑃𝑒𝑥𝑝. is the experimental axial load carrying capacity of FRP bar reinforced concrete columns. 

b 𝑃𝑜     is the theoretically computed axial load carrying capacity of FRP bar reinforced concrete columns. 

c Refers to the formula used in computing  𝜀𝑐𝑜 (Eq. 9 - Eq. 12) 
d equal to 𝜀𝑐𝑢 (0.003 or 0.0035 as defined in ACI 318-14 [20] and CSA A23.3-14[21], respectively). 
e The contribution of the FRP longitudinal bars in 𝑃𝑜 was computed based on the formula defined in the footnote “c” above. 
f The contribution of the FRP longitudinal bars in 𝑃𝑜 was assumed to be equal to 0.35𝑓𝑓𝑢𝐴𝑓 (Tobbi et al. [13]) 
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Fig. 1: Experimental versus predicted axial load carrying capacity of FRP bar reinforced concreter columns obtained using: a) Eq. 6 (𝛼𝑓 = 0.35);   

b) Eq. 8 (𝜀𝑐𝑜 = 0.003); c) Eq. 8 (𝜀𝑐𝑜 = 0.0035) and d) Eq. 8 (𝜀𝑐𝑜 = 0.005(𝑓𝑐
′)0.4). 
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Fig. 2: The relationship between 𝑃𝑜/𝑃𝑒𝑥𝑝. of the FRP bar reinforced concrete column and the compressive strength of the concrete 𝑓𝑐
′. Note: 𝑃𝑜 

were obtained using: a) Eq. 6 (𝛼𝑓 = 0.35);   b) Eq. 8 (𝜀𝑐𝑜 = 0.003); c) Eq. 8 (𝜀𝑐𝑜 = 0.0035) and d) Eq. 8 (𝜀𝑐𝑜 = 0.005(𝑓𝑐
′)0.4). 
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