
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part B

Faculty of Engineering and Information
Sciences

2018

Adaptive Random Testing in Detecting Layout Faults of Web Applications Adaptive Random Testing in Detecting Layout Faults of Web Applications

Elmin Selay
University of Wollongong, ei978@uowmail.edu.au

Zhi Quan Zhou
University of Wollongong, zhiquan@uow.edu.au

Tsong Yueh Chen
Swinburne University of Technology, tychen@swin.edu.au

Fei-Ching Kuo
Swinburne University of Technology, dkuo@swin.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Selay, Elmin; Zhou, Zhi Quan; Chen, Tsong Yueh; and Kuo, Fei-Ching, "Adaptive Random Testing in
Detecting Layout Faults of Web Applications" (2018). Faculty of Engineering and Information Sciences -
Papers: Part B. 2155.
https://ro.uow.edu.au/eispapers1/2155

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F2155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F2155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F2155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/2155?utm_source=ro.uow.edu.au%2Feispapers1%2F2155&utm_medium=PDF&utm_campaign=PDFCoverPages

Adaptive Random Testing in Detecting Layout Faults of Web Applications Adaptive Random Testing in Detecting Layout Faults of Web Applications

Abstract Abstract
As part of a software testing process, output verification poses a challenge when the output is not
numeric or textual, such as graphical. The industry practice of using human oracles (testers) to observe
and verify the correctness of the actual results is both expensive and error-prone. In particular, this
practice is usually unsustainable when developing web applications - the most popular software of our
era. This is because web applications change frequently due to the fast-evolving requirements amid
popular demand. To improve the cost effectiveness of browser output verification, in this study we design
failure-based testing techniques and evaluate the effectiveness and efficiency thereof in the context of
web testing. With a novel application of the concept of adaptive random sequence (ARS), our approach
leverages peculiar characteristics of failure patterns found in browser layout rendering. An empirical
study shows that the use of failure patterns and inclination to guide the testing flow leads to more cost-
effective results than other classic methods. This study extends the application of ARSs from the input
space of programs to their output space, and also shows that adaptive random testing (ART) can
outperform random testing (RT) in both failure detection effectiveness (in terms of F-measure) and failure
detection efficiency (in terms of execution time).

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Selay, E., Zhou, Z.Q., Chen, T. & Kuo, F. (2018). Adaptive Random Testing in Detecting Layout Faults of Web
Applications. International Journal Of Software Engineering And Knowledge Engineering, 28 (10),
1399-1428.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/2155

https://ro.uow.edu.au/eispapers1/2155

International Journal of Software Engineering and Knowledge Engineering
Vol. 28, No. 10 (2018) 1399–1428 DOI: 10.1142/S0218194018500407

Adaptive Random Testing in

Detecting Layout Faults of Web Applications ∗

Elmin Selay

Institute of Cybersecurity and Cryptology,

School of Computing and Information Technology,
University of Wollongong, Wollongong, NSW 2522, Australia

ei978@uow.edu.au

Zhi Quan Zhou†

Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology,

University of Wollongong, Wollongong, NSW 2522, Australia

zhiquan@uow.edu.au

Tsong Yueh Chen

Department of Computer Science and Software Engineering,

Swinburne University of Technology,
Hawthorn, VIC 3122, Australia

tychen@swin.edu.au

Fei-Ching Kuo

Department of Computer Science and Software Engineering,

Swinburne University of Technology,

Hawthorn, VIC 3122, Australia
dkuo@swin.edu.au

As part of a software testing process, output verification poses a challenge when

the output is not numeric or textual, such as graphical. The industry practice of us-

ing human oracles (testers) to observe and verify the correctness of the actual results
is both expensive and error-prone. In particular, this practice is usually unsustainable
when developing web applications – the most popular software of our era. This is because

web applications change frequently due to the fast-evolving requirements amid popular
demand. To improve the cost effectiveness of browser output verification, in this study

we design failure-based testing techniques and evaluate the effectiveness and efficiency

thereof in the context of web testing. With a novel application of the concept of adap-
tive random sequence, our approach leverages peculiar characteristics of failure patterns
found in browser layout rendering. An empirical study shows that the use of failure pat-

terns and inclination to guide the testing flow leads to more cost-effective results than

∗A preliminary version of this paper appeared in the Proceedings of the 2014 International Con-
ference on Digital Image Computing: Techniques & Applications (DICTA) [1].
†Corresponding author: Tel: (+61-2) 4221 5399

1

IJSEKE

2

other classic methods. This study extends the application of adaptive random sequences
from the input space of programs to their output space, and also shows that adaptive

random testing (ART) can outperform random testing (RT) in both failure detection ef-

fectiveness (in terms of F-measure) and failure detection efficiency (in terms of execution
time).

Keywords: Adaptive random testing; failure-based testing; web testing; adaptive random

sequence; graphical output verification; layout fault; failure pattern.

1. INTRODUCTION

With incredibly fast adoption over the two decades, the number of global Internet

users stands at 3.2 billion as of 2015 [2]. This has not only reshaped how we interact

with each other, but also has irreversibly transformed the way we live. Web applica-

tions have become the most produced and used software products, attracting more

and more attention from both the industry and the academia.

The sole purpose of a webpage is no longer to deliver information in a simple

format as decades ago. Driven by the rapid growth of the demand for complex aes-

thetics and functionality, web applications are much harder to develop, maintain

and test[3, 4]. As an important component of the software life cycle, the main pur-

pose of testing is to make sure that the target web application offers consistent look

and feel for the target audience.

During both development and maintenance, testing is conducted to assure qual-

ity and reliability by detecting failures so that they are corrected before causing

usability problems for end users. Layout issues are not usually easy to identify,

especially when this process is automated. Human testers must inspect each web-

page by eye to verify correctness even in automated scenarios. Unlike other software

products, the standard-compliant code of the web application does not guarantee

its correct look and feel. Obviously, manual work of this type is time-consuming

and therefore expensive. Additionally, such work multiplies over time given that we

have to do testing again (regression testing) when we introduce a new enhancement,

patch or fix to an application that was already tested[5, 6].

The test suite grows and becomes more complex after each phase because the

tester would ideally want to run all previous test cases besides new test cases. This

is to make sure the new feature or modification does not affect previously working

functionality.

One of the major directions in attempts to verify correctness of the output in

web applications has been to achieve an effective visual analysis of layout images

captured from different browsers by automated testing tools such as Selenium [7].

A common testing approach is to conduct pixel-level comparison between a screen-

shot of the observed output and a previously taken reference image [8]. Since such

screenshots are large in size and expected to be different to certain extent (such as

differing in a few stand-alone pixels) even when no faults exist, it is impractical to

use standard image matching, pattern recognition, keypoint matching, histogram

similarity/difference analysis, perceptual comparison, hashing, or other advanced

IJSEKE

3

methods as these methods are either expensive or too difference-sensitive. In this

paper, our focus is to discover the presence and location of structural layout faults

(significantly visible blocks), if any, efficiently at an affordable computational cost.

In this paper, we propose a failure-based testing approach [9] to leverage the

characteristics of browser layout rendering to curb testing complexity and improve

cost effectiveness. Our approach is based on the knowledge about web application

layout failure patterns. We apply varieties of adaptive random testing (ART) to

achieve an even distribution of reference points in the output space although in the

past ART has only been used for test case selection in the input space [9, 10]. We

evaluate the effectiveness and efficiency of the proposed approach in the context

of an enterprise-level case study for automated testing of selected real-world web

applications. The empirical results show that our approach is more effective and

more efficient compared with conventional approaches.

The rest of this paper is presented as follows: Section 2 explains the background

to the problem and reviews related work in the field of web application testing.

Section 3 presents our approach and its internal working mechanism. Section 4 gives

the implementation and configuration details of our testing framework. Section 5

presents an empirical study and its results. Section 6 summarizes the contributions

of this work and concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1. Web browsers

A web browser allows running web application on the user’s machine which can be

any Internet-enabled devices, including but not limited to mobile phones, tablets,

laptops and desktop computers. The primary function of a browser is to visually

render the output by interpreting markup directives, auxiliary style and control

instructions the accessed web resource provides [11]. As soon as the commercial-

ization of the Internet emerged in early 1990s, web browsers started to differ with

their own extended features and layout rendering engines. Established in 1994, the

World Wide Web Consortium (W3C) undertook to regulate interoperability and

compliance among browsers. However, despite all endeavours over the past two

decades, the full standardization and interoperability have yet to be seen in this

area. Assuming the application developers do not impose a restriction on browsers

or devices, they must do significant amounts of cross-browser and cross-device test-

ing to achieve consistency. To target particular browsers, developers use conditional

statements or certain directives which are only read by specific browsers. As mobile

and hand-held devices started to become more popular, dedicated mobile sites in

addition to desktop versions started to emerge. However, increased cost and the

need to improve user experience across all devices forced designers and developers

to shift to responsive design patterns where the application adapts to device screen

size [12].

IJSEKE

4

2.2. Testing a web application

Testing web applications inherits most of the standard testing methods applica-

ble to software as a whole. Being an intangible component of computers, software

is developed by programmers, who translate the requirements specification into

machine-understandable instructions in the high level. Obviously, the code written

by the programmer may not necessarily be a correct translation of the requirements,

and may not necessarily cover all items in the specification document. We are of-

ten left with only one option: testing the end product. There exist many types of

software testing. Regression testing plays a significant role in software maintenance

to ensure that new enhancements added to the existing application do not break

any previously tested components or the end-product as a whole [5, 6, 13]. Two key

test components are required in the conduct of testing: test data (or a suite of test

cases or selection of reference points in our case) and test oracle. Test data mainly

refer to the inputs given to the application while the test oracle is used to describe

the mechanism against which the result is checked to determine whether it is cor-

rect [14, 15]. In practice, human oracles observe and verify the correctness of the

actual result when the quantity is at a reasonable level. However, this is not the

case when it comes to enterprise-scale applications. Oracles for automated software

testing are considered as expensive and difficult to develop since this process in-

volves elicting an oracle from requirements specification, program simulation or a

trusted implementation of the product [3, 14]. Differently from other software prod-

ucts, web applications produce their output in visual form in a browser screen. The

visual output can differ for users using different devices, browsers or a combination

of them, further complicating the verification by non-human test components. This

paper mostly focuses on the effective strategies to facilitate such initial verification

by non-human actors in test-driven environments or during the maintenance cycle

in the face of changing requirements.

2.3. Motivating example and problem statement

We presented a simple example in Figure 1 to illustrate the relevance of the problem

and motivation behind the automated approach to web application testing. The

following HTML and CSS snippet which is validated as standard-complaint by the

W3C Validation Service renders inconsistent visual output in different browsers

running on the same machine, as shown in Figures 2 to 6.

This example illustrates that standard-compliant code does not necessarily guar-

antee the intended look and feel in the web applications unlike other software prod-

ucts where the main focus is on correct implementation. In such cases, testing tools

used to verify correctness of markup, object representation and structure cannot

warrant the consistency of the rendered visual output across multiple platforms and

browsers (and their different versions). Modifying the same markup to achieve rea-

sonably consistent or similar output across all browsers requires a large amount of

development and testing effort. Given the scale of code in an average industrial web

IJSEKE

5

<!DOCTYPE html>
<html lang=”en−AU”>
<head>

<s t y l e type=”text / c s s”>
body{

padding :10 px ;
}

. box {
width :250 px ;
he ight :250 px ;
f l o a t : l e f t ;
border−rad iu s :50%;
over f l ow : hidden ;
trans form : skew (10 deg ,15 deg) ;
border : s o l i d 4px black ;
box−shadow : 0 0 0 8px #f f 0030 ;
c o l o r : b lack ;
text−a l i g n : c ente r ;
font−s i z e : 2 . 2 rem ;
l i n e−he ight :250 px ;

}
. box . blue−red {

background :
l i n e a r−grad i ent (red , yel low , blue) ;
content : ”Test ” ;
trans form : r o t a t e (120 deg) ;
l e t t e r−spac ing : 4px ;

}
. box . blue−red span : a f t e r {

content : ”Run” ;
}
. box : f i r s t −ch i l d {

margin−r i g h t :40 px ;
}
img {

he ight : 100%;
width : 100%;
object− f i t : conta in ;

}
</s ty l e>

</head>
<body>

<div id=”main”>
<div c l a s s=”box”>

<img s r c=”//cdn . yoomroo . com
/ a s s e t s / t e s t / par i s−t e s t . jpg ” />

</div>
<div c l a s s=”box blue−red”>

Test
</div>

</div>
</body>
</html>

Fig. 1: A simple CSS AND HTML example.

application, it is not difficult to imagine the amount of efforts and costs required.

Additionally as web applications tend to change more frequently, each enhancement

added to the previously tested application requires regression testing to ensure that

the new feature does not cause problems with any previously working components.

This motivation example demonstrates the need for effective detection of inconsis-

tencies in web interfaces to minimize human oracles - involvement and judgement

IJSEKE

6

Fig. 2: Google Chrome, version 35.0.1916.114 m

Fig. 3: Mozilla Firefox, version 29.0.1

Fig. 4: Opera, version 17.0.1241.45

Fig. 5: Safari, version 5.1.7 (7534.57.2)

Fig. 6: Microsoft Internet Explorer 7 (Mode)

IJSEKE

7

of a human tester. Since regression testing involves running previous test cases, it

is possible to collect sufficient results (e.g. screenshots) previously obtained on the

same browsers / platforms or on different browsers / platforms to compare against

(as an oracle) in the future tests. This is useful particularly in the case of testing

web applications since there are frequent changes during or after the development,

usually without comprehensive requirements specifications.

2.4. Related Work

Over the past decades significant efforts have been made by the academia and

the industry towards testing and automated testing of graphical user interfaces

(GUI)[16]. However, much of the work primarily deals with the verification of func-

tionality rather than look-and-feel. The state of the art prevalent in the industry

involves a manual and visual inspection of a webpage to decide whether the out-

put rendered is expected or acceptable. There are automated testing tools but they

either consequently depend heavily on human oracles or lead to unnecessary and

high computational overhead in the verification of the output. Two popular so-

lutions to automating web application testing in the past decade were Microsoft

Expression Web [17] and Adobes Browser Lab [18]. The former was intended to

validate the standards-compliance of the markup without any feedback about its

look and behaviour in different browsers or screen sizes, while the latter, which was

discontinued by Adobe after May 2013, provides diagnostic tools and screenshots,

leaving it to the web developer to make a judgement. Selenium has become the

most used tool to automate the process of programmatically capturing screenshots.

These tools require significant developer time and costs in visually observing and

evaluating what the issue is. There have been dozens of similar commercial tools

or online testing platforms available with no easy-to-use configuration options. The

main challenge facing both the research community and industry has been testing

oracle automation: how to automatically verify pass-fail states. Literature before

mid-2000s mostly dealt with the white-box testing of web applications. During

this time web testing was a newborn notion and Microsoft Internet Explorer had

a dominant position in the browser space, leaving little concern of multi-browser

compatibility issues. However, the landscape has changed rapidly amid the surging

global Internet access rates.

One of the first attempts to test dynamic web applications was the VeriWeb

project which targeted functional testing of web application [19].

Ricca and Tonella (2002) introduced a concept relying on two distinct models

of the application: a navigation model and a control flow model [20]. Their strategy

covered white-box testing of the application under test. A roadmap was presented

by the same authors to include function testing of web applications in 2005 [21].

Their testing approach covered functional testing, code coverage testing and model

based testing.

Bedi and Schroeder (2004) detailed challenges of web application testing, pre-

IJSEKE

8

senting interesting observations about the problems of testing an e-commerce appli-

cation [22]. Di Lucca and Fasolino (2006) outlined that the problem of web applica-

tions testing must be carried out at different levels and from various aspects due to

the complexity involved [23]. A new fault taxonomy was presented to embrace the

probable fault-causing particularities of web applications [24]. Eaton and Memon

(2007) proposed a compliance evaluation technique, where developers would man-

ually supply examples of both correct and incorrect webpages for the calculation

of probability of faultiness for the next tag [25]. A constraint of this solution was

that it ignored Cascading Style Sheets (CSS), which defines layout and style of an

HTML document.

As web technologies began to become more popular in the light of social media

boom and soaring Internet penetration rate across the globe, the concept of au-

tomating web testing and oracle generation drew interest from the academia and

industry with initial approaches primarily focused on HTML document verification.

Oracle automation using screenshot comparison, which was explored as a possible

solution years ago [26], started to gain renewed attention in the field of web appli-

cation testing. Choudhary et al. presented a tool named WebDiff to automate the

identification of cross-browser discrepancies [3]. Their proposed approach included

using the Document Object Model (DOM) information and histogram-based image

matching of screenshots. With its novelty considered, this approach was one of the

most notable steps taken towards automated web application testing.

Mesbah and Prasad came up with a new automation method in this field [27].

Their strategy included using an Ajax crawler Crawljax (open-source) to capture

and store observed behaviour of the webpage for each browser as a what they called

a ”finite-state machine navigation model”. In the next step, they suggested com-

paring generated models to determine where they differ. The equivalence checking

is executed by producing state graphs out of the generated navigation models and

comparing their edges and nodes. Each node represented an abstraction of the DOM

tree instance. Although this was a step towards an automated testing process, the

data collected and the comparisons are done at the DOM level.

Another recent addition to the toolset has been WebMate, a tool which primarily

focuses on enhancing the coverage and automated crawling rather than output

verification [28].

There have recently emerged a number of other tools designed to streamline

regression testing of web applications but they leave judgement to human testers

[29, 30, 31].

3. OUR APPROACH AND CONCEPTUAL FRAMEWORK

3.1. An insight

Since our aim is not to propose a new strategy for testing web applications but is

to present a new cost-effective output verification approach, the rest of the paper

mainly focuses on this direction. As outlined in Section 2.4, the current state of the

IJSEKE

9

art of web application testing involves automated crawling and image-comparison-

based output verification in addition to DOM-based testing. In the literature, image

matching algorithms have been designed to either compare the images for difference,

similarity or identity, or for use with sophisticated approaches such as perception

metrics or pattern recognition. However, these comparison algorithms do not satisfy

the needs of web application testing in relation to screenshot comparison. As web

applications are dynamic, due to the expected presence of dynamic regions such

as advertisement banners, images to be compared are expected to be different and

similar to a certain degree. In addition to inclusion and exclusion regions, given the

scale and frequency of regression testing the comparison method should be efficient

in terms of execution time.

Comparing screenshots by their histograms which in the form of data represent

the distribution of the feature in the image results in a bin-to-bin or cross-bin

comparison. An approach of this kind has previously been applied by Choudhary

et al. for the purpose of comparing web application images [3]. To deal with the

false positive instances of detection in a basic histogram comparison, Choudhary

et al. resorted to the Earth Movers Distance (EMD). Being an advanced effective

method, EMD is used in the field of computer vision to effectively compare discrete

distributions, where there is a need to neglect small-sized variations in the conduct

of shape matching, texture analysis, image retrieval and object recognition. This

is achieved by measuring the given distance between two probability distributions

over a region corresponding to Wasserstein metric [32, 33, 34]. For the purpose of

histogram measurements, the time required for calculating the dissimilarity between

two non-identical histograms is proportional to the given size of the histograms. This

approach has also been used in different domains of the industry. For example, to

evaluate similarity of colour histograms, a new class of quadratic form distance

functions is successfully used in IBM’s QBIC image retrieval system [33]. Among

other factors such as implementation, its time complexity stands out as the main

concern of this solution.

It is to be noted that, due to special characteristics, browser screenshot compar-

ison requires a low-cost, easy-to-implement, and still cost-effective method. For in-

stance, identification of objects or patterns with precision is not required. Likewise,

owing to the demand for fast, in-house and customizable solutions, sophisticated

methods for keypoint or feature recognition are not appropriate for a test-driven

web development process.

Bitmap-based image comparison is easy to use, flexible and widely available

in the industry. This strategy includes pairwise comparison of pixels between the

reference image (oracle) and the compared image (pixels in the exclusion zones are

neglected). The intuitive approach would be to iterate pixel by pixel over the image

and retrieve the colour of pixels that have the same coordinates and compare them

for consistency. However, this is a non-trivial task given that large screenshots can

contain millions of pixels (reference points).

In order to provide background information why it may not be necessary to

IJSEKE

10

compare all pixels for the identification of browser layout inconsistencies, we have

to look at failure patterns in the next section.

3.2. Failure patterns and failure rate

Certain common patterns have been observed by the researchers on the geometry

of failures within the input space [35, 36, 37, 38, 39]. Boyer et al. found that input

data at or near intersections of the domain regions are more likely to cause fail-

ure [35]. White and Cohen demonstrated that failures tend to clump closer to the

input domain boundaries, forming hyperplanes [36]. Ammann and Knight showed

that failure regions happen to manifest themselves as locally continuous and their

geometry provide information about the possible performance of test cases selected

in these regions [37]. Finelli noted that continuous regions across the input domain

have so-called error crystals which lead to program failures [38]. Bishop observed

contiguous failure and success regions across the input space, concluding that con-

tiguous failure regions often form angular and elongated shapes, as opposed to the

theorized “blobs” [39]. In a pioneering work by Chen et al., it was further explained

that in terms of their distribution and formation, failure-causing inputs create three

common patterns, namely, block pattern, strip pattern, and point pattern [40] as in

Figure 7, where the non-point patterns are more common in real-world applications.

Fig. 7: Failure patterns: block pattern (left), strip pattern (middle), and point pat-

tern (right).

According to this observation, block and strip patterns represent contiguous

failure regions, or certain segments of the input space where failure-causing inputs

happen to form clusters. Using the failure pattern information, the testing process

flow can be guided to improve failure-detection effectiveness of the test cases.

One of the principal attribute associated with software under test is its failure

rate, defined as the ratio of total failure area to the input domain area [41, 42]. The

failure rate is fixed, but unknown prior to testing.

3.3. Our observation: Failure pattern in web layouts

As specified in W3C standards [43], elements in the web document are two-

dimensional squares laid out one after another or nested inside each other. This

type of arrangement is referred to as a flow. The flow denotes “by default, elements

IJSEKE

11

flow one after another in the same order as they appear in the HTML source, with

each element having a size and position that depends on the type of element, the

contents of the element, and the display context for the element as it will render

on the page” [44]. Within the rectangular space occupied by the elements, different

shapes of objects can be rendered by masking them or changing their border radius

from inside, as in Figure 8.

Fig. 8: A visually round object takes a rectangular space.

Taking into account the aforementioned statement, we can intuitively assume

that the failure pattern the faulty elements can potentially form is to fall under

non-point failure patterns. We further observe that, as elements flow in sequence, a

faulty element will drive the subsequent element to flow, still forming block failure

patterns in a domino effect. They may overflow to the next row, further limiting

the chance of strip and point pattern formations. The flow of blocks and grids have

especially become more noticeable with the emergence of responsive web design

trends in the industry. To allow web applications to adjust to the size of the device

screen, the width of grids are set in percentage (relative unit) to create a “fluid

layout,” so the webpage can stretch and contract relative to the user’s screen size.

As device has a fixed viewport, the grids at the end of the row are pushed to the

next row.

In short, we postulate the following failure pattern in web layouts: The flow

behaviour adds special interest to the right and bottom boundaries of the output

space because of the likely fault inclination.

3.4. Adaptive random testing (ART)

Software testing process with the black-box approach involves executing test cases

to determine whether the output is in line with the expected behaviour defined in

the specification. As test cases are to selected from the input domain, the number of

possible test cases can be extremely large, making exhaustive testing impractical, if

not impossible. Due to time and resource limitations, a test case selection strategy

is employed to identify test cases which have higher potential to reveal failures

[45, 40].

One of the test case selection methods is random testing, in which samples are

selected randomly from the input domain as per the sampling distribution to feed

the software in test [46]. Generally, random testing is simple to implement and cheap

IJSEKE

12

to utilize while effective to detect failures. It allows generating input in unexpected

ways and ranges to discover the fault when it is not possible or affordable to run all

test cases in the input domain [41, 42, 47]. However, random testing is not tailored

with the available knowledge for the testing requirements.

To improve this front while keeping the desired benefit of randomness, an ART

strategy has been developed [9, 10]. Unlike classic random testing, ART makes use

of the knowledge available of previously executed test cases to ensure the next test

cases can be selected in such a way that they are more evenly distributed over the

input domain. This notion of even distribution here leverages the fact of common

contiguous failure patterns to reduce the number of test cases needed to detect the

first failure. It has been observed that ART is more suitable for non-point failure

patterns [10].

The first widely adopted ART method is the Fixed Size Candidate Set ART

(FSCS-ART) [10], which ensures that the qualifying candidate is at the farthest

distance from its closest neighbour in the already applied test cases, as further

explained in Section 4.5. Compared with classic random testing, test cases generated

using FSCS-ART are farther apart from each other and they still preserve the

desirable property of randomness. The FSCS-ART algorithm sports an O(n2) time

complexity, where n is the number of test cases generated.

There have been a series of new methods proposed to curb the overhead to-

wards O(n) while preserving the core principle of ART – even spread of the test

cases [48, 49, 50, 51, 52, 53]. One such solution is known as “forgetting test cases”

[49]. Instead of remembering the entire set of the previously executed test cases, a

“forgetting” algorithm chooses to remember only a small and fixed number of pre-

viously executed test cases. In this way, an FSCS-ART-with-Forgetting algorithm

boasts a linear time complexity of O(n), which is in the same order of complexity

as random testing.

In addition, ART’s test case generation time can further be reduced by means

of the mirroring technique [48], which reflects or translates the test cases originally

generated in one subdomain of the input domain to other subdomains at a very low

cost (Figure 9).

In this paper, we apply the FSCS-ART-with-Forgetting algorithm together with

the mirroring technique to keep time complexity at O(n) while increasing the spread

magnitude by up to m, where m is the number of subdomains. In such a Mirror

ART (MART) with forgetting algorithm, the main test case selection process is

applied to generate new (original) test cases only in the source subdomain (e.g., the

upper-left quarter of Figure 9). After the generation of an original test case (e.g.,

P1 of Figure 9), it is immediately mapped into the mirror subdomains (e.g., P1' in

mirror subdomain 1, P1'' in mirror subdomain 2, and P1''' in mirror subdomain

3 of Figure 9) with trivial computational overheads. Section 4 provides technical

aspects of practical implementation of the proposed approach.

IJSEKE

13

P1

source subdomain

P2

P1'

mirror subdomain 1

P2'

P1''

mirror subdomain 2

P2''

P1'''

mirror subdomain 3

P2'''

Fig. 9: Mirroring P1 and P2 in neighbouring subdomains.

3.5. Our approach: Adaptive random sequence (ARS) for output

verification

ART is a strategy that generates or selects test cases from the program’s input

space. The sequence of test cases generated by ART is called an adaptive random

sequence (ARS) [9]. A major innovation of the present research is the extension of

the concept of ARS from the program’s input space (for test case generation) into

the program’s output space (for the verification of resulting images), where ARS is

used for the selection of pixels (reference points) when comparing two images. Our

objective is to use the ART algorithms to generate ARS of pixels in order to detect

differences between images more quickly than using conventional approaches.

In the case of applying MART to image comparison, the screenshot layout is

divided into multiple equal-sized subdomains where only one of the subdomains

acts as the source subdomain with the possible maximum test cases a equal to the

number of total test cases in the input domain divided by the number of subdomains.

A single reference point generated by the FSCS-ART-with-Forgetting algorithm in

the source subdomain is mapped into mirror subdomains. The peculiarity of web

layouts as described in Section 3.3 bodes well for mirroring.

When applying MART for test case generation in conventional software testing,

which subdomain is designated as the source subdomain and in which order the

mirror subdomains are populated might not be a major concern. However, it is a

major concern in our context of image comparison, considering the fault-inclination

characteristics of browser-rendered layouts discussed in Section 3.3. We postulate

that the choice of the source subdomain and the order in which the mirror sub-

domains are populated are important decisions that would affect the effectiveness

and efficiency of image comparison. We have therefore designed different MART

algorithms where the upper-left or the lower-right corner of the image is used as

aIn this paper, when discussing in the context of image comparison, the term “test case” refers to
a pixel (reference point) in the image.

IJSEKE

14

the source subdomain, and we hypothesize that the algorithms that first examine

the lower-right corner should have improved cost effectiveness compared with those

that first examine the upper-left corner (because of the domino effect pointed out

in Section 3.3). We have also included ART varieties of four and nine subdomains

to investigate the impact of the number of subdomains.

We configure the controller program to exclude reference points within the de-

fined coordinates (within the boundaries of exclusion zones) to avoid detecting

insignificant variations (e.g. banner areas), which would otherwise result in false

positives.

We believe that combining the forgetting and mirroring strategies will remark-

ably reduce the computational overhead of the original FSCS-ART algorithm while

still keeping an even distribution of the selected reference points. To our knowl-

edge, this is the first work to take advantage of the web layout flow behaviour for

automated testing, in both the web industry and academia.

3.6. Metrics and measurement

A failure detection approach in software testing is described by certain qualities

and benefits such as how efficient and effective it is in terms of the cost, time

and resources required. The testing process cannot be infinite and is expected to

end either with or without a failure detected within a reasonable runtime. Several

metrics have been developed by researchers to gauge the failure-detection capability

of a testing method involved.

Among others, the three most common metrics include: P-measure: probability

of finding at least one failure by the set of test cases executed; E-measure: expected

number of failures detected by the set of test cases executed; and F-measure: ex-

pected number of test cases executed to detect the first failure [41, 9, 40]. P-measure

and E-measure are characterized with their sampling spread drawing close in nor-

mal distribution, whereas F-measure turns out to possess a geometric probability

distribution [41, 42]. Which of these metrics best characterize the effectiveness of

testing depends on the constraints, conditions and other aspects of the testing. As

our case study involve browser layout faults which tend to fall under the category

of non-point patterns, the highest priority is given to detecting the first failure, a

scenario which better simulates an industry practice where the control is passed by

the tester to developers for rectification. Given the significance of discovering the

first failure and ART’s effectiveness in targeting failures clumped together, Chen

et al. suggest that F-measure possess a preferential meaning [41, 42]. Since both

P-measure and E-measure are sample size dependent, in view of the lack of justi-

fication on the sample size to be used for evaluation, it may not be meaningful to

use these two evaluation metrics in our study. As a practicability indicator, execu-

tion time is also measured as it shows how quickly in practical terms the failure is

detected. We note that execution time can be environment dependent and affected

by the computational resources involved.

IJSEKE

15

For the purpose of this paper, F-measure and execution time (ms) taken to

detect the first failure are reported, unless indicated otherwise.

4. IMPLEMENTATION AND CONFIGURATION

The automated testing process requires a development environment set up and

configured on a computer. b There is no specific requirement for a platform or

programming language.

4.1. Testing overview

A basic testing flow involves a configuration file, a driver program (controller),

screenshot capturing, and output verification modules. A tester enters application-

specific instructions and parameters, such as application URI, exclusion zones, al-

gorithms, keywords etc. in the configuration file as shown in Section 4.2. The driver

program written in the language of choice reads the configuration file and passes

parameters to the screenshot capturing module, which is an interface to webdrivers.

Using an API of the web driver allows simulating user behaviour such as opening

pages and invoking other actions available on the web application. There are a va-

riety of web driver implementations by both the open-source community and the

official browser vendors. We used Selenium webdriver for this experiment because

of its growing popularity and acceptance rate among the web application developers

[7]. For the purpose of this testing, Selenium is only used to capture web application

output as screenshots for URLs passed from the driver program 4.2. The captured

screenshot pairs are then used as input to the testing strategy module (which is the

most essential component of our testing framework), which determines the (x, y)

origin on the coordinate system (the next reference point to be checked). The testing

strategy module includes the implementations of eight test case (reference point)

selection algorithms, which will be further explained in Section 4.5. Output verifica-

tion is performed based on the pairwise comparison of the reference points selected

from the two screenshots. As the driver program gets screenshots from the web-

driver, stores them in the local file system and calls the testing strategy module,

it is where the evaluation metrics described in Section 3.6 (namely, the F-measure

and execution time) are applied. These metrics are needed in this study to eval-

uate and compare the performance of the eight algorithms of the testing strategy

module. Test execution is run for each algorithm independently. The testing process

requires reliable Internet connection unless the applications are hosted within the

local network. The main modules of our testing framework are depicted in Figure

10, and explained in Sections 4.2 to 4.5.

b We have made the source code of our testing framework available at http://www.art-

research.yoomroo.com/project-output-verification/

IJSEKE

16

Driver Program

Testing Strategy
Module

Screenshots Capturing
Module

Human Tester

Configuration File

Results

Fig. 10: Main modules of our testing framework.

4.2. Configuration

A configuration file written in a human and machine-readable language (YAML,

XML etc.) allows using the same testing environment to test different applications.

It also provides abstraction to free the tester from knowing internal implementation

of the web application. The instructions provided in the configuration file is parsed

in the driver program and determines the behaviour and flow of the testing process.

If no specific URLs are give in the configuration, they are recursively navigated and

crawled starting from the application base URL, also known as the home page.

A sample configuration file can be as simple as shown in Figure 11.

4.3. Driver program

The driver program acts as an entry point to start the test process which includes

parsing the configuration file, executing the test process accordingly and record ex-

periment results. During the execution of test process, the driver program interacts

with the browser webdrivers to automatically capture screenshots of webpages and

stores them in the local file system. Once a pair of screenshots are taken from the

two versions, it invokes the testing strategy module to execute reference point se-

lection and comparison on the pair. The test cases are reference points identified by

(x, y) generated by the algorithm under evaluation in the testing strategy module.

The reference points are accessed on the pair and their pixel values are compared

to determine whether they look visually identical on the basis of the geometry of

RGB (red, green and blue) colour space, a computationally low cost way to com-

pare two colour pixels. Reference points falling within the exclusion areas defined

in the configuration file are skipped to avoid detection of false positives due to the

dynamic nature of these sections. The test process continues until a non-identical

pair of reference points are encountered or stopping criterion is met.

IJSEKE

17

−−−
con f i g . yml
#
app :

u r l : http ://myapp . com
s t gu r l : http : : / / s tg .myapp . com
on l y t e s t :
s itemap :
l i n k s : f o l l ow
output path : ˜/ s c r e en sho t s
r e s i z e : [1600 , 2000]
a lgor i thm : MART4
browser :
− f i r e f o x
− chrome

#exc lude ad banners by coo rd ina t e s
#l t f o r l e f t−top and rb f o r r ight−bottom of rec
exc lude :
− − l t :

− 34
− 200

− br :
− 940
− 200

ignore−paths :
− t o o l s
− admin

Fig. 11: A simple configuration file written in YAML.

4.4. Capturing screenshots

The ability of programmatically capturing screenshots is an important part of web

testing. A webdriver is used to enable communication with browsers. There are

open-source and vendor webdriver implementations, providing an API to drive ma-

jor browsers. As a portable browser automation framework, Selenium provides ad-

vanced API and a webdriver component to allow simulating user behaviour on the

target applications and take screenshots. Selenium webdriver supports multiple pro-

gramming languages, and there exist third-party bindings for languages which are

not natively supported. To make the testing process simpler, Selenium webdriver

does not require a server and it can directly initiate a browser instance. Browser

instances running on remote machines can also be used to further reduce test exe-

cution time. Using a webdriver allows not only to capture a screenshot of the entire

webpage but also a certain section of the webpage. The code snippet in Figure 12 il-

lustrates a simple case of programmatically taking a screenshot through the Firefox

browser and storing it in the local file system, using the Selenium webdriver.

4.5. The testing strategy module

In this research we investigate the following eight test case selection algorithms:

sequential (T), sequential (B), RT, FSCS-ART-with-Forgetting, MART 4, MART 4

(B), MART 9, and MART 9 (B), where the first three serve as experimental controls

and the remaining five are varieties of ART algorithms. The testing strategy module

IJSEKE

18

WebDriver Driver = new Fi r e f oxDr ive r () ;
Dr iver . get (‘ ‘ http :// our−t e s t−domain ’ ’) ;

F i l e shot = ((TakesScreenshot) Driver) .
getScreenshotAs (OutputType . FILE) ;

F i l eU t i l s . copyFi l e (shot , new F i l e (ScreenshotPath)) ;

Fig. 12: Taking a screenshot using the Selenium webdriver.

includes the implementations of these eight algorithms. They are explained in the

following subsections. Although existing literature usually use MART 4, we included

MART 9 as well to provide additional insight into the benefits of the mirroring

technique.

4.5.1. Coordinate system of a screen

Before we describe the individual algorithms, it is necessary to introduce the screen

coordinate system that is used in this study. The basic unit of measure is typically

the pixel. A point on the screen is given by the x- and y-coordinate pairs. The origin

(0, 0) is at the top left of the screen. The x-coordinates increase towards the right,

and the y-coordinates increase towards the bottom.

4.5.2. Algorithm 1: sequential (T)

The first algorithm, denoted by “sequential (T),” is the most fundamental bench-

mark algorithm to serve as an experimental control, where “(T)” represents “top-

down scan.” In this algorithm, test cases (reference points) are selected sequentially

by scanning the image using the following order:
(0,0), (1,0), . . ., (n-1,0),

(0,1), (1,1), . . ., (n-1,1),

. . .,

(0,m-1), (1,m-1), . . ., (n-1,m-1),
where n and m are the width and height dimensions of the image. In other words,

this algorithm starts by scanning the first (top) line of the image, from left to

right, then the second line, from left to right, and so on, until the bottom line. The

algorithm will stop when a failure (difference between the two pixels at the same

reference point) is detected or when a prescribed stopping criterion is met.

For example, Figure 13 illustrates a 3 × 3 image containing nine pixels. The

sequential (T) algorithm will generate the following sequence of reference points:

Pixel1, Pixel2, Pixel3, Pixel4, Pixel5, Pixel6, Pixel7, Pixel8, Pixel9.

IJSEKE

19

Pixel1 Pixel2 Pixel3

Pixel4 Pixel5 Pixel6

Pixel7 Pixel8 Pixel9

Fig. 13: A 3 × 3 image containing nine pixels.

4.5.3. Algorithm 2: sequential (B)

As pointed out in Section 3.3, the flow behaviour (domino effect) adds special inter-

est to the right and bottom boundaries of the output space. We therefore designed

the second benchmark algorithm, named sequential (B), which scans the image from

bottom up, and we hypothesize that sequential (B) should be more cost-effective

than the sequential (T) algorithm.

In sequential (B), test cases (reference points) are selected sequentially by scan-

ning the vertical lines of an image from bottom up and from right to left, as follows:
(n-1,m-1), (n-1,m-2), . . ., (n-1,0),

(n-2,m-1), (n-2,m-2), . . ., (n-2,0),

. . .,

(0,m-1), (0,m-2), . . ., (0,0),
For the image illustrated in Figure 13, the sequential (B) algorithm will generate the

following sequence of reference points: Pixel9, Pixel6, Pixel3, Pixel8, Pixel5, Pixel2,

Pixel7, Pixel4, Pixel1.

It is to be noted that the above sequence is not a reverse order of that of

sequential (T).

4.5.4. Algorithm 3: RT

The third benchmark is the random testing (RT) algorithm. RT selects each ref-

erence point by means of random sampling without replacement, according to the

uniform probability distribution.

4.5.5. Algorithm 4: FSCS-ART-with-Forgetting

FSCS-ART To understand the FSCS-ART-with-Forgetting algorithm, it is nec-

essary to first introduce the FSCS-ART algorithm, the pseudocode of which is shown

in Figure 14. This pseudocode has been adapted from the original FSCS-ART al-

gorithm [10] for the purpose of selecting a sequence of reference points for image

comparison.

The algorithm works as follows: Lines 1 to 4 perform initialization, where n is the

number of already-selected reference points, E is the set of already-selected reference

points, differenceFound is the variable that shows whether a difference (failure) has

IJSEKE

20

1 Set n to 0 ;
2 Set E to ∅ ;
3 Set d i f f e r enceFound to f a l s e ;
4 Set k to 10 ;
5 Randomly s e l e c t a r e f e r e n c e point , t ;
6 L1 : Set n to n+1;
7 IF t de t e c t s a d i f f e r e n c e between the two images THEN
8 Set d i f f e renceFound to true ;
9 GOTO L2 ;

10 ENDIF
11 IF the p r e s c r i b ed stopping c r i t e r i o n has been met THEN
12 GOTO L2 ;
13 ENDIF
14 Add t to E;
15 Randomly s e l e c t k candidate r e f e r e n c e po in t s to form a candidate s e t C

= {c1 , c2 , . . . , ck } , where c1 , c2 , . . . , ck are po in t s that have never
been used f o r image comparison ;

16 FOR each ci ∈ C
17 Set di to minimum(d(ci, e1) , d (ci, e2) , . . . , d (ci, em)) , where E

= {e1, e2, . . . , em} and d(x, y) denotes the Eucl idean d i s t ance between x
and y ;

18 ENDFOR
19 Find cj ∈ C such that dj i s the maximum among d1 , d2 , . . . , dk . In

s i t u a t i o n s where there i s more than one candidate s a t i s f y i n g the
requirement , randomly s e l e c t a candidate to be cj ;

20 Set t to cj ;
21 GOTO L1 ;
22 L2 : RETURN t , n , d i f f e renceFound ;

Fig. 14: Pseudocode of the FSCS-ART algorithm adapted for image comparison.

been detected, and k is the size of the candidate set (denoted by C) and the value

of k is normally set to 10 [10]. Line 5 randomly selects the first reference point.

Lines 7 to 10 mean that if the two pixels at this reference point are found to be

different then the algorithm will report the difference and return. Lines 11 to 13

mean that, even if no difference is detected, the algorithm can still return—this

will happen when the prescribed stopping criterion is satisfied, for example, when

testing resources are exhausted or when all pixels have been compared.

In line 14, the currently compared reference point is added to E, which is the

set of already-selected reference points. Line 15 constructs a fixed-size-candidate-

set C of size k. The elements of C are different candidate points, and C and E

cannot overlap (that is, the candidate points should have never been used for image

comparison in previous iterations). In situations where the number of remaining

points is smaller than k, all these remaining points should be included in C. Lines

16 to 18 calculate the shortest distance from each candidate point ci to the set E.

Line 19 finds the candidate having the largest shortest distance to E, and such a

candidate is selected to be the next reference point (as in line 20) and the current

candidate set C is discarded. Line 21 repeats the process.

FSCS-ART-with-Forgetting The FSCS-ART algorithm described above has

a time complexity of O(n2) because of the distance calculations in lines 16 to 18 of

Figure 14: For each candidate ci, its distances to all the previously selected refer-

ence points are calculated, which is time consuming. To reduce the computational

IJSEKE

21

overhead, a “forgetting” strategy can be applied: Instead of looking at all the pre-

viously selected reference points, we can only look at a small and fixed number of

previously selected reference points, and such an algorithm is named FSCS-ART-

with-Forgetting.

The pseudocode of our implementation of the FSCS-ART-with-Forgetting al-

gorithm is the same as that shown in Figure 14 except that lines 2 and 14 are

interpreted differently: In line 2, E is initialized as an empty queue having a maxi-

mum size of 10 (so, our “forgetting” algorithm only remembers the last 10 reference

points that have been selected) and, in line 14, “Add t to E” is an enqueue operation

where, when E is full, the oldest element of E will be dequeued so that only up to

10 elements will be remembered at all times. This way, the distance calculations

in lines 16 to 18 only consume a constant computational overhead because the size

of C is 10 and the size of E is also 10 (hence, no more than 100 distances need to

be calculated). As a result, the time complexity of our FSCS-ART-with-Forgetting

algorithm is linear (O(n)).

4.5.6. Algorithm 5: MART 4

To further reduce the computational overhead, we further apply a mirroring strat-

egy in addition to the forgetting strategy. The algorithm named “MART 4”

refers to the FSCS-ART-with-Forgetting-and-Mirroring-with-4-subdomains algo-

rithm, where mirroring and forgetting are both applied to the original FSCS-ART

algorithm and the mirroring involves a source subdomain (the upper-left quarter)

plus three mirror subdomains (the sequence of the three mirror subdomains is shown

in Figure 9).

The MART 4 algorithm generates an adaptive random sequence (ARS) of ref-

erence points as follows:

Step 1: Apply the FSCS-ART-with-Forgetting algorithm to generate a reference

point P within the source subdomain;

Step 2: Map (translate) P into the mirror subdomain 1—the mapping only involves

adding the width of the subdomain to the x-coordinate of P and, hence, incurs

trivial overheads;

Step 3: Map P into the mirror subdomain 2;

Step 4: Map P into the mirror subdomain 3;

The above four steps are repeated until a difference of images is detected or the

stopping criterion is met. Consider the example shown in Figure 9, the generated

ARS of reference points is: P1, P1', P1'', P1''', P2, P2', P2'', P2'''.

4.5.7. Algorithm 6: MART 4 (B)

In the MART 4 algorithm, the source subdomain is defined to be the upper-left

quarter of the entire input domain, and the sequence of the three mirror subdomains

IJSEKE

22

is defined as shown in Figure 9. Following the same rationale for the design of the

sequential (B) algorithm, which states that a higher priority should be given to the

right and bottom boundaries of the output space, we designed the MART 4 (B)

algorithm.

The basic procedure of MART 4 (B) is similar to that of MART 4 except that

a different source and mirror subdomain scheme is used, as shown in Figure 15.

Consider the example shown in Figure 15, the generated ARS of reference points

is: P1, P1', P1'', P1''', P2, P2', P2'', P2'''.

P1'''

mirror subdomain 3

P2'''

P1'

mirror subdomain 1

P2'

P1''

mirror subdomain 2

P2''

P1

source subdomain

P2

Fig. 15: Source and mirror subdomains of MART 4 (B).

4.5.8. Algorithm 7: MART 9

The MART 9 algorithm is similar to MART 4 except that nine rather than four

subdomains are used, as illustrated in Figure 16.

source subdomain mirror subdomain 1

mirror subdomain 3 mirror subdomain 4

mirror subdomain 2

mirror subdomain 5

mirror subdomain 6 mirror subdomain 7 mirror subdomain 8

Fig. 16: Source and mirror subdomains of MART 9.

IJSEKE

23

4.5.9. Algorithm 8: MART 9 (B)

The MART 9 (B) algorithm is similar to MART 4 (B) except that nine rather than

four subdomains are used, as illustrated in Figure 17.

mirror subdomain 8 mirror subdomain 5

mirror subdomain 7 mirror subdomain 4

mirror subdomain 2

mirror subdomain 1

mirror subdomain 6 mirror subdomain 3 source subdomain

Fig. 17: Source and mirror subdomains of MART 9 (B).

4.6. Characteristics of subject applications

As a black box testing technique, our approach does not require any information

about the internal implementation of the applications under test, enabling the tester

to compile a configuration file based on observation from outside of the system.

However, the tester is expected to be familiar with the general external behaviour

and appearance of applications. This is especially useful in reducing false positive

results when the application contains embedded third-party content, such as adver-

tisements.

As part of the controlled experiments to be discussed in Section 5, the testing was

conducted on seven custom e-commerce web applications developed with the Linux,

Apache, MySQL, and PHP software bundle, a popular open-source model in the web

industry. The front-end implementations include custom, Bootstrap and Foundation

frameworks. These applications were developed and maintained by Tickets.com Pty

Ltd. (www.tickets.com) for their business customers and were specialized in live

entertainment events and ticket sales, providing a large set of frequently updated

webpages to conduct testing on.

Due to confidentiality requirements of our industry partner, the specific names

of the seven subject applications are not listed in this paper.

5. EMPIRICAL STUDY AND DISCUSSIONS

To put into practice and evaluate the proposed approach, a set of seven real world

web applications from the industry were tested. Web applications in staging and

IJSEKE

24

production versions were used for pairwise comparisons in the controlled exper-

iments. In practice, web development agencies tend to keep two versions of web

applications where the staging version with restricted public access provides a test-

ing environment to test new features before putting them into production. Our

controlled experiments involved the use of faulty webpages collected from multiple

version cycles.

5.1. Scale and categorization

The testing was carried out on Windows 7 Enterprise Edition with four most popu-

lar web browsers (Google Chrome Version 35.0.1916.114m, Mozilla Firefox Version

29.0.1, Opera Version 17.0.1241.45 and Microsoft Internet Explorer 10.0.15) with

screen size of 1600 × 900 involving 3115 pairs of webpages from the seven web ap-

plications under controlled experiment. c Screenshots were categorized according to

their failure rates d where Category A (1347 pairs of screenshots) had a calculated

failure rate between 0.0020 and 0.0070 (an average of 0.0053), and Category B (1768

pairs of screenshots) had a calculated failure rate between 0.0008 and 0.0020 (an

average of 0.0014).

5.2. Results of experiments

Each pair of screenshots (production page, staging page) was tested for 1000 times

on each algorithm in order to yield statistically meaningful results (except sequen-

tial (T) and sequential (B) as these two algorithms are deterministic and hence

only require one run). Therefore, the scale of the experiments is nontrivial. All

F-measures were collected and the average F-measure was calculated for each algo-

rithm. Similarly, the mean execution time to the first failure was also calculated for

each algorithm.

Results of experiments are shown in Table 1 and Table 2. A number of interesting

observations can be made, as discussed below:

First, the F-measure and execution time results shown in both Table 1 and

Table 2 indicate that sequential comparison (sequential (T) and sequential (B)) is

the worst option. However, it is clear that, within the two sequential comparison

algorithms, sequential (B) always outperformed sequential (T). This means that

our failure-based testing strategy is effective, where a higher priority is given to the

right and bottom boundaries of the output space for the “domino effect” failure

pattern in web layouts.

c Each of the 3115 pairs included two non-identical screenshots. In our controlled experiments, we

excluded identical screenshots.
d In the context of comparing two screenshots, we define the concept of “failure rate” as the number

of different reference points divided by the total number of reference points. For example, if two
screenshots (each having 1600×900 = 1440000 pixels) differ only in a 50×50 area then the failure
rate is calculated as (50× 50)/(1600× 900) = 0.0017. We were able to compute the precise failure
rate of each screenshot pair in the controlled experiments.

IJSEKE

25

Method Mean time to first failure (ms) Mean F-measure

sequential (T) 26940 128903

sequential (B) 20445 97826

RT 59 191

FSCS-ART-with-Forgetting 213 131

MART 4 54 129

MART 4 (B) 51 119

MART 9 29 130

MART 9 (B) 28 127

Table 1: Mean execution time and F-measure (Category A).

Method Mean time to first failure (ms) Mean F-measure

sequential (T) 86336 413092

sequential (B) 75112 359390

RT 293 972

FSCS-ART-with-Forgetting 1049 643

MART 4 268 640

MART 4 (B) 267 637

MART 9 136 645

MART 9 (B) 135 643

Table 2: Mean execution time and F-measure (Category B).

Secondly, Table 1 and Table 2 show that all five ART algorithms are superior

to RT in terms of F-measure—they required a fewer number of pixel comparisons

to detect the first failure (that is, the first different pixel). This means that using

an even distribution of checkpoints across the output domain is a more effective

strategy than RT.

Thirdly, in terms of efficiency, the first ART algorithm (FSCS-ART-with-

Forgetting) is worse than RT in execution time due to the distance computation

required in ART. This cost, however, is significantly reduced with the mirroring

technique, even to the extent that it is cheaper than RT, as randomly generating

a new reference point is more expensive than mapping an existing one (which, on

average, involves no more than one addition or subtraction operation on the x-

or y-coordinate). Consequently, as shown in both Table 1 and Table 2, all four

MART algorithms have outperformed RT in execution time. This means that all

four MART algorithms are not only more effective but also more efficient than RT.

Fourthly, when we compare the results of the four MART algorithms with the

results of FSCS-ART-with-Forgetting, it is found that the former not only outper-

formed the latter in execution time but also achieved comparable F-measures. It

IJSEKE

26

is also shown that increasing the number of subdomains from four to nine largely

reduced the execution time but not the F-measure.

Fifthly, an important observation is that MART 4 (B) and MART 9 (B) always

outperformed MART 4 and MART 9, respectively. This observation is consistent

with the observation that sequential (B) outperformed sequential (T). In other

words, all of the bottom-up approaches outperformed their top-down counterparts,

demonstrating the effectiveness of our failure-based testing strategy, where testing

priorities are given to regions that are more likely to incur a failure. This finding

also indicates that the effectiveness and efficiency of the mirroring technique is

related to the order of mirror subdomains, and hence provides additional flexibility

to control proliferation direction in ART when there is knowledge of the possible

failure inclination (certain sections of the input/output domain are more likely to

have failures).

Finally, it is to be noted that Table 1 and Table 2 correspond to screenshots of

larger and smaller failure rates, respectively. A smaller failure rate in web application

screenshots indicates that the failure type is unlikely to be structural layout fault,

that is, the failure is unlikely to flow as described in Section 3.3. So, searching for

it from the bottom has smaller benefit. However, lower areas of the application

screen are still slightly failure-inclined because header areas are usually static (less

frequently changing) in web applications.

6. CONCLUSION

A failure-based testing strategy is defined as a concept that envisions selecting test

cases based on the knowledge available of various aspects of failure patterns [9].

In this paper we designed failure-based testing techniques for the detection of web

application layout faults. Our techniques are based on both the observation of web

application failure patterns and the concept of adaptive random sequence.

ART is a technique that selects test cases from the input space. This study has

successfully extended the concept and application of ART to the output space. We

showed that output verification in terms of oracle automation can be facilitated

by the use of application domain knowledge. In this regard, ART is guided with

failure-pattern-based heuristics and outperforms random testing (RT) in both fail-

ure detection effectiveness (the F-measure) and failure detection efficiency (the

execution time).

At the same time, it is found that how many mirror subdomains are used and

in which order they are selected can have noticeable effect on the failure detection

capacity.

The empirical results demonstrate that our approach is promising in the light of

attempts at automating output verification in an cost-effective way. If used properly,

this method can minimize the manual work and efforts required from developers and

testers during the conduct of regression testing of web applications. Most impor-

tantly, this method is not dependent on particular testing of the web application,

IJSEKE

27

and can also be used in other domains for output verification. It is to be noted,

however, that we did not consider the problem of image scaling and translation

variations, as these topics are beyond the scope of this study. Interested readers

are referred to Kıraç et al. [8] for treatments that eliminate differences caused by

scaling and translation.

In summary, our proposed approach has a number of main points of novelty

in terms of both practical application and academic contribution: use of the char-

acteristics and failure patterns of browser layout rendering to improve screenshot

comparison effectiveness and efficiency; even distribution of reference points across

the output space as an extension and novel application of the concepts of ART

and ARS; and division of the output space into multiple subdomains to reduce the

fault-detection execution time even to the extent that it is cheaper than RT. The

empirical results presented in this paper add further justifications for the emergence

of the area of failure-based testing, which covers ART as a special instance [9].

In future research, we intend to extend our failure-based testing approach by

applying more domain-specific knowledge leverages to further enhance the effective-

ness and efficiency of output verification.

ACKNOWLEDGMENTS

This research was supported in part by a linkage grant of the Australian Research

Council (project ID: LP160101691).

References

[1] E. Selay, Z. Q. Zhou, and J. Zou, “Adaptive random testing for image comparison
in regression web testing,” in Proceedings of the International Conference on Digital
Image Computing: Techniques and Applications (DICTA 2014). IEEE Computer
Society Press, 2014, pp. 1–7.

[2] UN International Telecommunications Union, “ITU releases 2015 ICT figures,”
2015, available at https://www.itu.int/net/pressoffice/press releases/2015/17.aspx,
[accessed 19-July-2015].

[3] S. R. Choudhary, H. Versee, and A. Orso, “WEBDIFF: Automated identification of
cross-browser issues in web applications,” in Proceedings of the 26th IEEE Interna-
tional Conference on Software Maintenance (ICSM’10), Sept 2010, pp. 1–10.

[4] D. Robins and J. Holmes, “Aesthetics and credibility in web site design,” Information
Processing and Management, vol. 44, no. 1, pp. 386 – 399, 2008.

[5] G. Rothermel, R. H. Untch, C. Chengyun, and M. J. Harrold, “Prioritizing test cases
for regression testing,” IEEE Transactions on Software Engineering, vol. 27, no. 10,
pp. 929–948, 10 2001.

[6] S. Raina and A. P. Agarwal, “An automated tool for regression testing in web ap-
plications,” ACM SIGSOFT Software Engineering Notes, vol. 38, no. 4, pp. 1–4, jul
2013.

[7] OpenQA, “Selenium web application testing system,” available at http://seleniumhq.
org, [accessed 19-July-2015].

[8] M. F. Kıraç, B. Aktemur, and H. Sözer, “VISOR: A fast image processing pipeline

https://www.itu.int/net/pressoffice/press_releases/2015/17.aspx
http://seleniumhq.org
http://seleniumhq.org

IJSEKE

28

with scaling and translation invariance for test oracle automation of visual output
systems,” Journal of Systems and Software, vol. 136, pp. 266–277, 2018.

[9] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive random testing:
The ART of test case diversity,” Journal of Systems and Software, vol. 83, no. 1, pp.
60–66, 2010.

[10] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random testing,” in Proceedings
of the 9th Asian Computing Science Conference (ASIAN’04), Lecture Notes in Com-
puter Science 3321. Springer-Verlag, 2004, pp. 320–329.

[11] A. Grosskurth and M. W. Godfrey, “A reference architecture for web browsers,”
in Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM’05), 2005, pp. 661–664.

[12] E. Marcotte, “Responsive web design, A List Apart,” May 2010, available
at http://www.alistapart.com/articles/responsive-web-design/. [Online]. Available:
http://www.alistapart.com/articles/responsive-web-design/

[13] A. Hori, S. Takada, H. Tanno, and M. Oinuma, “An oracle based on image comparison
for regression testing of web applications,” in Proceedings of the 27th International
Conference on Software Engineering and Knowledge Engineering (SEKE’15), 2015,
pp. 639–645.

[14] D. J. Richardson, S. L. Aha, and T. O’Malley, “Specification-based test oracles for
reactive systems,” in Proceedings of the 14th International Conference on Software
Engineering (ICSE’92), 1992, p. 105.

[15] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem
in software testing: A survey,” IEEE Transactions on Software Engineering, vol. 41,
no. 5, pp. 507–525, 2015.

[16] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user interface (GUI)
testing: Systematic mapping and repository.” Information and Software Technology,
vol. 55, pp. 1679 – 1694, 2013.

[17] Microsoft Corporation, “Expression web,” available at http://www.microsoft.com/
expression/, [accessed 03-April-2015].

[18] Adobe Systems Incorporated, “Browser lab,” available at http://blogs.adobe.com/
browserlab/, [accessed 05-April-2015].

[19] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb: Automatically testing dynamic
web sites,” in Proceedings of the 11th International World Wide Web Conference
(WWW’02, 2002, pp. 654–668.

[20] P. Tonella and F. Ricca, “Dynamic model extraction and statistical analysis of web
applications,” in Proceedings of the 4th International Workshop on Web Site Evolu-
tion, 2002, pp. 43–52.

[21] F. Ricca and P. Tonella, “Web testing: a roadmap for the empirical research,” in Pro-
ceedings of the 7th IEEE International Symposium on Web Site Evolution (WSE’05),
Sept 2005, pp. 63–70.

[22] S. Bedi and P. J. Schroeder, “Observations on the implementation and testing of
scripted web applications,” in Proceedings of the 6th IEEE International Workshop
on Web Site Evolution (WSE’04), Sept 2004, pp. 20–27.

[23] G. A. D. Lucca and A. R. Fasolino, “Testing web-based applications: The state of
the art and future trends,” Information and Software Technology, vol. 48, no. 12, pp.
1172 – 1186, 2006, quality Assurance and Testing of Web-Based Applications.

[24] A. Marchetto, F. Ricca, and P. Tonella, “Empirical validation of a web fault taxon-
omy and its usage for fault seeding,” in Proceedings of the 9th IEEE International
Workshop on Web Site Evolution (WSE’07), Oct 2007, pp. 31–38.

[25] C. Eaton and A. M. Memon, “An empirical approach to evaluating web application

http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/
http://www.microsoft.com/expression/
http://www.microsoft.com/expression/
http://blogs.adobe.com/browserlab/
http://blogs.adobe.com/browserlab/

IJSEKE

29

compliance across diverse client platform configurations,” International Journal of
Web Engineering and Technology, vol. 3, no. 3, pp. 227–253, 2007.

[26] J. Takahashi, “An automated oracle for verifying GUI objects,” ACM SIGSOFT
Software Engineering Notes, vol. 26, no. 4, pp. 83–88, Jul. 2001.

[27] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility testing,” in
Proceedings of the 33rd International Conference on Software Engineering (ICSE’11),
2011, pp. 561 – 570.

[28] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “Webmate: A tool for testing web
2.0 applications,” in Proceedings of the Workshop on JavaScript Tools (JSTools’12).
New York, NY, USA: ACM Press, Jun. 2012, pp. 11–15.

[29] PhantomCSS, available at https://github.com/Huddle/PhantomCSS, [accessed 20-
July-2015].

[30] Applitools, available at https://applitools.com/, [accessed 20-July-2015].
[31] Screenster, available at http://www.creamtec.com/products/screenster/, [accessed

20-July-2015].
[32] Y. Rubner, C. Tomasi, and L. Guibas, “The earth mover’s distance as a metric for

image retrieval,” International Journal of Computer Vision, vol. 40, no. 2, pp. 99–121,
2000.

[33] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by image and video
content: The QBIC system,” Computer, vol. 28, no. 9, pp. 23–32, 1995.

[34] H. Ling and K. Okada, “An efficient earth mover’s distance algorithm for robust
histogram comparison,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 29, no. 5, pp. 840 – 853, 2007.

[35] R. S. Boyer, B. Elspas, and K. N. Levitt, “Select- a formal system for testing and
debugging programs by symbolic execution,” in Proceedings of the International Con-
ference on Reliable Software, 1975, pp. 234–245.

[36] L. J. White and E. I. Cohen, “A domain strategy for computer program testing,”
IEEE Transactions on Software Engineering, vol. 6, no. 3, pp. 247 – 257, 1980.

[37] P. E. Ammann and J. C. Knight, “Data diversity: an approach to software fault
tolerance,” IEEE Transactions on Computers, vol. 37, no. 4, pp. 418–425, 1988.

[38] G. B. Finelli, “NASA software failure characterization experiments,” Reliability En-
gineering and System Safety, vol. 32, pp. 155 – 169, 1991.

[39] P. G. Bishop, “The variation of software survival time for different operational input
profiles (or why you can wait a long time for a big bug to fail),” in Proceedings of the
23rd International Symposium on Fault-Tolerant Computing (FTCS-23), 1993, pp.
98–107.

[40] F. T. Chan, T. Y. Chen, I. K. Mak, and Y. T. Yu, “Proportional sampling strategy:
guidelines for software testing practitioners,” Information and Software Technology,
vol. 38, no. 12, pp. 775 – 782, 1996.

[41] T. Y. Chen, F.-C. Kuo, and R. Merkel, “On the statistical properties of the F-
measure,” in Proceedings of the 4th International Conference on Quality Software
(QSIC’04), 2004, pp. 146–153.

[42] ——, “On the statistical properties of testing effectiveness measures,” Journal of
Systems and Software, vol. 79, no. 5, pp. 591 – 601, 2006.

[43] “W3C Specifications,” available at http://www.w3.org/Style/CSS/specs.en.html,
[accessed 09-April-2015].

[44] Microsoft Corporation, “Microsoft Developer Network,” available at http://msdn.
microsoft.com/en-us/library/ms533005(v=vs.85).aspx, [accessed 21-June-2015].

[45] E. N. Narciso, M. E. Delamaro, and F. D. L. D. S. Nunes, “Test case selection:

https://github.com/Huddle/PhantomCSS
https://applitools.com/
http://www.creamtec.com/products/screenster/
http://www.w3.org/Style/CSS/specs.en.html
http://msdn.microsoft.com/en-us/library/ms533005(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms533005(v=vs.85).aspx

IJSEKE

30

A systematic literature review,” International Journal of Software Engineering and
Knowledge Engineering, vol. 24, no. 4, pp. 653 – 676, 2014.

[46] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou, “A revisit of three studies related
to random testing,” SCIENCE CHINA Information Sciences, vol. 58, pp. 052 104:1–
052 104:9, 2015, Springer-Verlag.

[47] S. Morasca and S. Serra-Capizzano, “On the analytical comparison of testing tech-
niques,” in Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA’04), 2004, pp. 154–164.

[48] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. Ng, “Mirror adaptive random testing,”
Information and Software Technology, vol. 46, no. 15, pp. 1001 – 1010, 2004.

[49] K. P. Chan, T. Y. Chen, and D. Towey, “Forgetting test cases,” in Proceedings of the
30th Annual International Computer Software and Applications Conference (COMP-
SAC’06). IEEE Computer Society Press, 2006, pp. 485–494.

[50] A. F. Tappenden and J. Miller, “A novel evolutionary approach for adaptive random
testing,” IEEE Transactions on Reliability, vol. 58, no. 4, pp. 619 – 633, 2009.

[51] E. Ibrahimov, J. Wang, and Z. Q. Zhou, “Similarity-based search for model checking:
a pilot study with Java Pathfinder,” in Proceedings of the 13th International Confer-
ence on Quality Software (QSIC’13), The Symposium on Engineering Test Harness
(TSETH’13). IEEE Computer Society Press, 2013, pp. 238–244.

[52] A. Shahbazi, A. F. Tappenden, and J. Miller, “Centroidal voronoi tessellations –
a new approach to random testing,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 163–183, 2013.

[53] A. C. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, R. Merkel, and G. Rothermel, “A
cost-effective random testing method for programs with non-numeric inputs,” IEEE
Transactions on Computers, vol. 65, no. 12, pp. 3509–3523, 2016.

	Adaptive Random Testing in Detecting Layout Faults of Web Applications
	Recommended Citation

	Adaptive Random Testing in Detecting Layout Faults of Web Applications
	Abstract
	Disciplines
	Publication Details

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Web browsers
	Testing a web application
	Motivating example and problem statement
	Related Work

	OUR APPROACH AND CONCEPTUAL FRAMEWORK
	An insight
	Failure patterns and failure rate
	Our observation: Failure pattern in web layouts
	Adaptive random testing (ART)
	Our approach: Adaptive random sequence (ARS) for output verification
	Metrics and measurement

	IMPLEMENTATION AND CONFIGURATION
	Testing overview
	Configuration
	Driver program
	Capturing screenshots
	The testing strategy module
	Coordinate system of a screen
	Algorithm 1: sequential (T)
	Algorithm 2: sequential (B)
	Algorithm 3: RT
	Algorithm 4: FSCS-ART-with-Forgetting
	Algorithm 5: MART 4
	Algorithm 6: MART 4 (B)
	Algorithm 7: MART 9
	Algorithm 8: MART 9 (B)

	Characteristics of subject applications

	EMPIRICAL STUDY AND DISCUSSIONS
	Scale and categorization
	Results of experiments

	CONCLUSION

