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Abstract

An efficient, yet accurate, computational protocol for predicting nitrogen NMR chem-
ical shifts based on density functional theory and the gauge-including atomic orbital
approach has been proposed. A database of small and relatively rigid compounds
containing nitrogen atoms was compiled. Scaling factors for the linear correlation be-
tween experimental 15N chemical shifts and calculated isotropic shielding constants
have been systematically investigated with seven different levels of theory in both chlo-
roform and dimethyl sulfoxide, two commonly used solvents for NMR experiments.
The best method yields a root-mean-square deviation of about 5.30 ppm and 7.00 ppm
in CHCl3 and DMSO, respectively. Moreover, another set of scaling factors for -NH2

chemical shifts was also proposed based on a separate database with three levels of
theory. Furthermore, it is encouraging that a reasonable transferability for the linear
correlation has been found between these two solvents. This finding will enable broader
applications of the developed empirical scaling factors to other commonly used solvents
in NMR experiments. The consistency between theoretical predictions and experimen-
tal results for structural elucidations was illustrated for selected examples including
regioisomers, tautomers, oxidation states, and protonated structures.
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1 Introduction

Theoretical predictions of nuclear magnetic resonance (NMR) chemical shifts have found an

increasing number of applications for structural elucidation and mechanistic studies in mod-

ern chemistry research. [1] Development of accurate yet practically affordable computational

methods is crucial to improve the reliability and accuracy of such predictions and can help

to narrow the structural possibilities. Though quantum mechanical calculations of chemical

shifts and coupling constants date back as early as to 1950s by Ramsey, [2] routine calculations

of isotropic shielding constants and chemical shifts have been made practically accessible due

to methodology developments, especially the introduction of the gauge-including atomic or-

bital (GIAO) approach. [3] Various methodological developments aiming at reducing errors

have been carried out. These include accounting for electron correlations, [4] accurate mod-

eling of solvation effects, [5] conformational averaging, [6] vibrational averaging, [7] heavy atom

effects, [8] linear regression [1,9] and empirically parameterized quantum mechanical models. [10]

Among them, the linear regression method, namely the application of corrections derived

from linear regression procedures, is arguably the most general and straightforward approach

for error reduction. It aims at achieving high accuracy with low to moderate computational

costs by applying an empirical scaling to minimize the systematic errors in the adopted mod-

els. The success of such empirical scaling is demonstrated by the superior performance of

predictions of chemical shifts for 1H and 13C, which has been recently reviewed by Lodewyk

et al. [1] It has been noted that the major benefit for this empirical scaling is that the slope

can be used as an empirical correction to correct the computed chemical shifts for system-

atic errors. Such a procedure can reduce error from various sources such as solvation effects,

rovibratory effects, and other methodological limitations. The intercept values provide a

convenient alternative for a reference value from which the calculated isotropic values can be

converted to chemical shifts. Therefore, via the approach of linear regression, the obtained

prediction value can not only be scaled to decrease the systematic errors but can also avoid

the specific errors associated with certain reference compounds.

It has been suggested that the high sensitivity of the nitrogen lone pair to changes in the

molecular environment makes 15N NMR an exceptionally useful tool. [11–13] However, com-
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pared to 1H and 13C, the range of 15N chemical shifts is much larger (up to 1200 ppm), making

it very challenging to develop an empirical scaling that works satisfactorily across all the 15N

chemical shift range. Moreover, oxidation states, conformational variations and protonation

states pose additional challenges for theoretical predictions of 15N chemical shifts.

In the current work, we aim at developing efficient protocols for computational prediction

of 15N chemical shifts, in order to further improve the accuracy of structural elucidation.

We compiled a database with small and relatively rigid molecules covering most common

nitrogen-containing functional groups and developed empirical scaling parameters for linear

regression approaches with seven levels of theory. As a complement to previous experimental

and computational work on 1H and 13C, [1,14,15] our protocol will assist in the full realization of

predictions of chemical shifts in structural elucidations of many important natural products

and pharmaceutical related NMR compounds. Furthermore, to the best of our knowledge,

the transferability for the linear regression models between different solvents was investigated

for the first time. The encouraging results enable a broader application of the developed

protocol for other commonly used NMR solvents.

2 Results and Discussions

2.1 Performance of the adopted methods

The fitted empirical scaling factors are listed in Table 1, and their performance is summarised

in Table 2. For all seven methods in the two solvents, R2s were estimated to be close to

1.0 (Table 1) indicating that the developed linear regression model fits well with the applied

data. On the other hand, some systematic errors were observed as indicated by the deviation

of slope from the ideal values (up to 4%–5% in both CHCl3 and DMSO). For the test sets, all

seven methods performed reasonably well and they predicted 15N chemical shifts with root-

mean-square deviations (RMSDs) of 5.30–6.67 ppm and 7.00–8.04 ppm to the experimental

values in CHCl3 and DMSO with relative RMSDs around 5% and 7%, respectively (Table

2, and the linear regression figures can be found in ESI Figure S1 and S2). When the fitted

empirical scaling factors were applied to the probe sets (Table 2), similar performances were
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observed for both solvents.

We excluded the -NH2 group containing molecules with the corresponding chemical shifts

larger than 300 ppm from the linear regression. For this particular group, a significant

deviation between predicted and experimental values was noted, as reported previously by

Xin et al. [16] To address this issue, we built another separate database of 12 -NH2 containing

molecules, and based on this database new scaling factors specifically for -NH2 were fitted

for Method 5, 6 and 7 (see Figure S3 and Table S4 in ESI for more details). These fitted

scaling factors gave an RMSD of 1.18 to 1.99 ppm.

Based on our data, Methods 5 and 6 with geometry optimization at M062X/6-31+G(d,p)

or M062X/6-31+G(2d,p) in the gas phase and NMR GIAO calculations at mPW1PW91/6-

311+G(2d,p) with the SMD solvent model and Method 7 with geometry optimization and

NMR GIAO calculation at B3LYP/cc-pVDZ with the CPCM solvent model provide the

best performance for predictions. The advantage of Methods 5 and 6 lies in providing the

chemical shift prediction for 1H, 13C and 13N in one set of calculations taking advantage of

previous work. [17]

We also note that the fitted empirical scaling factors provide a better prediction for 15N

chemical shifts in CHCl3 than those in DMSO in terms of RMSDs (Table 2). Two possible

factors might contribute to the difference in their performances. Firstly, the chemical shift

range covered in DMSO (∼-284 ppm to ∼35 ppm) is larger than that in CHCl3 (∼-217

ppm to ∼36 ppm). Thus, the absolute RMSDs in DMSO is larger than those in CHCl3.

This has been observed in previous studies on 1H and 13C chemical shifts. [17] Secondly, the

dielectric constant of DMSO (ε=45.80) is much larger than that of CHCl3 (ε=4.55), and it

is expected that DMSO might have a larger effect on the molecular structures [18] compared

to those in vacuo. To further improve the prediction accuracy, including solvation effects in

the geometric optimization may be helpful. However, the corresponding computational time

will be increased significantly.

2.2 Transferability for scaling factors between CHCl3 and DMSO

Experimentally, more than a dozen of solvents have been used in 15N NMR measurements

with a dielectric constant from 1.87 (cyclohexane) to 76.70 (water). It has been shown that
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the solvent may significantly alter the observed shifts. [19] One obvious question is whether

there is any transferability for the fitted scaling factors between different solvents with the

same level of theory for calculation. Can the fitted empirical scaling factors in one solvent

apply to other solvents without re-parameterization? This has been investigated by swapping

the empirical scaling factors between CHCl3 and DMSO and quantified their performances

in terms of RMSDs (Table 3). For Method 5, the RMSDs change from 5.30 to 8.19 ppm for

CHCl3 and from 7.26 to 9.22 ppm for DMSO. For Method 6, the RMSDs increase from 5.35

to 8.03 ppm for CHCl3 and from 7.12 to 8.91 ppm for DMSO. Based on such analysis on two

solvents, we predict that these empirical scaling factors can achieve an RMSD of less than

∼10 ppm in other solvents; however, more accurate predictions will require solvent specific

scaling factors. Alternatively, we also studied the transferability for all the molecules that

have experimental data in both CHCl3 and DMSO. Similar performances were observed for

Method 5–7. More details about prediction errors can be seen in ESI Table S5–S8. We

recommend using scaling factors of DMSO set for predictions of 15N NMR chemical shift in

polar solvents, and scaling factors of CHCl3 set for predictions in non-polar solvents.

2.3 Applications of 15N Chemical Shifts in Structural Elucidations

We have applied the developed protocol to illustrate the potential applications of 15N chem-

ical shifts in structural elucidations for selected case studies.

2.3.1 Regioisomers

The distinction between different regioisomers can be made by NMR chemical shift analyses.

In order to differentiate various heterocycles containing molecules, current applications of

1H and 13C NMR spectra are sometimes insufficient [20], especially for small molecules, whose

structures are difficult to ascertain. The broader range of nitrogen chemical shifts enables a

more sensitive analysis than 1H and 13C chemical shifts analyses. Investigation of the regio-

chemistry of oxazole based molecules has drawn considerable attention due to their wide

application as bioactive natural products. [21–23] At the same time, it is challenging for 15N

NMR predictions without linear regression, as the corresponding error will be significantly
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larger. We applied our protocol to oxazoles, isoxazoles, and oxadiazoles (Figure 1 and Table

4), which have been systematically investigated recently by Xin et al.. [16] For the molecules

listed, we carried out our calculations using Method 5-7 with the same procedure as above

and only considered the conformer with the lowest energy obtained through the geometry

optimization step in the gas phase (the same procedure was applied for 5, 6 and 7, discussed

in next sections). For oxazole 1, all three methods are able to predict the correct isomers

through providing chemical shifts comparable with experimental data (most of the errors

are within 1σ or at most 2σ). For isoxazoles (2 and 3), all three methods can distinguish

the correct structure. What needs to be highlighted is that the substantial systematic error

for the chemical shifts of the -NH2 group has largely been reduced. As can be seen from

Table 4, at Pos.2 of isoxazoles (2) via the new scaling factors, the deviations are merely 2.0

ppm, 2.2ppm and 1.0 ppm for Method 5, 6 and 7, respectively. For the molecules containing

halogen atoms (3 and 4), there is an effect of spin-orbit coupling on halogen-substituted

carbon atoms. Having no direct bond with halogen atoms 15N NMR chemical shift prediction

thus has an advantage as this effect will have a minor impact on 15N NMR chemical shifts.

Therefore, 15N NMR chemical shift calculation can be an excellent complement to 1H and 13C

NMR chemical shifts studies in structural elucidation. For oxadiazole 4, all three methods

provided robust results for structural differentiation among possible isomers.

2.3.2 Tautomers

We also applied our protocol to the structural elucidation of a tautomeric system - adenine

(Figure 2). Previous studies have concluded that tautomer 5a is favored over 5b (Figure

2 and Table 5). Our calculations predicted that the deviations of 15N NMR chemical shift

for 5a are all within 8.5 ppm with Method 5, and 7.0 ppm with Method 6. For Pos.3 of

tautomer 5a, the deviations are 1.2 ppm, 1.6 ppm and 0.3 ppm obtained with the new scaling

factors based on Method 5, 6 and 7. A slightly larger deviation was observed for Pos.5 with

Method 7 for tautomer 5a. For the case of tautomer 5b, an apparent deviation larger than

20 ppm was observed at Pos.5 with all three methods. Thus, we conclude that tautomer 5a

is favored over 5b in DMSO, which is also consistent with previous studies. [16,24]
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2.3.3 Oxidation states

For structural elucidation of nitrogen oxidation states, we tested our methods with 6 (Figure

3) - a second generation HIV-1 non-nucleoside reverse transcriptase inhibitor. [25] As we can

see from Table 6, for 6a, both Method 5 and 6 performed well. The predicted 15N NMR

chemical shifts are consistent with the experimental data, with deviations less than 9.5

ppm, with somewhat slightly larger deviations observed with Method 7. While for the

other two possible nitrogen oxidation sites 6b, 6c, and the non-oxidized compound 6d, the

corresponding deviations of 15N NMR chemical shift at Pos.5 are larger than 17.9 ppm. From

the averaged deviation (Table 6), we can see that for 6a the overall deviations for all three

methods are within 1σ. Therefore, we can conclude that 6a is the most likely oxidation state

of this compound and that the most favorable nitrogen oxidation site is located at Pos.5.

2.3.4 Protonation states

For structural elucidation of different nitrogen protonation states, we tested our methods

with molecule 7, which belongs to the pyrrole-imidazole alkaloids family. 7a, 7b, and 7c

are the alternative tautomers, and 7d is the protonated state of 7a (Figure 4). As we can

see from Table 7, for the protonated structure 7d, all three methods performed well. The

predicted 15N NMR chemical shifts are in good agreement with the experimental data [26]. For

7a, 7b, and 7c, there exist significant deviations up to 80 ppm, indicating that a protonated

structure is the dominant population under the NMR experimental condition. [16,26] This was

also supported by the averaged deviations for Method 5, 6 and 7, which are all less than 4.2

ppm (Table 7).

3 Conclusions

Linear regression parameters mapping calculated isotropic shielding constants based on seven

different levels of theory to observable NMR chemical shifts have been developed for 15N. The

procedure proposed by Tantillo and co-workers [1,17] for 1H and 13C chemical shifts predictions

had been proved useful for 15N chemical shift predictions. Among the seven levels of theory in

this study, Method 5 and 6 with geometry optimization at M062X/6-31+G(d,p) or M062X/6-
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31+G(2d,p) and NMR GIAO calculation at mPW1PW91/6-311+G(2d,p) with SMD solvent

model, provide reliable predictions. Moreover, the fitted scaling factors for -NH2 chemical

shifts based on Method 5 and 6 provide an improved estimation for this group of compounds.

For general applications, we recommend the use of the linear regression parameters of Method

5 and 6 to predict 15N chemical shifts together with those for 1H and 13C. One interesting

observation is that the linear regression parameters can provide a reasonable prediction

for the chemical shifts in a solvent for which they were not parameterized. Alternatively,

one can choose the set of linear regression parameters based on the polarity of the solvent.

Future work will include solvent specific parameterization for other commonly used NMR

solvents and potential further refinement by taking into account solvation effects during the

geometry optimization step. We expect that the current work on 15N chemical shift and

together with previous work on 1H and 13C chemical shifts prediction will serve as a robust

tool in structural elucidation.

4 Experimental Section

4.1 Database of nitrogen-containing molecules

In total, 24 and 46 molecules were included in our test sets for CHCl3 and DMSO, respectively

(see Table S1 and S2 in ESI for more details). Two criteria for selection of molecules include

a) reliable experimental data available, preferably in both CHCl3 and DMSO; b) being

small and relatively rigid (i.e., with only one dominant potential energy minimum). The

reason for the second selection criterion is to avoid dealing with conformational averaging in

isotropic shielding constant calculations during the fitting process. Theoretically, for flexible

molecules with multiple minima, the isotropic constant (σ) can be calculated from those of

individual conformers via the Boltzmann averaging of the isotropic shielding constants with

respect to the relative potential energies for different conformers. [6] However, the potential

errors in the description of the energetic properties with a particular adopted quantum

mechanical method (including the implicit solvent model) might contaminate the fitting

process. Instead, in this work, we focused on small and rigid molecules to avoid such an
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averaging. To study the performance of our fitted linear regressions, we also compiled a

probe set with 12 rigid molecules (see Table S3 in ESI for more details) for both CHCl3 and

DMSO sets. Additionally, to address the challenge posed by the predictions of various -NH2

chemical shifts, a database of 12 -NH2 containing rigid molecules (see Table S4 in ESI for

more details) was also built.

4.2 Computational details

We followed the procedures proposed by Tantillo and co-workers. [1,17] First, geometry op-

timization calculations were carried out in vacuo to locate the minimum on the potential

energy surface, considering the fact that the addition of solvent model in this step may

be computationally expensive. [27] The optimized structures were verified by vibrational fre-

quency calculations. To avoid the complexity in dealing with the effects of multiple confor-

mations on chemical shifts, we decided to select small and rigid molecules into our database

for linear regression. In the second step, NMR single-point calculations were performed

with an implicit solvent model, which has been shown to significantly improve the accuracy

compared to NMR calculations in vacuo. [1] The implicit solvent model SMD [28] was applied.

The gauge-independent atomic orbital (GIAO) approach was applied to calculate the 15N

isotropic shielding constants. [3] All the calculations were performed with Gaussian 09. [29] To

be consistent with Tantillo and co-workers’ previous work on 1H and 13C chemical shifts, [17]

six different methods for the geometric optimization and NMR calculations were adopted for

15N chemical shift calculations (Table 1, Method 1 to 6). This will facilitate 15N chemical

shift predictions without additional calculations in practical applications. Additionally, a re-

cently proposed method B3LYP/cc-pVDZ, which was applied by Xin et al., [16] was included

for comparison (Table 1, Method 7). However, what needs to be underscored here is that

there are two differences between our procedure and the procedure proposed by Xin et al.: [16]

Firstly, the databases are different, so the fitted scaling factors are different; secondly, the

solvation models are different, we applied the SMD model, [28] while they used the CPCM

model. [30] The linear regression was then fitted based on experimental chemical shifts (δ)
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and computed isotropic shielding constants (σ) for the test set with the following equation

δ =
intercept − σ

−slope
. (1)

Once these scaling factors are determined and verified accordingly, they can be applied for

prediction of unknown 15N chemical shifts in other molecules.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
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Table 3: Transferability of the fitted scaling factors between CHCl3 and DMSO.

Method DMSO to CHCl3
a) CHCl3 to DMSOb)

1 8.27 9.46

2 7.96 9.01

3 8.14 9.25

4 7.91 8.45

5 8.19 9.22

6 8.03 8.91

7 8.62 8.56

a) The RMSDs were obtained for the test set when applying the fitted scaling factor of

DMSO to predict the chemical shifts in CHCl3.
b) The RMSDs were obtained for the test

set when applying the fitted scaling factor of CHCl3 to predict the chemical shifts in

DMSO.
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Table 4: Experimental and predicted 15N NMR chemical shifts (in ppm) for selected oxazoles

(1), isoxazoles (2-3), and oxadiazoles (4).

Pos.a) Exp.b) δcalc. - δexp.

5c) 6d) 7e) Refi)

1a 1 -139.3 -4.0 -3.9 -2.9 -7.0

2 -114.1 -2.0 -4.8 -4.9 -1.5

3 -307.8 3.2 1.8 9.7 8.4

4 -349.7 -10.3 -9.5 -5.6 -2.2

Avgj) 5.8 5.7 6.3 5.6

1a’ -17.0 -16.3 -22.8 -17.5

18.4 14.4 16.5 19.3

3.1 2.1 7.6 7.1

-9.7 -9.0 -5.0 -0.7

Avgj) 13.5 11.8 14.8 13.5

2a 1 -34.5 -9.2 -7.0 -2.6 -1.7

2 -322.5 -2.0f) -2.2g) -1.0h) 0.4

Avgj) 6.6 5.2 2.0 1.2

2a’ -25.1 -23.2 -18.5 -17.1

-13.7f) -13.8g) -14.1h) -11.2

Avgj) 20.2 19.1 16.5 15.7

3a 1 -2.8 -9.2 -8.1 -4.2 -1.7

3a’ -22.4 -20.0 -16.0 -12.2

4a 1 -13.8 -0.1 0.4 4.0 3.1

2 -143.0 0.9 1.3 -0.5 0.7

Avgj) 0.6 0.9 2.8 2.2

4a’ -5.4 -3.5 0.9 0.9

13.0 12.8 10.3 10.6

Avgj) 10.0 9.3 7.3 7.5

a) Positions for the nitrogen of interest. b) Experimental data taken from Ref. [16]. c) d) e)

The calculated chemical shifts by Method 5, 6 and 7, respectively. f) The calculated

chemical shift for Pos.2 by -NH2 group scaling factors based on Method 5 (slope: -0.9768,

intercept: -120.21). g) The calculated chemical shift for Pos.2 by -NH2 group scaling factors

based on Method 6 (slope: -0.9589, intercept: -113.34). h) The calculated chemical shift for

Pos.2 by -NH2 group scaling factors based on Method 7 (slope: -0.9222, intercept: -93.26).

i) The difference between calculated chemical shifts and experimental values published by

Xin et al. [16] j) Root-mean-square deviation of the prediction for each structure.
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Table 5: Experimental and predicted 15N NMR chemical shifts (in ppm) for adenine.

Pos.a) Exp.b) δcalc. - δexp.

5c) 6d) 7e) Reff)

5a 1 -149.8 -7.2 -5.1 -6.4 -4.2

2 -151.5 -8.5 -7.0 -7.2 -4.6

3 -301.2 -1.2f) 1.6g) 0.3h) -1.2

4 -140.3 -7.1 -6.7 -7.2 -3.9

5 -222.6 -7.4 -6.9 -11.4 -14.0

Avgj) 6.8 5.8 7.4 7.1

5b 3.7 5.0 6.1 2.7

15.6 16.5 17.4 16.4

-1.9f) -1.6g) -3.5h) -3.1

0.6 1.3 1.0 2.3

-20.7 -20.5 -23.4 -26.6

Avgj) 11.8 12.0 13.4 14.2

a) Positions for the nitrogen of interest. b) Experimental data taken from Ref. [16,24]. c) d) e)

The calculated chemical shifts by Method 5, 6 and 7, respectively. f) The calculated

chemical shift for Pos.3 by -NH2 group scaling factors based on Method 5 (slope: -0.9768,

intercept: -120.21) . g) The calculated chemical shift for Pos.3 by -NH2 group scaling factors

based on Method 6 (slope: -0.9589, intercept: -113.34). h) The calculated chemical shift for

Pos.3 by -NH2 group scaling factors based on Method 7 (slope: -0.9222, intercept: -93.26).

i) The difference between calculated chemical shifts and experimental values published by

Xin et al. [16] j) Root-mean-square deviation of the prediction for each structure.
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Table 6: Experimental and predicted 15N NMR chemical shifts for molecule 6 in different

oxidation states.

Pos.a) Exp.b) δcalc. - δexp.

5c) 6d) 7e) Reff)

6a 1 -86.5 2.2 2.3 -1.9 -1.1

2 -256.9 1.7 1.9 0.1 1.3

3 -273.3 0.5 1.1 4.9 4.0

4 -91.2 -5.2 -4.8 -6.4 -3.5

5 -113.3 9.5 9.2 13.6 8.1

Avgg) 5.0 4.9 7.1 4.4

6b 1.5 1.1 -3.2 0.6

6.2 6.0 6.5 6.3

-25.4 -25.1 -24.6 -25.2

8.4 8.6 9.9 5.6

18.3 23.5 21.0 22.5

Avgg) 12.6 12.5 12.6 12.2

6c 7.4 7.1 8.3 4.6

1.4 1.1 1.1 1.6

-19.9 -19.4 -17.6 -18.7

-1.4 -1.4 -7.0 -3.3

17.9 18.1 20.7 22.4

Avgg) 12.4 12.3 13.1 13.3

6d -2.9 -3.2 -3.7 -1.0

2.2 2.1 1.0 1.4

1.2 1.3 6.1 4.0

1.3 1.4 -3.6 -2.6

18.0 18.2 20.7 22.1

Avgg) 8.2 8.4 10.0 10.1

a) Positions for the nitrogen of interest. b) Experimental data taken from Ref. [16]. c) d) e)

The calculated chemical shifts by Method 5, 6 and 7, respectively. f) The difference

between calculated chemical shifts and experimental values published by Xin et al. [16] g)

Root-mean-square deviation of the prediction for each structure.
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Table 7: Experimental and predicted 15N NMR chemical shifts for molecule 7a and related

structures.

Pos.a) Exp.b) δcalc. - δexp.

5c) 6d) 7e) Reff)

7a 6.1 6.0 4.8 5.6

5.2 5.5 4.6 3.1

74.6 78.3 76.1 71.0

-4.5 -3.0 -4.0 -8.2

-18.0f) -17.8g) -20.5h) -18.7

Avgj) 34.6 36.1 35.4 33.2

7b 0.6 0.9 0.9 0.3

10.8 10.5 10.1 10.0

-15.9 -14.0 -12.7 -13.3

80.2 82.7 81.8 78.2

-10.4f) -10.3g) -14.1h) -14.3

Avgj) 37.2 38.1 37.8 36.3

7c 1.6 2.1 1.1 1.2

5.9 5.6 5.8 4.3

-22.7 -21.5 -24.7 -25.0

-9.8 -8.2 -10.3 -11.1

51.8 57.0 58.7 61.3

Avgj) 25.8 27.6 29.0 30.1

7d 1 -259.2 -3.5 -3.0 -3.8 -4.5

2 -211.2 -1.6 -1.3 -2.5 -5.4

3 -271.2 -4.4 -2.8 -3.0 -9.4

4 -285.2 -6.0 -4.9 -5.4 -8.4

5 -303.2 -4.1f) -3.3g) -4.9h) -1.7

Avgj) 4.2 3.3 4.1 6.5

a) Positions for the nitrogen of interest. b) Experimental data taken from Ref. [16,26]. c) d) e)

The calculated chemical shifts by Method 5, 6 and 7, respectively. f) The calculated

chemical shift for Pos.5 by -NH2 group scaling factors based on Method 5 (slope: -0.9768,

intercept: -120.21). g) The calculated chemical shift for Pos.5 by -NH2 group scaling factors

based on Method 6 (slope: -0.9589, intercept: -113.34). h) The calculated chemical shift for

Pos.5 by -NH2 group scaling factors based on Method 7 (slope: -0.9222, intercept: -93.26).

i) The difference between calculated chemical shifts and experimental values published by

Xin et al. [16] j) Root-mean-square deviation of the prediction for each structure.

24



ToC Text: 15N chemical shift calculations based on DFT/GIAO with linear regression sig-

nificantly increase the accuracy of the prediction.

ToC figure:
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ToC Keywords: Nuclear Magnetic Resonance Spectroscopy, Density Functional Theory,

Gauge-Including Atomic Orbital, Nitrogen Chemical Shift, Linear Regression, Solvent Effects
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