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Functional Theory and Gauge-Including Atomic Orbital

Abstract

An effcient, yet accurate, computational protocol for predicting nitrogen NMR chemical shifts based on
density functional theory and the gauge-including atomic orbital approach has been proposed. A
database of small and relatively rigid compounds containing nitrogen atoms was compiled. Scaling

factors for the linear correlation between experimental TSN chemical shifts and calculated isotropic
shielding constants have been systematically investigated with seven different levels of theory in both
chloroform and dimethyl sulfoxide, two commonly used solvents for NMR experiments. The best method
yields a root-mean-square deviation of about 5.30 ppm and 7.00 ppm in CHCI3 and DMSO, respectively.

Moreover, another set of scaling factors for -NH2 chemical shifts was also proposed based on a separate

database with three levels of theory. Furthermore, it is encouraging that a reasonable transferability for
the linear correlation has been found between these two solvents. This finding will enable broader
applications of the developed empirical scaling factors to other commonly used solvents in NMR
experiments. The consistency between theoretical predictions and experimental results for structural
elucidations was illustrated for selected examples including regioisomers, tautomers, oxidation states,
and protonated structures.
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Abstract

An efficient, yet accurate, computational protocol for predicting nitrogen NMR, chem-
ical shifts based on density functional theory and the gauge-including atomic orbital
approach has been proposed. A database of small and relatively rigid compounds
containing nitrogen atoms was compiled. Scaling factors for the linear correlation be-
tween experimental '°N chemical shifts and calculated isotropic shielding constants
have been systematically investigated with seven different levels of theory in both chlo-
roform and dimethyl sulfoxide, two commonly used solvents for NMR experiments.
The best method yields a root-mean-square deviation of about 5.30 ppm and 7.00 ppm
in CHCl3 and DMSO, respectively. Moreover, another set of scaling factors for -NHs
chemical shifts was also proposed based on a separate database with three levels of
theory. Furthermore, it is encouraging that a reasonable transferability for the linear
correlation has been found between these two solvents. This finding will enable broader
applications of the developed empirical scaling factors to other commonly used solvents
in NMR experiments. The consistency between theoretical predictions and experimen-
tal results for structural elucidations was illustrated for selected examples including
regioisomers, tautomers, oxidation states, and protonated structures.



1 Introduction

Theoretical predictions of nuclear magnetic resonance (NMR) chemical shifts have found an
increasing number of applications for structural elucidation and mechanistic studies in mod-
ern chemistry research. ! Development of accurate yet practically affordable computational
methods is crucial to improve the reliability and accuracy of such predictions and can help
to narrow the structural possibilities. Though quantum mechanical calculations of chemical
shifts and coupling constants date back as early as to 1950s by Ramsey, 2 routine calculations
of isotropic shielding constants and chemical shifts have been made practically accessible due
to methodology developments, especially the introduction of the gauge-including atomic or-
bital (GIAO) approach. Bl Various methodological developments aiming at reducing errors
have been carried out. These include accounting for electron correlations,® accurate mod-
eling of solvation effects, P! conformational averaging, @ vibrational averaging, @ heavy atom
effects, ® linear regression ™ and empirically parameterized quantum mechanical models. 1
Among them, the linear regression method, namely the application of corrections derived
from linear regression procedures, is arguably the most general and straightforward approach
for error reduction. It aims at achieving high accuracy with low to moderate computational
costs by applying an empirical scaling to minimize the systematic errors in the adopted mod-
els. The success of such empirical scaling is demonstrated by the superior performance of
predictions of chemical shifts for 'H and 3C, which has been recently reviewed by Lodewyk
et al.8! Tt has been noted that the major benefit for this empirical scaling is that the slope
can be used as an empirical correction to correct the computed chemical shifts for system-
atic errors. Such a procedure can reduce error from various sources such as solvation effects,
rovibratory effects, and other methodological limitations. The intercept values provide a
convenient alternative for a reference value from which the calculated isotropic values can be
converted to chemical shifts. Therefore, via the approach of linear regression, the obtained
prediction value can not only be scaled to decrease the systematic errors but can also avoid
the specific errors associated with certain reference compounds.

It has been suggested that the high sensitivity of the nitrogen lone pair to changes in the

molecular environment makes >N NMR an exceptionally useful tool. I¥13l However, com-



pared to 'H and '3C, the range of >N chemical shifts is much larger (up to 1200 ppm), making
it very challenging to develop an empirical scaling that works satisfactorily across all the *N
chemical shift range. Moreover, oxidation states, conformational variations and protonation
states pose additional challenges for theoretical predictions of ®N chemical shifts.

In the current work, we aim at developing efficient protocols for computational prediction
of 1°N chemical shifts, in order to further improve the accuracy of structural elucidation.
We compiled a database with small and relatively rigid molecules covering most common
nitrogen-containing functional groups and developed empirical scaling parameters for linear
regression approaches with seven levels of theory. As a complement to previous experimental

1B BIETE ur protocol will assist in the full realization of

and computational work on 'H and
predictions of chemical shifts in structural elucidations of many important natural products
and pharmaceutical related NMR compounds. Furthermore, to the best of our knowledge,
the transferability for the linear regression models between different solvents was investigated

for the first time. The encouraging results enable a broader application of the developed

protocol for other commonly used NMR solvents.

2 Results and Discussions

2.1 Performance of the adopted methods

The fitted empirical scaling factors are listed in Table[I] and their performance is summarised
in Table 2| For all seven methods in the two solvents, R%s were estimated to be close to
1.0 (Table|l]) indicating that the developed linear regression model fits well with the applied
data. On the other hand, some systematic errors were observed as indicated by the deviation
of slope from the ideal values (up to 4%-5% in both CHCl3 and DMSO). For the test sets, all
seven methods performed reasonably well and they predicted '°N chemical shifts with root-
mean-square deviations (RMSDs) of 5.30-6.67 ppm and 7.00-8.04 ppm to the experimental
values in CHCl3 and DMSO with relative RMSDs around 5% and 7%, respectively (Table
, and the linear regression figures can be found in ESI Figure S1 and S2). When the fitted

empirical scaling factors were applied to the probe sets (Table , similar performances were



observed for both solvents.

We excluded the -NH; group containing molecules with the corresponding chemical shifts
larger than 300 ppm from the linear regression. For this particular group, a significant
deviation between predicted and experimental values was noted, as reported previously by
Xin et al. B9 To address this issue, we built another separate database of 12 -NH, containing
molecules, and based on this database new scaling factors specifically for -NHy were fitted
for Method 5, 6 and 7 (see Figure S3 and Table S4 in ESI for more details). These fitted
scaling factors gave an RMSD of 1.18 to 1.99 ppm.

Based on our data, Methods 5 and 6 with geometry optimization at M062X/6-31+G(d,p)
or M062X/6-31+G(2d,p) in the gas phase and NMR GIAO calculations at mPW1PW91/6-
311+G(2d,p) with the SMD solvent model and Method 7 with geometry optimization and
NMR GIAO calculation at B3LYP/cc-pVDZ with the CPCM solvent model provide the
best performance for predictions. The advantage of Methods 5 and 6 lies in providing the
chemical shift prediction for 'H, 13C and *N in one set of calculations taking advantage of
previous work. 7

We also note that the fitted empirical scaling factors provide a better prediction for *N
chemical shifts in CHCl; than those in DMSO in terms of RMSDs (Table [2). Two possible
factors might contribute to the difference in their performances. Firstly, the chemical shift
range covered in DMSO (~-284 ppm to ~35 ppm) is larger than that in CHCl3 (~-217
ppm to ~36 ppm). Thus, the absolute RMSDs in DMSO is larger than those in CHCI;.
This has been observed in previous studies on 'H and *C chemical shifts. 17 Secondly, the
dielectric constant of DMSO (e=45.80) is much larger than that of CHCly (¢=4.55), and it
is expected that DMSO might have a larger effect on the molecular structures®® compared
to those in vacuo. To further improve the prediction accuracy, including solvation effects in
the geometric optimization may be helpful. However, the corresponding computational time

will be increased significantly.

2.2 Transferability for scaling factors between CHCI; and DMSO

Experimentally, more than a dozen of solvents have been used in N NMR measurements

with a dielectric constant from 1.87 (cyclohexane) to 76.70 (water). It has been shown that
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the solvent may significantly alter the observed shifts. ™ One obvious question is whether
there is any transferability for the fitted scaling factors between different solvents with the
same level of theory for calculation. Can the fitted empirical scaling factors in one solvent
apply to other solvents without re-parameterization? This has been investigated by swapping
the empirical scaling factors between CHCI3 and DMSO and quantified their performances
in terms of RMSDs (Table . For Method 5, the RMSDs change from 5.30 to 8.19 ppm for
CHCI; and from 7.26 to 9.22 ppm for DMSO. For Method 6, the RMSDs increase from 5.35
to 8.03 ppm for CHCl3 and from 7.12 to 8.91 ppm for DMSO. Based on such analysis on two
solvents, we predict that these empirical scaling factors can achieve an RMSD of less than
~10 ppm in other solvents; however, more accurate predictions will require solvent specific
scaling factors. Alternatively, we also studied the transferability for all the molecules that
have experimental data in both CHCIl3 and DMSO. Similar performances were observed for
Method 5-7. More details about prediction errors can be seen in ESI Table S5-S8. We
recommend using scaling factors of DMSO set for predictions of >N NMR chemical shift in

polar solvents, and scaling factors of CHCl3 set for predictions in non-polar solvents.

2.3 Applications of '°N Chemical Shifts in Structural Elucidations

We have applied the developed protocol to illustrate the potential applications of *N chem-

ical shifts in structural elucidations for selected case studies.

2.3.1 Regioisomers

The distinction between different regioisomers can be made by NMR chemical shift analyses.
In order to differentiate various heterocycles containing molecules, current applications of
'H and C NMR spectra are sometimes insufficient 2% especially for small molecules, whose
structures are difficult to ascertain. The broader range of nitrogen chemical shifts enables a
more sensitive analysis than 'H and ¥C chemical shifts analyses. Investigation of the regio-
chemistry of oxazole based molecules has drawn considerable attention due to their wide

2123

application as bioactive natural products. I At the same time, it is challenging for '°N

NMR predictions without linear regression, as the corresponding error will be significantly



larger. We applied our protocol to oxazoles, isoxazoles, and oxadiazoles (Figure [I|and Table
, which have been systematically investigated recently by Xin et al.. For the molecules
listed, we carried out our calculations using Method 5-7 with the same procedure as above
and only considered the conformer with the lowest energy obtained through the geometry
optimization step in the gas phase (the same procedure was applied for 5, 6 and 7, discussed
in next sections). For oxazole 1, all three methods are able to predict the correct isomers
through providing chemical shifts comparable with experimental data (most of the errors
are within 1o or at most 20). For isoxazoles (2 and 3), all three methods can distinguish
the correct structure. What needs to be highlighted is that the substantial systematic error
for the chemical shifts of the -NHy group has largely been reduced. As can be seen from
Table , at Pos.2 of isoxazoles (2) via the new scaling factors, the deviations are merely 2.0
ppm, 2.2ppm and 1.0 ppm for Method 5, 6 and 7, respectively. For the molecules containing
halogen atoms (3 and 4), there is an effect of spin-orbit coupling on halogen-substituted
carbon atoms. Having no direct bond with halogen atoms N NMR chemical shift prediction
thus has an advantage as this effect will have a minor impact on >N NMR chemical shifts.
Therefore, N NMR chemical shift calculation can be an excellent complement to 'H and 3C
NMR chemical shifts studies in structural elucidation. For oxadiazole 4, all three methods

provided robust results for structural differentiation among possible isomers.

2.3.2 Tautomers

We also applied our protocol to the structural elucidation of a tautomeric system - adenine
(Figure [2). Previous studies have concluded that tautomer 5a is favored over 5b (Figure
and Table . Our calculations predicted that the deviations of N NMR chemical shift
for 5a are all within 8.5 ppm with Method 5, and 7.0 ppm with Method 6. For Pos.3 of
tautomer 5a, the deviations are 1.2 ppm, 1.6 ppm and 0.3 ppm obtained with the new scaling
factors based on Method 5, 6 and 7. A slightly larger deviation was observed for Pos.5 with
Method 7 for tautomer 5a. For the case of tautomer 5b, an apparent deviation larger than
20 ppm was observed at Pos.5 with all three methods. Thus, we conclude that tautomer 5a

is favored over 5b in DMSO, which is also consistent with previous studies. 1624



2.3.3 Oxidation states

For structural elucidation of nitrogen oxidation states, we tested our methods with 6 (Figure

25 As we can

D - a second generation HIV-1 non-nucleoside reverse transcriptase inhibitor.
see from Table [6] for 6a, both Method 5 and 6 performed well. The predicted N NMR
chemical shifts are consistent with the experimental data, with deviations less than 9.5
ppm, with somewhat slightly larger deviations observed with Method 7. While for the
other two possible nitrogen oxidation sites 6b, 6¢, and the non-oxidized compound 6d, the
corresponding deviations of N NMR chemical shift at Pos.5 are larger than 17.9 ppm. From
the averaged deviation (Table [6), we can see that for 6a the overall deviations for all three

methods are within 1o. Therefore, we can conclude that 6a is the most likely oxidation state

of this compound and that the most favorable nitrogen oxidation site is located at Pos.5.

2.3.4 Protonation states

For structural elucidation of different nitrogen protonation states, we tested our methods
with molecule 7, which belongs to the pyrrole-imidazole alkaloids family. 7a, 7b, and 7c
are the alternative tautomers, and 7d is the protonated state of 7a (Figure . As we can
see from Table [7], for the protonated structure 7d, all three methods performed well. The
predicted '’N NMR chemical shifts are in good agreement with the experimental data 28, For
7a, 7b, and 7c, there exist significant deviations up to 80 ppm, indicating that a protonated

n. 16261 This was

structure is the dominant population under the NMR experimental conditio
also supported by the averaged deviations for Method 5, 6 and 7, which are all less than 4.2

ppm (Table [7)).

3 Conclusions

Linear regression parameters mapping calculated isotropic shielding constants based on seven
different levels of theory to observable NMR chemical shifts have been developed for *N. The
procedure proposed by Tantillo and co-workers ™7 for 'H and *C chemical shifts predictions
had been proved useful for >N chemical shift predictions. Among the seven levels of theory in

this study, Method 5 and 6 with geometry optimization at M062X/6-31+G(d,p) or M062X /6-
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31+G(2d,p) and NMR GIAO calculation at mPW1PW91/6-311+G(2d,p) with SMD solvent
model, provide reliable predictions. Moreover, the fitted scaling factors for -NHy chemical
shifts based on Method 5 and 6 provide an improved estimation for this group of compounds.
For general applications, we recommend the use of the linear regression parameters of Method
5 and 6 to predict N chemical shifts together with those for 'H and '*C. One interesting
observation is that the linear regression parameters can provide a reasonable prediction
for the chemical shifts in a solvent for which they were not parameterized. Alternatively,
one can choose the set of linear regression parameters based on the polarity of the solvent.
Future work will include solvent specific parameterization for other commonly used NMR
solvents and potential further refinement by taking into account solvation effects during the
geometry optimization step. We expect that the current work on °N chemical shift and
together with previous work on 'H and '*C chemical shifts prediction will serve as a robust

tool in structural elucidation.

4 Experimental Section

4.1 Database of nitrogen-containing molecules

In total, 24 and 46 molecules were included in our test sets for CHCl3 and DMSO, respectively
(see Table S1 and S2 in ESI for more details). Two criteria for selection of molecules include
a) reliable experimental data available, preferably in both CHCl3 and DMSO; b) being
small and relatively rigid (i.e., with only one dominant potential energy minimum). The
reason for the second selection criterion is to avoid dealing with conformational averaging in
isotropic shielding constant calculations during the fitting process. Theoretically, for flexible
molecules with multiple minima, the isotropic constant (o) can be calculated from those of
individual conformers via the Boltzmann averaging of the isotropic shielding constants with
respect to the relative potential energies for different conformers. ! However, the potential
errors in the description of the energetic properties with a particular adopted quantum
mechanical method (including the implicit solvent model) might contaminate the fitting

process. Instead, in this work, we focused on small and rigid molecules to avoid such an



averaging. To study the performance of our fitted linear regressions, we also compiled a
probe set with 12 rigid molecules (see Table S3 in ESI for more details) for both CHCl; and
DMSO sets. Additionally, to address the challenge posed by the predictions of various -NHy
chemical shifts, a database of 12 -NH, containing rigid molecules (see Table S4 in ESI for

more details) was also built.

4.2 Computational details

We followed the procedures proposed by Tantillo and co-workers. P10 First, geometry op-
timization calculations were carried out in vacuo to locate the minimum on the potential
energy surface, considering the fact that the addition of solvent model in this step may
be computationally expensive. 27 The optimized structures were verified by vibrational fre-
quency calculations. To avoid the complexity in dealing with the effects of multiple confor-
mations on chemical shifts, we decided to select small and rigid molecules into our database
for linear regression. In the second step, NMR single-point calculations were performed
with an implicit solvent model, which has been shown to significantly improve the accuracy
compared to NMR calculations in vacuo. The implicit solvent model SMD 28! was applied.
The gauge-independent atomic orbital (GIAO) approach was applied to calculate the N
isotropic shielding constants. ¥l All the calculations were performed with Gaussian 09.2% To
be consistent with Tantillo and co-workers’ previous work on 'H and *C chemical shifts, 17
six different methods for the geometric optimization and NMR calculations were adopted for
15N chemical shift calculations (Table [ Method 1 to 6). This will facilitate '*N chemical
shift predictions without additional calculations in practical applications. Additionally, a re-
cently proposed method B3LYP /cc-pVDZ, which was applied by Xin et al.,™ was included
for comparison (Table , Method 7). However, what needs to be underscored here is that
there are two differences between our procedure and the procedure proposed by Xin et al.: 16
Firstly, the databases are different, so the fitted scaling factors are different; secondly, the
solvation models are different, we applied the SMD model, B8 while they used the CPCM

1301

model. " The linear regression was then fitted based on experimental chemical shifts (J)



and computed isotropic shielding constants (o) for the test set with the following equation

intercept — o

5= (1)

—slope

Once these scaling factors are determined and verified accordingly, they can be applied for

prediction of unknown '°N chemical shifts in other molecules.
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Figure 2: Two different tautomers for adenine.
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Table 3: Transferability of the fitted scaling factors between CHCl3 and DMSO.

Method DMSO to CHCl3» CHCl; to DMSOY

1 8.27 9.46
2 7.96 9.01
3 8.14 9.25
4 791 8.45
) 8.19 9.22
6 8.03 8.91
7 8.62 8.56

@) The RMSDs were obtained for the test set when applying the fitted scaling factor of
DMSO to predict the chemical shifts in CHClz. » The RMSDs were obtained for the test
set when applying the fitted scaling factor of CHCl3 to predict the chemical shifts in
DMSO.
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Table 4: Experimental and predicted >N NMR chemical shifts (in ppm) for selected oxazoles

(1), isoxazoles (2-3), and oxadiazoles (4).

Pos.®)  Exp.? dcale. - dexp.
5¢) 69 7¢)  Ref?
la 1 -139.3 -4.0 -3.9 229  -7.0
2 -114.1 -2.0 -4.8 -49  -15
3 -307.8 3.2 1.8 9.7 8.4
4 -349.7 -10.3 -9.5 5.6 -2.2
Avg?) 5.8 5.7 6.3 5.6
1a’ -17.0 -16.3 2228  -17.5
18.4 14.4 16.5  19.3
3.1 2.1 7.6 7.1
-9.7 -9.0 .50 -0.7
Avg?) 13.5 11.8 14.8  13.5
2a 1 -34.5 -9.2 -7.0 2.6 -1.7
2 -3225  -2.09) 229 _1.0M 0.4
Avgd) 6.6 5.2 2.0 1.2
2a’ -25.1 -23.2 2185 -17.1
-13.75) 21389 -14.1M -11.2
Avg?) 20.2 19.1 16.5  15.7
3a 1 -2.8 -9.2 -8.1 42 17
3a’ -22.4 -20.0 -16.0  -12.2
4a 1 -13.8 -0.1 0.4 4.0 3.1
2 -143.0 0.9 1.3 -0.5 0.7
Avg) 0.6 0.9 2.8 2.2
4a’ -5.4 -3.5 0.9 0.9
13.0 12.8 10.3 106
Avg? 10.0 9.3 7.3 7.5

@) Positions for the nitrogen of interest. ® Experimental data taken from Ref. 18, ) ) ¢
The calculated chemical shifts by Method 5, 6 and 7, respectively. ¥ The calculated
chemical shift for Pos.2 by -NHy group scaling factors based on Method 5 (slope: -0.9768,
intercept: -120.21). 9 The calculated chemical shift for Pos.2 by -NHj, group scaling factors
based on Method 6 (slope: -0.9589, intercept: -113.34). » The calculated chemical shift for
Pos.2 by -NHy group scaling factors based on Method 7 (slope: -0.9222; intercept: -93.26).
) The difference between calculated chemical shifts and experimental values published by

Xin et al.8 7) Root-mean-square deviation of the prediction for each structure.
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Table 5: Experimental and predicted N NMR chemical shifts (in ppm) for adenine.

Pos.”  Exp.” Ocale. - dexp.

5¢) 6% 7¢)  Ref?)
1 21498 72 51 -64  -4.2
2 -151.5 -85 7.0 -T2  -4.6
3 23012 -1.20) 169 030 -1.2
4
5

-140.3  -71 67  -7.2 -39
22226 -74  -6.9 -114 -14.0

Avg/) 6.8 5.8 74 7.1

5b 3.7 50 61 27
156 165 174 16.4

-1.99) -169 -35M  -3.1

06 13 1.0 23

-20.7 -20.5 -23.4 -26.6

Avg/) 11.8 120 134 14.2

@) Positions for the nitrogen of interest. ® Experimental data taken from Ref. 16241 ¢) d) )
The calculated chemical shifts by Method 5, 6 and 7, respectively. ¥) The calculated
chemical shift for Pos.3 by -NH, group scaling factors based on Method 5 (slope: -0.9768,
intercept: -120.21) . 9 The calculated chemical shift for Pos.3 by -NH, group scaling factors
based on Method 6 (slope: -0.9589, intercept: -113.34). ") The calculated chemical shift for
Pos.3 by -NH; group scaling factors based on Method 7 (slope: -0.9222, intercept: -93.26).
) The difference between calculated chemical shifts and experimental values published by

Xin et al.8 7) Root-mean-square deviation of the prediction for each structure.

22



Table 6: Experimental and predicted N NMR chemical shifts for molecule 6 in different

oxidation states.

Pos.”)  Exp. dcale. - dexp.
59 649 79 Ref)
6a 1 865 22 23 -19 -1.1
2 22569 1.7 19 0.1 1.3
3 2733 05 1.1 49 4.0
4 912 -52 -48 -64 -35
5 -113.3 95 92 136 8.1
Avg?) 50 49 7.1 4.4
6b 1.5 11 -32 06
62 60 65 6.3
2254 -25.1 -24.6 -25.2
84 86 9.9 56
183 235 21.0 225
Avg9 126 125 126 122
6¢ 74 71 83 4.6
1.4 11 11 1.6
-19.9 -194 -17.6 -18.7
14 -14  -70 -3.3
179 181 20.7 224
Avg?) 124 123 131 133
6d 229  -32 =37 -1.0
22 21 10 14
1.2 13 61 4.0
1.3 14 -36 -26
180 182 20.7 221
Avg9) 82 84 100 10.1

@) Positions for the nitrogen of interest. ® Experimental data taken from Ref.

06 o) d) o)

The calculated chemical shifts by Method 5, 6 and 7, respectively. /) The difference

between calculated chemical shifts and experimental values published by Xin et al.6 9)

Root-mean-square deviation of the prediction for each structure.
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Table 7: Experimental and predicted N NMR chemical shifts for molecule 7a and related

structures.
Pos.%)  Exp.” dcale. - dexp.
5¢) 6% 79 Ref)
7a 6.1 6.0 4.8 5.6
5.2 5.5 4.6 3.1
74.6 78.3 76.1  71.0
-4.5 -3.0 -4.0 -8.2
-18.09  -17.89)  -205M  -18.7
Avgd) 34.6 36.1 354 332
7b 0.6 0.9 0.9 0.3
10.8 10.5 101 10.0
-15.9 -14.0 -12.7 -13.3
80.2 82.7 81.8 782
2104 -10.39)  -14.1M 2143
Avgd) 37.2 38.1 37.8  36.3
Tc 1.6 2.1 1.1 1.2
5.9 5.6 5.8 4.3
-22.7 -21.5 -24.7  -25.0
-9.8 -8.2 -10.3  -11.1
51.8 57.0 58.7  61.3
Avgd) 25.8 27.6 290  30.1
7d 1 -259.2 -3.5 -3.0 -3.8 -4.5
2 -211.2 -1.6 -1.3 -2.5 -5.4
3 -271.2 -4.4 -2.8 -3.0 -9.4
4 -285.2 -6.0 -4.9 5.4 -8.4
5 23032 -4.1H) 339 _4.9M) -1.7
Avg?) 4.2 3.3 4.1 6.5

@) Positions for the nitrogen of interest. ® Experimental data taken from Ref. 16261 <) d) €)

The calculated chemical shifts by Method 5, 6 and 7, respectively. ©) The calculated
chemical shift for Pos.5 by -NH, group scaling factors based on Method 5 (slope: -0.9768,
intercept: -120.21). 9 The calculated chemical shift for Pos.5 by -NH, group scaling factors
based on Method 6 (slope: -0.9589, intercept: -113.34). ") The calculated chemical shift for
Pos.5 by -NH; group scaling factors based on Method 7 (slope: -0.9222; intercept: -93.26).
) The difference between calculated chemical shifts and experimental values published by

Xin et al.'8 7) Root-mean-square deviation of the prediction for each structure.
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ToC Text: '°N chemical shift calculations based on DFT/GIAO with linear regression sig-

nificantly increase the accuracy of the prediction.

ToC figure:
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ToC Keywords: Nuclear Magnetic Resonance Spectroscopy, Density Functional Theory,
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