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The shape of the Fermi surface of topological nodal-ring semimetals at low carrier concentrations is
characterized by the ring radius b/h̄vF . This peculiar topological property may not have a clear signature
in measurable physical quantities. We demonstrate an accurate and definitive method to determine the radius
of topological nodal-ring semimetals. Under a magnetic field along the ring axis, the axial magneto-optical
response (σzz) has a giant peak. The position of this ultrastrong response is at the frequency of exactly 2b and is
independent of the strength of the magnetic field. The amplitude of the peak response is many times stronger than
that of any other inter-Landau level transitions if the magnetic energy is greater than b and is similar strength if b

is greater than the magnetic energy. The origin of the ultrastrong response is that the axial magnetic transition is
governed by selection rules completely different to those governing σxx where the giant response is absent [R. Y.
Chen et al., Phys. Rev. Lett. 115, 176404 (2015)]. The present work provides a method to accurately determine
parameters of the topological properties of semimetals.

DOI: 10.1103/PhysRevB.99.045124

I. INTRODUCTION

Recently a new class of topological materials, so-called
topological nodal-ring semimetals (TNRSMs), has been pre-
dicted [1,2]. Some material candidates are discovered [3,4].
The basic characteristic of the TNRSM is that their conduc-
tion and valence bands cross on a closed ring in reciprocal
space nonaccidentally [2–12]. These nodal rings are found
to be protected by inversion and time reversal symmetries
[11–13], by mirror reflection symmetry [10–12,14], and by
nonsymmorphic symmetries [9–13]. Owing to their potential
applications, many theoretical models for realizing TNRSMs
have been proposed [9,12]. The properties of TNRSMs have
been investigated, such as the magnetic susceptibility [15],
the quantum oscillations [16–21], the Landau quantization
[22,23], the quantum anomalies [24], the Lifshitz transitions
[25], and other transport properties [26–34] . Electronic corre-
lations and superconductivity have also been studied [35–41].

The topological materials are described by their band
structures and are characterized by several key topologi-
cally unique parameters. In the Weyl semimetals, it is the
distance between the Weyl nodes with different chirality
(|�k|). In the TNRSMs, the radius of the ring b/h̄vF rep-
resents the unique topological properties. In practice, apart
from the angle-resolved photoemission spectroscopy, direct
physical property measurement of |�k| or b/h̄vF is desir-
able [3,4,42]. In the case of Weyl semimetals, the chiral
anomaly gives rise to an electromagnetic response term of
J = (e2/2πh)[(�k) × E − (�ε)B], where �ε is the energy
difference between the Weyl nodes. The first term represents

*czhang@uow.edu.au

the anomalous Hall effect that is expected to occur in the
Weyl semimetals with broken time reversal symmetry [8,43].
Therefore, |�k| can be determined by the anomalous Hall
effect in the Weyl semimetals. However, there is no such
simple term for TNRSMs, which is solely determined by
the radius of ring b/h̄vF . In more complicated setups, some
physical quantities can be related to b. For example, by using
a toroidal field [23], the quantized Hall conductivities are
proportional to b. Besides, the orbital magnetization of the
sample is also dependent on the ring radius [27]. In this work
we shall propose a simple transport parameter which can be
used to accurately determine b. The magnetic field required in
the present case can be arbitrarily weak.

Recent work on the optical conductivity provided valu-
able information in Dirac and Weyl semimetals [44–46]. The
optical properties of TNRSMs have also attracted a lot of
interest very recently. Optical conductivity of clean and dirty
TNRSMs has been studied with both isotropic and anisotropic
models [47–49]. In the absence of a magnetic field, it is shown
that the optical conductivity starts a weak and smooth rise at
frequency proportional to the radius [48,49]. Therefore, this
makes it hard to accurately determine the radius of the nodal
ring by the optical conductivity in experiments. The effects of
tilt and Dupin cyclide Fermi surface on its optical conductivity
have been also explored [50]. The longitudinal magneto-
optical conductivity perpendicular to the magnetic field in
clear limit with chemical potential localized at the nodal ring
plane displays the signature of TNRSMs in the locations of
peaks in the optical spectrum [51,52]. However, this signature
in experiment is too weak to determine its radius definitely.

In this work we propose a magneto-optical method to
determine the radius of TNRSM accurately. By applying a
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FIG. 1. (a) and (b) The schematic diagrams of the spectra without
magnetic field and the LL spectra at kz = 0 with (a) b0/

√
B < 1

and (b) b0/
√

B > 1, respectively. The dispersive LL spectra and
optical selection rules with (c) b0 = 0.1 and (d) b0 = 3.943, respec-
tively. The index (n, λ, s ) for each LL is shown in the legends.
The (n, λ, s ) = (n, +, +), (n,+, −), (n,−, +), and (n,−, −) are
labeled as dotted, solid, dot-dashed, and dashed lines, respectively.
The allowed transitions between LLs are shown schematically for
Re(σzz ), in which the transition Ln,−,−s → Ln,+,s are labeled for
dashed and dotted lines for s = + and s = −, respectively. B = 1.1
and μ = 0.

uniform magnetic field parallel to the ring axis, which is
taken as the z axis, we calculate the axial magneto-optical
response σzz. We shall show that, at the neutral condition
(i.e., chemical potential is zero), there exists a resonant peak
in σzz at frequency 2b, which is determined by the TNRSM
radius and is independent of the strength of the magnetic field.
Unlike the weak dip found in the in-ring-plane component of
magneto-optical response (σxx) [51], the b-correlated resonant
response in the σzz represents the strongest response which is
robust at finite temperature and under finite scattering. In the
case of small b the peak height is many times greater than
any other inter-Landau level (LL) transition peaks. Apart from
this unique B-independent resonance, resonant transitions in
σzz involving higher LLs exhibit double peaks structure. This
result shows that the σzz can be used to determine b easily and
accurately. It is interesting to notice that there is a reversal
of LLs if b is larger than the magnetic energy. In this case
the n = 0 transition occurs at higher energy. The location of

the n = 0 transition remains independent of the magnetic field
and the strength is similar strength with those from n �= 0
transitions. The completely different characteristics of σzz and
σxx are a result of different selection rules governing the
quantum magnetic transitions along the ring axis and in the
ring plane.

II. FORMALISM

In the presence of the uniform external magnetic field B =
B̄ez along z direction, by the standard minimal coupling pro-
cedure, the low energy effective Hamiltonian for a TNRSM is
given by a 4 × 4 matrix [2,15]

H = vF τx ⊗ (σ · π ) + bτz ⊗ σz, (1)

where π = p + eA, −e is the electron charge, A =
(0, B̄x, 0) is the vector potential in Landau gauge, vF is
the Fermi velocity, p = (px, py, pz) is the momentum,
b/h̄vF is the radius of the nodal ring, and σ = (σx, σy, σz)
and (τx, τy, τz) are the Pauli matrices for two isospin degree
of freedom corresponding to, e.g., spin, sublattices, or atom
orbital. We have ignored the effect of external Zeeman
splitting.

The eigenvalues are

En,λ,s (kz) = λ

√
k2
z + (

√
Bn + λsb0)2, (2)

where λ = ±, s = ± and n = 0, 1, 2, . . . , especially when
n = 0, there is no harm to define s ≡ λ for convenience,
the energy En,λ,s (kz) is in unit of E0 = √

2h̄vF / l0, b0 =
b/E0, kz is in unit of

√
2/l0 with the length l0 =

√
h̄B/eB̄,

and B̄ = B[T ]. The corresponding eigenstates are given as

|n, λ, s, ky, kz〉

= eikyy+ikzz

√
LyLz�

cn

⎛
⎜⎜⎜⎝

kz|n − 1〉
(
√

Bn + λsb0 − λsEn,λ,s )|n〉
−(λs

√
Bn + b0 − En,λ,s )|n − 1〉

λskz|n〉

⎞
⎟⎟⎟⎠, (3)

where cn = 1 for n = 0 and 1/
√

2 for n > 0, � = k2
z +

(
√

Bn + λsb0 − λsEn,λ,s )2, and

〈r|n, ky, kz〉 = ine−(x−kyBl2
0 )2/(2Bl2

0 )

(2nn!
√

πBl0)1/2
Hn

[(
x − kyBl2

0

)
/
√

Bl0
]
,

Hn is the Hermite polynomial. These LLs are dispersive (in
kz) as shown in Fig. 1. The structure of these LLs will control
the shape of the dynamical conductivity, as we will elaborate
on later.

The magneto-optical conductivity can be obtained by using
the Kubo formula,

σuv (ω) = −ih̄

LxLyLz

∑
α,β

[fF (Eα ) − fF (Eβ )]〈α|ju|β〉〈β|jv|α〉
(Eα − Eβ )(Eα − Eβ + h̄ω + i�)

= −ih̄

LxLyLz

[fF (E0,+,+) − fF (E0,−,−)]〈0,+,+|ju|0,−,−〉〈0,−,−|jv|0,+,+〉
(E0,+,+ − E0,−,−)(E0,+,+ − E0,−,− + h̄ω + i�)

+ −ih̄

LxLyLz

∑
α,β,n�=0

[fF (Eα ) − fF (Eβ )]〈α|ju|β〉〈β|jv|α〉
(Eα − Eβ )(Eα − Eβ + h̄ω + i�)

, (4)
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where α, β = (n, λ, s, ky, kz), u, v = (x, y, z), fF (Eα ) =
1/[e(Eα−μ)/T + 1] is the Fermi-Dirac distribution with the
chemical potential μ and at the temperature T , � represents
the impurity scattering rate (in this paper, we assume the
same � for all LLs for simplicity), and the current operators
ju are given by ju = evF τx ⊗ σu.

In the clean limit the scattering rate � → 0 with μ = 0, the
optical conductivity is obtained analytically:

Re[σzz(ω/E0)]/(e2/hl0)

= B
∑
n,s

2
√

2 tanh(ω/4T )

× (
√

Bn − sb0)2�[(ω/E0)2 − 4(
√

Bn − sb0)2]

(ω/E0)2

√
(ω/E0)2 − 4(

√
Bn − sb0)2

. (5)

In this work we only focus on the contribution of inter-LL
transitions to the conductivity tensor.

III. NUMERICAL RESULTS

The schematic diagrams of spectra are shown in Fig. 1
with (a) b0/

√
B < 1 and (b) b0/

√
B > 1 at kz = 0, respec-

tively. Considering the conduction band, i.e., λ = +, in the
case of b0/

√
B < 1, the LLs are normally ordered and en-

ergy increases with n as shown in Fig. 1(a). In the case of
b0/

√
B > 1 [Fig. 1(b)], the LLs in the s = + branch are still

normally ordered. However, for the s = − branch there exist
two regimes: (i) for small n, n < b2

0/B, the LLs are reversely
ordered and energy decreases with n, and (ii) once n > b2

0/B

the LLs resume the normally ordered structure, shown in
Fig. 1(b). The structure of these LLs will control the shape of
the magnetic optical response parallel to B and the ring axes.
Figures 1(c) and 1(d) show the LLs (n, λ, s) spectra at kz = 0
for b0 = 0.1 and 3.943 with B = 1.1 and chemical potential
μ = 0, respectively. The isospin index s = ±. Generally with
kz �= 0 the LLs do not possess s = + or s = − purely due
to strong coupling between isospin σ and τ which leads to the
mixture of different isospin components in the wave functions.

Due to the optical selection rule, Re(σzz) only contains
transitions between the LLs with the same indices n and
opposite isospin s. The optical selection rules which origi-
nate from the velocity matrix elements are summarized in
Table I and shown schematically in Figs. 1(c) and 1(d).
Due to the divergence in density of state at kz = 0, Re(σzz)
contains a series of asymmetry resonant peaks appearing at
ω = 2|√Bn + sb0|E0 as shown in Figs. 2(a) and 2(c). Each
strong peak begins with a vertical jump and then decreases
with ω due to the three-dimensional (3D) dispersive LL

TABLE I. Optical selection rules.

Transitions (kz = 0) Peaks in Re(σzz )

b0 = 0 n = 0 forbidden none
n �= 0 −√

Bn → √
Bn 2

√
Bn

b0 �= 0 n = 0 −b0 → b0 2b0

n �= 0 −|√Bn + b0| → |√Bn + b0| 2|√Bn + b0|
−|√Bn − b0| → |√Bn − b0| 2|√Bn − b0|

FIG. 2. The plot of Re(σzz ) as a function of frequency with μ =
0 for different values of b0 (a) and (c), and for different values of B

(b) and (d). (a) and (b) Normal ordered bands b0/B < 1. (c) and (d)
Reverse ordered bands b0/B > 1. In (a) and (c) B = 1.1. In (b) b0 =
0.1. In (d) b0 = 3.943. The temperature is T = 0.01E0 and � → 0.

structures. On the other hand, when λ′ = −λ and s ′ = s, the
LL transition is forbidden. In Re(σzz) there is a distinct peak
due to L(0,−,−) → L(0,+,+) transition. The position of this
peak is fixed at 2b0E0 under any magnetic field as shown in
Figs. 2(b) and 2(d). This peak position determines the ring
radius in a definite way. For higher LLs, there is a splitting
in the L(n,−,−s) → L(n,+,s) transition. The size of the splitting
is fixed at 4b0E0 independent of the magnetic field in normal
ordered LLs and is proportional to B for reverse ordered LLs.
This provides another method to determine b0.

Now we analyze the mangeto-optical response when the
magnetic field is weak. In this case there is a reversal of band
ordering for those LLs with Bn < b2

0, shown in Figs. 1(b) and
1(d). Figures 2(c) and 2(d) show Re(σzz). The n = 0 peak is
no longer at the lowest energy but its position is still fixed at
2b0E0 independent of the magnetic field. For higher LLs, the
distance between the splitted peaks is B dependent 4

√
BnE0.

In Fig. 1(d), only the transitions −|√Bn − b0| → |√Bn −
b0| are shown which correspond to the conductivity peaks of
2|√Bn − b0| in Fig. 2(d) with B = 1.1 for n = 56, 0, 57, and
58, respectively.

In the limit of b0 = 0 we recover the result of Dirac
semimetals. In this case there is no n = 0 peak, as shown
in Fig. 2(a). Considering the massless Dirac fermion as two
sets of Weyl fermions with opposite chirality, our results
are in good accordance with previous optical conductivity
in Weyl semimetal [44]. Comparing with the case of Dirac
semimetals, i.e., b0 = 0, Re(σzz) of TNRSM probes a more
complex set of magnetic transitions which is completely dif-
ferent from that probed by Re(σxx ) as shown in Refs. [51,52].
The magneto-optical response along and perpendicular to the
ring axis are governed by completely different selection rules.
It should also be noted that the nodal ring considered here
is intrinsic, i.e., b is finite in the absence of the magnetic
field [2,15,48,49]. The ring in Refs. [51,52] is induced by the
magnetic field and b is proportional to the applied magnetic
field. Under a finite chemical potential the optical conductivity
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FIG. 3. (a) The plot of Re(σzz ) as a function of frequency for
several values of scattering rate (in unit of E0) with B = 1, and T =
0.01E0. (b) The ratio of the amplitude of Re(σzz ) peaks between the
zeroth LL and the first LL. The black solid line shows the analytical
results for � → 0 and T → 0. The dots show the numerical results
with several values of scattering rate (in unit of E0) and T = 0.01E0.
b0 = 0.1 and μ = 0.

becomes zero for ω < 2μ. The characteristics for ω > 2μ is
independent of the chemical potential.

Figures 2(b) and 2(d) show the magnetic field depen-
dence of Re(σzz) for (b) b0 = 0.1 and (d) b0 = 3.943 with
μ = 0, and T = 0.01E0 in clean limit � → 0, respectively.
The n = 0 peak located at ω = 2b0E0 is unaffected by the
strength of the magnetic field, while the other double peaks
at ω = 2|√Bn + sb0|E0 for n � 1 LLs are shifted by the
magnetic field. For n � 1 LLs, in the case Bn � b2

0 as shown
in Figs. 1(c) and 2(a), the distance between the splitted peaks
for finite n is 4b0E0.

The B-independent peak position in Re[σzz(ω)] is robust
and fixed in the presence of finite scattering. Here we include
the scattering effect phenomenologically by considering a
finite scattering rate �. For � = 0.01E0, 0.1E0, and 0.2E0,
we can obtain the conductivity numerically, shown in Fig. 3(a)
with temperature T = 0.01E0, b0 = 0.1, and B = 1 at chem-
ical potential μ = 0.0. The finite impurity scattering mainly
tends to blur out the resonant peaks and the oscillations are
still well defined for � = 0.2E0 for Re(σzz). For a Fermi
velocity of vF ∼ 105 m/s, this corresponds to a scattering rate
of � ∼ 0.72 meV.

Now we estimate the ratio of the amplitude of the
B-independent resonance to that of the neighboring
resonance. For μ = 0 and b0 = 0.1, neighboring resonance
is at n = 1. At n = 0, ω/E0 → 2b0, and T → 0,
Re[σzz(ω/E0)]/(e2/hl0) → (B/2

√
2
√

b0)[�(ω/E0 − 2b0)/√
(ω/E0 − 2b0)] and define A0 = B/2

√
2
√

b0. Similarly
at n = 1, s = −, ω/E0 → 2|√B − b0|, and T → 0,
Re[σzz (ω/E0 )]

e2/hl0
→ B

2
√

2
√

|√B−b0|
�(ω/E0+2b0−2

√
B )√

(ω/E0+2b0−2
√

B )
and define

A1 = B/2
√

2
√

|√B − b0|. We obtain the ratio of the peaks,
given as

A0/A1 =
√

|
√

B − b0|/b0, (6)

which are shown by the black line in Fig. 3(b) for b0 = 0.1.
For B > 1, the amplitude A0 is many times of magnitude
greater than A1. At finite temperature and finite scattering,

A0 is still stronger than A1, shown in Fig. 3(b). The strongest
A0 is ideal for experimental detection of b0. In the case that
LLs are reversed, b0 = 3.943, the neighboring resonance is
at finite n. In this case the ratio increases as the magnetic
field decreases. At very weak magnetic field, the amplitude B-
independent resonance is the same as that of the neighboring
resonance. Therefore the n = 0 transition still represents the
strong enough signal suitable for determining b0.

IV. DISCUSSION AND CONCLUSION

We estimate the relevant frequency of the optical field. We
take the material candidate CaAgAs [4] as a concrete example.
Considering the Fermi velocity in the order of 105 ms−1, it
can be estimated that E0 ∼ 3.6 meV. For b0 ∼ 18, we get the
frequency ω ∼ 1.58 × 1013 Hz. The frequency of the laser lies
in the region of 1013 Hz. This is very close to a technologically
important and scientifically unexplored terahertz window.

It should be noted that our result is applicable to the types
of TNRSMs whose electronic properties are governed by the
model Hamiltonian Eq. (1). This four-band model describes
certain types of TNRSMs. Equation (1) is not a general model
for all TNRSMs. As mentioned below, there exists other
TNRSMs described by different models. Our results will also
be altered in a TNRSMs system where a finite gap exists. With
our model, the result of accurately determining b obtained
in this work is valid as long as the quantum states used in
calculating σzz are accurate. The linear model given by Eq. (1)
is a type of low energy effective model. The region for this
model to be valid is finite, say �EL. The energies of high n

LLs can exceed this region and σzz can become inaccurate.
Our central results of the B-independent resonance is due
to the n = 0 LL from the valence and the conduction band
with opposite isospins. The n = 0 LL is the most accurate
state for any �EL. For this reason, our central result remains
accurate and valid. Some other transitions involving higher
LL can be less accurate if the LL energy exceeds �EL. It
has been shown that the linear model is valid in an energy
window of more than 200 meV i.e., (−100 meV, 100 meV)
as confirmed in Fig. 4 in Ref. [53] and Table 7 in Ref. [12].
This linear region can include up to 100 LLs for B = 1 T.
There exists a different type of TNRSMs which is formed by
inverted band [10,11,54]. This type of nodal ring is described
by a two-band model H = −h̄2

2m
(k2

x + k2
y − b2)τx + h̄vF kzτz.

In this nodal ring system, the region of linear dispersion is
very narrow. The LL structure for this nodal is completely
different to that in the nodal ring used in our study.

Finally, we would like to mention that Eq. (1) is a low
energy effective Hamiltonian. Within this model, the radius
of the ring is b. If the band deviates from the linear dispersion
at high energy, n = 0 state will not be affected and the B-
independent resonant transition remains accurate. However,
the position of the ring may be at the nonlinear part of the
energy dispersion. In this case the ring radius is not exactly
b but is a unique function of b. This unique function can be
derived once the band dispersion at the ring position is known.

In summary, we studied the axial magneto-optical conduc-
tivity Re(σzz) of TNRSM. We found that when the magnetic
field is along the nodal ring axis, the response along the axis
exhibits two distinctive features: (i) There exists a resonant
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peak from n = 0 transition. The resonant position is indepen-
dent of the magnetic field and is fixed at 2b for both the normal
ordered LL bands and reverse ordered LL bands. The ampli-
tude of this distinct resonance is many times stronger than
that of any other transitions for normal ordered LL bands and
is similar strength for reverse ordered LL bands. This unique
resonance provides the most suitable probe for determining
the radius of TNRSM. (ii) For transitions from higher LLs, the
peaks split. The splitting is 4b independent of the magnetic
field in normal ordered LLs and is proportional to B for
reverse ordered LLs. The origin of these distinctive features is
the orientation dependent optical selection rules. The Re(σzz)
is governed by selection rules different from those quantum
magnetic transitions in Re(σxx ). We expect that our result will
facilitate experimental studies to characterize TNRSM, for

example to determine the radius of TNRSM. The significant
advantage of the current result is that the quantity we
proposed to determine the ring radius, the n = 0 resonance
in Re[σzz(ω)], is independent of the B field. As a result b can
be accurately determined under a very weak magnetic field.
Apart from a high magnetic field normally required for the
quantum Hall effect, a toroidal field is necessary to determine
b [23]. The orbit magnetization also requires a strong
magnetic field [27] to induce a measurable magnetization.
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