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Abstract Abstract 
Electrochemical water splitting for hydrogen generation is a vital part for the prospect of future energy 
systems, however, the practical utilization relies on the development of highly active and earth-abundant 
catalysts to boost the energy conversion efficiency as well as reduce the cost. Molybdenum diselenide 
(MoSe2) is a promising nonprecious metal-based electrocatalyst for hydrogen evolution reaction (HER) in 
acidic media, but it exhibits inferior alkaline HER kinetics in great part due to the sluggish water 
adsorption/dissociation process. Herein, the alkaline HER kinetics of MoSe2 is substantially accelerated 
by heteroatom doping with transition metal ions. Specifically, the Ni-doped MoSe2 nanosheets exhibit the 
most impressive catalytic activity in terms of lower overpotential and larger exchange current density. The 
density functional theory (DFT) calculation results reveal that Ni/Co doping plays a key role in facilitating 
water adsorption as well as optimizing hydrogen adsorption. The present work paves a new way to the 
development of low-cost and efficient electrocatalysts towards alkaline HER. 
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