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Abstract 

Ad-hoc microphone arrays formed from the microphones of mobile devices such 

as smart phones, tablets and notebooks are emerging recording platforms for 

meetings, press conferences and other sound scenes. As opposed to the Wireless 

Acoustic Sensor Networks (WASN), ad-hoc microphones do not communicate 

within the array and location of each microphone is unknown. Analysing speech 

signals and the acoustic scene in the context of ad-hoc microphones is the goal of this 

thesis. Despite conventional known geometry microphone arrays (e.g. a Uniform 

Linear array), ad-hoc arrays do not have fixed geometries and structures and 

therefore standard speech processing techniques such as beamforming and 

dereverbearion techniques cannot be directly applied to these. The main reasons for 

this include unknown distances between microphones an hence unknown relative 

time delays and the changeable array topology.  

This thesis focuses on utilising the side information obtained by the acoustic 

scene analysis to improve the speech enhancement by ad-hoc microphone arrays 

randomly distributed within a reverberant environment. New discriminative features 

are proposed, applied and tested for various signal and audio processing applications 

such as microphone clustering, source localisation, multi-channel dereverberation, 

source counting and multi-talk detection. The main contributions of this thesis fall 

into two categories: 1) Novel spatial features extracted from Room Impulse 

Responses (RIRs) and speech signals 2) Speech enhancement and acoustic scene 

analysis methods specifically designed for the ad-hoc arrays. 

Microphone clustering, source localisation, speech enhancement, source counting 

and multi-talk detection in the context of ad-hoc arrays are investigated in this thesis 

and novel methods are proposed and tested. A clustered speech enhancement and 

dereverberation method tailored for the ad-hoc microphones is proposed and it is 

concluded that exclusively using a cluster of microphones located closer to the 

source, improves the dereverberation performance. Also proposed is a multi-channel 

speech dereverberation method based on a novel spatial multi-channel linear 

prediction analysis approach for the ad-hoc microphones. The spatially modified 

multi-channel linear prediction approach takes into account the estimated relative 
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distances between the source and the microphones and improves the dereverberation 

performance. The coherence based features are applied for multi-talk detection and 

source counting in highly reverberant environments and it is shown that the proposed 

features are reliable source counting features in the context of ad-hoc microphones. 

Highly accurate offline source counting and pseudo real-time multi-talk detection 

results are achieved by the proposed methods. 
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 Introduction 

 

New digital devices, such as smart phones and IPads which are increasingly 

employed as recording tools, are emerging as a convenient alternative to 

conventional microphone arrays for signal and speech processing applications. 

Microphone arrays randomly formed by a spontaneous group of recording devices 

such as sound recorders and smart phones at unknown and changeable locations form 

a Distributed Microphone Array (DMA) or an ad-hoc array, which is the emerging 

recording style for applications such as press conferences, lecture halls and meetings 

(Figure 1-1). The use of microphone arrays in contrast to close talking microphones 

alleviates the feeling of discomfort and distraction to the user. For this reason, ad-hoc 

microphone arrays are popular and have been used in a wide range of applications 

such as teleconferencing, hearing aids, speaker tracking, and as the front-end to 

speech recognition systems. With advances in sensor and sensor network technology, 

there is considerable potential for applications that employ ad-hoc networks of 

microphone-equipped devices collaboratively as a virtual microphone array. By 

allowing such devices to be distributed throughout the users’ environment, the 

microphone positions are no longer constrained to traditional fixed geometrical 

arrangements. This flexibility in the means of data acquisition allows different audio 

scenes to be captured to give a complete picture of the working environment.  

Ad-hoc arrays provide wide and flexible spatial coverage for targeting multiple 

sound sources, however unknown locations, inconsistent sampling frequencies 

between the microphones, different gains and unsynchronised recordings are the 

source of uncertainties for joint signal processing methods for applications such as 

source localisation, speech diarisation, multi-channel noise suppression and 

dereverberation. Most signal and speech processing applications such as source 

localisation and separation, speech enhancement and dereverberation are well studied 

for single channel and conventional microphone arrays of known geometries 

however there is less literature focusing on the joint analysis of the ad-hoc 

microphones for these applications. 

Although unknown geometry of the ad-hoc arrays causes problems for most of 

state of the art multi-channel signal processing techniques, it can also be beneficial 
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for scenarios such as a meeting where participants are spread out in a large area and 

they might change their positions. The wide and flexible spatial coverage of ad-hoc 

arrays can be exploited for recording target signals, such as speech, from interfering 

signals, such as competing speech sources, based on the locations of the sources.  

As ad-hoc arrays receive signals at the locations, angles and distances which are 

not identified and are unique for each microphone therefore the recorded signals 

cannot be directly applied through standard signal processing tools such as 

beamformers, Direction of arrival estimators and other acoustic and speech signal 

application requiring knowledge of the array geometry. For instance, the time 

differences between the signals received by two adjacent channels in a microphone 

array of a known geometry (e.g. an Uniform Linear Array) can be easily utilised to 

calculate the angle of arrival of the source but in the ad-hoc arrays context, even 

defining adjacent channels and measuring the time differences between the channels 

can be challenging and sometimes impossible. This example shows that analysis of 

the signals and the derived information from the signals in the ad-hoc arrays is not 

straightforward and statistical tools and machine learning techniques are needed to 

interpret the derived information before any further processing. 

Machine learning techniques are believed to be helpful tools for pattern 

recognition and prediction of unlearned scenarios and they have been successfully 

applied for binaural source localisation when the inter-channel distance is known or a 

clean training set is available. These constraints are not easily met in the ad-hoc 

arrays context where microphones locations and distances are unknown. Despite the 

fact that machine learning techniques require training data and provide meaningful 

outputs only under certain circumstances (compliance between the training and the 

test set), the basic components of machine learning techniques and the artificial 

neural networks such as feature extraction can be applied in the context of ad-hoc 

arrays. This thesis investigates the benefits and limitations of different machine 

learning techniques in order to find suitable techniques and features for speech 

enhancement and acoustic scene analysis (source localisation, microphone clustering 

and other similar applications) in the context of ad-hoc arrays. 
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Figure 1-1: Ad-hoc microphone array formed of three clusters 

 

Figure 1-1 illustrates a possible target scenario where a few (usually an unknown 

number) of meeting participants are spread out at random locations within a 

reverberant environment (the geometry of the room might or might not be available). 

Identifying the active source(s) and accordingly choosing the optimised subset of 

microphones in order to maximise a certain recording quality criteria (Chapter 5). 

Some side information such as the number of sources, room geometry and relative 

distances of the microphones and sources can be derived from the raw recorded 

speech signals and the Room Impulse Responses (RIRs) in order to help the 

recording process. For instance, in Figure 1-1 the knowledge of having three clusters 

and the number of participants in each cluster can guide the speech enhancement 

process by forming clusters of microphones around each source and utilise only one 

cluster to target each active source. This idea reduces the level of interference in the 

recorded signal. The knowledge of the number of sources might be available or 

might be derived from the recorded signals. 

Ad-hoc arrays advantages and disadvantages in different applications can be 

categorised as follows: 

Ad-hoc recording advantages: 

 Flexible and wide spatial coverage  

 Acoustic scene analysis for changeable setups 
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Ad-hoc recording disadvantages: 

 Unknown relative distances and time delays 

 Unsynchronised channels  

 Unequal microphone gains, internal delays and qualities  

In this thesis the following applications of the ad-hoc arrays are investigated and 

suitable methods for the joint analysis of the ad-hoc recording are proposed: 

 Microphone clustering 

 Source localisation 

 Speech dereverberation 

 Multi-talk detection and source counting 

 

1.1 Scope of the research 

This thesis focuses on signal processing and acoustic scene analysis techniques 

for ad-hoc microphone arrays spontaneously formed by digital recording devices at 

unknown locations. It is assumed that the microphones and other recording devices 

are not partially or fully connected and therefore they cannot transmit 

synchronisation timestamps or location cues. In other words the ad-hoc microphones 

do not form a Wireless Acoustic Sensor Network (WASN) however the joint 

analysis of the independently recorded signals is discussed. 

 

1.2 Aim of the research 

Array signal and speech processing is a well-studied topic however the existing 

methods are not applicable where the microphone array structure is unknown and the 

microphones cannot communicate within the array.  

The aim of this research is to establish a framework for multi-channel signal 

processing and acoustic scene analysis for the ad-hoc arrays where the microphones 

and the source locations are not available. Proposing and extracting novel features 

from the speech signals and room acoustic responses for each specific task (e.g. 

Microphone clustering) is the objective of this research. 
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1.3 Outline of the thesis 

This thesis aims to establish a framework for multichannel informed speech 

enhancement and acoustic scene analysis in the context of ad-hoc arrays. One 

requirement for this is proposing signal processing methods to obtain side 

information and cues tailored for the ad-hoc arrays. The proposed clustered 

dereverberation method for the ad-hoc arrays makes use of derived information such 

as the source to microphone relative distances and microphone clusters. Although in 

this thesis this side information is utilised to improve the dereverberation 

performance but they can be applied separately for other applications in the context 

of ad-hoc arrays. 

Chapter 2 of the thesis reviews the literature published on ad-hoc arrays signal 

processing, beamforming, microphone clustering, speech enhancement and other 

applications of ad-hoc arrays such as traffic control. These applications might not be 

directly related to the speech enhancement application but side information and the 

applied techniques can help the target application of this thesis. Machine learning 

techniques previously applied to these applications and also discriminative features 

derived from speech signals and RIRs for various applications are briefly explained 

as well. The limitations of the state of the art speech enhancement and source 

localisation techniques are also briefly explained. 

Chapter 3 focuses on microphone clustering, discriminative features and the 

advantages of clustered signal processing approaches. The novel code-book based 

clustering and the proposed discriminative features derived from acoustic impulse 

responses are introduced and compared with the baseline methods and features. This 

chapter provides the underlying method for clustered dereverberation and also 

proposes a systematic approach to the microphone clustering evaluation. 

Chapter 4 is dedicated to source localisation. The novel surface fitting method for 

multiple sources is explained. Different features extracted from Room impulse 

responses and speech signal for source localisation are also investigated and 

compared. The derived source location information can lead to a more successful 

microphone clustering and speech enhancement. This chapter introduces a novel 

source localisation method by the ad-hoc microphones which was missing from the 

literature. 
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Chapter 5 of this thesis proposes a novel dereverberation method based on spatial 

multi-channel linear prediction analysis. The proposed method is compared with the 

baseline dereveberation methods and recent top performance methods. The clustered 

dereverberation is also introduced as an informed speech enhancement method. 

Spatial modification of the Linear Prediction (LP) for the dereverberation task is the 

main contribution of this chapter. 

Chapter 6 uses the estimated coherence features derived from dual ad-hoc nodes 

for overlap detection and source counting in the context of ad-hoc arrays. Accurate 

overlap detection and offline source counting results are obtained in the context of 

ad-hoc arrays where the microphone locations, microphone array geometry and the 

room geometry are all unknown. 

1.4 Contributions of the thesis 

 Code-book based microphone clustering algorithm by utilising 

discriminative features derived from the Room Impulse Responses (RIRs). 

The proposed clustering method flexibly chooses the number of clusters to 

form, based on the microphones spatial distribution. 

 Surface fitting method for source localisation. The derived features 

from the RIRs are exploited to localise a source within a room of known 

geometry. It is shown that the derived features can pinpoint the source 

location and estimate the Direction of arrival at each microphone location. 

The accuracy of this method depends on the number of ad-hoc microphones 

and their distribution pattern within the room. 

 Speech enhancement framework based on the multi-channel linear 

prediction for ad-hoc arrays. A two-phase speech dereverberation scheme is 

proposed for ad-hoc arrays where the array geometry, source location and 

the room dimensions are unknown. The proposed method targets the short 

term and the long term reverberation.  

 Clustered multi-channel dereveberation for ad-hoc arrays. The derived 

side information such as relative microphone to source distances is applied 

to increase the dereverberation performance by excluding the microphones 

located far from the source. 
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 The spatial multi-channel linear prediction as the optimised multi-

channel linear prediction for ad-hoc microphones is proposed and applied 

for short-term dereverberation of speech. 

 Multi-talk detection and source counting by utilising cues derived 

from ad-hoc microphones at unknown positions. Coherence to Diffuse Ratio 

(CDR) is applied for multi-talk detection and source counting and the results 

suggest that CDR can effectively discriminate the single talk frames from 

multi-talk frames and can also be applied for estimating the number of 

sources. 

 Offline source counting in the context of ad-hoc microphones for 

counting the number of speakers in a meeting based on the coherence 

features. 

1.5 Publications arising from the research  

 S. Pasha, J. Donley, C. Ritz and Y. X. Zou, "Towards real-time source 

counting by estimation of coherent-to-diffuse ratios from ad-hoc microphone 

array recordings," 2017 Hands-free Speech Communications and Microphone 

Arrays (HSCMA), San Francisco, CA, 2017, pp. 161-165. 

 S. Pasha, C. Ritz and Y. X. Zou, "Detecting multiple, simultaneous talkers 

through localising speech recorded by ad-hoc microphone arrays," 2016 Asia-

Pacific Signal and Information Processing Association Annual Summit and 

Conference (APSIPA), Jeju, 2016, pp. 1-6. 

 S. Pasha and C. Ritz, "Informed source location and DOA estimation using 

acoustic room impulse response parameters," 2015 IEEE International 
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Dhabi, 2015, pp. 139-144. 

 S. Pasha and C. Ritz, "Clustered multi-channel dereverberation for ad-hoc 
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 Ad-hoc arrays for recording and 

analysing sound scenes 

 

2.1 Overview 

 

This chapter defines the fundamentals of ad-hoc microphone arrays and reviews 

their advantages, limitations and applications according to the existing literature. A 

comparison between blind and informed signal processing is made. The machine 

learning and data mining techniques applied for signal classification, microphone 

clustering and other informed approaches to speech enhancement are also mentioned 

and compared in this chapter. It is also justified why certain machine learning 

techniques are more suitable for specific signal processing applications and why it is 

preferred to avoid supervised methods in the context of ad-hoc arrays.  
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2.2 Ad-hoc arrays and room acoustics 

In this section recording by ad-hoc arrays in a general scenario is explained and the 

main issues and challenges are reviewed.  

 What is an ad-hoc microphone array? 

Let’s consider the context of a microphone array in which a set of 𝑚 ∈

{1,2, … ,𝑀} randomly distributed microphones (which can be a compact array or a 

single microphone) is recording an active source. In this thesis each element of the 

array is referred to as a node, a node can contain a single channel microphone or a 

multi-channel compact microphone array [1], [2]. At each time index n the mth 

microphone in the array records it’s unique version of the reverberated source signal 

distorted by the noise and interference which can simplistically be modelled as 

𝑥𝑚(𝑛) = 𝑠(𝑛) ∗ ℎ𝑚(𝑡) + 𝑤𝑚(𝑛) + 𝑣𝑚(𝑡) 2-1 

where 𝑠(𝑛) is the target source signal and ℎ𝑚(𝑡) is the room impulse response at the 

mth microphone’s location which is the function of room 𝑅𝑇60, microphone and 

source location, room geometry and the walls reflection factor [3] . 

𝑤𝑚(𝑛) and 𝑣𝑚(𝑡) represent interference and the noise respectively. 𝑤𝑚(𝑛) is not 

coherent with the target speech and represents the sum of multiple interfering sources 

arriving from different locations to the target source. 

In this thesis truncated RIRs of length L are mathematically modelled as a train of 

impulse responses with different time delays, 𝑡𝑘, and amplitudes, 𝑎𝑘: 

ℎ𝑚(𝑡) = ∑𝑎𝑘𝛿(𝑡 − 𝑡𝑘)

𝐿

𝑘=1

 2-2 

 

Unlike conventional microphone arrays, ad-hoc arrays do not have standard 

structures and sizes (in terms of the number of the channels and the geometry) and 

one or more nodes might move during the recording and basically the structure of the 

array might change. For instance, for a 4-channel ULA with d=2cm inter-channel 

spacing, the Time Difference of Arrival (TDOA) information are easily obtainable 

and utilised for applications such as source Direction of Arrival (DOA) estimation 

and beamforming using the following equations 
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𝑇𝐷𝑂𝐴1,2 =
𝑑

𝑐
,     𝑇𝐷𝑂𝐴1,3 =

2 × 𝑑

𝑐
,    𝑇𝐷𝑂𝐴1,4 =

3 × 𝑑

𝑐
 2-3 

 

However in the ad-hoc arrays retrieving this information is computationally 

expensive and sometimes impossible as d is unknown. The main issues with 

recording with nodes of microphones that are not connected are synchronisation, 

sampling frequency mismatch, gain and quality differences. However, recording with 

a few widely distributed microphones [4] enables the recording of more information 

about the room geometry and characteristics, source locations and the acoustic setup. 

 

Figure 2-1: An ad-hoc microphone array with four nodes 

 

An example of recording with ad-hoc arrays is discussed in [5] where advantages 

of applying ad-hoc arrays to record simultaneously active sources are investigated. It 

is shown that ad-hoc arrays facilitate recording of two competing sources and 

classifying the recorded signals. It is also concluded that the formation of 

microphone clusters around each source and assigning one cluster to each source 

improves the recording quality. 

 Recording with ad-hoc arrays  

In a general meeting scenario where an unknown number of sources (N) or 

participants are being recorded by a distributed microphone array of M nodes (nodes 

can contain one or more microphones) at unknown locations, the 𝑚𝑡ℎ node recording 

can be represented mathematically as 
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𝑦(𝑛) = ∑∑ 𝑠𝑘(𝑛) ∗ ℎ𝑚𝑘(𝑛) + 𝑣(𝑛) + 𝑤𝑚(𝑛)

𝑀

𝑚=1

𝑁

𝑘=1

 2-4 

 

where 𝑦(𝑛) = [𝑥1(𝑛), … , 𝑥𝑀(𝑛)]
𝑇  (from 2-1), contains the multi-channel recording 

of all 𝑀 microphones in array and ℎ𝑚𝑘(𝑛) is the Room Impulse Response (RIR) at 

microphone m location when source k is active. 𝑣(𝑛) and 𝑤𝑚(𝑛) are the diffuse 

noise and the interfering source(s) at the 𝑚𝑡ℎ microphone location, respectively. It is 

assumed that the room acoustic impulse response is time invariant and room 

characteristics do not change during the meeting (closing the blind or curtain change 

the reverberation time significantly). It is also assumed that 𝑠𝑘(𝑛) ∗ ℎ𝑚𝑘(𝑛) and 

𝑤𝑚(𝑛) are not mutually coherent as they are speech signals from different sources 

with different pitch frequencies.  

The objective of recording with ad-hoc arrays is to retrieve the best estimate of  

𝑠𝑘(𝑛) from 𝑦𝑚(𝑛). This can be done blindly through utilising all the microphones 

regardless of their relative distance to the source or by taking into account the spatial 

information and cues derived from ℎ𝑚𝑘(𝑛) and 𝑦𝑚(𝑛). 

The matrix of the sources signals in the discrete time domain can be represented 

as: 

𝑆(𝑛) = [
𝑠1(1) ⋯ 𝑠1(𝐿)
⋮ ⋱ ⋮

𝑠𝑁(1) ⋯ 𝑠𝑁(𝐿)
]      2-5 

 

where L is the frame length which can be very small (e.g. 320 samples at 16kHz 

sampling rate, 20ms) for real time applications or large for full utterance recordings 

(e.g. 80000 samples at 16kHz sampling rate, 5s). The matrix S is of size 𝑁 × 𝐿. The 

recorded signals matrix X by the microphones can be of a different size as the 

number of microphones and sources are not always equal. 

𝐗(𝑛) = [
𝑥1(1) ⋯ 𝑥1(𝐿)
⋮ ⋱ ⋮

𝑥𝑀(1) ⋯ 𝑥𝑀(𝐿)
]    2-6 

 

The microphone recording matrix X is of size 𝑀 × 𝐿.  
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 Ad-hoc arrays and the synchronisation problem 

The first issue with the recording matrix (2-6) is the problem of unsynchronised 

signals. Finding the delays between the channels and time-alignment of the signals 

are essentials to the tasks such as beamforming, Dereverberation and Direction of 

Arrival (DOA) estimation. If the microphone array geometry and the source-to-

microphone distances are available the Time of Arrival between the source and 

microphone i (𝑇𝑂𝐴𝑠𝑖) and the Time Difference of Arrival (TDOA) between each two 

microphones can be calculated by 

𝑇𝑂𝐴𝑠𝑖 =
|𝑟𝑠 − 𝑟𝑖|

𝑐
+ 𝛿𝑖 + 𝑇𝑜𝑖 2-7 

 

𝑇𝐷𝑂𝐴𝑖𝑗 =
|𝑟𝑠 − 𝑟𝑖|

𝑐
−
|𝑟𝑠 − 𝑟𝑗|

𝑐
+ (𝛿𝑖 − 𝛿𝑗) + (𝑇𝑜𝑖 − 𝑇𝑜𝑗), 2-8 

where 𝛿𝑖 and 𝑇𝑜𝑖 represent the microphone i internal delay and the onset time 

respectively [6], [7] and 𝑟𝑠 = [𝑥𝑠, 𝑦𝑠 𝑧𝑠]
𝑇 , 𝑟𝑖 = [𝑥𝑖 , 𝑦𝑖 𝑧𝑖]

𝑇 and 𝑟𝑗 = [𝑥𝑗 , 𝑦𝑗  𝑧𝑗]
𝑇 are the 

source, microphone i and microphone j Cartesian locations in the space, respectively. 

However in the context of ad-hoc arrays due to the unconventional, unknown and 

sometimes variable geometry of the array, calculation of the delays is not easily 

possible. In this thesis it is assumed that all the internal delays and onset times are 

negligible or exactly the same for all the microphones which leads to a simpler 

equation 

 

𝑇𝐷𝑂𝐴𝑖𝑗 =
|𝑟𝑠 − 𝑟𝑖|

𝑐
−
|𝑟𝑠 − 𝑟𝑗|

𝑐
. 2-9 
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Figure 2-2: Time of Arrival and internal delays 

In order to overcome the issues caused by these unsynchronised recordings signal 

processing methods have been proposed to time-align the signals by iteratively 

shifting one relative to the other until the highest similarity between the two is 

achieved. These methods obviously suffer from reverberation and noise and are not 

computationally feasible for real-time applications. 

The goal of synchronisation is to calculate the delay between each two 

microphones where the acoustic scene is unknown. 

 𝛕 = [

𝜏11 ⋯ 𝜏1𝑀
⋮ ⋱ ⋮
𝜏𝑀1 ⋯ 𝜏𝑀𝑀

] 2-10 

 

where 𝜏𝑖𝑖 = 0,  for i=1 to M and 𝜏𝑖𝑗 = −𝜏𝑗𝑖 for all i and j values. 

Researchers have used time-alignment of ad-hoc channels for source localisation 

through Generalised Cross Correlation (GCC) [8] [9] and defining the square errors 

of time differences based on some parameters [10].  It is concluded that GCC is the 

computational cost and that it is more suitable for microphones that are already 

coarsely synchronised so that a full search of all possible correlation lags does not 

need to be searched. 

Even if the ad-hoc recordings are time-aligned, as they each device might have a 

different sampling rate and they might start the sampling at different times the 

obtained samples might not align properly [11]. This issue can be critical for 
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dereverberation and beamforming applications. In this thesis the problem of the 

signals time alignment is addressed when necessary by state of the art methods and 

the sampling frequency mismatch is not investigated. 

Some more advanced methods use least squares method for temporal offset 

estimation of static ad-hoc microphone arrays [12] and audio fingerprinting [13]. The 

proposed fingerprinting methods are inspired by methods that were previously 

applied to clustering and synchronising unsynchronised multi-camera videos [14] 

and are based on matching the time-frequency landmarks between two channels. The 

TDOA then is detected as the peak of the correlation function calculated for audio 

landmarks. The synchronisation accuracy achieved by conventional audio 

fingerprinting methods is limited by the time-frequency analysis hop size, with 

typical values between a few and tens of milliseconds. 

Although the focus of this thesis is on the ad-hoc microphone arrays and not ad-

hoc wireless acoustic sensor networks with inter-device transmission and 

synchronisation it is noteworthy that the effect of synchronisaton on Blind Source 

Separation (BSS) is investigated in [15] and it is concluded that full synchronisation 

increases the separated source signals quality by an average of 4dB (Signal-to-

Interference (SIR)). 

As most of the proposed synchronisation methods are able to time-align the 

signal and calculate the TDOA with an error between 1 to 10 milliseconds, the 

important factor is the computational cost. The watermark based algorithms are 

typically more efficient and faster compared to GCC methods [14] as they try to 

maximise the correlation between the landmarks and not the whole frames [13]. This 

thesis does not focus on time-alignment and synchronisation and instead applies the 

state of the art methods. 

2.3 Speech enhancement and dereverberation 

Speech enhancement [16] covers variety of applications such as noise 

compensation [16] and dereverberation [17]. Single channel speech enhancement 

methods [18] [19], [20] do not benefit from the multiple spatial recordings and are 

based on the prediction and removal of the noise and reverberation in time or 

frequency domain whereas multichannel speech enhancement methods can 

discriminate the target signal based on the DOA by the joint analysis and spatial 

selectivity [21] of the channels. 
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Speech enhancement methods proposed for the ad-hoc arrays are limited to 

certain scenarios such as scenarios with nodes of the same structure [1] and are based 

on basic beamforming techniques [22]. Some noise cancellation methods aim to form 

clusters around the target speech source and discriminate the speech and the noise by 

clustering [23]. 

This thesis proposes a novel speech dereverberation method tailored for the ad-

hoc arrays by removing the reverberation in the LP residual signals prior to the 

beamforming stage (Chapter 5). The proposed method targets the long term 

reverberation and the short term reverberation [24], [18] separately in order to 

maximise the dereverberation performance. The clustered dereverberation is also 

applied in order to increase the dereverberation performance by excluding the highly 

reverberant signal form the array estimated by the kurtosis of the LP residual signals 

[25]. 

2.4 Speech source counting and localisation 

Speech processing algorithms need a voice activity detector (VAD), to 

distinguish the time frames with an active speech source [26] for applications such as 

speech diarisation and source separation. However, most state of the art VAD 

methods assume that there is only one speech source and the output of the VAD is a 

binary value evaluated by precision and recall measurements [27]. In applications 

such as speech diarisation for meetings and press conferences, it is important to 

localise the active speaker and distinguish between different speakers. In some 

speech enhancement methods also distinguishing between the active speech source 

and interfering sources or the background noise is an essential to applications such as 

microphone clustering and distributed recording [23].  

Inspired by the VAD algorithms, researchers have proposed multi-talk detectors 

based on some extracted features from ad-hoc recordings where the source and the 

microphone locations are not known. In [28] a multi-speaker voice activity detection 

technique, which tracks the power of multiple simultaneous speakers using an ad-hoc 

microphone array with unknown microphone positions, is proposed and tested. It is 

concluded that by using short-term power measurements at the different 

microphones, the multi-speaker VAD problem can be converted into a non-negative 

blind source separation (NBSS) problem. Other than power, Coherent to Diffuse 

Ratio (CDR) [29] values calculated or estimated at dual microphone node locations 
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are also applied for source counting and multi-talk detection when the microphone 

arrays geometry, source location, and the room dimensions are unknown. 

Source localisation with multichannel microphones [30] is a well-studied topic 

based on binaural analysis and the joint analysis of the channels which is possible if 

the microphone array geometry is known. The proposed source localisation methods 

for ad-hoc arrays [31] are applicable to limited scenarios where microphones and 

sources are collocated.  

This thesis overcomes the limitations of the state of the art methods and proposes 

a surface fitting source localisation method (Chapter 4) that pinpoints the source 

location within the room. 

In Chapter 6 a novel multi-talk detection and source counting method specifically 

tailored for ad-hoc nodes is proposed and tested.  

 

2.5 Blind and informed acoustic scene analysis 

approaches 

Over the past years,  researchers  have  been trying  to  exploit the  properties  of 

audio sources and signals  in order to propose more sophisticated  models  and  

algorithms  that   consume  side information (or the estimates of the side information)  

to  guide  the  scene analysis  process.  Recently some of the most advanced source 

separation systems, integrate the feature extraction and the source separation blocks 

together to achieve an informed process [32]. In Figure 2-3 the process of moving 

from a blind approach to an informed process is depicted.  
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Figure 2-3: from blind to informed speech processing approach 

 

According to the literature, blind approaches such as blind source separation do 

not exploit any information about the sources nor about the mixing process and 

analyse the signals without any prior or derived knowledge of the recording scene. 

Terms such as semi-informed have been previously used for separation techniques 

relying on highly  precise  side  information,  coded  and  transmitted  along  with the 

audio, e.g., the mixing filters and the short-term power spectra  of  the  sources,  

which  can  be  seen  as  a  form  of  audio  coding. The term guided is used 

specifically in [32] for source separation approaches which benefit from side-

information such as room acoustic. Modelling and exploiting the spatial side-

information for signal processing applications is one of the objectives of this thesis. 

The derived types of side information beneficial for speech enhancement 

applications are source location, source-to-microphone relative distances, Room 

acoustics (e.g. reverberation time) and estimation of cross-talk segments. In this 

thesis the above side information is derived from ad-hoc recordings and is exploited 

for the informed speech enhancement process. 
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2.6 Machine learning techniques for informed signal 

processing 

Generally speaking, machine learning techniques are categorised as: 1) 

Supervised techniques; and 2) Unsupervised techniques. Supervised techniques 

require a training set which in speech and signal processing applications, is a set of 

clean utterances spoken by male and female speakers at different locations and 

setups. It is shown that utilising raw speech signals and utterances does not lead to an 

optimised training and testing procedure and it is required to extract some 

discriminative features from this raw data suitable for each application. The 

discriminative features are highly dependent on the application and the scenario and 

it can target different aspects of the signal (e.g. cepstral features, relative time 

delays). On the other hand, unsupervised techniques do not require training and they 

usually try to use the similarities and dissimilarities between the data points (speech 

utterances or any other types of acoustic signals such as RIRs). The extracted 

discriminative features are analysed by the unsupervised methods and based on the 

mixture and their proximities the categorised output is formed. The main differences 

between the supervised and unsupervised techniques are: 1) Training requirements; 

and 2) predefined categories. 

  Supervised and unsupervised machine learning techniques 

Supervised techniques learn the pattern and classify an unseen data point based 

on the predefined classes. An example of this category can be a classifier (K Nearest 

Neighbour) or a decision tree [33] that use training sets to learn about the data and 

then they can categorise an unseen sample based in the training set. 

The following figures illustrate the difference between a supervised approach and 

an unsupervised approach. It is shown that supervised techniques require training 

(Figure 2-4) and they classify unseen samples based on the predefined classes 

(Figure 2-5) whereas unsupervised techniques (Figure 2-6) do not require training 

and cluster the similar samples based on some similarity function (Figure 2-7). 
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Figure 2-4: Supervised methods based on training 

 

The following examples are supervised machine learning techniques applied for 

speech enhancement applications: 

 Deep learning for binaural speech enhancement [34] 

 Speech enhancement based on speaker gender, noise type and 

the SNR. [35] 

 Non-negative matrix factorisation and deep neural networks 

combined for speech enhancement applications. [36] 

 

Figure 2-5: Supervised classification 
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The second type of machine learning and data mining techniques, are the 

unsupervised methods which do not utilise training and group/cluster similar data-

point based on a similarity (dissimilarity) function (e.g. Euclidian distance). 

Clustering methods such as K-means [33] is an example of these techniques.  

 

 

Figure 2-6: Unsupervised methods 

 

Examples of unsupervised machine learning techniques for speech enhancement 

are: 

 Clustering for noise cancellation [37] 

 Speaker discrimination by Support Vector machine (SVM) [38] 

 Source separation by clustering [39] 

The main difference between the supervised and unsupervised techniques is that 

supervised techniques compare data-points against predefined classes and choose the 

most suitable class for the unseen sample whereas unsupervised methods analyse the 

whole data set and form meaningful clusters based on the data distribution. 
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Figure 2-7: Unsupervised clustering 

 Extracting discriminative features 

Almost all machine learning techniques do not analyse the raw signals and 

instead extract discriminative features from the data points that 1) have smaller sizes 

than the data points and 2) Discriminate data points based on the target application. It 

is also important that the extracted features are easy to calculate especially for real-

time applications. Mathematically intensive features might be effective in terms of 

discriminating the data points but are not suitable for real-time applications. 

 Performance measures 

The formed classes or clusters can be meaningful or just based on the poor 

selection of the similarity function or the extracted features. The test set and the 

ground truth are required for the evaluation. For supervised classifier accuracy, 

confusion matrix, True Positive Ratio (TPR), Receiver Operating Characteristics 

(ROC) graphs are all used [40]. For unsupervised clustering, cluster purity is the 

main evaluation measurement [41]. 
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2.7 Ad-hoc arrays applications 

The following applications are investigated in the context of ad-hoc arrays. It is 

briefly mentioned how the outcomes of this research are helpful for speech 

enhancement and acoustic scene analysis applications. A general survey of ad-hoc 

arrays applications and challenges with focus on synchronisation and localisation is 

provided in [42]. 

 Source localisation 

Compared with a compact array located at a fixed location ad-hoc arrays can 

collect more distance cues from the source. These distance cues can be utilised 

for source localisation applications [31]. Having the knowledge of the source 

location guides the process of beamforming and microphones clustering for 

speech enhancement. This problem is investigated in Chapter 4 where a novel 

surface fitting method for pinpointing the source in a room is proposed and 

successfully tested. 

 Microphone localisation 

In order to beamform the microphones’ signal it is critical to localise the 

microphones or estimate their distances. Having the microphones’ distances, it is 

possible to calculate the time delays and beamform the signals. [41] [43]. In other 

words, microphone localisation leads to an informed beamforming and speech 

enhancement process. Similar to this application in Chapter 3 of this thesis a 

novel code-book based microphone clustering and segmentation method is 

proposed. 

 Noise cancellation and speech enhancement 

In an ad-hoc arrays as the channels are not collocated, each microphone 

receives a different level of noise and one of them is the closest microphone to 

the noise source. Signals obtained by this microphone can be applied within 

adaptive methods to estimate and suppress the noise more effectively [1]  [44]. 

The input SNR at each node location is considered as a discriminative feature in 

order to pick the closest node to the source and achieve a higher noise 

cancellation outcome. A two stage dereverberation method that targets short-term 
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reverberation and long term reverberation separately is proposed in Chapter 5 and 

it is shown that the proposed method outperforms the state of the art 

dereverberation methods when applied to ad-hoc microphones. 

 Multi-talk detection 

A distributed array of microphone nodes which might be located close to the 

sources can track the activity of the corresponding sources more accurate than a 

single compact array which might not be close to any source [28] . Having the 

knowledge of double-talk and multi-talk frames can help the speech diaraisation 

and source separation process. A coherence based feature is applied in this thesis 

(Chapter 6) as a new feature for multi-talk detection and source counting. 

 Blind source separation 

The problem of blind source separation of acoustic mixtures is often 

addressed using independent component analysis in the frequency domain. 

Solutions to this problem have been proposed that exploit known properties of 

both the source signals and the mixing system, but require the microphones to be 

in a constrained geometry. Methods proposed for this problem in the context of 

ad-hoc arrays utilises the source estimates to provide a reliable permutation 

alignment [23] [45].  

 Speech recognition and acoustic scene analysis 

While close talking microphones give the best signal quality and produce the 

highest accuracy from current Automatic Speech Recognition (ASR) systems, the 

speech signal enhanced by microphone array has been shown to be an effective 

alternative in a noisy environment [46]. The process of feature extraction and 

utilising the Hidden Markov Model (HMM) for this particular pattern recognition 

problem by analysing the speech model parameters is proposed in [46] for the ad-

hoc arrays. 

 Other applications  

In a novel application for ad-hoc arrays, vehicle sounds are recorded by ad-

hoc microphone arrays and through peak detection of the power envelope, the 
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number of vehicles is counted [47]. The issues of different sampling frequencies 

and asynchronous recordings are also discussed. The focus of that research is on 

counting the number moving vehicles but as the only applied feature is the 

signals power, the proposed method might be applicable to source counting 

application as well.  

Video and audio recording with more than one microphone and camera is 

another application of the ad-hoc microphone arrays and it is reviewed in [14]. 

The issue of synchronisation is also investigated in that research. 

2.8 The applied discriminative features and their 

applications 

Rather than applying the machine learning and data mining techniques on the raw 

audio or speech signals directly, the data is typically transformed to a reduced 

parametric representation [48]. As the feature extraction is an inevitable part of any 

machine learning process, here a brief review of the applied features and their 

applications in the speech processing literature is presented. Some features such as 

phase information have been shown to be unreliable for microphone discrimination 

applications in the context of the ad-hoc arrays [49]. 

 Norm of the pseudo-coherence-vector 

The pseudo-coherence-vector is applied in [22] to choose the node that yields the 

highest output quality after beamforming. This feature is defined as 

𝜌𝑥𝑛,1,𝑋𝑛,2(𝑘, 𝑡) =
𝐸[𝑥𝑛,1(𝑘, 𝑡)𝑋𝑛,2

∗ (𝑘, 𝑡)]

𝐸 [|𝑋𝑛,1(𝑘, 𝑡)|
2
]

 
2-11 

where E[.] and * denote mathematical expectation and complex conjugate 

respectively and 𝜌𝑥𝑛1,𝑋𝑛,2(𝑘, 𝑡) is the pseudo coherence vector of length M between 

𝑥𝑛,1(𝑘, 𝑡) and 𝑋𝑛,2(𝑘, 𝑡). 

The norm of the pseudo-coherence-vector reflects the input signal quality at each 

compact array location. In the literature, this feature is only calculated for the dual 

compact arrays and not single microphones. This feature has been applied for 

distinguishing between high quality input nodes and highly distorted nodes where all 

the nodes have the same structure. Assuming that all th endes are of the same 

structure is the limitation of [22].  
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 MFCC 

The Mel Frequency Cepstral Coefficients (MFCCs) feature is a cepstral feature 

which has been successfully applied for speaker profiling [50] and emotion 

detection. This feature has proven to give very good results in the context of 

(anechoic) speech/music/noise classification tasks and constitute a very compact 

representation of the signals. It is also applied for microphone clustering [5]. It is 

important to note that MFCC has been applied within supervised and unsupervised 

machine learning techniques. 

In order to calculate the MFCC coefficients the speech sample is broken down 

into frames of length such that the information in a frame does not vary statistically 

(e.g. 20ms). For each short time frame,a  periodogram  estimate  of  the  power  

spectrum  is  calculated  as : 

𝑃𝑖(𝑘) =
1

𝑁
|𝑋𝑖(𝑘)|

2 
2-12 

𝑋𝑖(𝑘) = ∑ 𝑥𝑖(𝑛)ℎ(𝑛)𝑒
−𝑖2𝜋𝑘𝑛/𝑁𝑁

𝑛=1 ,        1 ≤ 𝑘 < 𝐾     2-13 

where 𝑃𝑖 is the power spectrum 𝑋𝑖 is the length K discrete Fourier transform of 𝑥𝑖(𝑛) 

and i is the frame index. The Mel filter bank is applied to the power spectra and the 

energy in each filter is added.  ℎ(𝑛) is an N sample long analysis window. 

MFCC as a cepstral feature has been applied to speech signals, noise, music and 

RIRs [51]. Although it has been applied to microphone clustering but it does not 

contain any information about source to microphone distance [52] [53]. 

 LP CMRARE 

The Legendre Polynomial-based Cepstral Modulation RAtio REgression (LP-

CMRARE) is a cepstral feature for compact representation of the (anechoic) speech , 

noise and music signals for signal classification and microphone clustering. It is 

important to note that LP CMRARE has been applied within supervised and 

unsupervised machine learning techniques. [5] 

To obtain the LP-CMRARE features, the spectrum is transformed into the 

cepstral domain. In order to analyse the spectro-temporal changes of the cepstrum a 

sliding window Discrete Fourier Transform (DFT) is applied as : 
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�̂�𝑐 = ∑ 𝑋𝑐𝑒
−𝑖2𝜋𝑣𝑚/𝑀

𝑀−1

𝑚=0

 

2-14 

where 𝑋𝑐 is the cepstral domain signal and v represents the modulation frequency bin 

index. The magnitude of the modulation spectrum is averaged over all windows as: 

�̅�𝑐 =
1

𝐶𝑇
∑ |�̂�𝑐|
𝐶𝑇−1
𝑐=0       2-15 

LP CMRARE has been used for speech, noise and music signals and it has been 

successful for speaker recognition and discrimination but it does not contain any 

information about the signal quality, reverberation level and source to microphone 

distance. 

 Time of Arrival  

Time of Arrival (TOA) or Time of Flight (TOF) information if available or 

retrievable can accurately calibrate microphone arrays [54] which can be useful for 

microphone clustering, clustered dereverberation and source targeting applications 

however in the target scenarios of this research the nodes are independent and do not 

communicate and the source’s start and stop times are assumed unknown. TOA can 

be calculated if the microphones are synchronised and the source start time is known 

which are not practical assumptions for ad-hoc arrays and spontaneous meetings. 

In the context of ad-hoc arrays TOA information derived from RIRS can be 

applied for microphone clustering however this method requires full knowledge of 

RIRs which might not be available for all scenarios. TOA at microphone m location 

(𝑟𝑚) from source location (𝑟𝑠) is mathematically defined as: 

𝑇𝑂𝐴𝑚 =
|𝑟𝑠−𝑟𝑚|

𝑐
       2-16 

 Time Difference of Arrival 

The Time Difference of Arrival (TDOA) is applied in the literature for source 

localisation [55], microphone localisation [56] and joint localisation of the source 

and the microphones. Although TDOA overcomes the limitation of unknown start 

time (t=0 timestamp) the main issue with TDOA feature for such applications is that 

it requires communication among the nodes, which is not available in many 

recording devices and scenarios. Another challenge that arises with ad-hoc arrays 
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due to their unknown geometrical configuration and inconsistency of the devices is 

that the nodes are usually not synchronised and might use different frequency rates. 

Under certain circumstances the calculation of TDOA is straightforward but for 

unsynchronised devices without inter-node communication mathematically intensive 

solutions are suggested [6], which are not recommended for real time applications. 

The problem of sensor and source joint localisation using time-difference of 

arrivals (TDOAs) of an ad-hoc array is investigated in the literature. The major 

challenge is that the TDOAs contain unknown time offsets between asynchronous 

sensors but it is shown that this issue can be addresses by further mathematical 

processing [6], [57] , [58]. 

TDOA information is successfully used for localisation applications but in terms 

of signal quality and dereverberation TDOA information are not helpful. 

 Speech Energy  

Energy is the simplest feature to calculate/estimate for both full utterance and 

frame based analysis however a few critical issues confine it’s applications as 

discussed in the literature [31], where an energy-based method for source and 

microphone localisation is proposed for an ad hoc network of microphones. The 

target scenario is a meeting that sources (participants) and the microphones (laptops) 

are collocated. Compared with traditional sound source localisation approaches 

based on time of flight, this technique does not require accurate synchronisation, and 

it does not require each laptop to emit special signals. 

In a multi-channel recording scenario, the energy of a signal can be calculated 

independently of other channels, signal synchronisation and time alignment are not 

required. Energy levels can be compared and if the microphones have the same gain 

(which is not always verifiable), the node with the highest energy level is the closest 

node to the active source during that time frame or utterance.  

𝐸(𝑥(𝑛)) = 〈𝑥(𝑛), 𝑥(𝑛)〉 = ∑ 𝑥2(𝑖)∞
𝑖=1        2-17 

For the full utterance analysis and calculated over a short time frame of length (L) 

in time domain as: 

 

𝐸𝐿 =∑𝑥2(𝑖)

𝐿

𝑖=1

 

 

2-18 
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Energy can also be calculated in the time-frequency domain. The main limitation 

of the energy feature is that it is not possible to control the microphones gains or 

verify if they all have the same gain. Under special circumstances (i.e. microphone 

and source being collocated) it is possible to overcome this limitation and use the 

energy level for microphone localisation and clustering.  

 Kurtosis of linear prediction residual signal 

The kurtosis of the Linear Prediction (LP) residual signal was proposed as a 

discriminative feature for target speech discrimination in teleconferencing systems 

where interference is a common issue that decreases the teleconferencing experience 

significantly. [25] Conventional methods of voice activity detection (VAD) utilise 

the location cues of sound sources to distinguish desired from undesired speech and 

utilise multiple microphones to estimate the directions of sound sources. Research in 

[25] has proposed a novel source discrimination method that exploits only one 

microphone to discriminate desired from undesired speech assuming that the desired 

source is located closer to the microphone than the interfering source. Kurtosis of 

the linear prediction  residual signals is applied as the discriminative feature in the 

research by [25] as their observations show that this feature has an inverse 

relationship with source to microphone distance in a variety of room types in terms 

of sizes and the reverberation times including conference rooms, sound proof room, 

elevator hall and laboratory. The experimental results revealed that the proposed 

method could distinguish close-talking speech from distant-talking speech within a 

10% equal error rate (EER) in ordinary reverberant environments. The main 

drawback of this feature and the proposed method is the dependency on a predefined 

threshold. As kurtosis values are calculated based on the residual signals obtaining 

the prediction coefficients is the first step. For the recorded signal 𝑥𝑚(𝑛) from (1), 

the predicted signal �̂�𝑚(𝑡) obtained by the LPC method is: 

    �̂�𝑚(𝑡) = ∑ 𝑎𝑗
𝐽
𝑗=1 𝑥𝑚(𝑡 − 𝑗)         2-19 

             

where J is the LPC prediction order and the LPC prediction coefficients  (𝑎𝑗) can be 

calculated by any conventional method for each channel. The resulting LPC residual 

(error) signal is 
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       𝑒𝑚(𝑡) = 𝑥𝑚(𝑡) − �̂�𝑚(𝑡)           2-20 

The kurtosis values for each frame or utterance can be obtained by: 

𝑘𝑚(𝑡) =
𝐸{𝑒𝑚

4 (𝑡)}

𝐸2{𝑒𝑚2 (𝑡)}
− 3 

2-21 

        The kurtosis value can be calculated in both utterance mode and frame based 

mode and the discriminative feature for each node with more than one channel is 

calculated by averaging the kurtosis values within each node. Kurtosis can be 

calculated and applied as a discriminative feature when the source is a speech signal 

and the nodes located closer to the source have higher kurtosis values [25]. The 

disadvantage of this feature is that it can only be applied to speech signal as it is 

based on LP coding and cannot be applied to noise, RIRs or other signal types. 

Another limitation of the proposed method by [25] is the dependency on the 

predefined threshold which requires training for each recording setup and room.  

 The clarity feature (𝐶50)  

The 𝐶50 or Clarity measurement is the ratio of early to late reverberation 

expressed in dB. This measure is higher when the microphone to sources distance is 

relatively small and the recorded signal by the microphone is dominated by the direct 

path signal [59] [60]. In contrast it is lower when microphone to source distance is 

relatively large and the second and third order reverberations are no longer 

negligible. It is shown that the 𝐶50  has an inverse relationship to the microphone to 

source distances and for calculating 𝐶50  the clean signal is not required (in contrast 

to the Direct to Reverberation ratio (DRR)). The 𝐶50 is defined in as: 

 

ℎ(𝑡) = ℎ𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) + ℎ𝑒𝑎𝑟𝑙𝑦(𝑡) + ℎ𝑙𝑎𝑡𝑒(𝑡)       2-22 

 

𝐶50  = 10 × log (
𝐸𝑑𝑖𝑟𝑒𝑐𝑡+𝐸𝑒𝑎𝑟𝑙𝑦

𝐸𝑙𝑎𝑡𝑒
)                2-23 

 

with 𝐸𝐷𝑖𝑟𝑒𝑐𝑡 = 𝑎1𝛿(𝑛), 𝐸𝑒𝑎𝑟𝑙𝑦 = ∑ ℎ(𝑛)𝑡=50𝑚𝑠
0 ,  and 𝐸𝑙𝑎𝑡𝑒 = ∑ ℎ(𝑛)∞

50𝑚𝑠  and n 

is the frame index. Using (2), 𝐶50  can be calculated for each   RIR without 

synchronisation by: 

𝐶50  = 10 × log (
∑ ℎ(𝑡)𝑡=50𝑚𝑠
0

∑ ℎ(𝑡)∞
50𝑚𝑠

)                  2-24 
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The clarity feature is robust against fluctuations of the source energy level and 

can reliably be used when there are sources with different levels of energy. 

𝐶50  = 10 × log (
∝.𝐸𝑑𝑖𝑟𝑒𝑐𝑡+∝.𝐸𝑒𝑎𝑟𝑙𝑦

∝.𝐸𝑙𝑎𝑡𝑒
)    2-25 

 

= 10 × log (
∝ (𝐸𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐸𝑒𝑎𝑟𝑙𝑦)

∝ 𝐸𝑙𝑎𝑡𝑒
) 

2-26 

 

= 10 × log (
𝐸𝑑𝑖𝑟𝑒𝑐𝑡+𝐸𝑒𝑎𝑟𝑙𝑦

𝐸𝑙𝑎𝑡𝑒
)    2-27 

The limitation of 𝐶50 is that it requires the full length RIRs and hence cannot be 

applied to real time applications. 

 Magnitude square Coherence (MSC) 

Reverberation and interference recorded by each microphone are functions of its 

location in the room and as the microphones of each node are not exactly collocated 

they record slightly different echoes and interferences [61], [62], [63]. When 

microphone’s signals are distorted by reverberation and interference they become 

statistically more independent and they will have lower intra MSC values calculated 

by:  

𝐶𝑖𝑗(𝑓) =
|𝜑𝑚1𝑚2(𝑓)|

2

𝜑𝑚1𝑚1(𝑓) 𝜑𝑚2𝑚2(𝑓)
            2-28 

where 𝜑𝑚1𝑚1(𝑓) and 𝜑𝑚1𝑚2(𝑓) are auto and cross power spectral densities between 

microphone 𝑚1 and 𝑚2  respectively from (1). If nodes in the ad-hoc array contain 

dual-channel microphone systems, it is possible to discriminate highly distorted 

nodes (located far from the active sources) and the node’s signals predominated by 

the speech signals (located closer to one of the sources). This fact about MSC is 

utilised here as a distance cue to estimate the distances between the active sources 

and the nodes. “The idea is that when the magnitude [square coherence] is close to 

one, the speech signal is present and dominant and when it is close to zero, the 

interfering signal is dominant.” [61]. 
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 Room impulse responses  

RIRs as they contain echo time delays and attenuation information, can be 

considered for feature extraction [63], [64], [65]. 

In the general form of the problem let M microphones be distributed in a room of 

unknown geometry and labelled 𝑚1, 𝑚2, …𝑚𝑗 … ,𝑚𝑀, which record N sources 

𝑠1, 𝑠2, … 𝑠𝑘… , 𝑠𝑁. The sound recorded by each of these microphones is the 

convolution of the acoustic RIR corresponding to its location in the room and the 

source signal. It is assumed that all microphones are synchronized and the lengths of 

the RIRs are equal. These RIR sequences contain impulses received from direct paths 

between sources and microphones and reflections from the walls, ceiling and floor 

and can be modelled mathematically as a train of impulses as: 

ℎ̂𝑠𝑘,𝑚𝑗(𝑛) = ∑ 𝑎𝑠𝑘,𝑚𝑗(𝑙)𝛿 (𝑛 − 𝑑𝑠𝑘,𝑚𝑗(𝑙))𝑙 + 𝑁(𝑛)              2-29 

where 𝑑𝑠𝑘,𝑚𝑗(𝑙) represents the propagation delay from source and reflectors to the 

microphone 𝑚𝑗 when source k is active, 𝑎𝑠𝑘,𝑚𝑗(𝑙) represents the amplitudes of each 

impulse corresponding to an echo and l=0 to L represents the number of impulses. 

𝑁(𝑛) represents the noise in the general form. In practice, RIRs can be estimated by 

techniques such as recording a sine-sweep covering a range of frequencies (e.g. 20Hz 

to 20 kHz) and digitally sampling this signal as a pre-recording phase or they can be 

extracted from speech signals by the proposed method in [66].   

 Direct to reverberant ratio 

Reverberation affects the speech signal quality and intelligibility in the 

reverberant environment. Direct to Reverberant Ratio (DRR) is a function of 

reverberation and the distance from the source [60]. The microphones located close 

to the source have higher signal quality and The DRR. It is also shown that DRR can 

be estimated accurately [67]. DRR for microphone m in the array is defined as 

 

𝐷𝑅𝑅 =
∑ℎ𝑑,𝑚(𝑛) ∗ 𝑠(𝑛)

∑ℎ𝑟,𝑚(𝑛) ∗ 𝑠(𝑛)
=
∑ℎ𝑑,𝑚(𝑛)

∑ ℎ𝑟,𝑚(𝑛)
 

2-30 

where ℎ𝑑,𝑚(𝑛) and ℎ𝑟,𝑚(𝑛) are the direct and the reverberant components of the 

RIR. As it is observed from the equation the DRR is independent of the source signal 

and the energy level. 
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2.9 Chapter summary and conclusion 

In this chapter the ad-hoc arrays and their applications have been reviewed based 

on the most recent literature. As was mentioned, the final objective is to develop a 

multichannel dereverberation method for ad-hoc arrays however microphone 

clustering, source counting, targeting and localisation can help the analysis of the 

acoustic scene as a prior stage to the dereverberation task. As the machine learning 

techniques and the extracted features from the multi-channel and multi-node 

recordings are important parts of microphone clustering they have been separately 

reviewed in the literature as well. It is important to conclude that each feature is 

suitable for certain applications and each machine learning technique can be helpful 
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in a specific task and hence it is not possible to come up with one feature and one 

technique which can be applied in general to applications. In the next chapters, the 

state-of-the-art and the proposed features extracted from the ad-hoc array recordings 

will be applied to microphone clustering prior to applying the proposed multi-

channel dereverberation method.  
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 Microphone clustering 

 

3.1 Introduction 

This chapter investigates the formation of ad-hoc microphone arrays for the 

purpose of recording and processing multiple sound sources by clustering 

microphones spatially distributed within a room. In the context of ad-hoc 

microphones, clustering is important as microphones located close to a source record 

the signal with higher quality [5]. On the other hand the microphones located far 

from the source are usually highly distorted by noise, reverberation and interfering 

sources and it is suggested to exclude them from the recording and post-recording 

process [22]. In other words, utilising all the available nodes and microphones for 

applications such as dereverberation and source localisation is not the optimal 

approach as the higher number of channels usually means more processing load and 

also including highly distorted microphones only decreases the overall system 

performance [5], [68].  

This hypothesis is investigated in this thesis for the specific task of 

dereverberation and analysis of acoustic scenes by investigating several ad-hoc 

scenarios and evaluating the recording quality and speech enhancement performance 

by the conventional measurements. A novel codebook-based unsupervised method 

for cluster formation using features derived from the Room Impulse Responses 

(RIRs) corresponding to each microphone is proposed and compared with baseline 

clustering and classification methods.  

The estimated coherence feature [69] is also proposed in this chapter as a novel 

feature for microphone clustering where all nodes have the same structure, which is 

an acceptable assumption for most conference tables with a built-in microphone at 

each seat location. Based on this feature a novel clustering method is proposed which 

overcomes the limitations of the state of the art clustering methods such as prior 

knowledge of the number of clusters to form [5] and the training phase. The 

proposed clustering methods in this chapter obtain high clustering accuracy with less 

limiting constraints and required prior information. 
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The objectives of this chapter are: 

 Extracting microphone clustering discriminative features from 

RIRs where the RIR recordings are available or retrievable.  

 Extracting microphone clustering discriminative features from 

speech signals or situations where RIRs are unknown or cannot be 

reliably estimated. 

 Proposing a microphone clustering method that does not 

require the prior knowledge of the exact number of clusters to form 

(limitation of [5]). 

 

The contributions of this chapter primarily overcome the limitations of the 

previous research  

 Clustering the ad-hoc microphones without requiring the prior 

knowledge of the number of sources or pre-assigning the number of 

clusters.  

 Proposing the inter-microphone coherence based clustering 

method for speech signals without using standard clustering techniques. 

 Proposing new clustering evaluation measurements. (average 

intra cluster distance and Magnitude square coherence for more than two 

signals) 

 Proposing a systematic microphone clustering evaluation 

scheme for ad-hoc scenarios. 

 

Publications arising from this chapter include 

 S. Pasha, Y. X. Zou & C. Ritz, "Forming ad-hoc microphone arrays 

through clustering of acoustic room impulse responses," in Signal and 

Information Processing (ChinaSIP), 2015 IEEE China Summit and 

International Conference on, 2015, pp. 84-88. 

 S. Pasha & C. H. Ritz, "Clustered multi-channel dereverberation for 

ad hoc microphone arrays," in Proceedings of APSIPA Annual Summit and 

Conference 2015, 2015, pp. 274-278. 
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3.2 Motivation and Problem formulation 

Some recent recording methods [70], [71] using ad-hoc microphone arrays utilise 

partial information to help guide applications such as sound source separation and 

classification. These informed signal processing approaches are more effective 

compared to blind approaches for the analysis of complex acoustic scenes and sound 

source separation. As an example, in [5] a novel method for exploiting relative 

microphone and source spatial locations was introduced and evaluated for 

microphone clustering and signal classification. This method relies on accurate 

knowledge of the total number of sources as well as the total number of clusters to 

form. In [72] A maximum likelihood approach using time of arrival measurements of 

short calibration pulses is proposed to solve this self-localisation problem. 

In  [41] the authors showed that rather than using all microphones in a room, 

forming ad-hoc microphone arrays using small clusters of microphones each located 

close to one source can yield better separation quality. The approach removes 

microphones from the ad-hoc array that are located far from target sources, which 

may be corrupted by other sources and hence have a low target-to-interference signal 

ratio. Such an approach also reduces the beamforming steering error and is based on 

measuring the coherence between microphones in noise-only periods as well as the 

relative Time Difference of Arrival (TDOA) between neighbouring microphones 

during speech periods. Their approach assumed small subsets of microphones were 

located close to desired speakers. Herein in a general scenario of ad-hoc arrays the 

main goal is to propose a novel codebook microphone clustering method based on 

time delay and gain information derived from microphones at unknown locations 

Microphone clustering is a way to group microphones spatially close to each 

other for applications such as beamforming and source separation. Microphone 

clustering does not need the exact localisation of all nodes (different to [73], [74] ) 

and it is only based on the similarities of the features derived from the recorded 

signals or RIRs [68], [75].  

As explained in Chapter 1, an ad-hoc microphone array is formed from sets of 

microphones randomly positioned in a room and can be used to record multiple 

spatially distributed sound sources with a better and more flexible spatial coverage 

compared with a single microphone array located at one position.  
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Assuming that there are M microphones (or nodes) in an ad-hoc array and based 

on their relative distances to the source they receive a unique version of the source 

clean signal, the objective is to choose a subset of nodes such that applying them 

exclusively for a task such as dereverberation or recording yields the highest output 

quality in terms of the conventional measurements of each task. 

 

Figure 3-1: Examples of microphone clusters 

 

In Figure 3-1, X is the matrix of the ad-hoc channel recordings. It is shown that 

each source can be recorded with a higher intelligibility if only microphones close to 

the target source are utilised and the other channels which are highly distorted by 

interference from other speakers are removed from the array [5]. 

The goal of signal clustering is to assign objects to groups with small intra-group 

differences and large inter-group differences (3-2). Assuming that 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑀} 

is the set of recorded signals by all the M channels in the array, the clustering 

objective is to form the subsets 𝑋𝑐 ⊂ 𝑋 that minimises the following cost function J.  

𝑋 = {𝑥1, 𝑥2, … 𝑥𝑀} 3-1 

𝐽 =∑ ∑ |𝑥𝑚 − 𝜇𝑗|
2

𝑚∈𝑋𝑐

𝑁

𝑗=1

 

3-2 

where N is the number of clusters to form and 𝜇𝑗 is each cluster centroid. [33] and 

improves a certain criterion for each application. (3-3) 
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Assuming that function F is a performance measurement specifical to a particular 

application such as SNR for noise cancellation, the clustering criterion can be 

modelled mathematically as: 

𝐹(𝑋𝑐) > 𝐹(𝑋)      3-3 

Which means utilising the microphones within the chosen cluster (i.e. 𝑋𝑐 ) yields 

better results compared to the blind use of all M nodes in X. 

As the aim is to cluster microphones, raw signals cannot be exploited as the 

process will be inefficient and time consuming [5]. As an alternative, discriminative 

features should be chosen and derived from the raw signals that discriminate 

microphones according to their spatial location (Figure 3-2).  

 

Figure 3-2: Unsupervised microphone clustering process 

In this research the required signals and RIRs are simulated under different 

circumstances in terms of 𝑅𝑇60, SNR, the number of simultaneously active speakers 

and the source to microphone distances. Each recording simulation is labelled based 

on the recording attributes.  

3.3 Discriminative features 

Rather than performing clustering on the recorded audio signals or RIRs directly 

the data is typically transformed to a reduced parametric representation which is 

referred to as feature extraction. In case of clustering into groups without training 

data, unsupervised methods can be used to generate unlabelled clusters of objects [5]. 

In this section novel discriminative features for microphone clustering derived 

from RIR recordings and speech signals are described and the process and 

requirements of their extraction are discussed. 

 Discriminative features derived from RIR recordings 

The base-line feature for microphone clustering is the Time Difference of Arrival 

(TDOA) which is based on the difference in the arrival time of the direct path signal 

at two microphones and is generally calculated using cross correlation-based 

methods [41], [76], [77]. These methods suffer from room reverberation and hence 



  

56 

 

techniques to suppress the effects of reverberation on TDOA estimation accuracy are 

often required [5], however researchers have recently shown that it is possible to 

make use of reverberation for extracting distance cues [25]. TDOA  is also not 

reliable when the room reverberation time is relatively large which causes TDOA 

outliers [78]. It is noteworthy that the main constraint for defining a discriminative 

feature is the feasibility of the feature extraction in the ad-hoc scenarios where 

microphones might freely move at any time and information such as source location 

and the start time of the speech signal are unknown. Features such as TOA suffer 

from dependency on source start time and time alignment of the microphones which 

make it less practical in ad-hoc scenarios.  

Herein a novel feature is derived from RIR recordings rather than recorded 

speech signals that does not require complex calculations of noise coherence and 

inter-microphone cross correlations. This method does not require the information 

about the sources, room and microphone array and is solely based on similarity and 

dissimilarity of the extracted features from RIRs. In contrast to [31], where 

reverberation was causing error and was needed to be supressed, the proposed RIR 

clustering method exploits reverberation to cluster the microphones [63]. This is 

motivated by the approaches in [64], where similarly they estimate the echoes as the 

peaks in the RIR recordings. These are then used within alternative clustering 

algorithms for forming the ad-hoc microphone arrays. Discrimination of symmetric 

clusters by using two asynchronous sources located at two different locations is the 

novelty of this proposed method.  

In the general form of the problem let M microphones be distributed in a room of 

unknown geometry and labelled 𝑚1, 𝑚2, …𝑚𝑗 … ,𝑚𝑀, which record N sources 

𝑠1, 𝑠2, … 𝑠𝑘… , 𝑠𝑁. The sound recorded by each of these microphones is the 

convolution of the acoustic RIR corresponding to it’s location in the room and the 

source signal. It is assumed that all microphones are synchronised and the lengths of 

the RIRs are equal. These impulse sequences contain impulses received from direct 

paths between sources and microphones and reflections from the walls, ceiling and 

floor and can be modelled mathematically as a train of impulses as : 

ℎ𝑠𝑘,𝑚𝑗(𝑛) =∑𝑎𝑠𝑘,𝑚𝑗(𝑙)𝛿 (𝑛 − 𝑑𝑠𝑘,𝑚𝑗(𝑙))

𝐿

𝑙=0

+ 𝑁(𝑛) 
3-4 
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where 𝑑𝑠𝑘,𝑚𝑗(𝑙) represents the propagation delay from source k and reflectors to the 

microphone 𝑗 when only source k is active, 𝑎𝑠𝑘,𝑚𝑗(𝑙) represents the amplitudes of 

each impulse corresponding to an echo and l=0 to L represents the number of 

impulses. The number of counted impulses depends on the room 𝑅𝑇60 and the room 

dimensions.  𝑁(𝑛) represents the noise in the general form. In practice, RIRs can be 

estimated by techniques such as recording a sine-sweep covering a range of 

frequencies (i.e. 20Hz to 20 kHz) and digitally sampling this signal as a pre-

recording phase [79] or they can be extracted from speech signals by the proposed 

method in [51]. Assuming that the RIR recordings are available or estimated, the RIR 

of length L+1 at microphone j when source k is active can be represented as: 

ℎ̂𝑠𝑘,𝑚𝑗 = [ℎ𝑠𝑘,𝑚𝑗(0), … , ℎ𝑠𝑘,𝑚𝑗(𝐿)]     3-5 

In a general scenario of M microphones and N sources, a matrix of ℎ̂𝑠𝑘,𝑚𝑗‘s can 

be constructed as :  

 𝐻 = [
ℎ̂𝑠1,𝑚1 … ℎ̂𝑠𝑁,𝑚1
⋮ ⋱ ⋮

ℎ̂𝑠1,𝑚𝑀 … ℎ̂𝑠𝑁,𝑚𝑀

]                 

3-6 

The peak sample numbers representing the propagation delays [80], 𝑑𝑠𝑘,𝑚𝑗(𝑙), 

corresponding to the peaks of  ℎ̂𝑠𝑘,𝑚𝑗 of (2) are represented here by the vector of 

delays, �̂�(𝑠𝑘,𝑚𝑗)(𝑙) = [𝑑𝑠𝑘,𝑚𝑗(0), 𝑑𝑠𝑘,𝑚𝑗(1),… , 𝑑𝑠𝑘,𝑚𝑗(𝐿)], where 𝑑𝑠𝑘,𝑚𝑗(0) is the 

arrival time from the source k to the microphone 𝑚𝑗 for the direct path signal 

and 𝑑𝑠𝑘,𝑚𝑗(1), … , 𝑑𝑠𝑘,𝑚𝑗(𝐿) represent the delays for the first L echoes. The delay 

matrix for microphone 𝑚𝑗 can be constructed as 𝐷𝑗 , where j=1 to M: 

𝐷𝑗 = [

𝑑𝑠1,𝑚𝑗(0) … 𝑑𝑠𝑁,𝑚𝑗(0)

⋮ ⋱ ⋮
𝑑𝑠1,𝑚𝑗(𝐿) … 𝑑𝑠𝑁,𝑚𝑗(𝐿)

]     

3-7 

The magnitudes of the direct path impulses and 𝐿 echoes received from 𝑁 sources 

to microphone 𝑚𝑗 from the array can be represented as 𝐴𝑗: 

𝐴𝑗 = [

|ℎ̂𝑠1,𝑚𝑗(0)| … |ℎ̂𝑠𝑁,𝑚𝑗(0)|

⋮ ⋱ ⋮
|ℎ𝑠1,𝑚𝑗(𝐿)| … |ℎ̂𝑠𝑁,𝑚𝑗(𝐿)|

]                 

3-8 

          |ℎ̂𝑠𝑘,𝑚𝑗(0)| = 𝑎𝑠𝑘,𝑚𝑗(0) and the extension to more sources and 

microphones is straightforward.  
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Figure 3-3: Two speech sources being recorded by three ad-hoc microphones 

 

Figure 3-4: RIR time delays and peaks 

 

A set of extracted features from one microphone RIR for two echoes can be 

represented as 

𝐾𝑗 =

[
 
 
 
 
 
 
 
𝑑𝑠,𝑚𝑗(0)

𝑑𝑠,𝑚𝑗(1)

𝑑𝑠,𝑚𝑗(2)

ℎ̂𝑠,𝑚𝑗(0)

ℎ̂𝑠,𝑚𝑗(1)

ℎ̂𝑠,𝑚𝑗(2)]
 
 
 
 
 
 
 

 

3-9 

This vector is calculated for all the j values 1 ≤ 𝑗 ≤ 𝑀, and the obtained feature 

vectors are clustered by the clustering methods. The distance function (e.g. Euclidian 

distance) is applied to these vectors in order to measure their similarities: 
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‖𝐾1 − 𝐾2‖ = √(𝐾1 − 𝐾2)
22
 

3-10 

The feature matrix for the array is represented by 

𝐊 =

[
 
 
 
 
 
 
𝑑𝑠,𝑚1(0)

𝑑𝑠,𝑚1(1)

𝑑𝑠,𝑚1(2)

ℎ̂𝑠,𝑚1(0)

ℎ̂𝑠,𝑚1(1)

ℎ̂𝑠,𝑚1(2)

   

…
…
…
…
…
…

  

𝑑𝑠,𝑚𝑀(0)

𝑑𝑠,𝑚𝑀(1)

𝑑𝑠,𝑚𝑀(2)

ℎ̂𝑠,𝑚𝑀(0)

ℎ̂𝑠,𝑚𝑀(1)

ℎ̂𝑠,𝑚𝑀(2)]
 
 
 
 
 
 

. 

3-11 

 Discriminative features derived from speech signals 

The following proposed features are extracted by utilising the speech signals for a 

microphone clustering application using the baseline and the proposed code-book 

methods. 

3.3.2.1 The kurtosis of LP residual signal 

Microphones located close to each other receive similar levels of reverberation 

and microphones far from each other (e.g. one microphone close to the source and 

the other close to a wall) have different levels of reverberation in their recorded 

signals. As the kurtosis of the LP residual signal is a function of reverberation level 

[25] this feature is applied to cluster microphones. In a sample echoic recording 

room a source is recorded by a grid of microphones across the x and y axis. The grid 

step size is 0.5m and all the microphones and the source are at the same height (2m). 

It is observed that the Kurtosis of the LP residual signal drops as the source to 

microphone distance increases (Figure 3-5) and hence can be applied as a 

microphone clustering feature to discriminate microphones located close to the 

source and the microphone far from the source [68].  
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Figure 3-5: Kurtosis values for a source located at (3,6,2) in a 10m by 10m by 3m 

room. fs=16k, 𝑅𝑇60 = 600𝑚𝑠, calculated for 32ms frames and averaged across one 

second of speech signal. 

According to the results, it is possible to cluster the microphones into two 

categories based on their locations in the room. 1) Anechoic clean signal (peak area) 

3) highly reverberated area (flat area) 

 

Figure 3-6: Kurtosis vs distance 

𝑅𝑇60 = 600𝑚𝑠, full utterance (3s) 

 

The first data-point (distance =0cm) represents the source clean signal kurtosis 

value. 

This graph and similar results from [25] show that the kurtosis of the LP residual 

signal has an inverse relationship to the microphone to source distance.  
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3.3.2.2 Magnitude Coherence Square (MSC)  

The relationship between the MSC and the source to microphone distance is 

investigated in [81] and it is concluded that the MSC can localise sources. In this 

thesis this feature is applied as a clustering feature to cluster microphones based on 

their distances to the source (Figure 3-7). The limitation of this feature is that it 

requires dual channel nodes and all the nodes should be of the same structure and 

inter channel distance. The advantage of the coherence feature is that it can be 

estimated based on short frames of the speech signals [29]. 

 

Figure 3-7: MSC values calculated across the room (source at 3m,6m,2m) 

3.4 Proposed clustering methods 

 Code-book based methods 

In a randomly distributed microphone array, the objective is to extract and 

compare microphones features that are used to cluster microphones. All the proposed 

features in the previous section can be applied as discriminative features within the 

proposed code-book based clustering algorithm. The process starts with generating a 

code-book of 5 centre points features across the room. Unseen microphones signals 

are then processed and the discriminative features are extracted. The extracted set of 
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features from each unseen microphone is then compared with the code-book centre 

points to find the best cluster for this microphone.  

 

Figure 3-8: Code-book based clustering algorithm 

 

The assumption is that while recording RIRs or extracting other speech features, 

only one source is active (for both code-book generation and microphone clustering 

phase).  The proposed codebook based clustering method [75] is summarised in 

Table 3-1. 

Table 3.1: Code-book based clustering method 

Input: RIR of each microphone, Codebook 

Output: Clustered microphones based on spatial locations 

1. Choose P centre points in the room, obtain arrival time and echo delays 

and assign a zone label to each centre point 

(Codebook generation) 

2. For each randomly distributed microphones in the microphone array: 

A. Obtain the recorded RIR  

B. Derive discriminative features 

C. Compare each microphone’s feature vector with the generated codebook 

D. Assign the closest centre point’s zone to the microphone 

3. The number of assigned zones labels show the number of clusters 
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Figure 3-9: Centre points and formed clusters 

 

In this approach it is assumed that P reference RIRs or speech signal centre points 

are known (or have been previously recorded) within the room (referred here also as 

centre point of a cluster). These centre points can be chosen blindly with a uniform 

distribution within the room however if there is prior information about possible 

locations of sources and microphones they can be chosen in an informed manner. For 

M microphones the goal is to assign each data point for each microphone at an 

unknown position to the closest centre point based on similarities between features. 

Similar to Vector Quantization (VQ), microphones are clustered based on the closest 

matching centre points estimated by the Euclidian distance measure: 

𝑑𝑖,𝑝 = √(𝑓𝑖 − 𝑓𝑝)2
2

   

where 𝑑𝑖,𝑝 is the Euclidian distance between the microphone i and centre point p 

(1<p<P) and 𝐟i and 𝐟p represent feature vectors from microphone i and centrepoint p 

respectively. 

The main issue with clustering microphones in symmetrical rooms and setups is 

that microphones located far from each other might get clustered together due to the 

symmetry. Clustering symmetrically positioned microphone, clusters together is also 

addressed by using two asynchronous sources at different positions and 

concatenating the feature vectors. The symmetry issue is depicted in Figure 3-10 

where two microphones at two facing corners of the room have similar RIRs and 

discriminative features. 
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Figure 3-10: Symmetry issue for clustering microphones 

 

The advantages of the code-book based clustering method are: 

 Forming a flexible number of clusters (between 1 and the number of 

centre points) whereas baseline clustering methods (e.g. Kmeans) require 

predefined number of the clusters 

 Clustering microphones based on their features similarities to the 

center points without training 

Limitations of the code-book based clustering method are: 

 

 Requiring features derived from the RIRs or the speech signals 

at certain points of the room (Centre points) which might not be practical 

for all setups and scenarios. 

 Coherence based clustering method 

Assuming there are M microphones (nodes) randomly distributed in a room, the 

objective is to cluster them into a flexible number of clusters based on the coherence 

of their signals (estimated/calculated over short time frames). This proposed 

clustering method is based on this observation that microphones that record similar 
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signals have higher coherence compared to microphones located far from each other. 

In other words, signal coherence is a function of microphone separation distances. 

The coherence between two microphones’ signals (𝑚1 and 𝑚2) is 

mathematically defined as: 

𝐶𝑚1𝑚2(𝑓) =
|𝜑𝑚1𝑚2(𝑓)|

2

𝜑𝑚1𝑚1(𝑓) 𝜑𝑚2𝑚2(𝑓)
 

3-12 

 

𝜑𝑚1𝑚2(𝑓) = 𝐹 ( ∑ 𝑅𝑚1𝑚2(𝑡)

∞

𝜏=−∞

) 
3-13 

where 𝜑𝑚1𝑚2(𝑓) and 𝑅𝑚1𝑚2(𝑡) represent the cross power spectral density and the 

cross correlation functions respectively. 𝐹 indicates the Fourier transform. 

Coherence function obtains its maximum value (the maximum value of the 

coherence function is one) when two signals are identical and therefore: 

𝜑𝑚1𝑚1(𝑓) = 𝜑𝑚1𝑚2(𝑓)      3-14 

 

𝜑𝑚2𝑚2(𝑓) = 𝜑𝑚1𝑚2(𝑓)     3-15 

and: 

𝐶𝑚1𝑚1(𝑓) =
|𝜑𝑚1𝑚1(𝑓)|

2

𝜑𝑚1𝑚1(𝑓) 𝜑𝑚1𝑚1(𝑓)
= 1      3-16 

The two microphones can only have identical signals if they are collocated and if 

they are located far from each other the value of the coherence will decrease as a 

function of the distance between them, interfering sources, noise and reverberation 

time. 

For a scenario that microphones are located at different distances and the source 

is at the center of the room, the relationship between the coherence and microphones 

distances are depicted in Figure 3-11.  



  

66 

 

 

  

Figure 3-11: Coherence for ad-hoc arrays 

 

Table 3-1: Coherence for the ad-hoc microphones 

 Mic.1 Mic. 2 Mic.3 Mic.4 Mic.5 

Mic.1 1 0.87 0.73 0.68 0.63 

Mic.2 0.87 1 0.71 0.69 0.7 

Mic.3 0.73 0.71 1 0.66 0.62 

Mic.4 0.68 0.69 0.66 1 0.78 

Mic.5 0.63 0.7 0.62 0.78 1 

 

Based on the coherence valued form the table it is concluded that microphone 1 

and microphone2  are clustered together and microphone 4 and microphone 5 form a 

cluster as well. Microphone 3 does not cluster with any microphone as the recorded 

signal by microphone3 is not similar to any other microphone.   

This observation shows that the calculated coherence (or estimated) coherence 

values obtained for all the microphone pairs can be applied as an indicator for 

microphones relative distances and their signal similarities however it is noteworthy 

𝑴𝒊𝒄𝟏 

𝑴𝒊𝒄𝟐 

𝑴𝒊𝒄𝟑 𝑴𝒊𝒄𝟒 

𝑴𝒊𝒄𝟓 

𝑪𝟏,𝟐 

𝑪𝟏,𝟓 

𝑪𝟏,𝟒 

𝑪𝟏,𝟑 
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that the symmetry issue can still decrease the clustering success rate of this proposed 

method.   

Table 3.2: Coherence based clustering algorithm for source targeting 

1. Start with a random microphone as the reference microphone (𝒎𝒓𝒆𝒇) 

2. Estimate the coherence between the reference microphone and all the 

other microphones, 𝑪𝒎,𝒎𝒓𝒆𝒇
 ,𝒎 = 𝟏,… ,𝑴  𝒂𝒏𝒅 𝒎 ≠ 𝒎𝒓𝒆𝒇.  

3. Obtain 𝑪𝒎,𝒎𝒓𝒆𝒇
(𝒎𝒊𝒏), 𝑪𝒎,𝒎𝒓𝒆𝒇

(𝒎𝒂𝒙) 

4. For 𝒎 = 𝟏,… ,𝑴  𝒂𝒏𝒅 𝒎 ≠ 𝒎𝒓𝒆𝒇. Cluster the mth microphone with 

the reference  microphone, 𝒎𝒓𝒆𝒇, if  𝑪𝒎,𝒎𝒓𝒆𝒇
≥ 𝑪𝒎,𝒎𝒓𝒆𝒇

(𝒎𝒊𝒏) +

𝑪𝒎,𝒎𝒓𝒆𝒇
(𝒎𝒂𝒙)−𝑪𝒎,𝒎𝒓𝒆𝒇(𝒎𝒊𝒏)

𝟐
 

5. Exclude microphone 𝒎𝒓𝒆𝒇 (the reference microphone) and all the 

microphones clustered with it and return to 1, 𝑴 times 

6. Microphones that are not clustered with any other nodes form a 

single node cluster 

 

Inspired by [82] the concept of coherence can be expanded to more than two 

signals by defining the Cross Spectral Density (CSD) for three signals by: 

𝐶𝑚1𝑚2𝑚3(𝑓) =
|𝜑𝑚1𝑚2𝑚3(𝑓)|

3

𝜑𝑚1𝑚1(𝑓) 𝜑𝑚2𝑚2(𝑓)𝜑𝑚3𝑚3(𝑓)
    3-17 

where: 

𝜑𝑚1𝑚2𝑚3(𝑡, 𝑘) = 𝐹(∑ 𝑅𝑚1𝑚2𝑚3(𝑡)
∞
𝜏=−∞ )   3-18 

For clusters with more than 2 microphones 𝑀 = {𝑚1,𝑚2, . . . , 𝑚𝑀} the intra 

cluster coherence is calculated as: 

𝐶𝑀(𝑡, 𝑘) =
|𝜑𝑀(𝑓)|

𝑀

∏ 𝜑𝑚𝑖𝑚𝑖
(𝑓)𝑀

𝑖=1

 
3-19 

where 

𝜑𝑀(𝑓) = 𝐹 (∑𝑅𝑀(𝑡)

𝑀

𝑖=1

) 

3-20 

where 𝑅𝑀(𝑓) is the cross correlation for all the M channels. This measurement 

evaluates the clustering and indicates how close the microphones are within a cluster. 
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Higher intra cluster coherence means the microphones of that cluster are relatively 

closer to each other and lower intra cluster coherence mean microphones are apart. 

Coherence of microphones in a compact arrays recording a single source obtains the 

maximum value of 1 and two microphone located far from each other and recording 

two uncorrelated sources obtain the minimum value of 0. 

The average intra cluster distance for a cluster with 𝑀1microphones is defined as: 

�̅�𝑀1 =
1

2𝑀1
∑∑𝑑𝑖𝑗   ,              𝑖 ≠ 𝑗

𝑀1

𝑗=1

𝑀1

𝑖=1

 

3-21 

where 𝑑𝑖𝑗 represents the distance between the ith and jth microphone in the cluster. 

 

Figure 3-12: Coherence for clusters of three microphones vs. average intra cluster 

distance (�̅�𝑀) 

Advantages of the coherence based clustering method are: 

 Clustering microphones independently of sources energies 

 Forming flexible number of clusters without any limitations 

 Utilising the feature (coherence) that indicates the level of 

reverberation and interference explicitly with constant theoretical maximum 

(one) and minimum (zero). 

 

Limitations of the coherence clustering method are: 

 It might not be applicable to real time applications 
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3.5 Evaluation and results  

Clustering can be difficult to evaluate objectively, as often there is no correct 

grouping that can be considered as the ground-truth [41]. Evaluation can be even 

more complicated when clustering is for a specific application (e.g. dereverberation) 

as not only clustering but the clustered dereverberation outcome should be taken into 

account as well. This criterion is hard to meet as usually in the meeting scenarios 

recorded by ad-hoc arrays the reference signal (clean anechoic source signal) is 

unavailable. This section proposes a systematic evaluation policy for the ad-hoc 

arrays to compare the clustering methods thoroughly based on the physical clusters 

spatially spread out within a room.  

In this proposed method, the simulated room is a rectangular 8m by 4m by 3m 

reverberant room. All the microphones and sources are located at the same height 

(2m). A square grid with 0.5m step size, sweeps the room across the X and Y axes. 8 

microphone clusters of size 4 (4 microphones at each cluster) are distributed on the 

grid in a way that the distance between the centres of two adjacent clusters is 2m and 

the microphones within each clusters are located on the vertices of a 0.5m square 

(Figure 3-13).  

 

Figure 3-13: Proposed systematic clustering evaluation setup 

 

In order to investigate the effect of the source locations and symmetry, the source 

is located at 5 different positions as illustrated in Figure 3-14. 
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Figure 3-14: Source locations 

Assuming that the physical microphone clusters are the ground truth for the 

acoustic clusters, it is possible to evaluate the proposed and the baseline clustering 

methods applied to microphone clustering. Figure 3-15 investigates the effect of the 

applied clustering feature on the formed clusters for one source location. 

a)  

 

b) 

 

c) 

 
 

Figure 3-15: The effect of the applied discriminative feature on the formed 

clusters: a) Proposed time delay and attenuation RIR features b) kurtosis of the LP 

residual signal c) Coherence, clustered by the kmeans algorithm (k=2) 

 

Figure 3-16 investigate the effect of the source location on the formed clusters 

(clusters highlighted with red are clustered together and the rest of the clusters are 
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also clustered together). It is observed that the source location affects the 

microphones that are clustered together. RIR time delay and attenuation features are 

applied as the discriminative features for the code-book based clustering method. 

 

a)  

 

b) 

 

c) 

 

 

Figure 3-16: The effect of the source location on the formed clusters: coherence 

based algorithm 

 

This section describes the evaluation results for the proposed code-book based 

clustering method, proposed coherence based clustering method and the proposed 

discriminative features. The results are average results for 25 different ad-hoc setups 

with one active source and 32 microphones. Speech sentences for the voherence 

features are derived from speech signal from 5 different male and female speakers. 

Effects of the noise, discriminative features and the applied clustering methods have 

been investigated. The Limitations and advantages of each method and feature are 

also highlighted.  

The value of L (number of echoes) from (3-4) is an important factor in codebook 

and discriminative feature vector generation for the code-book based method. For all 

the experiments L=3, which means the direct path signal along with the first three 

echoes are utilised as discriminative features. The effect of the L value on clustering 
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performance and feature extraction is also investigated. L=0 only considers the direct 

path signal arrival time and amplitude and does not take into account any of the 

echoes and therefore it cannot discriminate microphones effectively. On the other 

hand, when the number of echoes increases (e.g. L=8), first order echoes (direct path 

signal reflected off a reflector) and second order echoes (echoes reflected off a 

reflector) get mixed up and that causes error. Generally, there is one direct path 

signal (L=0) and 6 first order reflections (four walls plus the ceiling plus the floor) 

and considering more echoes is not helpful as some second order echoes arrive 

before some first order echoes at a microphone position. 

For M randomly positioned microphones, if microphone 𝑚𝑗  is clustered with 

other spatially close microphones (inter-cluster distances compared with mean intra-

cluster distance), the microphone 𝑚𝑗  clustering result is labeled “V” (Valid) 

otherwise is labelled “I” (Invalid). The success rate, SR [75], is applied to evaluate 

all methods and is calculated as: 

𝑆𝑅 =
𝑛(𝑉)

𝑛(𝐼+𝑉)
×100 3-22 

where n(V) is the number of microphones clustered correctly and n(I+V )is the total 

number of microphones (M) from 3-4. The effect of different number of applied 

echoes (L) on the clustering SR (3-22) is investigated in Figure 3-17. The error bars 

roughly show the variation of the SR for each value of L. 20 random scenarios are 

calculated for each L value. 

 

Figure 3-17: The effect of the number of echoes on the clustering SR 
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Figure 3-18: Microphone clustering Success Rate (SR) for 5 center points at 

different noise levels  

 

Noisy signals from Loizou data-base [83], [84] at different SNR’s are added to 

the simulated RIRs with an 8 kHz sampling rate and 𝑅𝑇60 = 100𝑚𝑠 to 𝑅𝑇60 =

600𝑚𝑠 for all experiments.  It is concluded that noise affects all the methods and the 

highest SR is achieved by the highest SNR and the proposed RIR features (Figure 

3-18).                                        

 

Figure 3-19: The effect of RT60 on clustering success rate. 

The effect of reverberation time is also investigated on the clustering success 

rates for Kmeans clustering methods with k=5 and the proposed code-book based 

method with 5 centre points. It is concluded that the highest success rate is achieved 

when the reverberation time is very small (e.g. 100ms) (Figure 3-19). 
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A supervised K nearest Neighbour (KNN) method can also be applied for 

microphone segmentation but as the results suggest, mismatch between the clean 

training set and noisy test set affects the success rate of the supervised method (i.e. 

KNN) significantly (Figure 3-18).   

Based on these results it is concluded that the proposed codebook-based method 

provides the highest success rates for all SNR conditions assuming that the RIRs at 

the centre points and the microphones’ locations are available.  

 

Figure 3-20: comparison of the proposed methods 

 

The two proposed methods are compared in Figure 3-20. Although these two 

methods require different assumptions (e.g. dual microphone nodes for the coherence 

based and the knowledge of RIRs for the code-book based method) the experimental 

setups are similar (i.e. the source position, room geometry and the microphone 

locations). It is concluded that the code-book based method is more accurate 

however it is shown that both methods are highly affected by noise. 

The overall comparison of the proposed methods and features and their 

limitations are presented in Table 3-2.  
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Table 3-2: Proposed features and clustering methods 

Method Feature Limitations Target 

application 

Proposed 

Code-book based 

RIR time 

delays and 

amplitude 

Requiring 

the cues at the 

centre points 

Meeting at 

rooms with an 

available code-

book 

Proposed 

Code-book based 

Kurtosis of 

LP residual 

signal 

Requiring 

the cues at the 

centre points 

Meeting at 

rooms with an 

available code-

book 

Proposed 

Coherence based 

Coherence 

magnitude 

square 

Dual nodes 

are required 

Meetings, 

press 

conferences 

Baseline K-

means 

Kurtosis, 

RIR cues, 

coherence 

Pre-defined 

number of 

cluster 

Meetings, 

press 

conferences 
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3.6 Conclusion 

This chapter described two novel approaches to clustering microphones to form 

ad-hoc arrays based on discriminative features derived from the RIRs and speech 

signals. The RIR features represent the time delays of the echoes and the peak 

amplitudes received by the microphones and provide a compact set of parameters for 

use within supervised and unsupervised learning algorithms including a proposed 

codebook-based approach. The coherence feature is derived from speech signals 

recorded by dual microphone nodes. Investigations and simulations of this research 

showed that by using a relatively small codebook (5 centre points), it is possible to 

cluster microphones in reverberant environments accurately. Effects of the number of 

applied echoes (L), SNR, the number of centre points and 𝑅𝑇60 time on the clustering 

performance are also investigated. Results suggest that the proposed codebook-based 

clustering algorithm can outperform KNN supervised classification method and 

Kmeans unsupervised clustering method applied to microphone segmentation and 

clustering, in terms of clustering success rate and robustness to noise. 

Comparison of the proposed methods and the state of the art features applied 

within baseline clustering algorithms show that the proposed methods can 

outperform the cepstral features and the standard clustering techniques.  The 

proposed coherence based method does not require any prior knowledge of the 

number of clusters and flexibly choose the right number of cluster based on their 

spatial distance (estimated by the coherence feature). 

The effect of noise is investigated and it is concluded that the increase in the 

noise level distorts the echo peaks and the signals and consequently decreases the 

accuracy of the extracted features and clustering results. It is also concluded that 

noise has a more destructive effect on the code-book-based method compared to the 

other methods investigated. 
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 Source localisation with ad-hoc 

microphone arrays 

4.1 Introduction 

This chapter proposes a novel source localisation method in the context of ad-hoc 

microphone arrays by extracting relative source to microphone distance cues from 

the RIRs and the speech signals [85].  

Estimating the location and the Direction of Arrival (DOA) of the sound sources 

from microphone recordings has various applications including informed noise 

cancellation [86] and speech enhancement where noise is estimated based on its angle 

of arrival or phase [87]. This type of approach to the informed speech enhancement, 

typically requires the use of a known geometry microphone array, and the resulting 

multichannel recordings [88] are processed to obtain information such as the Time 

Difference of Arrival (TDOA) [89] that can then be used for estimating the source 

DOA [90], [91]. An alternative is to form an ad-hoc array from randomly placed 

microphones. Such an approach has challenges such as not knowing the location of 

each microphone, the inter-channel time delays or the phase difference between the 

recorded signals, which makes the state of the art approaches inapplicable to such 

scenarios. 

A novel source localisation method using ad-hoc microphone arrays, exploiting 

energy attenuation as discriminative cues is proposed in [31], which is independent 

from the microphones gains. The proposed method in [31] is only applicable to 

meeting scenarios where all or most sources (i.e. 4 out of 7) and microphones are 

collocated or distributed within a fairly small area such as a meeting table.  

Recently, obtaining the TDOA of the direct and echo components of the Room 

Impulse Response (RIR) has been used to derive information such as microphone 

locations and room shape [92]. It is also shown that RIRs can accurately localise 

microphones and sources if some prior information (i.e. Room geometry and the 

location of one microphone) is available [48], [93]. However the problem with such 

supervised methods is their dependency on the training data, training setup, and the 

participating speakers. 



  

79 

 

In this chapter the proposed features derived from RIRs and speech signals are 

utilised for source localisation through a novel surface-fitting method applied to the 

features. The proposed method of this chapter overcomes the limitation of the state of 

the art methods such as requiring the microphones (nodes) to communicate together 

[94] or assuming that sources and microphones are collocated [31]. The accuracy of 

the proposed method is evaluated through simulations of varying numbers of 

microphones that are uniformly distributed throughout rooms with different acoustic 

transfer functions. 

 

The objectives of this chapter are: 

 Extracting relative distance cues from ad-hoc microphones at 

unknown locations 

 Discriminating the microphones located closer to the active source 

from the microphone located far from the source by analysing the proposed 

relative distance cues.  

 

The main contribution of this chapter is proposing a source localisation method 

when the RIRs are available 

 Source localisation in the context of ad-hoc arrays where the distances 

between the microphones and the source are unknown. 

 Utilising the RIRs and the speech signals for distance cue extraction. 

 

Publications arising from the contributions of this chapter include 

 S. Pasha & C. Ritz and Y. X. Zou, "Detecting multiple, simultaneous 

talkers through localising speech recorded by ad-hoc microphone 

arrays," 2016 Asia-Pacific Signal and Information Processing Association 

Annual Summit and Conference (APSIPA), Jeju, 2016, pp. 1-6. 

 S. Pasha & C. H. Ritz, "Informed source location and DOA estimation 

using acoustic room impulse response parameters," in 2015 IEEE 

International Symposium on Signal Processing and Information Technology 

(ISSPIT), 2015, pp. 139-144. 
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4.2 The proposed surface fitting method 

The RIRs describe the effect of sound transmission from a source to a receiver 

(microphone) in a reverberant room, and includes the reflections from the walls, 

ceilings and the floor. Herein the parameters extracted from RIRs are exploited to fit a 

TDOA [95] surface and an amplitude surface across the room which can estimate the 

source location. Other than time and amplitude features, Magnitude Square 

Coherence (MSC) and the clarity feature (𝐶50) carry relative location estimation as 

well. MSC can be derived from dual microphone nodes and the clarity feature is 

derived from RIR recordings which make them applicable to certain scenarios. 

Figure 4-1 shows the block diagram of the proposed method.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: The proposed source location estimation method 

Other than time and amplitude features, Magnitude Square Coherence (MSC) and 

the clarity feature (𝐶50) carry relative location estimation as well. MSC can be derived 

from dual microphone nodes and the clarity feature is derived from RIR recordings 

which make them applicable to certain scenarios. 

4.3 Relative distance cues 

The applied distance cues in this chapter are categorised into two different 

categories: 1) cues derived from recorded, simulated or estimated RIRs at each 

unknown microphone location 2) cues derived from speech signals recorded by dual 

microphone nodes.  
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RIR cues include time delays, attenuation and the clarity feature whereas MSC is 

derived from speech or noise signals by dual microphone nodes [69]. 

 RIR time delay and attenuation cues 

This section describes how source localisation is performed by deriving TDOA 

and relative amplitude attenuation information from recordings of the RIR obtained 

using an ad-hoc microphone array. It is shown that in sensor array processing, 

applying all the microphones in an array is not necessarily the optimised approach 

for applications such as signal classification [5] equalisation [63] and beamforming 

[43] and also it is shown that ad-hoc microphone arrays can localise sources more 

accurately than compact arrays due to their spatial coverage [96]. Based on these two 

observations, a clustered ad-hoc approach is proposed in this chapter as a modified 

scheme for source localisation. The justification for this hypothesis is that 

microphones located far from the source are highly distorted by undesired 

components such as noise, interference and reverberation and they usually have a 

lower Direct to Reverberation Ratio (DRR), so excluding these distorted 

microphones from the array leads to a smoother RIR cues surface fitting and 

consequently a more accurate source localisation process. In this chapter an attempt 

is also made to define a practical threshold for which applying microphones within 

that threshold yields the highest localisation accuracy.  

In a scenario of M synchronised microphones and one active source at each time 

frame the 𝑗𝑡ℎ microphone position in the 3D Cartesian coordinates is 𝑟𝑚𝑗 =

[𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗] and the source is located at 𝑟𝑠 = [𝑥𝑠, 𝑦𝑠, 𝑧𝑠]. It is assumed that 𝑟𝑠 and 𝑟𝑚𝑗 

for j=1 to M are not available however as the room geometry is known the tested 

microphone localisation approaches such as in [64], [97] could be applied to localise 

the microphone in 2D coordinates.  

For RIR recording an exponential sine sweep method with a starting frequency of 

22Hz and ending frequency of 22 kHz gives an accurate linear room impulse 

response. The method of [98] can be applied to record the RIRs of all microphones 

from j=1 to M:  

ℎ(𝑛) =∑𝑎(𝑙)𝛿(𝑛 − 𝑑(𝑙))

𝑙

 
4-1 



  

82 

 

Each RIR can be represented as a train of impulses where 𝑎(𝑙) is the amplitude of 

the 𝑙𝑡ℎ sample and 𝑑(𝑙) is the relative time delay with respect to the direct path 

impulse. 

The time delays and amplitude cues extracted from the RIRs have been applied to 

microphone clustering applications [75] as these cues reflect the distances between 

the microphones, the active source and reflectors (e.g. walls). Mathematically, the 

TOA can be calculated only if the distance between the source and the microphone j 

is known under the assumption that the microphone recordings are synchronized. 

However the TDOA can be measured for the microphones and the sources at 

unknown positions if the RIRs are available. 

𝑇𝑂𝐴𝑗,𝑠 =
‖𝑟𝑠−𝑟𝑗‖

𝑐
+ 𝜏𝑗           

4-2 

ℎ = {ℎ1, … , ℎ𝑀}           4-3 

 

where  𝑟𝑠, 𝑟𝑗 are the source and the microphone j coordinates. 𝑐  is the speed of sound. 

As it is suggested by 4-2, 𝑟𝑠, 𝑟𝑗 and the onset delay for each microphone (𝜏𝑗) is 

required for 𝑇𝑂𝐴𝑗,𝑠 calculation. However if the unsynchronised recordings at two 

microphones locations are available the  𝑇𝐷𝑂𝐴𝑖,𝑗 between these two microphones 

can be obtained without the knowledge of 𝑟𝑠 and 𝑟𝑗. 

It is observed that the 𝑇𝑂𝐴𝑗,𝑠 and TDOA have a direct relationship to the spatial 

distances between the source and the microphone position (Figure 4-2). This 

relationship can be exploited for source localisation applications. 

𝑇𝐷𝑂𝐴𝑖,𝑗 = ‖𝑇𝑂𝐴𝑖,𝑠 − 𝑇𝑂𝐴𝑗,𝑠‖                4-4 

𝑇𝐷𝑂𝐴𝑖,𝑗 =
‖𝑟𝑖−𝑟𝑗‖

𝑐
                

4-5 

𝑇𝐷𝑂𝐴𝑖,𝑗 is a function of 𝑟𝑠 and 𝑟𝑗  and 4-5 suggests that the knowledge of source 

and microphone locations is required for 𝑇𝐷𝑂𝐴𝑖,𝑗 calculation. However the 𝑇𝐷𝑂𝐴𝑖,𝑗 

can be estimated by the cross correlation method [99]. Assuming that the RIRs 

recordings for microphone i and j are available (ℎ𝑖 and ℎ𝑗) the cross-correlation 

between these two RIRs is defined as: 

ℎ𝑖(𝑛) ∗ ℎ𝑗(𝑛) = ∑ ℎ𝑖(𝑚)ℎ𝑗(𝑚 + 𝑛)𝑚=+∞
𝑚=−∞                 4-6 

𝑇𝐷𝑂𝐴𝑖,𝑗 = argmax
𝑛
(ℎ𝑖(𝑛) ∗ ℎ𝑗(𝑛))                  4-7 
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𝑘𝑇𝑂𝐴 = {𝑇𝑂𝐴1… ,…𝑇𝑂𝐴𝑀} 4-8 

𝑘𝑇𝐷𝑂𝐴 = {𝑇𝐷𝑂𝐴1,𝑟𝑒𝑓…𝑇𝐷𝑂𝐴𝑗,𝑟𝑒𝑓…𝑇𝐷𝑂𝐴𝑀,𝑟𝑒𝑓} 4-9 

𝑘𝑇𝑂𝐴 is the vector of the TOA features [75], 𝑘𝑇𝐷𝑂𝐴 is the vector of the TDOA 

features and  𝑇𝐷𝑂𝐴𝑗,𝑟𝑒𝑓 is the TDOA between microphone j and an arbitrary 

reference signal from 4-4. 

 

Figure 4-2: TDOA and TOA 

 

It is also suggested that the source to microphone distance and the signal energy 

attenuation (𝐴𝑗) are directly related [31]: 

𝐴𝑗 =
1

𝑔
× ‖𝑟𝑠 − 𝑟𝑗‖ 

4-10 

where g is the microphone gain. Assuming that all the microphones have the same 

gain,  the attenuation feature 4-10 contains source to microphone relative distance 

information. Although 4-10 suggests that for calculation of 𝐴𝑗 (RIR energy at 

microphone j location), the source location (𝑟𝑠), microphone j location (𝑟𝑗) and the 

microphone gain (g) are required, if the RIRs are available (4-6), 𝐴𝑗 can be 

calculated: 

𝐴𝑗 =
1

‖ℎ𝑗‖
 

4-11 



  

84 

 

where  

‖ℎ𝑗‖ =∑|𝑎(𝑙)|2

𝑙

 
4-12 

Assuming 

𝑔1 = ⋯ = 𝑔𝑗 = ⋯ = 𝑔𝑀 4-13 

The vector of the attenuation discriminative features is  

𝑘𝐴 = {𝐴1…𝐴𝑗 …𝐴𝑀}. 4-14 

These two sets of cues (time delays and attenuation) (4-9 and 4-14)and their 

relationships with the spatial distances  are exploited to fit two surfaces which can be 

utilised for source location and DOA estimation in a room of known geometry [85]. 

 C50 or clarity measurement 

The 𝐶50 or the Clarity measurement is the ratio of early to late reverberation 

expressed in dB. This measure is higher when the microphone to sources distance is 

relatively small and the recorded RIR by the microphone is dominated by the direct 

path impulse [100] . In contrast The 𝐶50 is lower when the microphone to source 

distance is relatively large and the second and third order reverberations are no 

longer negligible. It is shown that the 𝐶50  has an inverse relationship with the 

microphone to source distances and its calculation does not require the clean signal 

(in contrast to the Direct to Reverberation ratio (DRR)) [60]. The 𝐶50 is defined as 

the energy of the direct path impulse and the early reverberations divided by the 

energy of the late echoes: 

𝐶50  = 10 × log (
𝐸𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐸𝑒𝑎𝑟𝑙𝑦

𝐸𝑙𝑎𝑡𝑒
) 

4-15 

With  

𝐸𝐷𝑖𝑟𝑒𝑐𝑡 = 𝐸(𝑎1𝛿(𝑛)) = 𝑎1, 4-16 

 𝐸𝑒𝑎𝑟𝑙𝑦 = ∑ ℎ(𝑛)
𝑁𝑒𝑎𝑟𝑙𝑦
0 ,  and 𝐸𝑙𝑎𝑡𝑒 = ∑ ℎ(𝑛)∞

𝑁𝑒𝑎𝑟𝑙𝑦
 from (4-1) and n is the sample 

index. 𝐶50 can also be calculated for each RIR independently without 

synchronisation by: 

𝐶50  = 10 × log (
∑ ℎ(𝑛)
𝑁𝑒𝑎𝑟𝑙𝑦
0

∑ ℎ(𝑛)∞
𝑁𝑒𝑎𝑟𝑙𝑦

) 
4-17 
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In this chapter the hypothesis is that estimated 𝐶50  values across the room obtain 

local maxima at source locations and they fade as the microphones move away from 

source locations. 

The advantage of using 𝐶50 is that nodes can be of any structure and there is no 

constraint on the number of microphones in each node however full knowledge of 

the RIRs is required.  

𝑘𝐶50 = {𝐶501…𝐶50𝑗 …𝐶50𝑀} 4-18 

 Magnitude Square Coherence (MSC) 

Reverberation and interference recorded by each microphone are functions of its 

location in the room [61], [64]. When the microphone’s signals are distorted by 

reverberation and interference they become statistically more independent and they 

will have lower intra MSC values calculated by:  

𝐶12(𝑓) =
|𝜑𝑚1𝑚2(𝑓)|

2

𝜑𝑚1𝑚1(𝑓) 𝜑𝑚2𝑚2(𝑓)
 

4-19 

where 𝜑𝑚1𝑚1(𝑓) and 𝜑𝑚1𝑚2(𝑓) are auto and cross power spectral densities between 

microphone 𝑚1 and 𝑚2. If the nodes in the ad-hoc array contain dual-channel 

microphone systems, it is possible to discriminate highly distorted nodes (located far 

from the active sources) and the node’s signals predominated by the speech signals 

(located closer to one of the sources). This fact about MSC is utilised here as a 

distance cue to estimate the distances between the active sources and the nodes [62]. 

By applying the general equation of MSC to two microphones in the 𝑚𝑡ℎ node 

the signals can be modelled as: 

ym,1(𝑡, 𝑓) = ∑ sn(𝑡, 𝑓) ∗ hm,1,n(𝑡, 𝑓)
N
n=1 + v(𝑡, 𝑓) + wm1(𝑡, 𝑓)     4-20 

 

ym,2(𝑡, 𝑓) = ∑ sn(𝑡, 𝑓) ∗ hm,2,n(𝑡, 𝑓)
N
n=1 + v(𝑡, 𝑓) + wm2(𝑡, 𝑓)      4-21 

and the MSC between these two microphones can be calculated by: 

𝐶𝑦,𝑚1𝑦𝑚2(𝑓) =
|𝜑𝑦,𝑚1𝑦𝑚2(𝑓)|

2

𝜑𝑦,𝑚1𝑦𝑚1(𝑓) 𝜑𝑦,𝑚2𝑦𝑚2(𝑓)
.                 

4-22 

By moving away from an active source the microphones in the node will have 

lower 𝜑𝑦,𝑚1𝑦𝑚2(𝑓) values as the direct path signals attenuate and  𝑣(𝑡, 𝑓), 𝑤𝑚(𝑡, 𝑓) 

will become stronger (in terms of the signal power) therefore 𝜑𝑦,𝑚1𝑦𝑚2(𝑓) will 
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decrease whereas 𝜑𝑦,𝑚1𝑦𝑚1(𝑓) 𝜑𝑦,𝑚2𝑦𝑚2(𝑓) do not change with distance 

significantly. 

Table 4-1: The relationship between the MSC and the source to microphone distance 

 Distance to the active 

source 

MSC 𝑅𝑇60 Number of 

microphones 

Node1 10cm 0.963 600ms 2 

Node2 0.5m 0.898 600ms 2 

Node3 3m 0.819 600ms 2 

Node1 10cm 0.999 200ms 2 

Node2 0.5m 0.908 200ms 2 

Node3 3m 0.876 200ms 2 

 

The effect of the dual-microphone node to the active source distance on the MSC 

values in a reverberant room is presented in Table 4-1. It is clear as there is only one 

active source (no interference from other sources) in the room MSC values are very 

close to 1 and they only change with the distance. 

 

Table 4-2 MSC and distance to two simultaneously active sources 

 Distance to 

source1 

Distance to 

source2 

MSC 𝑅𝑇60 Number of 

microphones 

Node1 10cm 3 m 0.78 600ms 2 

Node2 0.5m 2.6m 0.43 600ms 2 

Node3 3m 10cm 0.82 600ms 2 

Node1 10cm 3m 0.78 200ms 2 

Node2 0.5m 2.6 0.30 200ms 2 

Node3 3m 10cm 0.81 200ms 2 

 

In Table 4-2 however the effect of the interference on the MSC values are 

highlighted and it is interestingly observed that the interference decreases the 

coherence between the channels. 
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Table 4-3: Noise effect on MSC 

 Distance to 

the active source 

SNR MSC 𝑅𝑇60 Number of 

microphones 

Node1 10cm 10dB 0.78 600ms 2 

Node2 0.5m 10dB 0.61 600ms 2 

Node3 3m 10dB 0.40 600ms 2 

Node1 10cm 20dB 0.85 200ms 2 

Node2 0.5m 20dB 0.71 200ms 2 

Node3 3m 20dB 0.65 200ms 2 

 

The effect of noise on the MSC values is investigated in this Table 4-3 and it is 

concluded that noise also affects the coherence of the microphones in one node. 

The disadvantage of applying the MSC is that all nodes should have the same 

structure as the MSC is a function of intra node microphone distances and there 

should be at least two microphones at each node. On the other hand, MSC can be 

applied to any type of recorded signals and the recorded RIRs are not required.  

The MSC (4-22) is a vector as it is a function of frequency. In order to obtain one 

value for each microphone during the time frames the averaged MSC across the 

frequencies is calculated as 

𝑀𝑆𝐶𝑚 =∑
|𝜑𝑦,𝑚1𝑦𝑚2(𝑓)|

2

𝜑𝑦,𝑚1𝑦𝑚1(𝑓) 𝜑𝑦,𝑚2𝑦𝑚2(𝑓)𝑓

 

4-23 

where 𝑓𝑒 is the upper frequency and 𝑓𝑠 is the lower frequency limit.  By calculating 

(4-23) for all the dual nodes the vector of the features is obtained as: 

𝑘𝑀𝑆𝐶 = {𝑀𝑆𝐶1…𝑀𝑆𝐶𝑗 …𝑀𝑆𝐶𝑀} 4-24 

4.4 Microphone positions and the extracted Cues 

The proposed method in this chapter compares the features described in the 

previous section as alternatives for source localisation. By extracting these features, a 

surface is fitted to the area of the room illustrating the interpolated feature’s values at 

any point in the 2D room (Figure 4-3). It is important to mention that having the 

knowledge of the room geometry and the RIRs it is possible to localise the 
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microphones [64] and if the RIRs are not available (the case that MSC is applied) the 

microphone locations are required.  

In this research the area of the surface with the following criteria is highlighted as 

the source area.  

 Lowest TOA (Estimated by RIRs) 

 lowest RIR energy attenuation 

 Highest MSC 

 Highest C50  

The center of these areas is calculated and considered as the estimated source 

location (𝒙�̂�, 𝒚�̂� ). 

The positions of the M microphones in 2D coordinates in the room are 

represented in a matrix as: 

𝑃 = [
𝑥𝑚𝑖𝑐 1 … 𝑥𝑚𝑖𝑐 𝑀
𝑦𝑚𝑖𝑐 1 … 𝑦𝑚𝑖𝑐 𝑀

] 4-25 

This matrix can be calculated if the RIR at the microphones locations are available 

[64] and by also having the derived cues and assuming that M > 3, it is possible to fit 

two surfaces in order to interpolate the cues values at all points in the room. 

The extracted feature values for M ad-hoc microphones are presented in a vector 

as: 

𝑘 = [𝑘1 … 𝑘𝑀] 4-26 

The available data points are  

𝑓(𝑥𝑚𝑖𝑐 𝑗, 𝑦𝑚𝑖𝑐 𝑗) = 𝑘𝑗  4-27 

where 𝑥𝑚𝑖𝑐 𝑗 , 𝑦𝑚𝑖𝑐 𝑗 ∈ 𝑃 and 𝑘𝑗 ∈ 𝑘. The objective is to find (interpolate) the function 

f such that 𝑓(𝑥𝑚𝑖𝑐 𝑚, 𝑦𝑚𝑖𝑐 𝑚) = 𝑘𝑚, where 𝑥𝑚𝑖𝑐 𝑚, 𝑦𝑚𝑖𝑐 𝑚 ∉ 𝑃 and 𝑘𝑚 ∉ 𝑘 [101]. The 

surface f(x,y) has a general form of 

(𝑎𝑥𝑚 + 𝑏𝑦𝑚)
𝑛 = 𝑘𝑚 4-28 

As a contribution in this chapter the clustered approach to multi-channel source 

localisation is proposed and tested. It has previously been shown that an ad-hoc array 

can localise a source more accurately than compact arrays due to their spatial 

coverage [77] and clustered approaches are shown to be more effective than blind 

use of all microphones in the array for certain applications such as beamforming [76] 

and speech recording and classification [102]. However the boundaries of the formed 
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clusters/subsets are usually specified by the applied clustering algorithms, which are 

not necessarily forming the optimised clusters for each application. This research is 

trying to address this issue for source localisation by defining an outcome-based 

threshold for source location estimation accuracy in noisy reverberant environments.  

 

Figure 4-3: Microphone locations and features 

4.5 Clustered surface fitting approach 

In this section the focus is on extracting features from RIRs and speech signals in 

order to estimate the source location and DOA where the only primary information is 

the room geometry. Ad hoc microphones and sources in a room can be localised 

accurately by the cues derived from speech signals and RIRs [64]. However, for 

some applications accurate localisation of the source and perfect reconstruction of 

the acoustic scene are not necessary and simply discriminating distant and close 

sources/speakers is helpful enough. In other applications such as noise 

estimation/cancellation, DOA estimation is informative enough to discriminate the 

noise source and the target source and accurate localisation is not required [103]. 

This chapter does not focus on microphone localisation as they are investigated in the 

literature [7]. The surface fitting approach to the source localization is depicted in 

Table 4-4. 

 

Table 4-4 
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Surface fitting source localization method for ad-hoc scenarios 

a) Start with the RIRs at the microphone locations (4-1) 

b) Extract the relative distance cues for each microphone RIR(e.g. 4-18) 

c) Obtain the locations and the features pairs Figure 4-3 

d) Fit the surface to the room based on the feature values (4-28) 

e) Detect the source area based on the fitted surface (Figure 4-4, Figure 

4-5) 

f) If the clustered approach is applied use a subset of microphones 

located closer to the source (estimated by the extracted features)(Figure 4-6) 

 

The active source is located in the region with the minimum arrival time value 

and the highest direct path amplitudes on the interpolated values. TDOA and 

attenuation cues of a subset of microphones within or close to this area can be 

exploited to achieve a more accurate source localisation. 

Associating the feature values and the microphones location the following nodes 

can be obtained on the room 2-D plane: it is observed that fitted surface to the TOA 

values estimated by the RIRs can accurately localise the source. The red dot in the 

yellow area (Figure 4-4) is the source and the red dots in the other areas are the 

microphones. 

 

Figure 4-4: fitted surface to the time delays 
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Figure 4-5: Fitted surface to the amplitude cues derived from RIRs of 8 

microphones 

 

The fitted surface localizes (Figure 4-4, Figure 4-5) the source and the Direction 

of Arrival of the source to each node but it is possible to go further and choose a 

subset of nodes (microphones) which are located close to the source (Figure 4-6) and 

exclusively utilise them for the surface fitting approach. This clustered approach has 

two main benefits; firstly, it removes the highly distorted nodes (due to 

reverberation) from the array; and secondly in large arrays it simplifies the surface 

fitting process.  
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Figure 4-6: The clusters obtained by using 2, 5 and 6 closest microphones to the 

source 

4.6 Results 

The following table shows the experimental configuration of the evaluation 

process. The source and the microphones are randomly positioned within the room 

and the only available prior information is the room geometry. 

Table 4-5: Experimental configuration 

𝑓𝑠 16kHz 

𝑅𝑇60 200ms,400ms,600ms,800ms 

Room size 10m,8m,3m 

Number of microphones 5 to 20 

Noise White noise, Babble noise 

SNR 10,20,30dB and clean signals 

 

The next graph shows the average results for 30 different random scenarios with 

10 microphones randomly spread out in the room. The microphones relative 

distances to the source is estimated by the extracted features (RIR time delays) and 

the starting point is utilising only half of the microphones which are located closer to 

the source (I/M=0.5). It is shown that using I/M=0.7 or I/M=0.8 yields better results 

compared with the use of all the microphones in the room (I/M=1). It is shown that 
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consciously chosen subset of 6 microphones (out of 8) yield a more accurate source 

localisation (0.5m error in a 10m by 10m room) (Figure 4-7) whereas blind use of all 

the microphones increases the error to 0.6m. the applied features are the time delays 

and the attenuation features [85]. Assuming that the highest source localisation 

accuracy is achieved by exploiting I closest microphones to the source, in this 

research 
𝐼

𝑀
 (the number of applied microphones divided by the total number of 

microphones in the ad-hoc array) is calculated as the ratio of the applied microphones 

(4-7). 

 

Figure 4-7: Localisation error for clustered surface fitting 

 

The comparison of the proposed distance features derived from the speech 

signals, is presented in Table 4-6 and Table 4-7 for different numbers of 

microphones available in the room. Again it is concluded that a higher number of 

microphones does not necessarily lead to a more accurate source localisation and 

utilising a subset of microphones located closer to the source can estimate the source 

location more accurately. 
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Table 4-6: comparison of the applied features 

Applied 

feature 

SNR [dB] RT60 [ms] Number of 

channels 

Localisation 

error [m] 

𝑪𝟓𝟎 10 200 10 0.5 

MSC 10 200 10 0.8 

𝑪𝟓𝟎 10 200 15 0.4 

MSC 10 200 15 0.5 

𝑪𝟓𝟎 10 200 20 0.4 

MSC 10 200 20 0.8 

 

Table 4-7: comparison of the applied features 

Applied 

feature 

SNR [dB] RT60 [ms] Number of 

channels 

Localisation 

error [m] 

𝑪𝟓𝟎 20 200 10 0.7 

MSC 20 200 10 1.2 

𝑪𝟓𝟎 20 200 15 0.9 

MSC 20 200 15 1.1 

𝑪𝟓𝟎 20 200 20 0.7 

MSC 20 200 20 1.2 

 

As explained before the MSC can be estimated for the dual microphone nodes but  

C50 only requires one microphone per node to be calculated. It is concluded that 

applying C50 yields better results compared with the MSC. 

Assuming that the room dimensions are  𝑋(𝑚) × 𝑌(𝑚) × 𝑍(𝑚) the step size u is 

set to 1m, 2m, 3m,4m in order to investigate the effect of the microphone grid 

resolution (Figure 4-8). In a 10m,8m,3m room u=1,2,3,4 translate to  80, 20, 6, 4 

microphones respectively. 
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Figure 4-8: u=3m in a 10m by 8m by 3m room. 

 

Figure 4-9: Average localisation error for different microphone distributions  

 

It is observed that the source localisation error increases drastically with the 

microphone grid resolution (Figure 4-9) and the highest accuracy is obtained by 

u=1m (minimum grid step size). Although the applied setup in this experiment does 

not qualify as an ad-hoc array (as it is not random) but it is necessary to test the 

proposed method in a non-random manner in order to cancel the effect of array 

topology on the source localisation accuracy. 
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4.7 Chapter summary 

In this chapter, the relative distance cues including relative RIR time delays, 

attenuation, the clarity feature and the averaged MSC values are extracted from the 

recorded speech signals and the RIRs at unknown microphone locations across a 

room of a known geometry. The extracted distance cues are then applied within a 

surface fitting algorithm to localise the source in the room. It is concluded that the 

clarity feature can localise the source accurately with no time alignment or 

synchronisation required and it only requires one microphone at each location. The 

time delay cues can be applied when the microphones are synchronised and the 

attenuation cues work accurately where all the microphones have the same gain. The 

clarity feature and the MSC feature do not require the assumption of microphone 

having the same gain or being synchronised but they have other limitations as 

discussed. In this chapter, it was also shown that 2D source localisation can be 

applied for multi-talk detection which is investigated further in Chapter 6. The 

proposed clustered surface fitting source localisation method is shown to yield better 

results compared with blind use of all microphones in the array. 
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 Clustered early and late 

dereverberation 

 

5.1 INTRODUCTION 

Multi-channel dereverberation is a well-studied topic in the signal and speech 

processing research field as it is an important block in applications such as speech 

diarisation, video-conferencing and meetings [46]. State of the art multi-channel 

dereverberation methods are usually targeting scenarios with some prior information 

about the microphone array structure [104], [105], [106] or source signal [107] and 

require available training data  [108] and these are therefore not directly applicable to 

ad-hoc scenarios where the array topology is unknown or potentially changeable and 

hence the training data scenarios might not match the application scenario..  

Some recent research has proposed a dereverberation frameworks for ad-hoc 

arrays but the experimental setups are confined to ad-hoc placement of arrays of 

known geometry and a limited number of microphones [22] and the applied methods 

are basic beamforming techniques. Although it is claimed that the state of the art 

speech enhancement methods can be applied to ad-hoc arrays [1] the clear instruction 

for modifying and adapting these methods to the ad-hoc arrays such as obtaining the 

steering vector is not straightforward or even possible. 

More advanced multi-channel dereverberation methods such as Linear Prediction 

(LP)-based methods rely on the fact that in reverberant environments the LP residual 

contains the original excitation source signals containing period peaks during voiced 

speech, as generated by the talker, followed by several echoed versions of the 

excitation (echoed peaks) due to the reverberation. In [109], it is shown that spatially 

averaged LP coefficients derived from microphone array recordings of reverberant 

speech are much closer to the clean speech signal LP coefficients than the LP 

coefficients derived for reverberant speech signal recorded at a single point in space 

for a given room. It is not clarified how far microphones can be located or what 

happens if the microphone array is an ad-hoc array, therefore this method is not 

applicable to the arrays of unknown geometry potentially distributed within a large 

room without required modifications.  
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This chapter introduces and experimentally evaluates a two-stage early and late 

dereverberation method for ad-hoc arrays inspired by a leading known geometry 

microphone array dereverberation method  [110] (WPE and MVDR), reviewed and 

examined in the REVERB challenge  [111] and other recent single channel speech 

enhancement methods [112] that utilise delayed linear prediction. Finding the issues 

with the context mismatch and unknown information about the array (e.g. relative 

time delays and phase differences) and overcoming them in a feasible and reasonable 

manner is the goal of this paper. The main limitation of the existing methods (e.g. 

Weighted Prediction Error and MVDR beamformers) is requiring the knowledge of 

the microphone array structure [22] and the recording setup (i.e. Angle of Arrival) 

[113]. This chapter focuses on the dereverberation of ad-hoc omni-directional 

microphones similar to the scenarios investigated in [114]. 

 

The main contributions of this chapter include 

 Proposing a novel multi-channel dereverberation method for the ad-hoc 

arrays where the microphones can be located meters away from each other and the 

geometrical configuration of the array is unknown.  

 Proposing a clustered multi-channel dereverberationa and speech 

enhancement approach. 

 Introducing the spatial multi-channel linear prediction for ad-hoc 

microphones  

 Introducing the kurtosis of the LP residual signal for microphone clustering  

 

Publications arising from the contributions of this chapter include 

 S. Pasha & C. H. Ritz, "Clustered multi-channel dereverberation for 

ad hoc microphone arrays," in Proceedings of APSIPA Annual Summit and 

Conference 2015, 2015, pp. 274-278. 

 S. Pasha & C. H. Ritz, Y. X. Zou “Spatial multi-channel linear 

prediction analysis for dereverberation of ad-hoc microphone arrays”, APSIAP 

2017 [Under revision] 



  

100 

 

5.2 Clustered dereverberation for Ad-hoc recording  

The general target scenario, depicted in Figure 5-1, shows a few recording 

devices (nodes) such as laptops, iPads and smartphones, with different number of 

channels and arbitrary structures, randomly distributed in an unknown reverberant 

environment. (e.g. a lecture room). In his paper, a node refers to any recording device 

of any structure and number of channels at an unknown location.  

 

Figure 5-1: Recording by an ad-hoc microphone array 

 

The reverberant signal recorded by microphone m is represented as: 

𝑥𝑚(𝑛) =  ℎ𝑚(𝑛) ∗ 𝑠(𝑛) + 𝑣(𝑛)  ,  1 < 𝑚 < 𝑀 
5-1 

where ℎ𝑚(𝑛) is the Room Impulse Response (RIR) at microphone m location and M 

is the total number of the microphones in the room 

It is assumed that the position of the microphones and the sources remains fixed 

during an utterance of speech so ℎ(𝑛) does not change. Therefore, the recorded time 

domain signals can be represented in a vector form as: 

[
𝑥1(𝑛)
…

𝑥𝑀(𝑛)
] = [

ℎ1(𝑛)
…

ℎ𝑀(𝑛)
] ∗ 𝑠(𝑛) + [

𝑣(𝑛)
…
𝑣(𝑛)

]     5-3 

 

ℎ𝑚(𝑛) = [ℎ0, ℎ1, … , ℎ𝐿−1]
𝑇 , 5-2 



  

101 

 

Although the equation above allows more than one talker in the room however, it 

is assumed that there is only one active speaker during each time frame.  The goal of 

the clustered dereverberation is to find a subset of channels, C(𝑛) =

[𝑥1(𝑛),… , 𝑥𝑐(𝑛)]
𝑇 , where 𝑐 < 𝑀  and T represent the matrix transpose, such that 

the output obtained by applying the multichannel dereverberation on C, has less 

reverberation than is achieved when blindly using all the channels in the array. In 

order to achieve this, it is necessary to cluster the microphones based on some 

extracted discriminative feature [5] that reflects the signal reverberation level [25] 

and pick the cluster with less reverberation level for the multi-channel 

dereverberation process.  

The vector of the recorded signals from 5-3 is 

𝒚(𝑛) = [
𝑥1(𝑛)
⋮

𝑥𝑀(𝑛)
] 5-4 

The objective of speech enhancement with ad-hoc arrays is retrieving the best 

estimate of  𝑠(𝑛)  [115] by utilising the reverberant recordings (𝒚(𝑛)). This can be 

done blindly through utilising all the microphones (𝑦(𝑛)) regardless of their relative 

distances to the sourceor by utilising a sub-set of microphones ( 𝑪, a subset of 𝑦(𝑛) 

located closer to the source) [22]  such that:  

𝑀𝑅(𝑪(𝑛))> 𝑀𝑅(𝑦(𝑛)) 
5-5 

where 𝑀𝑅 is some dereverberation performance measurement. 

5.3 The base-line Spatio-Temporal averaging method 

The Spatiotemporal Averaging method for Enhancement of Reverberant Speech 

(SMERSH), based on the Auto-regressive modelling of the reverberant speech signal 

[104] is adapted to the ad-hoc array in this section as the base-line method.  

 Spatial averaging and the AR coefficients 

The goal of Auto-Regressive (AR) dereverberation is to estimate  𝐚 =

{𝑎1, … , 𝑎𝑝}, and 𝑒𝑠(𝑛)  by utilising 𝐱 = {𝑥1, … , 𝑥𝑀}, from (5-3) where p is the LP 

order and M is the number of microphones in the array. 
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It is suggested that in the context of compact microphone arrays, spatial 

averaging of the Auto-Regressive (AR) coefficients such as short term LPC over 

reverberant channels converge to the LP coefficients of the clean source signal [105], 

[109]. Although this idea is only proposed for the compact microphone arrays of 

known geometries, herein it is modified (in terms of time alignment) and adapted to 

the ad-hoc arrays of arbitrary-random geometries [68].  

The time delays between the channels can be found by the cross-correlation 

method: 

𝑑𝑒𝑙𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥 (∑ 𝑥𝑚(𝑑) ∗ 𝑥𝑟𝑒𝑓(𝑛 − 𝑑))
+∞
𝑑=−∞ . 

5-6 

where ∗ denotes the autocorrelation in the time domain. Having obtained the time 

delays between the channels, the time-aligned signals according to some arbitrary 

reference channel (𝑥𝑟𝑒𝑓) is 𝑦𝑡𝑖𝑚𝑒−𝑎𝑙𝑖𝑔𝑛𝑒𝑑(𝑛) = [𝑥1(𝑛 − 𝑑𝑒𝑙1),… , 𝑥𝑀(𝑛 − 𝑑𝑒𝑙𝑀)]
𝑇. 

The delay-and-sum (DSB)beamformed signal is then calculated as 

�̂�𝐷𝑆𝐵(𝑛) =
∑ 𝑥𝑚(𝑛−𝑑𝑚))
𝑀
𝑚=1

𝑀
. 5-7 

In order to calculate the LPC coefficients the auto correlation method is applied 

in this research  [116],  [117] and the coefficients are represented as 

b = [
𝑏1
⋮
𝑏𝑃

] 
5-8 

where P is the LP order. Utilising b from 5-8 the residual signal �̂�(𝑛) is obtained  

by 

�̂�𝐷𝑆𝐵(𝑛) = �̂�𝐷𝑆𝐵(𝑛) −∑𝑏𝑘�̂�𝐷𝑆𝐵(𝑛 − 𝑘).

𝑝

𝑘=1

 5-9 

Although this residual signal is obtained by analysing the beamformed signals, it 

still contains reverberation which is further suppressed by temporal averaging 

between consecutive larynx cycles [104]. 

 Temporal averaging for residual dereverberation 

It is observed that for the reverberant speech signals modelled by the LP filter, 

reverberation distorts the residual signal  [118]. In this research the dereverberation 

of the residual signals is obtained by temporal averaging of the recorded residuals 
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between Glottal Closure Instants (GCI) by the proposed weighted filter proposed in 

[104].  

The residual signal from 5-9 contains reverberation [25] which should be 

removed before being utilised for the signal reconstruction. In order to dereverberate 

the residuals, it is important to detect the original peaks (GCIs) generated by the 

excitation signal and suppress the other echoed peaks (generated by reverberation). 

The following filter is applied to temporally average the residual signal and cancel 

the residual reverberation: 

�̂�(𝑛) = (𝐼 − 𝑇)�̂�𝐷𝑆𝐵(𝑛) +
1

2𝜏
∑ 𝑇�̂�𝐷𝑆𝐵(𝑛 + 𝑖)

𝜏

𝑖=−𝜏

 
5-10 

where I is the identity matrix and  𝑊  is the time-domain Tukey window defined as: 

𝑇 =

{
 
 

 
 0.5 + 0.5 cos (

2𝜋𝑢

𝛽(𝑙 − 1)
− 𝜋)                 𝑢 <

𝛽𝑙

2

0.5 + 0.5 cos (
2𝜋

𝛽
−

2𝜋𝑢

𝛽(𝑙 − 1)
− 𝜋)          𝑢 > 𝑙 −

𝛽𝑙

2
− 1

1                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
5-11 

𝑙 is the length of one larynx-cycle (the number of samples between two 

consecutive glottal closure instances) and 𝛽 is the taper ratio of the window (𝛽 = 0.3 

in this research). The Dynamic Programming Projected Phase-Slope Algorithm 

(DYPSA) as in  [119] is applied in order to detect the GCIs and l. assuming that 

G={𝑔𝑐𝑖1, . . , 𝑔𝑐𝑖𝐿} where 𝑔𝑐𝑖1 is the first GCI and 𝑔𝑐𝑖𝐿 is the last GCI, l for each 

filter (the length of the filter changes throughout the speech signal as the distance 

between GCIs changes) is  

𝑙 = 𝑔𝑐𝑖𝑖+1 − 𝑔𝑐𝑖𝑖. 5-12 

Figure 5-2 investigates the effect of β from 5-11 on the residual dereverberation 

performance measured by the kurtosis of the LP residual signal. For β=0 the 

designed filter is a rectangular window of length L and for β=1 the designed filter is 

a Hann window of length l. 
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Figure 5-2: Effect of β on the residual dereverberation performance for different 

reverberation times 

 

It is concluded that β= 0.2 and 0.3 yield the highest residual dereverberation 

performance. While low values of β or very large values (i.e. 1) cannot suppress the 

peaks between the GCIs effectively. 

5.4 The proposed short and long-term LP residual 

dereverberation  

The proposed dereverberation method consists of the prediction and the removal 

of the short-term and the long-term reverberation components from the residual 

signals. Depending on the reverberation time, which is a function of the room 

geometry and acoustics, reverberation can be categorised into two main categories 

[20]: Short time reverberation (early echoes) and long term reverberation (late 

echoes). Breaking ℎ𝑚(𝑛) into two parts (early and late), the recorded signals from 

(5-1) can be presented as  

𝑥𝑚(𝑛) = ∑ 𝑠𝑗(𝑛) ∗ ℎ𝑗,𝑚(𝑛)

𝐷−1

𝑛=1

+ ∑ 𝑠𝑗(𝑛) ∗ ℎ𝑗,𝑚(𝑛).

𝐿−1

𝑛=𝐷

 5-13 

 

The long-term effect of reverberation causes the long-term time correlation of the 

reverberant speech that is exploited to estimate the late reverberation components in 
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long term dereverberation methods such as the Weighted Prediction Error (WPE) 

algorithm  [120], [121].   

There is no clear definition for the short-term and the long-term reverberation but 

typically echoes received within 80ms after the direct path signal arrival, are labelled 

as short time echoes [122] and the rest up to a certain delay are the long term 

reverberation.  For a sample room impulse response ℎ(𝑛) the early and late echoes 

are generated by convolving the source clean signal with a train of pulses: 

ℎ(𝑛) =∑𝑎𝑑𝛿(𝑛 − 𝑑)

𝑑

 
5-14 

For small values of 𝑑 (e.g. smaller than80ms × f𝑠kHz) [123], [124] the 

reverberation is considered early and it can be modelled as 

ℎ𝑒𝑎𝑟𝑙𝑦(𝑛) = ∑ 𝑎𝑑𝛿(𝑛 − 𝑑)

80𝑚𝑠×𝑓𝑠

𝑑=0

     5-15 

And for higher values of 𝑑, the echo is considered long term reverberation or late 

echoes 

ℎ𝑙𝑎𝑡𝑒(𝑛) = ∑ 𝑎𝑑𝛿(𝑛 − 𝑑)

∞

𝑑=80𝑚𝑠×𝑓𝑠

 
5-16 

however, based on the setups (reverberation time and the room dimensions) these 

boundaries might vary (e.g. 96ms for short term and up to 1280ms for long-term 

[113]).  

 Short-term dereverberation through spatial multi-channel LP 

The short term reverberation is the set of echoes that occur within a short delay 

(e.g. 80ms) after the direct path signal and removing this type of echoes might lead to 

the loss of some original speech components. In this chapter the spatial LP is 

proposed as the modified LP analysis tailored for the ad-hoc scenarios. The spatial 

LP is proposed for the pre-whitening task [20], [125].assuming that channel 𝑚 

recording is represented by 𝑥𝑚(𝑛) 

𝑥𝑚(𝑛) = ∑ 𝑏𝑚,𝑘𝑥𝑚(𝑛 − 𝑘) + 𝑒𝑚(𝑛).

𝑃𝑠ℎ𝑜𝑟𝑡

𝑘=1

 5-17 
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The spatial multi-channel LP coefficients are obtained by calculating the 

autocorrelation function and the kurtosis of the standard single channel LP residual 

signals (𝛽𝑚) for each channel separately  

𝑟𝑚(𝑐) = 𝐸(𝑒𝑚(𝑛)𝑒𝑚(𝑛 + 𝑐)) ,           𝑐 = 0,1,2, … 
5-18 

[

𝑏1
⋮

𝑏𝑃𝑠ℎ𝑜𝑟𝑡

] = [
�̅�𝑚(0) ⋯ �̅�𝑚(𝑃𝑠ℎ𝑜𝑟𝑡 − 1)
⋮ ⋱ ⋮

�̅�𝑚(𝑃𝑠ℎ𝑜𝑟𝑡 − 1) ⋯ �̅�𝑚(0)
]

−1

× [
�̅�𝑚(1)
⋮

�̅�𝑚(𝑃𝑠ℎ𝑜𝑟𝑡)
] 

5-19 

where 𝑟𝑚 is the autocorrelation function and 𝛽𝑚 is the kurtosis of the LP residual 

signal applied as the distance cue [25]. The residual and the reconstructed signal 

,�̅�(𝑛), are obtained by 

𝑒(𝑛) = 𝑥(𝑛) − ∑ 𝑏𝑘𝑥(𝑛 − 𝑘)
𝑃𝑠ℎ𝑜𝑟𝑡
𝑘=1     5-20 

and  

�̅�(𝑛) = ∑ 𝑏𝑘𝑥(𝑛 − 𝑘)
𝑃𝑠ℎ𝑜𝑟𝑡
𝑘=1       5-21 

5.4.1.1 Spatial Multi channel Linear prediction 

The weighted average auto-correlation function �̅�(𝑐) is obtained for 𝑀 channels 

as 

�̅�(𝑐) =
1

𝑀
× ∑ 𝑟𝑚(𝑐).

𝑀

𝑚=1

 

5-22 

As it is inferred from (5-22) all the 𝑀 autocorrelation functions are equally 

weighted in the averaging process. The averaged autocorrelation function can be 

written in a more general form of a weighted average autocorrelation (�̅�𝑤(𝑐)), in 

order to take into account the source to microphone distances for each microphone. 

Assuming that the applied weights are 𝛃 = {𝛽1, … , 𝛽𝑀} the weighted average 

autocorrelation function is calculated as  

�̅�𝑤(𝑐) =
1

∑ 𝛽𝑚
𝑀
𝑚=1

× ∑ 𝛽𝑚𝑟𝑚(𝑐)

𝑀

𝑚=1

 

5-23 

where 𝛽𝑚 is the weights to 𝑟𝑚(𝑐). And the filter coefficients are obtained by the 

Yule–Walker method. 
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𝐰𝑠 = [
�̅�𝑤(0) ⋯ �̅�𝑤(𝑃𝑠ℎ𝑜𝑟𝑡 − 1)
⋮ ⋱ ⋮

�̅�𝑤(𝑃𝑠ℎ𝑜𝑟𝑡 − 1) ⋯ �̅�𝑤(0)
]

−1

× [
�̅�𝑤(1)
⋮

�̅�𝑤(𝑃𝑠ℎ𝑜𝑟𝑡)
] 

5-24 

 

and the pre-whitened signal is  

�̃�𝑚(𝑛) = 𝑥𝑚(𝑛) − ∑ 𝑤𝑠,𝑘𝑥𝑚(𝑛 − 𝑘).

𝑃𝑠ℎ𝑜𝑟𝑡

𝑘=1

 

5-25 

where 𝑤𝑠 = {𝑤𝑠,1, … , 𝑤𝑠,𝑃𝑠ℎ𝑜𝑟𝑡}.  

Assuming that the source to microphone distances for all the 𝑀 microphones are 

{𝑞1,𝑠, … , 𝑞𝑀,𝑠}, the ideal distance weights are 𝐪 = {
1

𝑞1,𝑠
, … ,

1

𝑞𝑀,𝑠
}. It is observed that 

using 𝐪 as the weights significantly improves the autocorrelation function estimation 

compared with the proposed method in [125]. In other words applying the inverse of 

the source to microphone distances as the weight estimates the clean source signal 

autocorrelation function more accurately than (5-22). However the knowledge of the 

source to microphone distances (𝐪) is not usually available or retrievable and using 𝐪 

is not practical for the ad-hoc scenarios.  

Figure 5-3 illustrates the improvement made by the spatial multi-channel LP in 

the estimation of the clean LP coefficients for 250 random ad-hoc scenarios with 2 to 

6 microphones. Itakura error [105] is applied as the measurement. 𝐸𝑟𝑤𝑠,𝑎𝑠 is the 

Itakura distance between the clean LP coefficiens (𝑎𝑠,𝑘) and the estimated 

coefficients (𝑤𝑠,𝑘). 

𝐸𝑟𝑤𝑠,𝑎𝑠 = | ∑ (
𝑤𝑠,𝑘
𝑎𝑠,𝑘

− log
𝑤𝑠,𝑘
𝑎𝑠,𝑘

− 1)

𝑃𝑠ℎ𝑜𝑟𝑡

𝑘=1

| 

5-26 
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Figure 5-3: Effect of the spatial multi-channel linear prediction on the Itakura 

error 

 

 Long term dereverberation thorugh delayed LP 

The main part of the long term linear prediction method consists of robust blind 

deconvolution based on long-term linear prediction, which tries to estimate the late 

echoes.  The long-term effect of reflections caused by reverberation generates the 

long-term time correlation of the reverberated speech that can be exploited to 

estimate the late reverberation components using the long term linear prediction 

algorithm  [20]. As opposed to multi-channel late dereverberation methods such as 

[125] in this research pre-whitening based on averaging the autocorrelation functions 

and obtaining the LP coefficients is not applied. It is suggested that pre-whitening 

before the dereverberation is required as a primary step however the applied pre-

whitening method is proposed for short term dereverberation which is performed by 

early dereverberation.  

Long term dereverberation is achieved using a delayed long term linear 

prediction filter  [125] as described by: 

�̅�(𝑛) = ∑ 𝑤𝑙𝑜𝑛𝑔𝑖
(𝑛 − 𝑖 − 𝐷𝑙𝑜𝑛𝑔) + �̅�(𝑛)

𝑃𝑙𝑜𝑛𝑔
𝑖=1

                                    
5-27 

where 𝐷𝑙𝑜𝑛𝑔 represents the delay of LP filtering which for long term dereverberation 

application is considered between 224ms to 1280ms [113] in the literature as it needs 

to deal with late echoes and 𝑃𝑙𝑜𝑛𝑔 is the long term dereverberation filter length. In 

this contribution, 𝐷𝑙𝑜𝑛𝑔 from (5-27) is estimated as 

0
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𝐷 = argmax
𝜏

( ∑ �̃�𝑚(𝑛) ∗ �̃�𝑚(𝑛 + 𝜏)

𝜏=𝜏𝑚𝑎𝑥

𝜏=𝜏𝑚𝑖𝑛

) 
5-28 

 

 Similar to standard linear prediction, the prediction coefficients 

(𝑾𝒍𝒐𝒏𝒈=[𝑤1, 𝑤2, … , 𝑤𝑃𝑙𝑜𝑛𝑔]
𝑇) are obtained by: 

(𝐸{�̅�(𝑛 − 𝐷𝑙𝑜𝑛𝑔)𝒙
𝑻(𝑛 − 𝐷𝑙𝑜𝑛𝑔)})𝑾𝒍𝒐𝒏𝒈 = 𝐸{�̅�(𝑛 − 𝐷𝑙𝑜𝑛𝑔)�̅�(𝑛)}      5-29 

𝑾𝒍𝒐𝒏𝒈 = (𝐸{�̅�(𝑛 − 𝐷𝑙𝑜𝑛𝑔)�̅�
𝑻(𝑛 − 𝐷𝑙𝑜𝑛𝑔)})

−1𝐸{�̅�(𝑛 − 𝐷𝑙𝑜𝑛𝑔)�̅�(𝑛)}      5-30 

The dereverberated signal can be obtained by filtering the reverberant residuals 

�̃�(𝑛) = �̅�(𝑛) − ∑ 𝑤𝑙𝑜𝑛𝑔𝑖
∗

𝑃𝑙𝑜𝑛𝑔
𝑖=1

�̅�(𝑛)                                    
5-31 

 (5-31) can be rewritten for an ad-hoc array of M randomly located microphones 

in a reverberant environment as 

[
�̃�1(𝑛)
⋮

�̃�𝑀(𝑛)
] = [

𝑒1̅(𝑛)
⋮

𝑒𝑀̅̅̅̅ (𝑛)
] − [

∑ 𝑤𝑙𝑜𝑛𝑔𝑖
∗

𝑃𝑙𝑜𝑛𝑔
𝑖=1

𝑒1̅(𝑛)

⋮

∑ 𝑤𝑙𝑜𝑛𝑔𝑖
∗

𝑃𝑙𝑜𝑛𝑔
𝑖=1

𝑒𝑀̅̅̅̅ (𝑛)

]     
    5-32 

The reconstructed speech signals are obtained by applying the synthesis LP filter 

on the dereverberated residuals as: 

�̃� = [
�̃�1(𝑛)
⋮

�̃�𝑀(𝑛)
] 

5-33 

The single channel beamformed signal, if required, is obtained by applying (5-6) 

and (5-7) to �̃� = {�̃�1(𝑛),… , �̃�𝑀(𝑛)}. The effect of the filter length (𝑃𝑙𝑜𝑛𝑔 from 5-27) 

on the residual dereverberation performance is investigated in Figure 5-4 and it is 

concluded that longer filter can remove the late echoes more successfully. 
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Figure 5-4:  Effect of the delayed LP filter length on the late residual 

dereverberation 

5.5 Clustered multi-channel dereverberation 

 In order to improve the dereverberation process this clustered method excludes 

the highly reverberant microphone signals from the array and only applies the 

dereverberation process to a smaller, less reverberant subset of microphones [68] 

(Figure 5-5). Similar to [22] where it is suggested to pick the best node based on a 

predefined criteria and apply the dereverberation method only on 3 channels with the 

highest input quality, herein this idea is extended to choose a flexible (in terms of the 

number of the channels) cluster of microphones that yield the highest dereverberation 

performance. 

 

Figure 5-5: Proposed Combined method 

 

As discussed in [5] working with raw audio and speech signals is inefficient and 

computationally intensive, therefore the first step of any clustering algorithm is 

extracting discriminative features. The extracted features from the microphones in 

the ad-hoc array are represented by vector 𝐾 = [𝑘1, … , 𝑘𝑀]
𝑇, where there is one 

feature (value) derived for each microphone. As the kurtosis of the LP residual signal 
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is an indicator of the source to microphone distance and reverberation level and also 

is independent of the source energy level (Kurtosis advantage over amplitude 

attenuation), herein the kurtosis of the LP residual signal is introduced for 

microphone clustering for dereverberation applications. As the proposed method of 

this research is based on linear prediction and obtaining residual signals, calculation 

of the discriminative feature (Kurtosis of the LP residuals) does not add any extra 

computation cost to the overall system. The following proves that the kurtosis of the 

LP residual signal calculated over s short time frame of length 𝑇𝑓 samples is 

independent of the source energy level and microphone gains: 

𝛽𝑗 =
𝐸{𝑒𝑗

4(𝑛)}

𝐸2{𝑒𝑗
2(𝑛)}

− 3 5-34 

=

1
𝑇𝑓
∑ (𝑒𝑗(𝑛) − �̅�𝑗(𝑛))

4𝑇𝑓
𝑛=1

(
1
𝑇𝑓
∑ (𝑒𝑗(𝑛) − �̅�𝑗(𝑛)2)
𝑇𝑓
𝑛=1 )2

− 3 5-35 

where �̅�𝑗(𝑛) denotes the average value of 𝑒𝑗(𝑛) across 𝑇𝑓. Assuming that for another 

speech source such that 𝑆𝑗(𝑛) =∝ 𝑆𝑖(𝑛) (or equally a different microphone gain), 

consequently 𝑒𝑗(𝑛) =∝ 𝑒𝑖(𝑛), therefore: 

𝛽𝑗 =
𝐸{𝑒𝑗

4(𝑛)}

𝐸2{𝑒𝑗
2(𝑛)}

− 3 5-36 

 

=

1
𝑇𝑓
∑ (𝑒𝑗(𝑛) − �̅�𝑗(𝑛))

4𝑇𝑓
𝑛=1

(
1
𝑇𝑓
∑ (𝑒𝑗(𝑛) − �̅�𝑗(𝑛)2)
𝑛
𝑛=1 )2

− 3 5-37 

 

=

1
𝑇𝑓
∑ ∝4 (𝑒𝑖(𝑛) − �̅�𝑖(𝑛))

4𝑇𝑓
𝑛=1

(
1
𝑇𝑓
∑ (∝2 (𝑒𝑖(𝑛) − �̅�𝑖(𝑛)2)
𝑇𝑓
𝑛=1 )2

− 3 

5-38 

 

∝4

𝑇𝑓
∑ (𝑒𝑖(𝑛) − �̅�𝑖(𝑛))

4𝑛
𝑛=1

(
∝4

𝑇𝑓
∑ ((𝑒𝑖(𝑛) − �̅�𝑖(𝑛)2)
𝑛
𝑛=1 )2

− 3 = 𝛽𝑗(𝑛) 

5-39 
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The kurtosis values are calculated for 10 different microphone gains (which is 

equivalent to different source energy levels)(Figure 5-6). It is observed that the 

kurtosis of the LP residual signal is robust against source energy levels and different 

microphones gains. These characteristics are especially important in the context of 

the ad-hoc array where the talkers might use their own recording devices and the 

microphone gains are not the same for all the recording devices. In this research the 

kurtosis of the LP residual signal is utilized as the microphone clustering feature in 

order to cluster the microphones into two (k=2) clusters by the Kmeans method. 

 

Figure 5-6: Kurtosis versus microphone gains (dB) calculated for 500ms frames 

Table 5-1 compares the kurtosis of the LP residual signal with other distance cues 

such as signal power, TOA and TDOA. 

Table 5-1: Advantages of the kurtosis feature 

Gain independent Limitation of the signal power 

Not affected by the time delay 

between the microphones 

Limitation of the TDOA and TOA 

features 

Does not require binaural 

recording 
Limitation of the coherence features 
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5.6 Results and Evaluation 

In this section the proposed method is compared with the other dereverberation 

methods including the Weighted Prediction Error (WPE) [126] and Minimum 

Variance Distortionless Response (MVDR) beamformer, the SMERSH algorithm 

[104], [105]and the kurtosis maximisation method [20]. Results are obtained for 

different reverberation times and noise types to achieve a reliable conclusion. In this 

section two experiments have been implemented to evaluate the objectives of the 

proposed approach. The first experiment evaluates the proposed method’s 

effectiveness in speech enhancement and compares it with the multichannel 

dereverberation methods from the Reverb challenge [111]. The second experiment 

compares the clustered dereverberation approach with the blind use of all the 

microphones and investigates the effect of the clustered dereverberation where 

highly distorted channels, estimated by kurtosis of LP residual signal are excluded 

from the dereverberation process.  

 

Table 5-2: Experimental configuration 

 

Parameter Applied values 

𝑓𝑠 16kHz 

𝑅𝑇60 200ms,400ms,600ms,800ms 

Room size 10m,8m,3m 

Number of microphones 2 to 8 

Noise White noise, Babble noise 

SNR 10,20,30dB and clean signals 

Discriminative microphone clustering feature Kurtosis of LP residual signal 

𝑃𝑠ℎ𝑜𝑟𝑡 20 

𝑃𝑙𝑜𝑛𝑔 6000  

𝐷𝑙𝑜𝑛𝑔  𝑅𝑇60 (𝑠) × 𝑓𝑠 (proposed) 

Kurtosis maximization filter order 100 

𝜏𝑚𝑖𝑛  200 (samples) 

𝜏𝑚𝑎𝑥  1600 (samples) 
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 Experiment1: Dereverberation performance 

The configuration of Table 5-2 is applied for the experiments in order to evaluate 

the performance of the proposed method and to compare its results with the state of 

the art multi-channel speech enhancement methods. Clean signals from IEEE corpus 

and noisy signals from the NOIZEUS database [84] are utilised to generate 

reverberant noisy speech signals at recorded arbitrary locations (5-1) by simulating 

the RIRs. 

The comparison of the proposed method and the state of the art methods is 

presented in Figure 5-7 and Figure 5-8, for ten sentences read by male and female 

talkers in a 10𝑚 × 8𝑚 × 3𝑚 room with 𝑅𝑇60 of 200ms, 400ms, 600ms and 800ms. 

The Perceptual Evaluation of Speech Quality (PESQ) (Minimum=1, annoying and 

Maximum=5, clean), Direct to Reverberant Ratio (DRR) and the Cepstral Distance 

(CD) [127] are calculated as the quality measurement and dereverberation 

performance measurements. The results represent the averaged measurements over 

250 experiments (5 set of speech files at 50 random setups) for each reverberation 

time and the applied method. The reverberant speech files are randomly chosen from 

different SNR values and noise types as in Table 5-2. It is concluded that the 

proposed method outperforms the state of the art WPE+MVDR method in short 

reverberation times but for reverberation times longer than 400ms the WPE+MVDR 

is more successful. The kurtosis maximisation method outperforms the proposed 

method in terms of kurtosis of the LP residual values but distorts the signal quality 

significantly. 

𝐷𝑅𝑅 (𝑑𝐵) = 20 × log10 (
|𝑠(𝑛)|

|�̃�(𝑛) − 𝑠(𝑛)|
) 

5-40 
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Figure 5-7: PESQ for different reverberation times 

 

Figure 5-8 compares the proposed two stage dereverberation method with the 

baseline SMERSH and the state of the art WPE+MVDR and the kurtosis 

maximisation method. It is concluded that for short reverberation times (i.e. less than 

400ms) the proposed method outperforms the WPE+MVDR method. 

 

Figure 5-8: Dereverberation performance (SNR=10dB) 

 

It is concluded that the proposed method outperforms the state of the art multi-

channel-dereverberation methods when applied to the ad-hoc arrays. The results 

obtained by the experiment s of this chapter are compatible by similar experimental 

studies of ad-hoc microphones which show MVDR beamformer cannot be applied to 

ad-hoc microphone arrays of unknown structures [115]. 
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Figure 5-9 investigates the effect of the proposed adaptive 𝐷𝑙𝑜𝑛𝑔 on the 

dereverberation performance. It is suggested that adapting the long term 

dereverberation delay value, proportional to the reverberation time outperforms the 

fixed delays including the values suggested in [20].  

 

Figure 5-9: Reverberation performance for different 𝐷𝑙𝑜𝑛𝑔 values and 

reverberation times 

 

 Experiment2: Clustered dereverberation 

Figure 5-10 shows a formed cluster located closer to the source (estimated by the 

kurtosis values), four microphones are labelled as close and four microphones are 

labelled as far [68] and the improved dereverberation performance is obtained by 

exclusively applying the proposed method to the chosen subset (Figure 5-10). Figure 

5-11 shows the comparison between the blind use of all microphones and the 

proposed clustered method. It is concluded that for long reverberation times (i.e. 

longer than 400ms) choosing a subset of microphones closer to the source can 

significantly improve the dereverberation performance. The size of the chosen cluster 

depends on the distribution of the microphones around the source location and can 

vary from 1 to M from (5-1). 
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Figure 5-10: Sample clustered ad-hoc microphones, the black triangle represents 

the source location 

 

Figure 5-11 investigates the effect of the clustered approach on the 

dereverberation performance of the base-line and the proposed method of this paper. 

It is observed that excluding microphones located far from the source, which are 

usually highly distorted improves the dereverberation performance. 

 

 

Figure 5-11: Effect of clustering on the dereverberation performance for different 

reverberation times 
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5.7 Chapter summary and conclusion: 

 

In this chapter a novel clustered dereverberation method for ad-hoc arrays, where 

the microphone array geometry is unknown is proposed and successfully tested. The 

proposed spatial multi-channel LP which takes into account the spatial distances 

between the microphones and the source is applied for the pre-whitening phase. The 

delayed LPC analysis is applied to remove the long term reverberation. The standard 

delayed LPC analysis is modified by choosing the delay value adaptively based on 

pre-whitened residuals. The overall performance of the system is improved by 

removing the highly distorted microphones from the array. Results suggest that 

adaptively choosing the LP analysis delay improves the dereverberation 

performance. 

 

 

 

 



  

119 

 

 Source counting by ad-hoc 

microphone arrays 

 

6.1 Introduction 

 

Speaker overlap or multi-talk during the meetings is a significant contributor to 

error in speaker diarisation [128], source localisation, word counting [129], source 

separation [130] and speech enhancement [131] applications. Overlaps are 

problematic for speech and microphone clustering as the overlapped frames (time-

segments) contain components that belong to more than one source speaker.  

Detecting segments of speech that contain more than one source signal and 

considering them for source separation is one approach to address the issues caused 

by overlap [130]. 

Errors caused by speech overlaps and the baseline features for the overlap 

detection are discussed in [132], [133] and it is suggested that conversational features 

such as speaker change statistics, can help the speaker diarisation methods over long-

term segments with short durations, such as 5 seconds. It has been also previously 

shown that the detection of the overlapping segment can improve the speech 

diarisation accuracy for clustering based methods by 15% [134].  

Various approaches have been proposed to enhance the recording in the presence 

of overlapping source(s) [135] but they suffer from limiting requirements such as the 

prior knowledge of the number of sources [5], the predefined threshold and the clean 

training data [25]. 

In this chapter diffuseness estimates are proposed as a robust feature in 

reverberant environments for overlap and speech activity detection [136] over short 

time frames (i.e. 20ms to 300ms) when using ad-hoc arrays of unknown arbitrary 

geometries. Diffuseness and the level of reverberation contain source to microphone 

distance cues and can be utilised to discriminate sources based on their distances to 

the microphones. It is also suggested in this chapter that this feature can be applied as 

an interfering talker detection feature.  
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In order to estimate the Coherent to Diffuse Ratio (CDR) feature from noisy 

speech signals, a novel method is proposed in [29]. This method extracts the CDR 

features from short (20ms-30ms) noisy reverberant speech frames and does not 

require a training phase. The proposed method is designed for dual-microphone 

systems and  frame-wise processing. The advantage of the CDR features compared 

with other location and speech activity cues such as signal power [137] is that the 

CDR values as the ratio of the direct path signal to the reflected signal are 

independent of the source energy level and do not require time alignment and 

synchronisation of the signals. 

The proposed multi-talk detection approach described in this chapter utilises the 

estimated CDR features for real time interfering talker detection and source counting 

using ad-hoc dual microphone nodes where the distance between the microphones is 

unknown. This contribution also overcomes the limitations of similar real-time 

methods such as requiring the knowledge of the microphone array structure [138]. 

Similar to the state-of-the-art source counting methods, herein it is assumed that the 

sources may overlap in some time-frequency zones however, the proposed method 

does not require conversational features, long time-frequency frames of overlaps and 

the statistical parametrisation of the speech sources. 

Counting the active participants in a meeting based on the coherence features is 

also investigated in this chapter. An offline method robust to reverberation and the 

microphone spacing is proposed and successfully tested. 

 

The main contributions of this chapter include 

 Extracting relative distance and interference cues independent of the 

microphone gains, sampling frequencies and microphones internal time 

delays for interfering talkers over short time segments.  

 Pseudo real time source counting over short time segments for 

overlapping talkers with no prior information about the microphone arrays 

structure and the source locations. 

 Detecting speakers overlap in the context of ad-hoc arrays 

 

Publications arising from contributions of this chapter are  
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 S. Pasha, C. Ritz and Y. X. Zou, "Detecting multiple, simultaneous 

talkers through localising speech recorded by ad-hoc microphone 

arrays," 2016 Asia-Pacific Signal and Information Processing Association 

Annual Summit and Conference (APSIPA), Jeju, 2016, pp. 1-6. 

 S.Pasha, C. Ritz, Y. X. Zou “Towards real-time source counting by 

estimation of coherent-to- diffuse ratio estimates from ad-hoc microphone 

array recordings” Fifth Joint Workshop on Hands-free Speech 

Communication and Microphone Arrays (HSCMA) 2017 

 S. Pasha, Jacob Donley and C. Ritz, “Speaker counting and diarisation 

through analysis of the magnitude squared coherence frequency response for 

highly reverberant signals” APSIPA 2017 [Under revision] 
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6.2 CDR calculated for dual channel ad-hoc nodes 

 

In array signal processing, environmental noise [139] is often modelled by the 

superposition of an infinite number of uncorrelated, spatially distributed noise 

sources. In applications such as underwater acoustics or radio communication, this 

model is motivated by the presence of many independent noise and interfering 

sources around the receiver which create a diffuse noise filed. The most common 

assumption for the spatial distribution is a sphere centered on the receiver, which 

corresponds to what is known as a diffuse or spherically isotropic noise field. The 

spatial coherence function between two omnidirectional sensors in a diffuse noise 

field is real-valued and given by: 

𝐶𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 =
SIN(𝐾𝑑)

𝐾𝑑
=
SIN(2𝜋𝑓𝑑/𝑐)

2𝜋𝑓𝑑/𝑐
 6-1 

For 320 samples (20ms at 16kHz sampling rate) of white Gaussian noise the 

MSC is calculated and it is shown that the MSC between the two signals are not 

coherent and the value of MSC is very low (less than 0.4) for the majority of the 

frequencies. 

 

Figure 6-1: MSC calculated for two white Gaussian noise signals recorded by 

dual channel microphones 

 

where K is the wavenumber, d is the inter-channel distance and c represents the 

speed of sound. Assuming that d is identical for all the nodes, the coherence or the 
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Coherence to Diffuse Ratio (CDR) can be utilised to detect the presence of a source. 

This can be done more accurately if the nodes are spread out within the room and 

very close to the sources. 

Coherence is a function of frequency and if two signals are highly coherent the 

average coherence across all the frequencies (6-1) is a higher value and if two signals 

are uncorrelated the average coherence across all the frequencies is a lower value. 

Assuming there are N nodes of dual omini-directional microphones with identical 

inter-channel distances, d, each channel at each node receives a unique reverberant 

version of the source signal due to its spatial location and Room Impulse Response 

(RIR): 

𝐗𝐧(𝑡) = 𝑆(𝑡) ∗ 𝐇𝐧(𝑡) + 𝐍(𝑡) 6-2 

where 𝐗𝐧(𝑡) = (𝑋𝑛1(𝑡), 𝑋𝑛2(𝑡)) is the recorded signals by the two channels at node 

n, 1<n<N, 𝑆(𝑡) is the clean, anechoic source signal (assuming there is only one 

active source) and 𝐇𝐧(𝑡) = ( ℎ𝑛1(𝑡), ℎ𝑛2(𝑡)) is the RIR matrix at the 𝑛𝑡ℎ node 

location. 𝐍(𝑡) represents the diffuse noise and the reverberation is modelled by 

𝑆(𝑡) ∗ 𝐇𝐧(𝑡).  

Coherence is calculated for a dual microphone with a 10cm inter-channel spacing 

in a clean anechoic environment over 160 samples (20ms at 8kHz sampling rate) and 

it is shown that in the majority of the frequencies the MSC is equal to 1 (the 

maximum) (Figure 6-2) as the signals are very similar. The frequencies where the 

MSC is low are the frequencies that the speaker does not have significant energy 

(Figure 6-3). The effect of noise and reverberation on the MSC is shown in Figure 

6-4. 

It is concluded that in an anechoic room with no noise or interference the 

received signal by the two channels are very similar (one signal is the delayed 

version of the other channel) and therefore the coherence obtain it maximum value. 
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Figure 6-2:MSC between two clean anechoic speech frames (20ms) recorded by a 

dual channel node (d=15cm) 

Noise as a non-coherent component distorts the MSC graph and it is observed that 

some frequencies which are most likely dominated by noise have lower MSC values. 

 

Figure 6-3: MSC between two noisy channels signals of a dual node in an 

anechoic room (d=15cm, SNR=10dB) 

 

Figure 6-4 and Figure 6-5 depict the effect of reverberation and noise as non-

coherent components on the coherent MSC values.  
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Figure 6-4: MSC between two noisy channels of a dual node in a reverberant 

room (d=15cm, SNR=10dB, RT60=400ms) 

 

 

Figure 6-5: Effect of reverberation and noise on CDR values 

 

It is concluded that when the reverberation and the noise are present only the 

speaker speech frequencies have relatively high MSC values and the frequencies 

dominated by the non-coherent component obtain low values. 
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Figure 6-6: Dual node ad-hoc arrays 

 

The RIR between each node and the active source, 𝐇𝑛(𝑡), (Figure 6-6) is a 

function of the source to node distances and room geometry and characteristics such 

as the 𝑅𝑇60. If there is more than one simultaneously active source in the room (cross 

talk) the recorded signals can be represented as: 

𝐗𝐧(𝑡) = ∑(𝑆𝑘(𝑡) ∗ 𝐇𝐤,𝐧(𝑡)) + 𝐍(𝑡)

𝑆

𝑘=1

 6-3 

where S is the number of simultaneously active sources at time t, and 1<k<S is the 

source index. It is shown that the coherence between the two channels 

signals, 𝑋𝑛,1(𝑡), 𝑋𝑛,2(𝑡), at each node is a function of source to node distance, 

frequency, noise, interference and reverberation level [140]. The calculated 

coherence cues have been previously used for speech activity detection and it was 

shown that in dual microphone systems, the inter-channel coherence value is a 

function of interference level and the distance between the active source and the node 

[81].It is also shown that there is no need to calculate this measurement using the full 

length signals and they can be accurately estimated utilising 20ms frames of the 

noisy speech signals. 

Estimated coherence features are applied as distance features to discriminate the 

microphone nodes located close to an active source. For dual microphone systems 

and two active sources (Figure 6-6) each channel’s signal can be represented as: 
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𝑋𝑛1(𝑡) = ∑ (𝑆𝑘(𝑡) ∗ ℎ𝑘,𝑛1(𝑡)) + 𝑁(𝑡)
2
𝑘=1   

6-4 

𝑋𝑛2(𝑡) = ∑(𝑆𝑘(𝑡) ∗ ℎ𝑘,𝑛2(𝑡)) + 𝑁(𝑡)

2

𝑘=1

 6-5 

The coherence between these two noisy and reverberated signals at node n is 

higher when the active source is closer to the node and is lower when the active 

source is located far from the node. For instance, in Figure 6-6, node1 is dominated 

by source2 and node2 is dominated by source1 hence these two nodes have higher 

coherence features even in cross talk situations whereas node3 is not close to any 

source and in case of cross talk it receives a mixture of source1 and source2 signals 

equally which has a low Signal to Interference Ratio (SIR) and coherence feature.  

MSC is defined as: 

     𝐶𝑥(𝑡) =
|𝜑𝑋𝑛1𝑋𝑛2(𝑡)|

2

𝜑𝑋𝑛1𝑋𝑛1(𝑡) 𝜑𝑋𝑛2𝑋𝑛2(𝑡)
 6-6 

where 𝜑𝑋𝑛1𝑋𝑛2(𝑡) is the cross power spectra function. 

𝐶𝐷𝑅𝑛(𝑙, 𝑓) =
𝐶𝑢𝑛(𝑓) − 𝐶𝑥𝑛(𝑙, 𝑓)

𝐶𝑥𝑛(𝑙, 𝑓) − 𝐶𝑠(𝑙, 𝑓)
, 6-7 

from which we propose the use of the average CDR over the entire frequency 

band and 𝐿 frames, given by 

𝐶𝐷𝑅̅̅ ̅̅ ̅̅
𝑛 =

1

𝐿(𝑓𝐵 − 𝑓0)
∫ ∑𝐶𝐷𝑅𝑛(𝑙, 𝑓)

𝐿

𝑙=1

 d𝑓

𝑓𝐵

𝑓=𝑓0

, 6-8 

6.3 Estimated CDR as a distance cue 

Assuming that S simultaneously active sources (6-3) have different angles of 

arrival at each node, the vector of the angle of arrivals at node n from all S sources 

can be represented as: 

𝜽𝒏 = {𝜃1, … , 𝜃𝑆} 
6-9 

Similarly, the distances between the 𝑛𝑡ℎ node and all S simultaneously active 

sources can be represented in a vector as: 

𝑫𝒏 = {𝐷1, … , 𝐷𝑆} 
6-10 
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Both these two vectors are unknown in this research and it is noteworthy that 

CDR is a function of  𝜃𝑛, 𝐷𝑛 and S.  [141] 

The long term reverberation caused by 𝐇𝑘,𝑛(𝑡) and 𝑁(𝑡) are diffuse as they do 

not have any specific angle of arrival and they arrive at each node from all directions 

under the assumption that reverberant sound can be modelled as a mixture of a direct 

component and a perfectly diffuse reverberation component which are mutually 

uncorrelated. The only coherent component of (6-3) is the direct path signal from the 

dominant source to the node which can be modelled mathematically as: 

𝑋𝑛|𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡(𝑡) = 𝑆𝑘(𝑡) ∗ 𝐻𝑘,𝑛(𝜏𝑛𝑘) 6-11 
6-12 

where 𝜏𝑛𝑘 is the time delay between the source k and node n. (6-6) can be rewritten 

in the time-frequency domain as: 

𝐶𝑥𝑛(𝑙, 𝑓) =
|𝜑𝑋𝑛1𝑋𝑛2(𝑙, 𝑓)|

2

𝜑𝑋𝑛1𝑋𝑛1(𝑙, 𝑓) 𝜑𝑋𝑛2𝑋𝑛2(𝑙, 𝑓)
 6-13 

𝐶𝑁(𝑙, 𝑓) =
|𝜑𝑁1𝑁2(𝑙, 𝑓)|

2

𝜑𝑁1𝑁1(𝑙, 𝑓) 𝜑𝑁2𝑁2(𝑙, 𝑓)
 6-14 

Assuming that the source coherence (𝐶𝑠(𝑙, 𝑓)) is equal to 1 the CDR can be 

calculated as: 

𝐶𝐷𝑅 =
𝐶𝑁(𝑙, 𝑓) − 𝐶𝑥(𝑙, 𝑓)

𝐶𝑥(𝑙, 𝑓) − 𝐶𝑠(𝑙, 𝑓)
 6-15 

𝐶𝐷𝑅̅̅ ̅̅ ̅̅
𝑛 =

1

𝐿(𝑓𝐵 − 𝑓0)
∫ ∑𝐶𝐷𝑅𝑛(𝑙, 𝑓)

𝐿

𝑙=1

 d𝑓

𝑓𝐵

𝑓=𝑓0

 6-16 

The proposed scheme can give an estimate of the Coherent to Diffuse Ratio 

(CDR) and Direct-to-Reverberant energy Ratio (DRR) since the dominant direct 

speech can be considered as the coherent signal whereas the diffuse noise and the 

reverberant-interfering speech forms the diffuse or non-coherent component. This 

fact is utilised in this research to distinguish the nodes with higher CDR values (more 

likely located close to an active source e.g. node 1 and node 2 in Figure 6-6) from 

nodes with lower CDR values (likely located far from active sources e.g. node3 in 

Figure 6-6).  

The relationship between the estimated CDRs and the source to node distance 

when there is one, two, three and four simultaneously active sources, S=1,2,3,4 in 
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(6-3). A scenario with two active sources is depicted in Figure 6-7. The inverse 

relationship between the source to node distance and the CDR feature is evident from 

the results shown in Figure 6-8 and Figure 6-10. A 20ms frame speech recording is 

utilised to calculate the CDR estimate. 

 

 

Figure 6-7: Two active sources and a dual node at different distances 

 

Figure 6-8: The effect of source to node distance on CDR for different number of 

simultaneously active sources 

For a scenario with one node located at the equal distance (2m) form all the four 

participants in a meeting (Figure 6-9) the CDR values are estimated when S, varies 

from 1 to 4, which, respectively means one, two, three or all four participants are 

talking simultaneously. The effect of interference on the estimated CDR is shown in 

Figure 6-8. As the CDR is a ratio of the coherent source signal to the diffuse source 
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signal it does not vary with the source energy level and is robust against the 

inconsistency between the sources energy levels [142]. It is observed that the CDR 

estimate drops with the interference and source to microphone distance. These two 

observations are exploited for real time source counting and cross talk applications in 

this chapter.  

6.4 Estimated CDR as an interference cue 

The following setup is considered to investigate the effect of S (the number of 

simultaneously active sources) on the CDR estimates over 20ms frames. 

 

 

Figure 6-9: Experimental setup 

 

 

Figure 6-10: Effect of interference on CDR estimates 
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The effect of the frequency band-width and the reverberation time on the 

calculated CDR values over 20ms time-frames and averaged for a 3 second long 

sentence is investigated in the following graphs. 

 

Figure 6-11: The effect of reverberation time and the frequency band on the 

estimated CDR values 

 

It is interesting that the CDR values calculated for the lower band (0 – 4kHz) 

yields higher CDR values compared with the full band and the upper band (4kHz-

8kHz) when 𝑓𝑠 = 8 kHz. This is probably because most of the speech signal energy 

belongs to the lower band. The upper band signal contains less coherent speech and 

consequently it has a lower CDR value.  

6.5 CDR for multi-talk detection and source counting 

One of the desired characteristics of any detector is that its features are 

sufficiently simple, easy to calculate, have discriminatory power and work well 

under changing noise conditions [143]. The CDR is independent of the sources 

energy levels and can be applied where loud and quiet sources are simultaneously 

active. The methods here assume that all nodes are of the same structure because.  

The target scenario of the active source counting method is a spontaneous 

meeting where each participant is located close (less than 30cm) to a recording 

device and the distance between two adjacent nodes is not less than one meter. By 

the observations made in this chapter and the setup assumptions, nodes with higher 

CDR values are more likely located close to an active source, and hence it is possible 

to count the nodes with relatively high CDR values in order to find the number of 
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simultaneously active sources. The proposed algorithm is summarised in Figure 

6-12. 

 

Figure 6-12: The proposed multi-talk detection method diagram 

 Proposed multi-talk detection method 

As it was observed in the previous section the interference affects the nodes CDR 

values (calculated or estimated). The following method is proposed for the 

overlapping frames detected for the ad-hoc scenarios, where there is only one node 

within a 30cm distance from each speaker and not any two speakers are closer than 

100cm. This assumption is necessary to guarantee that one source is not counted 

twice (i.e. two nodes with high CDR located close to one source). 

Table 6-1:The proposed Multi-talk detection method 

 Obtain 𝑿𝒏𝟏and 𝑿𝒏𝟐 for all N ad-hoc nodes (6-2) 

 Calculate 𝑪𝑵(𝒍, 𝒇) and 𝑪𝒙(𝒍, 𝒇)for all nodes (6-10,6-11) and obtain the 

CDR value for the time-frequency bins (6-15) 

 Average the CDR estimates over P adjacent frames and all the 

frequencies. 

 Having the CDR values at all nodes count the number of nodes within 

[𝑪𝑫𝑹𝒎𝒂𝒙, 𝜶 × 𝑪𝑫𝑹𝒎𝒂𝒙] interval (6-18). 

 If the number of nodes within the interval is greater than one multi-talk 

(overlap) has occurred. 
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 Proposed Source counting by CDR values at each node 

The proposed algorithm is summarised in Table 6-2. The CDR values are 

estimated for all the nodes. 

𝒜 = {𝐶𝐷𝑅̅̅ ̅̅ ̅̅
𝑛}𝑛∈{1,…,𝑁}   6-17 

and 𝐶𝐷𝑅̅̅ ̅̅ ̅̅
𝑛 is kept in the set 𝒜 if 

𝐶𝐷𝑅̅̅ ̅̅ ̅̅
𝑛 ≥ 𝐶𝐷𝑅̅̅ ̅̅ ̅̅

max − 𝛼(𝐶𝐷𝑅̅̅ ̅̅ ̅̅
max − 𝐶𝐷𝑅̅̅ ̅̅ ̅̅

min), 6-18 

where 𝐶𝐷𝑅̅̅ ̅̅ ̅̅
min = min(𝒜), 𝐶𝐷𝑅̅̅ ̅̅ ̅̅

max = max(𝒜) and 𝛼 is a parameter to set the 

threshold of maintained CDR values. 

The number of the remaining nodes in 𝒜 after applying (6-18) is counted as the 

number of simultaneously active sources.  

 

Figure 6-13: CDR values at each node when two sources are active 

simultaneously. 

 

Table 6-2 explains the proposed source counting method by analysing and comparing 

the CDR values at the ad-hoc nodes. 
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Table 6-2: Proposed source counting by CDR at each node 

 Start with  𝒙𝒏,𝟏and 𝒙𝒏,𝟐 for all the 𝑵 ad-hoc nodes (6-2)  

 Calculate 𝑪𝒖𝒏(𝒇) and 𝑪𝒙𝒏(𝒍, 𝒇) for all nodes (6-13),(6-14). 

 Average the CDR estimates over 𝑳 adjacent frames and across the 

frequency band of interest. 

 Having the CDR values at all nodes, 𝓐, find the global minimum 

(𝑪𝑫𝑹̅̅ ̅̅ ̅̅
𝐦𝐢𝐧) and global maximum (𝑪𝑫𝑹̅̅ ̅̅ ̅̅

𝐦𝐚𝐱). 

 Count the number of nodes in the top 𝜶 × 𝟏𝟎𝟎% of CDR values. i.e. 

within [𝑪𝑫𝑹̅̅ ̅̅ ̅̅
𝐦𝐚𝐱 − 𝜶(𝑪𝑫𝑹̅̅ ̅̅ ̅̅

𝐦𝐚𝐱 − 𝑪𝑫𝑹̅̅ ̅̅ ̅̅
𝐦𝐢𝐧), 𝑪𝑫𝑹̅̅ ̅̅ ̅̅

𝐦𝐚𝐱] interval. 

 The number of maxima (nodes with highly coherent speech signals) 

represents the number of simultaneously active sources for the time frame. 

If more than one, cross talk would have happened. 

 

6.6 Offline speaker counting in highly reverberant 

environment through clustering the coherence features 

In a meeting scenario with M participants located at fixed locations the objective 

of the offline speaker counting is to estimate M based on the dual-channel recording 

with unknown inter-channel distance d. The dual recordings from 6-4 and 6-5 

contain coherent speech (direct path signal) and diffuse noise and reverberation. The 

frequencies with high MSC values are the frequencies generated by each speaker 

vocal tracts [144] and the frequencies with lower MSC values are the diffuse noise 

and the reverberation. 

𝑥𝑝(𝑛) = �̃�𝑝
𝑐𝑜(𝑛) + �̃�𝑝

𝑑𝑖(𝑛), 6-19 

The MSC feature is calculated for each frequency bin (𝑘) by  
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𝒄(𝑘) =
|𝜑𝑥1|𝑥2(𝑘)|

2

𝜑𝑥1|𝑥1(𝑘) 𝜑𝑥2|𝑥2(𝑘)
, 6-20 

for a dual channel (6-2) ad-hoc frequency domain recordings (𝑥1(𝑘), 𝑥2(𝑘)) at 

unknown locations. It is observed that different participants of a meeting have 

different coherence frequency responses (𝒄(𝑘)) from (6-20) due to their different 

locations and speech characteristics. 

 

Figure 6-14: Three different sentences (2 seconds long) read by the same speaker 

at the same location. 

 

Figure 6-15: Three different speakers read the same sentence (2 seconds long) at 

the three different locations. 
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As it is shown in Figure 6-14, MSC curves are very similar for the same speaker 

[145] regardless of the pronounced words as long as the speaker does not move. This 

observation suggests that the MSC features derived from the same speaker cluster 

together. Figure 6-15 indicates that the different speakers at different locations have 

distinctly different MSC features even when they read the same sentence. 

These observations made by analysis several speakers and locations is utilised in 

this section to form clusters (from 2 clusters to arbitrary  �̂�𝐦𝐚𝐱) for the speakers 

speech segments and count the optimal number of clusters as the estimate of the 

number of sources (�̂�). Table 6-3 summarises the proposed offline source counting 

method based on the MSC values. 

TABLE 6-3 

THE PROPOSED OFFLINE SPEAKER COUNTING METHOD 

1) Start with the recorded mixture 𝒙𝒑(𝒏) from. 

2) Obtain the speech signal for each time segment in the frequency 

domain. 

3) Extract the MSC features for each time segment of the speech signal 

and obtain 𝐂𝑘 

4) 
Cluster the extracted features (c(𝑘)) into 𝐾 =  2 to �̂�max clusters and 

choose the optimal 𝐾 (based on the Calinski Harabasz (CH) [146] 

clustering evaluation metric) as the number of clusters. 

5) The optimal number of the clusters (�̂�) is the estimate for the number 

of sources. 

 

The K-means clustering method [33] is applied to cluster the extracted MSC 

features (6-20) for 2 second segments into 𝐾 =  2 to �̂�max. The optimal clustering 

results (i.e. the optimal number of K) is then chosen based on the Calinski Harabasz 

(CH) [146] clustering evaluation criteria. The optimal number of the clusters (�̂�) is 

compared with the real number of the participants. For the experimental studies, 256 

frequency bins are applied in order to calculate 𝒄(𝑘). Having 𝒄(𝑘) for each segment 

the matrix of the MSC features are obtained as 

𝐇𝑙,𝑘 = [
𝑐(0,0) ⋯ 𝑐(𝐿 − 1,0)
⋮ ⋱ ⋮

𝑐(0, 𝑁 − 1) ⋯ 𝑐(𝐿 − 1,𝑁 − 1)
] 6-21 

For all the time segments and the frequency bins. 
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Figure 6-16: The proposed offline source counting method based on MSC 

features 

 

The Success Rate (SR) (6-22) is applied as the performance measurement. 

Assuming that 𝑇𝑐 is the number of scenarios that the number of sources is estimated 

correctly (i.e. �̂� = 𝑀) and 𝑇𝑡 is the total number of test scenarios, the Success Rate 

(SR) evaluation measurement is defined as  

SR =
𝑇𝑐
 𝑇𝑡
× 100. 6-22 

This method is evaluated in the results section and is compared with the baseline 

TDOA method. 

 

6.7 Experimental evaluation and results 

The baseline speaker diarisation and cross talk detection systems are based on 

assigning each speech segment to a unique cluster (speaker) in the output and the 

overall system is evaluated using the metric known as the Diarisation Error Rate 

(DER) [147], [148] which is the sum of speech/non-speech error and speaker 

detection error. A slightly different evaluation approach is proposed in this section as 

the objective is not speaker diarisation but overlap detection and source counting 

(6-23), (6-24). 

CDR values at each node locations are calculated over short time frames of 20ms, 

which corresponds to 320 samples at 16 kHz sampling frequency and are averaged 

across all the frequencies (6-8). This is the typical time duration for which a speech 

segment is assumed to be stationary. However, better performance can be obtained 

when a larger value is chosen for the frame length [28] or the averaged CDR value 

𝑥𝑝(𝑛) �̂� 
Clustering 

evaluation 

 Clustering 

 

𝑯(𝒍, 𝒌) 
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across consecutive time frames are applied as the discriminative feature (e.g. 15 

frames which translates to 300ms).  

The Experimental configuration is summarised in Table 6-4. 

 

Table 6-4: The Experimental configuration 

Parameter Setting 

Sampling frequency 16kHz 

Frame length 20ms 

FFT length 160 

Frame shift 160 samples 

Intra-channel distances 15cm 

SNR 10dB 

 

The experimental setups with one and three active speakers are depicted in Figure 

6-17 and Figure 6-18. 

 

Figure 6-17: The experimental setup with 4 nodes and 4 participants when there 

is only one active source 

 



  

139 

 

 

Figure 6-18: The experimental setup with 4 nodes and 4 participants when there 

is three active sources 

 Multi-talk detection 

Overlap detection aims to flag the time-frequency bins with more than one active 

source without attempting to count the number of simultaneously active talkers. The 

True Positive rate (TPR) for cross talk detection without focusing on the number of 

simultaneously active sources is defined as [149]: 

𝑇𝑃𝑅𝑚𝑢𝑙𝑡𝑖−𝑡𝑎𝑙𝑘 =
𝑇𝑐𝑐

𝑇𝑐𝑐 + 𝑇𝑐1 + 𝑇1𝑐 + 𝑇11
 6-23 

100 time segments are applied for each value of P and overall 700 time segments 

are randomly generated as single-talk and multi-talk to test the proposed multi-talk 

detection method (Figure 6-19). 
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Figure 6-19: Interfering talker(s) detection success rate 

 

where 𝑇𝑐𝑐 is the number of frames with more than one active source labeled as cross 

talk correctly, 𝑇𝑐1, 𝑇1𝑐 are incorrectly labeled frames (cross talk labelled as single 

source or vice versa) and 𝑇11is the single talk frames labelled correctly as single 

talks. 

The CDR estimation method of [69] is applied here for all the experiments as it 

does not require the coherent signal direction of arrival (𝜽𝒏 from (6)), it is shown 

that Direction of Arrival (DOA) based methods do not yield successful source 

counting results (48.6% accuracy). 

The results are presented for different values of P (the number of applied adjacent 

time frames) and it is concluded that P values equal to or greater than 15 (which 

translates to 300ms frames or longer) yield higher interference detection success rate 

compared with shorter frames. This can partly be a result of the inaccurate CDR 

calculation/estimation over shorter frames and partly because of the speech 

characteristics over short frames.   

 Simultaneous Source counting results 

In this section the CDR values are utilised for counting the number of 

simultaneously active sources with making use of the spatial coverage of ad-hoc 
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arrays. This is done by implementing the proposed method in section 6.4.2 for 25 

different ad-hoc scenarios in terms of the room dimensions, reverberation times, the 

number of sources (1 to 4) and the number of the dual nodes (4 to 10) and averaging 

the results. A more detailed source counting evaluation is presented in Figure 6-20 

and summarises the source counting confusion matrix for 100 ad-hoc scenarios. The 

True Positive Ratio (TPR) for source counting is defined as: 

𝑇𝑃𝑅𝑆𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 =
𝑇𝑘𝑘

𝑇𝑘1 + 𝑇𝑘2 +⋯+ 𝑇𝑘𝑀
 6-24 

 

where 𝑇𝑘𝑘, 𝑘 ≠ 1 is the number of frames with k active sources correctly labelled as 

having k active sources and 𝑇𝑘𝑗 is the number of frames with k active sources which 

are incorrectly labelled as having 𝑗 ≠ 𝑘 active sources. 𝑇𝑘1 + 𝑇𝑘2 +⋯+ 𝑇𝑘𝑀 is the 

overall number of the frames in the test set.  

100 time segments with 1 to 4 active sources are applied for P=15 and overall 

400 segments are randomly generated to evaluate the proposed source counting 

algorithm (Figure 6-20). 

 

One 

detected 

active source 

Two 

detected 

active source 

Three 

detected 

active source 

Four 

detected 

active source 

k=1 87% 10% 3% 0% 

k=2 12% 81% 7% 0% 

K=3 0% 12% 78% 10% 

k=4 0% 20% 22% 58% 

Figure 6-20: TPR confusion matrix for simultaneously active sources, P=15 

 

It is concluded that for a small number of sources (i.e. 1 and 2) the proposed 

source counting is able to detect the number of sources with an accuracy of 81% 

minimum and the increase in the number of the simultaneously active sources 

decreases the source counting accuracy.  

 Offline source counting results 

Offline Source counting results for the proposed participant counting method for 

each meeting is illustrated in Figure 6-21.  
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Figure 6-21: Meeting participant counting results, SNR=40dB 

 

It is shown that the proposed method is robust to reverberation (Figure 6-21). The 

proposed method is also robust to inter-channel spacing (𝑑) and it is shown that the 

distance between the microphones at high SNR and low reverberation times does not 

affect the participant counting results (Figure 6-22). 

 

Figure 6-22: Meeting participant counting results, SNR=40dB, Reverberation 
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The proposed method is shown to be more accurate than the base-line TDOA 

estimates from Generalised Cross-Correlation with Phase Transform (GCC-PHAT) 

[150].  

 

Figure 6-23: Average results for 2 to 6 sources for different reverberation times. 

 

Figure 6-23 investigates the effect of the number of sources on the source 

counting accuracy (6-24) and it is concluded that the proposed method can 

outperform the existing feature (GCC-PHAT) in reverberant environments. It is also 

concluded that the proposed method is robust to reverberation. 
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6.8 Conclusion 

This chapter proposed a new feature for cross talk (overlap) detection during 

multi-party meeting scenarios based on real-time and pseudo real-time estimated 

CDR cues. It is shown that by estimating CDR features or calculating the MSC and 

the CDR features over short time segments, it is possible to detect interfering sources 

and the cross talk, independent of the sources energy level in the context of ad-hoc 

arrays. The proposed feature can be extracted without the time alignment of the ad-

hoc channels and the proposed method does not require the prior knowledge of the 

room geometry, microphone and source locations, room impulse responses or 

microphone array structure. The proposed feature is also applied for source counting 

and it is concluded that under justifiable and acceptable distance conditions, it is 

practically possible to count the number of simultaneously active sources utilising 

the spatial coverage of the ad-hoc arrays. The proposed methods of this chapter are 

applicable to real time scenarios and yields 80% successful multi-talk detection rate 

and average 75% success in source counting.  

Proposing a new cross-talk detection feature and applying it to the ad-hoc arrays 

is the novelty of this approach which does not require statistical modelling of the 

speech sources or a training phase. The proposed method in this chapter can 

accurately detect overlaps shorter than 500ms. 

For the offline source counting the novel MSC feature and clustering based 

method is proposed and successfully tested. It is concluded that the proposed method 

is robust to reverberation. Very accurate source counting results (minimum 80% 

success rate) are obtained that outperforms the baseline GCC_PHAT methods in 

moderately and highly reverberant environments. 
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 Conclusion and future works 

7.1 Conclusion 

 

In this thesis applications of the ad-hoc microphone arrays as emerging recording 

tools for press conferences, lecture halls and meetings are investigated and novel 

methods and features are proposed or modified for microphone clustering, source 

localisation, multi-channel speech enhancement, source counting and multi-talk 

detection. The proposed methods are specifically tailored to the context of the ad-hoc 

arrays considering the specifications of such arrays. As the target scenarios of this 

research is broad and not confined to any certain microphone structure or number of 

the channels, for each application the most suitable and general feature which can be 

applied to any ad-hoc scenario is chosen and applied. The proposed features are 

based on the RIR amplitude attenuation and time delay features for microphone 

clustering and source localisation, kurtosis of the LP residual signal for microphone 

discrimination and informed dereverberation and coherent to diffuse ratio for multi-

talk detection and source counting. 

The proposed clustering and source localisation methods benefit from the wide 

and flexible spatial coverage of the ad-hoc arrays and overcome the missing 

knowledge of the microphone arrays geometry and the relative distances. The 

derived side information such as the relative source to microphone distances is also 

utilised to propose an informed multichannel dereverberation method in the context 

of ad-hoc arrays.  

In this thesis the code-book based microphone clustering is proposed for 

microphone clustering, the surface fitting approach is proposed for the source 

localisation, two-stage short and long-term dereverberation based on the spatially 

modified linear prediction is applied to the ad-hoc scenarios and a coherence based 

approach is proposed for source counting and multi-talk detection. 
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7.2 Recommendations for future research 

 

According to the literature (reviewed in chapter 2 and chapter 4) it is possible to 

reconstruct the room geometry and localise the microphones and the sources in the 

room. By deriving such information it is possible to estimate the RIRs at 

microphones locations and exploit the estimated RIRs for some informed speech 

dereverberation method (Chapter 5). Although it is not possible to obtain the accurate 

RIRs by reconstructing the acoustic scene, deriving this information and having a 

rough estimate of the RIRs at each microphone location, helps guide the equalisation 

process. In addition to dereverberation, the full reconstruction of the acoustic scene 

can be applied for informed noise removal and interference suppression by detecting 

the closest microphone (cluster of microphones) to the non-diffuse noise source and 

using it to estimate the noise at other microphones locations. The noise estimate 

knowledge along with the estimated RIRs can be applied for informed noise 

cancellation. 

The proposed spatial linear prediction method also needs to be further 

investigated in terms of finding optimised values for weights. This may be done 

through proposing a relative distance feature that maximises the LP coefficients 

estimation accuracy or by proposing a clustered approach to LP estimation. 
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