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Iron-doped nickel molybdate with enhanced oxygen evolution 

kinetics 

Jiayi Chen,a Guoqiang Zhao,a Yaping Chen,a Kun Rui,a Hui Mao,b,* Shi Xue Dou,a and Wenping Suna,*

Abstract: Electrochemical water splitting is one of potential 

approaches for making renewable energy production and storage 

viable. Oxygen evolution reaction (OER), as a sluggish four-electron 

electrochemical reaction, has to overcome high overpotential to 

accomplish overall water splitting. Therefore, developing low-cost 

and highly active OER catalysts is the key for achieving efficient and 

economical water electrolysis. In this work, Fe-doped NiMoO4 was 

synthesized and evaluated as the OER catalyst in alkaline medium. 

Fe
3+

 doping helps to regulate the electronic structure of Ni centers in 

NiMoO4, which consequently promotes the catalytic activity of 

NiMoO4. The overpotential to reach a current density of 10 mA cm
-2
 

is 299 mV in 1 M KOH for the optimal Ni0.9Fe0.1MoO4, which is 65 mV 

lower than NiMoO4. Further, the catalyst also shows exceptional 

performance stability during a 2-h chronopotentiometry testing. 

Moreover, the real catalytically active center of Ni0.9Fe0.1MoO4 is also 

unraveled based on the ex-situ characteristics. These results provide 

new alternatives for precious metal-free catalysts towards alkaline 

OER and also expand Fe-doping-induced synergistic effect towards 

performance enhancement to new catalyst systems. 

Introduction 

Electrochemical water splitting is one of the most promising 

energy conversion and storage strategies towards efficient 

utilization of renewable energy and has drawn ever-increasing 

research attention recently. During water splitting process, 

oxygen evolution reaction (OER) at the anode involves a four- 

electron-transfer process, which is the main sluggish step for 

water splitting.[1] To date, noble metal-based materials, such as 

IrO2 and RuO2, are still the leading OER catalysts.[2] Considering 

the scarcity of noble metals, it is of critical necessity to minimize 

cost of catalysts for economical water splitting. Therefore, a 

series of earth-abundant materials, particularly Ni, Co-based 

materials, have been extensively explored as OER catalysts, 

and some of them have shown impressive catalytic activities 

comparable to noble metals.[3] For example, Lu et al. reported 

three-dimension NiFe layered double hydroxide (LDH) film as 

electrocatalyst for the OER,[4] and the NiFe LDH film exhibited 

excellent OER catalytical activity with an overpotential of ~230 

mV at 10 mA cm-2, which is lower than the commercial 20 wt% 

IrO2/C catalyst. On the other hand, structural engineering is an 

effective approach in view of exposing more active sites as well 

as realizing rapid mass diffusion, which is vital for constructing 

highly active and stable electrocatalysts.[5] Recently, nanosheet-

like nanostructures are emerging fast into electrocatalysis field 

owing to the unique physicochemical properties, including 

abundant edge sites, highly exposed active centers, and easily 

tuned electronic structures.[6] Various kinds of nanosheets-based 

nanostructures have shown interesting electrocatalytic activity 

towards water splitting.[7] 

In this work, nickel molybdate (NiMoO4) with a flower-like 

nanostructure composed of nanosheets was synthesized via a 

hydrothermal process followed by annealing in air and were 

evaluated as OER catalysts in 1 M KOH. The dependence of Fe 

doping on the catalytic activity of NiMoO4 was studied, and the 

results demonstrate that Fe doping can significantly promote the 

OER kinetics. Detailed electrochemical tests prove that the Fe-

doping-induced synergistic effect should be responsible for the 

performance improvement. Besides, the real active centers in 

Fe-doped NiMoO4 were also investigated.  

Results and Discussion 

The Fe-doped NiMoO4 (Ni1-xFexMoO4, x=0, 0.05, 0.1 and 0.2) 

were synthesized via a hydrothermal process followed by 

annealing at 500 °C in air. The crystal phase of Ni1-xFexMoO4 

was confirmed by X-ray diffraction (XRD) patterns (Figure 1a), 

and the results reveal the formation of β-NiMoO4 (JCPDS No. 

45-0142).[8] No characteristic diffraction peaks of iron oxide-

based phases are observed, implying the successful doping of 

Fe atoms into NiMoO4 lattice. However, it should be noted that 

the relative density of (220) peak at 26.6 ̊ decrease with 

increasing Fe content. It can be explained that, Fe-O bond 

distance is shorter than Ni-O bond distance, and thus the 

NiMoO4 lattice structure is changed when Ni atoms are partially 

replaced by Fe atoms.[9] 

 

The scanning electron microscope (SEM) image of 

Ni0.9Fe0.1MoO4 shows a clear flower-like structure composed of 

nanosheets (Figure S1, Supporting Information). The SEM-EDS 

mapping (Figure S2, Supporting Information) reveals that Ni, Fe, 

Mo and O distribute very homogeneously in Ni0.9Fe0.1MoO4. 

Transmission electron microscope (TEM) image of the 

Ni0.9Fe0.1MoO4 in Figure 1b reveals a rough and porous surface 

morphology, which is similar to NiMoO4 (Figure S3, Supporting 

Information). The BET surface area of Ni0.9Fe0.1MoO4 and 

NiMoO4 is determined to be 156 and 141 m2 g-1, respectively 

(Figure S3, Supporting Information), illustrating that the unique 

morphology ensures a large surface area and abundant active 

sites for the OER reaction. Meanwhile, as shown in Figure 1c, 

the labled lattice spacing of 0.24 and 0.26 nm can be assigned 

to the (400) and (31-2) crystal planes of Ni0.9Fe0.1MoO4, 

respectively,[10] corresponding well with the inset fast four 

transform (FFT) result. Besides, the selected area electron 

diffraction (SAED) of Ni0.9Fe0.1MoO4 is ascribed to a typical β-
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NiMoO4 phase (Figure 1d), further demonstrating the successful 

doping of Fe.[10a]  

 
 

 
Figure 1. (a) X-ray diffraction patterns for Ni1-xFexMoO4 (x=0, 0.05, 0.1 and 
0.20). (b, c) TEM and HRTEM images of Ni0.9Fe0.1MoO4. Inset: FFT pattern of 
the selected region. (d) SAED pattern of Ni0.9Fe0.1MoO4. 
 

X-ray photoelectron spectroscopy (XPS) was carried out to 

investigate surface compositions and valence states of the 

Ni0.9Fe0.1MoO4 and NiMoO4. The coexistence of Ni, Fe, Mo and 

O species can be clearly demonstrated by the survey spectra 

(Figure 2a). The Ni 2p XPS spectrum of the NiMoO4 show two 

main peaks at 855.2 eV and 872.9 eV,[11] which can be assigned 

to typical peaks of Ni2+. (Figure 2b). For Ni0.9Fe0.1MoO4, 

 

 
Figure 2. XPS spectrum of Ni0.9Fe0.1MoO4: (a) survey spectra, (b) Ni 2p of 
Ni0.9Fe0.1MoO4 and NiMoO4, (c) Fe 2p, and (d) Mo 3d of Ni0.9Fe0.1MoO4 and 
NiMoO4. 
 

Figure 3. Electrochemical performance. (a) Polarization curves and (b) Tafel 
curves of Ni1-xFexMoO4 (x=0, 0.05, 0.1 and 0.20) in 1 M KOH (c) Overpotential 
at 10 mA cm

-2
 and Tafel slope derived from LSV curves, (d) 

Chronopotentiometry test of Ni0.9Fe0.1MoO4 and NiMoO4 at a constant current 
density of 10 mA cm

-2
.  

 

the peak at ~855 eV in the Ni 2p XPS spectrum prove the 

presence of two chemical environments for nickel atoms (Figure 

2b). The spectrum was fitted by considering two resolved 

doublets at 854.5/872.2 eV and 856.2/873.9 eV, corresponding 

to Ni2+ and Ni3+, respectively.[12] The proportion of Ni2+ and Ni3+ 

species is calculated to be 44% and 56%, respectively. 

Compared with NiMoO4, the appearance of Ni3+ can be 

attributed to the electron transfer from Ni to the doped Fe.[12b, 13] 

The Fe 2p XPS spectrum of the Ni0.9Fe0.1MoO4 in Figure 2c is 

deconvoluted into four fitted peaks, indicating the coexistence of 

Fe3+ (711.9 and 724.4 eV) and Fe2+ (716.0 and 726.3 eV).[12b, 14] 

Figure 2d shows Mo 3d XPS spectrums of Ni0.9Fe0.1MoO4 and 

NiMoO4, in which both of the doublet peaks locate at 235.6 eV 

and 232.4 eV, corresponding to  Mo 3d3/2 and Mo 3d5/2  of Mo6+ 

species, respectively. Unlike Ni, the valence state of Mo does 

not change after Fe doping.  

 

The OER electrocatalytic performance of the Ni1-xFexMoO4 was 

tested in a typical three electrodes system in 1 M KOH. The LSV 

curve of the NiMoO4 shows an oxidation peak at 1.37 V (vs. 

RHE) due to the oxidation of Ni2+ to Ni3+ (Figure 3a). Notably, 

the oxidation peak shifts positively after Fe incorporation, which 

is attributed to the valence state change of Ni after Fe doping, 

and it is also a specific indicator to determine whether Fe is 

doped into NiMoO4.
[9a, 15] Ni0.95Fe0.05MoO4 and Ni0.9Fe0.1MoO4 

show higher OER activity than NiMoO4. Ni0.9Fe0.1MoO4 requires 

an overpotential of 299 mV to generate an anodic current of 10 

mA cm-2, which is 65 mV lower than NiMoO4 (364 mV). Tafel 

plots were constructed from polarization curves to study the 

OER kinetics of the electrocatalysts (Figure 3b).[16] The Tafel 

slope of Ni0.9Fe0.1MoO4 is calculated to be 63 mV dec-1, which is 

lower than NiMoO4 (82 mV dec-1), illustrating an accelerated 

OER kinetics of Ni0.9Fe0.1MoO4. The overpotentials (10 mA cm-2) 

and Tafel slopes of NixFe1-xMoO4 are displayed in Figure 3c. 
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Figure 4. (a, b) CV curves of Ni0.9Fe0.1MoO4 and NiMoO4 performed from 0.3 
to 0.4 V (vs. Hg/HgO) at different scan rates (10, 20, 50, 100 mV s

-1
), 

respectively. (c) the fitted result of CDL (d) Electrochemical impedance spectra 
of Ni0.9Fe0.1MoO4 and NiMoO4. 
 

The Ni0.9Fe0.1MoO4 exhibit the best OER activity with the 

minimum overpotential and the smallest Tafel slope, which also 

exhibit comparable activity to some typical transition metal- 

based catalysts and commercial IrO2 (Figure S5, Supporting 

Information).[17] When the Fe content further increased, 

Ni0.8Fe0.2MoO4 shows an increased overpotential (390 mV). 

Besides, the Ni0.9Fe0.1MoO4 electrocatalyst exhibit excellent 

stability, which was another critical parameter for evaluating 

electrocatalysts. As indicated by the chronopotentiometry (CP) 

measurement (Figure 3d), Ni0.9Fe0.1MoO4 shows a slightly 

increase of potential from 1.54 to 1.55 V (vs. RHE) after running 

for 2 h at 10 mA cm-2, which reveals a similar stability but a 

much lower potential as compared with NiMoO4 (increasing from 

1.61 to 1.63 V). The excellent stability performance can be 

related to the porous structure that buffers the volume change 

through the OER process. Combined with the aforementioned 

XPS results, the greatly improved OER performance can be 

attributed to the Fe doping-induced high valence Ni3+ in 

Ni0.9Fe0.1MoO4. The existence of Ni atom in a higher valence 

state facilitates the surface adsoption of  oxygen, and thus 

endows the Ni-OOH formation, accelerating the OOH species 

deprotonation to harvest O2.
[13b, 18]  

 

The electrochemically active surface area (ECSA) was explored 

to study factors of OER activity enhancement. As shown in 

Figure 4a-b, the ECSAs of Ni0.9Fe0.1MoO4 and NiMoO4 were 

evaluated by the double-layer capacitance (CDL) depend on CV 

curves measured with non-Faradaic currents. The slope of the 

fitted plots is CDL (Figure 4c). The CDL of Ni0.9Fe0.1MoO4 is 0.338 

mF cm-2, which is three times larger than that of NiMoO4 (0.117 

mF cm-2).  As illustrated by the BET result of NiMoO4 and 

Ni0.9Fe0.1MoO4 (Figure S3, Supporting Information), the CDL 

increment should be mainly derived from the enhanced 

adsorption capacity promoted by Ni3+ after Fe doping.[18a, 19]  

Furthermore, as shown in the electrochemical impedance 

spectra (EIS)  (Figure 4d), the low- 

 
Figure 5. (a-c) High-resolution XPS spectra of the Ni 2p, Mo 3d and Fe 2p for 
Ni0.9Fe0.1MoO4 before and after CV test, (d) TEM image for Ni0.9Fe0.1MoO4 
sample after CV cycles. 
 

frequency resistance of Ni0.9Fe0.1MoO4 is around 13.1 Ω, which 

is great smaller than that of NiMoO4 (25.7 Ω), revealing 

accelerated charge transfer and mass diffusion at the 

Ni0.9Fe0.1MoO4 electrode/electrolyte interface.[5c, 20]. Both the 

ECSA and EIS results confirm the excellent electrochemical 

properties of Ni0.9Fe0.1MoO4 catalyst. 

 

Importantly, ex-situ XPS and TEM analysis of the Ni0.9Fe0.1MoO4 

after CV cycles were carried out to unravel the real active 

centers. As shown in Figure 5a, we can directly observe Ni 2p3/2 

peak at 856.0 eV shifts positively after CV cycles, suggesting the 

oxidation state of Ni increases during the catalytic process. The 

fitted result demonstrate that Ni3+ proportion increases from 56% 

to 79%, which might be due to the formation of NiOOH during 

the catalytic process.[3f, 13b] Meanwhile, Mo 3d and Fe 2p 

spectrum keep unchanged (Figure 5b and c). Moreover, as 

demonstrated by the TEM image in Figure 5d, the lattice spacing 

of 0.24 nm can be indexed to the (002) crystal plane of 

hexagonal NiOOH.[21] In addition, interplanar distance of 0.21 nm 

also can be viewed, which is ascribed to the (111) planes of NiO. 
[3f, 22] Based on the aforementioned discussion, these results 

illustrate that Ni is the real active catalytic center of 

Ni0.9Fe0.1MoO4 catalyst during water oxidation.  

 

 

The turnover frequency (TOF) was further calculated to evaluate 

the intrinsic OER catalytic activities of Ni0.9Fe0.1MoO4 and 

Table 1. TOF of Ni0.9Fe0.1MoO4 and NiMoO4 

Sample TOF (s
-1

) @η=300 mV TOF (s
-1

) @η=350 mV 

Ni0.9Fe0.1MoO4 0.032 0.106 

NiMoO4 0.0042 0.02 
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NiMoO4. As shown in Table 1, the TOF of Ni0.9Fe0.1MoO4 is 

0.032 s-1 at the overpotential of 300 mV, which is almost six folds 

higher than that of NiMoO4 (0.0042 s-1). The result further 

confirms the enhanced intrinsic activity induced by Fe doping. It 

has to be mentioned that, compared with most Ni-based 

catalysts such as NiO or Ni(OH)2, the proportion of Ni content is 

much lower in Ni0.9Fe0.1MoO4, but it deliveres simialr and even 

better mass activity than NiO [23]. Thus, it can be inferred that, in 

addition to the oxidation state of Ni, the coordination 

environment of Ni might also determine the intrinsic activity of Ni 

active sites.  

Conclusions 

In summary, NiMoO4-based catalysts were synthesized and 

evaluated for alkaline OER, and the OER kinetics was 

substantially enhanced by Fe doping. The optimal 

Ni0.9Fe0.1MoO4 exhibited a lower overpotential of 299 mV than 

NiMoO4 (364 mV) at a current density of 10 mA cm-2. Ni species 

are demonstrated to be the real active sites, and NiOOH/NiO 

were formed in situ during OER. This work demonstrates Fe 

doping is also an effective strategy for improving the catalytic 

activity of NiMoO4-based catalysts besides NiO and Ni(OH)2. 

Experimental Section 

All the chemicals were purchased from Sigma-Aldrich (A.R grade) and 

used as received without further purification. 

Synthesis of NiMoO4 and Ni1-xFexMoO4  

NiMoO4 were synthesized via a typical hydrothermal treatment followed 

by annealing process. 1 mmol of Ni(NO3)2·6H2O and 1 mmol of 

Na2MoO4·2H2O were dissolved in 30 mL deionized (DI) water with 

vigorous stirring. Next, 0.24 g urea was added into the solution. After 

stirring for 30 min, the final solution was transferred to a 45 mL Teflon 

lined stainless steel autoclave and kept at 160 °C for 8 h. Fe-doped 

NiMoO4 was prepared via the similar procedure by altering the molar 

ratio of Ni(NO3)2·6H2O to Fe(NO3)3·9H2O. For Ni0.9Fe0.1MoO4, 0.1 mmol 

Fe(NO3)3·9H2O and 0.9 mmol Ni(NO3)2·6H2O were added in the 

precursor solution. After the autoclaves were cooled down, the precursor 

samples were washed with DI water and ethanol three times and dried at 

65 °C for 10 h. Finally, the products were kept at 500 °C in air for 2 h to 

obtain NiMoO4 and Ni1-xFexMoO4. 

Characterization of materials 

The X-ray diffraction (XRD) was performed using Mac Science XRD (λ = 

1.5406 Å, 25 mA, 40 kV, 1° min-1 from 20 to 80°). XPS measurements 

were carried out on a Phoibos 100 analyzer, using monochrome Al Kα 

(hv=1486.6 eV) as the X-ray excitation source. The sample morphologies 

were recorded by the field emission scanning electron microscope (SEM, 

JEOL JSM-7500FA, 10 kV) and transmission electron microscopy (TEM, 

JEOL JEM-2010, 200 kV). The specific surface areas of the samples 

were measured by a TriStar II 3020-BET/BJH analyzer. 

Electrochemical Measurements 

The electrochemical performance were tested by rotating disk electrode 

system (Pine Instruments, WaveDriver), which were performed in 1 M 

KOH aqueous solution. The reference and counter electrode is  

Mercury/Mercuric oxide (Hg/HgO, 1 M KOH) and platinum foil, 

respectively. The working electrode was a glassy carbon electrode 

(0.196 cm-2) coated with different catalyst samples. For sample 

preparation on rotating disk, 2.0 mg catalyst was dispersed in a mixed 

solution (Nafion solution: 8 µL, deionized water: 192 µL, isopropanol: 100 

µL). The mixture was ultrasonicated for 1 h to obtain homogeneous 

dispersion. 10 µL of the dispersion was coated on the polished GC 

electrode. The electrode was then dried and used for electrochemical 

studies. The rotating speed was set at 1600 rpm to prevent O2 

concentrate on the electrode surface. Before LSV test, the catalysts were 

first activated by CV test (1.0 to 1.7 V vs. RHE, 10 mV s-1) for 30 cycles. 

LSV polarization curves were acquired at 5 mV s-1 to illustrate the 

catalytic activity, corrected with 95% iR compensation. 

Chronopotentiometry measurement was performed at 10 mA cm-2 to 

measure the stability performance. EIS was tested at 0.6 V (vs. Hg/HgO) 

with the frequency ranging from 0.1 to 100 kHz. The ECSA was 

evaluated by calculated the CDL of the samples based on the CV curves 

via Equ. (1).[17b] The potential window of CV was 0.3-0.4 V vs. Hg/HgO, 

and the scan rates were set at 10, 20, 50, and 100 mV s-1.  

           𝑖𝑎−𝑖𝑏
2

= 𝑣 ∙ CDL                                                           (1) 

By plotting Δi and scan rate, values of CDL can be determined by the 

slope. ia and ic are the currents at 0.35 V vs. Hg/HgO, v is scan rate. 

The TOF of the electrocatalysts were determined by Equ. (2) and (3). 

 

                                          n=
mmass 

M
                                               

(2) 

   

                                  TOF =
𝐽𝐴

4Fn
                                                       

(3) 

 

where n is the number of moles of the active sites (Ni) on the rotating 

disk electrode, mmass is mass loading of active materials and M is molar 

mass of active materials, respectively. J is the current density at 

overpotential of 300 and 350 mV in A cm-2, A is the area of the rotating 

disk electrode (0.196 cm-2) and F is the Faraday constant (96485 C mol-

1). The TOF was calculated assuming a 100% Faradic efficiency.  
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