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Exploring the Dynamics of Glasses Using Beta Detected NMR

Abstract
We report 8Li spin lattice relaxation in two forms of the molecular glass TPD, one a normal glass and one
prepared in an ultrastable configuration. The relaxation is remarkably fast, similar to 8Li relaxation in other
organic materials and shows a stretched exponential behavior typical of glasses with a small stretching
exponent β = 0.3. At low temperature, there is little or no difference between the two glasses, while above 250
K, the relaxation in the denser ultrastable form is faster. In addition, in this temperature range, the data shows
a significant thermal hysteresis.
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We report 
8
Li spin lattice relaxation in two forms of the molecular glass TPD, one a normal 

glass and one prepared in an ultrastable configuration. The relaxation is remarkably fast, similar 

to 
8
Li relaxation in other organic materials and shows a stretched exponential behavior typical 

of glasses with a small stretching exponent 𝛽 = 0.3. At low temperature, there is little or no 

difference between the two glasses, while above 250 K, the relaxation in the denser ultrastable 

form is faster. In addition, in this temperature range, the data shows a significant thermal 

hysteresis.  
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1.  Introduction 
Glasses combine the disordered structure of a liquid with the mechanical properties of 

a solid. Ordinary molecular glasses are prepared by cooling the liquid as slowly as 
possible while still avoiding crystallization. A glass is formed when the molecular motion 
becomes too slow for the constituent molecules to attain equilibrium configurations; the 
temperature at which this occurs is defined as the glass transition temperature (Tg). 
Glasses are thermodynamically unstable, and they generally anneal slowly, undergoing 
molecular rearrangements that explore a complex energy landscape. However, since the 
glass is solid-like, the process of “aging” is very slow. In contrast, ultrastable molecular 
glasses can be obtained by vapour deposition of a thin film onto a substrate held at a 
temperature below the glass transition [1-3]. The most stable of these are formed when 
the temperature is 70-90% of Tg. Ultrastable glasses (USG) have higher densities, and are 
more stable than the corresponding ordinary glasses (OG). It has even been suggested that 
they are equivalent to annealing the conventional glass for thousands of years [4]. Here 
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we use spin-lattice relaxation of implanted 
8
Li to probe potential differences in the high 

frequency molecular dynamics between the USG and OG states of a molecular glass.  
Aside from higher thermal stability, the material properties of USGs may differ 

substantially from ordinary glasses, with consequences for wide-ranging applications 
from drug delivery to organic electronics [5]. Calorimetric evaluation of the stability of 
ultrastable glasses reveals a higher transition temperature than the ordinary glass 
counterpart. It has been postulated that the improved stability is due to the kinetics of the 
vapour deposition process. During deposition, the surface layer is suggested to be in a 
liquid-like state, and thus the molecules have time to reach a more favourable 
configuration before freezing. Studies of the diffusion have suggested that the molecular 
dynamics in the two types of glasses are substantially different [1,6,7].   

Glasses have extremely complex relaxational dynamics with timescales varying from 
picoseconds, for atomic vibrations, to thousands of years, for molecular rearrangements 
or “aging” [8,9]. These processes are mainly studied using dielectric spectroscopy 
however; this measurement is a bulk probe, and to completely understand the processes 
on a molecular level a local probe is essential. One such local probe is conventional NMR 
which can reveal information on both average properties and their intrinsic microscopic 
heterogeneity [10,11]. However, conventional NMR is difficult or impossible in thin 
films, due to the intrinsically weak signal.  

Previous β-NMR experiments on polymers [12,13], demonstrated that the 
8
Li spin 

lattice relaxation (SLR) is sensitive to molecular dynamics through the fluctuating 
quadrupolar interaction. In this paper, we report a preliminary exploration into the 
molecular dynamics in an ultrastable and an ordinary molecular glass thin film. The glass 
studied in this paper was made from the organic semiconductor 
N,N’-Bis(3-methylphenyl)-N,N’-diphenylbenzidine, or TPD. This medium size 
molecule (see Fig. 1) has a molecular weight of 516 amu, a glass transition temperature 
of 342.1 K, and a band gap of 3.1 eV. Due to the polyaromatic structure of TPD, we 
expect 

8
Li to bind strongly with the phenyl rings as has been observed for polystyrene 

[12,13], and this will inhibit 
8
Li diffusion.  

 

2.  Experimental 

2.1 Sample Preparation 

Two thin films of TPD glass (see Fig. 1) 
were vapour deposited onto sapphire 
substrates held at a constant temperature. 
For the ultrastable glass, the substrate was 
maintained at a temperature of 279 K (or 
0.85Tg) during the deposition, while for the 
ordinary glass it was 330 K [14]. The film 
thicknesses were determined to be 200±10 
nm by ellipsometry.  

2.2 Spectroscopy 

Beta detected nuclear magnetic resonance (β-NMR) measurements were performed 
at the ISAC facility at TRIUMF. β-NMR is a magnetic resonance technique in which a 

Figure 1. Molecular structure of TPD, a 

triphenyl amine derivative with IUPAC name: 

N,N’-Bis(3-methylphenyl)-N,N’-diphenylbenzid

ine 
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laser polarized radioactive ion beam is implanted into the sample of interest. The most 
common isotope used, and the one used in this experiment, is 

8
Li which undergoes a 

beta decay. The polarization is monitored by measuring the asymmetry of the beta decay 
along the initial polarization direction using suitably placed detectors. By changing the 
energy of the incident ion beam between 0.1 and 30 keV it is possible to analyze thin 
films, interfaces, and surfaces, similar to Low Energy μSR, but complementary due to 
its much longer radioactive lifetime and additional quadrupolar relaxation channel. For 
this experiment, SLR measurements were performed with a pulsed beam of 

8
Li, and 

with no applied RF. For this measurement, the asymmetry is measured as a function of 
time, which provides information on the different relaxation mechanisms in the system. 
For the SLR measurements performed in this experiment, the pulse length was 4 s, and 
the total measured time was 16 s. 

 

3.  Results and Discussion 
The asymmetry as a function of time for the ultrastable and ordinary glass of TPD is 

shown in Fig. 2 for four different temperatures at an applied field of 6.55 Tesla. The 
relaxation is quite fast, typical of the organic polymer glasses we have studied [12,13]. 
At 100 K, there is not much difference between the two glasses. However, as the 
temperature is increased above room temperature the difference between the two glasses 
increases. In fact, from a visual inspection, it appears as if the relaxation rate in the 
ultrastable glass becomes faster than the relaxation in the ordinary glass. In order to 
model the temperature dependence of the relaxation rates, the SLR spectra were fit 
using the following stretched exponential function:  

𝑃(𝑡, 𝑡′) = 𝐴𝑜𝑒
−(

𝑡−𝑡′

𝑇1
)
𝛽

,     (1) 

where 𝑡′ is the time of implantation, 
T1 is the spin-lattice relaxation time, 
and β is the stretching exponent. This is 
convoluted with the 4 s beam pulse in 
order to fit the data. Purely 
phenomenologically, we found that 
good fits to all the data could be 
obtained with a fixed stretching 
exponent (β) of 0.3. This has the 
practical advantage that only one 
parameter (T1) is required to describe 
the relaxation. Examples of the fit 
curves can be seen overlaid with the 
raw data in Fig. 2. The small value of β 
might suggest the presence of a 
nonrelaxing component. For the fastest 
relaxation (at the highest temperature), 
however, allowing β to vary yields an 
upper limit for a nonrelaxing fraction 
of only a few percent. Figure 3 shows 
the temperature dependence of the 

Figure 2. Comparison of the raw spin lattice 

relaxation spectra of the ultrastable and ordinary 

glasses at 100 K and 317 K. In addition, the fits to the 

data have been plotted with solid lines. The data was 

taken at 6.55 T, and 6.9 keV. 
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relaxation rate in the USG and OG samples upon cooling from room temperature. The 
relaxation rates look identical within error below 250 K however, above 250 K the 
relaxation in the USG becomes faster.  

   As in polystyrene [12,13], we expect the implanted 
8
Li

+
 in TPD is rather strongly 

bound to one or more of the phenyl rings of the molecule. This binding is sufficiently 
strong that one can consider the 

8
Li

+
 as bound, and not diffusing. In this situation, high 

frequency molecular dynamics 
will modulate the electric field 
gradient at the 

8
Li

+
 site, with a 

spectral component at the 
nuclear Larmor frequency 
(~41.3 MHz) that causes 
spin-lattice relaxation. The high 
frequency molecular motion 
that gives rise to the 

8
Li 

relaxation is probably related to 
the wagging and rotation of the 
phenyl rings, in analogy of 
what has been observed for 
polystyrene [13,14]. The 
quadrupolar interaction is 
likely the dominant source of 
relaxation for the 

8
Li, making it 

qualitatively similar to that of 
spin 1 deuterium NMR in 
organic and polymeric glasses.   

For polymeric glasses, such 
as polystyrene, compressing 
the polymer triaxially (causing 
densification) is thought to be equivalent to “aging” the material for thousands of years. 
2
H NMR studies on densified polystyrene glasses, have shown an increase in the 

2
H 

relaxation rate with increasing densification [15]. This result is still not well understood; 
however, the answer may be related to why the relaxation rate is higher in the 
ultrastable TPD glass. The temperature dependence of the relaxation rate has an 
activated character at higher temperatures (Inset of Fig. 3), representing the average 
activation barrier for a relaxation process in TPD glass. The barriers (slopes) appear 
quite similar, but higher temperatures are required to determine whether there is a 
significant difference between USG and OG states. When the samples were heated from 
low temperature, we found some hysteresis in the relaxation. Specifically, the relaxation 
rate in both samples was systematically faster than during the cooling cycle shown in 
Fig. 3. We do not believe this is due to incomplete thermalization of the sample during 
the measurements, but rather is intrinsic to the material. Further studies will be required 
to understand this effect.  
 

4.  Summary 
A comparison was performed between the 

8
Li relaxation rate in an ultrastable and an 

ordinary molecular glass of TPD. The experiments show that there is not much difference 

Figure 3. Relaxation rate as a function of temperature for 

the ultrastable and normal glass, during cooling from room 

temperature at an average rate of about 20 K per hour. The 

lines are guides for the eye. The inset shows the relaxation 

times on an Arrhenius scale. 
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between the 
8
Li relaxation rates below 250 K. However above 250 K, the relaxation rate 

in the USG becomes faster than in the OG. Although puzzling, it is consistent with results 
from 

2
H NMR on densified polystyrene glasses; where the relaxation rate was found to be 

faster in the “older” (denser) polystyrene [15].  
The 

8
Li relaxation rate in both molecular glasses also showed temperature hysteresis. 

We are confident that the temperature hysteresis does not arise from the incomplete 
thermalization of the molecular glass. However, the origin of the hysteresis currently 
remains a mystery.  
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