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Abstract

We present a qualitative and quantitative study of magneto-thermoelectric effect of graphene. In the

limit of impurity scattering length being much longer than the lattice constant, the intra-valley scattering

dominates the charge and thermal transport. The self-energy and the Green’s functions are calculated in the

self-consistent Born approximation. It is found that the longitudinal thermal conductivity splits into double

peaks at high Landau levels and exhibits oscillations which are out of phase with the electric conductivity.

The chemical potential dependent electrical resistivity, the thermal conductivities, the Seebeck coefficient,

and the Nernst coefficient have been obtained. The results are in good agreement with the experimental

observations.

Keywords: graphene, thermoelectric transport, thermal transport

PACS: 72.80.Vp, 72.15.Jf, 73.50.Lw

1. Introduction

Graphene, a single-atomic-thick honeycomb-like allotrope of carbon, has attracted intense interest since it

was discovered in 2004 [1]. On the basis of its potential applications in electronic devices, the electromagnetic

responses in the graphene have been investigated. Its peculiar band structure, described by the effective massless

Dirac Hamiltonian at low-energy [2–5], results in a large amount of novel features in the electrical transport

under magnetic field [6–14]. It has been shown that graphene has many unusual thermoelectric and thermal

*Project supported by the National Natural Science Foundation of China (Grant No. 11274013,11774006), NBRP of China

(2012CB921300), and the Australian Research Council Grant (DP160101474).
�Corresponding author. E-mail: duanwy@pku.edu.cn
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transport properties [15–38]. Because of the sensitivity to the ambipolar behavior of graphene, the measurement

of thermoelectric transport properties is regarded as an effective tool to deal with the additional characteristics

of graphene, which are difficult to obtain from the electric conducting measurements. The Seebeck and Nernst

signal in the graphene have been measured in the quantum Hall (QH) regime [15–21], in which the Seebeck

coefficient displays a large peak and the Nernst signal displays a large oscillation at each Landau level (LL). The

measurement of the Seebeck coefficient exhibits an abnormal sign change around the zeroth LL in comparison

with other LLs [15–17,19]. Later, the extensions of the intrinsic thermal properties have been made towards

the investigations of the thermoelectric effect in bilayer graphene [39–41]. There have been several theories put

forward to explain the Seebeck and Nernst effects of graphene in the QH regime [42–50]. Some of the observed

thermoelectric properties are not yet fully understood.

In this work, we perform a systematic study on the thermoelectric effect and thermal transport in the

magnetically quantized graphene. We consider the scattering range of impurity much smaller than the electron

wavelength and much longer than the lattice constant. In this limit the inter-valley scattering is much weaker

than the intra-valley scattering. By employing the self-consistent Born approximation (SCBA), the Green’s

function and the self-energy are determined. Based on the Green’s functions, all other coefficients of electrical,

thermoelectrical, and thermal transport are calculated within the linear response theory. Although the thermal

transport properties may be influenced by the acoustic and the optical phonon through inelastic electron-phonon

scattering at high temperature, the electric contribution of graphene dominates over the phonon contribution

at low temperatures. The temperature in the experiments have been confirmed below 50K [51–53]. Therefore,

we neglect the effect of phonon on the graphene and concentrate on the influence of the impurity scattering in

this work. The calculated results are in good agreement with the experimental findings.

The article is organized as follows. In the next section, we present the Hamiltonian describing the electrons

under a strong magnetic field. The intra-valley interaction potential for the impurity scattering is introduced.

The Green’s function with a self-energy correction from the intra-valley impurity scattering is calculated within

the SCBA. In Sec. III, we present the general relations between the thermoelectric transport coefficients. In Sec.

IV, we calculate the thermoelectric response coefficients. The results have been compared with the experimental

measurements. A summary is given in Sec. V.

2. Hamiltonian and Green function in SCBA

2.1.The graphene in presence of a magnetic field

Utilizing the k · p method or with the effective-mass approximation [54–58], the nearest-neighbor tight-

binding model of graphene without the impurity scattering leads to an effective Hamiltonian

H0 = vF(τ0 ⊗ σxpx + τz ⊗ σypy), (1)

where vF is the Fermi velocity. In this expression, σx, σy, and σz are the Pauli matrices describing the pseudo

spins, τx, τy, and τz are the Pauli matrices describing the valleys K and K ′ in the reciprocal space, σ0 and

τ0 are 2 × 2 identity matrices. In the presence of a uniform magnetic field in the direction perpendicular to

the graphene sheet, p is replaced by the mechanical momentum π = p+ eA. In the Landau gauge, the vector

2



potential takes the form A = (0, Bx, 0) (we use the SI units and electron charge is −e (e > 0)). We shall neglect

the Zeeman energy since it is much smaller than the LL spacing. The wave function should be written in a

basis

Ψ = (ψAK , ψBK , ψAK′ ,−ψBK′)
T
, (2)

where T stands for the transpose, ψ(A/B)(K/K′) are the components of the spinors, and A and B represent the

two inequivalent carbon atoms in the honeycomb hexagon lattices of graphene. The states can be obtained by

solving the eigen equation H0Ψ = ϵΨ. The eigenvalues are

ϵn = sgn (n) ~ω
√
|n|, (3)

and the eigenstates are given by Ψη
n,ky

(x, y) = Cn

(
1/
√
Ly

)
eikyyΦη

n,ky
(x), with

Φ+
n,ky

(x) =
(
−i ∗ sgn (n)ϕ|n|−1,ky

(x) , ϕ|n|,ky
(x) , 0, 0

)T
, (4)

and

Φ−
n,ky

(x) =
(
0, 0, ϕ|n|,ky

(x) ,−i ∗ sgn (n)ϕ|n|−1,ky
(x)

)T
, (5)

where Cn = 1 for n = 0 and 1/
√
2 for n ̸= 0, sgn (x) is the sign function,

ϕ|n|,ky
(x) =

exp
[
− 1

2 (
x+kyl

2

l )2
]

(2|n| |n|!
√
πl)1/2

H|n|(
x+ kyl

2

l
),

n is a integer number, Hn (x) is the Hermite polynomial, ky is the wave vector along y direction, l =
√
~/eB,

~ω =
√
2~vF/l, and η = ±1 for the K (+) and K ′ (−) valleys, respectively.

2.2. Intra-valley impurity scattering

Now we consider the impurity scattering. Utilizing the k · pmethod or with the effective-mass approximation [54–60],

the effective potential with impurity scatters at rζi (ζ = A,B) are given by

U (r) =
∑
ζ,rζ

i


uA(r − rζi ) 0 u′A(r − rAi )e

iθA
i 0

0 uB(r − rζi ) 0 u′B(r − rBi )eiθ
B
i

u′∗A(r − rAi )e
−iθA

i 0 uA(r − rζi ) 0

0 u′∗B(r − rBi )e−iθB
i 0 uB(r − rζi )

 , (6)

where θζi = (K ′ − K) · rζi . If the effective range of the impurity potential is much smaller than the typical

electron wavelength, (which is the case near the Dirac point), the r-dependent potentials can be approximated

by δ(r − ri). On the other hand, if the effective range of the impurity potential is larger than the lattice

constant, the inter-valley scattering between K and K ′ valleys can be neglected [56,58–60]. This argument was

used to classify the intra-valley potentials as a type of long-range potentials by T. Ando et al . [56,60]. The

scattering potential is written as,

Ui (r) = τ0 ⊗ σ0uiδ(r − ri), (7)

where ri is the impurity position and ui is the intensity of the scattering. The intra-valley scattering forbids

the scattering between the states in K and K ′ points. Including the scattering potential in Eq. (7), the full

Hamiltonian is given by H = H0 + U (r), where U (r) =
∑

i Ui (r).
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2.3.Green’s function with the self-energy corrections in SCBA

The Green’s function is defined by G (ϵ) = [ϵ−H]
−1

. The matrix elements of unperturbed Green’s function

in the representation of the LL basis are diagonal, i.e., G
(0)
αα′ (ϵ) = ⟨α| [ϵ−H0]

−1 |α′⟩ = δαα′G
(0)
α (ϵ), where

G(0)
α (ϵ) =

1

ϵ− sgn (n) ~ω
√
|n|
, (8)

specified in a set of quantum numbers α = (η, n, ky).

The electron-impurity scattering is studied through the impurity-averaged Green’s function within the

SCBA. The disorder term Eq. (7) is treated perturbatively with respect to the impurity-free Green’s function

G
(0)
α (ϵ). Averaging over all possible configurations of random distributions of impurities, the matrix elements

of G (ϵ) are given by Dyson’s equation,

⟨Gαα′ (ϵ)⟩ = δαα′G(0)
α (ϵ) +G(0)

α (ϵ)
∑
α′

Σαα′ (ϵ) ⟨Gαα′ (ϵ)⟩ , (9)

where the self-energy Σαα′ (ϵ) is introduced within the SCBA,

Σαα′ (ϵ) =
∑
α1α′

1

⟨
Uαα1Uα′

1α
′ (ϵ)

⟩ ⟨
Gα1α′

1
(ϵ)

⟩
, (10)

and G (ϵ) = [ϵ−H0 − Σ(ϵ)]
−1

. The average Green’s function and the self-energy can be derived self-consistently

for random impurities
⟨
(ui)

2
⟩
= u2. The concentration of impurities is given by nim. The self-energy can be

decomposed into a diagonal part Σ̄(D) (ϵ) and a off-diagonal part Σ̄(O) (ϵ), i.e.,

Σαα′ (ϵ) = δαα′Σ̄(D) (ϵ) + δα,−α′Σ̄(O) (ϵ) , (11)

where ±α = (η,±n, ky) is a composite quantum number. The off-diagonal elements between the LL indices +n

and −n are non vanishing. The self-energy terms in above equation can be written as

Σ̄(D) (ϵ) =
V

2
(~ω)2

Nc∑
n=−Nc

[
Ḡ(D)

n (ϵ) + Ḡ
(O)
0 (ϵ)

]
, (12)

and

Σ̄(O) (ϵ) =
V

2
(~ω)2

Nc∑
n=−Nc

[
Ḡ(O)

n (ϵ) + Ḡ
(D)
0 (ϵ)

]
, (13)

where the dimensionless parameter V = nimu
2/

(
4πv2F

)
is a measure of the intensity of scattering within the

SCBA.

The impurity-averaged Green’s functions are reduced to the form

⟨Gαα′ (ϵ)⟩ = δαα′Ḡ(D)
n (ϵ) + δα,−α′Ḡ(O)

n (ϵ) , (14)

where

Ḡ(D)
n (ϵ) =

ϵ+ ϵn − Σ̄(D)(
ϵ+ ϵn − Σ̄(D)

) (
ϵ− ϵn − Σ̄(D)

)
−

(
Σ̄(O)

)2 , (15)

and

Ḡ(O)
n (ϵ) =

Σ̄(O)(
ϵ+ ϵn − Σ̄(D)

) (
ϵ− ϵn − Σ̄(D)

)
−
(
Σ̄(O)

)2 . (16)

The scattering matrix elements between different quantum states are given by

Unn′,kyk′
y,ηη

′ = uiδqy,ky−k′
y
δηη′e−iq·riCnCn′sgn (n) sgn (n′)

[
I|n|,|n′| + I|n|−1,|n′|−1

]
, (17)
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where

I|n|,|n′| = (−1)
M−N

2

N !
(

qxl√
2

)M−N

L
(M−N)
N

((
qxl√
2

)2
)

√
(|n| − 1)!

√
(|n′| − 1)!

exp

[
qxl

4
(i4lky − qxl)

]
,

N = min(|n| − 1, |n′| − 1), M = max(|n| − 1, |n′| − 1), and L
(M−N)
N (x) is the associated Laguerre polynomial.

3. Linear response theory and transport coefficients

Within the linear response theory, under an applied field and a temperature gradient, the electrical current

jC and energy current jE can be written in the general form:

jC = LCC ·E + LCE ·XE , (18)

and

jE = LEC ·E + LEE ·XE , (19)

where the external force for the temperature-gradient is expressed in the form XE = T∇ (1/T ). The coefficients

LCC , LCE , LEC , and LEE are general tensors. They can be expressed in terms of the current-current correlations

Nij together with the corrections from the magnetization Mij , Lij = Nij +Mij [61–64], with the subscripts i and

j (= C or E) standing for the charge and the energy currents in the current-current correlations. Utilizing the

Kubo-Strěda formalism, the current-current correlation Nij is given by

Nij
ab (T, µ) =

i~
L2

∫ +∞

−∞
dϵfF (ϵ)Tr

⟨[
J i
a

dG(ϵ+0)

dϵ
Jj
b δ (ϵ−H)− J i

aδ (ϵ−H) Jj
b

dG(ϵ−0)

dϵ

]⟩
, (20)

while the corrections due to the magnetization Mij are Mab
CC = 0,

MCE
ab = − e

2L2

∫ +∞

−∞
dϵfF (ϵ)Tr ⟨[δ (ϵ−H) (ravb − rbva)]⟩ , (21)

and

MEE
ab =

1

L2

∫ +∞

−∞
dϵfF (ϵ)Tr ⟨[δ (ϵ−H)H (ravb − rbva)]⟩ , (22)

where a and b denote the spatial components (x or y), ϵ±0 = ϵ ± i0, JC
a (= −eva) and JE

a (= {H, va} /2) are

the operators of charge current and energy flux, respectively, and fF (ϵ) = 1/(1 + e(ϵ−µ)/kBT ) is the equilibrium

Fermi-Dirac distribution function, L2 is the area of the system and the velocity operators v = (−i/~) [r,H].

The physical meaning of the coefficients in Eqs. (18) and (19) are: LCC = σ is the electrical conductivity,

(1/T )
[
(µ/e) + LCC−1 · LCE

]
= S is the thermopower, (1/T )

[
LEE − LEC · LCC−1 · LCE

]
= κ is the thermal

conductivity, and the thermoelectric figure of merit ZT = σxxS
2
xxT/κxx. The thermopower and the thermal

conductivity are obtained under the condition of zero electric current.

The electrical conductivity is given by σab (T, µ) = LCC
ab (T, µ) and can be written in the form

σab (T, µ) = σI
ab (T, µ) + σII

ab (T, µ) . (23)

σI
ab (T, µ) and σ

II
ab (T, µ) can be obtained from the Green’s functions by the following formula,

σI
ab (T, µ) =

∫ +∞

−∞
dϵ

[
−dfF (ϵ)

dϵ

]
σI
ab (0, µ) , (24)

and
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σII
ab (T, µ) =

gse
2~

4πL2

∫ +∞

−∞
dϵfF (ϵ)Tr

⟨
va

dG (ϵ−0)

dϵ
vbG (ϵ−0)− va

dG (ϵ+0)

dϵ
vbG (ϵ+0)− (a↔ b)

⟩
, (25)

where

σI
ab (0, ϵ) =

gse
2~

4πL2
Tr ⟨va (G (ϵ+0)−G (ϵ−0)) vbG (ϵ−0)− vaG (ϵ+0) vb (G (ϵ+0)−G (ϵ−0))⟩ , (26)

gs is the degeneracy of spin. Applying the relations v = (−i/~) [r,H] and dG (ϵ± i0) /dϵ = − [G (ϵ± i0)]
2
,

σII
ab (T, µ) can be rewritten as

σII
ab (T, µ) =

∫ +∞

−∞
dϵ

[
−dfF (ϵ)

dϵ

]
σII
ab (0, ϵ) , (27)

where

σII
ab (0, ϵ) = − gse

2

4iπL2
Tr ⟨(ravb − rbva) (G (ϵ+0)−G (ϵ−0))⟩ , (28)

The electrical conductivity is expressed as

σab (T, µ) =

∫
dϵ

[
−dfF (ϵ)

dϵ

]
σab (0, ϵ) , (29)

with σab (0, ϵ) = σI
ab (0, ϵ) + σII

ab (0, ϵ). In the calculations of σab (0, µ), we need to use the matrix elements of

the velocity operators in the representation of the LL basis

vx,αα′ = vFCn′Cnδκκ′δkyk′
y

[
i ∗ sgn(n′)δ|n|+1,|n′| − i ∗ sgn(n)δ|n|−1,|n′|

]
, (30)

vy,αα′ = vFCnCn′δκκ′δkyk′
y

[
sgn(n)δ|n|−1,|n′| + sgn(n′)δ|n|+1,|n′|

]
, (31)

and the vortex correction in the SCBA

Γ = ⟨G (ϵ) vaG (ϵ)⟩ = ⟨G (ϵ)⟩ va ⟨G (ϵ)⟩+ ⟨G (ϵ)⟩ ⟨UΓU⟩ ⟨G (ϵ)⟩ . (32)

Similar with the conductivity, it has been shown that LCE
ab (T, µ) and LEE

ab (T, µ) can be obtained in terms

of the σab (0, ϵ) through the following relations [61,63,65]

LCE
ab (T, µ) = LEC

ab (T, µ) = −1

e

∫
dϵ

[
−dfF (ϵ)

dϵ

]
ϵσab (0, ϵ) , (33)

and

LEE
ab (T, µ) =

1

e2

∫
dϵ

[
−dfF (ϵ)

dϵ

]
ϵ2σab (0, ϵ) . (34)

4. The magneto-transport coefficients of graphene

The thermoelectric and thermal response coefficients can be obtained by Eqs. (29), (33), and (34). In the

following subsection, we will evaluate the conductivity tensor by the Green’s functions within the SCBA.
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4.1.Analytical formula for calculating the conductivity

4.1.1. The longitudinal conductivity

The longitudinal conductivity is σxx. Since (rxvx − rxvx) = 0, therefore Eq. (28) shows σII
xx (0, ϵ) = 0. The

longitudinal conductivity is σxx (T, µ) = σI
xx (T, µ) =

∫ +∞
−∞ dϵ [− (dfF (ϵ) /dϵ)]σI

xx (0, ϵ), where

σI
xx (0, ϵ) = 2Yxx (ϵ+0, ϵ−0)− Yxx (ϵ+0, ϵ+0)− Yxx (ϵ−0, ϵ−0) , (35)

with

Yab (ϵ, ϵ
′) =

gse
2~

4πL2
Tr ⟨vaG (ϵ) vbG (ϵ′)⟩ . (36)

Taking account of the impurity scattering within SCBA, it is found that

Yxx (ϵ, ϵ
′) =

gse
2

2πh

∑
β=1,2

φβ (ϵ, ϵ′)

(1− 2V φβ (ϵ, ϵ′))
, (37)

where φ1 (ϵ, ϵ′) =
[
(~ω)2 /2

]∑
n≥0 g̃

−
n+1 (ϵ) g̃

+
n (ϵ′) and φ2 (ϵ, ϵ′) =

[
(~ω)2 /2

]∑
n≥0 g̃

+
n (ϵ) g̃−n+1 (ϵ

′). We define

g̃±n (ϵ) as g̃±n (ϵ) ≡ (1/2)
[
G̃±

n (ϵ) + G̃±
−n (ϵ)

]
, where G̃±

n (ϵ) ≡ Ḡ
(D)
n (ϵ)±Ḡ(O)

n (ϵ). The self-energy can be obtained

by self-consistently solving the equation

Σ̃± (ϵ) = V (~ω)2
Nc∑
n=0

ϵ− Σ̃∓(
ϵ− Σ̃+

)(
ϵ− Σ̃−

)
− ϵ2n

. (38)

Then the Green’s functions G̃±
n (ϵ) are obtained G̃±

n (ϵ) =
(
ϵ+ ϵn − Σ̃∓

)
/
[(
ϵ− Σ̃+

)(
ϵ− Σ̃−

)
− ϵ2n

]
, so that

g̃±n (ϵ) =
(
ϵ− Σ̃∓

)
/
[(
ϵ− Σ̃+

)(
ϵ− Σ̃−

)
− ϵ2n

]
.

4.1.2. The Hall conductivity

We now calculate the Hall conductivity σxy. σ
I
xy (0, ϵ) is found as

σI
xy (0, ϵ) = 2Yxy (ϵ+0, ϵ−0)− Yxy (ϵ+0, ϵ+0)− Yxy (ϵ−0, ϵ−0) , (39)

where

Yxy (ϵ, ϵ
′) =

gse
2

2πh

∑
β=1,2

(−1)
β+1 φβ (ϵ, ϵ′)

(1− 2V φβ (ϵ, ϵ′))
. (40)

We have σI
xy (T, µ) =

∫ +∞
−∞ dϵ [− (dfF (ϵ) /dϵ)] σI

xy (0, ϵ).

σII
xy (0, ϵ) is found as

σII
xy (0, ϵ) =

gse
2

2L2
Tr ⟨(rxvy − ryvx) δ (ϵ−H)⟩ , (41)

where we have used the relation δ (ϵ−H) = (i/2π) [G(ϵ+0)−G(ϵ−0)]. σ
II
xy (T, µ) can be written as

σII
xy (T, µ) =

gse
2

2L2

∫ +∞

−∞
dϵfF (ϵ)Tr

⟨
(rxvy − ryvx)

dδ (ϵ−H)

dϵ

⟩
.

Under the Landau gauge, we haveA = B (0, x, 0) for the magnetic field along the z-axisB = (0, 0, B). The terms

in the trace can be written in the form (1/2)Tr [(rxvy − ryvx) dδ (ϵ−H) /dϵ] = − (1/e) ∂ [Trδ (ϵ−H)] /∂B.

σII
xy (T, µ) becomes σII

xy (T, µ) = −
(
gse/L

2
) ∫ +∞

−∞ dϵfF (ϵ) ⟨∂Trδ (ϵ−H) /∂B⟩. Because the particle number

is found as N (T, µ) = gs
∫ +∞
−∞ dϵfF (ϵ)Trδ (ϵ−H), σII

xy (T, µ) is expressed in terms of the particle number
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σII
xy (T, µ) = −

(
e/L2

) ⟨
(∂N (T, µ) /∂B)µ

⟩
. Utilizing the density of state D (ϵ) = −

(
gs/π

2l2
)∑

n Im ⟨Gnn(ϵ+0)⟩

and N (T, µ) = −
(
gseB/π

2~
) ∫ +∞

−∞ dϵfF (ϵ)
∑

n Im ⟨Gnn(ϵ+0)⟩, σII
xy (T, µ) is found as

σII
xy (T, µ) =

2gse
2

πh

∫ +∞

−∞
dϵfF (ϵ)

∑
n

Im ⟨Gnn(ϵ+0)⟩+
gse

2

πh

∫ +∞

−∞
dϵ
∂fF (ϵ)

∂ϵ

∑
n

ϵnIm ⟨Gnn(ϵ+0)⟩ . (42)

Finally, we obtain the Hall conductivity σxy (T, µ) = σI
xy (T, µ) + σII

xy (T, µ).

4.2.Thermoelectric coefficients

In the following we present the numerical results of the thermoelectric coefficients as a function of the

chemical potential.

4.2.1. Resistivities ρxx and ρxy

xx V0.001

xx V0.02

xy V0.001
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Fig. 1. (Color online) (a) The longitudinal resistivity ρxx and Hall resistivity ρxy , (b) the Seebeck coefficient Sxx

and Nernst coefficient Sxy , (c) the thermal conductivity κxx and thermal Hall conductivity κxy as a function of µ

with different V at temperature T = 5K.

Using Eqs. (35), (39), and (42) we can obtain the conductivities σxx and σxy, numerically. The longitudinal

resistivity ρxx and the Hall resistivity ρxy are obtained by using the equations, ρxx = σxx/
(
σ2
xx + σ2

xy

)
and

ρxy = −σxy/
(
σ2
xx + σ2

xy

)
.

The longitudinal resistivity ρxx and the Hall resistivity ρxy are depicted in Fig. 1(a) with several values of

V . Considering that ρxx is symmetric and ρxy is antisymmetric with respect to µ = 0, only the n ≥ 0 LL are

shown in Fig. 1(a). As it is expected ρxx displays the peaks at the LLs and vanishes between each consecutive

LL, while ρxy exhibits the typical Hall plateaus. These longitudinal resistivity ρxx and Hall resistivity ρxy are

closely related to the localization picture in the 2D integer quantum Hall effect(IQHE), i.e., the extended states

are at the center of the broaden LLs and all the other states are localized. The fluctuation of impurity scattering
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removes the sharpness of the LLs so that the LLs are broadened as shown in Fig. 1(a). For the zeroth LL

(n = 0), it is the charge neutrality point of graphene. When the chemical potential is varied through the zeroth

LL, a zero-crossing of Hall resistivity ρxy changes smoothly through zero from its negative quantized value on

the hole side to a positive quantized value on the electron side, whereas ρxx moves from a zero on the hole

side through a maximum at the charge neutrality point to another zero on the electron side. Our numerical

results of the resistivity agree with the observations in Kim’s experiment [16]. These results demonstrate that

the system is in the Hall regime. The temperature dependence of the ρxx at the charge neutrality point displays

an activated behavior. For the other LLs, the above picture does not change qualitatively. As temperature

increases, the peak values of ρxx decrease and the half widths increase for n > 0 LLs as shown in Fig. 2(a).
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Fig. 2. (Color online) (a) The longitudinal resistivity ρxx and Hall resistivity ρxy , (b) the Seebeck coefficient Sxx

and Nernst coefficient Sxy , (c) the thermal conductivity κxx and thermal Hall conductivity κxy as a function of µ

at different temperatures with V = 0.001.

4.2.2. Seebeck coefficient Sxx and Nernst coefficient Sxy

The Seebeck coefficient Sxx and Nernst coefficient Sxy are presented in Fig. 1(b) and 2(b). Sxx is anti-

symmetric and Sxy is symmetric with respect to µ = 0. It is found that as a function of chemical potential,

the Seebeck coefficient Sxx displays a series of peaks at the LLs for µ < 0 and dips at the LLs for µ > 0,

respectively. |Sxx| has a maximum while the sign of Sxy is alternated around the LLs (n ≥ 1), corresponding

to the extended states at the LLs. The appearance of zero thermoelectric response can be explained by the

existence of the localized states in the gap between adjacent LLs, similar to the longitudinal conductivity in the

IQHE. S is defined by ρ ·α, where α = (1/T ) [(µ/e)LCC + LCE ]. From this, we have Sxx = ρxxαxx − ρxyαxy

and Sxy = ρxyαyy + ρxxαxy. ρaa and αab (a ̸= b) are symmetric functions of µ, while ρab and αaa are anti-

symmetric functions of µ. As the Fermi level passes through the core of extended states where the longitudinal

resistance becomes appreciable and the Hall resistance makes its transition from one plateau step to the next.
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Their combination leads the oscillatory structure of Sxy in the vicinity of the LLs. As shown in Fig. 1(b), the

broadening of LLs due to the impurity scattering increases the width of the peaks or dips for Seebeck coefficient

Sxx and oscillations of Nernst coefficients Sxy. As temperature increases, Sxx increases and Sxy decreases for

n ≥ 1 LLs as shown in Fig. 2(b) .

The Seebeck and Nernst coefficients in the vicinity of the zeroth LL have an opposite behavior compared

with those in the higher LLs. Instead of Sxx, the Nernst coefficient Sxy displays a large peak while the Seebeck

coefficient Sxx now displays an alternate sign. The feature at n = 0 LL reflects the characteristic property of

2D relativistic fermions in the perpendicular magnetic field. Around the zeroth LL (n = 0), the Hall resistivity

change the sign because the charges have opposite sign. As analysis above, Seebeck coefficient from the edge

states is larger when the chemical potential is below the LL, and the resistivity for the holelike quasiparticles

makes Sxx negative. When the chemical potential lies near the top of the lowest LL, i.e., in the electron side, the

Sxx has a similar behavior as that in the higher LLs. Hence, the Seebeck coefficient Sxx displays an alternate

sign. Similarly, the Hall effect with the carrier flux driven by the temperature gradient predominates the Nernst

coefficient when the chemical potential near the edge of band lies below the LL. So Sxy is positive. Binding this

with that in the electron side leads to occur a maximum of Sxy in the vicinity of the lowest LL. Experimentally

Sxx changes the sign from a dip to a peak with increasing µ around µ = 0. This discrepancy with our results is

related to the lower ρxx value when µ is at the n = 0 LL, which is also observed in other theoretical calculations

by different methods [44,45]. Apart from this, the Seebeck coefficent Sxx and the Nernst coefficient Sxy are in

good agreement with the experimental results [15–17].

4.2.3. Thermal conductivities κxx and κxy
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Fig. 3. (Color online) The thermal conductivity κxx as a function of µ with V = 0.001 at (a) T = 5K and (b)

T = 10K, respectively. The results calculated from the Wiedemann-Franz law by conductivity σxx are labeled by

WFL in the legends.

Fig. 1(c) and 2(c) show the thermal conductivities as a function of chemical potential µ for n ≥ 0 LL.

The longitudinal component of thermal conductivity κxx is symmetric while the transverse component κxy is

antisymmetric with respect to µ = 0. κxx shows a peak and κxy jumps to a new plateaus when the chemical
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potential equals ϵn = sgn (n) ~ω
√

|n|. These behaviors are similar to those for the conductivities (resistivities).

However, the peaks of κxx at those higher LLs split into two peaks which also been shown in Ref. [47] and

these split double peaks smear to one peak with increasing the impurity. In addition, the transverse thermal

conductivity exhibits a sign reversing behavior when the chemical potential skims over the zeroth LL as shown in

Fig. 2(c). The sign reversing in κxy implies the effects of thermally excited electrons and holes for the zeroth LL

state. The thermal conductivity contributions arising from electrons and holes are not simply additive, but in

combination they give rise to an additional contribution known as the bipolar effect. In order to check the validity

of the Wiedemann-Franz law, the thermal conductivity calculated by κxx = L0σxxT where L0 = π2k2B/(3e
2)

are shown in Fig. 3 for comparison with the numerical results. We see that at the central region of the LL, the

Wiedemann-Franz law is violated. As shown in Fig. 3(b), because of the split double peak structure of κxx and

the non-constant space between nearest LLs, the peaks of nearest LL merge into one peak when n > 6 which is

the origin of the out of phase oscillations with electrical conductivity in Ref. [43], eventhough the double peaks

are clear when n < 6. At low temperature, the broaden of the LLs is narrow and the double peak structure is

still clear as shown in Fig. 3(a). It is found that the enhance of impurity scattering results in enhancing κxx

and suppressing κxy as shown in Fig. 1(c). This double peak structure of longitudinal thermal conductivity in

high LLs and the anomalous jump at the zeroth LL with a sign reversal in the transverse thermal conductivity

have not yet been observed experimentally.

From the thermal and electrical transport coefficients, the thermoelectric figure of merit ZT is calculated

and is shown in Fig. 4. ZT exhibits resonant like structure. The magnetically quantized graphene is a very

good thermoelectric materials when the chemical potential is pinned to first LLs. This excellent ZT can be

the basis for expanding thermoelectrical application of graphene [66,67]. For practical applications with sufficient

power output, graphene with high carrier concentration is required. This would require a high magnetic field

to locate the chemical potential in the first LL. A trade-off between the efficiency ZT and the power needs to

be considered to determine the optimal condition.
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Fig. 4. (Color online) The thermoelectric figure of merit as a function of µ (a) at T = 20K with different V and

(b) with V = 0.001 at different temperatures.
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5. Summary

We have calculated the charge and thermal transport coefficients in magnetically quantized graphene in the

presence of intra-valley impurity scattering. The Green’s function and the self-energy were calculated in SCBA.

A detailed investigation of the electrical and thermal properties of graphene in a magnetic field is performed by

means of the Kubo-Strěda formula in the presence of impurity scattering and thermal broadening. The results

agree with experiments qualitatively. The features of Seebeck coefficient and the transverse thermal conductivity

at the zeroth LL are discussed associated with the intensity of impurity scattering. The sign reversal in Seebeck

coefficient and the transverse thermal conductivity imply the effects of thermally excited electrons and holes for

the zeroth LL state. The impurity scattering may result a bipolar effect from these thermally excited electrons

and holes. Finally, our results of the thermoelectric figure of merit suggest that an external strong magnetic

field could be used to effectively enhance the ZT .
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