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Abstract

Few regions on earth remain untouched by fishing activity. As such, effective long-
term no-take marine reserves (NTMRs) and other area-based management systems 
that restrict fishing serve as vital reference areas for assessing the magnitude and 
recovery potential of marine ecosystems from human influence over both space and 
time. Much of the peer-reviewed literature and meta-analyses demonstrate variable 
but overall positive responses to such protection for fish and some other taxa.  These 
include significant increase of stock species abundance and biomass within boundaries, 
cross-boundary spill-over of adults and larvae, and increased egg production. A 
reserve may meet its biodiversity objectives and contribute to fished stocks, however, 
determining the extent of that contribution depends on several factors. These factors 
include: understanding and monitoring the species biology, and the effectiveness of 
and compliance with management, and changes in fishing pressure external to the 
NTMR or other type of spatially-managed area from which some fishing activities 
are excluded. This presents significant data and cost challenges of scope, scale and 
monitoring method for assessment of NTMRs and fishery management throughout 
the, often extensive, range of the stock. The situation is one in which proof is hard to 
establish and absence of proof of effect is not proof of absence of effect (the issue of 
Type I and Type II errors in experimental design).

The response of marine biota to the implementation of a fishery closure typically take 3 
to 5 years to appear. In contrast, the loss of access to fishing opportunities is immediate 
and is particularly challenging for fishers with high dependence on it.  This raises 
the need to engage with stakeholders to address issues such as displacement of effort 
to other areas already subject to fishing and may require compensation or support 
for development of alternative economic activities to achieve effective temporary or 
permanent removal of fishing effort. In situations where the benefits from closures are 
uncertain, scientists, planners and managers need to express due caution in forecasting 
their contribution to stock rebuilding. Unrealistic expectations and unrealised benefits 
harm relationships with stakeholders and undermine future management relationships 
that depend on trust.  

Performance evaluation of NTMRs or other area-based management measures in 
relation to the different primary objectives of conservation of fish stocks and holistic 
conservation of marine biodiversity presents data challenges. These challenges are 
exacerbated in the broader multi-sectoral context of blue economy uses and land-
sourced and atmospheric impacts that affect marine biodiversity.  The scope, scale 
and precision of data required for the management and evaluation of fish and shellfish 
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stocks throughout their range differ from the data-reporting required to evaluate 
and achieve holistic biodiversity conservation within protected areas and networks 
of protected areas. This mismatch limits the capacity to discriminate the effect of a 
protected area on stocks that function at large spatial scales. A convergence of the 
conservation and fisheries science communities is required to scale data collection 
appropriately to understand more fully the contribution of protected areas to the 
conservation of commercially exploited species.

1.	 Background

For most of history prior to the 19th century, fisheries have been locally based, seasonal 
and often varied considerably according to longer-term natural variations in species 
availability. Consequently, there was a prevailing understanding that the scale of human 
activities was unlikely to have significant impacts at an oceanic scale.  Historical access 
(e.g. exploitation of cod on the Grand Banks in the 15th century) of distant fish stocks 
was constrained by vessel capability, the high risks of seafaring and challenges of product 
preservation (Jennings et al., 2001). Late 19th century concern at the decline of fish stocks 
in the North Sea led in the 20th century to the development of marine science, and concepts 
of management for conservation of fish stocks and more recently biological diversity. 

The vulnerability of marine ecosystems to the application unsustainable human 
pressures is increasingly evident. Wild caught fisheries peaked in terms of landings by 
the 1990s followed by a decline to c 80 Mt at present (FAO, 2016). Natural refuges have 
reduced because of the increases in the range and scale of fishing capacity, precision 
of navigation and fish finding technologies, and degradation of habitat as a secondary 
effect of fishing. There is also an increasing range of economic uses of marine space 
and coastal lands that impact (but do not depend on) on the productivity or well-
being of marine ecosystems (e.g. land-based pollution, coastal developments, shipping, 
renewable energy installations, mining). The links between biodiversity and ecosystem 
services such as primary and secondary production (including fisheries production) 
are supported by a variety of lines of evidence (see Worm et al., 2006). For these 
reasons, there has been a steady convergence of fisheries and biodiversity conservation 
management objectives over the last 20 years. Hence it is no surprise that some of the 
tools used by managers to achieve these management objectives have considerable 
overlap, e.g. the use of area closures or fishing gear restrictions.

The concept of using closed areas to limit human activities is not new. Customary 
management of local fisheries includes examples of the use of permanent, seasonal and 
temporary closures (e.g. Johannes, 1981). Nevertheless, the more recent concept of 
closures for the protection of biodiversity has often generated conflict between fishing 
and conservation interests. This is arguably a distraction from the shared interest 
in sustaining biodiversity and food production in the context of increasing human 
activities and impacts affecting marine space.   

In this chapter we present a summary of the state of knowledge and challenges 
of assessing the effects that areas closed to fishing may have in terms of fish stock 
rebuilding irrespective of whether the primary objective of the closures was biodiversity 
conservation. We provide brief overviews (but not a comprehensive survey) of reported 
outcomes of the utilisation of different categories of marine protected areas that exclude 
fishing through no-take marine reserves (NTMRs) or other management systems that 
include area closures or preclude some form of fishing from a specified area of the sea. 
NTMRs are also referred to as No-Take Zones, or MPAs categories I and II, as defined 
by the International Union for the Conservation of Nature (IUCN) classification (Day 
et al., 2012) and they exclude all extractive forms of activity (e.g. fishing). 
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2.	 Policy drivers and inevitable tensions

The primary objectives of fish stock and biological diversity conservation differ but 
both depend on the wellbeing of the marine environment in the face of the increasing 
range and extent of human uses and their associated impacts on marine ecosystems. The 
extent to which a spatial closure may contribute to fish or shellfish stock maintenance 
or rebuilding depends on the biology of the target species; the management of the 
fishery throughout its range and the ability to achieve user or stakeholder engagement 
and compliance with fishery and MPA measures.   

The international framework for conservation of marine fish stocks and biodiversity is 
provided through the United Nations Convention on Law of the Sea (LOSC) and the 
United Nations Convention on Biological Diversity (CBD).  

•	 Article 61 of LOSC refers to conservation of “living resources through measures 
designed to maintain populations of harvested species at levels that can maintain the 
maximum sustainable yield”. The primary objective of fisheries management is to 
achieve maximum sustainable yield of living natural resource stocks;

•	 Article 8 of CBD identifies protected areas as a primary means of addressing 
conservation of biological diversity.  The primary objective is conservation of 
biodiversity which is defined as: “diversity within species, between species and of 
ecosystem” at levels from populations, species and communities to ecosystems. 

The IUCN definition of a marine protected area is: A clearly defined geographical 
space, recognised, dedicated and managed, through legal or other effective means, to 
achieve the long-term conservation of nature with associated ecosystem services and 
cultural values. The IUCN has six broad categories of protected area (Dudley, 2008).
 
Day et al. (2012) have provided guidance on how IUCN categories should be applied 
and interpreted in the marine context of sustainable use, cross-boundary and multi-
directional linkages of the seabed and water column. For all practical purposes, 
Marine Protected Areas (MPAs) are spatially defined areas in which human activities 
are more explicitly controlled than outside them. Impact assessment and specific 
conditions are typically required for a new or altered form or level of activity.  
For any activity the control may be defined within a spectrum ranging from total 
prohibition of any use, to specific uses allowed with permit, subject to environmental 
impact assessment and consequent conditions, and to uses that are allowed subject to 
any general constraints or operational conditions defined in regulation. 

The most restrictive conditions exclude fishing in IUCN MPA categories I and II 
or NTMRs (also referred to as No-Take Zones). Category I excludes all access and 
activities other than for approved research and management actions while category 
II provides for access and enjoyment of areas free from extractive activities. Fishing 
activities with significant habitat impact such as trawling and dredging are excluded 
from reserves aimed at habitat protection (IUCN category IV). Multiple- use areas 
(Category VI) are consistent with the overall conservation objective that provides for 
verifiably sustainable human use and impacts. Such management systems often include 
buffers zones with higher levels of protection than other parts of the same system.  The 
term MPA is often used as a generic name for NTMRs, creating regrettable confusion.
 
The different concepts of conservation implicit in international targets for restoration 
of fish stocks and marine biodiversity conservation create further regrettable confusion. 
Targets have been set and extended since the 2002 WSSD Plan of Implementation (§31 
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and 32). The most recent reiteration was contained in United Nations Sustainable 
Development Goal 14 (United Nations, 2016): 

•	 14.2 By 2020, sustainably manage and protect marine and coastal ecosystems to 
avoid significant adverse impacts, including by strengthening their resilience, and 
take action for their restoration in order to achieve healthy and productive oceans;

•	 14.4 By 2020, effectively regulate harvesting, and end overfishing, illegal, unreported 
and unregulated (IUU) fishing and destructive fishing practices and implement 
science-based management plans, to restore fish stocks in the shortest time feasible at 
least to levels that can produce maximum sustainable yield as determined by their 
biological characteristics;

•	 14.5 By 2020, conserve at least 10 percent of coastal and marine areas, consistent with 
national and international law and based on best available scientific information.

The target of conserving 10% of coastal and marine areas reiterates the CBD Aichi 
Target 11 of the UN Convention on Biological Diversity (CBD, 2011)1. This target is 
not strictly about MPAs, as it calls for the consideration of “other effective area-based 
conservation measures” This definition opens the possibility to assess the contribution 
to the conservation of biodiversity that could be made by implementing spatial area 
closures as fishery management tools. The use of closures in fish stock conservation 
mostly addresses protection of fish stocks at vulnerable life cycle stages and is designed 
to minimize and mitigate the collateral impact of fisheries on biodiversity.

The use of NTMRs in biodiversity conservation provides for holistic protection 
of marine biodiversity in precautionary networks of healthy representative marine 
ecosystems to provide resilience in the face of increasing human impacts and 
environmental change. Typically, there is competitive tension between the social, 
economic and political drivers of fish stock and biodiversity management systems. 
Depending on context, a closure intended to achieve one objective may have 
positive, neutral or negative effects for the other. The different shades of meaning of 
“conservation” reflect constructive ambiguity in developing text to address different 
and potentially conflicting sectoral priorities.   

For the purposes of this chapter, we focus primarily on the performance of NTMR 
areas that are closed for long periods of time (years) and their apparent roles in fish 
stock rebuilding irrespective of whether or not the primary objective of the closures 
was biodiversity conservation or fishery management. Whilst our main focus has been 
on the usefulness of NTMRs, we have also examined the use of habitat protection 
zones within MPAs that eliminate bottom gears but enable continuation of other 
fisheries.  We explored this literature to understand to what extent these areas can have 
significant benefits for conservation of benthic biodiversity (Sciberras et al., 2015) 

3.	 Data challenges for performance assessment of NTMRs in fish 
stock and biodiversity conservation

The performance criteria, management arrangements and monitoring of MPAs are 
elaborated to address the primary objective and scale of holistic biodiversity protection 
of a site or network. They differ markedly from those of fisheries surveys that are 
designed to assess population status across much larger geographic areas and across 

1	  Target 11: By 2020… 10 per cent of coastal and marine areas, especially areas of particular importance 
for biodiversity and ecosystem services, are conserved through effectively and equitably managed, 
ecologically representative and well-connected systems of protected areas and other effective area-based 
conservation measures…
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time. Thus, the different sampling approaches create inevitable difficulties when trying 
to determine changes in population status that might be attributable to the use of MPAs 
or other spatial restrictions.  

Effective assessment of the performance of MPAs worldwide is constrained by the 
high proportion of poorly resourced and inadequately enforced “paper parks”. Edgar 
et al. (2014) used an extensive database to investigate the ecological response of fish 
communities within MPAs and concluded that when there was an absence of evidence 
of recovery of fish biomass, in the case of many MPAs this could be attributed to 
ineffective MPA compliance and high spatial variability in fish densities.  It is also 
noteworthy that much of the literature has tended to focus on the responses of “fish” 
because these are most often the focus of exploitation and hence the group expected to 
respond most strongly to protection from exploitation.  This focus on fish means that 
we have far fewer insights into the responses of a wider range of taxa at lower trophic 
levels that might benefit indirectly from protection (Stewart et al., 2009). 

Despite these limitations, much of the peer-reviewed primary literature and meta-
analyses demonstrate overall positive responses of the studied taxa to reserve 
protection on the biomass, numerical density, species richness, and size of fished target 
species (most often fish species) within the boundaries of NTMRs. These responses 
were recorded over periods from several years to decades (e.g. Abesamis et al., 2006; 
Lester et al., 2009; Stewart et al., 2009; Russ et al., 2015; Sciberras et al., 2015).  There 
is substantial evidence that, with high compliance, NTMR closures of both reef and 
coastal fish and shellfish fisheries can lead to a demonstrably significant increase in 
population and biomass of fishery target species within the NTMR, in some cases 
after a period of several or more years (e.g. Stewart et al., 2009).  This increase in 
abundance and biomass continues thereafter until carrying capacity is reached which 
depends on the species and the environmental context (Kaiser et al., 2018).  There 
is evidence of increased larval and juvenile settlement and adult recruitment outside 
reserves (otherwise known as spillover) of fish providing an increase in CPUE or 
body-size near NTMRs (McClanahan & Mangi, 2000; Cudney-Bueno et al., 2009) 
and of increased egg production per unit area of reserve (Beukers-Stewart et al., 2006; 
Kaiser et al., 2007). 

The assessment of the effect of NTMRs and fishery closures on a fish stock requires 
consideration of the biology and history of management of the target fish species in the 
protected area and throughout its range. There are two ways in which NTMRs may 
contribute to fished stocks: (i) post-settlement and adult spillover; and (ii) net export 
of eggs and larvae from accumulated biomass of reproductively mature adults within 
the reserve.  In contrast to this rather ‘area-specific’ approach, fish stock management 
demands a more complex ‘whole stock’ approach with comprehensive sampling across 
wide geographic areas of population status (age, size-distribution, abundance) coupled 
with estimates or quantification of natural and fishing mortality. This mismatch in 
the scaling of the science to address these two different questions means that it is 
difficult to understand how one management objective impacts upon the other (either 
positively or negatively).

The monitoring conducted to inform effective fisheries management focuses primarily 
on total harvest, catch per unit effort (CPUE) and, as required, on by-catch of non-
target species. Long standing fisheries have typically existed and grown with new 
demands and technical capacity and have thus been managed with no pre-fishery 
baseline or control data. New fisheries may start with exploratory fishing and expand 
ahead of substantial scientific evaluation of stock or environmental sustainability. 
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Science-based assessment for fishery management is thus constrained by the absence of 
unfished control sites (Papworth et al., 2009) and the phenomenon of shifting baseline 
due to discontinuous records (Pauly, 1995). 

Determining the effect of a NTMR or a network of NTMRs on a fishery resource 
should be informed by (but in many cases is typically constrained by limitations of) 
detailed area-based data on the management of the fisheries and its performance on the 
target stocks and other species richness, abundance and distribution throughout the 
resources range.

A further data constraint may emerge on legal grounds of commercial confidentiality 
of high-density fishing data that could otherwise inform on the relative significance of 
areas of the stock range in terms of CPUE and cost per unit effort. Aggregating data at 
coarse spatial scales to preserve confidentiality makes it difficult to identify the broader 
effects of a positive fish stock signal from NTMR monitoring in the noise of fishing 
data throughout the population range (Hinz et al., 2013).  

The limitation of fisheries data may be partly compensated by modelling based on 
approximations and assumptions from backward-projection of stock size under zero-
fishing conditions and from similar fisheries in similar situations. These approximate 
comparators are imperfect for the target stocks or well documented non-target 
stocks and are constrained by the underlying assumption of ecosystem stability with 
respect to past and projected climatic conditions, population traits, and on the level 
of compliance with management measures.  When considering the extent to which we 
could determine the effects of a reserve on wider population status, it is important to 
acknowledge that that model predictions often have such large measures of uncertainty 
that the effects of any single reserve or network on population status would likely be 
‘lost’ within the boundaries of error within the estimated projections. It is sufficient 
to acknowledge that it remains difficult to achieve precise assessment of the large-scale 
comprehensive impacts of fisheries and their interactions with other human uses and 
impacts) affecting marine ecosystems, including of climatic oscillations and change. 

The criteria for monitoring the performance of measures designed to achieve holistic 
conservation of marine biodiversity usually focus on community metrics such as species 
abundance, extent, biomass and diversity. Adequate assessment of the performance of 
these metrics is complicated by the lack of reference areas against which to assess 
them. Often the primary focus on establishing representative areas of habitats and 
communities that are protected from impact is to enable them to act as control or 
reference sites against which the effects of direct human uses may be discerned against 
the combined effects of system dynamics and indirect human impacts from coastal run-
off and atmospheric change. 

Russ (2002) identified five measurable indicators of the status of fish community status 
within the boundaries of a reserve: 

1.	 Increased density of target species;

2.	 Increased biomass of target species;

3.	 Larger mean size/ increased age of target species;

4.	 Greater production of propagules (eggs/larvae) of target species per unit area; and

5.	 Lower or no fishing mortality (F) within reserve sites.
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The first three of these indicators can be assessed through biological monitoring. The 
fourth indicator is usually inferred from the relationship between abundance, body size 
and propagule production which is sometimes coupled with oceanographic modelling 
of propagule dispersal (e.g. Kaiser et al., 2007; Carter et al., 2017). The issue of 
quantifying fishing mortality (F) is more complex due to the challenges of acceptance 
of closure and robust monitoring to assess levels of compliance.  Poaching, illegal 
fishing and inadequate reporting of catch are frequently mentioned as constraints to 
assessing the effects of closure. In addition, while F may be reduced or eliminated 
within the boundaries of a reserve, the net effect on F at a population level may be 
neutral or even negative if fishing pressure outside the reserve increases (including 
through effort displacement) or if other human impacts or environmental change affect 
recruitment. Often, existing fisheries surveys (where they exist) will have their own 
objectives (e.g. measuring recruitment or overall biomass distribution and structure) 
and hence be spatially mismatched –in terms of data location and scale of sampling - 
with the objective of measuring increases of F specifically within areas external to a 
particular reserve. 

Limitations of data on species richness, abundance and distribution may be partly 
compensated by modelling that is based on inferences derived from seabed mapping and 
limited sampling of fish and larger invertebrates and surrogacy based on assumptions 
and extrapolations from knowledge of habitat dependencies in similar situations. 
Multibeam sonar seabed mapping can be used to describe the physical properties of 
the seabed which is then related to ground-truthing samples. The downside of such an 
approach is that the collection and processing of samples of the seabed and associated 
species is time consuming and resources are typically limited for subsequent analysis, 
particularly of small sized and soft bodied species that can be important food for fished 
species (Kenchington and Hutchings, 2012).

In well-resourced NTMR, the effects of management and science programs may be 
monitored or inferred within the boundary. However, a robust understanding of 
the broader performance of an NTMR in relation to fish stock rebuilding or overall 
maintenance of biodiversity depends on many other factors.  These include the biology 
and life-history of the target species, inter-annual environmental variation, adequacy 
of and compliance with fishery management, and other human impacts throughout the 
species adult and recruitment range.  

4.	 Performance

Adequate management and monitoring programmes may be able to demonstrate 
performance of increased biomass of species within a well-managed NTMR. Outside 
the NTMR, this may be accompanied by a reduction, increase or no change in biomass 
of target and non-target species outside the protected area (e.g. Dinmore et al., 2003). 
Attributing cause and effect of the contributions of NTMR, fishery management, and 
factors beyond either management system is challenging. Table 1 summarises possible 
causal mechanisms for observed stock biomass performance. 

Against this background we present a collection of metanalyses of reserve performance 
such as: (i) closures in small scale fisheries; (ii) the experience of Great Barrier Reef 
Marine Park; (iii) closures in demersal trawl fisheries; (iv) fisheries closures for Highly 
Migratory Species; and (v) examples of the contribution of fishery restricted areas to 
biodiversity conservation. 



MPAs, fishery closures and stock rebuilding 189

TABLE 1
Summary of the response of the status of the population of fished species coincidental with 
the effective implementation of a no-take marine reserve (NTMR) with an explanation of 
possible causal mechanisms

Indicator Possible causal mechanisms

Increased 

stock biomass

•	 Spillover of adults and juveniles from NTMR;

•	 Larval export from NTMR;

•	 Better management of fishing effort; or

•	 Strong overall recruitment, unrelated to NTMR.

Stable stock 

biomass

•	 Spillover of adults and juveniles from NTMR

•	 Larval export from NTMR

•	 No detectable impact of NTMR, or

•	 External factors offsetting NTMR spillover, or larval export such as impacts of land 

sourced pollution, other uses of marine space or climate change, compensatory 

increase in fishing effort

Reduced stock 

biomass

•	 No or inadequate spillover of adults and juveniles from NTMR 

•	 No or inadequate or larval export from NTMR

•	 Poor overall recruitment unrelated to NTMR

•	 Unsustainable fishing effort outside the NTMR, or

•	 External factors such as impacts of land sourced pollution, other uses of marine 

space, climate change or predator prey trophic interactions leading to natural 

decline in background stock biomass 

4.1	 Meta-analyses of reserve performance

Sciberras et al., (2015) and Halpern (2003) noted that the empirical literature on marine 
reserves uses a wide range of methodologies to quantify the effects of reserves on 
specific taxa, and moreover that the characteristics of reserves and control sites can 
differ dramatically, and both can be affected by inter-annual and decadal oscillations or 
stochastic impacts (e.g. Stephenson et al., 1970).  Both issues complicate comparisons 
of the performance of different MPAs. In particular, the most common shortcoming 
of comparative studies of the outcomes of MPAs is the habitat confounding effect and 
lack of adequate comparator sites for MPAs (Stewart et al., 2009). Furthermore, while 
there are numerous meta-analyses that attempt to synthesise general patterns from 
this diverse array of studies (Claudet et al., 2008; Lester et al., 2009; Sale et al., 2014; 
Sciberras et al., 2015), often the conclusions of such meta-analyses are weakened due 
to lack of rigour in the methodological approaches adopted within the review process 
which leaves them prone to bias (see Woodcock et al. 2017). Many of the more widely 
cited meta-analytical papers on the performance of marine reserves achieved only 
medium scores for rigour which is a concern if policy makers use these analyses to 
inform policy development. Nevertheless, despite the potential for bias in some meta-
analyses published to date, the conclusions are broadly similar across all syntheses. 

Sciberras et al. (2015) compared the response of target and non-target species to the 
use of NTMRs and areas with partial protection from fishing. They concluded that the 
response to protection was strongest (and positive) for target species and that NTMRs 
resulted in larger positive responses than partial protection areas. Stewart et al. (2009) 
examined the response of target species to NTMRs in temperate waters and found 
significant and positive increases in abundance, biomass and diversity. However, they 
noted that most studies were confounded by habitat effects (i.e. when the comparator 
site is not similar to the manipulated site (in this case the NTMR) and that there was 
potential bias in the reporting of the response in biomass data. Halpern (2003) provided 
a review of 89 empirical studies of the effect and the influence of size of marine 
reserves. Whilst the study was challenging because of differences in the environmental 
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and geographic context, design and methodology of studies and in many cases lack 
of rigorous standards of broader scientific literature, the overall conclusion suggested 
that reserves were generally effective. Gruss et al. (2014) reviewed results of empirical 
studies and reports of the conservation and fishery effects of 28 NTMRs specifically 
designed to protect the spawning aggregation sites of targeted species for periods 
ranging from 3 to 38 years. Whilst 12 had positive results for biodiversity conservation 
effects, 10 had negative results, 5 showed no clear change and one had no data.  There 
was no information for fishery effects in 17 of the studies, 3 results were positive, 3 
negative and 5 showed no clear change. The “non-positive direct conservation effects” 
of Fish Spawning Aggregation (FSA) protected areas were attributed mostly to poor 
or non-existent internal enforcement; small size of the FSA; exploitation of fish in 
their migration routes to the FSA; and absent or ineffective measures to control fishing 
mortality during non-aggregating times. 

While the general conclusion from most of the published analyses indicates a consistent 
positive outcome following the implementation of NTMRs and partial protection 
areas, the response in individual cases is strongly variable and there is a lack of data 
on the intensity of resource exploitation and compliance as shown in the analytical 
outputs in Stewart et al. (2009).

4.2	 Small-scale coastal fisheries

4.2.1	 Changes in community metrics

Recognition of the need for marine conservation in the late 1970s – 1980s coincided 
with the publication of studies undertaken on the West Pacific, South East Asia, Japan 
and northern Australia of surviving traditional practices of coastal fishery management 
through tenure, cultural rights, closures or taboos (e.g. Johannes, 1981; Ruddle, 1988).  
Many of these traditional practices had been displaced or weakened by colonial rule 
or were being overwhelmed by economic development or population growth. In the 
islands and coastal areas of South East Asia and the Western Pacific growing population 
combined with falling yields and low income from traditional fishing activities around 
the coral reefs provided perverse and damaging incentives to use more efficient (but 
destructive) fishing methods including explosives, poisons, muro-ami push nets, small-
mesh nets, and spear fishing using SCUBA (Russ et al., 2004).

A research and community engagement program supported and monitored by Siliman 
University in the Philippines enabled the establishment of a NTMR at Apo Island in 
1974 and Sumilon Island in 1982 with long-term monitoring of the outcomes of these 
management measures inside and outside the reserves. Importantly, the program drew 
on traditional practices and developed additional economic opportunities to enable 
participation and empowerment of community-based comparisons of reserve and non-
reserve biomass of coral reef fished species and total catch. The Apo Island observations 
included a serendipitous replication when the reserve area was re-established after a 
governance change had re-opened the reserve area to fishing for 3 years. 

Alcala and Russ (2006) reported a 3.1-fold increase of all target fish over a 9-year 
period at Sumilon Island and 4.6-fold increase over an 18-year period at Apo Island.  
For the larger predatory fish, the increases were respectively almost 12-fold and 17.3-
fold over 9 and 18 years respectively. There was a 3 to 17-fold increase in biomass of 
fished species within the reserves. Outside the reserves there was no overall increase of 
biomass. A similar outcome was reported by Guidetti et al (2008) from visual surveys 
undertaken in 15 MPAs in Italy. They found that total fish density in reserves was on 
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average 1.15 times great than in fished areas noting that the effects of protection on fish 
species and trophic groups were not detected in unenforced reserves.

In a well-monitored MPA (the Bamboung bolong, in Senegal) surveyed in 2003, 
closed by fishermen in 2004, and monitored for 5 years, total biomass, maximal fish 
length, number of species, percentage of large iconic species increased. The community 
structure was modified, with more small fish, more big fish (new large species and 
more large individuals in the original species) and fewer medium sized fish. The 
trophic structure was modified with an overall increase of the mean trophic level, 
resulting from an increase of the percentage of generalist or piscivorous predators and 
a sharp decrease of herbivorous and detritivores and other low trophic level species. 
The marine predators which numbers and size were reduced by fisheries became again 
important components of the protected system (Ecoutin et al., 2014). 

4.2.2	 Changes in measures of catch per unit effort

There are relatively few experimental studies of the effects of MPAs on the CPUE 
in surrounding fished areas. Alcala and Russ (2006) quantified changes in CPUE for 
Sumilon Island and Apo Island. They found that higher numbers of fished species 
were recorded within 200 m of the reserve boundaries together with a 50% increase 
in CPUE and a 46% reduction of total fishing effort. These observations suggest that 
a spillover effect had occurred because of the implementation of the marine reserve.  
The long-term outcome of the implementation of these reserves demonstrated that 
closure of 10 to 25% of fishing area of Apo and Sumilon islands improved CPUE and 
did not reduce the total fish yield at either island (Alcala and Russ, 2006). Guidetti 
and Claudet (2010) reported on a 3-year experimental study co-managed with fishers 
to compare CPUE in one reserve with an MPA buffer zone that was opened after 5 
years of enforced protection and then compared with the CPUE in the surrounding 
fishing ground. The objective was to maintain catch levels through effort control and 
by using specified fishing methods and effort intensity. The outcome after three years 
of co-managed exploitation was a level of CPUE that was approximately double that 
which occurred outside the MPA. 

In South Africa (Kerwath et al., 2013) studied a boat-based commercial fishery 
to compare CPUE and total catch trends in 5 nautical mile grid squares of three 
south coast fishing regions with those close to the Goukamma marine reserve. This 
demonstrated increases in population and biomass of target species in the reserve and a 
doubling of off-reserve CPUE over five years near the NTMR boundaries suggesting 
adult spillover and larval dispersal for a resident species with occasional home range 
relocations unrelated to density dependence. In a similar study, Blyth-Skyrme et al. 
(2004) used records of trophy fish catches by sport fishers to ascertain changes in the 
mean size of trophy fish of a range of species that varied in life history. They compared 
catches in large geographic areas adjacent to and immediately surrounding a 350 km2 
partial protection area. For species with relatively early age at maturity, the mean 
size of trophy fish of all species recorded in the study remained stable or increased 
close to the partially protected area but decreased away from it. For species with late 
age at maturity no impact on trophy size was noted. This may mean that short-lived 
animals reacted positively while long-lived ones did not, at least in the time-frame 
of the experiment. However, this remains speculative in the absence of more formal 
tagging studies to confirm this hypothesis. The latter is a particularly insightful study 
as it indicates the importance of considering fish life history characteristics when 
considering the size and configuration of marine reserves and seeking to understand 
and compare the effects of NTMRs on fish stocks or biodiversity. 
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4.3	 Great Barrier Reef Marine Park – a case study

The Great Barrier Reef Marine Park (GBRMP) was established through sequential 
declaration of sections between 1977 and 1988 with a total area of approximately 345 
000 km2. The objective was to   provide for conservation of biological diversity and 
sustainable use of an area of recognised global environmental significance. In 1981, 
the Great Barrier Reef was included on the World Heritage Register. The concept of 
creation of significant no-take zones to address an issue of environmental primacy in a 
marine jurisdiction was novel and controversial. Initial zoning provided 20.6% habitat 
(no-trawl) protection that included NTMRs that accounted for a total of 4.6% of the 
entire area. The remaining 79.4% comprised General Use zones within which all forms 
of fishing were allowed subject to the overall provisions of the Queensland Fisheries 
legislation and some local MPA conditions.

In 2004, an amalgamation and revision of initial zoning and associated management 
came into effect addressing experience of implementation of the initial zoning, greatly 
increased scientific knowledge of the biodiversity and of the outstanding universal 
values for which the Great Barrier Reef was inscribed on the World Heritage Register. 
The revised zoning increased habitat protection (no-trawl) to 66% of the entire area 
including a greatly increased 33% of the area ascribed to implement a connective 
network of NTMRs.  The effect of the revised zoning was that 99.5% of no-take reefs 
have a no-take reef within 14 km; more than 75% of fished reefs have a no-take reef 
within 16 km; and more than 90% have one within 22km (McCook et al., 2010).   

Referring to impacts of the additional closures on areas outside them, McCook et al. 
(2010) show that responses differed between areas of the GBR and reflect biological 
and behavioural differences within and between species that are poorly understood.  
They note that adult coral trout (Plectropomus spp and Variola spp - main target 
species in the GBR) rarely move between coral reefs and that this lack of movement 
means that increased biomass in no-take zones will have little direct (conservation and 
fisheries) benefits through export of adult fish to the 2/3 of reef area that is open to 
fishing. In deep shoals, in southern GBR, abundance in no-take areas was twice that 
in fished areas and whilst some targeted species showed benefits, others showed none. 
In deep shoals in Central GBR, however, target fish were found to be either more 
abundant or less abundant, in protected shoals than in fished ones. 

McCook et al. (2010) also considered that reproductive output from no-take reefs 
may be of enormous significance, due to disproportionately higher output per unit 
area from the more plentiful, larger fishes in reserves. Life cycle strategies of many 
targeted coral reef fish involve predictable annual short-term spawning aggregations 
lasting from days to weeks at specific locations. Depending on the identity of the 
species, the fish migrate from a few to hundreds of kilometres from their normal 
residential territories to spawn. Spawning aggregations can enable very high CPUE 
making targeted species vulnerable to over-exploitation. Spawning aggregations with 
consistent location and predictable timing may be protected in permanent or seasonal 
NTMRs under conservation legislation, by seasonal fishery closures under fishery 
legislation or a combination of both. Many species that exhibit such aggregations have 
been listed by governments as threatened or vulnerable (Gruss et al., 2014). 

Elmslie et al. (2015) provide another example of inter-regional variability. They used 
long term data sets for 1983-2012 and 2004-2012 to compare mean density, and biomass 
of coral trout in the GBRMP before and after the additional closures.  Density and 
biomass increased by 50% and 80% respectively within the closed areas. The increased 
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body-size and abundance of coral trout within NTMRs is an important consideration 
for egg production and planktonic export of larvae to fished areas. Most of the targeted 
reef fish species are protogynous hermaphrodites with the largest females changing sex 
when males are removed. Larger fish have substantially higher reproductive output, 
larger egg size and hence likely higher larval survival. Carter et al (2017) calculated 
egg production per unit area (EPUA) from 2004 to 2013 for coral trout on fished and 
NTMR reefs throughout the GBR. They found that geographic region, NTMR status, 
fish size and population density all affected EPUA.  The regional differences were 
substantial and illustrate need to understand differences of reproductive contributions 
of components of fish stocks, and other species, in NTMRs and throughout their 
range. Within-region comparison of NTMR reefs against fished reefs showed that 
EPUA was 21% greater in the southern region; 152% greater in the central region 
but 56% less in the northern region. EPUA was found to vary at both small and large 
spatial scales thus, despite the southern GBR having 2–4 times greater densities of 
Plectopomus leopardus than the other regions, EPUA in the southern GBR was at least 
one order of magnitude lower than in the central and northern GBR. This conflicts 
with a simple assumption that greater densities lead to greater EPUA and points to 
the need for better understanding and quantification of the spatial variation of EPUA 
to understand sink/source recruitment linkages in the design of MPA and fishery 
networks (Carter et al., 2017). 

Finally, McCook et al (2010) they indicate that the socio-economic benefits for the 
main business, tourism, as well as total benefits, were very significant while those for 
fisheries were “potential” and “concerns remain among fishers.” 

Shortly after the 2004 rezoning, a Great Barrier Reef structural adjustment package 
for commercial fisheries was introduced with a fishery license buy-back program and 
revised fishery management plans. An analysis of total commercial fishery performance 
over the period, 2001-02 to 2013-14, reported that while the area open to forms of 
fishing dropped from 95.4% to 66%, fishery production dropped by 36% from 15 341 
tonnes to 9 858 tonnes. The number of fishing licenses decreased by 48% and fishing 
effort decreased by 46%. The value of production per person-day of fishing increased 
by 13% over the period. These observations suggest that by restricting the area over 
which the fishery occurred, the catch per unit effort increased (ABS, 2015). 

The outcomes of the 2004 increase in protected areas coverage have led to controversial 
analyses. Fletcher et al. (2015), stress that: (i) the forecast of losses was strongly 
underestimated (10% compared to the 30% observed); (ii) the estimated recovery time 
(3 years) was underestimated (more than a decade and not yet achieved). They conclude 
that losses are proportional to closures, allocate all the impact to these closures, and 
basically question their utility. However, Hughes et al. (2016), argued that (i) the future 
of many resources was giving serious concern before the closure; (ii) the effect reflects 
additional fishery management measures planned before and implemented after the; 
(iii) the Beyond-BACI analysis (comparing the GBR with neighbouring areas) was 
flawed by significant differences between the areas; and (iv) the fishery statistics used 
were incomplete. The lack of data on CPUEs trends outside the closed areas, for 
different species (e.g. predators and preys) is particularly crippling.

Altogether, the analyses by McCook et al., Fletcher et al., and Hughes et al. illustrate 
differences of outcomes in different areas. In the absence of an indisputable counter-
factual situation, it is very difficult to empirically compare situations before and after 
closing an area (particularly in large and complex systems as the GBR). The positive 
impact inside the closure is usually confirmed even if it is variable and depends on 
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closure duration and species. Interpretation of the impact in the fished areas remains 
controversial and constrained by limitations of the form and scale of data. 

These observations concur with those from temperate systems which show that 
direct management of trawling footprints has potential to support the achievement 
of environmental outcomes since outside core fishing grounds, the environmental 
footprint of trawling on the seabed per unit of landed fish declines markedly (Jennings 
et al., 2012).

4.4	 Closures used in demersal trawl fisheries 

In this section, we use the term ‘trawl’ to include any form of towed fishing gear and 
include otter and beam trawls, seine nets and dredges. Area closures have been used 
as management tools in trawl fisheries for many decades. Often, they have been used 
to protect specific life stages (e.g. spawning areas and nursery grounds) or as effort 
reduction measures or as a means of reducing conflict with other fishing sectors (e.g. 
between mobile and static fishing gears). 

Murawski et al. (2005) reported changes in the spatial distribution of otter trawl fishing 
and the associated catches that occurred in response to year-round and seasonal closed 
areas off the coast of New England (U.S.A). Prior to the closure, 31% of trawl effort 
was recorded within the 22 000 km 2 of area that eventually was closed year-round. 
In the years following the implementation of the closure, 10% of trawl effort for the 
groundfish fleet was located within a 1 km wide strip adjacent to the marine protected 
area (MPA), with 25% of effort located within 5 km of the MPA boundary. Based on 
recorded CPUE data, a wide variety of groundfish (including silver hake, yellowtail 
flounder haddock and monkfish) showed density gradients that were consistent with 
(but not a confirmation of) spill-over from MPAs. These higher CPUEs were reflected 
in higher revenue per unit of effort within 4 km of the MPA boundary. Another 
unforeseen outcome of these closures was the large increase in scallop biomass within 
these areas which has resulted in a highly sustainable rotational scallop fishery in 
subsequent years.

The example above indicated a positive outcome of using large-scale spatial closures to 
exclude the use of towed mobile fishing gear with reference to both fish and scallops. 
The large scale of these area closures was probably critical to their success for the 
groundfish. In contrast, smaller-scale area closures have led to rapid (after 2-5 years) 
increases in scallop biomass and abundance (e.g. Beukers-Stewart et al., 2005; Kaiser et 
al., 2007; Sciberras et al., 2013; Kaiser et al., 2018). Scallops appear to be a species than 
can recover to high densities in a relatively short period of time provided there is an 
adequate supply of larvae and suitable substrata for settlement. One of the potentially 
important life-history bottlenecks that occur with poorly managed scallop fisheries 
is the secondary ecosystem habitat impact of removing settlement substratum as a 
result of abrasion on the seabed by the dredge gear, an effect that becomes increasingly 
deleterious as the spatial footprint of a fishery expands (Lambert et al. 2014). Scallops 
(and presumably other relatively sessile species) are well suited to spatially restricted 
management systems. 

In the Isle of Man, the combination of a conservation zone that intentionally 
incorporated a designated fishing area has led to successful rebuilding of scallop 
biomass and has continued to sustain a regular and well-managed fishery (Bloor et 
al., in press). This system is relatively unusual in the northern hemisphere as it is a 
territorial user rights fishery (TURF) system. The system is characterised, in addition, 
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by a high level of scientific support, detailed surveys of stock undertaken by the 
fishing industry, detailed knowledge of the distribution of conservation features, high 
compliance and effective enforcement. These factors have resulted in a fishery that is 
six times more profitable than open access fisheries in the surrounding territorial sea 
area, has minimised environment footprint to a few percent of the available area for 
fishing, and reduced greenhouse gas emissions through reduced fuel consumption 
(Figure 1, Bloor et al. in press).

It is important to note that spatial management measures can lead to negative 
management outcomes for both fisheries and conservation objectives. A good 
illustration of this phenomenon was the unforeseen change in fishing behaviour and 
associated ecosystem effects in the North Sea that resulted after the implementation 
of the plaice box. This reserve was implemented to lower the by-catch of undersized 
plaice in the commercial fishery. The trawl fleet responded by ‘fishing the line’ such that 
vessel monitoring system records of fishing activity clearly demarcated the boundary 
of the plaice box with high intensities of fishing activity. As a result of the secondary 
effect of fishing which led to an increase in the secondary production of polychaetes 
(the main prey of juvenile plaice), a cultivation effect occurred whereby the by-catch 
of juvenile plaice increased outside the plaice box and thereby undermined its primary 
management objective (Hiddink et al. 2008). In a similar example, Dinmore et al. (2003) 
analysed the consequences of the temporary implementation of the North Sea cod box. 

FIGURE 1
A comparison of fisheries performance between the Ramsay Bay TURFs (black bars) 

and the island-wide open access fishery of Isle of Man vessels fishing for king scallops 
(grey bars) during a comparative time period (November and December) in the wider 

Isle of Man territorial sea (2013 to 2015; ICES area 37E5)

A. Catch per unit effort (kg per hour at sea per dredge); B. Fuel intensity (litres per tonne of live weight landed); C. 
GHG emissions (kg per kg of live weight landed); D. Edible protein – energy return on investment (ep-EROI). The 95% 
Confidence Intervals for both fisheries are also included on the graphs in A, B and D. Source: IFISH 2 Logbook data and 
Department of Environment, Forestry and Agriculture (Isle of Man Government) paper logbooks. Bloor et al. In press.
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This closure was designed as a conservation measure to reduce effort on cod as part of 
a stock rebuilding programme. In subsequent assessments of the performance of the 
cod box the ICES advice concluded that it was not possible to determine any positive 
benefit for the cod stock as effort was not reduced but merely displaced into alternative 
areas. The displacement of activity extended the footprint of fishing on the seabed 
which resulted in a predicted reduction in benthic biomass (Dinmore et al. 2003).

Another often over-looked consideration is the fact that fishing activity is usually 
heterogeneously distributed across fishing grounds such that considerable proportions 
of the seabed may experience either little or no fishing which could create de facto 
refugia. Such areas might be considered as contributing to a conservation network. 
This point is nicely illustrated by an example from the Celtic Sea, in which Shephard 
et al. (2012) modelled elasmobranch biomass in fisheries-independent survey hauls as 
a function of environmental variables and fishing effort (h y−1) within areas with a 20 
km radius (Figure 2). 

Shephard et al. (2012) found that sites that occurred in the lowest 10% of the observed 
fishing effort range had a high number of elasmobranch species including the skate 
(Dipturus spp.). Sites with the highest fishing frequency had only three elasmobranch 
species. They noted that management measures that changed fisher’s behaviour could 
displace effort into these areas and thereby eliminate their function as refugia for 
long-lived elasmobranch species. Interestingly, after the publication of this study, the 
areas with the highest occurrence of long-lived elasmobranchs were put forward by 
the fishing industry for formal designation as conservation zones from which fishing 
activities would be excluded by legislation.

FIGURE 2
Distribution of fishing effort in the Celtic Sea

The heterogeneous distribution of fishing effort across fishing grounds creates ‘de facto’ refugia (the light-
grey and white areas) for long-lived species such as skate (Dipturus spp.). The areas with the lowest or 
no fishing activity had up to 10 elasmobranch species in the fish assemblage compared with only 3 in the 
areas with the highest fishing intensities (Shephard et al., 2012)
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4.5	 Closures used in pelagic/high seas migratory fisheries

Pelagic high seas fisheries, by definition, operate in areas beyond national jurisdiction 
(ABNJ), and largely target stocks of highly migratory, commercially valuable pelagic 
species. Fisheries in ABNJ are often very remote, spread over vast areas, managed by 
Regional Fishery Management Organisations (RFMOs) with no central enforcement 
capacity, and hence often more poorly monitored than developed fisheries in EEZs.  In 
addition, some of the target and bycatch species are poorly studied due to their highly 
migratory biology.  Few studies have focused on the effects of spatial protection on 
these fish stocks. 

RFMOs were introduced to address coordination of management of offshore 
international fisheries targeting highly migratory or straddling demersal or pelagic fish 
stocks (Swartz et al., 2010). They  focus mainly on the management of regional fisheries 
on tuna and tuna-like species and are subject to multilateral treaties (e.g. the UN 
Fish Stocks Agreement, UNFSA) and international conventions created to promote 
conservation of species threatened by international trade (Convention on International 
Trade in Endangered Species of Wild Fauna and Flora, CITES) and highly migratory 
species (HMS) including species of fish, whales, seabirds and sea turtles (Convention 
on Migratory Species, CMS). However, overall fishing pressure on a pelagic stock 
is still hard to control due to the multinational nature of the fisheries and often 
conflicting management regimes involved. It has been estimated that about 67% of 
stocks managed by RFMOs are overfished or depleted (Cullis-Suzuki and Pauly, 2010).

Protection and management of HMS, biodiversity and ecosystems in ABNJ is gaining 
more public attention with increasing knowledge becoming available on the biology 
and migration behaviour of the target species and new technologies to support high seas 
fisheries management. Satellite-based vessel tracking through Automatic Identification 
System (AIS) and Vessel Monitoring Systems (VMS) that are capable of monitoring 
vessel location and operational status (e.g. fishing or cruising) can now aid with fleet 
monitoring and enforcement (McCauley et al., 2016).

While modelling and simulation studies have explored the efficacy of spatial protection 
for fish stock rebuilding (Gerber et al., 2003) the majority of these studies either ignores 
HMS or concludes that they are unlikely to benefit from spatial protection unless the 
protected areas are very large. Applicability of many models to the context of HMS is 
limited as they assume either homogenous or random distribution of fish and fishing 
effort (Roberts and Sargant, 2002), which does not apply to migratory fish and high 
seas fisheries often associated with physical (e.g. seamounts) and oceanographic features 
(e.g. upwellings and fronts). To improve modelling and simulation efforts, better 
understanding of the intrinsic linkages between a species’ biology and life history, 
especially movement patterns, and the dynamics of associated fisheries is vital (Botsford 
et al., 2009). Data on this can be derived from tagging and genetic studies as well as 
from fishery-dependent research. RFMOs are ideally suited to collect data on fisheries 
associated with HMS as their convention areas cover vast regions and often multiple 
exclusive economic zones. Although many RFMOs collect data on the fisheries in their 
area, the spatial scale of reporting, aggregation of data in reported outputs and access to 
these data for researchers and the public can be so limited that the spatial implications 
for species biology and CPUE used for conventional stock assessment (ignoring most of 
the finer stock structures) are uninterpretable at a more detailed scale. This is particularly 
the case when data for individual vessels is aggregated at coarse scale on the grounds of 
legal or commercial sensitivity for confidentiality (see Hinz et al., 2013). Newly available 
studies looking at efficacy of an MPA for pelagic fisheries come from the Galápagos 
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Marine Reserve, Ecuador. Bucaram et al. (2017) and Boerder et al. (2017) examined 
the influence of the reserve on associated tuna fisheries using a mix of modelling tools, 
onboard observer data and publicly available satellite vessel tracking, and conclude 
that the reserve increased fishing productivity as well as fish stock availability. Another 
example of the efficacy of spatial closures for HMS comes from Baja California, Mexico. 
Building on previous work, Jensen et al. (2010) reported positive effects of two spatial 
closures in Mexican waters on the rebuilding of striped marlin (Kajikia audax) stocks.

Based on the scientific literature available focussing on benefits of spatial protection for 
HMS, three key factors appear to influence efficacy of closures for HMS and associated 
fisheries: (i) target species’ biology, especially movement rates as well as aggregation 
and homing behaviour, (ii) management state of the associated fishery operating 
above or below maximum sustainable yield, and (iii) fishing fleet dynamics, especially 
attraction and displacement of fishing effort to or from closures.

Spatial protection can be adapted to species’ life history traits to protect e.g. vulnerable 
life stages such as juveniles, and areas of importance such as feeding and spawning 
aggregation habitats, and fisheries need to be managed accordingly. If significant fishing 
effort is displaced from a protected area and not properly managed in the fishing area, 
it can compromise potential benefits of the closure as illustrated by the redistribution 
of displaced fishing effort following the closure of the Pacific High Seas Pockets and 
the negative impacts on bigeye tuna (Thunnus obesus) stocks in the Western Central 
Pacific (Sibert et al., 2012). This highlights the importance of a combination of spatial 
protection and traditional fisheries management tools such as effort and catch controls. 

4.6	 Contribution of fishery restricted areas (FRAs) to conservation

FRAs are fishery management areas that restrict some forms of fishing (e.g. trawling) 
but that permit fishing with low impact fishing techniques and can therefore 
contribute to conservation and biodiversity targets. A good example of this is the 
use of territorial user rights for fishery systems in Chile (Gelcich et al., 2005, 2008). 
In Chile, the Government has developed a policy to create management TURFs 
known as Management and Exploitation Areas for Benthic Resources (MEABRs). 
In these systems, cooperatives of fishermen are allocated the rights to exploit and 
manage specific benthic species resources within designated areas of the seabed. 
This leads to highly targeted and modest exploitation of a limited number of species 
such as the gastropod Concholepas concholepas, key-hole limpets Fissurella spp. and 
the red sea urchin Loxechinus albus. Although there are potential cascade effects 
that might be associated with the harvesting of these species, Gelcich et al. (2008) 
undertook comparative studies to understand the extent to which non-harvested (but 
commercially important) species may have responded within these management zones. 
They compared both targeted species (the focus of management) and non-targeted 
species that occurred in kelp forests of similar complexity within the MEABRs and in 
areas not subjected to this management regime. They found that populations of both 
the exploited and non-exploited species were enhanced within the MEABRs, compared 
with those areas outside, and suggested that these fishery management systems had 
considerable conservation benefits within the MEABR while permitting controlled 
exploitation. In another study, Gelcich et al. (2012) compared the performance of the 
MEABRs with NTMRs in the same regions and found that when compliance was 
good and management rules were well enforced within the MEABRs and the NTMRs 
their biological characteristics were not different. However, in those MEABRs where 
compliance and enforcement were weak, the densities of commercially important 
species were significantly lower than in NTMRs. 
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5.	 Discussion 

The performance of fishery and biodiversity management systems depends on 
the wellbeing of marine environment. A human-induced degradation or a natural 
oscillation of the marine system may impede even draconian attempts to reverse trends 
in species depletion (e.g. cod in Newfoundland remain under very strict management 
conditions imposed for several decades).  For both management systems, the primary 
objective of one has potential benefits and/or costs for that of the other. The SDG 
14 goals for fisheries and biodiversity make no reference to the form, precedence or 
precautionary arrangements for inter-sectoral management of risks reflected in the 
expressed expectations of current and future access to fisheries and maintenance of 
marine biodiversity and ecosystem processes.  Rice et al (2012) reported the outcomes 
of a workshop of fisheries and conservation specialists considering the role of MPAs 
in fisheries management. An expert opinion process was used to score objectives of 
fishery management and biodiversity conservation interests drawing on the experiences 
of workshop participants.  Whilst the workshop was not broadly representative, it 
indicated that half of all fisheries objectives and 40% of biodiversity objectives were 
considered likely to receive support from both perspectives. Conversely, only 25% of 
fishery objectives and 30% of conservation objectives were likely to be the cause of 
fishery/conservation conflict. 

There are tensions between fish stock and biological diversity conservation management 
systems that should be explicitly addressed. Determining the effect of a well-managed 
NTMR on a stock or set of stocks is particularly difficult because it depends 
substantially on the adequacy of information from substantial socio-economic and 
biological research and knowledge sharing.  It requires data on species and community 
biology, past, current and expected fishing effort, socio-economic dependency and 
compliance with protected area regulations and with fishing regulations in the fished 
stock area. Indeed, for many developing nations and particularly for coastal, fisheries 
we lack robust data on recruitment, natural mortality, food web linkages, fish catch, 
fishing effort, compliance, local and market dependencies, economics and other human 
impacts on stocks. 

The examples addressed in this chapter demonstrate that effective implementation 
of removal of fishing activities from defined areas of the sea most often results in an 
increase in abundance, biomass, diversity and also reproductive output in the areas from 
which the fishing activities are removed. In addition, areas with partial protection can 
generate similar responses, but these responses are generally less pronounced than the 
response seen within NTMRs or areas from which all extractive activities are removed 
(Sciberras et al., 2015). Depending on the biology and range of target species, a NTMR 
may have positive effects in stock maintenance or rebuilding for some species but no 
discernible effect for other species with large ranges or recruitment linkages (Claudet 
et al., 2010). There is some evidence to support the observation of spillover from some 
NTMRs with declining CPUE of quasi resident species as fisheries move further away 
from the boundary of NTMRs (Abesamis at al., 2006; Lester et al., 2009; Murawski et 
al., 2005; Russ et al., 2015).  Most of these studies relate to nearshore areas and target 
species with limited or intermediate range and represent situations with a reasonably 
high level of support for and compliance with fishery constraints. 

Adequate monitoring programmes may be able to demonstrate increased biomass of 
species within a well-managed NTMR which may be accompanied by increased stock 
biomass, stable stock biomass or falling stock biomass for the same species outside 
of the NTMR.  Where beneficial responses that result from NTMRs and partial 
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protection areas have occurred, typically they take more than 3 – 5 years to occur (e.g. 
Russ et al., 2004; Sciberras et al., 2013; Murawski et al., 2000). This presents challenges 
of managing displaced or increasing fishing effort in the fished areas outside the 
spatially protected area. 

The introduction of a NTMR results in an extended burden for the displaced fishers 
until any benefits from the NTMR become apparent outside the boundaries. This 
may in turn result in increased effort through displacement into other areas unless 
a reduction in effort is implemented (as in the GBR).  This medium-term shadow 
of lost fishing opportunities was elegantly demonstrated by Steele and Beet (2003) 
who compared the performance of conventional fishery management tools (e.g. effort 
reduction) and the use of NTMRs as stock-rebuilding tools. Fishing effort reductions 
resulted in instantaneous positive effects on stock status and had a modest impact 
on loss of fishing opportunities, whereas the use of NTMRs led to an instantaneous 
substantial reduction in fishery yield which did not recover to a point that compensated 
for the initial loss in fishing opportunities until 5 years after implementation. The 
timescale for compensation to occur when using an NTMR as a fishery management 
tool is similar to the response time-scales for species recovery within NTMRs (e.g. 
Murawski et al., 2000). While some site-specific conservation features or species might 
need instantaneous protection by excluding certain fishing activities in some areas, 
fisheries rebuilding can also be undertaken at a slower pace which avoids a catastrophic 
loss of livelihoods (Steele and Beet, 2003).

At present, we consider that, for most fisheries, the data are inadequate for anything 
other than speculation about or modeling the response of a ‘stock’ or population to the 
use of spatial closures such as NTMRs or partial protection areas. Current monitoring 
and management of fisheries is undertaken at large spatial scales over 1000s km2 
although greater management precision is possible where VMS and AIS data are made 
available so that landings or catch records can be more precisely resolved with respect to 
catch location. While NTMRs and different fishery stocks may be encompassed within 
such areas, the design of monitoring programs is focused on measuring overall trends 
in the change in population status in a consistent manner. These programmes primarily 
address recruitment and fishing effort/mortality in the system and occasionally take 
account of limited environmental parameters such as temperature. While fishery 
data may be collected at finer scales, it may be aggregated and legally protected on 
grounds of commercial confidentiality. This can constrain provision of data at a spatial 
or temporal scale that would enable the definitive establishment of a causal spatial 
relationship between a change in recruitment or mortality and other impacts within 
the geographic range of a stock. The determination of such links requires a more 
experimental approach with surveys designed to answer the specific question about 
whether a NTMR is the causal factor for a change in stock status. This inability to 
differentiate the effects of an NTMR on stock status is further compounded by the 
additional management measures that are often applied in conjunction with the use 
of the NTMR. Only in the absence of change in all other management measures or in 
climatic conditions would it be possible to infer that any positive change in the status 
of a stock was directly attributable to the implementation of an NTMR. Nevertheless, 
it is worth remembering that, in many areas of the world, particularly but not only in 
small-scale fisheries, even the most basic information on catches and landings is lacking 
and hence the possibility to precisely determine such effects is extremely limited. To 
this extent it is probably impossible to break away from the use of expert opinion as the 
likely consequences of the effect of the implementation of a NTMR, facing nonetheless 
the possibility of happy or nasty “surprises”. 
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Considerations of the use of spatial management measures to enhance stock status 
aside, areas may also be permanently closed to fishing for the purposes of biodiversity 
conservation, scientific research, or safety and security of military, navigational or 
industrial facilities (e.g. windfarms).  Within such areas it is important to understand 
and monitor both biodiversity and potential responses in fish and shellfish stocks 
(e.g. Gelcich et al., 2012). When areas are closed (or planning to be closed), the loss of 
fishing incomes and the shadow effect identified by Steele & Beet (2003) necessarily 
becomes an important consideration to achieve buy-in by stakeholders and improve 
chances of success. In such cases a positive change in biomass, age and size structure 
will presumably increase resilience of surrounding stocks. 

An important factor in the history of the use of NTMRs is the engagement of the 
local governance arrangements, fisher and other marine user communities as primary 
stakeholders in the process of development (Gelcich and Donlan 2015). This requires 
a process of knowledge-sharing and building trust about managing marine resources, 
understanding of basic marine ecological concepts, community organisation and 
empowerment. In some cases, fishers come to perceive the benefits of the use of 
NTMRs after a prolonged period during which the biological benefits of such areas 
become apparent (Steele and Beet 2003; Blyth-Skyrme et al. 2004; Gelcich et al. 2008). 
If some fishers are lost from the system due to reduced fishing opportunities, the 
remaining fishers are likely to achieve greater harvests and profitability which may 
underpin misleading change towards a positive attitude to effective spatial management 
systems. 

Areas may be closed to fishing in order to address objectives of biodiversity conservation 
or fishery management. A closed area may contribute to the achievement of either or 
both objectives but it is important to avoid ungrounded expectation of benefits against 
one objective from a closure to address the other.  Scientists and managers need to 
ensure that they do not ‘promise’ stock rebuilding benefits from NTMRs if these are 
uncertain. Unrealised benefits harm relationships with stakeholders and undermine 
future relationships that depend on trust (Jones 2012). One of the case-studies that 
sheds some light on the importance of this issue is the Ramsay Bay fishery in the Isle 
of Man. In this fishery, both fishermen and Government agencies realised the need to 
close the area to fishing for a period of time to enable recovery of the scallop stock. 
This provided the platform to devise a novel management area that integrated partial 
protection areas with conservation objectives alongside a fishery management area 
that was leased to the producer organisation. The outcome of introducing this TURF 
(which ensured future resources ownership) was greater fishing profitability when 
compared with the surrounding open access fishery. Nevertheless, even this fishery 
may have unknown spillover effects (benefits) for the wider open access fishery but 
these benefits (if they occur) are difficult to assess.

To conclude, while NTMRs and partial exclusion zones often are associated with 
positive changes in community metrics within their boundaries and have been 
observed to generate near-field spillover effects, the potential benefits of these systems 
remain difficult to quantify at the level of a ‘stock’ or population, as indeed at the level 
of the ecosystem in relation to biodiversity conservation. This difficulty arises from a 
mismatch in the scale of current monitoring programmes that were not resourced or 
designed to specifically address the question of the extent to which NTMRs contribute 
to improve stock status. The situation is one in which proof is hard to establish and 
absence of proof of effect is not proof of absence of effect. This prognosis may seem 
pessimistic but could be changed quite simply if there was greater determination to 
understand more clearly the effect of using NTMRs on wider stock status. This could 
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be achieved with a proper time-limited experimental approach that examined multiple 
lines of evidence that include: stock metrics within and beyond NTMRs, reproductive 
output, recruitment, environmental variation within the timescale of the experiment, 
and social and economic indicators of performance and well-being. The latter approach 
would be facilitated by greater integration between the fisheries and conservation 
science disciplines. Scientists working in these respective fields overlap considerably in 
expertise, but the policy questions that they are tasked with answering do not facilitate 
the consideration of questions that span these discipline areas. 
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