

University of Wollongong Research Online

Faculty of Social Sciences - Papers

Faculty of Social Sciences

2018

Gross motor skills in toddlers: Prevalence and socio-demographic differences

Sanne L.C Veldman University of Wollongong, University of Wollongong

Rachel A. Jones University of Wollongong, rachelj@uow.edu.au

Rute Santos University of Wollongong, rutes@uow.edu.au

Eduarda Manuela De Sousa Rodrigues de Sa *University of Wollongong*, emdsr885@uowmail.edu.au

Anthony D. Okely University of Wollongong, tokely@uow.edu.au

Publication Details

Veldman, S. L.C., Jones, R. A., Santos, R., Sousa-Sá, E. & Okely, A. D. (2018). Gross motor skills in toddlers: Prevalence and sociodemographic differences. Journal of Science and Medicine in Sport, 21 (12), 1226-1231.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Gross motor skills in toddlers: Prevalence and socio-demographic differences

Abstract

Objectives: Gross motor skills (GMS) are a vital component of a child's development. Monitoring levels and correlates of GMS is important to ensure appropriate strategies are put in place to promote these skills in young children. The aim of this study was to describe the current level of GMS development of children aged 11-29 months and how these levels differ by age, sex, BMI and socio-economic status. Design: Cross-sectional study. Methods: This study involved children from 30 childcare services in NSW, Australia. GMS were assessed using the Peabody Developmental Motor Scales Second Edition. Prevalence was reported using the gross motor quotient and both raw and standard scores for locomotor, object manipulation and stationary subtests. Socio-demographics were collected via parent questionnaires. Analyses included t-tests, chi-square tests, one-way ANOVA and linear regression models. Results: This study included 335 children (mean age = 19.80 ± 4.08 months, 53.9% boys). For the gross motor quotient, 23.3% of the children scored below average. For the GMS subtests, 34.3% of children scored below average for locomotion, 10.1% for object manipulation and 0.3% for stationary. Boys were more proficient in object manipulation than girls (p = 0.001). GMS were negatively associated with age and a higher socio-economic status (all p < 0.05). There were no associations for BMI. Conclusions: This is the first descriptive study to show the prevalence of below average at locomotor skills in toddlers is higher than reported in normative samples. Early commencement of GMS promotion is recommended with a focus on locomotor skills and girls' object manipulation skills.

Disciplines

Education | Social and Behavioral Sciences

Publication Details

Veldman, S. L.C., Jones, R. A., Santos, R., Sousa-Sá, E. & Okely, A. D. (2018). Gross motor skills in toddlers: Prevalence and socio-demographic differences. Journal of Science and Medicine in Sport, 21 (12), 1226-1231.

1	Gross motor skills in toddlers: Prevalence and socio-demographic differences
2	
3	Sanne LC Veldman ¹ , Rachel A Jones ¹ , Rute Santos ^{1,2} , Eduarda Sousa-Sá ¹ , Anthony D Okely ^{1,3}
4	
5	¹ Early Start, Faculty of Social Sciences, University of Wollongong, Wollongong, Australia.
6	² Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto,
7	Porto, Portugal.
8	³ Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.
9	

10

11

12

ABSTRACT

Gross motor skills in toddlers: Prevalence and socio-demographic differences

Objectives: Gross motor skills (GMS) are a vital component of a child's development. Monitoring

13 levels and correlates of GMS is important to ensure appropriate strategies are put in place to promote 14 these skills in young children. The aim of this study was to describe the current level of GMS 15 development of children aged 11 to 29 months and how these levels differ by age, sex, BMI and 16 socio-economic status. 17 **Design:** Cross-sectional study. 18 Methods: This study involved children from 30 childcare services in NSW, Australia. GMS were 19 assessed using the Peabody Developmental Motor Scales-2. Prevalence was reported using the gross 20 motor quotient and both raw and standard scores for locomotor, object manipulation and stationary 21 subtests. Socio-demographics were collected via parent questionnaires. Analyses included t-tests, chi-22 square tests, one-way ANOVA and linear regression models. 23 **Results:** This study included 335 children (mean age = 19.80 ± 4.08 months, 53.9% boys). For the 24 gross motor quotient, 23.3% of the children scored below average. For the GMS subtests, 34.3% of 25 children scored below average for locomotion, 10.1% for object manipulation and 0.3% for stationary. 26 Boys were more proficient in object manipulation than girls (p=0.001). GMS were negatively 27 associated with age and a higher socio-economic status (all p < 0.05). There were no associations for 28 BMI. 29 **Conclusions:** This is the first descriptive study to show the prevalence of below average at locomotor 30 skills in toddlers is higher than reported in normative samples. Early commencement of GMS 31 promotion is recommended with a focus on locomotor skills and girls' object manipulation skills. 32 Key words: locomotor skills, object manipulation, stability skills, motor development, motor

competence, early childhood, children

34

35 INTRODUCTION

Gross motor skills (GMS) are a vital component of a child's development¹. GMS involve movements using the large muscles in the body and can be divided into locomotor skills, object control skills, and stability skills. Locomotor skills are movements that transport the body through space (e.g. run, jump and gallop), object manipulation skills are movements that control and manipulate an object through space (e.g. kick, throw and catch), and stability skills (stationary) involve the ability to sense and adjust to shifts in the relationship between body parts that alter one's balance¹.

43 Models on motor development have emphasized the importance of GMS competence during 44 childhood to reach advanced motor behavior for specialized movements and sports throughout life^{2,3}. 45 The cognitive developmental theory by Piaget (1953) also emphasized the importance of movement 46 for increased cognitive development in especially the early years of life⁴. Research has shown that 47 poor GMS competency has been associated with lower levels of physical activity⁵, reduced cognitive 48 abilities⁶, unhealthy weight status⁵ and lower cardio respiratory fitness⁵. In order to develop gross 49 motor skills, appropriate learning opportunities and practice, specific instruction, encouragement, and 50 feedback are required as these skills do not develop naturally^{1,7}.

Levels of GMS competence in children have decreased over recent decades⁸⁻¹⁰, which is concerning given the number of unfavorable health and developmental outcomes associated with poor GMS competency. It is therefore important to examine and monitor levels of GMS and associated correlates in children, to ensure appropriate strategies are put in place to prevent further decreases and promote GMS development.

To date, few studies have examined levels and correlates of GMS in young children (<5 years)⁹⁻¹². An Australian study assessed gross motor skills in 330 children across 60 preschools (mean age = 4.4 ± 0.4 years; 52% boys)⁹. Results revealed almost 75% of the children mastered the run, but skill mastery was lower for other skills: gallop (31%), hop (25%), jump (22%), strike (14%), catch (20%), kick (35%), and throw (16%). In India, motor development scores reported among 300 children aged between birth and 60 months revealed 'average' scores for the stationary, locomotion and object control subtest compared to the US norms¹¹. In Portugal, 540 children aged 36-71 months 63 were assessed¹². Portuguese pre-schoolers performed above US norms on the stationary subtests, and 64 below US norms on the locomotion and object control subtests. Studies in children (aged 3-12 years) 65 show that GMS levels differ by sex and type of skills. Generally, boys perform better at object 66 manipulation skills than girls^{13,14}, whereas findings are equivocal for locomotor skills^{9,13,14}. Regarding 67 balance skills, girls tend to outperform boys¹⁴. Other correlates identified in systematic reviews 68 include age (increasing)^{13,14}, physical activity (more)^{13,14}, weight status (healthy)¹³, pre-school based 69 programs (presence)¹⁴, and socio-economic status (higher)¹³.

70 Promoting GMS in young children, e.g. toddlers, might be an important avenue to target poor 71 GMS competence and promote healthy developmental trajectories for life. In these early years of life, 72 the brain and central nervous system grow rapidly as new connections or synapses between cells are 73 formed¹⁵. This makes these years critical for a child's overall as well as motor development¹⁶. Early 74 commencement of interventions to promote GMS has also been recommended in systematic reviews 75 on GMS interventions⁷ and a previous pilot study has shown that interventions aimed at enhancing 76 GMS development in toddlers can be effective, feasible and acceptable¹⁷. However, to design optimal 77 and appropriate intervention programs, more information about GMS levels and correlates among 78 toddlers is needed to identify those at most need of further intervention and how to intervene. The 79 aims of the current study were to describe the current level of GMS of Australian toddlers aged 11 to 80 29 months and to describe how these levels differ by age, sex, BMI and socioeconomic status.

81

82 METHODS

83 This cross-sectional study was conducted concurrently with baseline data collection of the
84 Get Up! Study. This was a 12-month 2-arm parallel group cluster randomized controlled trial
85 evaluating the effects of reduced sitting time on toddlers' cognitive development¹⁸.

Children were recruited from Early Childhood Education and Care (ECEC) services across
New South Wales, Australia. Information on selection procedures and eligibility criteria for the ECEC
services and participants are described elsewhere¹⁸. Data collectors participated in a two-day training
involving instructions and practice sessions regarding the measurements. Prior to data collection,
written informed consent was obtained from the participant's parents or caretakers. The study was

91 approved by the Human Research Ethics Committee of the University of Wollongong, Australia
92 (HE15/236).

93 GMS were assessed using the GMS subtest of the Peabody Developmental Motor Scales Second Edition (PDMS-2)¹⁹. This assessment tool has been validated in children aged 0 through 5 94 95 years and consists of three subtests: stationary, locomotion and object manipulation. While 96 performing the item, children were assessed on their performance according to the scoring options provided (i.e., "2 – The child performs the item according to the criteria specified for mastery", "1 – 97 98 The child's performance shows a clear resemblance to the item mastery criteria but does not fully 99 meet the criteria", or "0 – The child cannot or will not attempt to perform the item, or the attempt does 100 not show that the skill is emerging"). Per item, children had three trials to receive a score of 2. The 101 entry point of the test was determined by the child's age and the child receiving a score of 2 on the 102 first three items. If a child was not able to meet these requirements, the test was administered 103 backwards until the child reached three consecutive '2' scores. The assessment finished when a child 104 received a score of 0 on three consecutive items. The total amount of points accumulated on a subtest 105 (raw score) was converted into a standard score using the examiner's manual¹⁹. 106 Standard scores were labelled 'Very superior', 'Superior', 'Above average', 'Average', 107 'Below average', 'Poor' and 'Very poor'. The Gross Motor Quotient (GMQ) was derived from the 108 standard scores. Due to small numbers, children labelled 'Very superior', 'Superior' and 'Above 109 average' were grouped as 'Above average' and children labelled 'Below average', 'Poor' and 'Very 110 poor' were grouped as 'Below average' for analysis. 111 Standardized procedures were used to measure height and weight. The child was lightly 112 dressed while heavy coats, pocket items, shoes and diapers were removed. Body Mass Index (BMI; 113 weight (kg)/height (m²)) was calculated using height and weight measures. More detail on the

assessment procedures has been published elsewhere¹⁸.

Information on the child's date of birth, sex and socio-economic status was collected via parent questionnaires. Socio-economic status was determined based on the Australian Socio-Economic Index for Areas (SEIFA Index), mother's education, mother's employment and family income. The SEIFA Index was developed by the Australian Bureau of Statistics and ranks areas 119 according to relative socio-economic disadvantage. This index ranges from 1; most disadvantaged, to 120 10; least disadvantaged, is based on the postcode and was categorized as low (decile 1-3), middle 121 (decile 4-6) and high (decile 7-10). Mother's education was categorized as no schooling/did not 122 complete primary school, primary school or equivalent, Year 10 or equivalent, Year 12 or equivalent, 123 trade/apprenticeship/certificate, university degree, and post-graduate qualification. For the purpose of 124 analyses, the groups 'no schooling/did not complete primary school', 'primary school or equivalent' 125 and 'Year 10 or equivalent' were combined given the low numbers in those groups. Mother's 126 employment was categorized as full-time employment, part-time employment and unemployed. 127 Family income was categorized as one parent earning <A\$580/week, both parents earning 128 <A\$580/week each, one parent earning <A\$580/week and one parent earning A\$580-A\$1240/week, 129 both parents earning A and the other parent earning < A and the other parent earning 130 >A\$1240, one parent earning A\$580-A\$1240/week and other parent earning >A\$1240, and both 131 parents earning >A\$1240/week.

SPSS version 21²⁰ and STATA version 13²¹ were used for data analyses. Descriptive 132 133 analyses were presented as mean \pm standard deviation (SD) and percentages. Sex differences were 134 examined using Mann-Whitney and two-tailed student's t-tests for not normally and normally 135 distributed continuous variables, respectively. Chi-square tests were conducted for categorical 136 variables. Given the rapid development of children at this young age and the age range of 1.5 years, 137 GMS were also examined separately for children below and above 20 months (corresponds to mean 138 and median for age). A one-way ANOVA with post-hoc Bonferroni analysis was conducted to 139 examine differences between the four subgroups: girls and boys below 20 months, and girls and boys 140 above 20 months. Standard scores were used for analysis to compare scores across sex and age. 141 The associations between socio-demographic factors and GMS were investigated using linear 142 regression procedures in STATA accounting for clustering of ECEC services. The GMQ was used for this analysis as this is recommended in the manual¹⁹. All selected variables were independently 143

144 entered into linear regression models to investigate associations with GMS. These models were then

145 adjusted for sex and age. The significance level for all tests was set at p < 0.05.

147 **RESULTS**

In total, 335 children aged 11 to 29 months (mean age = 19.80±4.08 months, 53.7% boys)
completed all GMS measures and were therefore included in this study.

The prevalence of GMS and descriptive statistics are reported in Table 1. Results show 23.3% of the children scored below average, 69.8% of the children scored average and 6.9% of the children scored above average for the gross motor quotient. For the different subtests, the number of children scoring below average was 34.3% for locomotion and 10.1% for object manipulation. Only one child performed below average on the stationary subtest (0.3%).

Data on socio-economic variables were collected in 59%-100% of participants depending on the individual variable from the parent questionnaire. For mother's education, 10.0% reported a highest education of Primary school, Year 10 or equivalent; while 16.1% reported a highest education of level Year 12 or equivalent. Regarding mothers' employment status, 9.1% reported to be unemployed. Family income was reported to be below \$580/week in 5.1% of the families. ---- Insert Table 1 here----

161 Table 2 (and figure S1) reports the prevalence of GMS for boys and girls separately by age. 162 Boys performed significantly better than girls in object manipulation, both below and above 20 163 months (p < 0.005). Results of the ANOVA revealed differences between groups for locomotion (F 164 $_{(3,331)} = 9.473$, p<0.001) and object manipulation ($F_{(3,331)} = 2.818$, p = 0.39). Post-hoc analysis revealed 165 significant differences for locomotion, where girls below 20 months scored better than boys above 20 166 months (MD = 1.346; d = 0.324; p < 0.001), and boys below 20 months scored better than both boys 167 and girls above 20 months (MD = 0.682; d = 0.211; p < 0.05 and MD = 0.876; d = 0.391; p < 0.05168 respectively). For object manipulation, boys below 20 months scored better than girls above 20 169 months (MD = 0.898; d = 0.216; p < 0.05). 170 Socio-demographic factors associated with GMS are reported in Table 3. After adjusting for

171 sex, GMS were negatively associated with age. GMS was also negatively associated with Socio-172 economic status (SEIFA index; p < 0.05) and mother's education (p < 0.005) after adjusting for age 173 and sex.

174

---- Insert Tables 2 and 3 here----

175

176 **DISCUSSION**

177 Our results show that GMS development is below average in almost a quarter of the children 178 assessed (23.3%). A comparable study in India among 121 toddlers (12-33 months)¹¹ showed similar 179 results with only a small difference in locomotion (5% difference) in favor of the Indian sample. 180 When comparing results to a Portuguese sample of 162 children (aged 3 years)¹², the current sample 181 scored lower on all subtests of the PDMS-2. Results can also be compared to the US norm sample. 182 The percentage of children scoring below average on the GMQ (23.3%) is comparable as 'below average' was set at the 25th percentile. Results from the locomotor subtest showed more children 183 184 scored below average compared to the US norm sample (34.3%), whereas less children scored below 185 average for object manipulation (10.1%) and stationary skills (0.3%). Comparing the number of 186 children who scored 'average' to the US norm sample (50%), this number is higher for the GMQ 187 (69.8%) and the different subtests (ranging from 63.6% to 96.4%). The number of children scoring 188 'above average' (ranging from 2.1% to 8.7%) is lower compared to the US norm sample (25%). 189 Research has shown several factors have an influence on GMS and might therefore explain 190 differences in results between studies. Child characteristics such as sex and age seem to play an important role in GMS^{13,14} and aforementioned studies were conducted in slightly different age groups 191 192 and sex distributions. Other child characteristics include intrinsic motivation and cognitive 193 development^{1,4}, and the physical readiness of a child to move and develop GMS¹. Family-related 194 characteristics that could have an influence on GMS include cultural background and parental 195 physical activity and sports participation, and environmental factors potentially influencing GMS 196 include ECEC-related factors (e.g. well-developed curricula) as these have a positive influence on GMS^{14,22}. As these factors were not assessed or reported in the current study or the other studies, no 197 198 conclusions could be drawn regarding their influence on GMS. These factors need to be examined in 199 more detail in further studies. More importantly, the relationships between GMS and different child-, 200 family-, and environmental factors are likely to be more complex as these factors might influence 201 each other. Therefore, there is also a need to examine the interactions between these factors and how

they change with age and development. Additionally, methodological differences such as sample size
(e.g. 335 children in the current study vs 121 in Indian study) may explain differences in results.

204 Within our sample, boys scored significantly higher than girls in the object manipulation. This 205 trend is also seen in preschoolers^{9,10}, showing sex differences are consistently present in young 206 children. For locomotion, several differences were found between different sex and age groups. 207 Young girls scored better than older boys and young boys scored better than both older boys and girls. 208 This is line with previous research showing mixed results as some studies showed results in favor of 209 girls^{8,9}, while others found no sex differences^{10,23}. Sex differences in gross motor development in 210 young children are likely to be associated with social and environmental influences, such as family, 211 peers and teachers, and cultural background rather than biological or physiological factors²⁴. 212 Therefore, it is important that parents, ECEC educators and policy makers are aware of these 213 differences to ensure that girls are provided with the most appropriate GMS opportunities, instruction 214 and feedback with the aim of fostering skill development. Additionally, sufficient opportunities 215 should be provided to boys with high object manipulation skills to ensure continuous skill 216 development.

217 Age was negatively associated with the GMQ, meaning that with increasing age children 218 scored lower. A similar result was seen examining sex and age differences for different subtests. For 219 locomotion, younger children (<20 months) scored better than older children (>20 months). For object 220 manipulation, younger boys scored better than older girls. Children increase their raw scores over 221 time (see Table 2), however, standardized scores (age- and sex adjusted scores) are lower for the older 222 age group. This reinforces the need for early intervention to prevent children from being at risk of 223 developmental delay and to promote healthy developmental trajectories. Most previous studies used raw scores to examine age effects on GMS^{13,23}. Raw scores have a larger range compared to 224 225 standardized scores, making them more sensitive to change and therefore commonly used in 226 intervention studies. However, the use of standardized scores is important for comparing differences 227 in GMS levels across age and sex.

Children with a low SEIFA Index scored higher than children with a middle or high SEIFA
 Index. This is in contrast with the literature suggesting childhood poverty and a lower socio-economic

status have a negative influence on overall child development and GMS^{14,25}. A potential explanation
includes more free play opportunities for children with a low SEIFA Index which can lead to some
skill enhancement even though actual teaching is needed for skill mastery⁷. Other potential
explanations include the distribution between socio-economic status (SEIFA Index) groups or the fact
that this generalized index, based on postcode of residence, is perhaps not accurate enough as
individual or preschool-related factors are not considered. More research will be needed to confirm a
relationship between socio-economic status and gross motor skills in toddlers.

A mother's higher education was negatively associated with GMS; however, this was only significant in half of the categories. Previous studies have found mixed results^{22,26}. No significant associations between mother's education and GMS have been seen in children aged 18 months²⁶, whereas they are present in children aged 4 to 6 years²². These results imply that this association might be influenced by the child's age which is consistent with a longitudinal study on correlates of poor development in preschoolers²⁷.

273 Strengths of this study include the young age of participants, the relative large sample size 274 and the use of a validated GMS assessment. A limitation of this study is the use of US norms in 275 Australian toddlers, which means that our results should be carefully interpreted due to cultural 276 influences. There are currently no Australian norms available. Limitations regarding the methodology 277 include the cross-sectional design of the study which precludes causality, the selection of variables to 278 associate with GMS and the lack of inter- and intra-rater reliability assessments. Additionally, our 279 sample is not representative of Australian toddlers and therefore our results are not generalizable 280 beyond the population from which they were sampled.

Future studies should include longitudinal designs to track children over time and identify at what age gross motor skills levels might be most sensitive to intervention. Research needs to examine and identity what factors (including parental/family and environmental factors) explain potential changes in GMS levels to identify where and how to potentially intervene. Additionally, country- and cultural-specific norms for GMS assessments should be developed to increase the validity of outcomes.

288 CONCLUSIONS

289 In this sample of Australian toddlers, the levels of GMS are associated with age and socio-290 economic status. To our knowledge, this was the first study to examine the prevalence of GMS in 291 Australian toddlers and one of the first internationally. This study showed just over a third of the 292 children scored below average on the locomotion subtest and it is therefore recommended to include a 293 special focus on locomotion skills in GMS interventions. Additionally, girls scored significantly lower 294 than boys in object manipulation skills. Given that these sex differences are seen throughout 295 childhood¹³ and childhood object manipulation skills might be related to adolescent physical activity²⁸, a focus on object manipulation skills in girls is also recommended. Two recent papers have 296 297 examined an object manipulation intervention targeting girls^{29,30}. Results were promising but more 298 interventions in this area are needed to target the sex differences observed and potentially target 299 physical activity. 300 The authors recommend early commencement of GMS promotion as young children are 301 willing to learn and practice, before poor techniques have developed and as differences in skill levels 302 are still small. These interventions should have a special focus on locomotor skills and girls' object 303 manipulation skills. Early intervention can prevent children from being behind in their GMS 304 development when entering school and can promote a positive developmental trajectory. 305 306 **Practical implications** 307 GMS promotion should commence as early as possible. 308 GMS are associated with age, sex and socio-economic status. • 309 • The use of standardized scores are recommended for prevalence studies. 310

311 Acknowledgements

We would like to thank the Early Childhood Education and Care (ECEC) services andparticipants for their involvement.

- 314 This project was funded by the Australian Research Council (DE150101921). Rute Santos has
- a Discovery Early Career Research Award from the Australian Research Council (DE150101921).
- 316 The funding source had no role in the design of the study, and did not have any role during its
- 317 execution, analysis, interpretation of the data, or decision to submit results.

318

320 **References**

- Payne VG, Isaacs LD. *Human Motor Development: A Lifespan Approach*, 8th ed, McGraw Hill Education; 2011. 11-21 p.
- 3242.Seefeldt V. Developmental motor patterns: Implications for elementary school physical
- 325 education., in *Psychology of motor behavior and sport*. Nadeau C, Holliwell W, Newell K,
- 326 Roberts G, ed^eds. Champaign, IL, Human Kinetics, 1980.
- 327 3. Clark JE, Metcalfe JS. The mountain of motor development: A metaphor., in *Motor*
- 328 *development: Research and reviews.* Clark JE, Humphrey JH, ed^eds. Reston, VA, National
- 329 Association of Sport and Physical Education., 2002.
- 330 4. Piaget J, Cook M. *The origins of intelligence in children*, International Universities Press
 331 New York; 1952. 145-330 p.
- Lubans DR, Morgan PJ, Cliff DP, et al. Fundamental Movement Skills in Children and
 Adolescents: Review of Associated Health Benefits. *Sports Med.* 2010; 40(12):1019-1035.
- 3346.van der Fels IM, Te Wierike SC, Hartman E, et al. The relationship between motor skills and335cognitive skills in 4-16 year old typically developing children: A systematic review. J Sci
- *Med Sport.* 2015; 18(6):697-703.
- 7. Veldman SLC, Jones RA, Okely AD. Efficacy of gross motor skill interventions in young
 children: an updated systematic review. *BMJ Open Sport Exerc Med.* 2016; 2(1):e000067.
- 8. Hardy LL, Reinten-Reynolds T, Espinel P, et al. Prevalence and correlates of low
- fundamental movement skill competency in children. *Pediatrics*. 2012; 130(2):390-398.
- 341 9. Hardy LL, King L, Farrell L, et al. Fundamental movement skills among Australian preschool
 342 children. *J Sci Med Sport*. 2010; 13(5):503-508.
- Bardid F, Huyben F, Lenoir M, et al. Assessing fundamental motor skills in Belgian children
 aged 3-8 years highlights differences to US reference sample. *Acta paediatrica (Oslo, Norway : 1992).* 2016; 105(6):e281-290.
- 346 11. Tripathi R, Joshua AM, Kotian MS, et al. Normal motor development of Indian children on
- 347 Peabody Developmental Motor Scales-2 (PDMS-2). *Pediatr Phys Ther.* 2008; 20(2):167-172.

- Saraiva L, Rodrigues LP, Cordovil R, et al. Motor profile of Portuguese preschool children on
 the Peabody Developmental Motor Scales-2: a cross-cultural study. *Res Dev Disabil.* 2013;
 34(6):1966-1973.
- 351 13. Barnett LM, Lai SK, Veldman SL, et al. Correlates of Gross Motor Competence in Children
 352 and Adolescents: A Systematic Review and Meta-Analysis. *Sports Med.* 2016; 46(11):1663353 1688.
- Iivonen S, Sääkslahti AK. Preschool children's fundamental motor skills: a review of
 significant determinants. *Early Child Dev Care*. 2013; 184(7):1107-1126.
- 356 15. Shonkoff JP, Phillips DA. *From neurons to neighborhoods: The science of early childhood*357 *development*, Washington: National Academy Press; 2000. 275-80 p.
- Gale CR, O'Callaghan FJ, Godfrey KM, et al. Critical periods of brain growth and cognitive
 function in children. *Brain.* 2004; 127(2):321-329.
- 360 17. Veldman SLC, Okely A, D.,, Jones RA. Promoting Gross Motor Skills in Toddlers: The
 361 Active Beginnings Pilot Cluster Randomized Trial. *Perceptual and motor skills*. 2015;
 362 121(3):857-872.
- 363 18. Santos R, Cliff DP, Howard SJ, et al. "GET-UP" study rationale and protocol: a cluster
 364 randomised controlled trial to evaluate the effects of reduced sitting on toddlers' cognitive
 365 development. *BMC pediatrics*. 2016; 16(1):182.
- Folio MK, Fewell R. *Peabody Developmental Motor Scales: Examiner's Manual*, 2nd ed,
 Austin, Tex, PRO-ED, Inc.; 2000. 1-125 p.
- 20. IBMCorp. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp; 2012.
- 369 21. StataCorp. Stata Statistical Software: Release 13. In: Station C, ed. TX: StataCorp LP.; 2015.
- 37022.Cools W, De Martelaer K, Samaey C, et al. Fundamental movement skill performance of
- 371 preschool children in relation to family context. *J Sports Sci.* 2011; 29(7):649-660.
- 372 23. Saraiva L, Rodrigues LP, Cordovil R, et al. Influence of age, sex and somatic variables on the
 373 motor performance of pre-school children. *Ann Hum Biol.* 2013; 40(5):444-450.
- 374 24. Thomas JR, French KE. Gender differences across age in motor performance: a meta-
- analysis. *Psychol Bull*. 1985; 98(2):260-282.

376	25.	McPhillips M, Jordan-Black JA. The effect of social disadvantage on motor development in
377		young children: a comparative study. J Child Psychol Psychiatry. 2007; 48(12):1214-1222.
378	26.	Koutra K, Chatzi L, Roumeliotaki T, et al. Socio-demographic determinants of infant
379		neurodevelopment at 18 months of age: Mother-Child Cohort (Rhea Study) in Crete, Greece.
380		Infant behavior & development. 2012; 35(1):48-59.
381	27.	To T, Cadarette SM, Liu Y. Biological, social, and environmental correlates of preschool
382		development. Child: care, health and development. 2001; 27(2):187-200.
383	28.	Barnett LM, van Beurden E, Morgan PJ, et al. Childhood motor skill proficiency as a
384		predictor of adolescent physical activity. The Journal of adolescent health : official
385		publication of the Society for Adolescent Medicine. 2009; 44(3):252-259.
386	29.	Robinson LE, Veldman SLC, Palmer KK, et al. A Ball Skills Intervention in Preschoolers:
387		The CHAMP Randomized Controlled Trial. Med Sci Sports Exerc. 2017; 49(11):2234-2239.
388	30.	Veldman SLC, Palmer KK, Okely AD, et al. Promoting ball skills in preschool-age girls. J
389		Sci Med Sport. 2017; 20(1):50-54.

390 Table 1: Participants' characteristics.

		All (n = 335)	Girls (n=155)	Boys (n=180)	p^{a}
		mean \pm SD	mean \pm SD	mean \pm SD	
Age (months)		19.80 ± 4.08	19.69 ± 4.05	19.89 ± 4.12	0.645
Height (cm)		82.36 ± 5.27	81.40 ± 5.53	83.19 ± 4.90	0.002 ^b
Weight (kg)		12.10 ± 1.58	11.72 ± 1.59	12.42 ± 1.50	0.000 ^b
Body Mass Index (kg/	[/] m ²)	17.84 ± 1.69	17.71 ± 1.75	17.96 ± 1.63	0.179 ^b
Gross Motor quotient		96.41 ± 9.84	96.30 ± 9.66	96.50 ± 10.03	0.455
Locomotion Raw scor	re (range 0 - 178)	88.58 ± 11.87	88.32 ± 12.88	88.81 ± 10.97	0.483
Locomotion Standard	Score (range 1 -20)	8.42 ± 2.21	8.52 ± 2.20	8.33 ± 2.21	0.348
Object Manipulation I	Raw score (range 0 - 48)	14.30 ± 5.90	13.32 ± 6.11	15.14 ± 5.60	0.003
Object Manipulation S	Standard Score (range 1 -20)	9.86 ± 2.20	9.53 ± 2.31	10.15 ± 2.06	0.001
Stationary Raw score	(range 0 - 60)	38.84 ± 1.89	38.97 ± 2.18	38.73 ± 1.59	0.757
Stationary Standard S	core (range 1 -20)	10.12 ± 1.24	10.23 ± 1.32	10.02 ± 1.17	0.295
0 1 11		n (%)	n (%)	<u>n (%)</u>	
Gross motor skills	Below average	78 (23.3%)	35 (22.6%)	43 (23.9%)	0.007
(n = 335)	Average	234 (69.8%)	110 (71.0%)	124 (68.9)	0.885
	Above Average	23 (6.9%)	10 (6.5%)	13 (7.2%)	-
Locomotion	Below average	115 (34.3%)	49 (31.6%)	66 (36.7%)	
(n = 335)	Average	213 (63.6%)	104 (67.1%)	109 (60.6%)	0333°
	Above Average	7 (2.1%)	2 (1.3%)	5 (2.8%)	<u>_</u>
Object Manipulation	Below average	34 (10.1%)	19 (12.3%)	15 (8.3%)	
(n = 335)	Average (n, %)	272 (81.2%)	125 (80.6%)	147 (81.7%)	0.422
	Above Average	29 (8.7%)	11 (7.1%)	18 (10.0%)	
Stationary	Below average	1 (0.3%)	0	1 (0.6%)	
(n = 335)	Average	323 (96.4%)	146 (94.2%)	177 (98.3%)	-
	Above Average	11 (3.3%)	9 (5.8%)	2 (1.1%)	
SEIFA index ^d	Low (decile $1 - 3$)	146 (43.6%)	61 (39.4%)	85 (47.2%)	
(n=335)	Middle (decile 4 - 6)	135 (40.3%)	69 (44.5%)	66 (36.7%)	0.293
	High (decile $7 - 10$)	54 (16.1%)	25 (16.1%)	29 (16.1%)	

Mothers' Education	Primary school or Year 10 or equivalent	23 (10.0%)	14 (9.0%)	9 (5.0%)	
(n=230)	Year 12 or equivalent	37 (16.1%)	17 (11.0%)	20 (11.0%)	0.200
	Trade/apprenticeship/certificate	79 (34.3%)	43 (27.7%)	36 (19.9%)	0.389
	University degree	59 (25.7%)	24 (15.5%)	36 (19.3%)	
	Post-graduate qualification	32 (13.9%)	17 (11.0%)	15 (8.3%)	
Mothers' Employment	Full-time	92 (39.8%)	46 (40.0%)	46 (39.7%)	
(n=231)	Part-time	118 (51.1%)	59 (51.3%)	59 (50.9%)	0.979
	Unemployed	21 (9.1%)	10 (8.37%)	11 (9.5%)	
Family Income ^e	1 or 2 (low)	10 (5.1%)	7 (7.1%)	3 (3.0%)	
(n=198)	3	41 (20.7%)	22 (22.2%)	19 (19.2%)	
	4	90 (45.5%)	44 (44.4%)	46 (46.5%)	0.408
	5	42 (21.2%)	17 (17.2%)	25 (25.3%)	
	6 (high)	15 (7.6%)	9 (9.1%)	6 (6.1%)	
					397

^a Two-tailed Student's t-test for continuous variables and Chi-square test for categorical variables.

^bMann Whitney test.

400 ^c Chi-square test was performed after collapsing the categories average and above average.

401 ^d SEIFA Index: Australian Socio-Economic Index for Areas

402 ^e Categories Family Income: 1 – one parent <A\$580/week; 2 - both parents <A\$580/week each; 3 - one parent <A\$580/week and other between A\$580 and

403 A\$1240/week; 4 - both parents between A\$580 and A\$1240/week OR one parent <A\$580 and other >A\$1240; 5 - one parent between A\$580 and

404 A\$1240/week and other parent >A\$1240; 6 - both parents >A\$1240/week

406 Table 2: Prevalence of Gross Motor Skill Development by age.

Variable		Age <20 months (n = 178)			Age >20 months (n = 157)		
		Girls (n = 81)	Boys (n = 97)	p ^a	Girls (n = 74)	Boys (n = 83)	p ^a
Gross Motor skills	Gross Motor Quotient (range 35-165)	96.91 ± 8.34	98.26 ± 11.02	0.057	95.62 ± 10.93	94.45 ± 8.34	0.503
Locomotion	Raw score (range 0 - 178)	79.91 ± 8.60	82.05 ± 8.13	0.083	97.51 ± 10.24	96.70 ± 8.25	0.899
	Standard Score (range 1 -20)	8.84 ± 1.97	9.05 ± 2.15	0.727	8.18 ± 2.40	7.49 ± 1.99	0.087
Object Manipulation	Raw score (range 0 - 48)	9.89 ± 5.27	11.69 ± 4.58	0.003	17.08 ± 4.58	19.17 ± 3.67	0.001
	Standard Score (range 1 -20)	9.62 ± 2.34	10.33 ± 2.25	0.003	9.43 ± 2.29	9.94 ± 1.80	0.196
Stability	Raw score (range 0 - 60)	37.91 ± 0.74	37.98 ± 1.14	0.551	40.14 ± 2.61	39.61 ± 1.61	0.641
	Standard Score (range 1 -20)	10.11 ± 0.76	10.06 ± 1.04	0.745	10.35 ± 1.73	9.98 ± 1.31	0.269

407 ^a Mann-Whitney Test

408

Variable		Unadjusted Models		Adjusted	d Models ^a
		В	95% CI	B	95% CI
Age		-0.486*	[-0.754, -0.217]	-	-
Sex	Girls (reference)				
	Boys	0.203	[-1.842, 2.249]	0.300	[-1.731, 2.331] ^b
BMI		0.415	[-0.244, 1.075]	0.061	[-0.529, 0.651]
SEIFA Index	Low (reference)				
	Middle	-2.334	[-4.982, 0.313]	-2.740*	[-5.244, -0.236]
	High	-3.416*	[-6.637, -0.194]	-3.589*	[-6.812, -0.365]
Mothers' Education	Primary school or Year 10 or equivalent (reference)				
	Year 12 or equivalent	-5.213*	[-10.410, -0.015]	-5.216*	[-10.340, -0.092]
	Trade/apprenticeship/certificate	-3.069	[-7.492, 1.354]	-3.298	[-7.710, 1.114]
	University degree	-4.229	[-8.488, 0.029]	-4.170*	[-8.324, -0.017]
	Post-graduate qualification	-4.567	[-9.706, 0.573]	-4.775	[-10.213, 0.664]
Mothers' Employment	Employed full-time (reference)				
	Employed part-time	-2.878*	[-5.500, -0.256]	-2.575	[-5.239, 0.089]
	Not employed	-2.465	[-6.872, 1.943]	-1.785	[-6.211, 2.641]
Family Income ^c	1 and 2 (low) (reference)				
	3	-1.068	[-8.200, 6.063]	-0.781	[-7.562, 6.001]
	4	-0.700	[-6.218, 4.817]	-0.935	[-6.234, 4.363]
	5	-0.514	[-6.633, 5.605]	-0.176	[-6.033, 5.682]
	6 (high)	-3.533	[-11.238, 4.165]	-2.775	[-9.956, 4.406]

410 Table 3: Socio-demographic factors associated with Gross Motor Skill Development (GMQ)

411 ^a Adjusted for sex and age

412 ^b Only adjusted for age.

413 ^c Categories Family Income: 1 – one parent < 580 / week, 2 - both parents < 580 / week each, 3 - one parent < 580 / week and other > 580 / week, 4 -

414 both parents between 580 \$ and 1240 \$ / week OR one parent < 580\$ and other > 1240 \$, 5 - one parent between 580 \$ and 1240 \$ / week and other parent

415 >1240 \$, 6 - both parents > 1240 \$ / week

416 * *p* < 0.05

417