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Abstract: Fluvial terraces in the upper Hunter catchment, southeastern Australia provide a long-16 

term record of river activity in response to climate change in the late Quaternary. Single-grain 17 

optically stimulated luminescence (OSL) dating of quartz was applied in this study to investigate 18 

the timing of the formation of three fluvial terraces in the upper Hunter catchment. A detailed 19 

examination of luminescence properties of individual quartz grains revealed some correlation 20 

between their OSL decay rates, intrinsic brightness and dose saturation characteristics. Some quartz 21 

grains containing a higher proportion of non-fast components exhibited low brightness in OSL 22 

signals and high dose saturation levels. Some grains with slow OSL decays passed the standard 23 

rejection criteria, but are likely to yield underestimated equivalent doses (Des) because of a higher 24 

contribution of non-fast components, which were shown to have low thermal stability. Different 25 

rejection criteria, including the fast ratio, the dose saturation level and the OSL sensitivity criteria, 26 

were tested on the single-grain De results. The application of a fast ratio rejection criterion was able 27 

to successfully identify thermally unstable grains. A new rejection criterion based on dose 28 

saturation property was also applied to improve the age of one sample with a large De. Our dating 29 

results identify multiple phases of river valley aggradation in the upper Hunter catchment since late 30 

Marine Isotope Stage (MIS) 6; at ~ 138 ka, ~ 90-94 ka, ~ 65 ka, ~ 26 ka and ~ 18 ka. The 31 

aggradational episodes of the terraces are correlated with glacial or stadial periods since MIS 6 and 32 

these phases of valley-floor aggradation are inferred to be a function of increased sediment supply 33 

during the cold periods resulting from strong periglacial activities in the adjacent Australian 34 

highlands. 35 

 36 
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 39 

1. Introduction 40 

 41 

Fluvial sediments in Australia have provided important archives for assessing late Quaternary flow 42 

regime changes (e.g. Nanson et al., 1992). In southeastern Australia, abundant evidence exists of 43 

enhanced runoff conditions (relative to today) throughout the last full glacial cycle. A number of 44 

previous studies in this region have focused on large inland rivers draining west from the Great 45 

Dividing Range (GDR) which provides a record of river activity since Marine Isotope Stage (MIS) 46 

5 (e.g. Nanson et al., 1992; Page et al., 1996, 2009; Kemp and Rhodes, 2010; Kemp et al., 2017). 47 

However, for the coastal draining catchments to the east of the GDR, the available fluvial record is 48 

less constrained and possibly shorter given the narrow valleys and resulting poorer preservation 49 

potential. In eastern New South Wales (NSW), the hydrological setting is characterised by a series 50 

of smaller coastal-draining catchments (< 1000 km2) surrounded by much larger basins, such as the 51 

Hunter and Shoalhaven catchments which extend to the west of the great escarpment and with 52 

drainage areas > 5000 km2 (Fig.1a). Previous studies have focused on small coastal valleys which 53 

mainly record post-Last Glacial Maximum (LGM) and Holocene valley-floor accumulation (e.g. 54 

Fryirs and Brierley, 1998; Brooks et al., 2003; Cohen and Nanson, 2008). Fewer studies (Nott et al., 55 

2002; Nanson et al., 2003) have investigated the much larger catchments containing drainage areas 56 

above the escarpment (on the tablelands), despite preserving antecedent fluvial landforms of much 57 

greater antiquity (e.g. Nott et al., 2002). The reliable determination of ages of such terraces is 58 

important for exploring the reconstruction of long-term flow-regime changes east of the GDR and 59 

forms the basis for understanding the regional palaeoclimatic variations of southeastern Australia.  60 

 61 

This paper presents a detailed single-grain optically stimulated luminescence (OSL) dating study for 62 

three fluvial terraces preserved in the upper Hunter catchment, the third largest coastal draining 63 

catchment in NSW. We report the characteristics of the OSL signals of individual quartz grains for 64 

the upper Hunter samples, as well as the sensitivity of their equivalent dose (De) estimates to 65 

different newly proposed single-grain rejection criteria (e.g. Duller, 2012). The new terrace 66 

chronologies are compared with climate cycles and existing fluvial records in the study region, and 67 

the implications for river responses to palaeoclimate changes are discussed.  68 

 69 

2. Study sites and samples 70 

 71 
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The Hunter catchment is located on the central coast of NSW with an area of 22,000 km² (Figs.1a 72 

and b). It is one of the largest catchments in coastal NSW and extends west of the great escarpment 73 

in eastern Australia. This larger catchment, and specifically the upper Hunter, is located very near 74 

the headwaters of the Macquarie River, a major sub-catchment of the Murray-Darling Basin (MDB). 75 

Therefore the larger Hunter catchment shares morphological and climatic characteristics of the 76 

smaller coastal catchments but is also well situated to headwater rivers of the MDB from which the 77 

long record of flow-regime changes exist.   78 

 79 

The upper Hunter catchment is located in the northeastern region of the basin (Fig.1b) and most of 80 

the rivers in the catchment are classified as confined or partly-confined. In these settings, lateral 81 

movement of the contemporary river courses are confined by bedrock valley margins or antecedent 82 

landforms formed under former flow regimes, such as fluvial terraces and alluvial fans (Fryirs and 83 

Brierley, 2010). These antecedent landforms not only provide confinement for modern river 84 

behaviour, but also record a long history of fluvial activity.  85 

 86 

In this study we sampled three fluvial terrace sections in the upper Hunter catchment. Two fluvial 87 

terrace exposures, named the Razorback upper terrace and lower terrace, are located near the 88 

Razorback Bridge in the central east of catchment (Fig.1b). The terraces are ~ 600 m away from 89 

each other and are 10 to 13 m above the modern river channel (Figs.2b and d) and are located on the 90 

convex margin of the meander bends or at the channel inflection point. The Razorback upper terrace 91 

(UH-URB) is mainly composed of massive silty clay, overlying a thin unit of channel gravels with 92 

no bedrock exposed at the base of exposure (Fig. 2a). One OSL sample was collected from the 93 

lower part of this section. Three stratigraphic units were identified from the Razorback lower 94 

terrace (UH-LRB), including a bedrock strath at the base, overlain by a coarse gravel to cobble 95 

channel facies, underlying a silty clay channel-fill unit (Fig.2c). One sample UH-LRB was collected 96 

from the silty clay unit immediately above the gravel dominated channel facies.  97 

 98 

The third sampled fluvial terrace section is on Kingdon Ponds at Wingen (Fig.1b), a tributary in the 99 

central west of the basin. This terrace (named the Kingdon Ponds terrace) is 10 m above the current 100 

channel bed (~5 m above the floodplain) (Fig.2 f) and is characterized by a complex stratigraphy of 101 

gravels and finer-grained facies (Fig.2e). The basal unit is a gravel lag (Unit A) underlying a 102 

cemented silty-clay unit at the bottom of the section (Unit B). Above the silty-clay unit is a complex 103 

stratigraphy of gravel-dominated facies comprising channel fill, trough-cross beds, matrix-104 

supported massive and horizontally bedded units. These units reflect various phases of bar 105 

development and cut-and fill (Units C1-D3) that are terminated by debris flow deposits (Units E1-106 
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E2). Atop the debris flow unit is a vertically accreted floodplain surface (Units F1-F3) but with 107 

coarse-grained lenses. Five samples KPW-1 to KPW-5 were collected from Units F1 to B from top 108 

to the bottom.  109 

 110 

3. Methods  111 

 112 

Single-grain quartz OSL dating was performed for all samples. OSL samples were prepared using 113 

the same method as detailed in Fu et al. (2017). Sand-sized (180-212 µm or 212-250 µm in 114 

diameter) quartz grains were separated and then etched for 40 minutes using 45% HF acid. OSL 115 

was measured on a Risø DA-20 TL/OSL reader. The OSL signals of individual grains were 116 

obtained by stimulation using a focused 10 mW green (532 nm) laser at 125°C for 1.8 s, and 117 

collected using an EMI9235QA photomultiplier tube through 7.5 mm Hoya U-340 filter. A single-118 

aliquot regenerative dose (SAR) protocol (Murray and Wintle, 2000) was used to determine the Des 119 

of individual grains, which includes an IR depletion-ratio test (Duller, 2003) applied to each grain at 120 

the end of the SAR sequence (using an infrared exposure of 100 s at 50°C) to detect any potential 121 

feldspar contamination. Based on dose recovery tests, the preheat temperatures for samples from the 122 

Razorback terraces and Kingdon Ponds terrace were chosen to be 240°C and 220°C, respectively .  123 

 124 

All luminescence data were processed using the R packages ‘numOSL’ (Peng and Li, 2017) and 125 

‘Luminescence’ (Kreutzer et al., 2017). The net OSL signal was calculated from the first 0.2 s of the 126 

OSL decay minus a background estimated from the last 0.3 s. All dose response curves (DRCs) 127 

were fitted using a general-order kinetics (GOK) function (Guralnik et al., 2015), which has been 128 

shown to be flexible and robust for fitting DRCs with different forms (Peng and Li, 2017). We 129 

applied the standard rejection criteria (e.g. Jacobs et al., 2006, 2008) as the basic grain selection 130 

criteria (Table S3). Besides these, three additional rejection criteria, including the fast ratio (FR) 131 

(Durcan and Duller, 2011; Duller, 2012), the dose saturation level (e.g. Thomsen et al., 2016) and 132 

the OSL sensitivity, were also tested on our samples, given that a broad dependence of natural De 133 

and overdispersion (OD) on these factors was observed for all of our samples (Section 4). 134 

 135 

Environmental dose rates for all samples were derived from their U, Th and K contents measured 136 

using ICP-MS and ICP-OES techniques. Detailed dose rate information for all samples are 137 

summarised in Tables S1 and S2.  138 

 139 

4. Results and discussion  140 

 141 
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4.1. Luminescence characteristics  142 

 143 

For each of the samples, the quartz grains exhibited significant grain-to-grain variability in terms of 144 

OSL decay rate, inherent brightness and the shape of DRC. For grains that passed the standard 145 

rejection criteria, ~ 20-30% of grains showed OSL signals decaying to < 10% of the initial intensity 146 

after 0.2 s stimulation, suggesting the dominance of a fast component; nevertheless, there are also 147 

similar proportion of grains exhibited a remnant OSL > 30% of their initial intensities after 0.2 s 148 

stimulation, indicating a relatively high proportion of slower components in their OSL (e.g. 149 

Fig.S1a). In order to characterise the OSL decay rates for all samples, we calculated the FR of each 150 

grain for each sample, using the OSL signals of the natural test doses (Tn) and with the same 151 

integrals as proposed by Jacobs et al. (2013) (0-0.02 s for fast component, 0.18-0.22 s for medium 152 

and slow components). The median FR for the grains which passed the standard rejection criteria 153 

ranged from 4 to 7 for the seven samples. All samples show a broad distribution in FR (mostly 154 

range from ~1 to 40), suggesting that the proportion of the fast component varies considerably 155 

between grains for all of these samples (e.g. Fig.S1c).  156 

 157 

The DRCs of the grains exhibit different shapes and considerable variation in dose saturation levels 158 

(e.g. Fig.S1b). When a single saturating exponential function was used to fit the DRCs of all grains, 159 

the obtained D0 value ranged from ~ 30 to 300 Gy for grains from different samples, with a median 160 

D0 value of ~ 120-130 Gy for each sample (e.g. Fig.S1d). Nevertheless, for each sample there are 161 

many of the grains whose DRCs are not well represented by a single exponential growth function, 162 

for which the D0 values obtained using single saturating exponential fitting would have large 163 

inaccurate. To better compare the dose saturation properties of grains with variable forms of DRCs, 164 

we used the ratio between the sensitivity-corrected luminescence signals of two different 165 

regenerative doses to characterise the dose saturation characteristics of individual grains (also see Li 166 

et al., 2016). We name this ratio as the signal growth ratio (SGR), and in this study define it as the 167 

ratio between the fitted Lx/Tx values for two arbitrarily chosen regeneration doses of 200 and 50 Gy, 168 

derived from the DRC of each grain fitted using the GOK model (i.e. the higher the SGR is, the 169 

later the grain is getting saturated). Similar to the apparent D0, the SGR varies significantly between 170 

grains for all samples, corresponding to their very different dose saturation levels (e.g. Fig.S1e).  171 

 172 

Cumulative OSL brightness curves (Fig.S2) reveal significant variation in inherent brightness 173 

between grains with about 10% of the measured grains yielding ~ 90% of the total OSL signals. The 174 

intensity of Tn of the accepted grains (after standard rejection criteria) varies by 4-6 orders of 175 

magnitude (e.g. Fig.S1a). The sensitivity of sedimentary quartz grains has been suggested to be 176 
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associated with multiple factors such as the source origin of the mineral grains and their 177 

sedimentary/thermal history (e.g. Li and Wintle, 1992; Pietsch et al., 2008; Sawakuchi et al., 2011; 178 

Fitzsimmons, 2011). These factors may also affect other luminescence properties of quartz grains 179 

including the relative proportion of the fast component and dose saturation properties, as suggested 180 

in previous studies (e.g. Chen et al., 2001; Lai et al., 2008; Gong et al., 2014, 2015). To explore the 181 

potential correlation between these luminescence properties, the FRs of quartz grains were 182 

compared against their Tn signals and SGRs for all sample (e.g. Fig.S3). We observed a moderate 183 

positive correlation between FR and Tn (ρ = 0.5) and a moderate negative correlation between FR 184 

and SGR (ρ = -0.4). This suggests that in general the grains with higher contribution from the fast 185 

component would be brighter and saturate earlier, and vice versa.  186 

 187 

The positive correlation between FR and Tn is consistent with previous investigations which 188 

suggest that the sensitization of the quartz OSL signal (either by repeated dosing/bleaching, heating 189 

or inherited from source rock) is mainly related to the fast component (e.g. Preusser et al., 2009; 190 

Jeong and Choi, 2012); thus, grains with higher content of the fast component are expected to have 191 

a greater sensitivity. Gong et al. (2014, 2015) also observed that for their samples from Chinese 192 

deserts the quartz grains with higher content of non-fast components saturate later. This was 193 

attributed to the fact that the DRCs of medium and slow components saturate later than that of the 194 

fast component (Bailey, 2000b; Singarayer and Bailey, 2003; Rhodes et al., 2006). To check 195 

whether this is true for our samples, we examined the variation of SGR as a function of OSL 196 

measurement time for the quartz grains (the SGR(t) plot, similar to the De (t) plot of Bailey, 2000a). 197 

Fig.S4 shows examples of two grains with high (> 20) and low (< 2) FR. For both grains, the SGR 198 

shows an obvious increasing tendency towards the later integrals, suggesting that the non-fast 199 

components saturate later compared to the fast component. This observation also holds true for 200 

other grains from our samples. We therefore interpret that the negative correlation between SGR 201 

and FR is due to a greater contribution of the non-fast components to the bulk OSL signals of the 202 

slowly-decaying grains.   203 

 204 

4.2. Dose recovery test 205 

 206 

Single-grain dose recovery tests were carried out on samples UH-URB, KPW-2 and KPW-5 to 207 

validate the SAR protocol (Fig.S5). The dose recovery ratios (calculated using the central age 208 

model (CAM, Galbraith et al., 1999)) for the three samples are 0.97 ± 0.02, 0.99 ± 0.01 and 0.92 ± 209 

0.02, after application of the standard rejection criteria. These results demonstrate that with our 210 

measurement conditions and the standard rejection criteria, we are able to recover a known 211 
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laboratory dose accurately when the given doses are close to the natural Des of our samples, except 212 

for the oldest sample KPW-5 (which were given a large surrogate natural dose of 234 Gy in the 213 

dose recovery test) whose dose recovery ratio was slightly less than unity. Changing preheat and 214 

cutheat conditions did not improve the results for KPW-5.  215 

 216 

Sample KPW-5 has a high palaeodose and contains a lot of statured or near-saturated grains. It has 217 

been suggested that (e.g. Li et al., 2016; Thomsen et al., 2016) for this kind of sample, the measured 218 

De distribution can be truncated since some early-saturating grains may only be able to record Des 219 

with lower values, and this can lead to underestimation in the dose recovery ratio and De estimate. 220 

Several studies suggested that removing early-saturating grains can improve the dose recovery 221 

ratios and De estimates for these samples (Gliganic et al., 2012; Demuro et al., 2015; Thomsen et al., 222 

2016; Guo et al., 2017; Guérin et al., 2017). To test this, we applied a SGR rejection criterion in 223 

addition to the standard rejection criteria to the dose recovery dataset of KPW-5, i.e. accept grains 224 

only when their SGR values are larger than a threshold. Fig.S5f shows the dose recovery ratio of 225 

KPW-5 as a function of the SGR threshold. The dose recovery ratio increases gradually with the 226 

chosen SGR above which grains are rejected, while a plateau consistent with unity (at 1σ) has been 227 

reached when the SGR threshold is 2.1 or larger. These results suggest that rejecting early-228 

saturating grains can help better recover the given dose for this specific sample. For other younger 229 

samples, application of the SGR selection makes no change in the dose recovery ratio (e.g. Fig.S5e). 230 

Fig.S6 shows the distribution of measured-to-given dose ratios for grains from UH-URB, KPW-2 231 

(both applied standard rejection criteria) and KPW-5 (applied standard plus SGR rejection criteria). 232 

The OD values for the dose recovery results of the three samples are 8%, 7% and 15%, respectively. 233 

 234 

Since in the natural De analysis we also tested another two rejection criteria—FR and Tn (see 235 

below), these two criteria were also tested on the dose recovery results. Figs.S5a-d show the dose 236 

recovery ratio as a function of the FR and Tn thresholds for samples UH-URB and KPW-5. For 237 

both samples, we observed no dependence of the dose recovery ratio on FR or the intensity of Tn. 238 

The results for the latter sample differ from Duller (2012), who observed that application of the FR 239 

rejection criterion can improve the dose recovery ratio at higher doses. 240 

 241 

4.3. Natural De distribution and palaeodose estimation 242 

 243 

Application of the standard rejection criteria to all samples resulted in 86-97% grains being rejected 244 

for De estimation (Table S3). The criteria that eliminate most grains are associated with the weak 245 

inherent brightness (Tn is within 3σ of the BG or relative standard error of Tn > 20%, rejected 71-246 
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93% grains), while other criteria generally rejected less than 15% grains in total. After application 247 

of the standard rejection criteria, five out of the seven samples (UH-URB, UH-LRB, KPW-2, -4 and 248 

-5) showed medium OD values ranging from 28% to 46%, while other two samples (KPW-1 and -3) 249 

yielded high OD values of 144% and 92%, respectively.  250 

 251 

The OD of the natural De dataset is associated with both intrinsic (e.g. luminescence properties 252 

(Galbraith et al., 2005)) and extrinsic factors (e.g. microdosimety, partial bleaching, post-253 

depositional mixing). Duller (2012) initially suggested that applying a FR rejection criterion to 254 

single-grain datasets can reduce the intrinsic OD by rejecting grains with aberrant behaviours, 255 

whereas the efficacy of the FR rejection criterion on natural De and its OD has since been shown to 256 

be sample dependent (Jacobs et al., 2013; Fu et al., 2015; Feathers, 2015; Trauerstein et al., 2017). 257 

To test the rejection based on FR criteria for our samples, we applied different FR rejection 258 

threshold to our single-grain datasets. For the five samples with medium OD (see an example in 259 

Fig.3a), the CAM De increases with FR threshold until plateauing at a FR threshold of 4-5; 260 

meanwhile, the OD value also decreased to a plateau at about the same FR threshold. This is similar 261 

to the natural De data of Fu et al. (2015) and Feathers (2015), which showed that the quartz grains 262 

with low FR are likely to yield underestimated Des, resulting in final De underestimation and OD 263 

increase. In contrast to Duller (2012) and Feathers (2015), we observed no dependence of the dose 264 

recovery ratio on FR (Fig.S6). We therefore deduce that the dependence of natural De on FR is 265 

unrelated to the performance of the grains in the SAR protocol, rather it is likely to be related to the 266 

thermal stability of the non-fast components, which have been shown to be unstable for dating (e.g. 267 

Li and Li, 2006; Steffen et al., 2008). To confirm this, we examined the De (t) plots and pulse 268 

annealing curves of quartz grains with low and high FR. The results show that the non-fast 269 

components in our samples yield underestimated De compared to the fast component, and grains 270 

with lower FR are thermally more unstable than those with higher FR (see details in Figs. S7 and 271 

S8). For the two samples with high OD, the dependence of De and OD on FR is weak. We infer that 272 

this is because the De dispersion of these two samples mainly arises from extrinsic factors 273 

(bioturbation, see below). Nevertheless, including grains with potential thermal stability problems 274 

may still obscure the real De distribution pattern for these samples. 275 

 276 

Since a positive correlation between FR and intrinsic sensitivity has been observed (Fig.S3a), a Tn 277 

rejection criterion is also expected to discard unwanted grains which yield underestimated Des. 278 

Fig.3b shows the De and OD of UH-URB as a function of the Tn threshold. As expected, plateaus in 279 

De and OD are achieved for brighter grains; the plateaus are consistent with those for the FR 280 

rejection threshold test (Fig.3a). But in general, application of the Tn rejection criterion has rejected 281 
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more grains compared with FR rejection criterion without achieving any refined precision, and there 282 

lacks a uniform inter-sample standard for applying the sensitivity rejection criterion. Thus, we 283 

prefer the FR rejection criterion to the Tn rejection criterion in this paper.  284 

 285 

On the basis of the above arguments, we used the FR as an additional rejection criterion for all of 286 

our samples, using a FR threshold value of 5 based on the De plateaus for our samples. This FR 287 

criterion has rejected ~ 1% to 9% of the grains for different samples in addition to the standard 288 

rejection criteria. Given that a dependence of the dose recovery ratio on the dose saturation property 289 

is observed for sample KPW-5 (Fig.S5f), we’ve also tested using the SGR as a rejection criterion 290 

for our samples, using grains which passed the standard rejection criteria and with FR > 5. We 291 

found the use of the SGR rejection criterion did not change the results for the six younger samples, 292 

suggesting that the single-grain ages of these samples are negligibly affected by dose saturation; but 293 

for the oldest sample KPW 5, the use of a SGR threshold criterion appears to be helpful in 294 

removing the bias in the single-grain De selection, as indicated by an increase in De with increasing 295 

SGR threshold and the achievement of a De plateau when the SGR threshold is tighten to a value of 296 

~ 2.0 or higher (Fig. 4). This plateau range is also consistent with that of the dose recovery test for 297 

this sample (Fig.S5f). Based on this, we applied a SGR rejection criterion (using a threshold value 298 

of 2.1 according to the dose recovery test) in addition to the standard plus FR rejection criteria for 299 

sample KPW-5. Application of the SGR threshold criterion has further rejected ~ 2% of the grains 300 

for KPW-5.  301 

 302 

The SGR threshold criterion has also been tested on all of the grains that passed the standard 303 

rejection criteria (i.e. without conducting the FR selection). By doing this, we’ve identified some 304 

grains in our samples which exhibit high dose saturation levels (high SGR) and low De values 305 

(Fig.S9a). A detailed examination of luminescence properties of these grains reveal that these grains 306 

are likely to contain more non-fast components, therefore can yield underestimated Des due to low 307 

thermal stability; application of a FR rejection criterion can reject these grains for De estimation 308 

(see details in Figs.S9b-d). 309 

 310 

Fig. 5 shows the final De distributions of all samples as radial plots. After application of the 311 

additional rejection criteria (FR or FR & SGR), the OD values for the five mediumly dispersed 312 

samples (UH-URB, UH-LRB, KPW-2, -4 and -5) were all reduced (from 28-46 % to 23-34%). The 313 

OD of these five samples are within the reported values for well-bleached samples (Arnold and 314 

Roberts, 2009); and the symmetrical single-grain De distributions of them indicate that they are 315 

sufficiently bleached. We have therefore applied a CAM to estimate the palaeodoses for these five 316 
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samples. Samples KPW-1 and KPW-3 present high OD values even after application of the FR 317 

rejection criterion (161% and 89%, respectively). These two samples show strong mixing features 318 

in their De distributions, as evidenced by discrete De components being identified in the radial plots 319 

(Fig.5). We deduce that these two samples have experienced bioturbation after deposition, as we’ve 320 

observed plants growing on the outcrop and KPW-1 is also close to the terrace surface (Fig.2e). A 321 

finite mixture model (FMM) (Roberts et al., 2000) was therefore applied to these two samples for 322 

palaeodose evaluation (Table S4). A De population that comprised the majority (58%) of grains in 323 

the De distribution was identified for KPW-1, which possibly gives a good estimation for its burial 324 

dose. But for KPW-3, two major De populations with similar proportion were exhibited in the De 325 

dataset (42% and 38%, respectively), indicating the sample was severely mixed after deposition and 326 

ambiguity exists for identification of a De population related to deposition. We infer that the two 327 

grain populations may originate from two stratigraphic units representing two river aggradation 328 

events (i.e. grains from one unit were mixed into the other due to bioturbation), and we tentatively 329 

used the De values of the two major populations to give two potential depositional ages for this 330 

sample. These ages were treated with caution when doing the climate interpretation. Table S1 gives 331 

a summary of the palaeodoses and ages of all samples.  332 

 333 

4.4. Chronologies of the terraces and their implications  334 

 335 

The final ages for all of the samples were compared with glacial-interglacial cycles (Fig.6). The two 336 

samples collected from adjacent terraces of the upper Hunter River indicate two aggradational 337 

episodes of the river. Sample UH-LRB collected from the silty clay immediately above the coarse-338 

gravel unit of the Razorback lower terrace yielded an age of 93.9 ± 5.7 ka, suggesting a floodplain 339 

accretion event occurred at mid-to-late MIS 5. Another sample UH-UHB collected from the silty 340 

clay deposits of the Razorback upper terrace yielded an age of 65.0 ± 4.1 ka, suggesting a later 341 

valley floor aggradation occurred in MIS 4. Further dating of the upper section of the two terraces 342 

will build more detailed age structures for these terraces. 343 

 344 

The ages of the five samples collected from the Kingdon Ponds terrace are consistent with their 345 

stratigraphic order. The lowest sample from Unit B comprising of silty clay yielded an age of 137.7 346 

± 12.1 ka, suggesting an episode of floodplain accretion close to modern river level occurred in late 347 

MIS 6. The bottom of the coarse gravel unit (Unit C1; Fig.2) lying above Unit B was dated to be 348 

90.5 ± 7.6 ka, suggesting a coarse-gravel bed river occupied this valley elevation at mid-to-late MIS 349 

5, similar to the timing of the Razorback lower terrace in adjacent valley. A higher sample from 350 

Unit D1 returned two potential ages of 65.8 ± 10.8 ka and 26.6 ± 4.8 ka. The older age may 351 
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represent a depositional event chronologically similar to the formation of the Razorback upper 352 

terrace. The younger age is indistinguishable with the age of the overlying debris deposits (Unit E1, 353 

dated to 25.7 ± 1.9 ka), atop which a silty clay unit (Unit F1) is aged at 18.3 ± 2.0 ka. These 354 

stratigraphic units with similar ages may reflect different phases of valley floor aggradation 355 

(including channel and floodplain deposition and alluvial fan deposition) occurred intermittently 356 

during MIS 2, albeit the age of Unit D1 (obtained from the severely mixed sample KPW-3) may 357 

need to be treated with caution.  358 

 359 

Nott et al. (2002) and Nanson et al. (2003) have investigated large coastal draining rivers in NSW 360 

and extended the fluvial records of southeastern Australian coastal catchments to ~ 100 ka. Based 361 

on TL dating of fluvial sediments, these studies argued for an enhanced pluvial episode at (mid-to-362 

late) MIS 5 and a declined fluvial activity at LGM. Broadly similar conclusions were achieved in 363 

earlier investigations on fluvial sediments in the Riverine Plain based on TL or OSL dating (e.g. 364 

Page et al., 1996; Kemp and Rhodes, 2010). Recently, a study on the Willandra Lakes on the 365 

Riverine Plain suggested these lakes were fed by the palaeo-sub branch of the Lachlan River 366 

(arising in the GDR) and maintained a high lake stand at the LGM (Kemp et al., 2017). Similar 367 

results by Mueller et al., (in press) have shown elevated discharge (relative to today) on the 368 

Murrumbidgee River at the LGM. In comparison, the fluvial terraces in the upper Hunter catchment 369 

also record fluvial aggradation in mid-to-late MIS 5 and the enhanced alluvial sedimentation in MIS 370 

2, as recorded in the Kingdon Ponds terrace, which may be closely related to the LGM high lake 371 

level and river activity phase of the Riverine Plain.  372 

 373 

The chronologies obtained in this study appear to suggest that all the river aggradation phases in the 374 

upper Hunter catchment occurred in glacial or stadial periods (MIS 6, MIS 5b, MIS 4 and MIS 2) 375 

(Fig.6). In Australia, fluvial sedimentation tends to be dominated by sediment availability (e.g. 376 

Nanson et al, 1992; Page and Nanson, 1996). A potential major source of sediment is the nearby 377 

ranges which have elevations of ~1000 - 1500m a.s.l. A recent study of Slee and Shulmeister (2015) 378 

has identified extensive periglacial landforms in eastern Australian mountain regions including the 379 

upper Hunter catchment. These periglacial landforms, whist undated, provide evidence for strong 380 

freeze-thaw processes throughout the late Quaternary and presumably have formed in the cold 381 

periods with adequate moisture. An increased sediment supply provided by the strong periglacial 382 

activities, together with increased runoff due to seasonal snowmelt (Reinfelds et al., 2014) and 383 

decreased sediment residence time due to variation of vegetation (Dosseto et al., 2010) during the 384 

cold episodes, is very likely to drive the aggradation of valley floors. If this hypothesis is true, there 385 

must be a regional similarity between the long-term fluvial records in areas affected by past 386 
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periglacial processes. More chronological studies of other fluvial archives in large coastal draining 387 

catchments in southeastern Australia, such as the Shoalhaven River, should further test this 388 

hypothesis. 389 

 390 

5. Conclusions 391 

 392 

Chronologies of three fluvial terraces in the upper Hunter catchment in southeastern Australia were 393 

investigated using single-grain quartz OSL dating. Detailed luminescence investigations revealed 394 

some correlation between multiple luminescence properties of individual grains and their De values. 395 

Application of additional single-grain rejection criteria were found to reduce overdispersion arising 396 

from intrinsic factors and improve the dating results. Our dating results extended the fluvial record 397 

in southeastern Australia to MIS 6 and set a hypothesis that fluvial aggradation in the upper Hunter 398 

catchment is associated with glacial or stadial periods, which may be explained by enhanced 399 

sediment supply to the catchment resulting from strong periglacial activities during the cold 400 

episodes. 401 

 402 
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Figure captions 547 

 548 

Fig.1. (a) Map showing the coastal catchments of New South Wales, Australia and the location of 549 

the Hunter catchment. (b) Map of the Hunter catchment. The square indicates the location of the 550 

upper Hunter catchment. Stars indicate the locations of the sampling sites: UHR—Upper Hunter at 551 

Razorback; KPW—Kingdon Ponds at Wingen (Fryirs, unpublished data). 552 

 553 

Fig.2. (a) Photograph showing the Razorback upper terrace exposure. (b) Transect of the Razorback 554 

upper terrace generated from the SRTM 30m digital elevation model (DEM). (c) Photograph 555 

showing the Razorback lower terrace exposure. (d) Transect of the Razorback lower terrace 556 

generated from the SRTM 30m DEM. (e) Photograph showing the Kingdon Ponds terrace exposure 557 

with unit boundaries (solid black line) and tentative unit or sub-unit boundaries (dashed line). Unit 558 

A is the basal gravels, Unit B is a fine-grained cemented facies, Units C1 to E2 are comprised of 559 

cobble and gravel units – mostly matrix-supported. Units F1-F3 includes thin gravel and sand lenses 560 

underlying fine-grained overbank material. (f) Valley cross-section showing the geomorphic setting 561 

of the Kingdon Ponds terrace (Fryirs, unpublished data). Elevations in (b), (d) and (f) are expressed 562 

as Australian Height Datum (AHD) elevation. 563 

 564 

Fig.3. (a) CAM De (filled circles) and OD (open diamonds) of sample UH-URB against the fast 565 

ratio rejection threshold. (b) CAM De (filled circles) and OD (open diamonds) of sample UH-URB 566 

against the Tn rejection threshold.  567 

 568 

Fig.4. CAM Des (filled circles) and OD (open circles) of sample KPW-5 against the signal growth 569 

ratio rejection threshold, for grains that passed the standard rejection criteria and with fast ratio > 5.  570 

 571 

Fig.5. Radial plots showing the single-grain De distributions of all samples. All datapoints are for 572 

grains which passed the standard rejection criteria. The closed circles and open triangles represent 573 

grains accepted and rejected by additional rejection criteria (FR > 5 & SGR > 2.1 for KPW-5 and 574 

FR > 5 for other samples), respectively. The shaded bands for samples UH-URB, UH-LRB, KPW-2, 575 

-4 and -5 are centred on their weighted mean Des calculated using the CAM (for grains that passed 576 

the standard plus additional rejection criteria). The shaded bands for samples KPW-1 and -3 are 577 

centred on the weighted mean Des for each grain population obtained using the FMM (for grains 578 

passed the standard plus additional rejection criteria).  579 

 580 
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Fig.6. Plot showing a comparison of the OSL ages with MIS stages and late Quaternary temperature 581 

anomaly recovered from Antarctic ice core (Jouzel et al., 2007). Grey bars represent glacial and 582 

stadial episodes. Diamonds represent ages of samples from the Razorback terraces. Circles 583 

represent ages of samples from Kingdon Ponds terrace. The open circles indicate two potential ages 584 

of the severely mixed sample KPW-3.  585 
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Table S1 Summary of dose rate information, equivalent doses (Des) and ages 

Sample  Site Depth 
(m) 

Grain 
size 
(µm) 

Moisture 
content 
(%) a 

Dose rate (Gy/ka) b   
Total dose 
rate (Gy/ka) c 

Accepted/ 
measured 
grains d 

OD (%) Age 
model De (Gy) e Age (ka) 

Beta Gamma Cosmic   

UH-URB 
Upper Hunter 
@Razorback 
upper terrace 

4.5 180-212 5 1.18 ± 0.06 0.66 ± 0.02 0.16 ± 0.02 2.04 ± 0.09 37/1000 23 ± 3 CAM 132.44 ± 5.40 65.0 ± 4.1 

UH-LRB 
Upper Hunter 
@Razorback 
lower terrace 

6.5 180-212 5 0.87 ± 0.04 0.54 ± 0.02 0.14 ± 0.01 1.58 ± 0.07 48/1000 25 ± 3 CAM 148.23 ± 5.77 93.9 ± 5.7 

KPW-1 
Kingdon Ponds 
@Wingen 1.55 212-250 10 0.54 ± 0.03 0.26 ± 0.01 0.18 ± 0.02 1.00 ± 0.05 23/1300 161 ± 24 FMM 18.32 ± 1.70 18.3 ± 2.0 

KPW-2 
Kingdon Ponds 
@Wingen 2.05 180-212 10 0.87 ± 0.05 0.50 ± 0.02 0.17 ± 0.02 1.57 ± 0.08 46/800 34 ± 4 CAM 40.31 ± 2.13 25.7 ± 1.9 

KPW-3 

 
Kingdon Ponds 
@Wingen 6.6 212-250 10 0.62 ± 0.03 0.31 ± 0.07 0.13 ± 0.01 1.09 ± 0.05 64/900 89 ± 8 

FMM 
(C1) 71.90 ± 11.29 65.8 ± 10.8 

FMM 
(C2) 29.02 ± 5.01 26.6 ± 4.8 

KPW-4 
Kingdon Ponds 
@Wingen 8 180-212 7 1.11 ± 0.05 0.59 ± 0.04 0.12 ± 0.01 1.86 ± 0.10 31/600 29 ± 5 CAM 168.11 ± 10.34 90.5 ± 7.6 

KPW-5 
Kingdon Ponds 
@Wingen 9 180-212 20 0.96 ± 0.05 0.61 ± 0.02 0.10 ± 0.01 1.71 ± 0.10 30/1200 28 ± 5 CAM 235.25 ± 14.62 137.7 ± 12.1 

a Based on measured field moisture contents. The relative uncertainty for moisture content was assigned to 25%. 
b Beta and gamma dose rates were derived from ICP-MS/OES analysis. The measured U, Th and K concentrations were converted into beta and gamma dose rates using conversion 

factors of Guérin et al. (2011), and corrected for the attenuations of grain size (Guérin et al., 2012) and moisture content (Nathan and Mauz, 2008). Cosmic dose rate was estimated 

following Prescott and Hutton (1994), taking into account of the geomagnetic latitude, altitude and burial depth of the samples. For sample KPW-4 which has a heterogeneous 

gamma dose rate within 30 cm, the model of Aitken et al. (1985, p. 289-293) has been applied to correct for the layer to layer difference in gamma dose rate. 
c The total dose rates include an internal dose rate of 0.03 ± 0.01 Gy/ka, estimated using U and Th contents reported by Bowler et al. (2003). 
d The accepted grains are grains passing the standard rejection criteria plus the additional rejection criteria (FR > 5 & SGR > 2.1 for KPW-5 and FR > 5 for other samples). 
e For the two mixed samples KPW-1 and KPW-3, the De values were derived from the major grain populations fitted using FMM (Table S4). It is noted that for KPW-3 there are two 

main grain populations with similar proportion (Table S4). We calculated two potential ages for this sample based on these two populations.   
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Table S2 Summary of U, Th and K concentrations measured using ICP-MS/OES  

 

Sample a U (ppm) Th (ppm) K (%) 

UH-URB 1.17 ± 0.06 4.80 ± 0.24 1.35 ± 0.07 
UH-LRB 1.01 ± 0.05 4.57 ± 0.23 0.94 ± 0.05 
KPW-1 0.33 ± 0.02 1.39 ± 0.07 0.72 ± 0.04 
KPW-2 0.81 ± 0.04 3.99 ± 0.20 1.06 ± 0.05 
KPW-3 0.40 ± 0.02 1.90 ± 0.07 0.81 ± 0.02 
KPW-4-UG 0.67 ± 0.03 3.77 ± 0.15 0.96 ± 0.04 
KPW-4 0.97 ± 0.04 6.57 ± 0.26 1.26 ± 0.05 
KPW-4-LG 0.66 ± 0.03 3.41 ± 0.14 1.05 ± 0.04 
KPW-5 1.10 ± 0.04 6.44 ± 0.26 1.23 ± 0.05 

 

a Sample KPW-4 was collected from a 10 cm thick sand lens within a stratigraphic unit mainly 
comprising coarse gravels. Samples KPW-4-UG and KPW-4-LG were collected from coarse gravel 
layers above and below the sand lens, which were used for correcting for gamma dose heterogeneity 
for sample KPW-4.  
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Table S3 Summary of the single-grain OSL rejection details 

 

Sample UH-URB UH-LRB KPW-1 KPW-2 KPW-3 KPW-4 KPW-5 
Total measured grains  1000 1000 1300 800 900 600 1200 
Reason for rejecting grains from De analysis % % % % % % % 
Tn < 3σ background 58 65 84 68 66 62 60 
RSE of Tn exceeds 20% 20 13 9 12 13 14 12 
Recycling ratio ≠ 1 at ±2σ 2 1 1 1 2 1 2 
OSL-IR depletion ratios <1 at ±2σ 5 1 1 2 1 2 1 
Recuperation > 5% 1 1 0 0 1 0 0 
Anomalous dose response / unable to perform DRC fit 3 7 2 6 4 8 5 
Saturated grains  1 2 0 0 1 3 7 
Zero dose grains 0 1 0 0 2 0 0 
Fast ratio < 5 7 5 1 6 4 5 9 
SGR > 2.1 N/A N/A N/A N/A N/A N/A 2 
Sum of rejected grains (%) 96 95 98 94 93 95 97 
Sum of accepted grains (%) 4 5 2 6 7 5 3 
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Table S4 A summary of De value for each De component and the proportion of grains in each De 

component for samples fitted using the finite mixture model 

Sample         OD (%)            σb (%)a k  De (Gy) b Proportion (%)b 

KPW-1 161 ± 24 31 3 
0.58 ± 0.20 16 

18.32 ± 1.70 58 
83.37 ± 12.51 26 

KPW-3 89 ± 8 35 3 

8.12 ± 1.28 20 

29.02  ± 5.01 42 

71.90 ± 11.29 38 

 
a The optimal σb value used for fitting the finite mixture model was determined based on the 

maximum log likelihood (llik) and the Bayes Information Criterion (BIC) (Roberts et al., 2000). 
b De components shown in bold are used for age estimation. 
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Fig.S1. (a) Single-grain OSL decay curves of 10 representative grains from sample UH-LRB, in 

response to a test dose of 23 Gy. The inset shows the same OSL decay curves which are normalised 

to the OSL counts of the first channel; (b) Single-grain OSL dose response curves of 10 

representative grains from sample UH-LRB; (c) Fast ratio distribution of 97 grains from sample 

UH-LRB which pass the standard rejection criteria shown as histogram; (d) D0 distribution of 93 

(out of 97) grains from sample UH-LRB which pass the standard rejection criteria shown as 

histogram. The D0 values were obtained by fitting the dose repose curve of each grain using a single 

saturating exponential function; (e) Signal growth ratio (SGR) of 97 grains from sample UH-LRB 

which pass the standard rejection criteria shown as histogram. The SGR is defined as the ratio 

between the fitted sensitivity-corrected OSL values for two regenerative doses—200 Gy and 50 

Gy—obtained from the dose response curve of each grain fitted using a general-order kinetics 

(GOK) function (Guralnik et al., 2015). The inset shows the D0 value against the SGR value for all 

grains.  

(a) (b) 

(d) (c) (e) 



7 
 

 

 
 

Fig.S2. Cumulative light sum plots for two representative samples KPW-1 and KPW-3.  
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Fig.S3. (a) Fast ratio against Tn for 97 grains from sample UH-LRB which pass the standard 

rejection criteria; (b) Fast ratio against signal growth ratio for the same grains in (a). In both figures 

the red lines represent the best linear fit of the dataset. Both figures are in log-log scale.  

 

 

 

  

(a) (b) 

ρ = 0.5 ρ = -0.4 
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Fig.S4. Left panels: Signal growth ratio (SGR) plotted as a function of OSL measurement time 

(SGR (t) plot) for two grains from sample KPW-4 with different fast ratios (FRs). An increase in 

signal growth ratio towards the later integrals suggests that the non-fast components saturate later 

than the fast component; Right panels: OSL decay curves of the two grains in response to a test 

dose of 35 Gy.  

 

  

FR = 1.2 

FR = 21.1 
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Fig.S5. Dose recovery ratio for samples UH-URB and KPW-5 shown as a function of (a) and (b): 

the fast ratio rejection threshold; (c) and (d): the Tn rejection threshold; and (e) and (f): the signal 

growth ratio rejection threshold. 

 

  

(b) (a) 

(c) (d) 

(e) (f) 
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Fig.S6. Dose recovery test results for three representative samples UH-URB, KPW-2 and KPW-5 

shown as radial plots. In the experiments, quartz grains of each sample were first bleached using a 

Dr Hönle UVACUBE 400 solar simulator for 1 hour to remove the natural signals, and then given a 

beta dose close to their natural Des before measuring using the SAR protocol. For KPW-5, using all 

grains which pass the standard rejection criteria yields a slightly underestimated dose recovery ratio 

of 0.92 ± 0.02. After application of an additional signal growth ratio (SGR) rejection criterion using 

a SGR rejection threshold of 2.1, the dose recovery ratio is refined to 0.97 ± 0.02. The open 

triangles in Fig.S6c represent grains rejected by the signal growth ratio rejection criterion. 

UH-URB    
Given dose = 117 Gy 
Standard rejection criteria 
Dose recovery ratio = 0.97 ± 
0.02 
OD = 8 ± 2 % 
 

KWP-2 
Given dose = 35 Gy 
Standard rejection criteria 
Dose recovery ratio = 0.99 ± 
0.01 
OD = 7 ± 2 % 
 

KWP-5 
Given dose = 234 Gy 
Standard rejection criteria & signal growth ratio > 2.1 
Dose recovery ratio = 0.97 ± 0.02 
OD = 15 ± 2 % 
 

(a) (b) 

(c) 
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Fig.S7. De (t) plots (Bailey, 2000) of two grains from sample KPW-4 with different fast ratios (FRs) 

(the same grains as in Fig.S4). A decrease in De towards the later integrals was observed, which is 

often associated with unstable non-fast components (e.g. Li and Li, 2006; Steffen et al., 2009).  

 

  

FR = 1.2 FR = 21.1 
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Fig.S8. Pulse annealing test results for individual grains from sample UH-LRB. In each cycle, the 

single-grain discs were given a regenerative dose of 93 Gy, and then annealed to a temperature of 

T °C. The remnant OSL signals for individual grains were then measured using a green laser 

stimulation at 125°C for 1.8 s, and at the end of each cycle a blue diode stimulation at 260 °C for 40 

s was performed to remove all the signals. This measurement cycle was repeated several times with 

the annealing temperature T increased from 200 to 400 °C, with an increment of 20 °C. The 

sensitivity change in each cycle was corrected using the OSL signal of a test dose (measured after a 

cutheat of 200 °C). (a) Pulse annealing curves for four representative grains with different fast 

ratios. Grains with lower fast ratios (< 5) show a greater depletion in OSL towards higher annealing 

temperatures, indicating lower thermal stability; (b) Thermal remanent ratios (Fan et al., 2011) for 

67 grains plotted as a function of their fast ratios. The thermal remanent ratio is calculated as the 

ratio of the remnant OSL signal measured after heating to 260 °C to that measured after heating to 

200 °C. The results in Fig.S8b show that for a majority of grains with FR > 5, the reduction in OSL 

signal is small or negligible after a heating to 260 °C; in contrast, for most of grains with FR < 5, a 

heating to 260 °C has significantly depleted the OSL signal, suggesting grains with lower FR have 

lower thermal stability. This observation is most likely to attribute to a higher contribution of the 

unstable non-fast components to grains with low FR.  

 

  

(a) (b) 
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Fig.S9. (a) CAM Des (filled circles) and overdispersion (open diamonds) of sample UH-LRB 

against the signal growth ratio (SGR) rejection threshold, for all grains passing the standard 

rejection criteria. The CAM De shows a decreasing tendency with increasing SGR threshold (i.e. 

shows a decreasing tendency with the dose saturation level increasing); (b) CAM Des (filled circles) 

and overdispersion (open diamonds) of UH-LRB against the SGR rejection threshold, for grains 

passing the standard rejection criteria and with fast ratio (FR) > 5. In contrast to (a), for grains with 

FR > 5, there is no clear dependence of the CAM De on the SGR (i.e. no dependence of the CAM 

De on the dose saturation level); (c) Histograms showing the SGR distributions for 97 quartz grains 

of UH-LRB. The grey bars represent grains with FR > 5 and the hatches represent grains with FR < 

5. The open circles represent the weighted mean Des corresponding to each SGR interval (based on 

all grains without FR selection). The figure shows that grains with FR > 5 have a lower mean SGR 

(i.e. lower mean dose saturation level) compared to grains with FR < 5. Some grains with low FR, 

high dose saturation levels (high SGR, e.g. SGR > 2.5) and low De are identified. These grains 

 

Grains with FR > 5 
Grains with FR < 5 
Weighted mean De 

 for each interval 

 

(a) (b) 

(c) (d) 
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likely to contain more non-fast components, therefore can yield underestimated Des due to low 

thermal stability (see Figs. S7 and S8). These grains can also lead to a decrease of the CAM De with 

the SGR threshold increasing (as in Fig.S9a). Application of a FR rejection criterion (using a FR 

threshold value of 5) can reject these grains, thus eliminate the dependence of De on the dose 

saturation level (as in Fig.S9b); (d) Normalised OSL decay curves of two typical quartz grains of 

UH-LRB and their dose response curves (the inset): Grain 1—a grain which exhibits a low FR, a 

higher dose saturation level and a lower De value; and Grain 2—a grain which exhibits a high FR, a 

lower dose saturation level and a higher De value.  
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