
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part B 

Faculty of Engineering and Information 
Sciences 

2018 

Coherent terahertz Smith-Purcell radiation from Dirac semimetals Coherent terahertz Smith-Purcell radiation from Dirac semimetals 

grating with very deep and narrow slits grating with very deep and narrow slits 

Tao Zhao 
University of Electronic Science and Technology of China 

Min Hu 
University of Electronic Science and Technology of China 

Zhen Lian 
University of Electronic Science and Technology of China 

Renbin Zhong 
University of Electronic Science and Technology of China 

Sen Gong 
University of Electronic Science and Technology of China 

See next page for additional authors 

Follow this and additional works at: https://ro.uow.edu.au/eispapers1 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Zhao, Tao; Hu, Min; Lian, Zhen; Zhong, Renbin; Gong, Sen; Zhang, C; and Liu, Shenggang, "Coherent 
terahertz Smith-Purcell radiation from Dirac semimetals grating with very deep and narrow slits" (2018). 
Faculty of Engineering and Information Sciences - Papers: Part B. 2137. 
https://ro.uow.edu.au/eispapers1/2137 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F2137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F2137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F2137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/2137?utm_source=ro.uow.edu.au%2Feispapers1%2F2137&utm_medium=PDF&utm_campaign=PDFCoverPages


Coherent terahertz Smith-Purcell radiation from Dirac semimetals grating with Coherent terahertz Smith-Purcell radiation from Dirac semimetals grating with 
very deep and narrow slits very deep and narrow slits 

Abstract Abstract 
We demonstrate a physical mechanism of multicolor coherent terahertz (THz) Smith-Purcell radiation 
from surface plasmon polaritons (SPPs). In Dirac semimetals gratings with very deep and narrow slits, 
two types of SPP modes, the cavity and ordinary SPP modes, can be excited by fast electrons under 
different excitation conditions and then diffracted into radiation in specific directions. The radiation 
intensity is remarkably enhanced when SPPs are excited, and frequencies can be widely tuned by 
adjusting the parameters of grating and electrons. Our findings could provide a promising way for 
developing room temperature, coherent, tunable, directional, and intense THz radiation sources. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Zhao, T., Hu, M., Lian, Z., Zhong, R., Gong, S., Zhang, C. & Liu, S. (2018). Coherent terahertz Smith-Purcell 
radiation from Dirac semimetals grating with very deep and narrow slits. Applied Physics Express, 11 (8), 
082801-1-082801-4. 

Authors Authors 
Tao Zhao, Min Hu, Zhen Lian, Renbin Zhong, Sen Gong, C Zhang, and Shenggang Liu 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/2137 

https://ro.uow.edu.au/eispapers1/2137
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We demonstrate a physical mechanism of multicolor coherent terahertz (THz) Smith–Purcell radiation from surface plasmon polaritons (SPPs).
In Dirac semimetals gratings with very deep and narrow slits, two types of SPP modes, the cavity and ordinary SPP modes, can be excited by fast
electrons under different excitation conditions and then diffracted into radiation in specific directions. The radiation intensity is remarkably
enhanced when SPPs are excited, and frequencies can be widely tuned by adjusting the parameters of grating and electrons. Our findings could
provide a promising way for developing room temperature, coherent, tunable, directional, and intense THz radiation sources.

© 2018 The Japan Society of Applied Physics

S
ince its first observation in 1953, by electrons passing
over a periodic structure,1) Smith–Purcell radiation
(SPR) has attracted tremendous interest for its

possible applications in radiation generation, beam accel-
eration, and nondestructive diagnostics of electron beams.2–5)

Its dispersion relation is as follows.
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�
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where λ is the wavelength of the radiation, n is the order of
the radiation, L is the grating period, β is the ratio of the elec-
tron velocity to the speed of light, and θ is the observation
angle [shown in Fig. 1(a)].

A diffraction model was applied to accurately explain the
mechanism of SPR, as presented by van den Berg.6–8) The
gratings were treated as perfectly conducting in many theo-
retical and experimental studies. However, finite conductivity
should be considered in the optical region due to the possible
excitation of the surface plasmon polaritons (SPPs) on the
grating surface. The radiation can be significantly enhanced
by 2 or 3 orders in particular angles when the phase-matching
condition for the excitation of SPP mode is satisfied.9,10) In
recent past, some studies demonstrated coherent THz SPR
from SPPs on a graphene surface.11–13) This mechanism is
expected to meet the urgent requirement of a room temper-
ature, miniature, tunable, coherent, and high powered THz
radiation source covering the whole THz regime. The desired
THz radiation can be developed owing to the remarkable
properties of graphene SPPs, such as extremely high confine-
ment, low Ohmic loss, and more importantly, wide tunability
in the THz to mid-infrared regimes by adjusting the gate
voltage or chemical doping.14–18)

Recent experimental discovery of Cd3As2,19–21) Na3Bi,22)

and ZrTe523) demonstrated fermion quasiparticles with linear
dispersion along all the three momentum directions. Thus, the
three-dimensional (3D) Dirac semimetals, also called bulk
Dirac semimetals (BDSs), can be viewed as the 3D counter-
parts of graphene. Similar to graphene, BDSs can also
support SPPs in the THz to mid-infrared regimes. However,
for the BDSs, the crystalline symmetry protection against gap

formation results in much higher mobility.24) This may lead
to lower intrinsic loss of SPPs in BDSs. An extra dimension
facilitates the BDSs to form a 3D plasmonic grating, thus,
supporting not only the ordinary SPP mode on the grating
surface, but also the cavity SPP mode in the slits. Some
studies on the plasmon mode in BDSs have also been per-
formed earlier.25–30) Das Sarma et al. found that the plasmon
frequency in a doped massless Dirac plasma was explicitly

(a)

(b)

Fig. 1. (a) Schematic of the coherent SPR from BDS grating, θ indicates
the radiation direction. (b) Fourier spectra of radiation intensity from BDS
grating and dielectric grating (the geometric size is L = 20µm, h = 15µm,
w = 1µm). The parameters of BDS: T is 300K, τ is 1.2 ps, vF is 9 × 105m=s,
g is 4, μc is 0.1 eV, and ε∞ is 13. The beam velocity is 0.3c. The permittivity
of dielectric grating is 2.25. The radiation intensity of dielectric grating is
scaled by 100 times. U-HS (L-HS) means the radiation towards to upper
(lower) half-space.
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nonclassical in all dimensions with the plasma frequency
being proportional to 1=

ffiffiffi
ħ

p
in the long-wavelength range.25)

The universality of plasmon excitation with frequency in the
THz range in the BDSs was discovered by Kharzeev et al.26)

The behavior of SPP and electromagnetic waves in BDS
films with their Fermi level higher than the Dirac point and
the role of the dielectric response in BDSs were studied
earlier.28)

In this letter, a physical mechanism explaining the multi-
color coherent THz SPR from two types of SPP modes in a
Dirac semimetals grating with very deep and narrow slits is
presented. We show that the cavity and ordinary SPP modes
have essential differences in the excitation conditions and
radiation characteristics. Firstly, the excitation of cavity SPP
mode must satisfy both the phase-matching and Fabry–Pérot
(FP) resonance conditions, while, for the ordinary SPP mode,
meeting the phase-matching condition is sufficient. Secondly,
the radiation from cavity SPP mode occupies both the upper
and lower half-spaces, while its counterpart occupies only the
upper half-space. Finally, although the radiation intensities of
the two kinds of SPP modes are significantly enhanced, the
radiation power density of cavity SPP mode is much higher
than that of the ordinary SPP mode. The underlying physics
of these differences is uncovered.

The BDS grating has a period L, thickness h, and slit width
w, as shown in Fig. 1(a). An electron beam moves parallel at
a constant velocity v0 in the x-direction above the grating
surface at a distance z0. The conductivity of BDSs derived by
the Kubo formalism is given as28)
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where T, kB, τ, vF, g, and μc are the temperature, Boltzmann
constant, relaxation time, fermion velocity, degeneracy factor
and chemical potential, respectively. Here, only the intraband
conductivity, which dominates the low frequency process
of SPP, is included. The dielectric function of BDSs can be
expressed through the dynamic conductivity: εBDS(ω) = ε∞ +
σ(ω)=ωε0. ε∞ is the dielectric constant at infinite frequency
and ε0 is the permittivity of vacuum.

The theoretical and numerical calculations are based on the
rigorous coupled-wave analysis (RCWA) method, which is
commonly used to analyze the diffraction problem of grating
with or without SPPs.13,31,32) Figure 1(b) shows the radiation
spectra in the THz frequency regime. There are three obvious
radiation peaks, marked by the frequency points A, B, and C,
in the radiation regime of the first and second negative space
harmonics (n = −1 and −2), the frequencies are 4.42 THz,
7.22 THz, and 9.34 THz, respectively. The radiations at fre-
quency points A and B emit into both the upper and lower
half-spaces, while the radiation at frequency point C emits
only into the upper half-space. In addition, the radiation
intensity at frequency points A and B is much higher than
that at frequency point C. To uncover the mechanisms of
THz generation and related physical phenomena, we calcu-
late the distribution of magnetic field intensity of radiation at
frequency points A, B, and C, as shown in Fig. 2. The radia-
tion angles satisfying the dispersion Eq. (1) are 93°, 145°,
and 83°, for A, B, and C, respectively. Strong resonances are
observed in the slits for frequency points A and B, while for
the frequency point C, the SPPs exist on the upper surface of

the grating. Thus, from the first glimpse, we may conclude
that the coherent SPR is generated from the cavity mode in
the slits and the ordinary SPP mode based on the SP effect.

To give a further insight into the physics of SPR and the
formation of the cavity mode, we calculate the eigen modes
of the grating region at the resonant frequencies. For the
RCWA method, the fields in the grating region are expanded
into infinite terms of eigen modes eð�qpzÞ, qp is the p-th
eigen mode.31,32) The results indicate that there exists an SPP
eigen mode, which dominates the fields in the grating region.
The SPPs are indeed formed by strong coupling of surface
charges on the two opposite sides of a grating slit. This is
confirmed by the SPP dispersion of single slit with infinite
thickness, as given in Eq. (3).33,34) Although a finite thickness
of grating slits is considered, the SPP eigen mode is closely
fitted to the dispersion relation given below.

tanh
w

2
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where kSPP is the wavevector of the cavity SPP mode along
the slits (z-direction), k0 = ω=c, c is the velocity of light in
vacuum.

The cavity resonance of SPPs in the slits can occur only
when both the FP and phase-matching conditions, given
in Eqs. (4)33,34) and (5)9,10) are satisfied, which is essentially
different from that of the ordinary SPP mode.

qSPPh þ 	R ¼ m�; ð4Þ
where qSPP is the eigen value of SPPs in the grating region
and ϕR is the phase shift associated with reflection of cavity
SPP mode at the slits end facet. m is an integer indicating the
order of FP resonance. The cavity SPP modes at frequency
points A and B are corresponding to the first and second
orders (m = 1 and 2) of FP resonant modes, the numerical
fitted ϕR are 0.1 × 1π and 0.1 × 2π, respectively.

!=v ¼ kxSPP; ð5Þ
where v is the velocity of the electron beam, kxSPP is the
wavevector of SPPs along the direction of moving electrons
(x-direction).

The SPPs are propagating up and down along the side
walls and reflecting at the slits end facets back to the reso-
nance cavity. The cavity retains most of the energy of SPPs
and leaks the remainder part to the diffraction fields by the SP
effect at the openings of the slits. The propagating feature of
SPPs in the slits guarantees the radiation to occur both in the
upper and lower half-spaces. In contrast, the ordinary SPP
mode located on the grating surface can only be radiated into
upper half-space because the SPPs cannot penetrate the thick
enough grating to reach the lower grating surface.33,34)

After having understood the physical mechanism of
coherent THz SPR from a BDS grating, we now deal with
the enhancement of the radiation power density by SPPs.
According to the diffraction model, the evanescent wave
generated by the electron beam can be diffracted into an
incoherent radiation. This conventional SPR is chosen as the
control group, and a dielectric grating that cannot support
SPPs, is preferred owing to its numerical compatibility with
the plasmonic grating. Figure 1(b) shows the radiation
spectra with and without excitation of SPPs. The radiation
power density is enhanced by 1347, 986, and 224 times at the
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SPP resonance frequency points A, B, and C, respectively,
due to the strong local fields. The intensity of SPPs field
excited by the electron beam is two or three orders of mag-
nitude higher than that of the evanescent wave and this is the
physical origin of the large enhancement. This leads to much
stronger diffraction fields. For an electron beam with a charge
density 100 pC=cm, the peak radiation power density can
reach 1.26 × 104, 1.69 × 103, and 0.73 × 103W=cm2. The
highest radiation density in this case is one order higher than
that from graphene SPPs in a grating structure.

The radiation from cavity SPP mode is more intense than
that from the ordinary SPP mode, the ratios of radiation power
density between frequency points A or B and C reach 17 and
2.3, respectively. The fields distribution in the grating region
shown in Figs. 2(d)–2(f) indicate the comparable intensity of
cavity and ordinary SPP modes. Thus, the powered radiation
at frequency point A may explain the fact that the radiation
is diffracted from the first negative space harmonic of SPPs
with more energy than the second negative space harmonic.
Although the radiations at frequency points B and C are both
transformed from the second negative space harmonic of
SPPs, more intense radiation of cavity SPP mode manifests
that energy of cavity mode is diffracted more.

The grating slits play a key role in the cavity SPP reso-
nance. We now analyze the influence of the grating slits on the
radiation frequency of cavity SPP mode. Figure 3 shows the
dependence of radiation frequencies of the first and second
cavity modes on the thickness and width of the grating slits.
When these two parameters are varied, the beam energy is

adjusted to meet the excitation conditions. As the thickness
increases, the radiation frequencies of both first and second
cavity SPP modes decrease, obeying the FP relation, as shown

(a)

(b)

Fig. 3. The radiation frequencies of first and second cavity modes vs the
grating height (a) and slit width (b).

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. The contour maps of magnetic field intensity Hy in the X–Z plane of the structure for frequency points A, B, and C, respectively. (d)–(f) indicate the
fields in the grating region.
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in Fig. 3(a). Figure 3(b) reveals that as the width of the
grating slits increases, the radiation frequencies of both
the first and second orders cavity SPP modes increase. This
can be explained by the dispersion equation [Eq. (3)]. The
SPP energy will increase with decreasing slit width leading to
higher radiation frequency.

In summary, we revealed physical mechanisms of multi-
color coherent THz SPR from the cavity and ordinary SPP
modes in a BDS grating with very deep and narrow slits. The
essential differences of excitation conditions and radiation
characteristics from these two SPP modes were analyzed. It
was deduced that the excitation of cavity SPP mode needs an
additional condition of FP resonance other than the phase-
matching condition. The radiation from cavity SPP mode
emits into both the upper and lower half-spaces, while the
ordinary SPP mode emits only into the upper half-space. The
radiation power density of cavity SPP mode could be signi-
ficantly enhanced over three orders, up to 1.26 × 104W=cm2,
which is one order higher than that of ordinary SPP mode.
The radiation frequency of cavity SPP mode can be widely
tuned by adjusting the grating parameters and beam energy.
Therefore, based on this mechanism, room temperature, mini-
ature, coherent, tunable, directional, and intense THz radia-
tion sources covering the whole THz frequency band can be
developed.

Acknowledgments This work was supported by the National Key
Research and Development Program of China (2017YFA0701000); the Program
973 (2014CB339801); Fundamental Research Funds for the Central Universities
(FRFCU) (ZYGX2016KYQD113); Natural Science Foundation of China (NSFC)
(61231005, 11305030, 612111076, 61701084).

1) S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953).
2) M. J. Moran, Phys. Rev. Lett. 69, 2523 (1992).
3) M. Castellano, V. A. Verzilov, L. Catani, A. Cianchi, G. Orlandi, and M.

Geitz, Phys. Rev. E 63, 056501 (2001).
4) A. S. Kesar, Phys. Rev. Accel. Beams 13, 022804 (2010).
5) P. A. Molenaar, P. van der Straten, H. G. M. Heideman, and H. Metcalf,

Phys. Rev. A 55, 605 (1997).

6) P. M. van den Berg, J. Opt. Soc. Am. 63, 689 (1973).
7) P. M. van den Berg, J. Opt. Soc. Am. 63, 1588 (1973).
8) P. M. van den Berg, J. Opt. Soc. Am. 64, 325 (1974).
9) S. L. Chuang and J. A. Kong, J. Opt. Soc. Am. A 1, 672 (1984).

10) N. E. Glass, Phys. Rev. A 36, 5235 (1987).
11) S. G. Liu, C. Zhang, M. Hu, X. X. Chen, P. Zhang, S. Gong, T. Zhao, and

R. B. Zhong, Appl. Phys. Lett. 104, 201104 (2014).
12) T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, Phys. Rev. B 89, 245434

(2014).
13) T. Zhao, R. B. Zhong, M. Hu, X. X. Chen, P. Zhang, S. Gong, and S. G.

Liu, Chin. Phys. B 24, 094102 (2015).
14) E. Hwang and S. Sarma, Phys. Rev. B 75, 205418 (2007).
15) L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang,

A. Zettl, Y. Shen, and F. Wang, Nat. Nanotechnol. 6, 630 (2011).
16) A. Vakil and N. Engheta, Science 332, 1291 (2011).
17) M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).
18) A. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photonics 6, 749

(2012).
19) S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and

R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).
20) M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I.

Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z.
Hasan, Nat. Commun. 5, 3786 (2014).

21) Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D.
Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X.
Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, Nat. Mater. 13,
677 (2014).

22) Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran,
S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science
343, 864 (2014).

23) Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov,
R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Nat. Phys. 12, 550
(2016).

24) T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat.
Mater. 14, 280 (2015).

25) S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 102, 206412 (2009).
26) D. E. Kharzeev, R. D. Pisarski, and H.-U. Yee, Phys. Rev. Lett. 115,

236402 (2015).
27) J. Hofmann and S. Das Sarma, Phys. Rev. B 91, 241108(R) (2015).
28) O. V. Kotov and Yu. E. Lozovik, Phys. Rev. B 93, 235417 (2016).
29) A. Thakur, R. Sachdeva, and A. Agarwal, J. Phys.: Condens. Matter 29,

105701 (2017).
30) Ž. B. Lošić, J. Phys.: Condens. Matter 30, 045002 (2018).
31) M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).
32) M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
33) J. Fiala and I. Richter, Plasmonics 13, 835 (2018).
34) Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, IEEE

Photonics J. 3, 365 (2011).

Appl. Phys. Express 11, 082801 (2018) T. Zhao et al.

082801-4 © 2018 The Japan Society of Applied Physics

https://doi.org/10.1103/PhysRev.92.1069
https://doi.org/10.1103/PhysRevLett.69.2523
https://doi.org/10.1103/PhysRevE.63.056501
https://doi.org/10.1103/PhysRevSTAB.13.022804
https://doi.org/10.1103/PhysRevA.55.605
https://doi.org/10.1364/JOSA.63.000689
https://doi.org/10.1364/JOSA.63.001588
https://doi.org/10.1364/JOSA.64.000325
https://doi.org/10.1364/JOSAA.1.000672
https://doi.org/10.1103/PhysRevA.36.5235
https://doi.org/10.1063/1.4879017
https://doi.org/10.1103/PhysRevB.89.245434
https://doi.org/10.1103/PhysRevB.89.245434
https://doi.org/10.1088/1674-1056/24/9/094102
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1038/nnano.2011.146
https://doi.org/10.1126/science.1202691
https://doi.org/10.1103/PhysRevB.80.245435
https://doi.org/10.1038/nphoton.2012.262
https://doi.org/10.1038/nphoton.2012.262
https://doi.org/10.1103/PhysRevLett.113.027603
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1038/nmat3990
https://doi.org/10.1038/nmat3990
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nmat4143
https://doi.org/10.1038/nmat4143
https://doi.org/10.1103/PhysRevLett.102.206412
https://doi.org/10.1103/PhysRevLett.115.236402
https://doi.org/10.1103/PhysRevLett.115.236402
https://doi.org/10.1103/PhysRevB.91.241108
https://doi.org/10.1103/PhysRevB.91.241108
https://doi.org/10.1103/PhysRevB.93.235417
https://doi.org/10.1088/1361-648X/aa57bd
https://doi.org/10.1088/1361-648X/aa57bd
https://doi.org/10.1088/1361-648X/aaa070
https://doi.org/10.1364/JOSA.71.000811
https://doi.org/10.1364/JOSA.72.001385
https://doi.org/10.1007/s11468-017-0579-0
https://doi.org/10.1109/JPHOT.2011.2138122
https://doi.org/10.1109/JPHOT.2011.2138122

	Coherent terahertz Smith-Purcell radiation from Dirac semimetals grating with very deep and narrow slits
	Recommended Citation

	Coherent terahertz Smith-Purcell radiation from Dirac semimetals grating with very deep and narrow slits
	Abstract
	Disciplines
	Publication Details
	Authors

	Coherent terahertz Smith–Purcell radiation from Dirac semimetals grating with very deep and narrow slits

