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Abstract 

Inconsistent reports on the therapeutic efficacy of increasing synaptic glycine 

concentration have raised doubt as to the benefit of N-methyl-D-aspartate 

receptor (NMDAr) mediated treatments for schizophrenia. Categorising 

individuals based on broad diagnostic criteria does not appear to adequately 

identify individuals who will benefit from such treatments. Mismatch negativity 

(MMN) may be a suitable biomarker of NMDAr function, to help clarify the 

neurobiological relationship between pharmacological intervention and clinical 

treatment efficacy. MMN is an auditory event-related potential elicited following 

the presentation of a deviant stimulus, when it violates an established sequence 

stored in echoic memory. MMN is a robust deficit in schizophrenia and is 

categorised as a physiological element in the Cognitive Systems domain of the 

Research Domain Criteria framework. However, few studies have examined direct 

pharmacological modulation of MMN in schizophrenia patients. The aim of this 

thesis was to determine the nature of the relationship between MMN and NMDAr 

function, to inform the relative utility of MMN as a biomarker of NMDAr-mediated 

improvements in clinical symptoms in schizophrenia. To achieve this aim, three 

separate empirical studies were performed.  

Study one aimed to determine the nature of the relationship between 

regular cannabis exposure and MMN in otherwise healthy subjects. A cross-

sectional comparison between regular cannabis users and controls was used to 

infer the effects of regular cannabis exposure on endocannabinoid-mediated 

alterations in NMDAr excitability.  Frequency MMN amplitude was smaller in the 
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overall sample of regular users and smaller duration MMN amplitude was linearly 

associated with more prolonged and heavier cannabis exposure. These findings 

suggest regular cannabis use alters cannabinoid receptor type-I (CB1) mediated 

inhibition of NMDArs in auditory cortical networks important for MMN 

generation. Further, they suggest regular use alters neurobiological function in 

target pathways of NMDAr-mediated treatments. This is problematic when 

interpreting MMN deficits as pathophysiological correlates of core phenotypes 

and may confound NMDAr-mediated treatment efficacy in schizophrenia.  

Study two aimed to determine whether acute glycine administration and 

adjunct glycine treatment increases MMN generation in chronic schizophrenia 

patients. In a randomised, double-blind, placebo-controlled, between-group trial, 

acute administration of low-dose glycine (0.2g/kg) increased MMN amplitude 

compared to placebo. Smaller duration MMN amplitude at baseline was linearly 

associated with greater severity of negative symptoms and predicted, at trend 

level, the degree of negative symptom improvement following 6-weeks of glycine 

treatment (incremented to 0.6g/kg/day). These findings support the view that 

NMDAr hypofunction contributes to robust MMN deficits observed in 

schizophrenia and demonstrates that MMN is a sensitive index of NMDAr 

hypofunction related to the pathophysiology of negative symptoms. Further, 

these findings support the utility of MMN to stratify neurobiological functioning 

of NMDArs and index change in neuronal function following target engagement of 

NMDAr-mediated treatments.  

 Study three aimed to determine the dose-response relationship between 
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glycine and MMN, in a randomised, double-blind, placebo-controlled, crossover 

trial. In an independent sample of healthy controls, this study observed an 

Inverted-U dose-response relationship between glycine dose and MMN 

amplitude. High-dose glycine (0.8g/kg) reduced MMN amplitude compared to 

low- and medium-doses (0.2g/kg and 0.4g/kg, respectively), but did not differ from 

placebo. Smaller baseline MMN amplitude was associated with greater increases 

in MMN following low-dose glycine, suggesting that increasing synaptic glycine 

concentration is more beneficial in the context of NMDAr remediation. These 

findings support MMN as a sensitive biomarker indexing change in NMDAr 

function and may help to inform mechanisms of clinical treatment efficacy 

following increased synaptic glycine concentrations.   

 Findings in this thesis support the utility of MMN to index NMDAr function 

and change in neuronal signalling following target engagement of NMDAr-

mediated treatments. Alterations in MMN generation in regular cannabis users 

suggest MMN is sensitive to long-term plasticity changes in auditory-cortical 

networks. The efficacy of glycine to improve NMDAr neurotransmission in this 

thesis (indexed by MMN) appears to be mediated by NMDAr function prior to 

glycine administration and glycine dose amount. These findings support the 

potential for MMN to identify conditions for optimal treatment efficacy. Future 

studies confirming the presence of an Inverted-U dose-response relationship 

between MMN and other NMDAr agents, such as glycine reuptake inhibitors, may 

assist in tailoring effective treatments and better inform mechanisms of treatment 

heterogeneity in schizophrenia. 
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 Chapter Introduction 

Since the development of antipsychotics in the early 1970’s, little progress has 

been made to improve drug efficacy and tolerability in schizophrenia, particularly 

in managing negative symptoms and cognitive deficits. Non-adherence to 

pharmacotherapy is approximately 50% in patients [1] and approximately one 

third do not respond to standard medications [2]. There is currently a lack of 

treatment available to increase motivation, emotional experience, attention, 

thought processes and ability to make judgements. Negative symptoms and 

cognitive deficits are evident in the prodromal phase and are associated with poor 

functional outcome and reduced quality of life in later stages of illness [3]. Greater 

understanding of the mechanisms underlying these core refractory symptoms 

may yield earlier diagnosis and improve symptom management for many patients. 

The following chapter defines schizophrenia as a clinical disorder, before 

reviewing the underlying biological mechanisms of core phenotypes. The primary 

theoretical models of neurotransmitter dysfunction provide a framework to 

discuss the utility of novel N-methyl-D-aspartate receptor (NMDAr) mediated 

treatments, which aim to increase glutamatergic function. Given the role of the 

endocannabinoid system in regulating NMDArs and alterations in this regulatory 

mechanism following repeated cannabis use, the effects of cannabis in relation to 

the pathophysiology of clinical symptoms in schizophrenia are also discussed. The 

chapter concludes by identifying the need for biomarkers in schizophrenia to 

inform mechanisms of treatment heterogeneity following pharmacological 

invention with NMDAr-mediated treatments.  
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 Schizophrenia Disorder 

Schizophrenia is a chronic and debilitating mental disorder and is one of the most 

severe in terms of personal suffering and societal burden. The prevalence of 

schizophrenia is approximately 0.30-0.66 cases per 1,000 people, with an 

incidence of 10.2-22.0 new cases per 100,000 people, per year [4, 5]. Typical onset 

occurs in late adolescence or early adulthood, with an initial diagnosis at 

approximately 26 years in males and 30 years in females (for further review, see 

[6]). The behavioural phenotypes of schizophrenia cause great disruptions and 

suffering in the day-to-day life of patients, including reduced functional capacity, 

lower financial stability, increased health care needs, shorter life expectancy [7-9] 

and overall reduced quality of life [3]. The chronic nature of the syndrome also 

generates significant financial burden to the community [10], with an annual cost 

reported in Australia, for example, of approximately $2.6 billion in 2013 [5].  

Two of the most widely used diagnostic criteria for validating the profile of 

schizophrenia are the Diagnostic and Statistical Manual (Version 10; DSM-V) [11], 

and the International Statistical Classification of Disease and Related Health 

Problems (Version 10; ICD-10) [12]. Characteristics of symptoms in the DSM-V are 

divided into two broad symptom domains: positive and negative symptoms. 

Although not included in the diagnostic criteria, neurocognitive decline is also 

considered a core feature of functional disability in schizophrenia [11, 13] and 

characterises the deteriorating nature of the disorder. Due to limited diagnostic 

stability, diverse treatment outcomes and discrete longitudinal course, the 

subtypes of schizophrenia have been removed from the DSM-V and replaced with 
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a dimensional structure, focusing on the stage and severity of presenting 

symptoms [14]. Classifying core phenotypes in a dimensional framework may offer 

greater predictive power for clinical outcomes [15], particularly when 

investigating clinical treatment efficacy of pharmacotherapies or behavioural 

interventions.      

 

1.2.1 Positive Symptoms 

The manifestation of schizophrenia is generally characterised by the onset of 

positive symptoms, which tend to be episodic over time and associated with 

increased risk of self-harm and hospitalisation [16]. Positive symptoms are an 

exacerbation of normal functioning, including delusions, hallucinations, 

disorganised thought and disorganised or catatonic behaviour [17]. Delusions are 

often conceptualised as misinterpretations of other people’s intentions or beliefs 

and are regularly associated with an area of personal reference or significance. 

Patients may experience hallucinations or perceptual abnormalities in a range of 

uni- or multi-modal sensory systems, including olfactory, visual, gustational, and 

somatic [18]. Speech and thought patterns may often become incoherent or 

illogical, where the content of one topic does not contextually link to the next, or 

the original content of the thought is forgotten. The positive symptoms of 

schizophrenia often make it difficult for patients to identify components of their 

experience that are not part of reality. 
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1.2.2 Negative Symptoms 

The manifestation of negative symptoms may precede the onset of the first 

psychotic episode and when pronounced during prodromal stages of illness, 

contribute to poorer clinical prognosis and long-term disability [19]. Negative 

symptoms are pervasive throughout the disorder, more stable over time and 

follow a longitudinally independent course when compared to positive symptoms 

[20]. The negative dimension of schizophrenia is characterised by absent or 

diminished emotional and behavioural responses, such as alogia (reduced quality 

or quantity of speech), avolition (reduced ability to initiate and follow through on 

plans), anhedonia (lack of pleasure), flattened affect (expressed as monotonous 

voice tone or immobile facial expressions) and social withdrawal (loss of interest 

in social engagement) [11]. The persistent nature of these symptoms impairs a 

patient’s ability to maintain daily functioning and is associated with cognitive 

decline [21], an arrest in social development and attainment in usual social roles 

[22]. Despite a strong association, the shared variance between negative 

symptoms and cognitive deficits has been shown to be small, suggesting that each 

domain contributes independently to reduced functional outcomes [23]. 

 

1.2.3 Cognitive Deficits 

Neurocognitive decline in schizophrenia represents a moderate-to-severe 

deviation below the norm [24] in areas important for daily functioning, including 

memory, learning, attention, visuo-spatial abilities, language and executive 

function [25-27]. Some patients present with reduced cognitive performance prior 
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to the onset of illness [28] and by the time of onset of the first psychotic episode, 

show stable impairment in several domains [29]. Cognitive deficits are associated 

with reduced ability to perform daily living tasks [30, 31] and reduced measures 

of global functioning and quality of life [3]. These debilitating performance 

outcomes remain consistent throughout chronic stages of illness in most patients 

[29]. Behavioural deficits may be indicative of abnormal neuronal development, 

aberrant neuroplasticity, structural and functional alterations [32], or 

unexpressed genetic components [33-36]. Conceptualising schizophrenia as a 

syndrome of cognitive dysfunction remains a core focus of clinical research, in an 

attempt to clarify the underlying mechanisms that give rise to and maintain these 

disabling features of the disorder.   

 

 Pathophysiology of Schizophrenia  

Advances in molecular biology, genetics and imaging techniques provide evidence 

of alterations in several neurotransmitter systems, including dopamine, 

glutamate, gamma-aminobutyric acid (GABA) and serotonin, which link abnormal 

neurochemistry to the phenotypic expressions of schizophrenia. These 

neurobiological frameworks aim to accommodate structural and functional 

abnormalities and disconnectivity between brain regions. The dopamine 

hypothesis of schizophrenia still remains the most relevant theory linking the 

pathophysiology of positive symptoms to the mechanism of current antipsychotic 

medications. However, the development of the glutamatergic hypothesis 

reconceptualised our understanding of the disorder and offers a new mechanism 
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of action and potential neurobiological target for treating core refractory 

symptoms. While these models are still in their infancy in explaining the aetiology 

of schizophrenia, their contribution to a neuropathophysiological framework of 

the brain usefully informs the manifestation and maintenance of core phenotypes. 

Further investigation and ongoing refinement of these models continues to 

advance the development of novel treatment interventions and their progression 

into clinical trials.  

 

1.3.1 Dopamine Hypothesis 

The initial hypothesis of excessive subcortical dopamine was derived from clinical 

benefits following administration of antipsychotics [37] and their potency for 

dopamine type-II (D2) receptors [38]. Neuroimaging studies provide evidence of 

D2 receptor hyperfunction in the mesolimbic pathway projecting from the ventral 

tegmental area to the nucleus accumbens [39] (Figure 1.1a). This increase in 

dopaminergic neurotransmission is associated with increased positive symptoms 

in schizophrenia and parallels fluctuations in psychotic episodes throughout the 

course of illness [40]. D2 receptors are highly concentrated in the striatum, with 

lower concentrations in the prefrontal cortex and medial temporal regions. 

Dopamine dysfunction in the striatum, which receives inputs from both the 

ventral tegmental area and nucleus accumbens (Figure 1.1b), has been proposed 

as a final common pathway and mechanism of positive psychotics symptoms [41]. 

Overactive D2 receptor expression in this region may also contribute to cortical-

mediated cognitive deficits observed in schizophrenia [42].  



 

 

  

 
Figure 1.1. Mesolimbic and mesocortical pathways related to the dopamine hypothesis of schizophrenia: a) over-active dopaminergic 

function in the mesolimbic pathway, projecting from the ventral tegmental area to the nucleus accumbens, contributes to the manifestation 

of positive symptoms; b) the striatum is highly dense in dopamine D2 receptors, receiving input from the ventral tegmental area and nucleus 

accumbens, and is the proposed final common pathway of positive symptoms in schizophrenia; c) under-active dopaminergic 

neurotransmission in the mesocortical pathway contributes to the manifestation of negative symptoms and cognitive deficits. DLPFC, 

dorsolateral prefrontal cortex; NA, nucleus accumbens; PFC, prefrontal cortex; STR, striatum; VTA, ventral tegmental area. 

VTA

NA

VTA

NA

VTA

STR

PFC

DLPFC

a)	Mesolimbic	 Pathway b)	Striatum c)	Mesocortical	Pathway
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Hypoactivation of dopamine in the mesocortical pathway (Figure 1.1c) may 

play an important role in the generation of negative symptoms and cognitive 

impairment [43-46]. Activation of dopamine type-I (D1) receptors located on 

glutamatergic neurons decreases presynaptic glutamate release, while those 

located on GABA interneurons promote inhibition of pyramidal neurons [47, 48]. 

Reduced D1 receptor binding in the prefrontal cortex has been observed in drug-

naïve schizophrenia patients and has shown to be associated with increased 

severity of negative symptoms and impaired cognitive performance [49]. Despite 

these associations, the dopamine hypothesis is limited to defining a 

pathophysiological understanding of psychosis. This neurobiological model is less 

able to define the aetiology of other neurotransmitter system dysfunction, such 

as glutamate, adenosine and serotonin, which accommodate broader phenotypic 

profiles in schizophrenia [50]. 

 

1.3.2 Glutamate Hypothesis  

Decreased NMDAr function is thought to underlie neuronal atrophy and reduced 

excitatory networks in schizophrenia [51, 52]. The glutamatergic hypothesis 

proposes a preliminary dysregulation in prefrontal NMDAr function, which alters 

downstream dopaminergic neurotransmission [53, 54]. Hypofunctional NMDArs 

in the prefrontal cortex result in a weak GABA tone, attenuating the inhibition of 

secondary glutamate release (Figure 1.2). Increased secondary glutamate leads to 

excessive release of dopamine in the mesolimbic pathway (for further review, see 

[55]). This theory accommodates positive symptoms that are synonymous with 
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the dopamine hypothesis, as well as providing a neurobiological model inclusive 

of negative symptoms, cognitive deficits and additional structural and functional 

alterations reported in schizophrenia.   

Support for glutamate dysfunction comes from acute models of 

dissociative anaesthetics that block NMDArs and decrease glutamate availability 

in the prefrontal cortex. NMDAr antagonists such as Phencyclidine (PCP) and 

Ketamine have been shown to give rise to schizophrenia-like symptoms in 

individuals without psychiatric history [51, 56] and worsen symptoms in 

schizophrenia patients [57, 58]. These acute pharmacological models induce 

positive and negative symptoms in a dose-response manner [59] and model 

cognitive impairments [53, 60], thought disorder [61] and eye tracking 

abnormalities [62, 63] that are reminiscent of schizophrenia. NMDAr co-agonists, 

such as glycine, have shown to inhibit PCP-induced hyperactivity [64], providing 

further evidence of altered NMDAr function underlying core schizophrenia 

phenotypes.  

Patient studies report decreased glutamate levels in cerebrospinal fluid 

and increased NMDArs post-mortem [65]. This increase in NMDArs is likely a 

neuronal compensatory mechanism to manage the pervasive state of decreased 

glutamatergic function, which is evident throughout the chronicity of the disorder 

[66]. Individuals with complete dopamine D2 receptor blockade persist with 

positive symptoms [67], suggesting that psychosis is mediated by additional 

neurotransmitter networks beyond hyperactive dopaminergic function in the 

mesolimbic  pathway.  Contrary  to these  conclusions,  research  utilising  magnetic        
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Figure 1.2. Schematic illustration of the glutamatergic hypothesis of 

schizophrenia.  N-methyl-D-aspartate receptor-mediated positive symptoms, 

negative symptoms and cognitive deficits in the glutamatergic model of 

schizophrenia. NMDA, N-methyl-D-aspartate; GABA, Gamma-Aminobutyric Acid.  
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resonance spectroscopy techniques have failed to identify a consistent 

relationship between regional glutamate and glutamine levels across different 

stages of the disorder (for further review, see [68]). In order to inform the 

aetiology and maintenance of core refractory symptoms, there is need to clarify 

their relationship with the pathophysiology of altered NMDAr function in cortical 

and subcortical networks within the brain. 

 

1.3.2.1 Glutamatergic Neurotransmitters 

At resting potential, NMDArs are ligand-gated ion channels blocked by a 

magnesium (Mg2+) gate. This block is relieved when the membrane potential is 

depolarised, allowing an influx of calcium (Ca2+) to enter the neuron. For NMDArs 

to be activated, they require glycine (an NMDAr co-agonist) to bind to the NR1 

subunit and glutamate to bind to the NR2 subunit of the receptor. When this 

occurs, Ca2+ activates a second messenger system that alters pre- and post-

synaptic connections via long-term potentiation and long-term depression (for 

further review, see [69]). It is through this change in synaptic connection strength 

by which the brain learns and encodes new information. High levels of 

extracellular sodium (Na+) and high intracellular potassium (k+) concentrations 

allow Na+ pumps to reabsorb glutamate and amino acids back into the cell. 

Glutamate is either reabsorbed via this process or it is converted into glutamine 

by glial cells and transported to other neurons [70], before being converted back 

into glutamate. When high levels of glutamate accumulate outside of the cell and 

are not reabsorbed, NMDArs are re-activated, allowing further influx of Ca2+ ions 
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to enter the cell. This increased concentration of intracellular Ca2+ may lead to 

neuronal cell death or excitotoxicity and is likely a contributing factor of neuronal 

atrophy observed in schizophrenia [71].  

 

1.3.2.2 GABAergic Neurotransmitters 

Attention to GABAergic function in schizophrenia was rejuvenated following 

developments in dopaminergic and glutamatergic hypotheses. GABAergic neurons 

contribute to a holistic framework of both deficits [72] and potential therapeutic 

interventions [73] in schizophrenia. This is particularly relevant to understanding 

alterations in neuronal plasticity within the disorder, as both glutamate and GABA 

play an important role in filtering information transmitted to cortical pyramidal 

neurons. When information is transferred down the neuronal dendritic spine, 

GABAergic synapses moderate neuronal plasticity by filtering glutamatergic 

signals, before they propagate to the cell soma to generate an action potential (for 

further review, see [74]; Figure 1.3). Glutamatergic neurons provide the excitatory 

drive for GABAergic interneurons, whereby reduced glutamatergic function leads 

to a loss of inhibitory filtering and subsequent hyper-activation of pyramidal 

neurons (Figure 1.2). Therefore, reduced cortical function of glutamate may 

initiate GABA-mediated cognitive deficits in schizophrenia. 

 

 Neurobiological Alterations 

A structural model of schizophrenia is supported by findings of smaller whole brain 

volume [75, 76], reduced hippocampal volume [77], decreased grey matter                  
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Figure 1.3. Gamma-aminobutyric acid filtering of pyramidal neurons. Gamma-

Aminobutyric Acid (GABA) interneurons filter (green vertical bar) excitatory inputs 

on the dendritic spines of cortical pyramidal neurons, before reaching the cell 

soma. When glutamatergic regulation of GABA interneurons is decreased, the 

GABA-mediated inhibitory filtering is reduced, resulting in hyper-activation of 

cortical pyramidal neurons. GABA, Gamma-Aminobutyric Acid. 
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[75, 78, 79], enlarged ventricles [80], focal alterations of white matter tracts and 

brain atrophy in regions such as the prefrontal cortex [16]. Alterations in structural 

and functional connectivity appear evident across different stages of the disorder 

[81, 82] , while structural alterations in family members provide support for a 

genetic contribution (for further review, see [83]). Findings of neurobiological 

alterations in schizophrenia has facilitated the characterisation of different stages 

of the disorder, including the development of premorbid risk factors (for further 

review, see [84]). Individuals at high risk for developing psychosis are reported to 

have pronounced grey matter deficits [85], reduced whole brain volume, and left 

and right prefrontal and temporal lobe volume [76]. Diffusion tensor imaging 

techniques report that abnormal white matter development in temporal regions 

in schizophrenia predicts functional outcomes in later stages of illness [86].  

Neuroscience has directed much attention to understanding phenotypes 

arising from aberrant neuronal networks and integration between brain regions, 

suggesting that many phenotypes can only be explained by considering the 

relationship between a range of cognitive processes. Instead of attributing 

structural plasticity, symptoms are postulated to result from synaptic plasticity - 

the activity dependent modelling of the pattern and strength of synaptic 

connections (for further review, see [87]). A series of post-mortem studies report 

reduced excitatory feed-forward circuits extending from the auditory cortex (AC) 

in chronic patients [88, 89], which may result in poor adaptation to perceptual 

changes in the environment. A disconnectivity framework of schizophrenia 

proposes that the brain may still show regionally specific structural abnormalities, 
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but that these abnormalities are secondary to the more pervasive problem of 

deficient integration and communication of information [87].   

 

 Antipsychotic Treatments 

In the acute psychotic state, schizophrenia patients exhibit an increase in 

dopamine synthesis and synaptic dopamine concentration [90], providing a clear 

and logical link to first-generation antipsychotics (FGAs) targeting dopamine D2 

receptor function [91]. A limitation of FGAs, which includes agents such as 

haloperidol and chlorpromazine, is the manifestation of extrapyramidal side 

effects following acute and chronic D2 receptor blockade (Figure 1.4). Following 

administration of haloperidol, dopamine D2 receptor occupancy rates above 65% 

have demonstrated therapeutic efficacy, while occupancy rates above 78% 

elicited extrapyramidal side-effects and no further symptom improvement [91]. 

High doses of FGAs can also block activation in the mesocortical pathway, 

contributing to secondary negative symptoms and cognitive deficits [92]. 

The profound side effects of FGAs led to the development of second-

generation antipsychotics (SGAs). An advantage of SGAs is reduced specificity for 

dopaminergic receptors and indirect modulation of dopamine via other 

neurotransmitter systems. For example, risperidone and ziprasidone have a high 

affinity ratio for 5HT2A-to-D2 receptors, where 5HT2A has an additional regulatory 

effect on dopaminergic function (for example, see [93, 94]). These properties 

allow the drugs to maintain their therapeutic benefit while lowering the risk of 

extrapyramidal and secondary negative symptoms. Contrary to the proposed 



Chapter One 

 

17 

 

benefits of SGAs, these drugs also incur increased cardio and metabolic side-

effects, such as weight gain and glucose dysregulation (for further review, see 

[95]). Overall, these treatments have not met expectations with regards to 

reduced side-effect profiles or increased tolerability when directly compared to 

FGAs (for further review, see [96]).  

Clozapine is almost considered a third class of antipsychotic, due to its 

ability to treat up to 50-60% of treatment-refractory patients (i.e. patients who 

have not previously responded to antipsychotic medication) [94, 97]. However, 

this drug demonstrates limited efficacy when administered to treat first episode 

psychosis [98]. Clozapine has lower-affinity and short-term high occupancy at D2 

receptors, which is sufficient to maintain antipsychotic properties without over-

occupying the receptor [99, 100]. In addition, clozapine has high affinity for 5HT2A, 

Muscarinic M1 and α2-adrenoceptors (for further review, see [101]), supporting 

significant involvement of neurotransmitter systems beyond direct dopamine 

activation that contribute to its effectiveness. There are additional adverse side 

effects involved in treatment with clozapine, most notably, haematological 

reactions, dose-related reduction in seizure threshold, myocarditis and cardio-

myopathy [102]. These risk factors require close monitoring, limiting the practical 

utility of administering clozapine in treatment-resistant or chronically ill patients.  

While antipsychotics show some efficacy in reducing psychotic symptoms 

and preventing relapse in schizophrenia [91, 103], they have modest effects in 

treating negative symptoms and cognitive deficits [104]. Recent large-scale clinical 

trials also raise concern over the naturalistic efficacy of SGAs (compared to FGAs) 
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Figure 1.4. Antipsychotic blockade of dopamine D2 receptors. First generation 

antipsychotics have high affinity for dopamine D2 receptors, while second 

generation antipsychotics have high potency but reduced specificity for 

dopamine. Both acute and chronic blockade of D2 receptors contribute to the 

unwanted side-effect profile of antipsychotics in the treatment of schizophrenia.  
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when assessing real world outcomes. The Clinical Antipsychotic Trial of                            

Intervention Effectiveness (CATIE) [105] and the Cost Utility of the Latest  

Antipsychotic Drugs in Schizophrenia Study (CUtLASS) [106] both failed to 

demonstrate superior efficacy for either FGAs or SGAs on measures of treatment 

discontinuation, improved psychotic symptoms, or increased quality of life. In a 

meta-analysis examining the efficacy of fifteen different antipsychotics, only small 

effects sizes were observed for amisulpride, olanzapine, and risperidone, all of 

which were developed in the first series of SGAs [107].      

 

 Glutamatergic Treatments 

The challenge for current pharmacological research is to address the under-

recognised and treatment refractoriness of core negative symptoms and cognitive 

deficits, and to optimise conditions for pharmaceutical benefit. A glutamatergic 

model postulates hypofunction of prefrontal NMDArs that lead to reduced 

excitatory networks and alterations in brain structure, function and downstream 

neurotransmitter pathways [55, 108-110]. Direct activation of glutamatergic 

receptors leads to neuronal cell death and is not a feasible option to manage the 

hypofunctional NMDAr state of schizophrenia. Alternatively, activation of the 

glycine modulatory site is one proposed mechanism of increasing glutamatergic 

neurotransmission (Figure 1.5). In animal models of schizophrenia, glycine 

reduced PCP-mediated psychotic symptoms [111, 112]. The same authors report 

glycine increased NMDAr-mediated inhibition of dopamine  release in the striatum 

[113, 114],  while  glycyldodecylamide  (GDA),  a  glycine  type-1  reuptake  inhibitor    



 

 

 
 

Figure 1.5. Glycine binding on N-methyl-D-aspartate receptors. Directly activating the glutamate binding site on N-methyl-D-aspartate 

receptors (NMDArs) may lead to neuronal cell death or excitotoxicity. One alternative way to increase NMDAr function in schizophrenia is to 

activate the glycine modulatory site. Novel therapeutic targets aim to increase synaptic glycine concentrations to rectify the hypofunctional 

NMDAr state in schizophrenia. NMDA, N-methyl-D-aspartate ; CA2+, Calcium ions; Na+, Sodium ions; MG2+, Magnesium ions.  
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(GT1-RI) stimulated NMDAr-mediated GABA release in the same region [114]. 

NMDAr agonists such as glycine [115-117] and D-serine [118, 119], as well 

as the glutathione precursor N-acetyl-cysteine (NAC) [120], have demonstrated 

improved clinical symptoms in patients on stable antipsychotic medication, 

although some studies have failed to replicate these findings (for further review, 

see [121]). While high-dose glycine has shown to improve negative symptoms 

[117, 122, 123] and cognitive deficits [124] in treatment-resistant patients, 

increasing synaptic glycine concentration under clozapine may saturate the 

glycine modulatory site and initiate increased negative symptoms; glycine may 

downregulate NMDAr activity [125] and D-cycloserine may displace fully occupied 

sites [126].  

Proof of concept studies administering GT1-RIs have shown promising 

results for improving positive and negative symptoms [127]. However, a recent 

phase-III clinical trial failed to support any benefit of the GT1-RI bitopertin when 

compared to placebo [128], raising doubts as to the benefit of increasing synaptic 

glycine concentration in schizophrenia. An editorial by Beck and colleagues [2] 

raises concern of secondary negative symptoms inflating a placebo effect, 

particularly in chronic patients. The authors further suggest the need for 

stratifying biological dysfunction in clinical trials and the need for biological 

markers to further inform mechanisms of treatment efficacy. Such markers may 

help clarify inconsistent reports on therapeutic outcomes following increased 

synaptic glycine concentration in schizophrenia.  
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 Cannabis Use in Schizophrenia 

Substance use disorder is highly prevalent in schizophrenia, with approximately 

50% of substance use in patients compared to 16% in the general population [129]. 

Notably, cannabis use is significantly higher in schizophrenia [130, 131] and in 

individuals with a psychotic illness more generally [132]. A meta-analysis 

estimated the prevalence of a cannabis use disorder in schizophrenia, indicating 

clinically significant distress or impairment [11], for current use at 16% and 

lifetime use at 27.1% [133]. In the Australian and New Zealand Clinical Practice 

Guidelines cannabis is identified as the most serious comorbidity in schizophrenia 

due to its widespread use [134]. Cannabis has been reported to worsen outcomes 

in schizophrenia patients by enhancing cognitive deficits and psychotic symptoms 

and increases the risk of relapse [135-137]. Chronic cannabis users, without 

psychiatric history, also exhibit many cognitive phenotypes that are proposed 

vulnerability markers of schizophrenia [138]. 

 

1.7.1 Structural and Functional Alterations  

Disruption of normal endocannabinoid functioning may lead to alterations in brain 

networks important for neuronal and cognitive development [139]. Cognitive 

deficits in heavy and long-term cannabis users are thought to be mediated by 

alterations in the hippocampus, prefrontal cortex and cerebellum [140]. These 

regions are critically involved in memory and higher order cognitive processing 

and are dense with cannabinoid receptors [141, 142]. The most commonly 

reduced functions following acute and chronic cannabis exposure are attention 
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and verbal learning and memory, with some evidence of ongoing impairment after 

prolonged cessation of use (for further review, see [143]). These findings are 

supported by animal models reporting learning and memory impairment after 

acute and chronic cannabinoid administration [144, 145]. 

Similarities in structural and functional deficits between cannabis users 

and schizophrenia patients suggest a common underlying pathology [138]. 

Reduced hippocampal volume in cannabis users has been associated with 

cumulative exposure to cannabis and increased development of subclinical 

psychotic symptoms, where hippocampal reductions were of similar magnitude to 

that observed in schizophrenia [146]. Molecular and electrophysiological 

techniques have been used to demonstrate cannabinoid type-I (CB1) receptor 

mediation of Δ9-Tetrahydrocannabinol (Δ9THC) induced reductions in long-term 

potentiation [147]. In this study, Δ9THC was shown to down-regulate 

glutamatergic receptor subunits in mice and induce their endocytosis via CB1 

receptors. Repeated exposure to cannabis has also been shown to suppress long-

term potentiation in the CA1 region of the hippocampus [148, 149]. These findings 

suggest a complex interaction between endocannabinoid and glutamatergic 

neurotransmitter function that is adversely affected by repeated Δ9THC exposure.  

 

1.7.2 Endogenous Cannabinoids 

Endocannabinoids and their receptors modulate physiological functioning in a 

range of neuronal networking systems within the brain [150] and play an 

important role in behavioural processes such as locomotion, anxiety, learning and 
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memory [151]. The two main cannabinoid receptors, CB1 and cannabinoid type-II 

(CB2), belong to the family of G-protein coupled receptors. CB1 receptors are 

expressed in the central nervous system (CNS), with highest concentrations in the 

basal ganglia, hippocampus, and prefrontal and anterior cingulate cortex, while 

CB2 receptors are mainly found in the immune cells and peripheral tissues [152]. 

Endocannabinoids are lipid transmitters that serve as natural ligands for 

cannabinoid receptors, with the main endocannabinoids being 

arachidonoylethanolamide (anandamide or AEA) and 2-arachidonoylglycerol (2-

AG). Endocannabinoid synthesis is located on membrane phospholipids in 

response to postsynaptic intracellular CA2+, a process that may be aided by post-

synaptic G-protein couple receptor activation.  

Cannabinoid receptors mediate the inhibition of neurotransmitter release 

throughout the central nervous system, including glutamate, dopamine and GABA 

[153-155]. Depolarised induced suppression of excitation (DSE), the process of 

inhibiting neurotransmitter release from glutamatergic neurons, occurs when CB1 

receptors inhibit voltage-gated Ca2+ channels and K+ conductance [156]. DSE 

occurs when 2-AG is released from CA1 pyramidal neurons during depolarisation 

and act in a retrograde manner to activate CB1 receptors on Schaffer collateral 

axon terminals [156]. CB1 receptors regulate activation of NMDArs, via coupling of 

histidine triadnucleotide-binding protein 1 (HINT-1) [157], to prevent further CA2+ 

influx and therefore protect against neuronal excitotoxicity. As NMDArs become 

highly activated, cannabinoids are recruited on demand to co-internalise the NR1 

subunit of the receptor, negatively controlling NMDAr function via retrograde 
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synaptic messaging [158].  

 

1.7.3 Exogenous Cannabinoids 

The endocannabinoid system is the binding site of exogenous cannabinoids, such 

as Δ9-THC, which disrupt normal endocannabinoid regulation of neuronal 

excitability within the brain [159]. Δ9THC is the main psychotropic constituent in 

cannabis [160] and is a partial agonist at CB1 and CB2 receptors. CB1 receptors 

located on glutamatergic neurons appear to be activated at lower concentrations 

of Δ9THC compared to those on GABAergic neurons, suggesting a bell-shaped 

dose-response excitatory curve [161]. Cannabidiol (CBD), also an exogenous 

cannabinoid found in cannabis plant matter and partial agonist at CB1 and CB2 

receptors, has purported anxiolytic and antipsychotic properties (for further 

review, see [162]). Although CBD has low affinity at CB1 receptors, it has negative 

allosteric modulator properties [163, 164] that reduce the ability of CB1 agonists, 

such as Δ9THC, to bind to the receptor.  

Increased activation of CB1 receptors has been shown to induce psychotic 

states in vulnerable individuals [165, 166] and worsen symptoms in schizophrenia 

patients [135]. Alterations in endocannabinoid regulation of glutamatergic 

function, whereby CB1 receptors restrict NMDAr activation, may lead to prolonged 

states of NMDAr hypofunction or downregulation of NMDArs, conditions that are 

synonymous with the pathophysiology of schizophrenia (see section 1.3). Over-

activation of pre-synaptic CB1 receptors may inhibit glutamate release in the 

synaptic cleft, while post-synaptic CB1 receptors may alter NMDAr signalling 
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pathways. Prolonged states of reduced NMDAr signalling may lead to alterations 

in downstream neurotransmitter functioning, such as dopamine [167], providing 

a mechanism for which repeated exposure to Δ9THC may precipitate psychotic 

symptoms in vulnerable individuals.   

It is unclear whether smoked cannabis alters CB1-NMDAr associations to 

differentially affect the neuronal response to NMDAr-mediated treatments in 

schizophrenia. The efficacy of increasing synaptic glycine concentration may be 

reduced under conditions of elevated CB1-mediated inhibition of NMDAr 

activation. While most of the pharmacological action of exogenous cannabinoids 

is reported for CB1 receptors, Δ9THC and CBD may also alter glutamatergic and 

GABAergic function via CB1-independent mechanisms (for review of additional 

molecular targets not discussed here, see [168]). In neurons located in the ventral 

tegmental area in mice, Δ9THC potentiates glycine receptor-mediated currents via 

allosteric mechanisms in a dose-response manner [161]. These findings suggest 

exogenous cannabinoids alter neural activation and downstream 

neurotransmitter release in brain networks implicated in the pathophysiology of 

core schizophrenia phenotypes (see section 1.3.1). Of particular relevance to the 

current thesis is that different combinations of Δ9THC and CBD potency found in 

cannabis plant matter [169], as well as evidence for their dose-dependent 

outcomes (for further review, see [170]), may lead to differential effects of 

cannabis on NMDArs and associated signalling pathways.  There is need to further 

clarify the effects of repeated cannabis use on vulnerability markers indexing 

hypofunctional NMDAr activity in schizophrenia.  
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 Chapter Summary 

While neuroscience has advanced our understanding of the biological 

underpinnings of schizophrenia, there remains vast heterogeneity in response to 

pharmacological treatments. A dopaminergic hypothesis provides a clear link to 

antipsychotics targeting dopamine D2 receptor function. However, a 

glutamatergic hypothesis proposes preliminary dysregulation that accommodates 

core refractory symptoms and cognitive deficits, specifying NMDArs as a logical 

neuronal target for pharmacological intervention. The shift from a narrowly 

defined dopamine hypothesis, to the refinement of broader neurobiological 

models such as glutamate, has guided the development of alternative treatments 

which are progressing through preclinical and clinical phases of testing. A 

challenge for current neuropsychopharmacological research is to clarify 

mechanisms of improved clinical outcomes and to increase the specificity and 

sensitivity of diagnostic and treatment tools [171].  

Increasing synaptic glycine concentration is one potential method to 

rectify the hypofunctional NMDAr state in schizophrenia. Phase-II clinical trials 

have found some evidence that this method improves positive and negative 

symptoms [119, 127, 172, 173], while other studies have failed to replicate these 

findings [128]; this raises some doubt as to the benefit of increasing post-synaptic 

glycine concentrations in schizophrenia. The endocannabinoid system plays a key 

role in regulating NMDAr activation and disruption of this regulatory mechanism, 

such as that following regular cannabis use, may alter neurotransmitter 

functioning in target pathways of NMDAr-mediated treatments. Clarifying the role 
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of the endocannabinoid system (both related and unrelated to regular cannabis 

use) on cortical and subcortical networks deficient in schizophrenia, may help to 

inform mechanisms of core refractory phenotypes. The application of biomarkers 

in glutamatergic-mediated pharmacotherapy trials may be a useful means of 

informing the relationship between functional target engagement and improved 

clinical outcomes. Further, they may help clarify inconsistent reports on the 

benefits of increasing synaptic glycine concentration to improve clinical symptoms 

in schizophrenia.  
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2.1 Chapter Introduction 

In pharmacotherapy trials, biomarkers aim to clarify the relationship between 

neuronal occupancy and expected therapeutic benefits. Absence of such 

measures in preclinical trials can make it difficult to interpret inconsistent reports 

on clinical outcomes, as is the case for treatments that aim to increase synaptic 

glycine concentration in schizophrenia. The primary auditory pathway is one 

neurobiological system that allows unique insight into the integrity of excitatory 

neurotransmitter functioning within the brain. Mismatch Negativity (MMN) is a 

measure of auditory change detection and is a potential biomarker to index N-

methyl-D-aspartate receptor (NMDAr) hypofunction in schizophrenia. There is 

need to determine the nature of the relationship between MMN and NMDAr 

function, in order to inform the utility of MMN to index neuronal integrity in brain 

regions and pathways underlying core refractory symptoms. 

 The following chapter defines MMN as an event-related potential indexing 

deviance detection and discusses the pharmacology of its generation, with 

particular focus on neuronal networks and brain regions relevant to the 

pathophysiology of schizophrenia. Discussions on the hierarchical structure of the 

primary auditory pathway and networks involved in processing frequency and 

duration sound features, provide a framework to discuss the contribution of 

excitatory and inhibitory networks involved in MMN generation. This chapter 

reviews MMN findings within schizophrenia and proposes MMN as a potential 

biomarker to stratify NMDAr dysfunction within the disorder. Further, this chapter 

concludes that changes in MMN may be useful to index alterations in NMDAr 
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function following neuronal target engagement of pharmacological treatments. 

 

2.2 Mismatch Negativity Defined 

MMN indexes the brain’s pre-attentive ability to detect stimulus change in sensory 

memory. Auditory MMN is a negative deflection of the event-related potential 

(ERP), elicited above the threshold of discrimination between a deviant stimulus 

and a pattern of sounds forming a sensory memory trace [174, 175]. Deviant 

stimuli may vary from the memory trace, also referred to as standards, in differing 

complexity, such as change in spectral, temporal, or higher order features [176, 

177] (higher order constructs such as phonetic structure, sequence pattern and 

stimulus omission are not discussed here). Typically, MMN is calculated by 

subtracting the ERP to standards from the ERP to deviants, creating a difference 

waveform (see section 2.2.1). The negative potential observed in the difference 

waveform is thought to index additional excitatory processing required for 

deviance detection. As MMN is a pre-attentive measure of attention and is 

responsive to neurobiological change, it is a candidate biomarker for translational 

clinical research.  

 

 Electroencephalographic Measurement 

MMN is elicited approximately 100-200ms after the onset of a deviant stimulus 

[178]. It is typically measured by recording ongoing spontaneous neuronal activity 

via electroencephalograph (EEG) at frontal electrode sites, compared to a 

relatively neutral reference electrode such as the nose or linked mastoids [179]. 
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The EEG recording at each electrode indexes the voltage signal of many neurons 

working together across time-varying domains. The latency of the ERP indexes 

both the degree of neural activity required to process the stimulus and ongoing 

neural activity that is non-specific to the stimulus.  In order to remove the non-

specific or irrelevant neural activity, multiple ERP trials to the same stimulus 

presentation are averaged together. This method assumes that neural activity 

generated in response to the stimulus will be most prominent in the averaged 

waveform due to its consistent temporal presentation across trials, while the non-

specific activity is ‘averaged out’ along the temporal domain of the ERP recording.  

 

 Oddball Paradigm 

Typically, much research has utilised an auditory oddball paradigm to measure 

MMN, whereby deviant tones are presented intermittently within a background 

of identical standard tones (Figure 2.1). The number of standard tones is 

presented at differing train lengths to allow the deviant stimulus to be presented 

at unexpected time intervals and of an unknown probability. The deviant tone may 

be characterised by, but not limited to, changes in duration, frequency, intensity, 

or spatial location of a sound. The average response to all standard tones is 

subtracted (separately) from the averaged response to each type of deviant tone, 

creating a difference MMN waveform for each deviant type.  

 

 Roving Paradigm 

In a roving MMN paradigm, each stimulus type functions as both a standard and 
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deviant throughout the MMN sequence and is randomly repeated in blocks of 

differing train lengths. The first stimulus in each block functions as a deviant 

stimulus, due to the relative change in sound properties from the preceding block 

(Figure 2.2a). Rather than reverting back to the same standard stimulus, as is 

typical in an oddball paradigm, the roving design continues to repeat the ‘deviant’. 

After two-to-three presentations, the deviant stimulus is processed as a new 

series of standards (Figure 2.2b). Therefore, the relative presentation order of a 

stimulus defines it as a deviant or standard (Figure 2.2c). MMN waveforms are 

calculated for each stimulus type separately, in order to control for sound 

properties. This is achieved by subtracting the averaged standard ERP from the 

averaged deviant ERP across stimuli with identical sound features (Figure 2.2c).  

 

2.3 Mismatch Negativity Generators 

MMN has traditionally been defined as an index of functioning in auditory cortical 

networks required for deviance detection. The most consistently reported 

generators of MMN include the temporal and frontal cortices [176, 180, 181]. 

Functional magnetic resonance imaging (fMRI) has shown increased activation in 

the superior temporal gyrus of the auditory cortex (AC) in response to deviant 

tones [182]. The AC is proposed to detect sound features and establish a memory 

trace to which incoming stimuli are compared [174]. Cerebral blood flow, EEG and 

scalp current density analyses have provided evidence for an additional frontal  

generator in the inferior frontal gyrus (for further review, see [183]), with evidence 

to  suggest that  duration  deviants  predominately  activate  the left  inferior frontal                        



 

 

 

 

 

 
 

 

Figure 2.1. Mismatch negativity oddball paradigm. In an oddball mismatch negativity paradigm, a series of standard stimuli [blue] are 

presented at differing train lengths to establish a memory trace in auditory sensory memory. Deviant stimuli [red] (i.e. deviating from the 

standard in frequency, intensity or duration), are interspersed within the train of standards at unexpected time intervals. 
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Figure 2.2. Mismatch negativity roving paradigm. In a roving mismatch negativity (MMN) paradigm, different stimuli are presented in 

blocks of varying train length: a) The first tone in the new block functions as a deviant (red deviant), due to the change in sound properties 

relative to the preceding memory trace (blue memory trace); b) The deviant tone is repeated in order to establish a new memory trace of 

identical sound features (red memory trace); c) The MMN difference waveform is calculated for each stimulus type separately, whereby the 

event-related potential (ERP) of the standards (for example, the average of all  green memory traces) is subtracted from the ERP of 

corresponding deviant stimuli (for example, the average of all green deviants). 
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gyrus [184], while frequency deviants activate the right inferior frontal gyrus [182, 

184]. Frontal activation is related to an involuntary switch in attention that is 

required for higher-level deviance detection when comparing a stimulus to an 

established memory trace [184-186].  

 

2.4 Stimulus-Specific Adaptation  

The generation of MMN is thought to result from a series of deviance detection 

processes occurring in both subcortical and cortical structures of the auditory 

pathway. Stimulus-specific adaptation (SSA) is a form of short-term plasticity in 

response to a repeated stimulus. When the same stimulus is repeated, such as 

standard tones in an oddball paradigm (see section 2.3.1), the neuronal activation 

in response to the stimulus is reduced. Following the presentation of a deviant 

stimulus, the firing rate of the same neurons are significantly increased, releasing 

the suppression of neuronal firing imposed on the repeated stimulus [187]. This 

finding supports the separation of the SSA response from an independent model 

of neuronal fatigue. SSA in response to deviant stimuli are well developed in 

regions of the midbrain [188], suggesting that SSA contributes proportionally to 

deviance detection processes generated higher in the auditory pathway, including 

MMN. While SSA contributes to deviance detection via bottom-up processing of 

sound features, corticofugal projections from the AC help to modulate the firing 

rate of neurons in midbrain structures [189] (corticofugal projections supporting 

SSA are discussed further in section 2.6). 
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2.5 Prediction Error Encoding  

The magnitude of the MMN is dependent on the strength of the standard pattern 

in echoic memory, implicating an important role of synaptic plasticity in MMN 

generation. The detection of a deviant stimulus requires on-line modification of 

the established memory trace [190], such that the brain receives bottom–up 

thalamic inputs which inform current stimulus properties and allow the brain to 

adjust top–down predictions [191, 192]. A model of prediction error defines MMN 

as the difference between these thalamic inputs and NMDAr spike timing of a 

dependent synaptic plasticity discharge, which occurs when information is fed-

back to predictive neurons. This model suggests reduced efficiency in having learnt 

the regularity of the predictive rule (the standard memory trace), or impairment 

in detecting or communicating the response to an unexpected deviant stimulus. 

In the latter case, MMN is considered a prediction error signal of the acoustic 

environment [193, 194].  

 

2.6 Auditory Processing Hierarchy  

Processing of auditory sound features begins in the cochlear nucleus. Neuronal 

signals ascend through the inferior colliculus (IC) to the medial geniculate body 

(MGB; part of the auditory thalamus). The cytoarchitecture of the MGB suggests 

that spectral and temporal properties are deconstructed, prior to being processed 

in core areas of the primary (AI) and secondary (AII) AC [195]. The frontal cortex 

tracks the violation of expected sounds by comparing change in stimulus features, 

generating low frequency activity in response to a prediction error [196].  
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 The descending cortico-thalamic and cortico-collicular pathways assist in 

neuronal adaptation and deviance detection at the level of subcortical structures 

[189]. Descending projections to the MGB and IC primarily extend from layer V 

and VI of the AI [197-199]. The MGB has a high ratio (10:1) of corticofugal 

projections compared to the corresponding ascending pathways [200, 201]. These 

projections demonstrate strong stimulus-specific adaptation, indexing a gain 

control mechanism of the AC to MGB neurons. Corticofugal projections update 

sensory representation of sounds, via synaptic depression, which is then projected 

back to higher order cortical areas [202, 203]. Sounds features are then integrated 

in the belt and parabelt areas surrounding the AI and AII, before projecting to the 

frontal and parietal cortices for higher order processing required for deviance 

detection [195].  

 

2.6.1 Frequency Sound Processing 

Tonotopic maps are the spatial arrangement of different laminae or bands 

sensitive to differing sound frequencies. These maps ascend through the auditory 

pathway in a bottom-up fashion, allowing the processing of sound frequency to 

be communicated directly to corresponding bands in the next level of the 

ascending auditory pathway [204]. Projections extending from the central nucleus 

of the IC, to the ventral division of the medial geniculate body (MGBv) and AI, form 

the leminiscal pathway of the auditory system. Neurons in the leminiscal pathway 

are of short latency, sharp tuning curve, and have a consistent neuronal response 

to differing sound frequencies [205]. There is evidence to suggest this tonotopic 
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organisation in the leminiscal pathway also extends to belt areas of the AC [206-

208].  

 

2.6.2 Duration Sound Processing 

Within the brainstem, neurons are non-selective to the duration of a sound, 

having a sustained response to the duration of all auditory stimuli. Within the IC, 

further along the ascending auditory pathway, duration-tuned neurons have a 

neurophysiological response characterised by specific stimulus durations. These 

duration-tuned neurons have also been reported in areas of the auditory thalamus 

and AC in mammals [195, 209]. The selective activation of duration-tuned neurons 

occurs via excitatory inputs corresponding to the onset and offset of a stimulus, 

while temporally offset inhibitory inputs supress the excitatory response occurring 

at neurons of non-corresponding durations [195, 210]. Projections from the IC to 

the medial (MGBm) and dorsal (MGBd) divisions of the MGB and belt areas of the 

AC are less tonotopically organised, forming the non-leminiscal pathway of the 

auditory system. In the MGBd, neurons are typically of broad tuning curve, while 

the MGBm appears to have both broad and narrow-tuned neurons to allow more 

accurate discrimination between different sound durations [205]. The leminiscal 

and non-leminiscal pathways are not mutually exclusive, rather, temporal and 

spectral processing occurs parallel to allow complex integration of differing sound 

properties. Corticofugal projections from the AC descend primarily to the non-

leminiscal subcortical structures of the MGB and IC [211]. The processing of 

duration sound features requires the complex decomposition of the sound and 
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connectivity across a range of ascending and descending neuronal projections 

between subcortical and cortical regions.  

 

2.7 Pharmacology of Mismatch Negativity 

The pharmacological underpinnings of MMN have been investigated by 

modulating different neurotransmitter system functioning [212]. Auditory sensory 

memory, like other areas of working memory, involves a complex interaction of 

excitatory and inhibitory processes. The most robust and consistent 

pharmacological modulation of MMN has been demonstrated by altering NMDAr 

function (for further review, see [213, 214]). Minimal effects have been reported 

following modulation of dopaminergic [215], serotonergic [214, 216, 217] and 

gamma-aminobutyric acid (GABA) type A [218] receptor modulators. MMN 

appears heavily dependent on glutamatergic function, the main excitatory 

neurotransmitter system in the brain, and more specifically on excitatory 

pyramidal neurons [87].  

 

2.7.1 Glutamate 

Several studies have reported MMN reductions in humans following acute 

ketamine administration, an NMDAr antagonist, for both frequency and duration 

deviants [214, 219-222]. Two studies failed to replicate these findings: Oranje and 

colleagues [223] suggest that their negative findings may reflect low plasma level 

of ketamine at 158ng/ml, compared to 426ng/ml reported in an earlier positive 

study [221]; Roser and colleagues [224] also failed to find an effect of ketamine 
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and reported similar low plasma levels (133.8±58.2ng/ml) comparable to previous 

negative findings. Further support for a critical role of NMDAr function in 

generating MMN comes from administration of other NMDAr antagonists 

including Nitrous Oxide (N20) gas [199] and memantine [200]. At low doses, 

memantine increased MMN amplitude, potentially due to the ability of 

memantine to increase glycine affinity when administered at low doses [201].  

Contrary to expectations that glycine would increase MMN amplitude, high-

dose glycine reduced duration MMN amplitude in healthy controls [225]. In that 

study, participants were administered 0.8g/kg of glycine, the dose typically 

reported for clinical benefits in schizophrenia. The observed reduction in MMN 

amplitude may be indicative of a worsening in pre-attentive change detection in 

individuals with intact glutamatergic function prior to glycine administration. This 

interpretation is supported by animal models reporting cognitive impairment 

beyond optimal levels of synaptic glycine concentration [226]. These findings 

suggest a dose-dependent relationship between glycine and NMDAr function prior 

to glycine administration, whereby glycine may increase MMN amplitude in those 

with relatively low baseline NMDAr function, such as in schizophrenia, while 

reducing MMN amplitude in those with normal baseline functioning. However, the 

nature of this relationship has not been examined directly.  

 

2.7.2 Dopamine 

Modulating dopamine signalling has yielded a weak association with MMN 

generation. Studies in healthy controls have shown no effect of bromide, a 
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dopamine type-II (D2) receptor agonists, or pergolide, a dopamine receptor type-I 

(D1) and D2 receptor agonist, on MMN amplitude [215, 227]. No changes in MMN 

were observed following growth hormone response to apomorphine (non-

selective dopamine agonist) or clonidine (an ą2 adrenergic agonist) [228], 

providing indirect evidence that MMN generation is not dependant of 

dopaminergic function. In addition, inhibiting the reuptake of dopamine and 

norepinephrine under methylphenidate did not affect MMN [229]. Of three 

studies that have investigated the effects of haloperidol, a dopamine D2 receptor 

antagonist and antipsychotic treatment for schizophrenia (see section 1.5), two 

studies reported no effects on MMN amplitude [230, 231]. Only one study 

reported that haloperidol reduced MMN amplitude in healthy controls, in addition 

to increasing other selective and non-selective components of the ERP [232].  

 

2.7.3 Cannabinoid 

Altered synaptic plasticity in regular cannabis users [148, 233] is thought to occur, 

in part, due to cannabinoid type-1 (CB1) receptor-mediated downregulation of 

NMDArs [147, 148]. An acute administration study of exogenous cannabinoids 

found Δ9-Tetrahydrocannabinol (Δ9-THC) did not affect MMN amplitude in healthy 

controls, while co-administration of Δ9-THC and cannabidiol (CBD) increased MMN 

amplitude [234]. These effects of Δ9-THC have shown to be mediated by the 

neuregulin 1 gene [235, 236], while in a separate study, the CB1 receptor agonist 

rimonabant reduced MMN amplitude [237]. Roser and colleagues [237] reported 

no group differences between cannabis users and controls overall for duration or 
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frequency MMN, but long-term and heavy cannabis users showed smaller 

frequency MMN amplitude at frontal sites when compared to shorter-term and 

lighter cannabis users. Rentzsch and colleagues [238] reported attenuated 

frequency MMN amplitude in abstinent users and while no differences were found 

in that study between chronic cannabis users with and without schizophrenia, 

both patient groups had smaller MMN amplitude compared to controls.  

Interestingly, group differences in each of these studies were primarily 

highlighted for the MMN component elicited by a frequency deviant; although 

both studies included a duration deviant condition, neither study reported any 

group differences for duration MMN. Pesa and colleagues [239] reported an 

altered pattern of duration MMN in first-episode psychosis patients who used 

cannabis, relative to patient nonusers. In that study, increased quantity and 

frequency of recent cannabis use was associated with smaller duration MMN 

amplitude. More recently (and since the publication of our findings in chapter 

four), Impey and colleagues [240] reported reduced duration MMN amplitude in 

nicotine naïve cannabis users. Together, these findings suggest that longer periods 

of heavy cannabis use may reduce MMN amplitude. Given the prevalence of 

cannabis use in patients within schizophrenia [133] and the effects of the 

endocannabinoid system in regulating NMDAr function [217], further clarification 

of the relationship between current regular cannabis use and MMN is required 

(see section 1.7.2 for a review of endocannabinoid-mediated regulation of NMDAr 

function).  

 



Mismatch Negativity 
 

 
 

44 

2.8 Mismatch Negativity in Schizophrenia 

Reduced MMN amplitude in schizophrenia is a robust phenotype, with a meta-

analysis of studies reporting a large mean effect size (Cohen’s d>1) [241].  An 

earlier meta-analysis separately reported a large effect size for duration MMN 

(d=1.01) and a medium effect size for frequency MMN (d=0.47) [242]. Smaller 

MMN amplitude has been associated with impaired daily functioning [243] and 

cognitive deficits [244]. Todd and colleagues [212] propose that MMN is more 

likely to index stable features of schizophrenia, however the relationship between 

MMN and discrete clinical symptoms or functional outcomes has not been 

consistently reported (for further review, see [89]). Clarifying the nature of the 

relationship between MMN, NMDAr function and discrete phenotypes in 

schizophrenia, may inform mechanisms of core clinical features and changes in 

neurobiological function underlying clinical treatment efficacy.  

As is the case in MMN more broadly, the degree of MMN generation in 

schizophrenia is influenced by stimulus features, such as the degree of perceptual 

discrimination between standards and deviants and the predictability of a deviant 

presented within a standard memory trace [245]. Greater differentiation between 

a deviant stimulus and the memory trace typically elicits a larger MMN response 

[174, 192]. What is thought to be deficient in schizophrenia is the ability to 

produce larger MMN amplitudes with increasing stimulus deviance, as the MMN 

amplitude appears to plateau earlier compared to controls along a continuum of 

increasing stimulus discrepancy [246]. Therefore, greater differences between 

patients and controls become more prominent with increasing differences in 
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stimulus features.  

Reduced MMN to duration deviants is a robust finding in patients with 

early onset schizophrenia and has been shown to be impaired in the prodromal 

phase of illness and those at risk of developing psychosis [247-249]. Longitudinal 

evidence provides further support for MMN as a translational biomarker, with 

smaller MMN amplitudes predicting conversion to schizophrenia [247, 248]. In 

contrast, attenuated frequency MMN amplitude has been associated primarily 

with chronic schizophrenia illness [250]. These findings of frequency MMN deficits 

are thought to relate to the tonotopic organisation of the AC and alterations in 

plasticity with disease progression [250-253]. Smaller MMN generation in 

schizophrenia is unlikely due solely to the generation of MMN in the frontal cortex, 

as MEG studies have also demonstrated deficient MMN generation in patients and 

this measure is insensitive to frontal cortical activation [254]. While differences for 

duration versus frequency MMN do not offer clear discrimination of 

neurotransmitter functioning involved in the stage or severity of illness [255], 

MMN overall appears sensitive to changes in NMDA neurotransmitter function 

throughout the disorder.   

 

2.8.1 Antipsychotic Medication 

The use of antipsychotic medications does not significantly impact MMN 

amplitude in schizophrenia patients. Both clozapine and haloperidol have thus far 

failed to consistently modulate MMN amplitude, while clozapine consistently 

increased P300 in the same studies [256-258]. Once MMN deficits are observed, 
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they tend to persistent despite ongoing antipsychotic medication. This is contrary 

to the pattern of sensory gating deficits, which are more reliant on dopaminergic 

function and typically resolve following reduced psychotic symptoms treated with 

antipsychotics [259]. These findings indicate that MMN is related to 

neurochemical imbalances independent of dopaminergic functioning and may be 

a useful tool for examining pharmacological underpinnings of the disorder in 

relation to glutamatergic models [260].  

 

2.8.2 Glutamatergic Treatments 

A 60-day trial of N-acetyl-cysteine (NAC), a glutathione precursor, significantly 

increased MMN in schizophrenia, without affecting the P300 component. It is 

unclear in this study whether the effect of increased MMN amplitude is from 

cysteine properties enhancing NMDAr function, or other mechanisms such as 

redox-sensitive transcription factors (or both) [261]. Magnetic resonance 

spectroscopy findings have reported that smaller duration MMN amplitude is 

associated with reduced glutathione levels in the posterior medial prefrontal 

cortex and further associated with increased negative symptoms in schizophrenia 

[262]. Using structural equation modelling, MMN has also been reported as an 

intermediary biomarker between glutamate dysfunction and verbal learning 

memory deficits in patients [263]. This study found smaller duration MMN was 

associated with reduced glutamate, GABA and glutamate-to-glutamine ratios in 

the medial prefrontal and anterior cingulate regions in schizophrenia. Together, 

these findings support the role of NMDAr hypofunction in the generation of 
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smaller MMN amplitudes in schizophrenia and support the utility of MMN as a 

biomarker to index change in NMDAr function following treatment administration. 

 

2.9 Chapter Summary 

MMN may be a useful biomarker of functional target engagement to help clarify 

the relationship between NMDAr-mediated treatments and therapeutic efficacy 

in schizophrenia. However, few studies have investigated the pharmacology of 

altered MMN in schizophrenia directly, particularly following administration of 

NMDAr-mediated treatments. Findings from Leung and colleagues [225] suggest 

that high-doses of glycine (0.8g/kg) may reduce (rather than increase) MMN in 

those with intact baseline NMDAr function, supporting the presence of an 

Inverted-U dose-response relationship between synaptic glycine concentration 

and cognitive performance in humans. Determining the nature of this relationship 

is particularly important due to the heterogeneity of NMDAr dysfunction within 

schizophrenia [53-55]. 

Given the regulatory mechanism of endocannabinoids on NMDAr 

activation via pre- and post-synaptic mechanisms (see section 1.7.2), it is 

reasonable to assume that cannabis exposure reduces MMN following regular use, 

and may prevent the efficacy of increased synaptic glycine concentration to 

improve NMDAr function. Early findings suggest that cannabis does not alter the 

observed MMN deficit in schizophrenia [238], while prolonged and heavier 

cannabis use in healthy controls [237], and more frequent and heavier use in first 

episode psychosis [239], has been associated with smaller MMN amplitude. It may 
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be that in healthy controls the effects of cannabis use are more pronounced, while 

a floor effect of reduced MMN in patients restricts observation of further 

impairment in MMN following exposure to cannabis. Such findings may confound 

the utility of MMN to index neurobiological function related to the 

pathophysiology of schizophrenia and may modulate the neuronal response to 

NMDAr-mediated treatments. 
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3.1  Literature Summary 

Increasing synaptic glycine concentration may assist in treating core refractory 

symptoms in schizophrenia. However, inconsistent reports of therapeutic efficacy 

have raised doubt as to the benefit of such treatments. Endocannabinoid-

mediated alterations in NMDAr excitability may modulate neuronal functioning in 

target pathways of NMDAr-mediated treatments. Cannabinoid receptor type-I 

(CB1) agonism, following repeated cannabis use, may lead to increased inhibition 

of NMDArs and potentially reduce the clinical efficacy of increasing synaptic 

glycine concentration in schizophrenia. Peripheral markers, such as plasma glycine 

or Δ9-Tetrahydrocannabinol (Δ9-THC) concentrations, are limited in informing 

neuronal functioning within the brain. Utilising biomarkers that index 

neurotransmitter functioning in brain networks involved in the pathophysiology 

of schizophrenia may help clarify the neurobiological relationship between neural 

target engagement and therapeutic efficacy following pharmaceutical 

intervention.  

The primary auditory pathway is one neurobiological system which may 

inform changes in neuronal functioning following administration of NMDAr-

mediated treatments. Specifically, MMN may inform the neuronal integrity of 

NMDArs following increased synaptic glycine concentration in schizophrenia. Few 

studies have examined the direct pharmacological modulation of MMN using 

NMDAr agonists in patients, while early evidence suggests that the relationship 

between synaptic glycine concentration and NMDAr function is characterised by 

an Inverted-U dose-response relationship. Therefore, the therapeutic efficacy of 



Chapter Three 

 
 

51 

glycine-mediated treatments may depend on NMDAr function prior to treatment 

administration. MMN may be a useful biomarker to stratify neurobiological 

dysfunction of NMDArs in schizophrenia and index mechanisms of improved 

clinical symptoms following neuronal target engagement of NMDAr-mediated 

treatments.  

 

3.2 Thesis Aims  

The aim of the current thesis is to determine the nature of the relationship 

between MMN and NMDAr function, in order to inform the utility of MMN as a 

biomarker to stratify NMDAr dysfunction and index neuronal target engagement 

of NMDAr-mediated treatments in schizophrenia. To achieve this aim, we 

investigated the relationship between MMN and altered NMDAr function in three 

independent studies, following: prolonged periods of regular cannabis use in 

otherwise healthy individuals; acute and chronic administration of glycine in 

schizophrenia patients; and a glycine dose-dependence trial in healthy controls. 

There was no participant overlap between studies described in this thesis.  

 In chapter four we investigate the effects of regular cannabis use on MMN 

by comparing current regular cannabis users against a sample of healthy age- and 

gender-matched nonuser controls. Given the role of the endocannabinoid system 

in regulating NMDAr function and glutamate release within the brain, it is 

important to know whether regular cannabis use alters neuronal functioning in 

target pathways of novel NMDAr-mediated treatments. Based on models of 

NMDAr-mediated structural and cognitive dysfunction following repeated 
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exposure to exogenous cannabinoids, we hypothesise  that  individuals with  

prolonged and heavy cannabis use will have smaller MMN amplitudes compared 

to matched controls.  

In chapter five we investigate whether an acute dose and repeated 

administration of glycine increases MMN amplitude in schizophrenia patients. 

Further, we investigate whether baseline and changes (from baseline to post-

glycine) in MMN amplitude are associated with change in clinical symptoms 

following 6-weeks of adjunct glycine treatment. Given inconsistent reporting of 

therapeutic benefits following NMDAr-mediated treatments in schizophrenia, 

there is need to establish biomarkers, such as MMN, to index neuronal target 

engagement and further inform the mechanisms of therapeutic efficacy. We 

hypothesise that acute glycine (0.2g/kg) and adjunct glycine treatment 

(0.6g/kg/day; 6-weeks) will increase MMN amplitude in schizophrenia. We also 

hypothesise that smaller baseline MMN amplitude (indicating poorer NMDAr 

functioning) will be associated with greater improvements in clinical symptoms 

following adjunct glycine treatment.  

In chapter six we investigate the dose-response relationship between glycine 

and MMN in an independent sample of healthy controls. Following the outcomes 

of chapter five and further evidence suggesting glycine may only exert therapeutic 

benefits within an optimal range of synaptic glycine concentration, we compare 

the effects of placebo and three different glycine doses (0.2g/kg; 0.4g/kg; 0.8g/kg) 

on MMN generation. We hypothesise an Inverted-U dose-response relationship 

between increasing glycine dose and MMN amplitude. In chapter seven the 
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findings of previous chapters are summarised and discussed, as well as their 

limitations and directions for future research.  
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7.1 Scope of the Thesis 

The aim of the current thesis was to determine the nature of the relationship 

between mismatch negativity (MMN) and alterations in N-methyl-D-aspartate 

receptor (NMDAr) function. Understanding this relationship is important as it 

informs the utility of MMN to stratify NMDAr dysfunction in schizophrenia and to 

index functional target engagement following NMDAr-mediated treatments. In 

order to achieve this overarching aim of the thesis, three independent empirical 

studies were performed: The first study (chapter four) aimed to determine 

whether MMN is smaller in regular cannabis users compared to controls; the 

second study (chapter five) aimed to determine the effects of acute and repeated 

glycine administration on MMN in chronic schizophrenia patients and its relation 

to treatment outcomes; the third study (chapter six) aimed to determine the 

nature of the dose-response relationship between glycine and MMN in healthy 

controls.  

The empirical studies in this thesis were supported by two separately 

funded research schemes. Chapter four, examining MMN in cannabis users, was 

part of a project scheme investigating vulnerability markers in the association 

between cannabis use and schizophrenia. Chapters five and six, examining the 

effects of glycine in schizophrenia and in healthy controls, were part of a scheme 

investigating the efficacy of glycine as a therapeutic adjunct treatment in chronic 

schizophrenia patients. While these studies were part of a broader series of 

projects, they are complementary in clarifying the relationship between NMDAr 

function and MMN generation. 
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7.2 Summary of Findings 

In chapter four, we examined duration and frequency MMN processing in a 

sample of forty-two regular cannabis users, compared to forty-four age- and 

gender-matched non-user controls. Within this sample, we then examined MMN 

in shorter- and longer-term cannabis users relative to their matched control 

counterparts. Frequency MMN amplitude was smaller in the overall sample of 

cannabis users, with this finding evident in both short- and long-term user groups. 

Smaller duration MMN amplitude was more pronounced in long-term users 

compared to controls and shorter-term users, and was associated with more 

prolonged and heavier cannabis use, particularly daily use, across the entire 

sample of regular users.  

In chapter five, we examined the effects of acute glycine administration 

(0.2g/kg) and chronic glycine treatment (increased to 0.6g/kg) as an adjunct to 

ongoing antipsychotic medication in chronic schizophrenia. In a sample of twenty-

two schizophrenia (or schizoaffective disorder) out-patients we compared the 

effects of glycine to that of placebo, utilising a randomised, double-blind, 

between-groups design. In this study, duration MMN amplitude at baseline was 

smaller in schizophrenia compared to age- and gender-matched controls. Acute 

administration of glycine increased duration MMN amplitude compared to 

placebo, while no between-group differences in MMN were found after 6-weeks 

of repeated glycine administration. Smaller duration MMN amplitude at baseline 

was associated with greater negative symptoms assessed using the Positive and 

Negative Syndrome Scale (PANSS) and predicted a trend-level improvement in 
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negative symptoms following 6-weeks of adjunct glycine treatment (improvement 

defined as significantly reduced symptom scores from baseline to post-6-week 

treatment). No changes in negative symptoms were found following placebo.  

In chapter six, we examined the dose-response relationship between 

glycine and MMN in an independent sample of twenty healthy controls. In this 

study, we report a quadratic relationship between increasing glycine dose and 

change in MMN amplitude, providing evidence for an Inverted-U dose-response 

relationship following acute glycine administration. High-dose glycine (0.8g/kg) 

reduced MMN amplitude compared to low-dose (0.2g/kg) and medium-dose 

(0.4g/kg), while low-dose glycine increased MMN amplitude (at trend level) 

compared to placebo. Further, baseline MMN amplitude was linearly associated 

changes in MMN (from baseline to post-drug) following glycine administration, 

whereby larger baseline amplitudes were associated with reduced MMN and 

smaller baseline amplitudes were associated with increased MMN. 

 

7.3 General Discussion 

This thesis reports findings of smaller MMN amplitudes in regular cannabis users 

without psychiatric history, suggesting that regular use alters the sensitivity of 

MMN to index NMDAr functioning directly related to the pathophysiology of core 

schizophrenia phenotypes. Although the effects of regular cannabis use were not 

examined in schizophrenia patients, chapter four aimed to determine the nature 

of the relationship between regular cannabis exposure and MMN in otherwise 

healthy subjects. These findings were used to infer the effects of regular cannabis 
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use in altering endocannabinoid-mediated regulation of NMDAr excitability. 

Smaller MMN amplitudes in regular cannabis users (chapter four) support 

previous studies reporting cannabinoid type-I (CB1) receptor-mediated inhibition 

of NMDArs [156-158]. These findings suggest that prolonged cannabis use disrupts 

CB1-NMDAr regulatory mechanisms, thereby reducing NMDAr activation in 

cortical and subcortical networks important for MMN generation. 

In terms of clarifying the nature of the relationship between cannabis use 

and MMN, this thesis replicated previous findings of smaller frequency MMN 

amplitude [237] in a larger sample of heavier (average of 15.6 versus 8.8 joints per 

week) and more protracted (average 9.6 versus 3.0 years of regular use) cannabis 

users. Roser and colleagues [237] reported smaller frequency MMN amplitude in 

a sub-group of heavier and longer-term users, and a linear association between 

smaller frequency MMN amplitude and longer durations of cannabis use. Contrary 

to these findings, we did not report any relationship between frequency MMN and 

the duration or quantity of cannabis use. Instead, the development of frequency 

MMN deficits may be a less sensitive index of cumulative exposure to cannabis in 

our sample of heavier and more protracted users. These findings support the view 

that heavy and prolonged cannabis use results in pathophysiological and 

functional brain changes similar to the robust pattern of smaller frequency MMN 

amplitudes reported in chronic schizophrenia patients [337].  

Findings of smaller frequency MMN amplitude in regular cannabis users in 

this thesis are based on a cross-sectional design and do not offer direct causal 

evidence that repeated cannabis exposure reduces MMN amplitude. It may be, 
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for example, that cannabis users in chapter four had reduced frequency MMN 

amplitudes prior to the onset of use and that the results instead reflect a 

vulnerability to use cannabis. There is yet to be a longitudinal investigation to 

determine whether cannabis users, without history of psychosis, transition from 

normal frequency MMN (relative to non-users) prior to the onset of use, to smaller 

MMN amplitudes following prolonged exposure to cannabis. However, this 

interpretation is less likely given that Roser and colleagues [237] report longer 

durations of cannabis exposure with smaller frequency MMN amplitudes, 

suggesting MMN deficits develop with ongoing use. Rather than smaller frequency 

MMN amplitude indexing a pre-onset vulnerability to use cannabis, it is more likely 

that findings in chapter four index the impairing effects of prolonged cannabis 

exposure on frequency MMN processing. 

 Smaller frequency MMN amplitudes may index increased gyrification of 

the tonotopic organisation of the auditory cortex (AC) following repeated 

exposure to exogenous cannabinoids. This view is supported by previous findings 

of abnormal gyrification and cortical thinning in cannabis users, who were of 

similar age and duration of regular cannabis use to participants in chapter four 

[306]. Frequency MMN deficits (and to a lesser extent, duration MMN) in chronic 

schizophrenia patients has shown to be correlated with grey matter loss in the 

auditory and frontal cortices [286]. These findings are consistent with a model of 

increased age-related fractional anisotropy [367], cognitive decline [24]  and 

altered synaptic plasticity [250-253], with increasing disease progression in 

schizophrenia patients. Following this, smaller frequency MMN amplitude in 
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cannabis users in this thesis may index the effects of repeated cannabis exposure 

in down-regulating CB1 receptors, resulting in NMDAr-mediated abnormal 

gyrification of the auditory cortex, similar to that reported in chronic 

schizophrenia (for example, see [286]).  

Smaller duration MMN amplitudes may index functional impairment that is 

more sensitive to the degree of cannabis exposure following prolonged periods of 

use. The pattern of smaller duration MMN amplitude in regular users in this thesis 

(chapter four) has since been replicated in a sample of tobacco-naïve regular 

cannabis users [240]. Exogenous cannabinoids disrupt experience-dependent 

alterations in neuronal excitation [322] and synaptic integration across brain 

regions [325], which are necessary for neuronal plasticity and deviance detection. 

In regular cannabis users, ongoing exposure may lead to NMDAr-mediated 

alterations in cortico-thalamo networks in non-leminiscal pathways of the 

auditory system, which are required for duration MMN processing [195, 210, 246, 

313]. Smaller duration MMN amplitudes in this thesis (chapter four) were found 

in the long-term user subgroup only, with smaller amplitudes being associated 

with longer periods of daily (and regular) use in the overall sample of regular 

cannabis users. These findings are consistent with patterns of smaller duration 

MMN amplitude being associated with increased duration and frequency of 

cannabis use in schizophrenia patients [215]. Further, they support the view that 

smaller MMN amplitudes in response to duration deviants is more profound 

following protracted and heavier patterns of cannabis use.  

 The nature of duration MMN deficits in regular cannabis users (chapter 
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four) is contrary to the pattern of findings reported in schizophrenia. In chapter 

four, smaller duration MMN amplitudes were associated with more protracted 

cannabis use, while smaller duration MMN amplitudes in schizophrenia are 

primarily found in individuals at risk for developing psychosis or early in the 

prodrome [247, 249, 284]. It is unlikely that smaller duration MMN amplitude in 

cannabis users in this thesis (chapter four) index a premorbid psychosis 

vulnerability, as users had no history of psychosis despite their protracted use, and 

instead are likely to represent a sample of cannabis users without existing 

vulnerability. Differences in the pattern of duration MMN between long-term 

cannabis users and schizophrenia suggest a common functional deficit with 

different underlying neuropathology. Smaller duration MMN amplitudes have 

been shown to index lower thalamic glutamate plus glutamine levels in the 

prodromal stages of the illness [53], while our finding of smaller duration MMN 

amplitude in chronic schizophrenia patients (chapter five) was associated with 

greater negative symptoms, which is also thought to be mediated by 

hypofunctional NMDArs [54]. Together, these findings suggest MMN is a sensitive 

index of NMDAr hypofunction throughout the course of illness and further 

clarification is required to determine differences in underlying mechanisms of 

reduced MMN amplitude (as an index of NMDAr function), as well as their relation 

to clinical symptoms, during different stages of the disorder.  

 Smaller duration MMN amplitude in long-term cannabis users (chapter 

four) was associated with increased psychotic-like symptoms while intoxicated, 

suggesting that ongoing endocannabinoid-mediated alterations in NMDAr 
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function leads to downstream effects in neurotransmitter pathways such as 

dopamine. These findings are consistent with the glutamatergic hypothesis 

outlining a preliminary NMDAr hypofunction which leads to excessive dopamine 

release in the mesolimbic pathway [53-55]. CB1 receptors have been show to 

mediate the inhibition of glutamate release at excitatory neurons in the ventral 

tegmental area [368]. Findings of acute intoxication symptoms in this thesis 

(chapter four) are consistent with previous reports of smaller duration MMN 

amplitude being associated with increased psychotic symptoms in non-clinical 

individuals [369] and NMDAr antagonist models that induce psychotic symptoms 

in individuals without psychiatric history [51, 56].  Although cannabis users in 

chapter four did not develop psychosis (discussed above), these findings suggest 

a common neurochemical mechanism for which long-term cannabis use might 

lead to schizophrenia-like changes in the brain, particularly those associated with 

conversion to psychosis [178, 248]. 

 In determining the neurochemistry associated with smaller MMN 

amplitudes in schizophrenia, findings in chapter five confirm that acute glycine 

administration increases MMN amplitude in chronic patients. This suggests that 

glycine crosses the blood-brain barrier to increase NMDAr neurotransmission and 

supports the view that NMDAr hypofunction underlies robust MMN deficits 

previously reported in schizophrenia [241]. The same low-dose glycine 

administered in healthy controls (chapter six) favoured a trend towards increased 

MMN amplitude, but this difference was not significant in the overall sample when 

compared to placebo. A likely explanation for these reported differences is that 
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some individuals in chapter six had no, or little, benefit from receiving glycine. 

Although these studies are not directly comparable, together they support the 

view that increasing synaptic glycine concentration is more beneficial in the 

context of remediation, whereby those with lower baseline NMDAr function 

(indexed by MMN), such as in schizophrenia, benefit from increased excitatory 

neurotransmission following glycine administration.   

MMN may be useful in stratifying neurobiological function as a predictor 

of treatment response. The reported linear associations between baseline and 

changes in MMN amplitude following low- and high-dose glycine (chapter six) are 

consistent with the view that baseline NMDAr function mediates the effect of 

glycine. Almost all participants in chapter six had reduced MMN amplitudes 

following high-dose glycine, while findings were mixed (increases versus 

decreases) following low-dose. It is possible this linear relationship indexes a dose-

dependent effect of glycine, mediated by baseline levels of NMDAr functioning 

prior to treatment administration. However, caution is required when interpreting 

this linear relationship due to potential bias towards the mean. It may be that 

individuals with more extreme MMN amplitude values at baseline regress towards 

the mean for post-glycine measurements, thereby biasing the change score. 

Further research is required to confirm the effects of baseline NMDAr function in 

mediating functional outcomes following neuronal target engagement of glycine.   

Findings in chapter six confirm the nature of the relationship between 

glycine and MMN is that of an Inverted-U dose-response curve. High-dose glycine 

reduced MMN compared to small- and medium-doses, suggesting reduced 
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efficacy of high-dose glycine to increase NMDAr neurotransmission in healthy 

controls. This pattern is consistent with previous studies reporting decreased 

cognitive performance [226, 365] and reduced NMDAr currents [342] at higher 

synaptic glycine concentrations. Impaired pre-pulse inhibition, which is thought to 

be mediated by dopaminergic function, has also been reported following higher 

doses of glycine in patients with chronic schizophrenia [225, 359]. Contrary to 

previous reports [225], high-dose glycine in chapter six did not reduce MMN 

compared to placebo, suggesting that the high-dose condition did not ‘impair’ 

MMN generation in this study, but did reduced NMDAr function (indexed by 

smaller MMN amplitudes) when compared to low- and medium-doses. Further 

clarification of the functional significance of smaller MMN amplitude following 

higher (compared to low and medium) doses of glycine is needed in order to 

inform the potential risks of exceeding optimal synaptic glycine concentrations 

within a therapeutic context.  

Previous reports on the efficacy of increasing synaptic glycine 

concentration in schizophrenia have been inconsistent, with supporting evidence 

coming primarily from smaller independent trials [117, 122, 123] and mixed 

findings reported in recent Phase-II versus Phase-III clinical trials [128]. Since the 

publication of chapter five, two phase-III multi-centre trials of bitopertin were 

reported in a cumulative sample of 1199 schizophrenia patients [370]. Following 

24-weeks of treatment, bitopertin improved negative symptoms but did not show 

superior efficacy when compared to placebo. Contrary to these findings, glycine 

improved negative symptoms compared to placebo in this thesis, suggesting the 
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need for continued investigation into the conditions for optimal treatment 

efficacy. The sample of schizophrenia outpatients in chapter five were relatively 

low on positive symptoms compared to previous studies [128] and may index a 

more homogenous sample in relation to symptom profiles, particularly compared 

to larger trials. Inconsistencies across studies suggest NMDAr-mediated 

treatments may be beneficial in a subgroup of patients; however, categorising 

patients based on broad diagnostic features does not appear to adequately 

dissociate individuals who may benefit from increasing synaptic glycine 

concentrations. Further to this, Beck and colleagues [2] raise concerns of 

secondary negative symptoms inflating a placebo effect following NMDAr-

mediated treatments, particularly in chronic patients. Utilising a placebo and 

treatment-as-usual or waitlist group may help to further clarify the efficacy of 

NMDAr-mediated treatments in schizophrenia.   

Clinical findings in schizophrenia patients in this thesis (chapter five) report 

improved PANSS-Total, PANSS-Negative and PANSS-General symptoms, and 

favoured a trend towards improved depressive symptoms on the Calgary 

Depression Rating Scale (CDRS) following 6-weeks of glycine treatment. These 

findings support previous studies reporting improved symptoms following glycine 

[115-117, 121-123], D-Serine [118, 119] and NAC [120] in schizophrenia. While a 

full dissociation between primary and secondary negative symptoms is not 

feasible in this study design, scores on the CDRS and PANSS-General symptom 

scales were not associated with baseline or changes in MMN amplitude following 

treatment. These findings provide indirect support for an independent association 
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of primary and secondary negative symptoms within a model of NMDAr 

hypofunction, but confirmatory research is needed to verify this dissociation. 

Following glycine treatment, there were no changes in functional impairment as 

assessed by the Work and Social Adjustment Scale, suggesting that changes in 

negative symptoms were not secondary to change in social functioning in this 

thesis. It may be that longer trials of NMDAr agents are required to facilitate more 

gross functional changes that are secondary to negative symptom improvement. 

The current findings support the need to investigate the nature of more global 

improvements in schizophrenia following increased glutamatergic function. 

In determining the relationship between MMN and clinical symptoms in 

schizophrenia in this thesis, smaller baseline MMN amplitude was found to be 

associated with greater severity in negative symptoms (chapter five). MMN has 

previously been associated with illness duration and premorbid, cognitive and 

psychosocial functioning [243, 284, 371], and in some studies with improved 

clinical symptoms [257, 339]. This finding is in line with the glutamatergic 

hypothesis and pathophysiological model of NMDAr hypofunction [53-55] 

involved in the generation of negative symptoms. In further support of this view, 

baseline duration MMN amplitudes predicted (at trend level) the degree of 

improved negative symptoms following 6-weeks of adjunct glycine treatment 

(chapter six).  Together, these findings support the use of MMN as an index of 

NMDAr deficit severity related to the pathophysiology of negative symptoms and 

suggest the need to stratify patients based on neurobiological dysfunction in order 

to achieve optimal treatment efficacy.  
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Findings of an Inverted-U relationship between glycine dose and MMN 

(chapter six) suggest there may be an optimal window for clinical benefits 

following NMDAr-mediated treatments. The state of NMDAr hypofunction [54] 

and reduced synaptic glycine concentrations [357] in schizophrenia may allow 

greater margin for increasing synaptic concentrations, before reaching saturation. 

This view suggests that the optimal dose to increase NMDAr function is higher in 

schizophrenia compared to controls. However, given the heterogeneity of NMDAr 

function within schizophrenia, these findings also suggest that higher doses may 

lead to more-varied treatment outcomes; higher doses may be beneficial in 

restoring NMDAr hypofunction in patients with low NMDAr neurotransmission, 

while the same dose administered in patients with relatively normal NMDAr 

functioning may lead to saturation of glycine at the synapse. If this is the case, only 

a subset of patients would be expected to benefit from higher doses of NMDAr-

mediated treatments. This view is further supported by findings of smaller 

duration MMN amplitudes predicting greater improvements in negative 

symptoms in schizophrenia patients (chapter five), whereby those with smaller 

MMN amplitudes experienced greater clinical benefits in negative symptoms 

following glycine treatment.   

MMN appeared sensitive to alterations in NMDAr function following acute 

glycine administration in schizophrenia (chapter five) and healthy controls 

(chapter six) in this thesis, however no differences in MMN were found following 

6-weeks of glycine treatment. This finding suggests that the efficacy of glycine to 

increase glutamatergic function did not extend to long-term plasticity changes in 
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auditory cortical networks involved in MMN generation, as was inferred from 

findings in regular cannabis users in chapter five. An alternative explanation is that 

changes in duration MMN amplitude are a more sensitive index to state changes 

in NMDAr function, while improved clinical symptoms index the cumulative 

effects of glycine. It is noteworthy that glycine was not administered on the day of 

6-week follow-up testing in this thesis. It is possible that although acute glycine 

administration altered NMDAr function, repeated administration of adjunct 

glycine treatment may not lead to long-term plasticity changes over this time 

period. If so, this would mean that the therapeutic benefits reported in chapter 

five are due to cumulative exposure or possibly secondary effects on other 

neurochemical systems, rather than long-term changes to the NMDAr system 

itself. Consistent with this interpretation, altered duration MMN processing was 

associated with more prolonged and heavier periods of cannabis use in chapter 

five, whereby group differences in duration MMN amplitude were reported for 

the long-term user group only. 

 

7.4 Limitations and Future Direction 

Progressive decline in MMN amplitude, particularly in earlier stages of cannabis 

use, may overlap with models of advanced age-related decline reported in 

schizophrenia (for example, see [250]). Findings in regular cannabis users in this 

thesis are based on a cross-section design and are limited in offering direct causal 

evidence between repeated cannabis exposure and reduced MMN amplitude. 

Future studies could profitably utilise longitudinal methods to investigate the 
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biological mechanisms of repeated exposure to exogenous cannabinoids on 

progressive structural alterations contributing to MMN deficits reported in regular 

cannabis users. Given emerging evidence that increased cannabis dependence 

severity is associated with dopaminergic dysregulation [372] in neuronal pathways 

implicated in the pathophysiology of schizophrenia, future studies could control 

for changing severity of cannabis dependence. These findings may inform 

underlying mechanisms of positive and negative symptoms, and similarities in 

NMDAr-mediated structural and functional alterations between schizophrenia 

and regular cannabis users. 

 The concentrations of exogenous cannabinoids in cannabis plant matter 

used by participants in this thesis were not measured or controlled. Smaller MMN 

amplitudes in regular cannabis users (chapter four) suggest an ‘impairing’ effect 

of cannabis on NMDAr function in otherwise healthy individuals. Increasing the 

concentration of CBD in cannabis plant matter may reduce these ‘impairing’ 

effects. The purported therapeutic benefits of CBD for schizophrenia may increase 

NMDAr function in patients, as was demonstrated in chapter five following low-

dose glycine (indexed by changed in MMN). It was beyond the scope of the current 

thesis to examine the therapeutic efficacy of cannabis containing higher 

concentrations of CBD. Therefore, the direction of cannabis effects reported here 

should be interpreted with caution, particularly within the context of CBD as an 

alternative treatment for psychotic-related disorders. 

This thesis (chapter five) failed to replicate smaller frequency MMN 

amplitude in chronic schizophrenia patients and was therefore unable to 
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generalise the effects of glycine across a broader framework of MMN deviance 

detection. Changes in experience-dependent plasticity has been demonstrated for 

frequency discrimination [350], whereby reorganisation of neuronal populations 

increase sensitivity to relevant stimuli and generate additional neuronal responses 

to trained frequencies. The malleability of this structural organisation is likely 

susceptible to pharmacological modulation, as was inferred from findings in 

regular cannabis users in chapter four. Future studies should investigate the 

effects of NMDAr-mediated treatments on frequency MMN processing, as it may 

be a more sensitive index (compared to duration MMN) of the cumulative effects 

following increased NMDAr function. Such findings may inform the differential 

patterns of each MMN deviant type throughout the chronicity of schizophrenia 

and the differential patterns of frequency versus duration MMN processing which 

were observed following regular cannabis use in this thesis. 

The low number of positive symptoms endorsed by schizophrenia 

outpatients in chapter five may not adequately index the potential therapeutic 

benefits of increasing synaptic glycine concentrations in treating this symptom 

domain. Research is required to map narrowly defined symptoms within 

schizophrenia. Determining the relationship between MMN as a marker of NMDAr 

function and its relationship with narrowly defined symptoms, particularly 

negative symptom sub-domains, may inform the transdiagnostic utility of MMN 

to index treatment-specific targets, rather than relying on broader diagnostic 

categorisation (which may be too broad to be relevant). Neurocomputational 

models may better inform the mechanism of discrete symptom clusters, including 
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their primary and secondary nature, and facilitate greater accuracy in guiding early 

treatment interventions.  

Evidence of an Inverted-U dose-response relationship between glycine and 

MMN amplitude in this thesis is based on single-dose administration. The effects 

of long-term repeated dosing of glycine is unclear and may alter the efficacy of 

glycine to increase NMDAr function following repeated administration. It would 

thus be important to clarify whether the acute Inverted-U dose-response 

relationship between glycine and MMN remains when administered repeatedly in 

a model of treatment efficacy. Further, the nature of the dose-response 

relationship between glycine and MMN in this thesis was not directly examined in 

schizophrenia. It is unclear whether the Inverted-U curve is present in 

schizophrenia patients, or whether there is a linear increase in MMN amplitude 

following increased glycine dose. Replicating the nature of the Inverted-U 

relationship in schizophrenia may better inform optimal treatment doses to 

increase NMDAr hypofunction in schizophrenia and further inform the 

heterogeneity of treatment outcomes at higher glycine doses.  

A methodological limitation in our examination of the glycine dose-

response effect in healthy controls (chapter six), is comparability to previous 

findings [225]. Our use of a change variable to examine the effects of glycine 

(change from baseline to post-drug administration) aimed to control for potential 

differences in baseline MMN amplitude across treatment sessions. Following high-

dose glycine, we report reduced MMN amplitudes in individuals with higher 

baseline MMN. However, the use of a change score may have created a floor-type 
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effect in the low baseline group, while the longer testing period, including baseline 

and post-drug measures, may have created a regression towards the mean, 

reducing the sensitivity of our measure to index glycine-mediated changes in 

MMN. Future studies should investigate the significance of reduced MMN relative 

to other cognitive performance measures sensitive to functional outcomes in 

schizophrenia.  

While this thesis informs the nature of the relationship between NMDAr 

function and MMN amplitude, these findings are limited in informing the 

mechanisms underlying changes in MMN generation. Utilising MRI brain structural 

analysis to support current source density mapping may be a useful way to 

examine the effects of pharmacological intervention and inform the mechanisms 

for different deviant types. A combined spectral decomposition analysis of the 

MMN waveform may inform the independent contributions of cortico-cortico and 

cortico-thalamic networks in altering MMN generation, particularly following 

increased synaptic glycine concentration. These methods may aid further 

understanding of the independent and overlapping pathways involved in 

frequency versus duration MMN processing, and inform differential findings 

reported throughout the chronicity of schizophrenia and following prolonged 

periods of cannabis use, as well as their sensitivity in predicting treatment 

outcomes. 

A limitation of glycine and other NMDAr agonists, such as D-serine, is the 

variability they introduce from metabolic processes and the large doses required 

to cross the blood-brain barrier. It may be useful to replicate the MMN findings in 
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this thesis following administration of GT1-RIs, such as bitopertin and sarcosine. 

These treatments increase synaptic glycine concentrations by blocking the 

reuptake of glycine in the synapse. Determining whether GT1-RIs have a similar 

effect to that of glycine will provide important information as to the mechanism 

of their effect. It may be, for example, that GT1-RIs require sufficient endogenous 

glycine to be efficacious, and that lower endogenous glycine levels may limit their 

ability to improve NMDAr function. Such information would be important for 

tailoring effective treatments for the heterogeneity present in schizophrenia.  

While this thesis aimed to determine the nature of the relationship 

between MMN and NMDAr function, it is limited in informing the mechanisms of 

change in neuronal functioning. This thesis concludes that altering NMDAr 

function may result in different neuronal functional outcomes and that such 

variabilities in neuronal response is likely involved in the heterogeneity of clinical 

treatment efficacy in schizophrenia following NMDAr-mediated treatments. 

However, the findings used to infer this relationship, including regular cannabis 

use and the dose-response effects of glycine, were not directly examined in 

schizophrenia patients. The nature of the relationship between MMN, regular 

cannabis use and glycine dose-dependence may differ within the context of 

NMDAr hypofunction in schizophrenia patients. Therefore, further studies are 

required to confirm the stability of these MMN findings in schizophrenia, in order 

to understand their implications for indexing neuronal target engagement and 

clinical efficacy following NMDAr-mediated treatments.  

 



Chapter Seven 

 

 

161 

7.5 Conclusion  

This thesis demonstrates that MMN is a sensitive biomarker to index the 

neurobiological state of NMDAr function. Chapter four provides indirect evidence 

of endocannabinoid-mediated alterations of NMDArs in auditory cortical 

networks important for MMN generation. Acute administration of glycine in 

chapter five increased MMN in schizophrenia patients and the same pattern was 

observed (at trend level) in chapter six following low-dose glycine administered in 

healthy controls. An Inverted-U dose-response relationship between glycine and 

MMN suggests there is an optimal therapeutic window for glycine to increase 

NMDAr function, beyond which treatment efficacy is reduced. Together, these 

findings indicate that changes in MMN index alterations in NMDAr function, which 

may arise from pre or post-synaptic mechanisms. Further, they support the utility 

of MMN to index changes in NMDAr excitability following neuronal target 

engagement of NMDAr-mediated treatments. Indexing change in NMDAr function 

following treatment may identify subgroups of patients who will (and won’t) 

benefit from increasing synaptic glycine concentrations. 

The efficacy of glycine to increase NMDAr function in this thesis appeared 

greater in the context of remediation, whereby increasing synaptic glycine 

concentration improved MMN in models of NMDAr hypofunction. Smaller 

duration and frequency MMN amplitudes were associated with intoxicated 

psychotic-like symptoms in long-term regular cannabis users, while smaller 

duration MMN amplitude in schizophrenia was associated with greater severity of 

negative symptoms and predicted negative symptom improvement (trend-level) 
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following glycine treatment. These findings suggest that MMN is a useful index to 

stratify core phenotypes based on biological dysfunction, rather than broad 

diagnostic criteria. It would be useful for future studies to replicate findings of an 

Inverted-U dose-response relationship for MMN following administration of 

glycine-reuptake inhibitors, such as bitopertin. Clarifying this relationship would 

assist in tailoring effective treatment and further inform the heterogeneity of 

clinical treatment response in schizophrenia. 
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