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Abstract

High Dose Rate brachytherapy is an effective treatment modality for prostate cancer

due to the radio-sensitivity of the tumour and short treatment time. This proce-

dure has strong radiation concentration and a steep dose gradient but no acceptable

dose verification method to ensure prescribed dose is delivered to minimise damage

to tumour-adjacent organs. With radiation emitted directly into the tumour, the

most effective monitoring method is in-vivo dosimetry. A new MOSkinTM readout

system, OneTouch, has been developed to provide real time dosimetric readouts

and temperature variation compensation during in-vivo dosimetry. Through the

additional of detectors to the rectal ultrasound probes used during brachytherapy,

dosimetric and anatomical data can be transmitted. Two generations of MOSkinTM

detectors were analysed through angular and sensitivity testing; the circular gate

version proved superior normalised angular dose response of ±1.5% and sensitiv-

ity drift of -8.41±0.67%, compared to -28.24±1.19% with the parallel gate design.

MOSkinTM detectors are an accurate in-vivo dosimeter, with normalised agreement

to the treatment plan of 1.06±0.1 compared to radiochromic film normalised agree-

ment of 1.10±0.01. The OneTouch and MOSkinTM system proved clinically vi-

able and will further improve the safety of prostate cancer treatment through HDR

brachytherapy.
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Chapter 1

Introduction

Tumours developing in the prostate, either prostatic carcinoma or primary prostatic

sarcoma, are of great medical concern due to the high percentage of men developing

the cancer, especially over the age of 50 and the location of the prostate itself (1).

The estimated number of diagnosed cases of prostate cancer in 2017 in Australia

alone is 16,665, which is more than a fifth of all new diagnosed cases of cancer in

males. However, the percentage of surviving 5 years after diagnosis has increased

from 60% in 1980’s to an estimated 95% in 2009 (2). There is currently no ideal

treatment for prostate cancer and research into this treatment is very important.

There are currently multiple methods in practice for treating prostate cancer,

such as hormonal therapy, radical prostatectomy, radiotherapy or in early stages

surveillance (3). The prostate is located between the urethra and rectum, both

important and sensitive organs that increase the difficulty due to their proximity

to the prostate (4). There isn’t a universally accepted method for treating prostate

cancer but due to the unique characteristics of the prostate, radiation therapy is

very effective at destroying prostate cancer. There have been many studies into the

special characteristics that make prostate cancer suitable for radiation treatment,

such as the slow proliferation of the cancer and the low alpha-beta ratio, which

2
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relates to the radiation sensitivity of the tissue (5). One effective form of radiation

treatment for prostate cancer is high dose rate (HDR) brachytherapy.

Brachytherapy is a form of radiotherapy that uses irradiated seeds to transmit

a treatment dose directly into the cancer through implantation of needles. HDR

irradiations uses temporary source of Iridium-192, which has a high dose rate output

with a limited range, to deliver a prescription dose over a matter of minutes (1).

This method of treatment for prostate cancer is very successful, however due to the

high dose rate radiation toxicity to organs near the prostate is a high concern (6).

There is currently no method to verify the treatment dose however there have been

many studies into possible in-vivo dosimetry methods

In-vivo dosimetry is the recording of irradiation directly during treatment and is

the ideal form of detection for brachytherapy treatments due to the determination

of dose directly in or next to the treatment volume (7). The dosimeter investigated

in this thesis is a type of MOSFET detector developed by the University of Wol-

longong, called the MOSkinTM detector. With a sensitive volume of 0.55µm and

real-time readout capabilities, the MOSkinTM detectors are the most ideal to record

dosimetric information in the steep dose gradient area throughout HDR brachyther-

apy procedures (8).

This thesis utilises a new readout system called the OneTouch System (devel-

opment title) to wirelessly transmit real-time dose data to the control room during

treatment. This system also uses a simplified dose calibration method and a method

to determine a temperature compensation factor that minimises dose variation due

to temperature change. Tests were completed to investigate the sensitivity, tem-

perature compensation and anti-annealing capabilities, and to determine if the dose

response was within an acceptable range. This system increases the feasibility of a

dose validation procedures of HDR brachytherapy, which will increase the security

of the treatments and highlight any errors that would go unnoticed during previous
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methods.

Simulation phantom experiments were also completed in conjunction with a real-

time ultrasound treatment planning system through creating a dual purpose probe

that both transmitted ultrasound images for planning and dose recordings through

the OneTouch Readout system. The real-time In-Vivo dosimetric response of the

MOSkinTM detector and OneTouch system were compared to other readout systems

and clinical detectors to further establish the accuracy and validity of the verification

system.

1.0.1 Aims of Thesis

The objective of this thesis was to investigate the new readout system, OneTouch,

and determine its suitability for clinical verification during HDR prostate brachyther-

apy. The OneTouch System and the MOSkinTM detectors used were developed by

the Centre for Medical Radiation Physics at University of Wollongong. The exper-

iments were completed at St. George Cancer Care Centre, Kogarah, utilising their

HDR Ir192 brachytherapy source.

Fundamental aims of this thesis are as follows:

1. Characterise a newly developed circular gate MOSkinTM in comparison with

the traditional parallel gate electrons through angular and sensitivity testing

2. Complete characterisation experiments on the OneTouch system into it’s clin-

ical reproducibility and temperature compensation ability with MOSkinTM.

3. Perform a clinical simulation treatment using the MOSkinTM and OneTouch

System with the clinical equipment used during HDR prostate brachytherapy

treatments. Investigate the OneTouch Readout response compared to previous

readout systems and the MOSkinTM dosimetric properties compared to other

clinical dosimeters.



Chapter 2

Literature Review

2.1 Prostate Cancer

One of the most common causes of male mortality in many parts of the world is

prostate cancer with the average annual diagnosis in the United States being 190,000

men (9). The prostate gland is usually 4cm in diameter and is part of three accessory

glands of the male reproductive system. The main function of the prostate is to

produce seminal fluid to increase the fluid volume of sperm and aid in fertilisation

(10). The prostate itself is located inferiorly to the bladder, with the urethra located

in the centre ranging from the apex to the base of the prostate, and the rectum

located directly posterior to the prostate. On average, 70% of cancers are located in

the peripheral zone, or near the base and posterior wall of the prostate making the

exact location of the urethra and rectum important in any treatment method (11).

The main type of tumours affecting the prostate are either prostatic carcinoma or

primary prostatic sarcoma while prostatic hyperplasia is the most common type of

lesion affecting men over the age of 50. Both tumours and lesions are proliferative

and usually require some kind of medical intervention, however malignant tumours

are the most dangerous and will be the main focus of this thesis (10).

5



6 2.1. PROSTATE CANCER

The symptoms of prostate cancer vary greatly depending on the severity of the

tumour and are usually unnoticeable until later stages. Some symptoms include

hematospermia, presence of blood in semen, to bone pain or rectal obstruction for

higher severity cancers (5). The diagnosis and staging of prostate cancer involves

many different procedures like a physical examination, measurements of prostate

specific antigen (PSA), and Gleason score determined through an ultrasound-guided

biopsy (9). Prostate cancer has been able to be detected earlier through abnormal

PSA count within the blood stream since the 1990’s when PSA was discovered as a

possible indicator for prostate cancer. PSA is glycoprotein present within the blood

that aids in the liquidification of semen and when a malignant tumour is present the

thickness of the membrane walls decrease, which increasing the PSA count within

the blood stream. Depending on the PSA concentration the patient is separated

into favourable, intermediate or poor risk (5). For a normal healthy male, the PSA

concentration is 2ng/mL or less and abnormal is usually seen to be above 4ng/mL.

These specific values vary for different countries and clinics (10). However, PSA

testing is not a true positive method of determining the presence of prostate cancer,

with only 1 in 3 men having cancer after elevated PSA levels were detected (5).

Other test are also performed to determine the existence of prostate cancer, the

exact location and the severity of the disease.

Gleason score is based on the glandular structure of the tumour, rating the

disease from 1 to 5 with increasing aggressiveness; most cancers are not homogenous

in structure so there are usually varying grades within a single tumour. Each patient

will receive a number score based on the two most common glandular structures

grades present in the tumour and are added together ranging from a value of 5 to

10 (11). With a higher Gleason score the prognosis, for the patient worsens and

the most appropriate type of treatment is usually dependent on the Gleason score

(5). Prostate cancer can also be classified through tumour stage, which determines
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the severity of the disease based on the spread to nodes and nearby organs. Stage

1 prostate cancer can usually be detected through a PSA test, while Stage 2-3

the cancer is present in a large part of the prostate and the seminal vesicles. In

Stage 4 the cancer is present in other organs such as the bladder or rectum, making

treatment very difficult and the chance of survival very poor (11).

Prostate cancer is unique from other types of cancers because it is very slow

growing and is susceptible to high radiation dose fractionation due to it’s slow pro-

liferative characteristics and low tumour α/β ratio of 1.5-2 Gy (5). The linear

quadratic formula is used to determine the dose needed for specific normal cell and

tumour cell survival percentages.

S = exp(−(αD + βD2)) = exp(−nd(α + βd)) (2.1)

Equation 2.1 illustrates the typical linear quadratic equation, with D being the

prescription dose, n and d relating to the number of fractions and fraction dose

respectively, and S being the survival rate of the tissue. The value for α describes

the cell death from a single radiation event and the β value describes cell death

from multiple radiation events (12). The values for α and β change depending on

the tissue and tumour type and are very important factors when deciding the ideal

type of treatment.

The accepted value α/β ratio value for tumours is 10-12 Gy while late respond-

ing normal tissue has a ratio value of 2-4Gy, meaning most tumours are not very

sensitive to radiation but the late responding normal tissue is and high doses can be

potentially dangerous (13). The total prescription dose needs to be separated into

smaller doses through fractionation, which reduce the effects of radiation on normal

healthy tissue but also increases the treatment time to weeks or months. However

due to the prostates low tumour α/β ratio it is susceptible to higher doses of radia-
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tion similar to normal tissue and increases the tumour control with a smaller number

of fractions (14). With an increase dose to the prostate, the tissue and organs sur-

rounding the tumour have a greater chance of radiation damage. The effectiveness

of radiation on the rectum and rectal wall can be determined from the unique α/β

ratio and the linear quadratic equation can describe the amount of damage from a

treatment regime.

Similar to the α/β for the prostate, the α/β for the rectum isn’t an exact value

and research has been completed using rectal toxicity data from clinical studies. D.J.

Brenner proposed a value of 5.4±1.3 Gy for the prostate determined from multiple

studies in 2004 (15). He used four different studies treating prostate cancer with a

combination of conventional and hypo-fractional external beam treatment and fit the

data for late rectal toxicity ≥ Grade 2, associated with rectal bleeding, to the linear

quadratic formalisation. He hypothesised that the reaction of rectal tissue should

be between late effect tissue, with α/β 1-3Gy, and late effect tissue, with α/β 8-

10Gy. This value however was questioned due to the different treatment methods of

the 4 studies used and the α/β is highly relative (16). In another study completed

by Marzi et. al in 2009 the α/β ratio was determined from dose volume data

from hypofractionation EBRT that was fitted to the Lyman-Kitcher-Burman (LKB)

Normal Tissue Complication Probability (NTCP) formalisation (17). The α/β value

for toxicity ≥ Grade 2 was determined to be 2.3 Gy specifically for the rectal wall for

intermediate to high stage prostate cancer. Finally, in a study completed by Tucker

et al. in 2011, which was more in depth research into Brenner’s work in 2005, used

a large study into dose escalation and the LKB NTCP formalisation to model rectal

toxicity from individual dose volume histograms (18). The value for the α/β ratio

was found to be 4.8 Gy for this study and commented that the ratio value must be

an intermediate reaction value based on several other studies; the α/β ratio varied

from 2.2-8Gy. Tucker’s value is very similar to previous studies by Brenner and 4.8
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Gy will be used throughout this thesis to determine the reaction of the rectum to a

specific brachytherapy regime for prostate cancer treatment.

Prostate cancer also has a very low potential doubling time of approximately 60

days; other types of cancer can double in size after a couple of days since irradiation

(12). Due to this feature, the treatment dose for prostate cancer with radiation

therapy can be highly effective and can be delivered with a wide variety of options.

The treatment options are based on the severity of the cancer as well as the cultural

and social attitudes of the patient and the main treatment options are further.

2.2 Prostate Cancer Treatment Options

Depending on the severity and stage of the cancer as well as the available tech-

niques, there are a large variety of treatment options available to treat prostate

cancer. There is no ideal form of treatment accepted internationally and there are

no accepted studies that compare different treatment modalities.

Low risk prostate cancer treatments range from surveillance of the tumour or

lesion to hormonal therapy or high intensity ultrasound (9). Active surveillance is

mostly used for patients with high severity cancer with a low chance of survival and

is always an option for patients not wanting to undergo any form of treatment. The

patient’s PSA levels are monitored and prostate biopsies are completed to monitor

progression of the cancer (19). For higher risk prostate cancer, radiotherapy or

radical prostatectomy are usual forms of treatment and can be combined to give the

best change of removing or killing of all the cancer cells.

One of the oldest techniques for treating prostate cancer is through surgery,

removal of the cancerous part of the prostate was first performed in 1904 (20). The

procedure has progressed from there but hasn’t changed much in method since the

1980’s and is one of the most common treatments for prostate cancer today (20).
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However, like all treatments, there are restrictions based on severity and age that

limits the use of radical prostatectomy. The most at risk age bracket for prostate

cancer is usually over 65 years old and an invasive surgery can be impossible due to

the age of the patient (5). For the highest chance of cancer free survival, patients

undergoing radical prostatectomy usually have low grade, early stage cancer that

have not spread to other parts of the body. To determine if the cancer has been

removed entirely, the PSA is measured after a set period of time to determine if it is

still above normal concentrations. Even though radical prostatectomy is one of the

most common clinical treatments, there has not been an acceptable clinical study

that determines surgery is the ideal option for eliminating prostate cancer (20).

Another common clinical treatment is the use of radiotherapy through external

beam radiation or EBRT. There are multiple types of treatment options with EBRT

that vary in fractionation amounts and dose, movement of the treatment angle, in-

tensity of the beam and imaging modalities used during treatment. The three most

common types of treatment are three dimensional conventional fractionations, in-

tensity modulated radiotherapy and stereotactic radiotherapy (20). External beam

is delivered using a linear accelerator, which produces a beam of high energy elec-

trons or different energy range x-rays. The beam is optimised to give an appropriate

dose and shape for the patient’s tumour while being a non invasive procedure (21).

There are no errors with EBRT regarding the implantation of sources, catheters or

any other surgical requirements and linear accelerators are very common in hospi-

tals, this type of treatment is widely available (6). However, due to the radiation

beam passing through normal tissue to reach the target, the prescription dose given

in a single treatment is greatly limited and fractionation is used for all external

beam procedures. EBRT is usually given over 8-9 weeks with usually one fraction

per day but the number of fractions per day could increase depending on the type

of tumour, the patient and the facilities available at the hospital. The dose fraction
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also varies between 1.8-2 Gy/fraction, however because prostate cancer is more sen-

sitive to fractionation dose, the given range could be from 2.1-10 Gy/fraction (9).

Increasing the dose per fraction is called hypo-fractionated EBRT and decreases the

overall treatment time with the same total prescription dose as traditional EBRT

treatments.

Brachytherapy is another modality of radiotherapy to treat prostate cancer

through the implementation of radioactivity directly into the target area. Brachyther-

apy has greatly increased as a form of treatment in recent years; in 1995 the per-

centage of American men treated with brachytherapy was 2.2% and in 2004 this

percentage had increased to 30% (22). This treatment is separated into two dif-

ferent methods, low dose rate (LDR) brachytherapy and high dose rate (HDR)

brachytherapy. The different rates depend on the activity of the source and length

of time within the patient, for example LDR implants lower dose sources perma-

nently into the target area giving doses ranging from 100-160 Gy over several months

(9). The type of radioactive sources used in LDR are Iodine-125, Palladium-103 or

Cesium-131 delivering varying doses to give the equivalent dose to external beam

radiation therapy. Iodine and palladium are common radioisotopes used in prostate

brachytherapy while cesium is commonly used in gynecological brachytherapy (1).

The usual dose given with I-125 radioactive sources are 144-145 Gy, 100 Gy for Pd-

103 and 85 Gy for Cs-131 and with varying half-lives the total treatment times are

very different depending on the isotope (20). The usual dose rate for LDR isotopes

are between 0.4-2Gy/hr and can be administrated manually (23). Some of the dis-

advantages of this type of treatment are the difficulties with positioning the sources

within the patient due to swelling and oedema, the movement of the radioactive

sources within the patient and the radioactivity of the patient leading to increased

risk to the public from this radiation (6). Radiation safety procedures need to be

performed for each patient depending on the type of permanent radioactive source
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implant and the dose rate of that specific isotope (20). With the changes in anatomy

over the months of LDR treatment, it is very hard to predict were the sources are

within the tumour volume and therefore the amount of dose given to the tumour

volume as well as surrounding organs. Also with this form of treatment there is

no possible verification method that can give a real time measurement of dose (9).

The sources used in LDR are permanently implanted into the patient and therefore

cannot be used in future treatments, increasing the cost of the entire treatment.

Previous studies have shown the advantages of treating prostate cancer with higher

amounts of radiation over a shorter amount of time, leading to high tumour control

but more severe late effects to normal tissue (20). However due to the much lower

radiation dose rate given in this form of brachytherapy the potential late effects are

much less damaging than higher radiation dose given in HDR brachytherapy. LDR,

similar to HDR, can be performed as a mono therapy or in combination with EBRT

depending on the severity of the disease.

High Dose Rate (HDR) brachytherapy uses the same method of implanting ra-

dioactive sources as LDR brachytherapy but the type of source varies greatly. The

isotope used in HDR is Iridium-192 that can give a dose rate of 20 cGy per minute

with a treatment time of less than 10 minutes (9). This radioisotope has an aver-

age photon energy of 400keV, meaning the range of the emitted radiation is very

short leading to a very steep dose gradient. Due to the steep dose gradient, small

positioning errors in HDR brachytherapy can be very damaging and can cause se-

vere damage to the rectum and urethra (19). The high dose given with this type

of brachytherapy is ideal for prostate cancer, due to the very low alpha/beta ratio

discussed in section 2.1. However, with higher dose rates the toxicity to organs at

risk is also seen to increase and needs to be monitored after treatments for any late

effects (6). This also highlights the importance of a procedure that monitors and

reports the dose to the rectum, urethra and bladder to make sure it is below the
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acceptable values. The advantages of HDR over LDR brachytherapy is the much

higher dose rate given, approximately 1000 times higher, and the much shorter treat-

ment time of both LDR brachytherapy and EBRT (20). There are no positioning

errors due to source movement with high dose rate treatments and the patient is

only radioactive during the very short treatment times. HDR brachytherapy can be

given as a monotherapuetic treatment of up to three fractions given over two days

with 6-8 Gy per fraction. It is completed under image guidance to ensure accurate

placement of the catheters within the patient and there is no radioactive material

left inside the patient during planning and in between fractions (9). There is a very

specific treatment method for HDR brachytherapy that minimises any errors and

takes advantage of the unique characteristics of prostate cancer to delivery the most

effective treatment.

2.2.1 Prostate HDR Brachytherapy Treatment Technique

The current procedure for HDR brachytherapy has been optimised over the years

to be the most efficient procedure possible however there is very little verification

and data collection from the treatments compared to other forms of radiotherapy.

The radiotherapy treatment time is between 6 to 10 minutes, depending on the pre-

scription dose and activity of the source at the time of treatment. Hollow catheters

are inserted into the target volume and surrounding areas and is completed un-

der image guidance usually using transrectal ultrasound (TRUS) and gold fiducial

markers indicating the apex and base of the prostate. The catheters used in HDR

brachytherapy are usually between 12-22 and a treatment plan is created from a

CT image taken after placement of catheters (20). For HDR brachytherapy, remote

afterloaders are used to deliver the treatment, which are portable, lead-lined con-

tainers that are used for safe storage and administration of radiation dose without

any manual operation. This allows for the safe and reusable administration of dose
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through a treatment plan that position multiple sources along a catheter for set

dwell times (23). The treatment plan then can be repeated for future treatments,

eliminating any human reproducibility errors in position of the radioactive sources;

the positioning of the catheters is still completed manually and might be a source

of error. Depending on the activity and the type of source within the afterloader,

HDR brachytherapy can be performed usually with Ir-192. The remote afterloader

also allows for many patients to be treated using the same source, reducing the cost

of HDR compared to LDR brachytherapy (4).

Brachytherapy is usually completed within a shielded room specifically designed

for protecting against the high activity sources in HDR brachytherapy. CT and

ultrasound images are frequently in brachytherapy planning as well as treatment.

Ultrasound probes are used to deliver an image of the prostate through the rectum

and contrast may be used to delivery a clearer picture (20). An initial TRUS im-

age is taken and contours of the target regions are calculated along with desired

positioning of the needles within the volume. A second image is taken after needle

insertion, which is contoured again and used in treatment planning (24). Depend-

ing on the procedure of each hospital, the acceptable percentage dose to the critical

tumour volume (CTV) and to the organs at risk (OAR) are determined through

imaging and a treatment plan is created (19). For example, according to the radia-

tion therapy oncology group number 0321 (RTOG 0321), the acceptable percentage

of prescription dose to the urethra is 125% and to the rectum is 75% to 1mL (20).

The toxicity to the urethra, rectum and bladder are the main concern with HDR

brachytherapy due to the higher radiation dose given and the steep dose gradient of

the sources used. Multiple CT images or MRI images are also used for preliminary

imaging and treatment planning; multiple studies have shown for fractionated HDR

brachytherapy treatments, additional treatment plans created directly before each

fraction treatment gives a more accurate treatment with less toxicity to any organs
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at risk (25). Dose escalation and dose optimisation can also be completed within

HDR brachytherapy, especially with the use of remote afterloader. The usual treat-

ment regime for fractionated HDR brachytherapy is completed over 2-4 days with

catheters remaining within the patient for the entire treatment. Similar to EBRT

the minimum time between fractions is 6 hours, which is the half life of repair of

cancer cells and this time allows for the treatment to be the most effective (12).

After treatment is completed, either a monotherapy or as a combination with

another form of radiotherapy, check up time is usually 6 weeks after completion and

then every couple of months (19). Any errors in dose from the treatment can only

be accessed after treatment and there is no validation method currently for real time

dosimetry for brachytherapy. PSA and OAR toxicity is evaluated at the following

check ups but these procedures are different for each clinic. Data bases and studies

are being completed that look at the treatment plan for each individual and the

survival rates and OAR toxicity as a comparison between different treatments. An

example of a collective data base is the Surveillance, Epidemiology and End Results

(SEER) data that contains information of prostate cancer patients with a minimum

6 years follow-up after HDR brachytherapy (26). However, each hospital might have

an individual data base of treatments plans and follow up information that may be

used as quality assurance for future treatments.

2.3 History of Brachytherapy Treatment

The concept of brachytherapy started in the early 1900’s but due to the presents

of live radiation sources and the lack of appropriate safety procedures and accurate

implantation technique it wasn’t seen as a favourable form of treatment until the

1980’s (9). Radium was the first isotope used for medical purposes and was seen

as an acceptable alternative for treating cancer compared to surgery (27). Radium



16 2.3. HISTORY OF BRACHYTHERAPY TREATMENT

therapy was performed from the early 1910’s and in the 1920’s permanent radon

source brachytherapy started to be used as a method of treating prostate cancer. At

this time, the advantages of radon therapy over other methods of treatment were the

lack of risks or deformations caused by surgery and the rapid cell death of cancerous

tumours. By the 1950’s, this treatment option was seen as less favourable due to

the safety risks to staff and public from the radiation used as well as the late effects

occurring after treatment (28). Other treatment options that became more popular

were surgery and external beam therapy, however the cancer control decreases with

these methods (27). Most of the implantations of radon sources during the early

stages of brachytherapy were performed by hand and needles were positioned using

a template but without any other form of image guidance (28). Manual insertion

of radioactive sources had very limited tumour control and many dosimetric issues

leading to late effects (9). Through the development of more sophisticated and

safety methods of implantation, such as manual and remote afterloading, and the

combination of imaging modalities during treatment planning and implantation,

such as ultrasound, CT and MRI, brachytherapy was seen again as a very important

tool for treating cancer.

The first improvement of brachytherapy technique started in the 1950’s when

doctors and staff would not perform radon therapy due to the severe consequences of

radiation exposure. Afterloading removes live sources from being used in the surgery

and the sources were implanted through handheld, manual applicators that were

shielded to protect the clinical staff. The concept of afterloading radioactive sources

using an applicator started in the 1910’s but wasn’t used in a medical capacity until

the 1950’s. Manual afterloading techniques initially consisted of threading through

nylon strands or ribbon implanted with radioisotopes, mainly Au-198 and Ir-192,

through implanted needles. Radon was eventually phased out medically because of

its high emission energy that required more shielding than other effective isotopes.
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The next development happened during the 1960’s when permanent sources were

inserted in the patient using nylon tubes containing one radioactive source placed

inside the implanted needles. Later, an applicator was used to replace the manual

insertion of the nylon tubes due to the frequent occurrence of sources dropping out

before implantation. The sources used in this permanent afterloading technique,

now called LDR brachytherapy, were Au-198, Co-60, Ir-192 and I-125, and used to

treat head and neck tumours, prostate, breast, skin and penis cancer (27).

The remote afterloading system was first introduced in 1962 using a moveable

trolley that stored the radioactive sources with a relaxable cable to transport the

sources to the needles implanted in the patient, controlled by the set treatment

plan. Using this system cut down the treatment time and made brachytherapy

more affordable due to the multiple treatments used from one remote afterloader

system. It was also a safer way of performing brachytherapy that allowed for higher

dose treatments, such as HDR brachytherapy to be performed. HDR and LDR

could be performed using a remote afterloader depending on the sources stored

within; HDR brachytherapy was performed using Co-60 and Ir-192 sources while

LDR used a combination of sources. In the 1980’s, multiple channel devices were

created, allowing sources to be inserted into more than one cable (27). During the

1980’s, brachytherapy started to be performed more regularly with the addition of

new imaging and planning systems incorporated into the treatment delivery.

Image guidance was a very important improvement for brachytherapy, especially

in determining the prescription dose and an optimal treatment plan. During the

1970-80’s, closed retropublic implant procedures for LDR brachytherapy were being

performed, which were less invasive then previous methods. Around this time,

preoperative CTs were being performed to determine the dose distribution with I-

125 sources, giving an overall dose of 140-160 Gy (28). Contours and isodose curves

could be calculated from the CT images to give each patient a treatment plan with
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a target volume; early treatment plans didn’t take into account damages to OARs

near the tumour (9). The needles and sources were still implanted by hand but with

fluoroscopic guidance, later with a manual afterloader applicator to reduce radiation

exposure to staff. Transrectal transducers were created in 1974 and were attached

to a stepper unit to accurately determine volumes within the patient (28). Using

ultrasound, the prostate was able to be visualised and volumetric dose calculations

could be determined using multiple ultrasound images (9). Ultrasound images were

used to guide needle placement along with a template attached to the perineum

of the patient. Images taken after implantation were used to calculate dosimetry

information but this very limited (28). In the 1990’s, transrectal ultrasound (TRUS)

started to be used as common practice in brachytherapy planning and implantation,

for both LDR and HDR brachytherapy, as well as being capable of real time imaging

(28). Also around this time, planning and placement of needles were in the same

procedure, eliminating any errors due to movement and different placement during

the two procedures. With the improvement of computer-based planning dosimetric

system, treatment plans could be optimised the distribution to the target and OAR

could be determined in three dimensions (9). 3D imaging has allowed technicians

to accurately determine the geometry of the entire treatment area and assess the

changes to the volume throughout the treatment, adapting the dose to the changes

in geometry (29). Even through the improvement of imaging and placement of

radiation sources within the patient, this gives no information about the exact dose

given during the treatment and currently there are no method of dose verification

for brachytherapy.
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2.4 Dosimetry for Prostate HDR Brachytherapy

High dose radiation brachytherapy uses a large amount of radiation, meaning the

exact position of the catheter as well as anatomical organs is very important to

determine the absorbed dose within the volume. Brachytherapy currently does not

have a method of measuring the radiation dose during treatment as part of a routine

and quality assurance of the treatment. The American Association of Physicist in

Medicine (AAPM) Task Group 43 (TG-43) has determined a protocol of calculating

the simulated dose specifically for brachytherapy and has been used in the treatment

planning process for clinical brachytherapy. The equation takes into account several

factors such as angular and distance dependence, scatter and attenuation correc-

tions, activity of the source outside of the shell as well as differing calculations for

line and point sources (22). The 2-dimensional TG-43 equation is shown in equation

2.2 and can also be used in the validation of experimental data from many radiation

detectors.

Ḋ(r, θ) = SK · Λ · GL(r, θ)

GL(r0, θ0)
· gL(r) · F (r, θ) (2.2)

From the equation, SK , is the air kerma value that describes the apparent activity

outside of the source at a reference point in air and Λ is the dose rate constant.

The third value is a fraction, GL(r,θ)
GL(r0,θ0)

, that describes the geometry of the source at

different points in space and gL(r) is the radial dose function that takes into account

scatter and attenuation in the medium. The final component in the equation F(r,θ)

is the anisotropy function, that takes into account the dose dependence with angle

around the source’s shell (22). The TG-43 equation can be used to the dose of

various sources used at different clinics but it cannot determine the exact in vivo

dose during radiation treatment, which can vary due to external factors that are
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not described in the calculation. Examples of external factors are oedema caused by

the insertion of needles, filling and emptying of the bladder and rectum, or general

movement of the patient can cause shifts in the dose coverage during treatment (30).

Also, over long periods of time, either between insertion of needles and treatment or

in-between fractions, movement of catheters within the patient due to these external

factors can greatly change the geometry of the original treatment plan (25). This

equation is very important when verifying the response of experimental detectors

with quality assurance phantoms to determine their accuracy in clinical use.

An important source of error within brachytherapy treatment planning method

is the changes to the patient and target volumes between treatment planning and

actual treatment. There have been many studies into movement of needles within

patients, comparing the physical differences between original scan and scan after

treatment as well as the radiobiological effects of this movement (25) (31) (30). In

a study in 2009 by Simnor et. al. (25), movement of catheters within prostate

brachytherapy patients was seen due to internal organ movement, external move-

ment due to transportation or patient movement, and the formation of oedema

between the perineum and apex of the prostate. Patients in this study underwent

3 fractions of brachytherapy with a CT scan before and after each treatment, de-

termining any needle shift and the treatment plan was updated based on these

images. The mean movements between fraction 2 and 3 was 7.8mm, and 3.8mm

between pretreatment and fraction 3 was seen. Even though the dose given wasn’t

studied, an improvement in treatment was seen for patients with the corrected plan

that took into account to caudal movement of the catheters throughout the entire

brachytherapy treatment. The primary tumour volume (PTV) was seen to decrease

by 20% for treatment plans without change but a change of 5% was seen for treat-

ment plans with the movement corrections included. Another study by Milickovic

et. al. (31) in 2009 looked at needle movement and the effect it had on dose vol-
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ume histograms (DVH) as well as radiological effects of patients undergoing a single

treatment of HDR brachytherapy, by taking treatment planning, pre treatment and

post treatment images. The contours of the treatment volume and organs at risk

(OAR) volumes were calculated and compared. It was seen that the radiobiological

and dose differences for the urethral volume were significantly different in pretreat-

ment images and the post treatment images. The changes in volume were seen

more between the treatment planning and post treatment images, suggesting the

time between planning and treatment does affect the dose given, specifically to the

OAR. Further dosimetric knowledge of HDR brachytherapy treatments would pro-

vide more knowledge on the exact effect of these changes and would also provide

more radiobiological information on the amount of damage these dose changes would

have on organs surrounding the target volume.

Dose given to critical organs during brachytherapy directly relates to any late ef-

fects or complications the patient might have after treatment. Since HDR brachyther-

apy uses sources with very high dose rate for a short amount of time, the position of

the source and any changes to the patient’s geometry can have large impacts on the

dose distribution given. Errors separated into two categories: human error, which

takes into account any miscalculations with planning or connection errors, patient

identification, diagnosis, prescription of dose and data entry, and reconstruction er-

rors, which includes any errors to equipment such as the afterloader or computer

system (29). Some of these errors are taken into account and checked by the treat-

ment planning system and imaging modalities used, there are many uncertainties

remain between planning and treatment (32). These errors can lead to many differ-

ent and unknown late effects to the patient, including rectal bleeding, proctitis or

development of a fistula (8). With more knowledge and regulation of errors, these

late effects can be reduced and prevented in future brachytherapy treatments.

There are currently some databases that record any known errors, such as SAFRON
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or ACCIRAD, but most clinics only keep records of their own hospital data and most

radiation effects occur after months of initial treatment (8). There currently is no

regulated system that validates treatment plans or determines the type and occur-

rence of errors during the treatment, allowing brachytherapy errors within clinics to

go unregulated. There have been many studies into the type of errors that occur in

brachytherapy and hypothesised methods of correcting or monitoring these errors,

however there is no accepted clinical practice of an independent verification system

(29). In vivo dosimetry is the measuring of dose within the treatment volume or

surround areas, which could be the key to having an acceptable dose verification

method for brachytherapy within clinics. Many different studies have been com-

pleted to explain the reasoning behind in vivo dosimetry as well as determining the

most ideal detector.

2.4.1 In vivo Dosimetry in Brachytherapy

Within most radiotherapy treatments there are verification and quality assurance

checks that are completed during and before treatment, but with brachytherapy

these checks are limited with many uncertainties present during treatment. In vivo

dosimetry is the determination of dose during a radiotherapy treatment from within

the patient and is very important for identifying errors and determining the exact

dose given to the patient (33). Brachytherapy especially presents many problems

when identifying an ideal dosimetry detector, such as the need for precise positioning

within a high dose gradient field and movement of organs throughout the treatment.

With the small dose range within brachytherapy, the detectors must be sensitive

enough to record a large range of dose values and provides information on the dose

throughout the treatment (32). The position of the detectors is usually within the

areas of risk; for prostate cancer brachytherapy they are positioned in the urethral or

rectal cavity and need to have good signal to noise ratio to accurately determine the
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dose measurement. However, most detectors that could be used for verification pur-

poses need to be calibrated beforehand, usually in a homogenous water-equivalent

environment to minimising the large energy dependence that most common detec-

tors experience (29). The sources used within brachytherapy also present challenges

because of the low photon emission, especially with LDR brachytherapy with sources

Pd-103, and high amount of dose given in HDR brachytherapy treatments, all within

a heterogeneous material (32). Research into in vivo dosimetry is highly important

to improving the safety and reliability of future clinical brachytherapy treatments.

From previous studies and experiments, it has been determined that the major-

ity of errors within brachytherapy come from geometric variations from organ and

equipment movement during treatment. A study into the internal movement during

the planning and treatment of cervical brachytherapy determined that there was a

20-25% geometrical variation of dose to the treatment volume (29). Current quality

assurance procedures for brachytherapy consist of utilising urethral catheters and

rectal balloons to limit the movement of internal organs, but the requirement of in

vivo dosimetry for brachytherapy in clinics is not mandatory and only performed

occasionally. For general brachytherapy treatment, the most common type of treat-

ment verification is completed using a rectal diode dosimeter, however this is subject

to position error as well as measurement error with the steep dose gradient present

in brachytherapy (34). Other options are less invasive with detectors on surface

above the treatment area but these are subject to averaging and signal areas due to

positioning errors of the detector and source. Due to this gradient the organs at risk

(OAR) could be subject to great errors and need an accurate dosimetric method to

determine the dose given (32). Much research has been dedicated to determining an

ideal detector used in brachytherapy specifically for in vivo dosimetry to determine

the dose in organs at risk during the treatment.

An in vivo dosimetry method would identify these uncertainties and identify
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any variations of dose that differs from the treatment plan. An ideal system for

brachytherapy would be easy to use with minimal training, be seamlessly imple-

mented into current clinical practices and have an automatic readout (9). The

system would also need to be able to be reproduced in other hospitals and clin-

ics, making it commercially available for brachytherapy centres around the world.

Each patient has different treatment plans and volumes therefore the position of

the detector within the patient may be different for each treatment, but limit the

invasive implantation to reduce infection or discomfort. Current commercial detec-

tors are subject to volume averaging, dependencies on temperature and energy, self

attenuation and nonlinear dose response (32). An ideal in vivo dosimeter would

be tissue or water equivalent, small in size for in vivo measurements with a small

sensitive volume for brachytherapy ranges, consistent read outs with minimal cali-

bration requirements, real time readout system during treatment and safe to use by

staff and patients (33). Below many available detectors are compared in terms of

these properties to determine the most suitable dosimeter for in vivo measurements

during HDR brachytherapy for prostate cancer.

2.4.2 Detector Options for Dose Verification

There are many different options for detectors to be used in brachytherapy and

many different studies looking into the advantages and disadvantages of them. The

detectors in this review are thermoluminescent detectors (TLDs), optical simulated

luminescence (OSL) detectors, scintillation detectors, ionisation chambers, film de-

tectors, and semiconductors including diodes and MOSFETs. The characteristics

that are compared with each type of dosimeter are size, reproducibly, reusability,

cost, ability to produce real time data, and ease of use in a clinical setting along

side current brachytherapy practices.

Thermoluminescent detectors (TLDs) have been used previously for dose veri-
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fication in other forms of radiotherapy and therefore are among the most common

detectors that are being considered for brachytherapy (35). TLDs are made up of

inorganic crystals that have a high concentration of traps within the band gap of

material due to the addition of impurities. During irradiation, energy is absorbed

by the crystal causing electron-hole pairs to be released. Electrons are raised to

the conduction band however some electrons become trapped within the band gap;

an analogous process happens with holes being trapped near the valence band (36).

The number of trapped electrons is directly related to the amount of radiation expo-

sure and can be determined after the irradiation has stopped (23). To determine the

amount of dose absorbed the crystal is slowly heated and the trapped electrons be-

come thermally excited enough to move to the conduction band. The electrons then

recombine with the trapped holes near the valence band, releasing a photon that can

be recorded. The light yield of the crystal is then converted into an electrical signal

using a photomultiplier tube and analysed through a glow curve, which is a function

of emitted photons and temperature. The area under the glow curve is proportional

to the radiation absorbed by the TLD (36). The light released from the detector is

very dependent on energy and temperature factors and the absorbed dose can only

be determined from a calibrated detector irradiated with a known dose (23). This

cannot give a real time dose readout and can only determine the dose to the overall

volume, not to a specific area. TLDs also require a very lengthy preparation process

consisting of ’annealing, individual calibration, careful handling, fading correction’

for every detections and for each detector (32). The detectors can be reused mul-

tiple times through heating the crystals to high enough temperatures to remove all

trapped electrons and holes (36). They detectors can be formed into varies shapes;

the ideal shape to be used in brachytherapy would be small, thin rods that could be

inserted into catheters to directly measure the average radiation dose within that

area. They are also very available within clinics, have been studied greatly and
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understood well in hospitals, and have an average sensitive volume of 1mm3 thick

(8). Overall, TLDs have good dose measurement properties with limited angular

dependence but can only give readout after the detector has been irradiated.

An alternative to TLDs is optical simulated luminescence (OSL), which uses the

same principle but with an external source of strong light to read out the data from

the detector. Such external sources are light emitting diodes or lasers that shine light

onto the source that is a different wavelength to the emitted light. Photomultiplier

tubes along with optical cables are used to readout emitted light only, which can

be converted into an absorbed dose value. They have very high sensitivity down

to a few µGy and are currently replacing TLD personal radiation detectors (36).

The detector can store information without degrading it or the crystal, can produce

a fast read out and can be shaped into many sizes. OSL dosimetry can be used

in brachytherapy with small detectors placed within the catheters in the patient.

Through the study of OSL materials, it has been shown that they can read out dose

data in real time through measuring data in radioluminescene (RL) mode. The

real time output of an OSL crystal shows limited angular or energy dependence

but have only recently become commercially available and have to be frequently

calibrated (32). The use of OSL detectors in brachytherapy for dose verification

is being studied greatly but there is limited data on its proposed use in a clinical

setting.

Another type of detector system that is being studied for in vivo dosimetry

are scintillator systems, which produce scintillator light that is proportional to the

radiation dose. Scintillators can be made from organic or inorganic material and

have differing properties depending on the crystal used. The main advantages of

scintillator systems are the high spatial resolution, low energy dependence, water

equivalency and linear proportional light response with dose (32). Radiation energy

is absorbed by electrons within the crystal and the excited electrons are moved to a
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higher energy state. Each crystal structure has a different time in which the electrons

are de-excited, usually a few nanoseconds, and return to their normal energy state

while emitting fluorescence as they decay. The light produced is proportional to

the energy absorbed by the crystal and through converting the light produced into

a current using a photomultiplier tube or photodiode, the dose absorbed can be

determined (36). Two common scintillation systems that are being considered for

in vivo dosimetry with brachytherapy are plastic scintillation detectors and fibre

optical detectors.

Plastic scintillation systems are relatively inexpensive and are readily available

in various sizes, which make them a popular choice for brachytherapy verification

measurements. There has been studies on the degradation of scintillators with high

amounts of radiation dose over time and possible temperature dependence of the

detectors (32). The response of scintillation detectors has been studied and seen to

decrease linearly with increase of temperature (29). Another option is fibre optic

scintillation crystals that can be made as small as 0.5-1mm thick, giving a simi-

lar sensitive volume to TLDs (37). Due to the flexibility and small diameter of

fibre cables, these detectors can be placed within needles or in urethral catheters

to determine the irradiation dose in a specific position during brachytherapy. The

interaction of radiation within the optical fibre can cause unwanted radiation called

Cherenkov or stem light to appear and give inaccurate measurement of dose. This

is caused by electrons moving through the material faster than the speed of light,

leading to the creation of high energy photons (37). The removal of this excess radi-

ation has been studied and there are many proposed methods to allow scintillation

detectors to output the absorbed dose readings only, such as background subtraction

or filtering (29). The position of the fibre optic detector is also important to achieve

an accurate reading; the central axis must be perpendicular to the dose gradient for

the entire treatment to minimise dose averaging. If the position of source change
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throughout treatment or the detector moves, this can impact the data recorded (8).

The detectors are capable of real time dose readout, which is essential for detectors

to give dose verification in brachytherapy. They have very limited angular and en-

ergy dependence, as well as a user friendly calibration procedure but both types of

scintillation detectors require additional invasive insertions to give an in vivo dose

reading during brachytherapy treatments (32).

Another type of detector that has been used previously for dose verification in

other radiotherapy modalities is film, either radiographic or radiochromic film. Film

has very high spatial resolution, depth dose around 150µm, and comes in many sizes

that can be molded to the shape of the body (8). An image is created through the

interaction of radiation with the particles within the film, creating a latent image

of the path of radiation that is proportional to the amount of dose absorbed by

the film (36). Similarly to TLDs, this is a passive method of dose verification and

cannot provide a real time dose readout during brachytherapy treatments (35). Ra-

diographic film consists of a transparent base covered in an emulsion layer made

of silver bromide crystals that interact with electrons to record a shadow image.

The silver bromide crystals become silver during the developing process and the

degree of silver on the image is proportional to the amount of radiation absorbed.

This is determined through the net optical density of the film, through a the sen-

sitometric curve (4). Radiographic films in particular have a complicated chemical

developing procedure taking 24 hours while radiochromic films doesn’t require any

developing but does take the same amount of time to get an accurate dose reading

(8). Radiochromic film is an alternative to radiographic film with characteristics like

tissue equivalence, high spatial sensitivity and no sensitivity to visible light. The

colourless film changes colour with irradiation due to polymerisation of radiation

sensitive dye and the dose can be determined from the optical density of the film

using a spectrophotometer with a limited wavelength (4). Radiochromic film is less
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energy dependent but both forms of film are sensitive to temperature and need to

be carefully calibrated beforehand (8). Radiographic film can only provide an aver-

age dose readout over an entire volume and radiochromic film is more suitable for

brachytherapy dosimetry.

Finally, semiconductors have been strongly researched to develop an in vivo

method within brachytherapy, specifically diodes and metal oxide semiconductor

field effect transistors (MOSFETs). Semiconductors have been used previously in

external beam treatment verifications due to their small sensitive volume size, real

time readout capabilities, high sensitivity and small size. They show a high depen-

dence on temperature, angle and position, energy and radiation damage (32). The

disadvantages of semiconductors in brachytherapy dosimetry is the determination

of position and angle and geometric changes over the delivered high dose. There

has been a lot of research into compensating or eliminating these dependencies to

allow semiconductors to be used for dose verification is small areas with steep dose

gradients. Diodes and MOSFETs produce a current readout that is proportional to

the dose absorbed by the detector with an easy to operate, real-time readout sys-

tem (35). Diodes are a silicon p-n junction, created from p-type silicon doped with

n-type material with a depletion zone in between making up the sensitive volume of

the dosimeter. The sensitive volume is 0.2-0.3mm3 and during irradiation electron-

hole pairs are produced creating a current within the diode between the n and p

regions. Due to the lower energy needed to create the electron-hole pairs, 3.5eV in

Si compared to 34eV in air, silicon diodes are more sensitive to radiation but show a

higher energy dependence due to the higher atomic number (36). Diodes are limited

by their size as well as being severely directionally dependent with slight temper-

ature dependence. They have been used for dosimetry purposed in brachytherapy

within the rectum or bladder, using rectal probes with a diode array or a single

diode implanted (29). Diodes are also very available commercially and are very easy
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to operate due to being present in clinics for many years. Semiconductors, both

diodes and MOSFETs, are also inexpensive to purchase and implement into clinical

brachytherapy setting (32).

MOSFETs are seen as a more ideal semiconductor for in vivo dosimetry due to

their small sensitive volume and smaller size that can be implemented in brachyther-

apy treatments. They have a smaller diameter than diodes and due to their submil-

limeter size can fit within catheters to give dose readout within target areas through-

out a brachytherapy treatment. MOSFETs are non-tissue equivalent, miniature p

or n type silicon semiconductors with a sensitive volume of a couple of microns (29).

Due to size of the sensitive volume, they are ideal for recording absorbed dose in

steep gradient fields through producing changes in electrical characteristics that is

proportional to radiation dose(37). They can record absorbed dose uniformly in

every direction but as the position of the source changes the recorded dose becomes

non-linear. Due to the ever increasing threshold voltage of the MOSFET, it has a

limited lifetime and is subject to some deterioration with long radiation exposure.

As the detector is exposed to radiation, the sensitivity of the detector becomes less

as the amount of threshold voltage increases towards saturation (38). Similar to

diodes, they are also known to have several dependencies that limit their use within

in vivo dosimetry, such as temperature, energy and angular dependence (32). En-

ergy dependence can be compensated through individual calibration with the same

treatment source and there are several methods to limit the temperature depen-

dence of the detector (29). Traditional MOSFETs also have an epoxy resin covering

the sensitive volume, which increases the effective depth dose of the detector, but

without it produces unreliable results with many uncertainties. The thickness of the

epoxy resin usually around 1mm minimum, which is a dome shape over the sensitive

volume of the detector (8). The main advantages of MOSFETs for in vivo dosimetry

are the capability of real time readout that is dose rate independent with no change
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in the data with time and the dose readings can be permanently stored within the

detector (9). Figure 2.1 shows an image of the structure of a p-type MOSFET or

N channel MOSFET that is commonly used in brachytherapy experiments and the

operation of the detector is described below.

Figure 2.1: Structure of a MOSFET dosimeter, (1)(39)

A MOSFET consists of a substrate, making up the bulk of the detector, and a

drain and source channels, made from a p-type or n-type semiconductor with two

doped regions of opposing type. There is also an insulated electrode gate made

from aluminum and silicon oxide grown in between the drain and source (40). The

substrate is used as a grounding material and the induced n-type channel flowing

from the source to drain, is proportional to the voltage inputted into the detector

(39). Like most semiconductors, incoming radiation creates electron-hole pairs and

in MOSFETs these are created within the silicon material of the gate of the de-

tector. The holes or positive charges are attracted to the silicon substrate - silicon

oxide insulator interface and are trapped, creating a build up of positive charge as

the detector is irradiated (1). The build up of positive charge directly affects the
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n-type regions and creates an inversion layer of moving electrons from the source to

the drain, changing the voltage of the detector. This allows the transistor part of

the MOSFET to be turned on and a flowing current forms. The resistance between

the drain and source is directly related to the threshold voltage of the system; at

low voltages between the gate and source the resistance is very high, not allowing

current to flow. As the voltage increases past a certain point the resistance de-

creases significantly, allowing the transistor of the MOSFET to become operation

and current to flow (39). To get a reading from the MOSFET the voltage created

in the gate must be greater than the base threshold voltage (40). The readout of

the MOSFET system is the voltage difference between the gate and source voltage

and the drain and source voltage.

VGD = VGS − VDS = Vth (2.3)

The readout of the MOSFET system shows an increase of threshold voltage

that is directly proportional to the radiation dose absorbed at the oxide gate. To

determine the dose absorbed in the detector, a calibration factor is determined that

relates the change in voltage to radiation delivered. Once the n-type dopped regions

have reached saturation, the MOSFET no longer produces a linear response and

cannot accurately measure dose. Therefore, the lifetime of the MOSFET is limited

and the manufacturer sets a maximum voltage that the detector can be used up

to for a reliable response (1). The limited use of the MOSFET is one of the main

disadvantages of the detector system, however these detectors are very affordable and

can be easily replaced in clinics. The Centre for Medical Radiation Physics (CMRP)

at University of Wollongong has created a unique MOSFET design, MOSkinTM ,

that address many of the disadvantages of traditional MOSFET designs, including

the inadequate depth dose, angular dependence and temperature dependence. The
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MOSkinTM is based on the same electronic properties as MOSFETs but produces a

more accurate readout system that is ideal for in vivo dosimetry for brachytherapy.

2.5 MOSkinTM Detectors

The Centre of Medical Radiation Physics at University of Wollongong developed

a uniquely designed MOSFET detector, MOSkinTM , used for skin dosimetry and

later in in vivo dosimetry measurements (41). As discussed previously, the MOS-

FET use within brachytherapy and skin measurements is limited due to the skin

depth. Shown in figure 2.2, the MOSkinTM design uses a thin-film encapsulating

layer above the sensor that replaces the epoxy resin used in traditional MOSFET

designs. Measurements of a water equivalent depth of 70µm are possible due to the

small sensitive volume and size of the gate being 55µm (8). The dimensions of a

MOSkinTM detector are 2mm wide, 0.4mm thick and 330mm long, designed with

the sensor in the tip and a long tail connected to a read out system (24).

Figure 2.2: Comparison of original MOSFET and MOSkinTM design (42)

MOSkinTM detectors are ideal for brachytherapy in vivo measurements due to

the sub-micron size sensitive volume, allowing dose to be determined accurately

in steep dose gradients, and they are also capable of real time readouts. However

similarly to MOSFETs, they have a maximum threshold voltage that the MOSkinTM

detector can be used up to, around 26V, for accurate results (43). A lot of research

has been completed and still is being completed for characterising these detectors
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in different environments to determine clinical protocols for dosimetry use.

2.5.1 Temperature Dependence of MOSkinTM Detectors

MOSFETs, including MOSkinTM s, are ideal to be used for in vivo dosimetry due

to their size and sensitive volume however one major issue is the effect of tempera-

ture on the recorded dose, determined to affect the recorded dose up to 12% (38).

The dose is determined from the changing threshold voltage readout but this is di-

rectly dependent on the temperature of the detector, especially when the detector

is calibrated in a room temperature environment and data is collected from a body

temperature environment (9). There have been many proposed methods for com-

pensating or eliminating the affect of temperature on general MOSFET detectors

and specially MOSkinTM that are used clinically. One proposed method was read-

ing the irradiated dose from a thermostable current between the source and drain,

which is when the threshold voltage is not affected by changes in temperature. This

is usually at a very low current, which is very hard to achieve, and the detector needs

to be the same temperature, even if the environment temperature changes, through-

out the entire treatment (44). Another method is to place the detector inside the

patient and wait for the detector to reach temperature equilibrium, about an hour

after implantation. At that point the detector will be temperature independent with

an accurate dose recording, but this increases the total treatment time dramatically

(24). A final option is to use dual detectors during clinical irradiation to determine

the impact of the temperature on the dose recorded and remove the dosimetric sig-

nal (29). Research completed by Garcia-Inza et. al in 2014 proposed a method with

two detectors using the same silicon die, experiencing the same dependencies, with

the dose determined from the difference in signal between transistors. The contri-

bution of temperature to the readout signal through applying different gate voltages

to each detector and mathematically determining the affect of temperature. This
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study determined the sensitivity increased and the uncertainty decreased with the

use of dual detectors to determine the dose, but there was a large amount of noise

present. Further studies are being completed to determine the clinical suitability of

this method to compensate for temperature during in vivo dosimetry (38). In this

thesis a new method is proposed, using the internal properties of a single MOSkinTM

detector to create a temperature compensation value to remove any dependence on

the dose readout.

2.5.2 Previous Studies Using MOSkinTM Detectors

MOSkinTMs have undergone many research studies to determine their ideal use

within clinical radiotherapy. Even though MOSkinTMs were originally designed for

skin dosimetry, they have shown to be ideal for in vivo dosimetry for brachytherapy

and the following studies describe different methods and results from research teams

around the world.

Hardcastle et al. (44) in 2010 was one of the first teams to propose the use

MOSkinTM in for in vivo dosimetry to determine the dose to the rectal wall during

hypo-fractionation external beam radiotherapy. Due to the low alpha beta ratio

of the prostate mentioned previously, high dose rates are more ideal for treating

prostate cancer however the dose to organs at risk becomes greater. The study in-

vestigates rectal balloons, which immobilise the rectum throughout treatment and

are fairly common clinically, with a MOSkinTM attached to the balloon to verify

the dose to the OAR with real time output. Due to the air cavity within the rec-

tal balloon, the dose gradient between the rectal wall and balloon is very steep;

the MOSkinTM ’s small sensitive volume is ideal for determining dose in this envi-

ronment. A ’face-to-face dual MOSFET arrangement’ was used to determine depth

dose and correct for angular discrepancies. The phantom was irradiated with various
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fractions of dose between 2-10 Gy and the sensitivity, reproducibility and angular

dependence was looked at. The dose to the rectal wall compared to the treatment

planning system used showed a lower dose reading, which agreed with previous re-

search into treatment planning with rectal balloons due to the air cavity. There were

some discrepancies due to temperature and positioning of the balloon that made this

design difficult for clinical in vivo dosimetry. The temperature dependence was seen

unless readout from a thermostable current, as described previously. Temperature

independence was hypothesised with the use of an additional MOSFET detector

or utilising the intrinsic properties of the MOSFET without additional detectors.

Angular discrepancies were seen to be ±2.5% for the azimuth axis and between -

2.5% and +4% for the polar axis for a single MOSFET, however the dual MOSFET

showed an angular dependence of ±2.5%. Another issue with this study is for each

fraction a new balloon and detector is used and therefore the position of the in vivo

dosimetry system would change for each fraction in EBRT. The following study are

researching dosimetry in brachytherapy, where ideally the dosimetry system would

not be moved and used throughout treatment.

Another study using MOSkinTM detectors was performed by Kwan et al. in 2009,

who investigated the the dose to the rectal wall during high dose rate (HDR) prostate

brachytherapy (8). The dose to an empty air filled heterogeneous rectum was studied

to determine the amount of backscatter delivered to the rectum during treatment

using a rectal phantom with two MOSkinTM detectors. The dose recorded in the

phantom tests were compared to treatment planning data. The phantom used in this

study was made from solid, water-equivalent plastic made from slabs to alternate

distances and a cylindrical air cavity to represent the rectum. The results of this

study showed a measurement dependence on distance, with the difference between

the treatment plan and detector readout increasing further away from the detector.

Due to the assumptions of the treatment plan that the rectum is homogenous, the
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dose is overestimated. It was also seen that due to the small sensitive volume in the

MOSkinTM detectors, the orientation of the detector to the gradient of the dose was

not significant on the dose recorded. This study recommended additional studies

into the backscatter affects for different parts of the rectal anatomy and accounting

for the heterogeneity of the rectal tissue within the treatment planning system.

In a study performed by Alnaghy et. al, in 2015 (45), the dose to the anterior

rectal wall during prostate cancer treatment using hypo-fractionated stereotactic

body radiotherapy (SBRT) delivered during tomotherapy. This type of radiotherapy

takes advantage of the low alpha beta ratio of the prostate and in previous studies

the toxicity to the OARs is relatively low. The aim was to create a monitoring

system that incorporates organ deformation and variations in setup position for

each fractional treatment to determine any issues with treatment as well as the real

time dose. A rectal probe with similar dimensions as an TRUS probe was used with

dual MOSkinTM detectors to complete in vivo dosimetry of the anterior rectal wall.

The replica probe was constructed from Perspex with density of approximately 1.09-

1.12g/cm3, length of 200mm and a diameter of 20mm. Four detectors were placed

at an angle descending from the head of the probe with the wires wrapping around

the length. Each detector was calibrated in a solid water phantom, facing upwards

and downwards, with an average calibration factor determined 30 seconds after

irradiation. An IMRT Head and Torso Freepoint Phantom was used to complete

clinical experiments and CT images were used to complete a tomotherapy treatment

plan for comparison of dosimetric measurements. The results from this study showed

that 75% of the recorded measurements coincided within ±5% of the treatment plan.

The angular position of the detector showed errors at 180◦ and 90◦ position but was

seen as less important as at 0◦ due to the lower doses and the CT doses were only at

0◦. Due to the steep dose gradient, a large discrepancy was seen in between voxels on

the CT treatment was seen highlighting the importance of dosimetric measurements
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for small positional changes. The main issue with this study was the exact position

of the detectors within the phantom, which is significant in steep dose gradient

regions. It was also highlighted that the tomotherapy treatment in this study would

only be used as a boost, averaging two fractions, and therefore the insertion of the

probe for the entire treatment wouldn’t cause increased discomfort for the patient

compared to a full treatment lasting numerous fractions.

Finally, in a multi-paper study completed by Tenconi et. al. in 2014 (46) and

Carrara et al. in 2016 (24), MOSkinTM detectors were investigated to be used for

verification measurements during High Dose Rate prostate brachytherapy. Due to

the common use of TRUS probes during brachytherapy to provide real time imaging

during treatment, this study looks at including dosimetric detectors in the probe

to give in vivo measurements as well as images. In the Tenconi et. al. study two

MOSkinTM detectors were placed on a TRUS probe along the longitudinal axis with

a silicon spacer separating the detector from the probe. The advantages of the lon-

gitudinal position are using a transversal ultrasound image the detector position

can be located and the radial positional uncertainty is relatively small. These mea-

surements were completed using a gel phantom with needle matrix template and

cylindrical space for the probe. A treatment planning system was used to optimise

the dose given and the probe was placed inside the phantom for the entire treat-

ment. Three doses were recorded and averaged and the position of the detectors was

determined using ultrasound images from the probe. The results from these mea-

surements agreed with the TPS values within an acceptable range, recommending

this procedure with a dual purpose TRUS probe as a method for dose verification.

The angular and positional dependence didn’t affect the measurements significantly.

Further study was recommended to investigate the affect of organ movement or pa-

tient movement in-between the treatment planning images and the actual treatment.

In a continuation of this research, the study completed by Carrara et. al. in 2016
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looked further into the incorporation of two MOSkinTM detectors on an ultrasound

probe during clinical prostate brachytherapy for 12 patients (24). The measurements

were compared to treatment planning doses calculated from images taken before

treatment and after treatment, to compare the movement of organs throughout

treatment. The position of the detectors along the probe was determined through a

reference structure and data was collected from 18 treatment sessions. During these

sessions, a few detectors failed due to stress on the detector and a five detector probe

has been suggested for more accurate dose recordings. The angular position of the

detectors was within 70◦ with ±2% in the longitudinal direction and within 80◦ with

±3% in the transversal direction. An issue highlighted in this study was that the

calibration was completed in a different temperature environment compared to the

body temperature environment during dose recording. The study suggested that

the dual purpose probe be implanted into the patient before calibration and once

the detector has reach temperature equilibrium, averaging 1-hour prior, calibration

should be completed. The study also concluded that uncertainties in treatment

increases when the time difference between treatment planning images and treatment

is greater than 1.5 hours. Through the results of this study, in vivo dosimetry using

a MOSkinTM dual purpose probe is a possible method to complete dose verification

during treatment. Future research is required to form a clear clinical procedure for

implementation in hospitals during HDR prostate brachytherapy.

2.6 Discussion

Through the research into MOSkinTM detectors as a possible dose verification tool,

this detector was chosen to be used in this thesis as part of a in vivo verification

method during HDR prostate brachytherapy treatments. A new readout system cre-

ated by the Centre for Medical Radiation Physics, University of Wollongong, incor-
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porates compensations directly based on the dependencies of MOSkinTM detectors

and will be used to wirelessly readout the treatment dose in real time. Characteri-

sation of this new system and treatment simulation experiments were completed at

the St. George Cancer Care Centre (SGCCC) with the medical physics team at the

hospital.



Chapter 3

Circular Gate MOSkinTM

Dosimeter and OneTouch

Characterisation

3.1 Introduction

The MOSkinTM and OneTouch Readout System were investigated to determine the

feasibility of producing a clinical dose verification system during HDR brachyther-

apy. Both a newly updated MOSkinTM detector with a circular gate and OneTouch

system were compared to previous generations to determine the ideal equipment to

be used clinically.

The circular gate MOSkinTM detector was designed and produced to remove the

angular dependence and to increase sensitivity. The original MOSFET dosimeter

had a thick epoxy resin layer that protects the sensor, however this extra thickness

greatly decreases the accuracy of readouts in steep radiation gradient situations like

HDR brachytherapy. (46) MOSkinsTM were designed to remove the epoxy resin

to increase the effective depth of the sensitive volume to 55µm, however angular

41
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dependence was still present with this design (47). The newer MOSkinTM design

was created to limit the angular dependence effecting the dose rate readout and

the effectiveness of this new design was the focus of this initial experiment. The

previous generation of MOSkinTM utilised three straight electrode terminals, with

the D, G and S symbolising the drain, gate, and source terminals shown in figure

3.1. The newer MOSkinTM detector uses circular electrodes to minimises the effect

of changes in angular position on the dose readout.

Figure 3.1: Detector design of previous parallel gate MOSkinTM dosimeter and new
circular gate MOSkinTM dosimeter

The sensitive volume of the circular gate detector is also larger then previous

generations, allowing for a probable increase of sensitivity of dose readouts. With

the changed electrode design of the detector, the sensitivity and angular response

was investigated to determine if the dose readout was acceptable. The angular de-

pendence of the circular gate MOSkinTM detector was investigated to determine

the relationship between readout and source position with the new electrode de-

sign. A gelatine phantom and replica rectal probe were used in the angular tests to

mimic HDR prostate brachytherapy. The estimated dose and experimental data was

calculated and compared to determine the angular dependence of the circular gate

MOSkinTM dosimeters. The sensitivity of the parallel and circular gate versions were

analysed through determining the dose readout over long irradiation periods. These

tests highlighted the superior dosimetric capabilities of the circular gate MOSkinTM

detector and its ability to be used as a brachytherapy verification system.

A user-friendly system is essential for in-vivo dosimetry, for displaying the dose
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recorded in real time throughout the treatment. A wireless readout system called

OneTouch created by Centre for Medical Radiation Physics (CMRP) at University

of Wollongong (UOW) allows dose information to be transmitted via Bluetooth or

ultra-high frequency bandwidth as well as incorporating a temperature compensa-

tion factor and dose calibration. The OneTouch system allows the user to evaluate

and store a temperature compensation factor and calibration factor, which can be

used throughout the lifetime of each detector. The device is used in conjunction

with the MOSkinTM detectors for HDR prostate brachytherapy measurements to

demonstrate a suitable verification system for the treatment of cancer. The system

was characterised to determine the reliability and accuracy to continually record

MOSkinTM measurements as well as the ease of use in a clinical setting. Multiple

tests were completed such as irradiating a single detector with the same dose multi-

ple times until the maximum voltage had been reached, completion of a comparison

test looking at the different algorithms used to compensate for radiation ’creep-up’

or ’anti-annealing’(8)(48), and a temperature variation test to evaluate the temper-

ature compensation factor. All these experiments were completed at St. George

Hospital in the Brachytherapy suite with an Ir-192 source in a solid water phantom

and at the Centre for Medical Radiation Physics in the University of Wollongong

with a current controlled TE Technology® Peltier Cooling Plate (49).
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3.2 OneTouch Design and Capabilities

Figure 3.2: The OneTouch Readout System designed by University of Wollongong

The OneTouch system is designed to transmit information from a maximum of

six detectors through six ports located on the main transmitter device, shown in

figure 3.2. The data is transmitted wirelessly to a computer through two types of

USB receivers, either a Bluetooth or an ultra-high frequency (UHF) bandwidth. In

Australia it illegal to use UHF bandwidth, therefore the Bluetooth receiver was only

used in this thesis. In a clinical setting the transmitter device would be located next

to the phantom or patient, connecting the in-vivo detector to the OneTouch system

where dose data can be transmitted throughout the treatment giving a real-time

dose response. The receiver USB is also placed within the room, out the way of

equipment and staff and transmits received information through an extension cord

to the connected computer system in the brachytherapy control room. In figure

3.3, showing the program associated with the OneTouch system, a target dose is

inputted and ’Measured Dose’ is shown as a percentage that slowly increases during
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treatment to the total dose as well as a single Grey value. This allows for the dose

readout to be completed as treatment progresses, creating a dose verification system

to display any abnormalities in delivered dose.

Figure 3.3: The OneTouch readout system program interface depicting calibration
values and the dose recorded graphically

Another advantages of this system is the simple and precise method of determin-

ing a value that compensates for errors in data measurement due to temperature

fluctuation and calculating a value that relates voltage output to absorbed dose. As

previously mentioned, temperature can affect the dose measurement of MOSkinTM

detectors, especially when calibration is performed in a separate environment to

the treatment environment within the patient. With an increase or decrease in

temperature, all MOSFETs, including MOSkinTM detectors, experience a change in

threshold voltage; a decrease in threshold voltage when the temperature decreases

and vice versa. The variations in threshold voltage with changing temperature is

due to thermal energy being added or removed from the system, affecting the elec-

trons being released in the semiconductor of the MOSFET detector. With more

thermal energy the detector will simulate an increase in radiation due to an increase
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in electron-hole pairs creating a higher threshold voltage value (40). The threshold

voltage of the detector output is determined but with a temperature change the

actual dose becomes unknown (38). Methods have been proposed to compensate

for temperature dependence, including measuring radiation at a thermostable point

only or allowing the detector to reach temperature equilibrium within the patient

before calibration and measurement (29) (24). These methods however limit the

detectors potential as well as taking a great deal of time to complete; the OneTouch

temperature compensation method is completed within a couple of seconds and the

compensation factor can be stored for the duration of treatment. The system uses

the characteristic of the MOSkinTM detector that allows for two terminals of the

MOSFET chip that act like a diode during temperature change.

3.2.1 Temperature Compensation Calculation

When the MOSkinTM detector is irradiated, a current is induced creating a voltage

between the gate to the source. This voltage is a measurement of the amount of

absorbed radiation during a single treatment. Due to the temperature dependent

nature of MOSFET detectors, a voltage change is also created during a temperature

change and mimics an irradiation readout with an increase in threshold voltage. As

well as voltage between the gate and source there is also a reverse voltage created

between the substrate or bulk and source during temperature change. This phe-

nomenon creates a diode within the detector that can be used to determine how the

detector will react during temperature change. The temperature calibration factor,

CT is calculated from the equation below, using a ratio of the two voltages discussed.
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Figure 3.4: Schematic of MOSkinTM temperature dependence using reverse voltage
from diode (dv diode in red) and voltage difference from MOSFET (dv gate in blue)

CT =
dVgate
dVdiode

=
Vgatemax− Vgatemin

Vdiodemax− Vdiodemin
(3.1)

To initiate a temperature compensation calibration, the detector is heated for

several seconds by placing a finger or an active heat plate end of the detector and the

device calculates the value when a ’Temperature Compensation’ button in pressed

on the system interface, shown in figure 3.3. The aim of the OneTouch system is to

determine how the dose readout after initial calibration will readout to any variation

in detector temperature due to body heat. A difference in maximum and minimum

voltage is determined from both the diode and gate voltage, shown in figure 3.4.

This can be used with any MOSkinTM detector and the calibration value is intended

be applicable to all dose measurements during the lifetime of the detector. From

initial testing, the usual value for the compensation factor is approximately -3 due

to the negative difference in reverse voltage between the substrate and gate during

a change in temperature and is unit-less due to being a voltage ratio.
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3.2.2 OneTouch Program Interface

The new OneTouch system also has more stable electronics than previous models

with a lower bias voltage of approximately 9V compared to 15V used in previous

models, increasing the lifetime of the MOSkinTM detectors. Another key features of

the OneTouch system includes the input of a target dose and a visual display of ac-

cumulated dose for up to six detectors, signal quality based on the missed readouts

and total readouts, manual input of readout period, visual display of the battery

level, the amount of noise present during measurement, and various threshold volt-

age levels of the detector. The device also allows for a calibration factor relating

voltage to dose to be calculated in a similar manner to the temperature compen-

sation value and stored throughout treatment. Previously, detectors needed to be

calibrated manually from an average of multiple readings but the OneTouch system

allows the factor to be determined by pressing ’Dose Calibration’ button after a

single irradiation, seen in figure 3.3. This is completed through inputting a target

dose, calculationed using TG43 (22), and irradiating the detector before pressing

the ’Dose Calibration’ button.

The OneTouch system also includes multiple algorithms to compensate for the radi-

ation ’creep-up’ that is characteristic of all MOSFET detectors (48). The algorithms

available in the OneTouch system include Standard, Min2, Average2, Medium3 and

Medium4, and were compared as part of the system characterisation tests performed.

The default setting of the system is Standard, which readouts the highest recorded

value. Min2 algorithm looks at the current readout and the previous readout and

identifies the lesser of the two values. Average2 algorithm takes the average of the

current and previous value and compares this average to the previous average cal-

culated. Medium3 and Medium4 perform the same medium calculation with the

current value and previous 2 or 3 measurements. Through a comparison of the cur-

rent readout value with the previously calculated one, the OneTouch system will stop
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recording readouts when it is apparent radiation exposure has ceased, and account

for the radiation creep present in the MOSkinTM detectors.

Figure 3.5: The OneTouch readout system interface depicting the technical display
for each channel

In figure 3.5 the technical data is shown and it is through this data that the

temperature corrected dose output is determined. MOSkinTM detector.

Vc = Vvt − (VFdiode − VSdiode) × CT (3.2)

Vtemp = (V c− Vvt) × CT (3.3)

Utilising the temperature correction factor, CT , the voltage, the total threshold

voltage output, Vvt, is corrected using the diode voltage within the detector. VFdiode

or VTF on the OneTouch interface is the maximum diode voltage, Vdiodemax, with
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VSdiode or VTS being the minimum diode voltage, Vdiodemin. The voltage from tem-

perature variations only can be determined through equation 4.3 using the corrected

voltage, Vc, and total output voltage with the compensation factor. The average

of the diode voltages, Vtavg shown on the interface, accounts for overall changes

in temperature from the initial calibration temperature. The effectiveness of the

compensation factor will be investigated and discussed below.

3.3 Methodology

The characterisation of the new readout system was completed through three sep-

arate tests investigating the creep compensation algorithms, the sensitivity drift

of the system through multiple irradiation exposures, and temperature calibration

factor verification. The MOSkinTM experiment was separated into multiple individ-

ual test to determine suitability of the circular gate MOSkinTM design to be used

clinically. The tests included calculating the calibration coefficient of the detector

used, determine the angular dependence of the newly designed MOSkinTM detector,

and investigate the sensitivity of both versions of detectors. The angular testing

and calibration were completed using the Clinical Semiconductor Dosimetry Sys-

tem (CSDS), a battery operated readout device that is directly connected to the

MOSkinTM detectors within the brachytherapy suite to the control room. The One-

Touch system was used during the long irradiation tests to compare the sensitivity

of the different electrode designed MOSkinTM detectors.

All tests performed in the brachytherapy suite in the Cancer Care Centre at St.

George Hospital, Kogarah. The brachytherapy machine was a HDR Nucleon remote

afterloader (Nucletron, Veenendaal, The Netherlands) with the Oncentrar Brachy

Treatment Planning System used to plan the tests. As with most clinical high dose

rate brachytherapy treatments the source used was Iridium-192 with an associated
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source strength of 40.7 mGy/ hr m2 (40700U). The associated source strength is not

the true activity of the source, as it degrades over time, however the source dwell

time for each treatment plan is adjusted to irradiate for a single associated source

value. As the lifetime of the source increases so does the brachytherapy treatment

period. The dose can then be directly calculated from the TG43 formulation shown

in equation 2.2 (22). This allows for the treatment plan to be created hours before

the actual treatment without having to re-plan directly before treatment.

3.3.1 MOSkinTM Comparison Tests

3.3.1.1 Circular Gate MOSkinTM Calibration

The dose calibration of each detector is essential before clinical use to accurately

determine the proportional readout of absorbed dose. The MOSkinTM detectors were

calibrated using a CIRS Plastic-Water® phantom at the Prostate Cancer Institute

at St. George Hospital, Kogarah. The calibration value for the angular test was

calculated using the CSDS, completed through manually reading out the current

threshold voltage of the detector and using equation 3.3.1.1.

CD =
dVavg × 1000

DTG43

(3.4)

Each MOSkinTM detector was placed in the plastic water phantom and a catheter

was placed at the centre with a 15±1mm source to detector distance. There was

additional water equivalent plastic placed above and below the catheter to simulate

backscatter present in clinical treatments as well as blue tac that was used to secure

the detector and catheter in place. The source was stationary at the distal end of

the catheter, position 234±1mm, for the entire calibration test. The dosimeter was

irradiated for 10 seconds and a voltage readout was taken before and 30 seconds
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after irradiation with the CSDS model. This was completed five times and the aver-

age increase of threshold voltage was determined from the final four readings. The

initial reading was ignored as a warm-up reading, as is usual practice for determin-

ing the calibration value clinically.

For the sensitivity tests the calibration value was automatically determined through

a single irradiation and using the OneTouch interface, which use the same formali-

sation in equation 3.3.1.1. Each detector was calibrated using the OneTouch system

over a 10 second dwell period at 15±0.5mm source to detector distance. The tem-

perature compensation factor and compensation value for the parallel MOSkinTM

detector was calculated to be -3.096 and 2.220±0.001mV/cGy, and -3.300 and

2.308±0.001mV/cGy for the circular MOSkinTM detector. The calibration and tem-

perature compensation method with the new system will be further explained in

Section 3.3.2.

3.3.1.2 MOSkinTM Angular Dependence Characterisation

Angular testing of the circular gate MOSkinTM was completed using a large gelatine

prostate phantom, following the procedures to produce a radiotherapy bolus. The

bolus was a gelatine-water mix created through mixing 5 tablespoons of gelatine

in 100mL of boiling water until dissolved then adding an additional 400mL of cold

water. The mixture was added to the phantom and repeated until the container

was full, creating 1500mL of gelatine-water mix. The phantom was placed in the

fridge overnight to solidify and was used the following day. The dimensions of

the phantom are 150mmx170mmx140mm and the hollow experimental probe has

multiple indentations near the apex of the probe to attach the MOSkinTM detectors

(47). Above the probe entrance on the phantom is a template matrix at either end,

size of 11x10, for the catheter insertion and the probe entrance is hollow at one

entry point with a solid plastic stopper at the other end.
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Figure 3.6: Experimental set-up for gelatine-water phantom angular dependence
Test (47)

Seven positions were tested along the catheter in 23±1mm step increments from

the posterior to the anterior of the phantom. The dwell times at each position

increased further away from the detector to compensate for decrease in dose due to

the inverse square law and radiation attenuation. The detector was taped to the

hollow probe and situated at the centre of the phantom at 165±1mm. A single

detector used for all tests and the results were recorded 30 seconds after irradiation

with the CSDS. The calibration value was adjusted for gel phantom testing due

to the sensitivity drift of the MOSkinTM detectors lifetime. Due to the differing

temperature of the gel phantom, that was in a refrigerator until catheter insertion,

the initial threshold voltage was lowered and there was no temperature compensation

value used.

3.3.1.3 MOSkinTM Sensitivity Analysis

The sensitivity drift response of the two versions of detectors was characterised over

a long irradiation period. This was completed with two separate tests with a single

source and detector in the CIRS Plastic-Water® phantom using the new OneTouch

Readout System. The first tests were completed over 900 second dwell period with
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the parallel MOSkinTM detector 20±0.5mm from the source and a readout every

second, and the second test was completed over an 800 second dwell period with

the circular MOSkinTM detector 15±0.5mm from the source and a readout every

5 seconds. The response over the entire period was analysed for each test and the

capability of the different versions of detectors to accurately monitor the radiation

over a long period was established.

3.3.1.4 Sensitivity of Readout System

To determine the sensitivity of the OneTouch Readout System several irradiations

were completed with a MOSkinTM detectors in a solid water phantom. The identical

irradiation test was completed over the lifetime of a single MOSkinTM detector with

a Ir192 HDR brachytherapy source at St. George Hospital Cancer Care Centre. The

source underwent a 30 second dwell time, 20±0.5mm away from the source giving a

target dose of 95.1cGy, calculated from TG43 (22). Using the OneTouch System, a

temperature compensation value and calibration value were determined to be -2.839

and 2.220±0.001mV/cGy respectively. 35 irradiations were completed and the dose

readout was analysed to calculate the sensitivity of the system.

3.3.2 OneTouch Characterisation Tests

3.3.2.1 Anti-Annealing Compensation

The first set of tests completed involved an in depth look at the algorithms avail-

able on the OneTouch system through identical irradiations using different creep

compensations calculations. The creep was demonstrated through 5 identical read-

outs with a treatment equivalent to a 10 second source dwell time using a Ir192

HDR brachytherapy source utilised at St. George Hospital Cancer Care Centre.

The radiation absorbed was displayed directly after irradiation and 30 seconds post-

irradiation. This was completed in open air environment with an estimated source
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to detector distance of 10±1mm and using the Median3 algorithm, set as such due

to the initial factory settings of the OneTouch Readout system. A temperature

compensation value for the detector was determined through the OneTouch method

discussed previously. The calibration value was inputted manually to be 1mV/cGy

as a simple way of demonstrating the typical creep seen from MOSkinTM detectors.

Two algorithm comparison tests were completed to determine the ideal calculation

method to be used in clinical treatments. The first test was completed in an open

air environment with a dwell time of 10 seconds and a 2 second readout with the

Ir192 HDR brachytherapy source. Two MOSkinTM detectors that were individually

calibrated for temperature, -2.666 and -2.679, but with a manual calibration value

of 1±0.001mV/cGy. The dose value was recorded using the Standard, Average2,

Min2, Median3 and Median4 algorithms with 5 repetitions. A second comparison

test was completed using a CIRS Plastic-Water® phantom with a source to detec-

tor distance of 35±0.5mm and a dwell irradiation time of 60 seconds Ir192 HDR

brachytherapy source. Based on the dwell time of the source, the target dose was

calculated to be 62.24cGy from the TG43 formulation, with a source strength of

40700U and 3.5mm Ir192 source length (22). A temperature compensation factor

and calibration value was calculated by the OneTouch system for a single detec-

tor, -4.406 and 2.134±0.001mV/cGy respectively. The detector was irradiated three

times for the Standard, Median3, Median4 and Average2 algorithms with readout

every 2 seconds. The exact point of dose measurement cut-off was analysed and

compared between all algorithms. The threshold voltage readouts after this point

were also recorded and evaluated to determine the ideal algorithm for clinical use.

The normalised average of the difference in threshold voltage of each algorithm in

open air and solid water phantom was compared.
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3.3.2.2 Temperature Dependence of the OneTouch Readout System

To determine the accuracy of the temperature compensation factor in minimising

voltage variation with temperature, a varying temperature source was utilised dur-

ing irradiation. A current controlled heat plate or Peltier Cooling Plate was sourced

from TE Technology® and characterised using varying voltages to create a temper-

ature range of 25◦C to 41◦C. This simulates clinical temperatures used in treatment

using the heat dissipation side of the plate, from calibrating at room temperature

to recording in vivo dosimetry within the patient. The heat plate was characterised

at the Centre for Medical Radiation Physics Lab at University of Wollongong with

a 30 second wait period for the plate to reach thermal equilibrium. Once the heat

plate response was analysed, the OneTouch System was tested at the Cancer Care

Centre at St. George Hospital to see the response of temperature variations.

At St. George Hospital, several identical irradiations were completed on a MOSkinTM

2015 detector at varying temperature with a Ir192 HDR brachytherapy source. The

detector was placed directly onto the heat plate and was approximately 5±1mm

from the source, however due thickness of the detector there was an error in the

source to detector distance. For calibration the detector was irradiated for a dwell

time of 5 seconds, giving a target dose of 242cGy calculated using the TG43 for-

mulation (22). The readout from the OneTouch system was set to every second,

the ’creep-up’ algorithm was Standard, and temperature compensation factor and

calibration value were -2.556 and 2.365±0.001mV/cGy respectively. To determine

the temperature compensation factor, the MOSkinTM detector was heated up for

several seconds through supplying 5V through the heat plate. An initial irradiation

was completed to warm up the detector from room temperature to the maximum

temperature tested. Three dose readouts were taken at an initial room temperature

of 19±0.2◦C, at 40±0.2◦C, at 36.5±0.2◦C, at 29.8±0.2◦C, at 24.4±0.2◦C and at

final room temperature of 18.4±0.2◦C. A readout was also taken during the tem-
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perature increase from initial room temperature to 40±0.2◦C and the dose readout

at 36.5±0.2◦C was completed to simulate body temperature during in-vivo dosime-

try. The dose recorded and increasing threshold voltage of the detector were then

analysed and compared.

3.4 Results

3.4.1 MOSkinTM Tests

The calibration factor of the circular gate MOSkinTM detector using the CSDS

readout, with four readings taken and the difference between initial and finial voltage

threshold was calculated, is shown in Table 3.1.

Initial (V) Final (V) Difference (V)
14.517 14.665 0.148
14.662 14.812 0.15
14.809 14.953 0.144
14.949 15.095 0.146

Average 0.147 ± 0.004

Table 3.1: Threshold voltages of single circular gate MOSkinTM detector in solid
water phantom to determine the calibration factor

The error for the average threshold difference value was determined using the

Student’s t-test and was calculated to 3 degrees of freedom at a 95% confidence

level, giving a t value of 3.182. A 95% level of confidence is an accepted amount of

error, giving a coverage factor of 2 (50). Using the TG43 formalisation, see equation

2.2, the dose of a Ir-192 source 15mm away from the detector was determined to be

56.1cGy for a 10 seconds irradiation time. The calibration factor was determined

to be 2.62 ± 0.07 mV/cGy and was adjusted to be 2.45 ± 0.07 mV/cGy due to

decrease in sensitivity drift over the detectors lifetime, described in chapter 5 through

equation 5.1.
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The results of the angular test using the gel prostate phantom are shown in table

3.2 and dose rate was determined from the adjusted calibration value. As the source

was stepped away from the detector in the centre of the phantom the dwell times

increased and the dose rate decreased at the two furthest ends of the catheter due

to the inverse square law.

Position
(mm)

Dwell
Time (s)

Threshold
Difference (V)

Experimental Dose
Rate (cGy/s)

TG43 Dose
Rate (cGy/s)

96 120 0.057 0.194±0.005 0.206
119 90 0.106 0.480±0.013 0.459
142 30 0.106 1.1440±0.040 1.413
165 10 0.096 3.922±0.109 3.896
188 30 0.106 1.440±0.040 1.413
211 90 0.099 0.448±0.013 0.459
234 120 0.060 0.204±0.006 0.206

Table 3.2: Angular dependence of single circular gate MOSkinTM detector in gelatine
phantom

The predicted dose rate was calculated using TG43 formalisation and compared

to the data collected from the gel phantom. The angular dose readout ranges for

MOSkinTM Detectors are within ±60◦ from central axis; the results shown in figure

3.7 show a normalised dose response of 1.015±0.007 within the accepted range of

±5% of the treatment plan dose (50)(52).
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Figure 3.7: Comparison of agreement between experimental dose rate from circular
gate MOSkinTM detector, normalised using the dose rate calculated using TG43
formalisation, in a gel phantom

In figure 3.8 the readout of the parallel gate MOSkinTM is shown from the One-

Touch System over an irradiation dwell period of 900 seconds and a readout period

of 1 second. The threshold differences are displayed over the treatment period

with increasing readout dose. A slight decrease in response over the entire irradi-

ation can be seen. The sensitivity drift of the readout system over this time was

-0.0003±0.001mV/cGy.
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Figure 3.8: Threshold voltage difference over 900 second dwell time acquisition
utilising the parallel gate MOSkinTM detector, readout every second

In figure 3.9 the data over an 800 dwell period with the newest model of detector,

circular MOSkinTM, is shown with a readout every 5 seconds design. The sensitivity

drift of the detector was calculated to be -0.0012±0.005mV/cGy for every 5 readouts

or -0.00025±0.002mV/cGy.

Figure 3.9: Threshold voltage difference over 800 second dwell time acquisition
utilising the circular gate MOSkinTM detector, readout every 5 seconds
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The total irradiation dose for each test was 3222.86cGy for 800 second dwell

period and 2631.481cGy for 900 second dwell period, giving a sensitivity drift of

-28.24±1.19% and -8.41±0.67% for the parallel and circular gate MOSkinTM respec-

tively. Comparing the sensitivity drift response as well as the data from the angular

testing, a comparison can be made between the parallel and circular versions of the

MOSkinTM detector.

3.4.2 OneTouch Readout System Tests

The first section of experiments analysed the radiation creep and the available anti-

annealing algorithms in the OneTouch Readout system. The first test was to display

the anti-annealing phenomenon present in MOSkinTM detectors, which is shown in

figure 3.10. The average decrease in dose readout was 2.51±0.21cGy within a 30

second period. A decrease was also seen between the final readout and the initial

readout of the next irradiation test.

Figure 3.10: Demonstration of radiation creep or anti-annealing of MOSkinTM de-
tectors

Using the four different algorithms available in the OneTouch system, two test

were completed, one in air shown in figure 3.11 and one in a CIRS Plastic-Water ®

phantom shown in figure 3.12.
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Figure 3.11: Comparison of the normalised threshold difference of anti-annealing
algorithms when radiation dose measurement was completed in an open air environ-
ment

The threshold difference was recorded every two seconds and the data was anal-

ysed once the OneTouch system had stopped recording the irradiated dose. Each

algorithm was normalised to the average of the three identical irradiations for each

algorithm and were able to be compared to each other. The most ideal algorithm

to be used in a clinical situation would be the algorithm that produces the most

consistent readings during identical irradiations.
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Figure 3.12: Comparison of the normalised dose readouts of anti-annealing when
radiation dose measurement was completed in a solid plastic phantom

Figure 3.13: Measurement of sensitivity of OneTouch system over the lifetime of a
MOSkinTM dosimeter

The sensitivity irradiation test completed by irradiating a single detector many

times is displayed in figure 3.13, showing a slight decrease in response over the entire

period. The orange line displayed the predicted dose value determined through

TG43 (22) to be 95.1cGy and the blue line shows the 35 irradiations over the life
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of the detector. The sensitivity drift of the readout system was determined to be

-1.706±0.195cGy/V or -1.79±0.35%/V.

To accurately determine the validity of the temperature compensation factor, a TE

Technology® Peltier Cooling Plate was used to manipulate the temperature of the

MOSkinTM detector. In figure 3.14 the temperature response with increasing voltage

is shown with an average increase of 0.52±0.05◦C/ 0.1V. The dose response will be

analysed in terms of voltage increase, rather than actual temperature, due to the

OneTouch compensation calculation completed using voltage variations.

Figure 3.14: The temperature response of the TE Technology® Peltier Cooling Plate
with varying input voltage to be used in future OneTouch temperature variation
experiments

At St. George Hospital’s Cancer Care Centre, identical irradiations were com-

pleted at varying temperatures and are shown in table 3.3, with the initial and final

readouts completed at room temperature with no voltage applied to the heat plate.

Due to sensitivity drift over the lifetime of the detector, the calibration value was

adjusted for each irradiation using 4.1.
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Temperature (◦C) Readout 1 (cGy) Readout 2 (cGy) Readout 3 (cGy)
19 227.06 229.32 229.65

40.4 221.43 219.98 217.82
36.5 218.45 218.70 217.74
29.8 213.42 212.40 212.40
24.4 213.45 209.11 209.28
18.4 206.26 209.63 210.57

Table 3.3: Adjusted dose readouts from varying temperatures applied by TE
Technology® Peltier Cooling Plate to a MOSkinTM detector

The adjusted dose throughout the test is shown in figure 3.15, highlighting the

decrease in MOSkinTM Detector sensitivity throughout its lifetime or sensitivity

drift, identified through threshold voltage. The sensitivity drift with the varying

temperature changes was determined to be -2.57±0.7cGy/V or 1.13±0.13%/V.

Figure 3.15: Increasing threshold voltage of MOSkinTM detector compared to ad-
justed dose readout during varying temperature changes with identical irradiations

The Vtavg and voltage from temperature change, Vvt-Vc, was also analysed for

each test to determine if the temperature calibration factor was sufficient to account

for any temperature change. In figure 3.16 this comparison is shown during an

irradiation were the temperature was constantly increasing.
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Figure 3.16: Voltage from temperature change only and diode voltage during an
irradiation with increasing temperature from initial room temperature

Through these measurements, we are able to discuss the validity of the OneTouch

Readout System to be used as a clinical in-vivo dosimetry system with MOSkinTM

Detectors.

3.5 Discussion

Through the many experiments completed in this chapter, the characteristics of the

OneTouch Readout System was understood and the circular gate MOSkinsTM de-

tectors were compared to previous versions. The response of the circular MOSkinTM

with angular variation and sensitivity was shown to give better dose response com-

pared to the parallel gate generation. It was determined that the circular generation

detector was a superior dosimeter and utilised in further testing with readout sys-

tems. The OneTouch system, with single-irradiation calibration method and tem-

perature compensation settings, was proved to effectually transmit dose information

wirelessly throughout treatment to accurately verify the dose.

The dose response of different generations of MOSkinTM dosimeters was investi-

gated through angular dependence and sensitivity tests. An understanding was also
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gained into the equipment and methods available during clinical HDR brachyther-

apy, which will be applied in later tests for this thesis. A calibration factor is

calculated for each individual MOSkinTM detector before clinical readout to deter-

mine the accurate dose value and to account for any dose dependence (24). The

calibration factor for the detector used in the angular experiments was 2.45 ± 0.07

mV/cGy and is in agreement with previous MOSkinTM calibration values, such as

Alnaghy, S. (2014) value of 2.45± 0.02 mV/cGy (47).For the calibration of the sen-

sitivity tests, the value was calculated using the OneTouch Readout System. The

calibration values for the parallel generation was 2.220±0.001mV/cGy and for the

circular generation was 3.08±0.001mV/cGy.

A test was completed to investigate the angular dependence of the new circular

MOSkinTM detector, which was designed to minimise the errors caused by differing

angular position. The dose rate at different positions in a gel phantom is shown

in figure 3.7, which compares the data obtained in the experiment to the dose

distribution calculated using the Task Group Number 43 formalisation shown in

equation 2.2. The response of the MOSkinTM detector is accurate within ±60◦ from

central axis; outside of this range the dose response becomes non-linear (44) (42).

The photon energy of Ir-192 is 400keV, which gives a very strong dose close to the

source but is quickly attenuated within the medium. Due to the inverse square

law the dose recorded away from source should decrease rapidly with a change in

angular and geometric position of the source.(19). The normalised dose response

shown in figure 3.7 displays an angle from from -75◦ - +75◦ as the source was

moves across the length of the phantom. The overall normalised dose response of

the circular gate MOSkinTM had a largest error -7%, however the dose response

with the accepted angular range showed an error of ±1.5%. The previous angular

response of the parallel MOSkinTM was within ±2.5% (44)(45), highlighting the

improvement in dose with angular position with the newer version of detector. There
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is also the possible affect of temperature on the detector; the phantom was placed

in a refrigerator until use and was at a very different temperature than the room

temperature of the previous solid water phantom. Temperature dependence with

MOSkinTM and how to compensate for these variations will be investigated in the

next chapter.

Radio-sensitivity drift is the change in readout capabilities of the detector over

it’s lifetime, specifically the threshold voltage compared to the dose recorded from

the detector. With MOSFET detectors the sensitivity decreases over the detectors

lifetime due to the build-up of hole traps within the silicon-silicon oxide insulator in-

terface (7). The detector has an initial threshold voltage to allow the semiconductor

within the MOSFET to be activated; the threshold voltage increases from the base

voltage as the detector is irradiated but this however the sensitivity drift of the de-

vice (44). From the two long irradiation tests the sensitivity drift was determined to

be -0.0003±0.001mV/cGy over a 900 second dwell period for the parallel gate gen-

eration and -0.0012±0.005mV/cGy for every 5 readouts or -0.00025±0.002mV/cGy

over an 800 second dwell period for the circular generation, as seen in figure 3.9 and

3.8. The circular MOSkinTM detector was seen to have a slightly better sensitivity

compared to the parallel MOSkinTM, due to the different gate design shown in fig-

ure 3.1. With the larger sensitive volume in the gate due to the circular electrode

layout, the sensitivity of readouts is greater than previous parallel gate layouts. The

total irradiation dose for each test was 3222.86cGy for 800 second dwell period and

2631.481cGy for 900 second dwell period, giving a decrease in -28.24±1.19% for the

parallel MOSkinTM and -8.41±0.67% for the circular MOSkinTM respectively over

the entire irradiation period based on the average readout dose.

The first test OneTouch characterisation test analysed the radiation creep phe-

nomenon present in MOSkinTM detectors and the compensation calculations avail-

able in the system. This phenomena, referred to as drift, annealing or ’creep-up’ in
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literature (8)(51), is caused by the decay of additional system perturbation from the

current used to readout the threshold voltage. This initially increases the apparent

dose directly after irradiation that decays after a period of time, usually leading

to a 2% error with typical clinical radiation dose of around 2Gy (48). In an in

depth study completed by Ramani et. al. MOSFET detectors showed an increase

of 4mV after an apparent dose of 0.04Gy that decayed completely after a period of

60 seconds. Since this investigation, irradiation readouts with MOSFET detectors

are typically completed 30-60 seconds post-irradiation to allow for the ’creep-up’ to

decay and plateau (8)(47). This wait period after each irradiation is a disadvan-

tage when using MOSkinTM detectors clinically and the OneTouch system includes

calculations that aims to compensate for this phenomenon.

In figure 3.10 the decrease in threshold voltage after an HDR irradiation was

shown through manual readout, with an average change of -2.51±0.21cGy or -

1.18±0.10% in total dose value 30 seconds after irradiation, which is what is expected

from previous MOSkinTM studies (47). The five different compensation algorithms

that are available in the OneTouch system are Standard, Min2, Average2, Median3

and Median4. The aim of the characterisation tests was to determine the most re-

liable calculation to remove creep from dose calculations shortly after irradiation.

Two separate algorithm experiments were completed, one in an open air environment

and the second in a solid water phantom. The open air experiment was completed

with a 1mV/cGy calibration value, allowing the final dose output to be directly com-

pared to the change in threshold voltage readout every second. For each algorithm

5 tests were completed and compared to each through normalising the results to

the average threshold voltage increase, shown in figure 3.11. Based on the average

threshold differences, the deviations for each of the creep-up compensation algo-

rithms in open air were Standard is 0.97±0.32%, Average2 is 2.22±0.70%, Min2 is

1.86±0.35%, Median3 is 1.13±0.29% and Median4 is 2.23±0.81%. The most repeat-
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able algorithms were found to be Min2 and Median3, however every algorithm was

within the ±5% acceptance limit used for radiation readouts (50)(52). However, er-

rors from being completed in open air environment could have affected the readout

results, especially from additional air attenutation and movement of the catheter

during source movement. The second algorithm experiment was completed in a

solid water phantom, which limited the errors from air attenuation and variations in

source to detector distance during source movement. In figure 3.12 the normalised

dose readouts results from three irradiations using Min2, Average2, Median3 and

Median4 are shown and compared. The average deviation from the average dose

readout for each of the creep-up compensation algorithms were 0.471±0.002% for

Standard algorithm, 0.508±0.002% for Average2, 0.653±0.005% for Median3 and

0.40±0.39% for Median4. These results were very similar to each other and each

algorithm was able to eliminate annealing in the readout data with no ideal algo-

rithm determined. In future tests, the Standard algorithm is used due to performing

well during the algorithm characterisation tests and it is the default setting for the

OneTouch device.

The sensitivity drift test was completed with the OneTouch system through a

multiple irradiation test with the 2015 MOSkinTM detector. The OneTouch sys-

tem showed a decrease in sensitivity over the lifetime of the MOSkinTM detector,

which is consistent with previous studies into MOSkinTM and MOSFET detectors

(44)(7)(32). It was seen that the initial threshold voltage for the OneTouch sys-

tem was less than previous systems, averaging 12V compared to 15V in previous

systems due to the more stable electronics of the OneTouch system. As this region

reaches saturation, the response of the detector becomes non-linear and the sensitiv-

ity of the dose readout decreases (39). In previous studies it has been suggested to

recalibrate the MOSkinTM detector often to reduce the impact of absorbed dose sen-

sitivity, creating a more linear response (32). The sensitivity of the readout is also
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due to the electronics of the readout system; the OneTouch system will be further

compared to the previous readout system in the next chapter in a clinical setting.

The multiple irradiation test shown in figure 3.13 highlighted the sensitivity drift,

with the change in dose over the lifetime of the detector being -1.706±0.195cGy/V

or -1.79±0.35%/V with the OneTouch Readout System. This value is similar to

previous studies utilising MOSFET and MOSkinTM detectors with varies kinds of

radiation treatments; Safari et. al. found with megavoltage radiation an equivalent

sensitivity drift of -1.5%/V and Hardcastle et. al. found a reproducible sensitivity

of MOSFETs with fractionated radiation treatments between 2-10Gy to be 1% (7)

(44). The previous readout system, the Clinical Semiconductor Dosimetry System

(CSDS), had an average sensitivity drift of -1%/V, which is very similar to the One-

Touch readout sensitivity (47). With this sensitivity analysis, the OneTouch system

has shown to accurately readout the radiation dose within acceptable limits and the

sensitivity drift can be compensated through the recorded data.

For the temperature experiment, a current controlled heat plate was used to ma-

nipulate the temperature of the detector and determine if the temperature change

was compensated the readout results. In figure 3.14 the heat plate was characterised

to show the relationship between input voltage and temperature using the same tem-

perature readout device used in future clinical experiments. It showed the average

temperature increase with voltage from room temperature was 0.52±0.47◦C. At the

Cancer Care Centre at St. George Hospital three readouts were taken at 5 different

temperatures and a single readout during a gradual temperature increase; the differ-

ent readout temperatures were at 40±0.2◦C, 36.5±0.2◦C, 29.8±0.2◦C, 24.4±0.2◦C

and two room temperature readings, one at the being of the tests, 19±0.2◦C, and one

at the end,18.4±0.2◦C. The change dose readouts with increasing threshold voltage

is shown in figure 3.15, with a sensitivity drift of -2.57±0.7cGy/V or 1.13±0.13%/V.

Using the OneTouch data from each readout we could determine the effect temper-
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ature variation has on the voltage output of the detector over an irradiation and

compensate for this effect.

The temperature calibration factor, CT , was used to analysed the OneTouch

Readout Systems ability to compensate for changes in temperature during irradia-

tion and changes from initial calibration. ’Vt Avg’ is the average value recorded from

the Vdiodemax and Vdiodemin and is determined through the diode voltage between

the bulk and the gate of the MOSkinTM detector. The Vt Avg value compensates

for changes in detector temperature from initial calibration temperature. The initial

Vt Avg value at 19±0.2◦C was 607.13±0.50mV, at 40±0.2◦C was 545±0.45mV, at

36.5±0.2◦C was 556.60±0.45mV, at 29.8±0.2◦C was 574.30±0.47mV, at 24.4±0.2◦C

was 587.74±0.48mV and finally at 18.4±0.2◦C was 605.54±0.50mV. From the ex-

perimental data it was determined that the voltage compensation within increasing

temperature was -2.85±0.24mV/◦C.

Figure 3.17: VtAvg values with temperature deviations from original calibration
temperature

With a larger difference between the calibration and irradiated temperature, the

Vt Avg value reduces to compensate for the increase in threshold voltage, which

leads to a dose overestimation. To determine the accuracy of the temperature-only
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voltage during each irradiation, the Vt Avg values and difference between original

output and corrected voltage, Vvt-Vc, was analysed. The gradient of these changes

was then compared to the temperature compensation factor determined at room

temperature, -2.556, and the accuracy of the corrected voltage and dose outputs

was analysed. Figure 3.18 shows the normalised agreement of the calibration factor

at each temperature irradiation and the in depth comparison of temperature voltage

with diode voltage is shown Section 7.2 of the Appendix.

Figure 3.18: Comparison of temperature compensation at each temperature irra-
diation, determined through calculation of temperature voltage and diode Voltage,
compared to original compensation factor

The average compensation gradient was 2.57±0.02 and the agreement over the

temperature variation tests with this factor was 0.7±0.8%, showing the initial com-

pensation factor as an acceptable value to limit the affect of temperature variation

on dose readout. With the diode formed within the MOSkinTM detector, the voltage

from temperature only can be calculated and account for in readout threshold volt-

age. Based on this analysis the OneTouch Readout System was successfully capable

of compensating for MOSkinTM temperature changes.
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From the above characterisation data, the OneTouch system and circular gate

MOSkinTM detector was found to be a suitable readout equipment for clinical in vivo

dosimetry for HDR brachytherapy, with acceptable sensitivity drift and temperature

compensation capabilities. Further investigation between the previous readout sys-

tem and the new wireless system as well as comparison between clinical dosimeters

and MOSkinTM are discussed in the next chapter.



Chapter 4

In-Vivo Dosimetry for Clinical

Use and Comparison Studies

4.1 Introduction

Through experimental research into the practical use of MOSkinTM dosimetry during

brachytherapy treatments and the design of a new readout system, a clinical proce-

dure was determined at St. George Hospital, Kogarah to integrate a brachytherapy

dose verification system. In September/October 2016 St. George Hospital intro-

duced Real-Time Ultrasound Planning, Oncentra Prostate (OCP) v4.2.2 (Elekta

AB, Stockholm, Sweden), into HDR prostate brachytherapy treatments and an in-

terest was also shown in integrating dosimetric verification with treatments. The

HDR system used at St. George was HDR Nucleon remote afterloader (Nucletron,

Veenendaal, The Netherlands). Several experiments were completed with the new

equipment at St. George, along with the several kind of dosimeters and both gen-

erations of readout systems.

Two experiments were completed alongside St. George staff, one clinical simulation

using the new treatment planning software as well as comparing readout systems,

75



76 4.1. INTRODUCTION

and another to investigation dosimetric integration during treatment through a com-

parison between MOSkinTM detectors and other clinical dosimeters. The first phan-

tom experiment was a comparison test between the new OneTouch Readout System

and the previous system, the Clinical Semiconductor Dosimetry System (CSDS).

CSDS is operated through a manual readout, needing a connection between the

detector in the brachytherapy suite and the readout machine in the control room,

and an associated computer program showing the dose recorded graphically in real

time. The expected total dose from the ultrasound treatment plan was compared

to the recorded dose from the OneTouch system and CSDS system. The second

experiment utilised two types of dosimeters to compare the effectiveness of the in

vivo dosimetry of radiochromic film and MOSkinTM detectors. The readout system

used for the the MOSkinTM detectors was the OneTouch Readout System, while the

dose from the film determined after the experiment.

Figure 4.1: Real time ultrasound planning system with CIRS Ultrasound Prostate
Phantom for quality assurance at St. George Hospital, Kogarah, before implantation
of the phantom

A Computerised Imaging Reference System (CIRS) Ultrasound Prostate Phantom®
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was used during the both tests, which allowed the Medical Physicist to optimise the

treatment plan using US images as the phantom was being implanted. A dual pur-

pose probe was created by placing MOSkinTM detectors and other detectors on top

of the TRUS probe. The probe was placed in the rectum for the entire brachytherapy

treatment to simulate the positioning within the patient during clinical treatment.

After the completion of the initial experiment analysing the readout systems, an

ethical write-up was requested to identify proper procedure and safety concerns of

integrating the MOSkinTM with the OneTouch Readout Program as a verification

system for HDR prostate brachytherapy treatments. At the time of thesis submis-

sion, ethical approvals for patient trials at St. George Cancer Care Centre were still

being completed.

4.1.1 CIRS Ultrasound Prostate Phantom

Computerised Imaging Reference System, Inc. developed a prostate phantom to

be used specifically with ultrasound imaging, with the important structures created

within the phantom such as seminal vesicles, urethra, prostate and rectum (53).

This phantom was used at St. George Hospital to allow technicians and medical

physicists to get used to the real time ultrasound planning system and during dose

verification experiments.

The CIRS phantom is made out of Zerdine, a water-based polymer based off poly-

acrylamide, and was designed by CIRS specifically for imaging phantoms with MR,

US and CT. The material was created based on characteristics of liver tissue and

has changeable properties to reflect different organs within the body, such as speed

of sound, acoustic attenuation and backscatter (54). Zerdine has similar density and

atomic number to soft tissue, making it an ideal material for a prostate phantom

(53). An ideal phantom must be water or tissue equivalent, meaning the substance

must interact with radiation in the same way as a human patient does. An ad-
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vantage of using a solid phantom compared to a water tank is organ contours can

be created and analysed to determine any dosimetric affects that can be present in

patients (55). The phantom must also be structurally strong to for different organs

but flexible enough to allow for implantation of brachytherapy needles and mimic

natural reactions of the implantation (56). The CIRS phantom, while expensive

and can only be used during a single implantation, is very strong while malleable

enough for needle implantation.

The radioactive brachytherapy isotope used at St. George Hospital is Ir192 and it in-

teracts with the human body mainly through the Compton effect, which is dependent

on the atomic mass of the material used in a phantom (4). Due to characteristics

of Ir192 as a high energy source, the dose gradient is very steep and is diminished

quickly due to the inverse square distance dependence of the source; therefore, the

phantom needs to be able to mimic the radiation gradient in the human body in a

reproducible manner (55).

Figure 4.2: Implanted CIRS Ultrasound Prostate Phantom, Model 053

The phantom can simulate different soft tissues to allow for organ distinction



79 4.2. METHODOLOGY

within different imaging modalities (56). The seminal vesicles and rectal wall have

the same acoustic scattering properties and speed of sound, mimicking liver tissue,

while the prostate is created to have high scattering. The urethra has low scattering

and surrounding gel having similar properties to water (53). The CIRS phantom

was determined to be ideal for the experimental tests that would be carried out

during the setup of the new planning system and mock brachytherapy treatment.

4.2 Methodology

The experimental setup of the simulated prostate brachytherapy treatment was com-

pleted using a CIRS Ultrasound Prostate Phantom, Model 053, and real-time ultra-

sound system called Treatment Planning System (TPS) Oncentra Prostate (OCP)

v4.2.2 (Elekta AB, Stockholm, Sweden) (57). The rectal ultrasound probe was trans-

formed into a Dual Purpose Probe (DPP), similar to the probe used experimentally

in Milan, Italy, by Carrara et al. (24) and Tenconi et al. (46), with three detectors

placed on the ultrasound probe, shown in figure 4.3.

Figure 4.3: Simulated organs and dimensions of CIRS Prostate Phantom (58)

Using the treatment planning system, the total dose at the detector positions

was calculated and was used as a point of comparison to the recorded doses by the
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different readout systems and dosimeters. The prostate phantom was implanted by

a medical physicist at St. George Hospital under ultrasound guidance and the treat-

ment plan was optimised after each implantation. For the readout experiments, a

condom was used to protect the detectors attached to the probe and for the dosime-

ter comparison experiments a rectal balloon was used, mimicking the clinical set-up

for brachytherapy prostate treatments. The rectal probe was removed after implan-

tation to attach the pre-calibrated detectors and was re-inserted in the prostate

phantom, the same procedure that would be used in clinical situations.

4.2.1 Comparison of Two Readout Systems during Clinical

Phantom Brachytherapy Experiment

4.2.1.1 MOSkinTM Calibration with Two Readout Systems

Before the readout systems could tested through a clinical HDR brachytherapy

treatment, the detectors had to be checked for stability and calibration values had

to be determine for both systems. Three MOSkinTM detectors were used during

the simulated treatment but all available detectors had to be check for stability

through determining that the voltage readout was stable for each detector. Each

detector was connected to a readout system and a consistent threshold voltage was

determined without irradiation. Each detector was then irradiated with Ir192 HDR

brachytherapy source at St. George Cancer Care Centre, with the first irradia-

tion ignored as a ’warm-up’ as is typical practice with MOSkinTM dosimeters. To

determine the calibration values and temperature compensation factor with the One-

Touch System, the three detectors were irradiated separately for 20 seconds dwell

time at 20±0.1mm away from the source in a CIRS Plastic-Water® phantom with

the Standard algorithm to compensate for creep. The total dose for this irradiation

calculated from TG43 Protocol was 63.397cGy, with a source strength of 40700U
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and 3.5mm Ir192 source length (22). The Clinical Semiconductor Dosimetry System

calibration value was determined from a single irradiation due to time constraints

and was completed in the same set up as the OneTouch Readout System. In previ-

ous CSDS experiments the average of three manually readout irradiators were used

to calculate the calibration value. Due to a miscalculation of needle position, the

calibration values were adjusted for the second irradiation due to degradation of

MOSkinTM dose readout response with use (44)(7)(32)(47).

CEadj = CE − CE × S × (Vcurrent − Vcalibration)

100
(4.1)

The initial calibration values were adjusted due to the decrease in sensitivity of

MOSkinTM detectors using equation 4.1. The adjusted value, CEadj was calculated

from the original calibration value, CE, using the previously determined sensitivity,

S, of -1.79±0.35%/V as well as the threshold voltage before irradiation, Vcurrent,

and at calibration, Vcalibration. The second, adjusted calibration values were used to

accurately determine the total dose delivered to the three positions along the TRUS

probe.

4.2.1.2 CSDS and OneTouch Readout Comparison Tests

After the calibration of each readout system and clinical treatment plan was com-

pleted, the DPP was re-inserted into the prostate phantom with a condom covering

the probe to protect the three MOSkinTM attached. The detectors were placed along

the probe in correspondence to the position of 0±0.5mm, 25±0.5mm and 50±0.5mm

along the prostate length, with the apex of the prostate at 0mm shown in figure 4.4.
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Figure 4.4: Transrectal ultrasound probe with three 2015 MOSkinTM detectors at-
tached for dose verification and real-time imaging

The experimental set up is shown below in figure 4.5 and the phantom was

irradiated with a typical HDR brachytherapy treatment plan.

Figure 4.5: Ultrasound prostate phantom implanted with dual purpose probe and
brachytherapy catheters

The treatment plan was the same for each readout system, Clinical Semicon-

ductor Dosimetry System and OneTouch System. The older system needed to have

the detectors connected directly to the readout system in the brachytherapy control
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room, with three cords running directly from the room. The new OneTouch system

required the transmitting unit to be within the room on the treatment bed while

a USB receiver present in the treatment room was connected to a computer in the

the brachytherapy control room.

The Clinical Semiconductor Dosimetry System required a manual readout of the

threshold voltage for each detector and the dose recorded was calculated from the

voltage increase and calibration value. Once the treatment was complete, the volt-

age reading was taken after a 30 second period, to compensate for ’creep-up’ factors

(8)(51). The OneTouch Readout System utilised it’s computer program to deter-

mine the increase in dose and threshold voltage from treatment. The expected dose

recorded by each detector was calculated by the Real-Time Ultrasound Planning

System based on the ultrasound implantation images, optimised after the insertion

of each needle.

4.2.2 Comparison of Three Dose Verification Dosimeters

during Clinical Phantom Brachytherapy Experiment

4.2.2.1 Calibration of Dosimeters

Two types of detectors were used in the second experiment, Gafchromic EBT3 ra-

diochromic film and MOSkinTM detectors. Film is very common in hospitals and

are used verification purposes with many types of radiation treatments (35). Film is

calibrated through irradiating film samples with known dose before treatment and

the film used during simulation is compared of the calibrated samples after the ex-

periment to determine dose. During each calibration test, the film and MOSkinTM

detectors were placed in a solid water phantom with a 15±0.5mm source to detec-

tor distance. The dose was calculated through the TG43 Protocol with a source

strength of 40700U and 3.5mm Ir192 source length for each calibration irradiation
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(22). Three MOSkinTM detectors used in comparison tests were calibrated during

a 10 second dwell time irradiation using the OneTouch Readout System with Stan-

dard algorithm. With a source strength of 40700U and 3.5mm Ir192 source length a

dose of 56.13cGy dose was calculated through the TG43 formulation (22). The dose

calibration value was repeated three times for each detector for accuracy. After the

clinical experiments was completed, the calibration values were adjusted to compen-

sate for decrease in sensitivity over the lifetime of the detector using equation 4.1

(44)(7)(32). The temperature compensation factor and initial compensation value

for three MOSkinTM detectors were calculated to be -2.721 and 2.36±0.04mV/cGy,

-3.047 and 2.24±0.03mV/cGy and -2.429 and 2.33±0.01mV/cGy. The film was cal-

ibration through irradiating nine separate samples of film with increasing dose from

1-9Gy in 1Gy increments using the Ir192 HDR brachytherapy source at St. George

Cancer Care Centre. The film calibration and readout procedures were completed

by the clinical staff at the hospital using clinical procedures; the results from the

film as a comparison to the MOSkinTM detectors.

4.2.2.2 Film and MOSkinTM Comparison Tests

A single clinical treatment plan was completed using the Real-Time Ultrasound

Planning system with 16 catheters and a rectal balloon filled with saline covered

the TRUS probe and attached detectors. The treatment plan is shown in figure

4.6, with the planned dose percentages displayed over the ultrasound image of the

prostate phantom.
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Figure 4.6: Real-time ultrasound treatment plan, Oncentra Prostate (OCP) v4.2.2
(Elekta AB, Stockholm, Sweden), used to compare irradiation doses from multiple
dosimeters

Rectal balloons are used for all clinical HDR prostate brachytherapy treatments

at St. George Cancer Care Centre to eliminate any air gaps around the rectal probe

that could reduce the resolution of the ultrasound. The experimental set-up for the

detector comparison tests is shown in figure 4.7.

Figure 4.7: Experimental set-up of implanted phantom for HDR brachytherapy
treatment with rectal balloon covering TRUS Probe
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After all detectors were calibrated, the probe was removed from the phantom

for attachment of detectors to create a dual purpose probe (DPP). The MOSkinTM

detectors were attached to the probe in the same position as the readout comparison

tests and were placed directly on top of the probe at 90◦, using an indent in the

rectal stepper as a guide. The first detector was positioned at apex of the prostate

0±0.5mm, the second in the middle at 25±0.5mm and third at the base of the

prostate 50±0.5mm.

Once the probe was re-inserted into the simulation phantom and the plan was re-

optimised, the MOSkinTM detectors were irradiated three times and the calibration

values were adjusted with each irradiation. A piece of film of 10x80mm was wrapped

around the TRUS probe and irradiated with a single treatment. This was repeated

twice with separate film dosimeters and the dose at the three positions along the

probe was analysed.

4.3 Results

4.3.1 Dosimetric Readout Comparison Experiments

The three MOSkinTM detectors were calibrated in a solid water phantom for each

detector system, Clinical Semiconductor Dosimetry System and OneTouch System.

The OneTouch System had an additional calibration value for temperature compen-

sation, which are all shown in table 4.1. Two calibration values were determined, an

initial value for the initial treatment plan and a second altered value for the second

irradiation plan with an adjusted needle position.
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CSDS Calibration OTRS Calibration
Initial Adjusted Temperature Initial Adjusted

Detector 1 2.57±0.02 2.52±0.02 -4.738 2.365±0.001 2.270±0.001
Detector 2 2.69±0.02 2.59±0.02 -3.027 2.426±0.001 2.195±0.001
Detector 3 2.73±0.02 2.63±0.02 -2.658 2.546±0.001 2.339±0.001

Table 4.1: Initial and adjusted dose calibration of clinical semiconductor dosimetry
system (CSDS) and temperature compensation factor with initial and sensitivity
altered dose calibration for OneTouch readout system (OTRS)

It was determined after the first two irradiations with each readout system that

the positions of the needles were different to the outputted treatment plan, giving an

under dose recorded by detector 1 and 2 and an over dose recorded by detector 3 for

both systems. This indicated the catheters had shift positions to the posterior of the

prostate after plan optimisation and before irradiation. The calculated treatment

plan dose given to detector 1 was determined to be 289cGy, at detector 2 was

568cGy and at detector 3 was 379cGy. Because both readout systems displayed

similar behavior from the three detectors, a second treatment plan was created

through reoptimisation based on adjusted catheter positions and the detectors were

irradiated again to investigate the irregular dose recordings.

Detector One Detector Two Detector Three
CSDS OTRS CSDS OTRS CSDS OTRS

Initial (V) 16.294 16.872 17.559 18.974 14.098 15.343
Final (V) 16.883 17.448 18.987 20.377 15.354 16.576
Difference (V) 0.589 0.576 1.428 1.403 1.256 1.233

Dose (cGy)
229.08
±1.98

224.03
±0.09

529.42
±4.59

520.15
±0.21

460.27
±3.99

451.84
±0.45

Agreement
Comparison
(%)

20.73
±0.18

22.48
±0.01

6.79
±0.06

8.42
±0.01

-21.44
±0.19

-19.22
±0.01

Table 4.2: Results from HDR brachytherapy treatment at position 1 of clinical
semiconductor dosimetry system (CSDS) and OneTouch readout system (OTRS)

Each readout system was irradiated again and the calculated treatment plan

dose at each detector was updated to 287cGy at detector 1, 554cGy at detector 2
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and 395cGy at detector 3. The results from the readout systems are displayed in

table 4.3 and were used to determine the ideal readout system to be used in clinical

brachytherapy. For the OneTouch readout system two dose recording values were

used, one for the dose recorded from the system interface shown in figure 3.3 and

one calculated for the calibration value shown in table 4.1.

Detector One Detector Two Detector Three
CSDS OTRS CSDS OTRS CSDS OTRS

Initial (V) 17.705 18.195 20.929 22.201 17.265 18.033
Final (V) 18.43 18.827 22.341 23.410 18.237 18.889
Difference (V) 0.725 0.632 1.412 1.209 0.972 0.856

Dose (cGy)
287.28
±2.49

278.41
±0.12

543.35
±4.71

550.75
±0.23

369.02
±3.20

366.01
±0.14

Agreement
Comparison
(%)

0.09
±0.01

-2.99
±0.01

-1.87
±0.02

-0.59
±0.01

-6.86
±0.06

-7.34
±0.01

Table 4.3: Results from HDR Brachytherapy treatment at position 2 of clinical
semiconductor dosimetry system (CSDS) and OneTouch readout system (OTRS)

Most of the dose recordings shown in table 4.3 were within the accepted percent-

age clinical value of ±5%, so the secondary treatment plan was deemed acceptable

for a comparison between the two readout systems (50)(52). The agreement per-

centage between the readout and prescribed dose was -2.80±2.52% for the CSDS

and -3.64±2.47% for the OTRS. The normalised agreement between the two read-

out systems and treatment plan dose is shown in figure 4.8 and was the average was

calculated to be 0.97±0.03 for the CSDS and 0.96±0.02 for the OTRS.
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Figure 4.8: The agreement of clinical semiconductor dosimetry system (CSDS) Dose
and OneTouch readout system (OTRS) dose compared with the Oncentra Prostate
(OCP) treatment planning system

The OneTouch and CSDS showed similar and acceptable accuracy but some

discrepancy could be possible due to slight movement of the probe during readout

connection change. Due to the ease of use and acceptable results, the OneTouch

system is capable of replacing the CSDS for clinical in-vivo dosimetry.

4.3.2 Dosimeters Comparison Experiments

For the second experiment, the CIRS phantom was re-implanted and a new treat-

ment plan was created. Two dosimeters, radiochromic film and MOSkinsTM, were

used for a dose response comparison from a clinical simulation treatment. The film

was attached to the TRUS probe and two separate irradiations were completed. The

dose was then determined at the three positions along the probe using the calibrated

film samples and averaged to analyse the reliability of the dosimeter.
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Test 1 (cGy) Test 2 (cGy) Average Dose (cGy)

Detector 1 341.8 340.9 341.35±0.45
Detector 2 516.2 499.4 507.8±8.4
Detector 3 484.9 471.8 478.35±6.55

Table 4.4: Radiochromic film readouts from clinical HDR brachytherapy simulation

Three clinical treatment irradiations were completed with the MOSkinTM De-

tectors and the OneTouch Readout System. From the initial calibrations for the

three detectors unique calibration values were calculated for each of the clinical

irradiations using equation 4.1.

Test 1 (cGy) Test 2 (cGy) Test 3 (cGy)

Detector 1 2.39±0.04 2.35±0.04 2.31±0.04
Detector 2 2.29±0.04 2.24±0.04 2.20±0.04
Detector 3 2.37±0.01 2.33±0.01 2.29±0.01

Table 4.5: Adjusted dose calibration for MOSkinTM detectors during each irradiation
test to compensate for sensitivity drift

At the three positions along the DPP the dose was readout and averaged to

determine the reliability of MOSkinTM detectors to be used as in vivo dosimeters.

Location
(mm)

Test 1
(cGy)

Test 2
(cGy)

Test 3
(cGy)

Average Dose
(cGy)

Detector 1 0 409.2 407.2 403.8 406.7±2.9
Detector 2 25 509.9 512.5 508.6 510.3±2.4
Detector 3 50 431.7 436.4 433.0 433.7±2.4

Table 4.6: OneTouch Dose Readout from MOSkinTM Detectors Over Three Clinical
Simulation Treatments

Using the ultrasound images from the Oncentra Prostate (OCP) system, the

thickness of detectors was determined; the film was 0.15mm and the MOSkinTM

was 1mm. The percentage dose relative to the prescription dose was then calculated

using the treatment plan as well as the distance-to-agreement (DTA) for each point.
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Radiochromic Film MOSkinTM

Dosimeter 1 2 3 1 2 3

Average Dose (Gy)
3.414 ±
0.045

5.078 ±
0.084

4.784 ±
0.066

4.046 ±
0.028

5.072 ±
0.023

4.313 ±
0.018

Relative Dose Per-
centage (%)

37.93 ±
0.05

56.42 ±
0.93

53.15 ±
0.73

44.96 ±
0.46

56.35 ±
0.40

47.92 ±
0.40

OCP Relative Dose
Percentage (%) -
0.15mm for film and
1mm for MOSkinTM

40.73 51.54 42.83 42.34 53.78 44.72

Distance to Agree-
ment (mm)

1.5 1.75 3.9 1.3 0.9 1.3

Table 4.7: Comparison of radiochromic film and MOSkinTM detectors with the
Ultrasound Planning Oncentra Prostate (OCP) relative dose and DTA

The response of the radiochromic film and MOSkinTM detectors analysed in

terms of their agreement to the relative dose of the treatment plan, shown in fig-

ure 4.9. The normalised agreement based off the treatment planning dose of the

film dosimeters was 1.10±0.01 and the agreement of the MOSkinTM detectors was

1.06±0.1.

Figure 4.9: The Agreement of Radiochromic Film and MOSkinTM detectors with
the Oncentra Prostate (OCP) Treatment Planning System

Based on the data from the two dosimeters used during the simulation treat-
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ment, a direct comparison was made between two common clinical detectors and

the MOSkinTM detector. The validity of using the MOSkinTM detectors for in-vivo

dosimetry was then determined.

4.4 Discussion

High Dose Rate Brachytherapy currently has no routine in vivo system, leading to

unknown errors and complications during treatment due to the high dose delivered

in a very small region. A proposed verification system using MOSkinTM detectors

have been researched previously, (46) (45) (24), however the calibration and readout

methods have been problematic in clinical situations. MOSkinTM detectors them-

selves have many dependencies, such as temperature, that make them difficult to

use for verification purposes. However, with a small sensitive volume and minia-

ture size they are the most ideal detector to be used as an in vivo tool in a steep

dose gradient region. The previous readout system utilised, Clinical Semiconductor

Dosimetry System (CSDS), needed to be directly connected the detector, leading

to many wires within the treatment room creating inconvenience for staff and a

trip hazards. A new readout system, OneTouch, was developed by the University

of Wollongong to correct for temperature and dose calibration in a single irradia-

tion as well as transmitting the dose recordings wirelessly, limiting the disturbance

within the treatment room. Two prostate treatment simulations were completed to

compare the two treatment systems and investigate the reliability of the MOSkinTM

detectors compared to other clinical detectors. These tests were able to determine if

the OneTouch system and MOSkinsTM were viable for treatment verification within

a clinical setting. The simulation experiment was completed in combination with

the St. George Cancer Care Centre staff to verify the new ultrasound TPS called

Oncentra Prostate (OCP) v4.2.2.
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The first experiment examined the readout capabilities of the new OneTouch

System and the previous CSDS during clinical brachytherapy treatment. The dose

recorded from the simulated treatment was completed twice due to noticeable errors

from both readout systems. The expected treatment plan dose was calculated from

ultrasound images taken with the OCP machine based on the geometrical position

of anatomical landmarks. In table 4.2, the difference between the dose recorded and

the treatment plan dose for detector 1 at position 0±0.5mm was 20.73±0.18% and

22.48±0.01%, detector 2 at position 25±0.5mm was 6.79±0.06% and 8.42±0.01%

and detector 3 at position 50±0.5mm was -21.44±0.19% and -19.22±0.01% for the

CSDS and OneTouch system respectively. Due to the similarity in errors the treat-

ment plan was evaluated and re-calculated. It was determined that due to the im-

plantation of the dual purpose probe after the treatment plan was calculated there

was a shift in needle position, which affected the dose given to the detectors. The

TPS OCP created a new expected treatment dose value from updated ultrasound

images with the DPP implanted. Because of the time difference between the initial

calibration calculation and the second simulation treatment irradiation, an adjusted

calibration value was determined and used to calculate the recorded dose. The ad-

justed calibration values are shown in table 4.1 and the recorded data from the two

readout systems is shown in table 4.3 and figure 4.8. The average difference between

the treatment dose and recorded dose over all the detectors was 2.80±2.52%for the

CSDS and 3.64±2.47% for the OneTouch system. The dose response from both

systems were within acceptable limits, however the large error could be due to po-

sitional uncertainty during changing of readout connections. Because of the effect

of inverse square distance on dose, a small positional difference could greatly effect

the dose readout. The OneTouch system was more user-friendly with less inter-

ruptions to the clinical treatment room compared to the CSDS. The newer readout

system also has accurate temperature compensation capabilities, which will be very
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important in future patient studies.

The second experiment investigated the dosimetric potential of several detectors

to be used for as an in vivo tool for clinical brachytherapy. Two detectors were anal-

ysed, one passive detector used commonly in radiotherapy treatments, radiochromic

film, and one active detector, the MOSkinTM dosimeter. Film dosimeters require a

lengthy calibration procedure to be completed before clinical testing, consisting of

irradiating separate samples with known dose. Radiation dose can only be deter-

mined through a comparison of calibrated readouts after treatment. Radiochromic

film uses radiosensitive dye that changes colour during irradiation and can be anal-

ysed through determination of optical density using a spectrophotometer (4). The

film requires 24 hours to develop and dose to be readout (8). However, film is a very

common type of detector, inexpensive and well understood in hospitals, making it

a possible verification option for brachytherapy.

Before the clinical simulation tests were completed, the two types of detectors

were calibrated in a solid water phantom. The MOSkinTM detectors were calibrated

quickly using the OneTouch system, automatically determining the value after a

single irradiation. The calibration values were adjusted for each irradiation test to

account for the decrease in sensitivity through equation 4.1 and are shown in table

4.5. Each detector was then irradiated with the same clinical treatment plan de-

termined using the OCP treatment planning system. The dosimeters were placed

on the transrectual ultrasound (TRUS) probe, creating a dual purpose probe. A

saline-filled rectal balloon was placed over the TRUS probe to mimic the clinical

procedure during prostate brachytherapy. The small additional distance between

the rectal wall and the dosimeters with this setup meant the rectal wall dose could

not be analysed due to the steep dose gradient and the inverse square law. However,

using the ultrasound images the thickness of the dosimeters was determined and the

relative dose at the locations along the probe was calculated. The in-vivo dosimetric
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capabilities of the detectors was directly compared to the expected relative dose and

the DTA. The radiochromic film recorded average doses of 341.34±0.45cGy at posi-

tion 1, 507.80±8.4cGy at position 2 and 478.35±6.55cGy at position 3. The average

dose readout from the MOSkinTM detectors along the rectal probe was 406.7±2.9cGy

at position 0±0.5mm, 510.3±2.4cGy at position 25±0.5mm and 433.7±2.4cGy at

position 50±0.5mm. In table 4.7 the calculated relative dose percentage for each

of the detectors is shown and was directly compared to the expected percentage

from the OCP system. The DTA was also calculated and was within acceptable

limits, <3mm, for both detectors; the average DTA for the radiochromic film was

2.4±1.0mm and for MOSkinTM was 1.2±0.2mm. The normalised agreement for the

dosimeters was 1.10±0.01 for film and 1.06±0.1 for MOSkinTM detectors. With a

closer agreement to the treatment plan relative dose and lower DTA, MOSkinTM de-

tectors show superior in vivo dosimetry capabilities compared to traditional clinical

dosimeters. The MOSkinTM detectors and OneTouch Readout System was utilised

in an ethics proposal to implement a verification procedure during HDR prostate

brachytherapy treatments.
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Conclusion

High dose rate (HDR) brachytherapy treatments utilise concentrated radiation dose

using sources implanted directly into the tumour and currently there is no clinically

accepted method to verify the treatment dose as the prescribed dose. This thesis

focuses on investigating an accurate method for determining the in vivo treatment

dose during prostate brachytherapy and evaluating the most equipment for real-time

readout. The MOSkinTM detector and OneTouch Readout System, both designed

by the Centre for Medical Radiation Physics at the University of Wollongong, were

tested and utilised as a proposed verification method to be used during prostate

brachytherapy treatments at the St. George Cancer Care Centre, Kogarah.

A new generation of MOSkinTM detectors was created in to account for angular

dependence and improve sensitivity with circular electrodes. Angular and sensitiv-

ity testing was competed and compared to the previous parallel gate detector to

determine ideal version to be used in verification testing. The average normalised

agreement at the different angular positions the circular gate MOSkinTM dosimeter

was calculated to be 1.015±0.007; the angular dose of MOSkinTM detectors pro-

duce a linear response within the range of ±60◦ from central axis. The parallel

gate MOSkinTM detector was irradiated over an 800 second dwell period with a
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-28.24±1.19% sensitivity drift. The circular MOSkinTM had a -8.41±0.67% sensi-

tivity drift over a 900 second dwell period irradiation. With better sensitivity and

acceptable angular dependence, the circular gate MOSkinTM was utilised to perform

in-vivo dosimetry during brachytherapy simulations.

Characterisation testing of the new wireless OneTouch system was completed

to determine the sensitivity of the system, the creep-up minimisation capabili-

ties and the temperature compensation with readout dose. The ’creep-up’ phe-

nomenon was displayed through a decrease in dose of -2.51±0.21cGy over a 30

second period directly after radiation was stopped. The reliability of available anti-

annealing algorithms was being calculated to be 0.471±0.002% for Standard algo-

rithm, 0.508±0.002% for Average2, 0.653±0.005% for Median3 and 0.40±0.39% for

Median4 algorithm. Due to the similarity in results there was no conclusive ideal

algorithm and the factory standard was chosen to be used in future testing, Stan-

dard algorithm.

The sensitivity of the system was investigated over 35 identical irradiations and the

response of the OneTouch Readout System was seen to be -1.706±0.195cGy/V or

-1.79±0.35%/V. Sensitivity was also analysed during with the detector at differ-

ent temperatures, showing a decrease of –2.57±0.7cGy/V or 1.13±0.13%/V. The

sensitivity response of the MOSkinTMthrough the OneTouch system was within ac-

ceptable limits and could be account for in future testing.

The temperature compensation capabilities of the system were also tested through

dose readout at various temperatures. A diode voltage is determined within the

MOSkinTM detector that changes solely with temperature and was used to determine

the impact of temperature on voltage output during irradiation. The temperature-

only voltage during irradiation was calculated and analysed to determine the suc-

cessfulness in accounting for the temperature variations. The average normalised

agreement of experimental calibration compensation value was calculated to be
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1.007±0.008 and the diode voltage was seen to accurately account for additional

voltage from temperature. Based on the data from the characterisation tests, the

OneTouch Readout System was determined to be within acceptable limits to be

used for clinical verification procedures.

Clinical simulation tests were completed with a prostate phantom to determine

ideal readout system and dosimeter for brachytherapy dose verification. The One-

Touch Readout System and previous Clinical Semiconductor Dosimetry System

(CSDS) were compared during a HDR brachytherapy simulation treatment using

the Real-Time Ultrasound Planning Oncentra Prostate (OCP) System. The aver-

age difference between the treatment dose and recorded dose was 2.80±2.52%for the

CSDS and 3.64±2.47% for the OneTouch system. The results from both readout

systems were within acceptable range but due to the ease-of-use and temperature

compensation capabilities, the OneTouch Readout System was seen to be the su-

perior model. MOSkinTM detector was compared to a common clinical detector,

radiochromic film, using the OCP system and clinical prostate phantom. The nor-

malised agreement with the relative treatment plan dose was 1.10±0.01 for film

and 1.06±0.1 for MOSkinTM detectors. Through these clinical simulation test, the

MOSkinTM detector was seen to be the superior dosimetry for in-vivo testing and

the OneTouch system had a higher reliability with readout due to the lower error

and dose recordings were within acceptable limits.

Due to the acceptable results from the MOSkinTM detector and OneTouch Read-

out System, an ethics proposal was submitted to the St. George Hospital, Kogarah.

In the future patient testing will be completed to determine accuracy and feasibility

to complete the verification procedure during HDR prostate brachytherapy treat-

ments. A new software interface for the OneTouch system is also being designs as

well producing a repeatable method for performing the temperature compensation

without human contact.
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Future Studies

The clinical simulation results in Chapter 4 of this thesis were published as an ab-

stract at the 26th Annual Scientific Meeting of the Australia Brachytherapy Group

in February 2017 (57). The abstract was submitted by the St. George Cancer Care

Centre Team to demonstrate the validity of the new treatment planning system, On-

centra Prostate (OCP) v4.2.2, as a real time TPS. The extensive quality assurance

discussed was featured the OneTouch system results performed in the above tests to

verify the geometrical accuracy of the OCP system as well any isodose distribution

discrepancies. It stated the OCP TPS was safe for clinical use and is currently being

used at St. George Hospital in prostate brachytherapy treatments.

To implement the OneTouch Readout System with MOSkinTM detectors as a dosi-

metric verification system for HDR brachytherapy treatments, an ethical write-up

was completed and submitted to the St. George Hospital during mid 2017. The

ethics approval of the proposed procedure is still being assessed at the time of thesis

submission. Once approval patient trails will begin with performing dose verification

during prostate brachytherapy treatments.
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Chapter 7

Appendix

7.1 Additional Data from OneTouch Characteri-

sation

During the OneTouch characterisation experiments the five available algorithms were
tested in an open air experiment set-up over five irradiations. The detectors were
irradiated for 10 second source dwell time at a distance of 10±1mm, with results
shown below as readout by the new readout system.

Compensation
Algorithm

Test 1 (mV) Test 2 (mV) Test 3 (mV) Test 4 (mV) Test 5 (mV)

Standard 220.42 216.69 218 218.83 212.67
Average2 212.92 223.96 226.52 227.33 228.3
Min2 276.1 286.46 271.24 284.12 276.17
Median3 273.15 280.72 283.62 279.25 276.15
Median4 285.26 262.79 283.75 276.56 278.73

Table 7.1: Results from Anti-Annealing Algorithm Tests Completed in Open Air
with MOSkinTM Detectors Irradiated at a 10 Second Dwell Time

A single MOSkinTM detector was irradiated three times for the four creep-
compensation algorithms, as Standard and Min2 used the same calculation. In
a solid water phantom the threshold voltage difference was a 60 second irradiation
was analysed and the dose was calculated, with results shown below.
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Compensation
Algorithm

Test One Test Two Test Three

Threshold
Difference
(mV)

Dose
(cGy)

Threshold
Difference
(mV)

Dose
(cGy)

Threshold
Difference
(mV)

Dose
(cGy)

Standard 140.6 60.9 139.0 60.6 138.2 60.1
Average2 136.6 59.6 139.2 60.4 139.1 60.3
Median3 139.4 59.2 135.9 60.3 138.4 59.9
Median4 135.9 59.4 134.8 59.81 135.6 59.8

Table 7.2: Results from Anti-Annealing Algorithm Tests Completed in Solid Water
Phantom with MOSkinTM Detectors Irradiated at a 60 Second Dwell Time

The figure 7.1 to figure 7.7 the response of a MOSkinTM using the OneTouch
Readout System was analysed during at temperatures to characterise the tempera-
ture composition feature. The detector was irradiated at initial room temperature
19◦, increasing temperature to 40◦, at 40.4◦, at 36.5◦ or body tempertaure, at 29.8◦,
at 24.4◦ and at final room temperature or 18.4◦.

Figure 7.1: Voltage from Temperature Change Only and Diode Voltage During an
Irradiation at Initial Room Temperature or 19◦
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Figure 7.2: Voltage from Temperature Change Only and Diode Voltage During an
Irradiation a with Gradual Increasing Temperature

Figure 7.3: Voltage from Temperature Change Only and Diode Voltage During an
Irradiation at 40.4◦C
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Figure 7.4: Voltage from Temperature Change Only and Diode Voltage During an
Irradiation at 35.6◦

Figure 7.5: Voltage from Temperature Change Only and Diode Voltage During an
Irradiation 29.8◦
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Figure 7.6: Voltage from Temperature Change Only and Diode Voltage During an
Irradiation at 24.4◦

Figure 7.7: Voltage from Temperature Change Only and Diode Voltage During an
Irradiation at Finial Room Temperature or 18.4◦
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