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ABSTRACT： 

Recently, heterostructures have attracted much attention in widespread research fields. By 

tailoring the physicochemical properties of the two components, creating heterostructures 

endows composites with diverse functions due to the synergistic effects and interfacial 

interaction. Here, a simple in-situ localized phase transformation method is proposed to 

transform the transition metal oxide electrode materials into heterostructures. Taking 

molybdenum oxide as an example, quasi-core-shell MoO3@MoO2 heterostructures were 

successfully fabricated, which were uniformly anchored on reduced graphene oxide (rGO) for 

high-rate and highly durable lithium ion storage. The in-situ introduction of the MoO2 shell 

not only effectively enhances the electronic conductivity, but also creates MoO3@MoO2 

heterojunctions with abundant oxygen vacancies, which induces an inbuilt driving force at 

the interface, enhancing ion/electron transfer. In-operando synchrotron X-ray powder 
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diffraction has confirmed the excellent phase reversibility of the MoO2 shell during 

charge/discharge cycling, which contributes to the excellent cycling stability of the 

MoO3@MoO2/rGO electrode (1208.9 mAh g−1 remaining at 5 A g−1 after 2000 cycles). This 

simple in-situ heterostructure fabrication method provides a facile way to optimize electrode 

materials for high-performance lithium ion batteries and possibly other energy storage 

devices.  

 

KEYWORDS: heterostructure; in-situ localized phase transformation; MoO3@MoO2; 

oxygen vacancies; interfacial interaction; DFT calculation; lithium ion batteries 
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Heterostructures can be formed by modulating different compositions and/or doping to 

enable passivation of interfaces, where the electronic band structure near the interface will 

be changed according to the electrostatics.1 Because of their interface effects, heterostructures 

with distinct functionality often exhibit enhanced performance in many electronic devices, 

including solar cells, ultrathin photodetectors, semiconductor lasers, and tunneling 

transistors.2-4 It has been claimed that building heterostructures though coupling components 

with different electronic energy band gaps will improve the surface reaction kinetics and 

facilitate charge transport due to the benefit of the internal electric field at the interface. For 

instance, fast ion conduction has been demonstrated in nanometer-scale CaF2/BaF2 

heterostructures.5 Benefiting from the synergistic effects, two-dimensional (2D)-mesoporous-

carbon/MoS2 heterostructures exhibited outstanding cycling stability and high-rate 

performance in lithium ion batteries (LIBs).6 Due to integration of the merits of the different 

components and reversible electron/ion transport at the interface, SnO2/MXene and 

TiO2/MXene heterostructures showed high capacity and extraordinary high-rate performance 

for Li ion storage.7 Inspired by previous research, we believe that transition metal oxide 

heterostructures can be manipulated via in-situ localized phase transformation as electrode 

materials with excellent performance in energy storage devices.  

Owing to its high theoretical capacity (1117.3 mAh g–1), α-MoO3 with a bilayer structure has 

attracted much attention as an attractive candidate anode for LIBs.8 The Li storage 

performance of MoO3 is severely restricted, however, by its sluggish Li ion diffusion 

kinetics.9 A variety of strategies have been claimed to enhance the kinetic of MoO3.
10 

Nanostructuring is one of the most widespread strategies, and various nanostructured forms 

of MoO3, including nanowires, nanorods, and nanosheets, have been reported to boost the Li 

storage kinetics.11 Unfortunately, self-aggregation and the volume expansion of nanomaterials 

severely limit the beneficial effects of nanostructuring.12 Introducing a conductive matrix into 
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MoO3 is another common strategy to enhance the electronic conductivity of MoO3.
13 The 

main drawback of this strategy, however, is that only near-surface materials, which have 

intimate contact with the conductive matrix, could experience enhanced electronic 

conductivity.14 Consequently, achieving MoO3-based materials with excellent high-rate 

performance and cycling stability still remains a huge challenge.15-19 

Monoclinic MoO2, although having lower capacity (837.6 mAh g–1) compared with α-MoO3, 

is also an anode candidate for LIBs, resulting from its metallic electrical conductivity and 

facile ion transport properties.13, 20 Based on the solid-state reaction kinetics, the 

transformation from α-MoO3 to MoO2 preferentially occurs in a perpendicular direction to 

the crystalline layers of α-MoO3 during thermal reduction ([010] direction), and thus, it is 

believed that α-MoO3/MoO2 heterojunctions could be created, which could be an effective 

way to achieve molybdenum oxide electrodes with high electrical conductivity and good 

structural stability, as well as high capacity.21-22 In addition, oxygen vacancies formed at the 

heterointerface could create atomic defects, structural distortion, and an unbalanced charge 

distribution at the interface, which would provide an inbuilt charge-transfer driving force,23-24 

facilitating interfacial electron transport and accelerating the Li+ ion diffusion kinetics in the 

electrode.15  

Herein, a facile localized phase transformation strategy was adopted for in-situ fabrication of 

MoO2 coated α-MoO3 heterostructures, which were homogeneously decorated on reduced 

graphene oxide (MoO3@MoO2/rGO) sheets. The homogeneous coating of MoO2 and the 

uniform distribution of MoO3@MoO2 heterostructures on rGO could effectively improve the 

electrical conductivity. The oxygen vacancies generated at the interface of MoO3 and MoO2 

with the reduction of MoO3 create desirable interfacial effects, which was further confirmed 

by density functional theory (DFT) calculations. In-operando synchrotron X-ray powder 

diffraction (XRPD) further verified the high reversibility of the MoO2 shell during cycling, 
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which helps to enhance the cycling stability. Thanks to these structural advantages, the 

MoO3@MoO2/rGO-500 electrode delivered a high capacity of 1340.0 mAh g−1 at 100 mA g–1 

and outstanding cycling stability, with a capacity of 1208.9 mAh g−1 remaining after 2000 

cycles at 5 A g−1. This work demonstrates an effective way to enhance the Li storage kinetics 

via the construction of interfaces and the introduction of heterostructures by in-situ 

oxidation/reduction. The proposed heterostructure manipulation strategy could also be 

extended to other transition metal oxide electrodes for energy storage and conversion.  

RESULTS AND DISCUSSION 

One-step in-situ phase transformation was employed to prepare MoO3@MoO2/rGO with 

(NH4)6Mo7O24 chosen as the Mo source. To investigate the phase transformation of 

(NH4)6Mo7O24/graphene oxide (GO) during the calcining process, thermogravimetric analysis 

(TGA) was conducted in argon (Figure 1a) and air flow (Figure S1 in the Supporting 

Information), respectively. Four weight loss regions can be observed in Figure 1a: the weight 

losses in the temperature range of 50–180 °C and 180–300 °C originate from the removal of 

interlayer moisture and the decomposition of (NH4)6Mo7O24, respectively.25 The following 

stage from 300 to 420 °C corresponds to the removal of oxygen-containing functional groups 

from the GO sheets. Subsequently, α-MoO3 is gradually reduced into MoO2 from 420 °C and 

completely converted into MoO2 when the temperature reaches 550 °C. This result validates 

the possibility of fabricating MoO3@MoO2 heterojunctions through controlling the heat-

treatment temperature, as evidenced by the X-ray diffraction (XRD) results (Figure 1b). The 

product synthesized at 400 °C (denoted as MoO3/rGO-400) has only characteristic peaks 

corresponding to MoO3.
26 While characteristic peaks assigned to monoclinic MoO2 appear 

with weakening of the peak intensity of α-MoO3 simultaneously after thermal annealing of 

the samples at 450 and 500 °C (MoO3@MoO2/rGO-450 and MoO3@MoO2/rGO-500, 

respectively), indicating both samples contain the MoO3 and MoO2 phase. On further 
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increasing the heating temperature to 600 °C, only MoO2 peaks can be observed with the 

complete disappearance of peaks for MoO3 (MoO2/rGO-600).20  

X-ray photoelectron spectroscopy (XPS) measurements were further adopted to characterize 

the oxidation state of molybdenum in different samples (Figure S2 and Figure 1c). The Mo 

3d spectrum of MoO3/rGO-400 (Figure S2a) is mainly occupied by Mo6+ with a spin-orbit 

doublet peaks at binding energies of 232.3 േ	 0.1 and 236.0 േ	 0.1 eV.27-28 After heating to 

600 °C, 3d4+
3/2 and 3d4+

5/2 peaks belonging to MoO2 could be observed (Figure S2b).29 By 

comparison, the Mo 3d spectrum of MoO3@MoO2/rGO-500 reveals the simultaneous 

presence of characteristic peaks belonging to Mo4+ and Mo6+, and the peak intensity of Mo6+ 

is increased after etching the surface with argon plasma to remove the surface layer (Figure 

1c).15 Further calculations demonstrated that the content of Mo6+ increased from 33.4% to 

39.8% after argon plasma etching (Table S1), which indicates that the majority of the MoO3 

was reduced to MoO2, with the MoO3 occupying the inner part of the heterostructure, while 

the MoO2 is mainly located in the outer part (schematic illustration shown in Figure S3).  

The morphology of MoO3@MoO2/rGO and the phase transfer process to form the 

MoO3@MoO2 heterostructure in MoO3@MoO2/rGO-500 were further investigated by 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is 

obvious that the small nanosheets of MoO3@MoO2 are uniformly anchored on the rGO 

sheets, as shown in Figure 1d. The MoO3@MoO2 heterostructured particles, however, suffer 

from serious aggregation without rGO support (Figure S4). The TEM results further verified 

the homogeneous dispersion of lamellar MoO3@MoO2 heterostructures with widths of 

~200 nm (Figure 1e). Atomic force microscopy (Figure 1f) confirmed that the thickness of 

the MoO3@MoO2 nanosheets is ~5 nm. These MoO3@MoO2 nanosheets guarantee facile 

strain relaxation and help to alleviate the volume expansion of the MoO3 inside.30 In 

comparison, MoO3@rGO-400 and MoO2/rGO-600 show similar morphology (Figures S5a 
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and S6a). The high-resolution TEM (HRTEM) image of MoO3@rGO-400 (Figure S5c) 

shows lattice spacing of 0.326 nm, which can be assigned to the (021) crystal planes of α-

MoO3. This agrees well with the selected area electron diffraction (SAED) pattern (Figure 

S5b). In the HRTEM image of MoO2/rGO-600, a uniform lattice spacing of 0.342 nm, which 

corresponds to the (011) planes of monoclinic MoO2, can be observed (Figure S6c). For the 

MoO3@MoO2/rGO-500 sample, however, the corresponding SAED pattern (Figure 1k) 

confirms the polycrystalline nature of MoO3@MoO2 heterojunctions, including both MoO2 

and MoO3 phases. Furthermore, a lattice spacing of 0.342 nm, characteristic of the (011) 

planes of MoO2, can be observed on the boundary and it crosses the whole surface (Figure 

1l), whereas the internal lattice spacing (0.326 nm) corresponds to the (021) planes of α-

MoO3, revealing that MoO2 is generated on the border and at the surface of MoO3 via in-situ 

localized phase transformation, which is consistent with the reduction mechanism of α-

MoO3.
31 The localized phase transformation and formation of MoO2 at the edge and surface 

could shorten the electron/ion transfer pathways in the inner MoO3, thus not only enhancing 

the electrical conductivity, but also creating MoO3@MoO2 heterostructures, which can tailor 

the physicochemical characteristics of the two building blocks and endow MoO3@MoO2 with 

excellent performance due to the synergistic effects.32 More interestingly, according to the 

reduction mechanism of α-MoO3, lattice oxygen O(3) on the (010) facet was reduced, 

resulting in oxygen vacancies at the interface of MoO3 and MoO2, as verified by electron 

paramagnetic resonance (EPR) (Figure S7).33 The oxygen vacancies at the interface cause an 

unbalanced charge distribution, which helps to promote interfacial charge transfer.34-35 

To compare the Li storage performance of MoO3, MoO2, and MoO3@MoO2 heterostructures, 

MoO3/rGO, MoO3@MoO2/rGO, and MoO2/rGO electrodes were investigated using 

discharge−charge cycling and cyclic voltammograms (CVs) in coin cells. Figure 2a and 

Figures S8, 9 show the typical discharge−charge curves of the different electrodes at 100 mA 
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g−1. In the case of MoO3/rGO-400 electrode, only an obvious discharge platform below 0.4 V 

can be observed, which is consistent with its CV curves (Figure S10a). The discharge 

capacity of MoO3/rGO-400 is 853.1 mAh g−1, still much lower than the theoretical specific 

capacity of α-MoO3. The MoO3@MoO2/rGO-500 and MoO2/rGO-600 electrodes exhibit 

three discharge plateaus between 1.0 V and 2.0 V, indicating the phase transitions of MoO2 in 

the Li insertion process from the original monoclinic to the orthorhombic phase and then 

from the orthorhombic to the monoclinic phase.36 The discharge capacity of the 

MoO3@MoO2/rGO-500 heterostructure is ~1340.0 mAh g−1, much higher than those for the 

bare MoO3/rGO-400 and MoO2/rGO-600 electrodes, and the MoO3@MoO2-500 without 

rGO. Figure 2b exhibits the rate performances of all the samples at different current densities. 

The reversible capacity of the MoO3/rGO-400 electrode is severely decreased from 734.9 to 

110.1 mAh g–1 when the current density increases from 100 mA g–1 to 10 A g–1 (15.0% 

capacity retention), suggesting seriously limited Li+ diffusion kinetics in MoO3 at high 

current density.16 In contrast, the capacity of the MoO3@MoO2/rGO-500 electrode decreased 

from 1312.6 to 795.8 mAh g–1 as the current density increased from 100 mA g–1 to 10 A g–1 

(60.6% capacity retention). As the current returned to 100 mA g–1, the capacity of 1187.4 

mAh g–1 was still recovered. The excellent rate performance of the MoO3@MoO2/rGO-500 

electrode indicates its high Li+ diffusion coefficient, which was further confirmed by 

collecting CV curves at various scan rates from 0.5 to 10 mV s−1 (Figure S11a-c). Compared 

with MoO3/rGO-400 and MoO2/rGO-600, the shape of the CV curves of MoO3@MoO2/rGO-

500 is well maintained, with a slight migration of the cathodic and anodic peaks at high scan 

rates, which implies a small amount of polarization.37 The diffusion coefficient of Li+ ions as 

they move in and out of the different electrodes was further estimated based on the following 

equation: ݅௣ ൌ 2.686 ൈ 10ହ݊ଷ/ଶܦܣଵ/ଶܿݒଵ/ଶ. (In which ip, n, D, A, c, and v stand for the peak 

current, number of electrons, diffusion coefficient, surface area of the electrode, concentration 
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of Li+, and voltage scanning rate, respectively). Apparently, the ip exhibits a linear 

relationship with ݒଵ/ଶ, in which the slope is proportional to the diffusion coefficient (Figure 

S11d).38 Thus, the diffusion coefficient for MoO3/rGO-400 is relatively low. Compared with 

MoO2/rGO-600, MoO3@MoO2/rGO-500 shows a higher diffusion coefficient, suggesting a 

good high-rate capability, possibly due to the importation of MoO2 phase and the interfacial 

effects of the heterostructure.39 

The cycling performances of the different electrodes at 2 A g−1 were measured (Figure 2c and 

Figure S12). The MoO3@MoO2/rGO and MoO2/rGO electrodes show good cycling 

performance, with the capacity increasing in the initial few tens of cycles, and they maintain 

a constant capacity during the following cycles. The capacity of MoO3/rGO-400 fades 

drastically after 30 cycles, however, and only 207.7 mAh g−1 of capacity is maintained after 

200 cycles, which should possibly be ascribed to the pulverization issue. In the XRD pattern 

collected after 200 cycles (Figure S13), the MoO3/rGO-400 pattern displays broad and weak 

peaks, which cannot be assigned to a specific crystalline phase of MoOx or LixMoO3.
9 In 

particular, one of the dominant peaks at ~37.2° has shifted from 38.9° in the original XRD 

pattern of α-MoO3 due to the volume expansion. The broad peak indicates that MoO3/rGO-

400 is incompletely amorphous, although the structure is disordered.16 Although the MoO2 

peak of the MoO3@MoO2/rGO-500 electrode shows a slight shift to the left, MoO2 still 

maintains its monoclinic structure even after 200 cycles, and a similar Mo 3d core level XPS 

spectrum with 3d4+ and 3d6+ still can be observed (Figure S14), suggesting high reversibility 

and structural stability for MoO2. The core-shell structure with its MoO2 shell will help to 

maintain the structural stability of the composite material, thus improving the cycling 

performance of the electrode. The MoO3@MoO2/rGO-500 electrode was subjected to 

prolonged cycling at 5 A g−1 (Figure 2d), and it delivered a high reversible capacity of 1208.9 

mAh g−1 even after 2000 cycles, with a coulombic efficiency of 99.99%, demonstrating 
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fascinating high-rate cycling stability, which is very promising compared to the Mo-based 

anode materials reported so far, including MoO3-x,
27 MoO3-x/carbon nanotube (CNT),17 

MoO3@TiO2,
16 MoO2/C, and MoO2@rGO,20, 40 as presented in Figure 2e. 

In order to deeply understand the electrical conductivity and interfacial effects produced by 

the creation of heterostructures and the in-situ importation of MoO2, which may be 

responsible for the enhanced performance of the MoO3@MoO2/rGO-500 electrode, density 

functional theory (DFT) calculations were carried out to compare α-MoO3 (Pbnm, a = 3.963, 

b = 13.855, c = 3.696 Å, as shown in Figure 3a) and MoO2 (P21/c, a = 5.610, b = 4.857, c = 

5.626 Å, as shown in Figure 3c), and explore the influence of their interface. Figure 3e 

reveals the densities of states (DOS) of orthorhombic α-MoO3 and monoclinic MoO2. The 

results shows that the region near the Fermi level of MoO2 is mainly composed of Mo 3d 

orbitals, demonstrating a metallic character.29 Whereas, the highest occupied states of α-

MoO3 are mostly composed of O 2p orbitals, and the Mo 3d orbitals of α-MoO3 are not 

continuous at the Fermi level (with an obvious band gap for α-MoO3, indicating its 

semiconducting nature).26 The electron density differences in both materials were also 

plotted, as shown in Figure 3b and 3d, and it is clear that the valence electrons of Mo atoms 

are transferred to the O atoms in both materials. An obvious charge transfer in α-MoO3 is 

observed between O and Mo atoms, reflecting the strong bonding between them, which 

endows the polar Mo-O bond with high stability.34 In contrast, the abundant nonpolar Mo-Mo 

metallic bonds in MoO2 enhance the conductivity. According to the above calculations, the 

partial transformation of MoO3 to form MoO3@MoO2 heterostructures will effectively 

improve the electrical conductivity of the composite. 

According to the solid-state reaction kinetics, α-MoO3 is transformed to MoO2 phase along 

the [010] direction. This reduction process causes the collapse of the successive (010) planes 

of MoO3.
31 The <100> rows in MoO2, during this transformation, constituted by strongly 
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linked elements (edge-sharing MoO6 octahedra), are found to be arranged in some directions 

that are perpendicular or very oblique with respect to the initial (010) surface of MoO3.
41 In 

this phase transformation process, the loss of O(3) lattice oxygen at the (010) facet of MoO3 

and the re-organization of lattice oxygen with increasing temperature generate the n-p 

heterojunctions of MoO3@MoO2 with abundant oxygen vacancies at the interface of MoO3 

and MoO2 (Figure 3f), thereby providing more active sites for redox reactions, which make a 

greater contribution to the capacity of the electrode.37, 42-44 DFT calculations were also 

performed to provide deeper insight into the interfacial effects on the electrochemical 

performance of the MoO3@MoO2/rGO-500 electrode (Figure 3g and Figure S15). Similar 

interface effects have been reported, which demonstrate that the mixed-phase interface not 

only offers abundant active sites for Li storage but also promotes the reaction kinetics by 

reducing the resistance.14-15 In our case, the oxygen vacancies formed at the interface of 

MoO3 and MoO2 modify the charge distribution, leading to an unbalanced charge distribution 

and an interfacial electric field (visualized by the electron density difference map in Figure 

3h), which results in a local in-built driving force.24 These effects promote electron 

transport/ion diffusion at the interface, which synergistically leads to the high diffusion 

coefficient of Li+ and high-rate performance of the MoO3@MoO2/rGO-500 electrode.  

To fully understand the phase evolution during the charge/discharge process, in-operando 

synchrotron XRPD of the MoO3@MoO2/rGO-500 electrode was carried out (Figure 4a). Due 

to its possible preferred orientation, weak peak intensity, and the effects of the electrolyte and 

separator, the peaks of MoO3 cannot be discerned explicitly (Figure S16a). During the 

discharge process, the (011) and (022) peaks of MoO2 consecutively shift to lower angles, 

indicating the increase in the lattice parameter due to the intercalation of Li+.18 Then, both 

peaks are gradually converted into the (011) and (220) peaks of monoclinic Li0.98MoO2 when 

the potential reaches ~1.0 V, which is more distinct in the contour maps (Figure 4b). 
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Simultaneously, several new diffraction peaks located at 15.5° and 21.7° appear, 

corresponding to the (0ത02) and (022) crystal planes of Li0.98MoO2 (Figure S17), which is 

consistent with the reaction mechanisms of MoO2 (Figure 3a).30 Importantly, a new 

diffraction peak at 17.9° is observed, which is ascribed to the (110) planes of Mo (Figure 4c), 

demonstrating a conversion reaction process. Remarkably, the (011) and (022) peaks of 

MoO2 completely re-emerge, while the crystalline phase of Li0.98MoO2 disappears during the 

charge process, indicating that the crystallinity of the MoO2 phase is well maintained after 

cycling. The high reversibility of the MoO2 coating phase has benefits for the high-rate 

cycling stability of the MoO3@MoO2 heterostructures. 

CONCLUSION 

In summary, heterostructure manipulation was realized by an in-situ localized phase 

transformation route to synthesize the quasi-core-shell MoO3@MoO2 heterostructures 

anchored on rGO nanosheets. It was demonstrated that the outer MoO2 phase improves the 

electrochemical performance due to the following reasons: a) the in-situ phase transformation 

at the boundary and surface not only improves the electronic conductivity of the 

MoO3@MoO2 heterostructures, but also shortens the Li+ ion diffusion distance and electron 

transport in the inner MoO3; b) a disproportionate charge distribution and lattice defects exist 

at the interface, which provide the force to boost the charge transfer kinetics on the interface 

and offer more active sites for Li+ ion storage; and c) the quasi-core-shell structure helps to 

stabilize the structure of the active material. Consequently, the MoO3@MoO2/rGO-500 

electrode delivers high reversible capacity (1312.6 mAh g–1 at 100 mA g–1) and superior 

high-rate cycling performance (1208.9 mAh g−1 after 2000 cycles at 5 A g−1). It is expected 

that our work can provide another way to optimize the transition metal oxides with 

heterostructures via in-situ localized phase transformation for high performance in 

optoelectronics, high-speed electronics, and other applications. 
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MATERIALS AND METHODS 

Materials: (NH4)6Mo7O24·4H2O and graphite were purchased from Sigma-Aldrich Chemical 

Co. All other reagents were analytical grade and used directly without further purification.  

Synthesis of MoO3@MoO2/rGO: The GO was prepared via a modified Hummers method. 

A colloidal GO solution with the concentration of about 2 mg mL−1 was prepared by 

ultrasonication (KQ-600KDE, 600 W) for 24 h. Subsequently, the colloidal GO solution was 

centrifuged to remove large GO particles at 5000 rpm for 5 min. (NH4)6Mo7O24·4H2O (2.0 g) 

was dissolved in distilled water (20 mL) to prepare a (NH4)6Mo7O24 solution. Subsequently, 

the (NH4)6Mo7O24 solution was added to 200 mL GO dispersion quickly under magnetic 

stirring for approximately 10 min. After drying in a vacuum freeze-drying oven, the solid–

state precursor, (NH4)6Mo7O24/GO, was obtained. After that, a calcination procedure was 

carried out on the solid-state mixture with a given heating rate of 10 °C min−1 at target 

temperature of 400, 450, 500, 550, and 600 °C for 2 h in a tubular furnace (SK-G08123K, 

Ф100/92×1000 mm2, under Ar atmosphere with a flow rate of 100 sccm).  Finally, the black 

sheet-like products, denoted as MoO3/rGO-400, MoO3@MoO2/rGO-450, 

MoO3@MoO2/rGO-500, MoO2/rGO-550, and MoO2/rGO-600 samples, respectively, were 

collected. 

Materials characterization: The obtained materials were investigated by XRD with Cu Kα 

radiation at 1 °C min−1. XPS measurements were performed on a VG Multilab 2000 (VG 

Inc.) photoelectron spectrometer by employing the monochromatic Al Kα radiation under 

vacuum at 2 × 10−6 Pa. The morphologies of the as-prepared MoO3/rGO, MoO3@MoO2/rGO, 

and MoO2/rGO sheets were observed by SEM (JEOL JSM-7500FA). The details of the 

crystal structure and energy dispersive spectroscopy (EDS) mapping were further examined 

by scanning TEM (STEM) (JEOL JEM-ARM200F), which was conducted at 80 kV. Atomic 

force microscopy was conducted via a Veeco DI Nano-scope MultiMode V system. 
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Continuous-wave EPR experiments were conducted on a Bruker ELEXSYS E580 

spectrometer operating in the X-band (9.4 GHz) mode.  

Electrochemical measurements: CR2032 coin-type cells were used to conduct the 

electrochemical tests, in which the working electrodes were prepared by mixing, Super P, 

poly(acrylic acid)/sodium carboxymethyl cellulose (1:1), and the obtained materials in a 

weight ratio of 10:10:80, dried at 80 °C in vacuum-oven for 12 h. 1 M LiPF6 in ethylene 

carbonate/diethyl carbonate/dimethyl carbonate (1/1/1; v/v) with 5 wt% fluoroethylene 

carbonate was employed as the electrolyte. CV data were collected at different scan rates on a 

VMP-3 electrochemical workstation. The cells were galvanostatically charged-discharged 

with a voltage window of 0.01–3.0 V versus Li/Li+ on the Neware battery tester at different 

current densities 

In-operando synchrotron X-ray powder diffraction (XRPD): A synchrotron cell was used 

for in-operando XRPD measurements of MoO3@MoO2/rGO-500 sample, which is similar to 

the coin cells used in electrochemical testing. The cell was galvanostatically charged- 

discharged in 0.1–3.0 V (vs. Li+/Li) at 0.18 mA (~200 mA g−1). The XRPD patterns were 

collected every 3 min using a MYTHEN micro-strip detector during the charge-discharge 

process. The used wavelength was detected to be 0.6887 Å using a LaB6 NIST SRM 660b 

(Australian Synchrotron).  

Theoretical calculations: The Cambridge Serial Total Energy Package (CASTEP), a first-

principles plane wave pseudopotential method based on the DFT, was employed to carry on 

all calculations. In order to achieve a good convergence of the total energy as well as force 

acting on the atoms, the cut-off energy of the plane wave basis, for all models, was set at 340 

eV. Special points sampling integration over the Brillouin zone was used in the Monkhorst-

Pack method with 5×5×5, 6×2×7, and 2×2×1 special k-point meshes for MoO2 and MoO3 

crystal cells, and MoO3(010)/MoO2(100) heterointerface models, respectively.  
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As experimentally determined, MoO3 exhibits the orthorhombic structure with space group 

Pbnm. Its unit cell contains four formula units with the lattice constants of a = 3.963, b = 

13.855, and c = 3.696 Å, as shown in Figure S13. As experimentally determined, MoO2 

presents the monoclinic structure with space group P21/c, and the unit cell contains two 

formula units with the lattice constants a = 5.610 Å, b = 4.857 Å, and c = 5.626 Å, as shown 

in Figure S2. To simulate the interface of MoO3(010)/MoO2(100), an α-MoO3 (010) (3  × 3) 

slab with 8 atomic layers was constructed to match with a MoO2 (100) (2 × 2) slab with 6 

atomic layers by keeping the  thickness of the layers constant, as shown in Figure S14. A 

vacuum thickness of 20 Å was set to avoid interaction between neighboring slabs. The 

average lattice constants of the constructed MoO3(010)/MoO2(100) heterointerface were a = 

10.4012 Å and b = 11.5680 Å. 
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Figure 1. Crystal structure, compositional characterization, and morphology of MoO3@ 

MoO2/rGO sheets. (a) TGA curve of precursor, (NH4)6Mo7O24/GO, under calcining from 

ambient temperature to 700 °C in argon. (b) XRD patterns of the different samples obtained 

at various temperatures (from 400 to 600 °C). (c) High-resolution XPS spectra of 

MoO3@MoO2/rGO-500 sample before and after argon plasma etching. (d) SEM image of 

MoO3@MoO2/rGO-500 nanosheets. (e) TEM image of MoO3@MoO2/rGO-500 nanosheets. 

(f) Atomic force microscope (AFM) image of MoO3@MoO2/rGO-500 and corresponding 

height profile. (g–j) Scanning TEM (STEM) image with corresponding energy dispersive 

spectroscopy (EDS) elemental mappings. (k) The selected area electron diffraction (SAED) 

pattern of MoO3@MoO2/rGO-500 sample with complex polycrystalline diffraction spots that 

correspond to the monoclinic MoO2 and α-MoO3 phases. (l) HRTEM image of 

MoO3@MoO2/rGO-500 sample. Two kinds of lattice spacing can be observed.  



 

Figure 2. Electrochemical performance of different electrodes. (a) Typical galvanostatic 

discharge-charge profiles of MoO3/rGO-400, MoO3@MoO2/rGO-500, and MoO2/rGO-600 

electrodes at 100 mA g
−1

. (b) Rate performances of MoO3/rGO-400, MoO3@MoO2/rGO-500, 

and MoO2/rGO-600 electrodes at current densities from 100 mA g
−1

 to 10 A g
−1

. (c) Cycling 

performances of MoO3/rGO-400, MoO3@MoO2/rGO-500, and MoO2/rGO-600 electrodes at 

2 A g
−1

. (d) Long-term high-rate cycling performance of the MoO3@MoO2/rGO-500 

electrode and the corresponding coulombic efficiency at 5 A g
−1

. (e) Comparison of the high-

rate cycling performance of the MoO3@MoO2/rGO-500 electrode with other reported Mo-

based anodes in LIBs. 



 

Figure 3. Structural information, in-situ phase transformation, and charge density 

distribution of MoO3@MoO2 heterostructures. (a) The crystal structure of α-MoO3 with a 

bilayer network of edge-sharing MoO6 octahedra. There are three nonequivalent oxygen 

atoms: (i) asymmetric oxygens, O(1), that bridge two Mo centers along the z axis; (ii) three 

coordinated oxygens, O(2), that form a symmetrical bridge along the x axis between two Mo 

centers on the same layer and interact with a sublayer Mo; and (iii) terminal oxygens, O(3), 

which are double bonded to only one Mo center that is present in the interlayer region. (b) 

Electron density differences for orthorhombic MoO3 (c) The structure of monoclinic MoO2. 

(d) Electron density differences for MoO2. (e) Comparison of densities of states of MoO3 and 

MoO2. (f) Schematic representation of the in-situ phase transformation to form MoO3@MoO2 



heterostructures. (g) Model for the interface of a MoO3@MoO2 heterostructure with oxygen 

vacancies. (h) Electron density difference map of the interface of a MoO3@MoO2 

heterostructure.  



 

Figure 4. Crystal structural evolution under the Li
+
 (de)intercalation process. (a) In-

operando synchrotron XRPD patterns of the MoO3@MoO2/rGO-500 electrode were collected 

during the initial discharge-charge process at 200 mA g
−1

. Contour plots of the operando 

synchrotron XRPD data: (b) 10.0°–12.5°, where the (011) peak of MoO2 is converted to the 

(011) peak of Li0.98MoO2 during the initial discharge process; (c) 17.5°–18.5°, where the 

peak of Mo can be observed at about 17.9°, demonstrating the partial conversion of 

MoO3@MoO2 heterostructures into Mo in the discharging process. 
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Table S1. The positions of the 3d Mo
6+

 and 3d Mo
4+

 peaks in the XPS spectra of Mo 3d and 

their related contents in various samples.   

 400 °C 500 °C 500 °C  etching 600 °C Peak position (eV) 

Mo
+6

 5/2 63. 26% 5.01% 16.13% 3.62% 232.3 

Mo
+6

 3/2 33.74% 28.40% 23.69% 10.01% 236.1 

Mo
+4

 5/2 0 6.25% 2.05% 31.16% 230.7 

Mo
+4

 3/2 0 60.34% 58.13% 55.21% 233.5 
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Figure S1. TGA curves of the (NH4)6Mo7O24/GO precursor, tested in air flow from ambient 

temperature to 700 °C. There are three obvious weight loss regions: the first (50–180 °C) and 

the second regions (180–310 °C) originate from the removal of the remaining interlayer 

moisture and the decomposition of (NH4)6Mo7O24, respectively. The following loss at 

approximately 300–420 °C is due to the oxidative decomposition reaction of GO sheets. As a 

result, the content of rGO in the composite was found to be ~6.8 wt%.
1
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Figure S2. High-resolution XPS spectra of MoO3/rGO-400 (a) and MoO2/rGO-600 (b) sheets 

in the Mo 3d region.  
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Figure S3. (a) Schematic illustration of MoO3@MoO2 heterostructures, (b) lateral view. 
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Figure S4. (a, b) SEM images of MoO3@MoO2-500 sample without rGO at different 

magnifications. It is clear that the MoO3@MoO2 heterostructure particles suffer from serious 

aggregation without rGO support. 
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Figure S5. Morphology of MoO3/rGO-400 sheets. (a) TEM image of MoO3/rGO-400 sheets. 

(b) SAED pattern of the MoO3/rGO-400 sample with the zone axis of [00-1]. (c) HRTEM 

image of MoO3/rGO-400 sample (inset: measurement of the lattice spacing, evaluated as 

0.326 nm). 
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Figure S6. Morphology of MoO2/rGO-600 sheets. (a) TEM image of MoO2/rGO-600 sheets. 

(b) SAED pattern of MoO2/rGO-600 sample. (c) HRTEM image of MoO2/rGO-600 sample 

(inset: measurement of lattice spacing, evaluated as 0.342 nm). 
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Figure S7. Electron paramagnetic resonance (EPR) spectrum of MoO3/rGO-400, 

MoO3@MoO2/rGO-500, and MoO2/rGO-600 samples. 
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Figure S8. Typical galvanostatic discharge-charge profiles: (a) MoO3@MoO2/rGO-450, (b) 

MoO2/rGO-550 electrodes. 
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Figure S9. Typical charge-discharge curves of the MoO3@MoO2-500 without rGO. The 

discharge capacity of the MoO3@MoO2-500 electrode is much lower than that with rGO. 
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Figure S10. Cyclic voltammograms for the first, second, and fifth cycles: (a) MoO3/rGO-400, 

(b) MoO3@MoO2/rGO-500, and (c) MoO2/rGO-600 electrodes. 

The cyclic voltammograms (CVs) of different samples for the first, second, and fifth cycles 

were collected at 0.5 mV s
−1

. In the first cycle of MoO3/rGO-400 (Figure S6a), two broad and 

weak peaks at around 1.52 and 1.25 V are visible, corresponding to the intercalation of Li
+
 

into [MoO6] bi-layers to form LixMoO3 (xmax = 1.5). In the subsequent lithiation process, 

another sharp peak appears below 0.4 V, corresponding to the conversion reaction of 

LixMoO3.
2
 Overall, the Li storage reaction in MoO3 can be described as follows:  

𝑀𝑜𝑂3 + 𝑥𝐿𝑖+ + 𝑥𝑒− ↔ 𝐿𝑖𝑥𝑀𝑜𝑂3(0 < 𝑥 < 1.5)                    (1) 

𝐿𝑖𝑥𝑀𝑜𝑂3 + (6 − 𝑥)𝐿𝑖+ + (6 − 𝑥)𝑒− ↔ 𝑀𝑜 + 3𝐿𝑖2𝑂            (2) 
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Due to the presence of MoO2, the CV curves of MoO3@MoO2/rGO-500 and MoO2/rGO-600 

are different from that of MoO3/rGO-400 electrode. Three sharp reduction peaks located at 

approximately 1.25, 1.31, and 1.52 V can be observed (Figure S6b and S6c), which mainly 

arise from the phase transitions from the original monoclinic to the orthorhombic phase and 

then from the orthorhombic to the monoclinic phase in the Li insertion process.
3
 The reaction 

mechanism of MoO2 can be described as follows: 

𝑀𝑜𝑂2 + 𝑥𝐿𝑖+ + 𝑥𝑒− ↔ 𝐿𝑖𝑥𝑀𝑜𝑂2(0 < 𝑥 < 0.98)                           (3) 

𝐿𝑖𝑥𝑀𝑜𝑂2 + 𝑦𝐿𝑖+ + 𝑦𝑒− ↔ 𝐿𝑖(𝑥+𝑦)𝑀𝑜𝑂2(0 < 𝑥, 𝑦 < 0.98)         (4) 

𝐿𝑖0.98𝑀𝑜𝑂3 + 3.02𝐿𝑖+ + 3.02𝑒− ↔ 𝑀𝑜 + 2𝐿𝑖2𝑂                             (5) 
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Figure S11. CV curves at various scan rates: (a) MoO3/rGO-400 electrode, (b) 

MoO3@MoO2/rGO-500 electrode, (c) MoO2/rGO-600 electrode. (d) The linear relationship 

between the peak current (ip) and the square root of the scan rate (ν
1/2

) for the different 

electrodes. 
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Figure S12. Cycling performance for 200 cycles at 2 A g
−1

: (a) MoO3@MoO2/rGO-450, (b) 

MoO2/rGO-550 electrodes. 
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Figure S13. XRD pattern changes of MoO3/rGO-400, MoO3@MoO2/rGO-500, and 

MoO2/rGO-600 electrodes before cycling and after 200 cycles. 
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Figure S14. Mo 3d XPS spectrum of MoO3@MoO2/rGO-500 electrode after 200 cycles. 
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Figure S15. The models for the MoO3(010) and MoO2(100) slabs. According to the solid-

state reaction kinetics of the reduction of α-MoO3, the lattice oxygen O(3) along the (010) 

facet is reduced as the temperature increases, resulting in oxygen vacancies.
4
 The formation 

of oxygen vacancies at the O(1) and O(2) sites is significantly less favourable than at the O(3) 

site. This is because the vacancy structure at the O(3) site, where two polarons occupy the dxy 

and dyz orbitals of the five-fold coordinated Mo
4+

 ion at the defect, is 0.19 eV higher in 

energy.
5, 6

 The re-organization of lattice oxygen takes place in the MoO3 bulk along the [100] 

or [001] direction, forming defects in the structure, and the lattice oxygen at the surface of the 

(010) facet is replenished. This is because oxygen diffusion along the [100] or [001] 

directions in the MoO3 layered structure is much faster than parallel to the layers ([010] 

direction). After a certain concentration of oxygen vacancies in the MoO3 structure has been 

exceeded, the oxygen vacancies are consumed by forming intermediate phase Mo4O11 

(3MoO3·MoO2) impurities, which serve as nucleation sites for the rapid formation of MoO2 

crystallites. The mechanism for the formation of MoO2 structure seems to be strongly 

dependent on the layered structure in the [010] direction of MoO3, seeing that the various 
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orientations of MoO2 crystallites correspond to some boundary planes in MoO2, which have a 

structure very close to the (010) planes in the semi-layer.
7
 The reduction brings about the 

collapse of the successive (010) planes of MoO3. In this transformation, the <100> rows in 

MoO2, constituted by strongly linked elements (edge-sharing MoO6 octahedra) are found to 

be arranged in some directions perpendicular or very oblique with respect to the initial (010) 

surface of MoO3. Specifically, the (010) lattice plane of MoO3 is converted into the (100) 

facet of MoO2 as the temperature increases. The lattice plane size details: MoO3 (010): a = 

11.0892 Å, b = 11.8884 Å; MoO2 (100): a = 9.7132 Å, b = 11.0892 Å.
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Figure S16. In-operando synchrotron XRPD data for MoO3@MoO2/rGO-500 electrode: (a) 

before discharge, (b) after discharge to 0.01 V, and (c) after charge to 3.0 V. Before discharge, 

the XRPD pattern matches well with MoO2 (K λ = 0.6887 Å). The main peaks of the XRPD 

pattern match ideally with Li0.98MoO2 on discharging to 0.01 V. In the meantime, a small 

peak located at about 17.9° can be observed, which means that the MoO3@MoO2 

heterostructures have been partially converted into Mo. When the cell is charged to 3.0 V, the 

XRPD pattern shows similar peaks to the original pattern, indicating the good phase 

reversibility of MoO2, which helps to relieve the pulverization of α-MoO3. 
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Figure S17. Contour plots of the in-operando synchrotron XRPD data for 

MoO3@MoO2/rGO-500 electrode in different degree ranges: (a) 15.0°–15.9°, where the (020) 

and (002) peaks of Li0.98MoO2 appear in the discharge process; (b) 16.0°–16.8°, where the 

( 2̅02) peak of Li0.98MoO2 appears; (c) 22.2°–23.6°, where the (022) peak of MoO2 is 

converted to the (220) peak of Li0.98MoO2; and (d) 24.0°–26.0°. (Note that the synchrotron 

coin cell was perpendicularly placed on the sample stage, so that the excess electrolyte 

flowed to the bottom of the cell due to gravity, resulting in a significant drop of the 

background signal) 
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