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Predicting the influence of hip and lumbar flexibility on
lifting motions using optimal control

Manish Sreenivasa1,2,∗, Matthew Millard2, Idsart Kingma3, Jaap H. van
Dieën3, Katja Mombaur2

Abstract

Computational models of the human body coupled with optimization can be
used to predict the influence of variables that cannot be experimentally manip-
ulated. Here, we present a study that predicts the motion of the human body
while lifting a box, as a function of flexibility of the hip and lumbar joints in the
sagittal plane. We modeled the human body in the sagittal plane with joints
actuated by pairs of agonist-antagonist muscle torque generators, and a passive
hamstring muscle. The characteristics of a stiff, average and flexible person were
represented by co-varying the lumbar range-of-motion, lumbar passive extensor-
torque and the hamstring passive muscle-force. We used optimal control to solve
for motions that simulated lifting a 10kg box from a 0.3m height. The solution
minimized the total sum of the normalized squared active and passive muscle
torques and the normalized passive hamstring muscle forces, over the duration
of the motion. The predicted motion of the average lifter agreed well with ex-
perimental data in the literature. The change in model flexibility affected the
predicted joint angles, with the stiffer models flexing more at the hip and knee,
and less at the lumbar joint, to complete the lift. Stiffer models produced simi-
lar passive lumbar torque and higher hamstring muscle force components than
the more flexible models. The variation between the motion characteristics of
the models suggest that flexibility may play an important role in determining
lifting technique.
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1. Introduction

Mechanics-based models can represent the human body as articulated seg-
ments that describe the general movement of the limbs. Coupled with compu-
tational methods such models prove useful in investigating human movement
parameters that may be difficult to directly measure, such as joint torques. We
identify two general approaches to such investigations; First, by using experi-
mental data to estimate what the human was doing (inverse-methods), such as
(Faber et al., 2011; Kingma et al., 2004). Second, by simulating or predicting
novel control signals, and computing the corresponding movements and internal
physiological states (Burg et al., 2005; Arjmand and Shirazi-Adl, 2006; Dreis-
charf et al., 2016; Millard et al., 2017). Predictive simulations are computation-
ally intensive and require methods, such as optimal control (OC), to generate
the control signals specific to various movement tasks. In general, optimal con-
trol solves for state and control trajectories that satisfy the system dynamics
subject to constraints such that the value of an underlying objective function is
minimized. More commonly, optimal control has been applied to simulating gait
(Anderson and Pandy, 2001; Ackermann and van den Bogert, 2010; Mombaur,
2016; Sreenivasa et al., 2017) and sit-to-stand motions (Sadeghi et al., 2013;
Mombaur and Hoang, 2017), with relatively limited number of studies focusing
on lifting motions (Arjmand and Shirazi-Adl, 2006; Manns et al., 2017; Millard
et al., 2017; Harant et al., 2017). Despite these challenges, simulations can help
answer biomechanical questions that are impractical or impossible to answer
using experimental analysis alone. Examples of such questions are those that
study the effect of varying muscle strength (Steele et al., 2012), or the effect
of orthosis stiffness on patient gait (Sreenivasa et al., 2017), or the influence
of varying cost function (Arjmand and Shirazi-Adl, 2006; Sadeghi et al., 2013;
Mombaur and Hoang, 2017).

The biomechanics of lifting motions are of particular interest as they require
the coordination of muscles over the whole body involving concentrated loads
over several joints. As a common daily activity, excessive cumulative lower back
loads (CLBL) during lifting, computed as the integral of net back moments
over time, have been associated with risk of injury and lower-back pain (Coenen
et al., 2013). Physiological factors, as well as the lifting configuration and speed,
can affect the characteristics of an individual’s lifting motion and the load on
the lower back (Faber et al., 2011; Kingma et al., 2004; Buseck et al., 1987).
However, there remains a gap in our understanding of the relationship between
an individual’s flexibility and their lifting motion. Note that for the purpose
of this study we use the term flexibility to denote a combination of kinematic
and kinetic characteristics of the movement about a joint. For example, the
musculature around a less flexible joint would generate higher passive torques at
a given range of motion (ROM) when compared to a more flexible joint. Previous
studies have reported on the lumbar (Dolan et al., 1994) and hip (Gajdosik et al.,
1994) ROM, but do not investigate the influence of limited ROM on the whole
body movement. From an experimental point-of-view, finding a population of
subjects with suitable range of flexibility and having an objective comparison
between their lifting styles is a difficult endeavor.

The goal of this study was to use simulations to investigate the influence
that hip and lumbar flexibility can have on the kinematics and dynamics of
lifting motions. In this context, we developed a model of the human body and
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Figure 1: A sagittal plane human model was used to simulate the motions while lifting a 10kg
box. Illustrated are the human and box degrees of freedom. A line-type passive hamstring
muscle is illustrated as a blue line extending from the pelvis to the shank segment. Dashed
lines indicate kinematic constraints imposed during the motion between points on the feet
and the floor, and the box and the hands.

formulated an optimal control problem (OCP) for predicting lifting motions.
Model flexibility was modified to simulate a stiff, average and flexible person,
in order to answer the question - How does the predicted model motion change
with flexibility? This study was conducted in the context of wearable robots
(exoskeletons) that work in close coupling with the human body. An additional
focus was on the inferences that we may make from our results towards the
design of such exoskeletons.

2. Materials and Methods

2.1. Human models

We modeled the human body in the sagittal plane and combined the left
and right limbs. This was done to reduce model complexity and under the
focus of evaluating left-right symmetric motion that occurs primarily in the
sagittal plane. The model consisted of an articulated multibody system with
10 segments (Fig. 1). The pelvis segment was modeled as a floating base
with two translational and one rotational degrees of freedom (DoF). All other
segments were modeled with one rotational DoF each, to give a total of 12 DoF.
The human model’s segment lengths corresponded to those recorded from a 35-
year old male (1.74m in height, 81.0kg in weight). Segment mass and inertia
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properties were first approximated from anatomical regression equations (de
Leva, 1996) using the subject’s height and weight. The ratio of the subject-
specific segment lengths to the default lengths provided by (de Leva, 1996)
were then used to linearly scale the segment mass and inertia, using the model
creation software ModelFactory (Sreenivasa and Harant, 2018).

All internal DoFs were actuated by pairs of agonist-antagonist muscle torque
generators (MTG) (Millard et al., 2017). Each MTG represented the torques
generated by the active (τA) and passive (τP ) muscle components in one rota-
tional direction as,

τ = τA + τP with, (1)

τA = τoa f A(θ)fV(ω) (2)

τP = τof
PE(θ)(1 − βPE ω

ωM
max

) (3)

where, θ were the joint angles, ω were the joint angular velocities, τo was the
maximum isometric torque, a was the muscle activation, f A(θ) was the value
from the active torque-angle curve, fV(ω) was the value from the torque-velocity
curve, f PE(θ) was the value from the passive-torque-angle curve, and, βPE was
a normalized damping coefficient. We chose to use MTGs in this study in favor
of line-type muscles (e.g. (Christophy et al., 2012; van Dieën and Kingma,
2005)) as we were interested in the overall coordination of the limbs rather than
in the bone-on-bone contact forces. The relative simplicity of the MTGs also
helps reduce the complexity of the optimal control problem. We also note that
lumbar disk compressive forces have been found to be highly correlated with net
moments about the L5/S1 vertebra (van Dieën and Kingma, 2005), allowing
simpler models such as the one used in this study to be useful in estimating
loading on the vertebral disk.

A total of 18 MTGs produce flexion-extension torques that actuated the
segments. We added damping at the model’s joints that represents the passive
damping arising from the musculature and tissue surrounding the joint. Most
of the passive and active muscle properties were identical to the model defined
in (Millard et al., 2017). The exceptions were the passive torques of the lumbar
extensor, hip extensor and the knee flexor, as detailed further. An open-source
software implementation of the MTGs is available as an addon in RBDL (https:
//rbdl.bitbucket.io/).

2.1.1. Passive muscle properties

We modified the contributions from passive muscle components to reflect a
stiff, average, and flexible person. We limit the lumbar range-of-motion (RoM)
in flexion and modify the passive extension torque generated by the lumbar-
extensor MTG.

Dolan et al. measured the lumbar flexion RoM in healthy adult males and
reported an average of 53.3◦ with a range from 38.5◦ to 69.4◦ (Dolan et al.,
1994). The study also reported an average peak passive lumbar extensor torque
of 84.0Nm across all subjects at 97.3% of peak flexion angle. We used Dolan’s
findings to model a stiff, average and flexible lumbar extensor that generates
84.0Nm of passive lumbar extension torque at 37.4◦, 51.8◦ and 67.5◦ of lumbar
flexion angle, respectively (note that these angles differ from the mean and range
reported in Dolan et al. as they refer to the point of the curve where 84.0Nm is
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developed, which is slightly less than at 100% flexion). The passive force-length
curve of the lumbar extensor was adjusted such that the normalized-force-length
remained constant and the MTG generated the required extension torque at the
desired lumbar flexion angle. This modification is consistent with an optimal
fiber length that is shortened to make a muscle stiffer and lengthened to make
it more flexible.

We modeled the passive contribution of the bi-articular hamstrings by in-
cluding a line-type muscle spanning the pelvis, hip and knee joints (Fig. 1).
We chose to model the hamstring muscle and only its passive component based
on literature evidence on the important role played by the hamstring during
bending and lifting tasks, especially in the coordination of the pelvis, hip and
knee (Gajdosik et al., 1994; Kang et al., 2013). The muscle origin point on the
pelvis segment and insertion point on the shank segment were modeled as per
(Brand et al., 1982). The passive force of the hamstring, fham, was applied to
the origin and insertion points on the model, and computed as,

fham = fof
PE(l̃)(1 + βṽ) (4)

where, fo = 4696.0N was the maximum isometric force as per (Hoy et al., 1990).
Note that here we have doubled the value of fo to account for our sagittal plane
model that combines the right and left limbs. fPE(l̃) was the normalized force-
length curve as per (Millard et al., 2013). l̃ was the normalized muscle length
and calculated as,

l̃ =
l − ltslack

lopt
(5)

where, l was the current muscle length, ltslack = 0.385m and lopt = 0.107m
were the tendon slack length and optimal fiber length as per (Hoy et al., 1990).
β was a damping term set to 0.1 and ṽ was the normalized muscle velocity. We
assumed a rigid tendon and a pennation angle of zero.

Gajdosik et al. measured the flexibility in hip flexion across 30 young men
during a toe-touch task with the knees straightened (Gajdosik et al., 1994).
Subjects were classified with short, medium and long hamstrings as being able
to reach hip flexion angles of 59.0◦, 68.7◦ and 76.7◦, respectively. We modeled
the characteristics of a stiff, average and flexible hip such that the hamstring
muscle produced 129.4Nm of extension torque at the flexion RoM corresponding
to a short, medium and long hamstring. This value of extension torque was
estimated from inverse-dynamics analysis of a toe-touch motion of a subject
of similar height and weight as our model (Millard et al., 2017). Hamstring
flexibility was modulated by solving for the new optimal fiber length, lopt, such
that the hamstring muscle developed the desired passive extension torque at the
hip joint at the desired hip flexion angle (with straightened knee).

Note that the passive components, but not the active components, of the
hip extensor and knee flexor MTGs were turned off, as these passive forces were
now provided by the passive hamstring muscle. The lumbar passive extensor
and hamstring characteristics were co-varied to create 3 model variations cor-
responding to a stiff-lifter, an average-lifter and a flexible-lifter (see Table 1 for
summary). The motivation behind co-varying the hip and lumbar flexibility was
evidence that short hamstrings in a person is associated with decreased lumbar
RoM (Gajdosik et al., 1994).
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Table 1: Flexibility characteristics of the hip and lumbar joints for the stiff, average and
flexible models. The indices specify the relevant joints (see Fig. 1). The values indicate the
target flexion angles and corresponding extension torques used for fitting the lumbar extensor
MTG’s and hamstring muscle’s passive properties. The values for the hip are with straight
knees and only relate to hamstrings tension; with knee flexion this value increases based on
hamstrings length.

Model Type
Stiff Average Flexible

H
ip θ7 59.0◦ 68.7◦ 76.7◦

τP7 129.4Nm

L
u

m
b

ar (θ10,θ11) 37.4◦ 51.8◦ 67.5◦

(τP10,τP11) 84.0Nm

2.1.2. Activation dynamics

MTG activation was computed using first-order activation dynamics,

ȧ =
e− a

tad
(6)

where, ȧ was the rate of change in activation, e represents the muscle excitation
signal, and tad the activation-deactivation time constant (Thelen, 2003). We
set tad = 50ms for the MTGs of the shoulder, elbow, hand and head, which
is equal to the deactivation time constant reported by (Thelen, 2003). Note
that unlike Thelen et al., we assumed the same time constants for activation
and deactivation in order to have a continuous function for ȧ. For the MTGs
of the hip, knee, ankle and lumbar joints, we derived the time constants from
recordings of the electromechanical delay (EMD) reported in literature (Table
2). This was motivated by our observation that the nominal value of tad = 50ms
was too fast for the bigger muscles, such as those at the back and hip. We
assumed that the tasks in the EMD literature have a dominant frequency of
1Hz, allowing us to map the EMD delay to a phase shift, and finally to tad in
Eq. (6).

Table 2: Activation-Deactivation time constants, tad (Eq. (6)), derived from reported values
of electromechanical delay (EMD). tad for the head, shoulder, elbows and hands were set to
50ms. The values indicated refer to the time constants and EMD associated with the major
muscle driving motion in that direction.

Joints
tad (ms) [EMD (ms)]

Extension MTG Flexion MTG
Hip 132 [110] 52 [50]

(Blackburn et al., 2009) (Begovic et al., 2014)
Knee 52 [50] 132 [110]

(Begovic et al., 2014) (Blackburn et al., 2009)
Ankle 46 [45] 149 [120]

(Winter and Brookes, 1991) (Úbeda et al., 2017)
Lumbar 169 [130] 251 [160]

(van Dieën et al., 1991) (Thelen et al., 1994)
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Figure 2: Motion phases of the optimal control problem. The three motion phases delineate the
changing constraints on the multi-body system, which also changes the underlying dynamics.

2.2. Optimal lifting motions

We used a multiple shooting method described by (Bock and Pitt, 1984)
and implemented in the software MUSCOD-II (Leineweber et al., 2003) to solve
for optimal lifting motions. The dynamical system solved by the method refers
to the equations of motions governing the MTG actuated multi-body human
model. The details of the OCP setup and numerical method are identical to
that in (Millard et al., 2017). Here, we summarize the salient points of the OCP
relevant to the prediction of lifting motions.

The lifting motion was defined as 3 phases; bending, gripping and lifting
(Fig. 2). The constraints between the hands and the box change across phases
which also changes the underlying dynamics. The objective function was defined
as,

min
x(·),e(·),ν·

3∑
j=1

∫ νj+1

νj

[
nk∑
k=0

{
(τAk )2

(τo)2k
+

(τPk )2

(τo)2k
+ δe2k

}
+

(
fham
fo

)2
]

dt (7)

where, x(·) = [θ ω a] was a vector of state variables, ek were the control inputs
for the simulation (neural excitations, Eq. (6)), j = 1...3 iterates through the
motion phases which begin at time νj and end at νj+1, and k = 0...nk iterates
over the MTGs. The term δe2k was a regularization term that introduced a small
cost to the objective function value and served to smoothen the control inputs.
We set δ to 0.1 for our simulations.

Note that this objective function minimizes the passive and active torques
over all MTGs of the model and not just those at the lower back. This is in
contrast to studies in ergonomics, e.g. (Arjmand and Shirazi-Adl, 2006; van
Dieën and Kingma, 2005), where mainly lumbar forces/torques are minimized.
In the present study, we were interested in simulating movement of the whole
body and only minimizing the lumbar torques would not have been sufficient
for this goal. It is important to note that in contrast to (Arjmand and Shirazi-
Adl, 2006; van Dieën and Kingma, 2005), in this study we were computing a
forward simulation that predicted motion kinematics as well as kinetics. To
the best of our knowledge, objective functions used in ergonomics literature are
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typically used to solve for muscle forces under known kinematics and kinetics,
and hence a direct comparison to this study is not possible. Forward simulations
using objective functions are relatively more commonly used in the simulation of
walking and running. A typically used objective function is one that minimizes
the integral over time of the muscle activations raised to a power (Ackermann
and van den Bogert, 2010), although other formulations have also been proposed
(Mombaur, 2016; Afschrift et al., 2016; Serrancoĺı et al., 2017; Sadeghi et al.,
2013; Mombaur and Hoang, 2017).

The motivation behind our formulation was to include the influence of pas-
sive muscle components in our simulations, as opposed to objective functions
that are based on muscle activation and therefore only take active components
into account. Note that our objective function contains the active and passive
components separately, and not as the net MTG torque. This was motivated by
our observation that the formulation based on net MTG torques did not ade-
quately consider passive muscle components, leading to movements with unnat-
urally large passive forces. There is evidence that repeated stretching of spinous
ligaments may lead to back injury (Solomonow et al., 2003). It is plausible that
a human might shape their movements to avoid high muscle forces, because hu-
mans have sensors to provide muscle force information via golgi-tendon organs.
In the following, we describe the main constraints that were applied during the
motion.

1. Bending - The bending phase started with the human model standing
upright and still, with a 10kg box placed in front (Fig. 2).

2. Gripping - At the start of the gripping phase, the position of the point
on the hand segment (corresponding to the distal second metacarpal) was
constrained to match the grip point of the box 0.3m off the ground. The
hand translational and rotational velocities as well as hand forces were set
to zero at the start of gripping.

3. Lifting - At the start of the lifting phase the vertical hand force was
constrained to be equal to the force required to support the weight of
the box. The box and hand were affixed together in this phase using
3 kinematic constraints. The end of this phase constrained the human
model to stand upright and still.

Additional constraints were active through all phases.

1. We maintained the model’s balance by constraining the vertical foot con-
tact forces to be strictly positive.

2. The ratio of horizontal to vertical contact forces were constrained to not
exceed a coefficient of friction of 0.8.

3. The two trunk segments were constrained to move together at the same
angular velocities.

The bending and lifting phase durations were variables of the OCP. The gripping
phase duration was fixed to 0.125s based on experimental observations of the
time required by subjects to grip and lift a box off the ground (Harant et al.,
2017).

2.3. Experimental comparisons

We compare our predictions to experimental data recorded as part of a
previous study (Harant et al., 2017). We recorded full body kinematics, ground
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reaction forces, and hand-box forces of 4 male subjects (age 21 - 25 years,
weight 67 - 103 kg, height 1.7 - 1.9m) lifting a 10kg box using a stoop lift.
Joint angle trajectories were computed from marker positions using least-squares
optimization. Joint torques were computed from joint angles, recorded ground
reaction forces, and recorded hand-box forces using inverse dynamics analysis.
Further detail about the experimental analysis is available in (Harant et al.,
2017). In addition, we report the values for lumbar flexion and lumbar net
torque from (Kingma et al., 2004) and (Faber et al., 2011). The values reported
from Kingma et al. are the average and standard deviation across 10 subjects,
using a stoop lift to pick up a 10.5kg box from a height of 0.5m above the
ground. Faber et al. reported results from 9 subjects lifting a 16.8kg box from
a height of 0.32m above the ground.

Figure 3: Joint angles at the (a) hip, (b) knee and (c) lumbar joints. Dashed lines in panes
(a) and (c) indicate the flexion limits for stiff, average and flexible humans. Note that the
indicated hip flexion limit (panel (a)) is with a straight-knee. Panels (d), (e) and (f) show the
net torques at the hip, knee and lumbar joints, respectively. Shaded regions indicate standard
deviation from experimental recordings, scaled to the average model motion duration (Harant
et al., 2017).

3. Results

The predicted joint angles and net joint torques of the average-lifter match
the experimental observations for most of the joints (Fig. 3). The peak hip, knee
and lumbar angles were within 1 s.d. of the average subject from (Harant et al.,
2017). The peak lumbar angle was very close to the average value reported by
(Kingma et al., 2004) and close to the +1 s.d. range of that reported by (Faber
et al., 2011). Table 3 lists and compares the results from the average-lifter to
the experimental results from (Harant et al., 2017).

Modifying the hip and lumbar flexibility produced marked changes in the
joint kinematics (Fig. 3a-c). For each of the lifters, the peak lumbar flexion
reached the limit imposed on that model type (dashed lines in Fig. 3c). The
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Table 3: Comparison of average-lifter (green lines in Fig. 3) joint angles and joint torques to
experimental results from (Harant et al., 2017). Reported are the root mean square (RMS)
differences between the average-lifter and the average experimental results, the maximum
distance between the average-lifter and the experimental envelope, and the maximum experi-
mental variation for comparison. Note that the lumbar angle reported here is the summation
over the two trunk segments of our model.

Hip Joint Knee Joint Lumbar Joint

J
oi

n
t

a
n
gl

es

RMS Average-Lifter vs.
Exp. Average

13.4◦ 14.0◦ 19.9◦

Max. distance Average-
Lifter vs. Exp. Range

12.6◦ 4.2◦ 21.7◦

Max. Exp. Variation 26.2◦ 16.4◦ 17.9◦

J
o
in

t
to

rq
u

es

RMS Average-Lifter vs.
Exp. Average

28.3Nm 37.1Nm 17.5Nm

Max. distance Average-
Lifter vs. Exp. Range

53.7Nm 49.0Nm 28.1Nm

Max. Exp. Variation 40.5Nm 47.3Nm 43.2Nm

reduced flexibility at the hip was overcome by bending the knee, thus relaxing
the hamstring muscle and allowing the hip to flex beyond what is possible with
a straight-knee (dashed lines in Fig. 3a). As the model was made more flexible,
the optimal solution is one that favors more lumbar flexion and less hip flexion.
This can be observed at the point of lifting by comparison of the model pose (Fig.
5). We observed an absolute difference in hip flexion of 11.2◦ and 9.6◦ between
the stiff and average lifters, and the flexible and average lifters respectively. The
corresponding differences in lumbar flexion were 14.2◦ and 15.5◦.

Peak net joint torque at the hip joint (Fig. 3d) increased as the model was
made more flexible. Peak net lumbar joint torque (Fig. 3f) and CLBL (area un-
der curves in Fig. 3f) were similar across models. The ratio of peak lumbar/hip
angle increased as the model was made more flexible. The peak normalized
passive lumbar extension torque was similar across models with values between
14% and 15% (Fig. 4a). Peak normalized passive hamstring forces decreased
from 24.3% to 6.9% with increasing model flexibility (Fig. 4b). The models
took 2.36, 2.32 and 2.29 seconds to complete the lift, while the range for the
experimental lifts was from 2.72 to 4.32 seconds. Table 4 lists and compares the
result values across the 3 model types.

4. Discussion

We have presented results from a human model simulation of lifting a box
and the varition of the model motion as a function of hip and lumbar flexibil-
ity. In general, the lifting motion corresponding to an average person’s model
matched results from literature (Kingma et al., 2004; Faber et al., 2011) (Fig.
3) and experimental recordings from (Harant et al., 2017). There were however
exceptions to this trend; when compared to the average lumbar flexion angle
from (Harant et al., 2017), the results from the stiff-lifter were a closer match
than the average-lifter. This could be because the subjects tested in (Harant
et al., 2017) were as a group close to the stiff case. We also note that the results
from (Faber et al., 2011) were close to the stiff-lifter in the present study, and in
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Figure 4: Comparison of (a) normalized passive lumbar extensor torque, and (b) normalized
passive hamstring force for the three lifter models.

general there appears to be a large variation in lumbar flexion angles reported
in the literature (for equivalent lifting tasks). A marked difference was found in
the profile of the predicted lumbar angle during the bending and lifting phases,
when compared to the experimental range (green line in Fig. 3c). We speculate
that these differences could be due to an underestimation of muscle damping in
the model, and/or, due to the time-constants used in the activation dynamics
not fitting the subjects very well. To improve the fit of the lumbar angle pro-
files, it may be interesting to treat the damping parameter and activation time
constant as free parameters of an optimization problem.

The peak net hip torques in the model were higher than those in the experi-
mental range (Fig. 3d). The speed of the motion can have a strong influence on
the peak joint torques. Our model simulations typically completed the motion
slightly faster than the average observed across subjects, and this was likely the
cause for the higher torques. A solution could be to include additional terms in
the cost function that penalize fast motions. Another difference between model
and experimental results, was found in the torques about the knee joint Fig. 3e.
While the peak torque at the knee matched the experimental range, the torque
profile during the lifting phase was underestimated. It is possible that the sug-
gested changes in muscle damping, activation time-constants and penalization
of fast motions, may also improve the profile of knee torques.

The changes in the model’s motion characteristics as a function of flexibility
provided some interesting insights into possible lifting strategies. The stiff-lifter
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Table 4: Comparison of torque and force characteristics for the stiff, average and flexible-
lifters. Positive net torques indicate extension torques at the hip and lumbar joints.

Stiff-Lifter Average-Lifter Flexible-Lifter
Norm. Lumbar
MTG Passive

Extension Torque
15.0% 14.7% 14.5%

Norm. Hamstring
Muscle Passive

Force
24.3% 17.7% 6.9%

Peak Net Hip Joint
Torque

216.2Nm 226.2Nm 250.0Nm

Peak Net Lumbar
Joint Torque

198.9Nm 198.9Nm 203.0Nm

Cumulative Lower
Back Load (CLBL)

185.7Nms 189.8Nms 184.5Nms

Ratio Peak
Lumbar/Hip Angle

0.39 0.60 0.87

had the highest knee flexion and hip flexion, thus allowing the hamstring muscle
to relax, while having the lowest lumbar flexion. In comparison the average and
flexible-lifters used less hip and knee flexion and more lumbar flexion. Studies
have reported similar increases in lumbar flexion with increased flexibility of the
hamstring muscle due to stretching exercise (Kang et al., 2013), and due to re-
peated lifts that increase flexibility (Dolan and Adams, 1998). Our simulations
suggest that the different contributions of passive forces for the three lifters
played a major role in the coordination of the limbs during lifting (Fig. 4). The
additional passive components with increasing model stiffness, and the associ-
ated penalty in the OCP were the likely reason behind the differences in lifting
styles. Interestingly, the magnitudes of the normalized passive forces/torques
were similar across models for the lumbar back but not for the hamstring muscle.
It is however unclear if this trend extends to real world lifting, as it may also be
possible that a person is more tolerant of passive forces in the hamstring rather
than at the lumbar back (or vice-versa), in which case the cost function used
to simulate that person’s lifting style would have to be appropriately weighted.
Additionally, our cost function formulation equally weights the active and pas-
sive muscle components, as well as the relative weighting between MTGs. It is
possible that these weights vary between joints, active and passive components
and additionally between individuals and tasks. Deducing subject-specific and
task-specific weights is an important and difficult problem. A possible solution
here could be the use of inverse optimal control (Mombaur, 2016; Clever et al.,
2016) that can be used to identify specific optimization criteria from recorded
experimental data.

The plausibility of the predicted pattern was supported by results from stud-
ies on gender based differences in lifting technique. Lumbar flexion angle in men
has been found to be larger than that of women (Sullivan et al., 1994). Thomas
et al. concluded that ROM and lifting technique may be contributing factors
towards observed differences between the motion kinematics of male and female
subjects (Thomas et al., 1998). They also reported that men flex equally at the
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Figure 5: Comparison of model pose at start of lifting phase. (a) Stiff vs. average-lifter
(b) Flexible vs. average-lifter. In both panels, the average-lifter is colored in gray in the
background.

hip and spine, whereas women use minimal spine flexion. In our simulations,
we observed a similar trend as (Thomas et al., 1998), with the ratio of peak
lumbar/hip angle increasing with model flexibility.

The strong influence of model stiffness on optimal lifting motions raises some
interesting perspectives towards the design of assistive devices (exoskeletons)
such as the Laevo V2 (Laevo NL) and backX (US Bionics). Exoskeletons that
provide lifting assistance using passive spring-like elements work in parallel with
the body and can change the effective stiffness at the hip and lumbar joints. Our
findings suggest that this could in turn result in changes in the motion, the pas-
sive muscle forces/joint torques, as well as the cumulative lower back load. These
changes have implications for the design of the exoskeleton from a user-safety
point of view, and as well, for predicting how effective the exoskeleton would be
at reducing overall effort. In order to maximize assistance while minimizing the
change from a person’s natural motion, it may be necessary to make a careful
choice of exoskeleton hip and lumbar spring stiffness and to take into account
the variation in flexibility between users.

The model used in this study was relatively simple and did not contain
more detailed aspects that affect joint loading such as multijoint equilibrium
and translational DOF in the spine (Dreischarf et al., 2016). The trade-off here
was to have a computationally tractable problem that simulates motion of the
whole body, including the lower limbs, arms, and as well the interaction with
the environment (ground reaction forces and hand-box forces). Additionally,
the segment lengths, masses, inertias etc were built by scaling from average
properties reported in literature (e.g. (de Leva, 1996)) which may not be close
to the average of the subject populations used for comparison. We also note
that in this study we have only varied some of the aspects that could poten-
tially contribute towards a person’s lifting technique. Additional factors such as
relative muscle strength, anatomical differences and task-specific requirements
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may play just as important a role in deciding motion characteristics. In order
to establish the validity of our simulation results we additionally need to com-
pare to similarly grouped populations of stiff, average and flexible persons (for
example in a manner similar to the study design followed by (Gajdosik et al.,
1994)).
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Factors underlying the perturbation resistance of the trunk in the first part
of a lifting movement. Biological Cybernetics, 93(1):54–62.

14



Buseck, M., Schipplein, O. D., Andersson, G. B. J., and Andriachhi, T. P.
(1987). Influence of dynamic factors and external loads on the moment at the
lumbar spine in lifting. Spine (Phila Pa 1976), 13(8):918–921.

Christophy, M., Senan, N. A. F., Lotz, J. C., and O’Reilly, O. M. (2012). A
musculoskeletal model for the lumbar spine. Biomechanics and modeling in
mechanobiology, 11(1-2):19–34.

Clever, D., Schemschat, R. M., Felis, M. L., and Mombaur, K. (2016). Inverse
optimal control based identification of optimality criteria in whole-body hu-
man walking on level ground. In 2016 6th IEEE International Conference on
Biomedical Robotics and Biomechatronics (BioRob), pages 1192–1199.

Coenen, P., Kingma, I., Boot, C., Twisk, J., Bongers, P., and van Dieën, J.
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Faber, G. S., Kingma, I., and van Dieën, J. H. (2011). Effect of initial horizontal
object position on peak l5/s1 moments in manual lifting is dependent on task
type and familiarity with alternative lifting strategies. Ergonomics, 54(1):72–
81.

Gajdosik, R. L., Albert, C. R., and Mitman, J. J. (1994). Influence of hamstring
length on the standing position and flexion range of motion of the pelvic angle,
lumbar angle, and thoracic angle. Journal of Orthopaedic & Sports Physical
Therapy, 20(4):213–219.

Harant, M., Sreenivasa, M., Millard, M., Sarabon, N., and Mombaur, K. (2017).
Parameter optimization for passive spinal exoskeletons based on experimental
data and optimal control. In Proceedings of the 2017 IEEE-RAS International
Conference on Humanoid Robots.

Hoy, M. G., Zajac, F. E., and Gordon, M. E. (1990). A musculoskeletal model
of the human lower extremity: The effect of muscle, tendon, and moment arm
on the moment-angle relationship of musculotendon actuators at the hip, knee
and ankle. Journal of Biomechanics, 23(2):157–169.

15



Kang, M.-H., Jung, D.-H., An, D.-H., Yoo, W.-G., and Oh, J.-S. (2013). Acute
effects of hamstring-stretching exercises on the kinematics of the lumbar spine
and hip during stoop lifting. Journal of Back and Musculoskeletal Rehabili-
tation,, 26(3):329 – 336.

Kingma, I., Bosch, T., Bruins, L., and van Dieën, J. H. (2004). Foot positioning
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