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Abstract 

Additive manufacturing techniques open up a range of new possibilities for the design 

of electrochemical systems, affording us the ability to overcome limitations and difficulties 

that traditional production processes face. Here we present a novel electrode design, realised 

through selective laser melting (SLM) of metal powders, with an integrated gas (reactant) 

delivery system. This architecture results in significantly (~40%) enhanced hydrogen 

oxidation performance, as compared to a control system. As such, this work serves as a 

proof-of-concept, to highlight the wide array of designs which can be readily achieved due to 

recent developments in additive manufacturing technologies. 

 

 



Introduction 

Additive manufacturing (AM), or three-dimensional printing (3D printing) allows 

rapid production of complex structures from software made models, using a wide array of 

materials, ranging from polymers [1-3] to metals [4-7] and even human cells [8-11]. As an 

alternative to traditional subtractive processes this offers the ability to produce structures with 

a complexity not attainable using conventional technologies, in particular the ability to create 

complex internal structures within 3D systems and creates new opportunities [12, 13].  

Within the branch of AM, there has been an increasing focus towards energy based 

applications from the many techniques under this manufacturing style. Primarily, the creation 

of metal electrodes for sensing [14-17], and to a lesser extent, developments into conductive 

thermoplastic sensory structures.[18] 

AM has already begun to bring specific benefit to electrochemistry, with the ability to 

build very large surface area structures an attractive aspect [19]. A number of different 3D 

printed electrodes and cell designs have been reported to date, such as interdigitated [20] and 

high surface area [21, 22] electrodes for energy applications, as well as synthetic reactors for 

microfluidics [23]. These recent contributions highlight that the use of such technology for 

electrochemical applications is still at a nascent stage, with opportunities to use these 

advances to increase the capabilities of electrochemical reactions and devices as AM 

decreases the gap between theoretical and experimental[24]. Moreover, it is considered that 

the advantages brought about through 3D printing has the potential to revolutionise energy 

materials and their applications in an efficiency impossible through traditional manufacturing 

[25]. 

Gas oxidation / reduction reactions are a major field of research [26, 27] with wide 

reaching practical benefit. There is however a trade-off between the advantages of high 



surface area electrodes, i.e., an increased number of active sites, and the challenge of getting 

the reactants to these sites. In such reactions, gas must be delivered into the electrolyte and 

then to the surface of the electrode in order to be oxidized/reduced. For practical applications, 

elegant alternatives for transport of the gas reactants are desired.  The ability to control the 

delivery of reactants or removal of products through judicious 3D electrode design and 

fabrication offers an enormous promise as this can help overcome limitations which may 

arise from slow diffusion of reactants into a high surface area electrode. It should be noted 

that, at the research scale, such as in reaction mechanism studies, diffusion limitations may be 

overcome by using either rotating disk electrodes (RDE) or gas diffusion layers (GDL) 

loaded with catalyst. Obviously, RDE is not used in practical, large scale, devices and GDL 

are limited to 2D configurations, again not ideal for large scale reactions. 

The hydrogen oxidation reaction (HOR), which takes place at the anode of fuel cells, 

involves fast electron transfer at the interface of platinum electrodes, under acidic conditions. 

The speed of this means that the reaction is typically severely limited by diffusion of the H2 

molecules to the electrode surface [28]. In the present work, we introduce a bespoke 3D 

printed metal electrode fabrication via SLM for electrochemical reactions involving gaseous 

reactants. This fabrication method has been selected due to its reliability in production of 

high resolution prints, as well as production of parts with a very high relative density and low 

porosity[29], making it ideal for fabrication of solid, complex electrode structures. 

 The electrode presented here was designed to improve gas delivery to the active 

catalytic sites of a porous scaffold structure and manufactured using selective laser melting of 

a titanium alloy (Ti6Al4V). This was then coated with a Pt catalyst by electrodeposition and 

the effect of designed gas delivery system on their HOR response was observed by linear 

sweep voltammetry (LSV). Other reactions involving gas molecules as reactants, like CO2 

reduction and oxygen reduction/oxidation reactions could also benefit from this new concept. 



Results and Discussion 

The electrode design (seen in Figure 1) consists of a cylindrical section comprising a 

body centre cubic based 3D scaffolded structure (beam element diameter 200 μm, lattice 

spacing 1000 μm), with a total height of 61.1 mm and diameter of 15.5 mm, with the addition 

to two connections at the top. One of these is for electrical contact and the other to connect a 

gas supply. Gas is distributed inside the electrode via a four-way gas splitter, with each 

internal tube having a diameter of 1.5 mm, with the ends of each terminating 2.54 mm above 

the bottom of the electrode. Detailed design and melting parameters can be found in the 

experimental section. 
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Figure 1 – (a) Cross-sectional rendering of the printed Ti6AL4V electrode structure 

(simplified lattice structure), (b) Photograph of actual printed device and (c) zoomed section 

of gas splitter with dimensions. 

 

Prior to being used for HOR, the printed working electrode was coated with Pt by 

electrodeposition, according to literature methods [30], using a two-step process. Figure S1 

shows the current (a) and charge (b) profiles as a function of time during the 

electrodeposition. Cyclic voltammetry of the Pt coated electrode in an acidic electrolyte 

(Figure S1c) shows hydrogen adsorption and desorption characteristic peaks similar to those 

using a Pt sheet (Figure S1d). 

For the HOR study, a carbon cloth, also with deposited Pt, and Ag/AgCl (NaCl 3 mol/L) 

were used as counter and reference electrodes respectively. Hydrogen gas was introduced 

into the electrolyte through the electrode internal tubes until saturation (determined by the 

open circuit potential (OCP) plateauing) prior to LSV measurements (Figure 2a). H2 flow was 

maintained at 10 ml/min during the LSV experiments, which were made over a potential 

range from 1 mV more negative than the OCP to 600 mV positive of it, at 50 mV/s. Control 

experiments were done by purging H2 directly in the electrolyte next to the printed structure, 

rather than through the tubes (see inset of Figure 2b). 



 

Figure 2: LSV response during HOR, with H2 either being purged through the internal tubes 

(blue) or directly into the electrolyte (orange). Operation is shown schematically in inset of 

(b), with the pathways for H2 ingress shown using arrows of corresponding colours. 

 

The results presented in Figure 2a show that H2 oxidation reaches a higher limiting 

current (iL) when the gaseous reactant is purged through the 3D printed electrode internal 

tubes, directly to the active reaction sites. This verifies the assertion that gas reactant 

transport is a significant impediment to this reaction, as the internal delivery tubes allow the 

reactant gas to reach the surface of the electrode more efficiently. The limiting current is 

related to the diffusion layer accordingly to Equation 1 [31]. 

𝑖𝐿 =  𝑛𝐹𝐷𝐶0

𝛿⁄             (1) 



Where iL is the limiting current, n is the number transferred electrons, F is the Faraday 

constant, D is the diffusion coefficient of the redox specie (cm2 s), C0 is the concentration of 

the redox specie (mol L-1) and δ is the thickness of the diffusion layer. The diffusion layer 

thickness is the region at which the concentration of the reactant is depleted due its 

reduction/oxidation. The less efficient the transport of reactants is to the surface of the 

electrode, the thicker this layer will be. As such, the limiting current is inversely proportional 

to the diffusion layer thickness. This relationship is independent of the catalytic properties of 

the electrode and the applied potential, but rather is dependent only on how efficiently 

reactants are transported. As such, the higher limiting current for the experiments with gas 

purging through the internal tubes represents a 40% improvement in terms of diffusion of gas 

reactants to the electrode. 

The normalized logarithm of the current with respect to the logarithm of the limiting 

current, for each electrode, allows us to evaluate the dependence on diffusion on the reaction 

[28]. The graphs presented in Figure 2b show that for the system with gas delivered directly 

at the reaction site through the internal tubes of the 3D printed electrode, the limiting current 

is reached at a lower overpotential (η). It means that the reaction is less dependent on 

transport limitation and more on the charge transfer rate than when the purging is done 

directly in the electrolyte.  

 

 Conclusions 

 This work has demonstrated for the first time, to our knowledge, a high surface area, 

printed electrode with an integrated reactant delivery system. This results in substantial 

enhancements to the HOR efficiency as compared to gas being delivered external to the 

electrode structure, where slow diffusion of the gas is limiting. This represents an alternative 



to other approaches such GDL, with a greater focus on practicality. This concept may be 

applied to a range of gas based reactions and helps to demonstrate the array of possibilities 

for additive manufacturing in electrochemistry applications, which are only just starting to be 

explored. 

 

Experimental details 

Electrode fabrication by selective laser melting: 

The electrode (shown in Figure 1) was designed to be produced via the additive 

manufacturing technique known as SLM. This manufacturing process provides fine spatial 

resolution producing minimum features of approximately 100µm), thereby lending itself to 

the production of fine electrode structures exhibiting high surface areas. The equipment used 

to produce these electrodes (Realizer SLM 50) has a maximum cylindrical build volume, of 

Ø = 70 mm and height = 74 mm. 

The design aim was to maximise reaction surface area within a predefined volume, 

while providing a staggered path for gas distribution across this high surface area; this 

volumetric restriction is imposed so the electrode will be compatible with a previously 

designed reaction vessel. To maximise gas contact area within the electrode, a fine lattice 

structure was produced with 200 µm diameter cylindrical supports with the unit repeating 

every 1000 µm. This lattice structure was selected for the electrode body as the resolution 

was ideal and reliable to produce using SLM and the size of the lattice would create a 

baffling effect for gas distribution, increasing its diffusion across the electrode. 

The basis of the design allows for gas flow into the system via an external connection, 

and gas out, via an internal chamfered chamber leading to an external connection (seen in 

Figure 1A). The gas-splitter design has a four-way flow divider to segment flow amongst the 



channels (ID 1.5 mm), The internal diameter of the tube has been set to be 50% larger than 

the lattice spacing in an attempt to further disperse gas flow; this will allow the lattice to both 

split gas flow on contact with large volume bubbles, but also create a baffling effect with 

smaller bubbles. Given this anticipated gas distribution effect, four supply outlets have been 

created, as the resultant gas distribution is not expected to exceed a 90˚ angle. 

To achieve the fine resolution required for the electrode lattice, the following laser 

parameters specific to the Realizer SLM50 are shown below in Table 1: 

 

Table 1: Parameters used in the SLM50 to produce the Ti6Al4V electrode structure 

 Pre-hatch Hatch Boundaries (Inner and Outer) 

Bed Temperature (oC) 200 

Oxygen Content (%) 0.2 

Slice Height (µm) 25 

Exposure Time (µs) 60 80 60 

Point Distance (µm) 30 40 30 

Laser Current (µA) 1700 2500 1700 

 

 The produced electrodes were separated from the substrate and sonicated in IPA for 

one hour to remove any excess, loosely bound, powder which may have been retained from 

the printing process. Typical abrasive post-processing of SLM parts was avoided as it gives 

the potential to damage the lattice structure, and/or lodge external contaminant particles into 

the lattice. 

Electrodeposition of Pt on 3D printed electrode:  



For the electrodeposition on Pt on the 3D printed electrode the system was first 

conditioned at +0.3V for 20 s followed by a two-step process: -0.5 V for 50 s and -0.2 V for 

150 s. All reported potentials are against a Ag/AgCl NaCl 3 mol L-1 reference electrode. As 

electrolyte, 1 mM H2PtCl6·6H2O in 0.1 M KCl solution was used. The same procedure was 

employed for deposition of Pt on carbon cloth as the counter-electrode. 

Hydrogen oxidation reaction experiment: 

The HOR experiments were conducted by placing the carbon cloth counter electrode 

around the 3D printed working electrode, with sufficient spacing to avoid short circuiting. H2 

was then purged either outside the internal tubes or directly into the solution, adjacent to the 

electrode, until a stable OCP was observed, which took around 20 minutes. The oxidation of 

H2 was then studied by linear sweep voltammetry from a potential 1 mV more negative than 

OCP to +600mV at 50mV/s.  
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Supplemental Information  

 

Figure S1: Platinum coating of printed Ti6Al4V structure (a & b) 

chronoamperometric curve and corresponding total charge curve respectively. (c & d) 

cyclic voltammetry of Pt coated Ti6Al4V and Platinum mesh to verify the success of the 

deposition process respectively. 
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