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Abstract 

An as-cast Fe-17Mn-3Al-2Si-1Ni-0.06C (wt. %) high Mn steel slab was subjected to hot rolling to 

52% thickness reduction and quenched to room temperature. Thereafter, the hot-rolled plate was 

plane strain compressed to 5, 10, 15 and 20% thickness reductions at room temperature and 

cold-rolled to a further 42, 66 and 88% thickness reductions. The samples after 42% cold rolling 

were isochronally annealed at 500, 600, 625, 650, 700, 750, 800 and 850 °C for 300 s.  

Microstructure characterisation was undertaken via electron back-scattering diffraction (EBSD), 

conventional, high-resolution scanning and in-situ transmission electron microscopy (TEM). 

Mechanical behaviour was investigated using a combination of uniaxial tensile testing and digital 

image correlation on dog-bone samples after 42% cold rolling and annealing at 500, 625, 650, 

700 and 800 °C. 

The hot-rolled microstructure comprised coarse, polygonised γ grains with annealing twins and 

ε-martensite plates within γ grains and lenticular α′-martensite within ε-martensite plates that 

formed on quenching after annealing. Between 5 and 20% thickness reductions the formation of 

deformation-induced ε-martensite at γ stacking faults and α′-martensite at the intersection of ε-

martensite plates took place. {101̅2}〈1̅011〉ε extension twins were also observed in ε-martensite. 

Between 42 and 88% thickness reductions, the microstructure consisted of predominantly α′-

martensite with a small fraction of ε-martensite and a trace of γ. 

For the 5 and 10% thickness reduction conditions, high-resolution scanning transmission 

electron microscopy showed that the growth of ε-martensite occurs via lateral coarsening and 

coalescence with neighbouring ε-martensite laths. This thesis provided first-hand experimental 

evidence of the deformation accommodation in ε-martensite by a combination of perfect and 

partial basal slip (I1 and I2 ε-ISFs), pyramidal slip, {101̅2}〈1̅011〉ε extension twinning and a 

change in ε-ISFs character from I2 to I1-types. With respect to the latter, the mechanism for the 

change in ε-ISF character type was proposed. 

In-situ heating in TEM of the 42% cold-rolled sample to 900 °C showed no changes to the initial  

or α′-martensite grain shape on their transformation to γ or the motion of the ε-martensite/γ or 

α′-martensite/γ interfaces during reversion; all of which is indicative of displacive 

transformation. The subsequent recovery of γ grains previously reverted from -martensite 

resulted in the formation of fine twins.  

The microstructure of 500 °C sample comprised α′-martensite and γ reverted from ε-martensite. 

Annealing at 600, 625 and 650 °C resulted in the reversion of α′-martensite and this process is 

concurrent with the recrystallisation and growth of previously reverted γ grains. The formation 

of new γ grains takes place at the boundaries of two reverted γ grains. The γ recrystallisation was 

completed after annealing at 700 C. Annealing between 750 and 850 °C led to γ grain growth via 

grain boundary diffusion with an activation energy of 235.2 ± 17.6 kJ/mol. On quenching after 
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annealing between 700 and 850 °C, the formation of ε-martensite plates within γ grains and 

lenticular α′-martensite within ε-martensite plates took place. 

Irrespective of the processing condition, γ orientations on the α-fibre (〈110〉γ||ND) transform to 

ε-martensite orientations along the {ℎ𝑘𝑖𝑙}ε-fibre and α′-martensite orientations along the α-fibre 

(〈110〉α′||RD) via the Shoji-Nishiyama, Kurdjumov-Sachs and Burgers orientation relationships 

defined as  {111}γ || {0001}ε || {110}α′ and 〈110〉γ || 〈112̅0〉ε || 〈111〉α′ , respectively.  The above 

orientation relationships were observed by both EBSD and TEM. 

For the 42% cold-rolled and 500 °C conditions, EBSD maps before and after uniaxial tension was 

similar and comprised elongated and fragmented α′-martensite as the dominant phase with 

remnant ε-martensite and a trace amount of untransformed γ. In the case of the 625 and 700 °C 

conditions, uniaxial tension resulted in the transformation of reverted and recrystallised γ into 

fine and coarse deformation-induced α′-martensite via ε-martensite. This process was associated 

with the observed strain localisation along the gauge length.  The true stress-strain curves 

showed: (i) a linear increase in stress with strain for the 625 and 650 °C conditions and, (ii) a 

slowly rising stress region for the 700 and 800 °C conditions in addition to the initial linear rising 

stress regions. {101̅2}〈1̅011〉ε extension twinning was also observed in ε-martensite. The samples 

annealed at 625 and 650 °C exhibited the best mechanical properties with the yield stress of 810 

and 732 MPa, the ultimate true tensile strengths of 1237 and 1259 MPa and uniform true 

elongation values of 0.23 and 0.26, respectively. The fracture surfaces showed a mixture of ductile 

and brittle fracture modes after 42% cold rolling and annealing at 500 °C and ductile fracture 

mode after annealing at 625 and 700 °C. 
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4.5a-4.5d are from the regions demarcated by yellow/white/blue circles or the complete area of 

interest. The top left and right diffraction patterns are from the yellow and white circular regions, 

respectively, in Fig. 4.5d. Zone axes are [101]γ, [112̅0]ε in Figs. 4.5a-4.5e.  

Figure 4.6: Representative (a, b, d) bright-field, (c, e) dark-field transmission electron 

micrographs after thickness reduction to (a) 42%, (b, c) 66% and (d, e) 88%. The inset diffraction 

patterns in Figs. 4.6a, 4.6b and 4.6d are from the regions demarcated by yellow circles or the 

complete area of interest. Zone axes are [11̅1̅]α′ , [112̅0]ε in Fig. 4.6a. 

Figure 4.7: Representative (a) bright-field, (b) dark-field transmission electron micrographs and 

(c, d) HAADF STEM images after 5% thickness reduction. Figs. 4.7c, 4.7d are from regions (1) and 

(2) in Fig. 4.7b, respectively. In Figs. 4.7c and 4.7d, blue solid lines denote fault planes in γ. The 

inset diffraction pattern in Fig. 4.7a is from the region demarcated by a yellow circle. The zone 

axes are [101]γ and [112̅0]ε. 

Figure 4.8: Schematic of coarsening by coalescence of ε-martensite laths. The red and green 

circles represent fcc and hcp stacking sequences, respectively. Shockley partial dislocations are 

given by the symbol “ ”. 

Figure 4.9: Representative (a, b) bright-field STEM micrographs and (c-e) HAADF STEM images 

after 10% thickness reduction. Fig. 4.9b is a magnified view of the region denoted by red dashed 

square in Fig. 4.9a. Figs. 4.9c-4.9e are from the regions (1) to (3) in Fig. 4.9b, respectively. In Figs. 

4.9c-4.9e, blue solid/dashed lines denote the γ/ε-martensite interface while Shockley partial 

dislocations are given by the symbol “ ”.  

Figure 4.10: (a, c, e) Dark-field micrographs and (b, d) HAADF STEM micrographs after (a, b) hot 

rolling, thickness reduction to (c, d) 5% and (e) 15%. The inset diffraction patterns in Fig. 4.10c 

are from regions demarcated by a red square. Fig. 4.10e is observed under two beam conditions 

using g = [11̅1]γ. Zone axes are [101]γ, [112̅0]ε in Fig. 4.10c. 
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Figure 4.11: ε-martensite bright-field micrograph for the sample after 15% thickness reduction 

taken from zone axis [011̅1]ε. 

Figure 4.12: (a) Bright-field micrograph, (b, e) dark-field micrographs, (c, d, f) HAADF STEM 

micrographs after thickness reduction to (a-d) 10%, (e) 15% and (f) 42%. Shockley partial 

dislocations are shown by the symbol “ ” in Fig. 4.12f. The inset diffraction patterns in Figs. 4.12a 

and 4.12e are from the regions demarcated by yellow circles/whole micrograph. Fig. 4.12e is 

taken under two beam conditions using g = [011̅1]ε. Zone axes are [101]γ, [112̅0]ε in Fig. 4.12a.  

Figure 4.13: Schematic of phase transformation from γ to ε-martensite followed by a transition in 

stacking fault character from I2 to I1 –type ε-ISFs.  The red and green circles represent fcc and hcp 

stacking sequences, respectively. Shockley partial dislocations are given by the symbol “ ”. 

Figure 4.14: Schematic of deformation and transformation behaviour of high Mn steel with 

increasing thickness reduction up to 88%. Red = γ, green = ε-martensite, blue = α′-martensite. γ 

intrinsic stacking faults are shown in purple while I2 and I1 faults in ε-martensite are shown in 

orange and brown, respectively. Annealing twins in γ and {101̅2}〈1̅011〉ε extension twins in ε-

martensite are shown in yellow and fuchsia, respectively. 

Figure 4.15: ϕ2 = 0°, 45° and 65° ODF sections of γ showing (a) the ideal orientations and after (b) 

hot rolling, thickness reduction to (c) 5, (d) 10, (e) 15, (f) 20  and (g) 42%. Contour = 0.5× 

Figure 4.16: ϕ2 = 0° and 30° ε-martensite ODF sections showing (a) ideal ε-martensite 

orientations, after (b) hot rolling and thickness reduction to (c) 5, (d) 10, (e) 15, (f) 20, (g) 42, (h) 

66%. In Fig. 4.16a, some γ orientation are provided for the S-N orientation relationship. Contour 

= 0.5× 

Figure 4.17: α′-martensite ϕ2 = 0° and 45° ODF sections showing (a) ideal orientations, after (b) 

hot rolling, cold deformation to (c) 5, (d) 10, (e) 15, (f) 20, (g) 42, (h) 66 and (i) 88% thickness 

reduction. In Fig. 4.17a, some γ and ε-martensite orientations are provided for the K-S and 

Burgers orientation relationships. Contour = 0.5× 

 

Figure 5.1: Bright-field transmission electron micrographs showing (a, b, c, d) ε-martensite and 

(e, f) γ at (a, b) at 28 °C (room temperature) and after in-situ annealing to temperatures of (c) 240 

°C, (d) 390 °C, (e) 410 °C, (f) 650 °C. Fig. 5.1b is the magnified view of the white dashed rectangle 

in Fig. 5.1a. The inset diffraction patterns were obtained from the solid circles in Figs. 5.1a, 5.1e 

for zone axis [2̅42̅3]ε, [1̅22]γ, respectively. White arrows in Fig. 5.1f indicates remnant 

dislocations.  

Figure 5.2: (a) Simulated diffraction pattern of γ/ε-martensite based on S-N orientation 

relationship for the [2̅42̅3]ε zone axis and (b) evolution of reciprocal distance of γ/ε-martensite 

reflections with temperature. Red and blue spots in Fig. 5.2a are for γ and ε-martensite, 

respectively. 
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Figure 5.3: Bright-field transmission electron micrographs of (a, b, c) ε-martensite and (d) γ at (a, 

b) at 28 °C (room temperature) and after in-situ annealing to (c) 400 °C, (d) 420 °C and (e) 

simulated diffraction pattern of γ/ε-martensite by Shoji-Nishiyama orientation relationship for 

[72̅5̅3]
ε
 zone axis. The inset diffraction patterns were obtained from the circled regions in Figs. 

5.3a and 5.3d for the zone axis [72̅5̅3]
ε
and [103]γ, respectively. In Fig. 5.3e, the red and blue spots 

are for γ and ε-martensite, respectively.  

Figure 5.4: Bright-field transmission electron micrograph of (a) γ after in-situ annealing  to 700 

°C and (b) simulated diffraction pattern of γ/γ twin (γtw) for [103]γ zone axis. The inset 

diffraction pattern was obtained from the circular region in Fig. 5.4a for the zone axis [103]γ. In 

Fig. 5.4b, the red and blue spots are for γ and γtw, respectively.  

Figure 5.5: Schematic showing the reversion of faulted ε-martensite and twinning due to γ 

recovery with the red and green circles representing fcc and hcp stacking sequences, respectively, 

and Shockley partial dislocations are shown by the symbol  “ ”. 

Figure 5.6: Bright-field transmission electron micrographs of (a) α′-martensite and (b) γ after (a) 

in-situ annealing to 800 °C, (b) holding at 800 °C for 10 mins, and (c) simulated diffraction pattern 

of γ/α′-martensite by Kurdjumov-Sachs orientation relationship for [011]α′  zone axis. The inset 

diffraction patterns were obtained from the white circular regions in Figs. 5.6a and 5.6b for the 

zone axes [011]α′ and [111]γ, respectively. In Fig. 5.6c, the red and blue spots are for γ and α′-

martensite, respectively.  

Figure 5.7: Free energy change for α′-martensite reversion to γ as a function of annealing 

temperature. 

 

Figure 6.1: Variation of hardness and the softened fraction with annealing temperature. 

Figure 6.2: Superimposed band contrast and phase maps after (a) cold rolling and annealing at 

(b) 500 °C. Red = γ, green = ε-martensite, blue = α′-martensite, white = unindexed areas, silver = 

LAGBs, black = HAGBs, yellow = γ twin boundaries. Rolling direction (RD) = horizontal. Inset in 

Fig. 6.2b shows twins in reverted/recovered γ. White arrow in Fig. 6.2a shows the subdivision of 

the α′-martensite grains. 

Figure 6.3: Superimposed band contrast and phase maps after annealing at (a) 600 °C, (b) 625 °C, 

(c) 650 °C, (d) 700 °C, (e) 750 °C, (f) 800 °C and (g) 850 °C. Red = γ, green = ε-martensite, blue = 

α′-martensite, white = unindexed areas, silver = LAGBs, black = HAGBs, yellow = γ twin 

boundaries. Rolling direction (RD) = horizontal.  

Figure 6.4: γ grains segmented into reverted/recovered (in green), recrystallised (in fuchsia) 

fractions after annealing at (a) 600 °C, (b) 625 °C and (c) 650 °C, (d) the variation of γ low angle 
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and high angle grain boundaries percentages with annealing temperature. White regions in Figs. 

6.4a-6.4c indicate ε and α′-martensite along with unindexed areas. 

Figure 6.5: Representative (a-f) bright-field transmission electron micrographs after (a, b) cold 

rolling and annealing at (c) 500 °C, (d) 600 °C, (e) 625 °C and (f) 650 °C. The bottom left inset 

diffraction patterns in Figs. 6.5a-6.5f are from the regions delineated by white circles. The top left 

inset diffraction pattern in Fig. 6.5c is from the red circular region. Zone axes are [111]α′ in Fig. 

6.5a, [21̅1̅0]ε, [110]γ in Fig. 6.5b, [011̅]γ, [111̅]α′ in Figs. 6.5c-6.5e and [110]γ in Fig. 6.5f. 

Figure 6.6: Variation of γ grain size with annealing temperature with and without considering γ 

twin boundaries, ε and α′-martensite. 

Figure 6.7: Fit for the calculation of γ grain growth activation energy. 

Figure 6.8: ϕ2  = 0° and 45° orientation distribution function sections of α′-martensite showing 

the (a) ideal orientations (in blue), after (b) cold rolling and annealing at (c) 500 °C, (d) 600 °C, 

(e) 625 °C and (f) 650 °C. In Fig. 6.8a, particular γ (in red) and ε-martensite (in green) orientations 

are provided for the K-S and Burgers orientation relationships, respectively. Contour levels = 0.5× 

Figure 6.9 ϕ2 = 0° and 45° orientation distribution function sections of α′-martensite after 

annealing at (a) 700 °C, (b) 750 °C, (c) 800 °C and (d) 850 °C. Contour levels = 0.5× 

Figure 6.10: ε-martensite ϕ2 = 0° and 30° orientation distribution function sections showing (a) 

ideal orientations (in green) and (b) after cold rolling. In Fig. 6.10a, particular γ orientations (in 

red) are provided for the S-N orientation relationship. Contour levels = 0.5× 

Figure 6.11: ϕ2 = 0° and 30° orientation distribution function sections of ε-martensite after 

annealing at (a) 700 °C, (b) 750 °C, (c) 800 °C and (d) 850 °C. Contour levels = 0.5× 

Figure 6.12 ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ showing (a) ideal 

orientations (in red), after (b) cold rolling and annealing at (c) 500 °C. In Fig. 6.12a, particular ε-

martensite (in green) and α′-martensite (in blue) orientations are provided for the S-N and K-S 

orientation relationships, respectively. Contour levels = 0.5× 

Figure 6.13 ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ after annealing at 

(a) 600 °C, (b) 625 °C and (c) 650 °C. Contour levels = 0.5× 

Figure 6.14: ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ after annealing at 

(a) 700 °C, (b) 750 °C, (c) 800 °C  and (d) 850 °C. Contour levels = 0.5× 

Figure 6.15: ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ grains segmented 

into (a, c, e) reverted/recovered  and (b, d, f) recrsytallised fractions after annealing at (a, b) 600 

°C, (c, d) 625 °C and (e, f)  650 °C. Contour levels = 0.5× 

 

Figure 7.1: (a) True stress-strain and (b) strain hardening rate curves for the cold-rolled and 500, 

625, 650, 700 and 800 °C samples.  
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Figure 7.2: Digital image correlation axial true strain distribution maps of the (a) cold-rolled and 

(b) 500 °C samples.  

Figure 7.3: Digital image correlation maps for the 625 °C sample presenting the distribution of (a, 

b) axial true strain, (c) shear strain and (d) distribution of axial strain along the line AA′ (Fig. 

7.3a). Fig. 7.3b is the scaled axial true strain distribution of the Region A625 in Fig. 7.3a. 

Figure 7.4: Digital image correlation maps for the 650 °C sample presenting the distribution of (a, 

b) axial true strain, (c) shear strain and (d) distribution of axial strain along the line AA′ (Fig. 

7.4a). Fig. 7.4b is the scaled axial true strain distribution of the Region A650 in Fig. 7.4a. The regions 

of low strain concentration in the upper part of the gauge length in Figs. 7.4a and 7.4c are due to 

tearing off the paint.  

Figure 7.5: Digital image correlation maps for the 700 °C sample presenting the distribution of (a, 

b, c) axial true strain. Figs. 7.5b and 7.5c is the scaled axial true strain distribution of the Regions 

A700 and B700, correspondingly, of Fig. 7.5a. 

Figure 7.6: Digital image correlation maps for the 700 °C sample presenting the distribution of (a) 

shear strain and (b) axial true strain along the line AA′ in Fig. 7.5a. Regions in grey, blue show 

increasing, orange show decreasing, green, aqua show uniform axial strain distribution along the 

gauge length in Fig. 7.6b. 

Figure 7.7: Digital image correlation maps for the 800 °C sample presenting the distribution of (a, 

b, c) axial true strain. Figs. 7.7b and 7.7c is the scaled axial true strain distribution of the Regions 

A800 and B800, correspondingly, of Fig. 7.7a.  

Figure 7.8: Digital image correlation maps for the 800 °C sample presenting the distribution of (a) 

shear strain and (b) axial true strain along the line AA in Fig. 7.7a. Regions light grey, light blue, 

light green show increasing, light orange show decreasing and light aqua show uniform axial 

strain distribution along the gauge length in Fig. 7.8b.  

Figure 7.9: Digital image correlation maps showing the distribution of transverse strain at 

fracture strains for the samples after (a) cold rolling, annealing at (b) 500 °C, (c) 625 °C, (d) 650 

°C, (e) 700 °C and (f) 800 °C. The colour scale of the transverse strain distributions is inverted 

compared to the axial strain distributions. 

Figure 7.10: Superimposed band contrast and phase maps after subjected to tension for the 

samples after (a) cold rolling and annealing at (b) 500 °C, (c) 625 °C and (d) 700 °C. Red = γ, green 

= ε-martensite, blue = α′-martensite, white = unindexed areas, silver = LAGBs, black = HAGBs, 

yellow = γ twin boundaries and RD || tensile direction = horizontal. Fig. 7.10d (inset) is from the 

white dashed region showing {101̅2}〈1̅011〉ε twins in ε-martensite highlighted by white arrows 

in the inset. 

Figure 7.11: Misorientation angle distributions for (a) γ, (b) ε-martensite and (c) α′-martensite 

before and after tensile testing for the cold-rolled and 500, 625 and 700 °C samples. 
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Figure 7.12: γ, ε and α′-martensite pole figures of the (a, b) cold-rolled and annealed at (c, d) 500 

°C, (e, f) 625 °C and (g, h) 700 °C samples, (a, c, e, g) before and (b, d, f, h) after tension. In Fig. 

7.12a, the ideal fcc orientations on (111) pole figure is superimposed on ε, α′-martensite and 

(100)γ, (111)γ pole figure of γ. Key:  Gγ = {110}〈001〉γ,  Cγ = {001}〈100〉γ,  Cuγ 

= {112}〈111〉γ,  Aγ = {110}〈111〉γ,  Brγ = {110}〈112〉γ,  Rt-Gγ = {011}〈011〉γ In Figs. 7.12b, 

7.12d, 7.12f, 7.12h, RD || tensile axis = vertical. Contours levels = 0.5× 

Figure 7.13: Fractography of the fractured tensile samples after (a, b) cold rolling and annealing 

at (c, d) 500 °C. Figs. 7.13b, 7.13d, are zoomed-in views of regions highlighted by red dashed 

rectangles from Figs. 7.13a, 7.13c, respectively. 

Figure 7.14: Fractography of the fractured tensile samples after annealing at (a, b) 625 °C and (c, 

d) 700 °C. Figs. 7.14b and 7.14d are the zoomed-in views of regions highlighted by red dashed 

rectangles in Figs. 7.14a and 7.14c, respectively. 

 

Figure: A.1 Representative (a) weak beam dark-field micrograph and (b) the distribution of the 

measured width of the Shockley partial dislocations with respect to the angle between the 

Burgers vector and the dislocation line vector for γ in the sample after 5% thickness reduction. 

The inset diffraction patterns in Fig. A.1a is from the regions demarcated by a white dashed 

rectangle in Fig. A.1a using g = [202̅]γ. The red and blue arrows in Fig. A.1a show the perfect and 

Shockley partial dislocations.  

Figure A.2: Representative (a) bright-field image, (b, c) weak beam dark-field images and (d) the 

distribution of the measured width of the Shockley partial dislocations with respect to the angle 

between the Burgers vector and the dislocation line vector for ε-martensite after 5% thickness 

reduction. The inset diffraction patterns in Figs. A.2b, A.2c are from the regions demarcated by 

red dashed rectangles/squares in Figs. A.2a, A.2c, respectively. The inset diffraction patterns in 

Figs. A.2b, A.2c use g = [101̅0]ε and g  = [0002]ε.   
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CHAPTER 1 INTRODUCTION 

 

1.1 General background 

In recent years, there is a considerable amount of effort to reduce the weight of car bodies to 

minimise fuel consumption and the consequent emission of greenhouse gases. The above targets 

can be achieved by developing new advanced high strength materials. Steels are the ideal 

candidate material in the above criteria due to their high strength and ductility. Also, they are 

relatively cheaper than other metals and alloys [1]. This has led to the development of advanced 

high strength steels (AHSS). AHSS can be divided into three categories based on their strength 

and elongation into (i) first generation, (ii) second generation and (iii) third generation [2]. First 

generation AHSS contains mostly body centred cubic ferrite (α)/α′-martensite (bcc) in their 

microstructure. This group comprises dual phase (DP) steel, low Mn (1.5-2 wt.%) 

Transformation-Induced Plasticity (TRIP) steels, Complex Phase (CP) steel, quenched and 

partition (Q-P) steels and martensitic steels. Second generation AHSS contains mostly metastable 

face-centred cubic austenite (γ) in their microstructure. These include high Mn-based 

Transformation-Induced Plasticity (TRIP) steels and Twinning-Induced Plasticity (TWIP) steels. 

The first and second generation AHSS was reported to produce ultimate tensile strengths (UTS) 

of 500-1600 MPa and 900-1600 MPa, respectively [3]. The total elongation of the first and second 

generation AHSS was noted to be, correspondingly, 5-30% and 45-70%. The third generation of 

AHSS contains a mixture of α and metastable γ with UTS between 500-1600 MPa and total 

elongation between 25-50%. The medium Mn steels containing 5-7 wt.% Mn belong to the third 

generation of AHSS [3, 4]. The location of AHSS with other steels on the UTS vs. total elongation 

plot is shown in Fig. 1.1.  

The high Mn-based TRIP and TWIP steels belong to a broad category of high Mn steels. They 

contain Mn content greater than 15 wt.% along with the minor additions of Aluminium (Al), 

Silicon (Si) and Carbon (C).  Due to the high Mn content in these steels γ is the primary phase. 

These steels can also contain secondary phases, such as hexagonal closed packed (hcp) ε-

martensite and α′-martensite in their microstructure. The ε and α′-martensite can form by 

quenching after annealing and during any processing involving deformation. The composition of 

high Mn steels defines the martensite formation start temperature (Ms) [5, 6]. When Ms is above 

the room temperature, then martensite forms on quenching. The addition of a large amount of 

Mn lowers the γ stacking fault energy (γ-SFE) of these steels (γ-SFE less than  20 mJ/m2), which 

in turn leads to the formation of deformation-induced ε and α′-martensites accompanied by 

partial dislocation slip [7, 8]. Deformation-induced γ-twinning along with deformation-induced ε 

and α′-martensite formation was also observed in some high Mn steels [8-11]. The formation of ε 

and α′-martensite and deformation twinning during straining in these high Mn steels give rise to 
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a high rate of strain hardening resulting in a combination of high strength and ductility [9]. This 

combination makes them perfect candidates for high-performance automotive materials where 

passenger safety is an important issue. However, due to the addition of a large amount of Mn, 

segregation in the hot-rolled plates is a major issue in the production of high-Mn based AHSS. 

Also, high amounts of total alloying additions (greater than 15 wt.%) lead to an increase in the 

cost of production [12]. Another hurdle in the production and use of AHSS is their poor surface 

quality [12]. The presence of surface defects originating from steel refining and continuous 

casting hinders the application of these steels for automotive components. 

 

 

Figure 1.1: Ultimate tensile strength vs. total elongation plot of steels showing the strength and 

elongation values of advanced high strength steels (medium Mn, high Mn transformation-

induced plasticity-twinning induced plasticity steels, twinning-induced plasticity steels, 

complex phase steels, dual phase steels and martensitic steels)  along with other conventionally 

used steels (interstitial free, mild steel and high strength low alloy steels) [13]. 

 

1.2 Thesis objectives 

High Mn steels are used in cold-rolled and annealed conditions. The enhanced understanding of 

the microstructural changes taking place during the stages of processing is important to achieve 

the best combination of strength-elongation in these steels. 

During cold rolling, the formation of deformation-induced ε and α′-martensite occurs. There are 

limited studies on the nucleation and growth mechanism of ε-martensite [14, 15]. Fujita and Ueda 

[15] reported that the frequency of overlapping of stacking faults is increased by the passing of 

dislocations on the slip planes near the stacking fault planes upon tensile testing. The overlapping 

regions are the nucleus of thin ε-martensite plates. Also, ε-martensite formation takes place by 
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the motion of Shockley partial dislocations or stacking faults on every alternate (111)γ planes 

[16, 17]. The growth of ε-martensite was reported [14] by the clustering of thin (1-2 nm) ε-

martensite plates to form thicker plates.  The role of stacking faults in the proposed ε-martensite 

nucleation and growth models based on the overlapping of stacking faults and their subsequent 

clustering [14, 15] was not studied using aberration-corrected transmission electron microscopy. 

The deformation accommodation mechanisms of γ, such as partial dislocation slip and martensite 

formation, were reported in details in the existing literature [8, 18-21]. However, the deformation 

mechanism of ε-martensite was addressed only in a few previous studies [22-24].  The X-ray 

diffraction (XRD) analysis showed the formation of ε-martensite intrinsic stacking faults (ε-ISFs) 

upon tension for an Fe-17Mn-0.02C high Mn steel [22]. Kim et al. [25] observed dislocations with 

a 〈c〉 component in ε-martensite which dissociate into Shockley partial dislocations in the basal 

plane to accommodate deformation during tensile testing of an Fe-17Mn steel to 0.05 engineering 

strain. In-situ neutron diffraction studies by Saleh et al. [24] showed ε-martensite to 

accommodate compressive deformation upon cyclic loading of an Fe-17Mn-3Al-2Si-1Ni-0.06C 

steel. However, in spite of the previous investigations, the detailed microstructural investigations 

regarding the deformation mechanisms operating during deformation of ε-martensite using high-

resolution scanning transmission electron microscopy (STEM) technique was not undertaken. 

Thus, this study attempts to investigate the nucleation, coarsening and deformation accommodation 

mechanisms of ε-martensite upon plane strain compression/cold rolling. 

Upon annealing after cold rolling, the reversion of deformation-induced ε and α′-martensite takes 

place. Several previous ex-situ studies [8, 10, 26-28] have investigated the ε and α′-martensite 

reversion mechanisms during annealing of cold-rolled metastable austenitic steels. As these 

studies [7, 8, 29] employed post-mortem microstructural analysis they do not directly observe 

the microstructural changes occurring during ε and α′-martensite reversion. Some in-situ 

annealing studies were also undertaken using TEM [30-34]. In this regard, the reversion 

mechanism of ε-martensite was reported via the shrinkage of stacking faults by in-situ annealing 

for an Fe-Mn-Si based shape memory alloy [34]. Also, the reversion mechanism of α′-martensite 

was investigated for metastable austenitic steels via in-situ annealing studies showing the motion 

of ledges across the γ/α′-martensite interface [31]. This reversion mechanism of ε-martensite has 

not been studied by in-situ annealing for high Mn steels. The reverted γ was reported [10, 35] to 

shows fine γ-twins. However, the mechanism of γ-twin formation is not explained in the 

literature. Thus, this study plans to investigate the mechanisms of ε and α′-martensite reversion and 

subsequent γ-twin formation using in-situ TEM annealing experiments. 

The previous studies [8, 10] on the annealing of cold-rolled high Mn steels did not extensively 

investigate the relationships between reverted γ orientations and the ε and α′-martensite 

orientations. Following reversion, the recrystallisation of reverted γ takes place. Previous studies 
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[8, 10] on recrystallisation of reverted γ have not explained the mechanism of nucleation and 

texture evolution. This study thus aims to address the texture evolution of γ upon reversion and 

recrystallisation via in-house developed γ grain segmentation technique.  

Uniaxial tension tests were performed in nearly all studies on high Mn steels [9, 36-40]. However, 

very few studies [41, 42] was carried out on uniaxial tensile testing on high Mn steels along with 

digital image correlation (DIC). These previous DIC based studies [41, 42] were performed on 

only fully recrystallised samples, thus missing the DIC observations during phase transformation 

of γ in samples initially comprising unrecrystallised γ or recrystallised γ, ε and α′-martensite 

formed upon quenching after annealing. Thus, this study aims to investigate the DIC response in 

high Mn steel samples subjected to tension with different initial microstructures. 

 

1.3 Thesis outline  

The thesis consists of eight chapters which are as follows: 

Chapter 1 includes a general introduction and aims of the thesis. 

Chapter 2 comprises the literature review on the effects of plane strain deformation and 

annealing on the microstructure, texture and tensile properties. The deformation accommodation 

mechanisms and the deformation-induced ε and α′-martensite reversion mechanisms presented 

in the literature for the previously studied high Mn steel is recapitulated in details. The evolution 

of texture during the plane strain deformation and annealing of high Mn steels in the literature is 

also summarised. Finally, the information on the tensile properties of high Mn steels displaying 

transformation-induced plasticity was collected from the literature and presented in chapter 2. 

Chapter 3 addresses the composition of the studied high Mn steel, the experimental and analytical 

techniques. All the experimental details regarding plane strain compression/cold rolling, 

annealing and further tensile testing of the cold-rolled and annealed microstructures are outlined. 

Sample preparation via electropolishing for both electron back-scattering diffraction (EBSD) and 

TEM are also described. The experimental details regarding EBSD mapping and TEM imaging are 

presented. EBSD based analytical procedures related to γ grain segmentation and determination 

of γ grain size in the microstructures containing ε and α′-martensite are also described.  

Chapter 4 comprises the effect of plane strain compression and cold rolling on the microstructure 

and texture of γ, ε and α′-martensite. The nucleation and growth mechanism of ε-martensite is 

explored. Subsequently, the deformation accommodation mechanisms in γ, ε and α′-martensite 

are also presented. In particular, the ε-martensite deformation accommodation mechanism via ε-

ISFs is studied in details. The correlation of deformation-induced ε and α′-martensite orientations 

obtained from γ orientations upon phase transformation via the Shoji-Nishiyama 

(({111}γ||{0001}ε,〈011〉γ||〈112̅0〉ε) and Kurdjumov-Sachs ({111}γ||{011}α′ , 〈1̅01〉γ‖〈11̅1〉α′) 

orientation relationships is also carried out.  
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Chapter 5 observes the changes in the microstructure during the reversion of deformation- 

induced ε and α′-martensite upon in-situ TEM annealing. Also, the recovery-induced twining in 

reverted γ is observed and its mechanism of formation is explained.  

Chapter 6 describes the effect of isochronal annealing on the changes in microstructure and 

texture of the steel cold-rolled to 42% thickness reduction. The γ microstructure evolution during 

reversion, recrystallisation and grain growth was investigated using EBSD and TEM. The 

correlation of γ orientations formed upon the reversion with those of ε and α′-martensite 

orientations was carried out. 

Chapter 7 presents the effect of microstructures formed after cold rolling and annealing on the 

tensile properties of high Mn steel studied via DIC. The changes in the microstructure and texture 

upon tension was investigated and discussed. The effect of initial microstructure on the fracture 

mechanisms is also addressed. 

Chapter 8 gives the general conclusions and describes the contributions made in this work to the 

existing body of knowledge on the deformation and annealing of high Mn steels. Also, some 

suggestions regarding the future directions of research are included. 
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CHAPTER 2 LITERATURE REVIEW 

 

This chapter is a summary of the information available in the literature on the mechanisms of 

deformation accommodation and annealing of high Mn steels. The effects of deformation and 

annealing on the evolution of microstructure, mechanical properties and texture are also 

recapitulated in this chapter. In addition, the basic concepts about stacking faults and twin 

formation in γ and ε-martensite were also introduced in this chapter. 

 

2.1 Classification of high Mn steels based on chemical composition 

Based on the chemical composition, high Mn steels can be classified into two categories. Both 

types of these steels are produced by casting, hot rolling followed by cold rolling and annealing.  

 

2.1.1 Fe-Mn-C 

The Fe-Mn-C based high Mn steels contain C content equal to or less than 0.6 wt.% along with the 

addition of Mn in the range of 15-22 wt.% [8, 43-47]. In these steels, γ deforms via deformation 

twinning or transformation to ε-martensite or α′-martensite in addition to partial slip. Mn 

stabilises γ and also reduces the γ-SFE.  The addition of C below 0.6 wt.% leads to the reduction 

of γ-SFE and it also stabilises γ. The amount of Mn varies depending on the concentration of C. 

 

2.1.2 Fe-Mn-Al-Si 

The Fe-Mn-Al-Si based high Mn steels contain relatively low C content of ~0.06 wt.%. These steels 

comprise a higher range of Mn concentration between 15-30 wt.% [7, 10, 11, 48-52]. Depending 

on the Mn content, these steels may contain Al between 2-3 wt.% and Si between 2 and 6 wt.%. 

Due to the low C content these steels may or may not show deformation-induced twinning 

depending on their exact composition. However, these steels show the transformation of γ to ε 

and α′-martensite along with partial slip.  

 

2.2 Role of alloying elements  

(i) As the major alloying element, Mn stabilises γ. The Mn content below ≈15 wt.% leads to the 

formation of α′-martensite, while above 30 wt.% results in the formation of deformation 

twins/brittle β-Mn phase. The formation of brittle β-Mn phase deteriorates formability [53]. 

Below a critical concentration of Mn, the γ-SFE decreases whereas above a critical content γ-SFE 

increases (Fig. 2.1) [54]. With increasing Mn concentration the martensite start temperature (Ms) 

for the formation of ε-martensite decreases, thus increasing the stability of γ [55]. So, the 

appropriate Mn content required to obtain γ at room temperature is about ≈15-30 wt.%.  
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Figure 2.1: Effect of Mn content on the γ-SFE for Fe-Mn alloys [54, 56]. 

 

(ii) Al addition increases the γ-SFE (Fig. 2.2), thus suppressing the γ to ε-martensite 

transformation [54]. It also leads to the facilitation of deformation twinning [5, 57] and also 

prevents the formation of cementite (Fe3C) [58]. The increase in strength by solid solution 

strengthening and improved corrosion resistance of γ are also beneficial outcomes of Al addition 

[57]. However, a large amount of Al decreases the strain hardening rate of high Mn steels [57]. 

The segregation of Al at grain boundaries during the casting of these steels can lead to the 

formation of a low melting compound Fe2Al5 which can cause cracking during further processing 

[59, 60]. 

 

 

Figure 2.2: The variation of γ-SFE with Al addition for Fe-Mn alloys at 22 °C [23]. 
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(iii) Si decreases the γ-SFE and enhances the γ to ε-martensite transformation during cooling and 

deformation [61-65]. It refines the ε-martensite plates, thus increasing the fracture strength. Si in 

solid solution imparts good machinability and strengthening [66]. Si addition was also reported 

to prevent the formation of cementite (Fe3C). 

 

(iv) The effect of C addition on the γ-SFE is not straight forward. The C addition below 0.5 wt.% 

leads to the decrease in γ-SFE whereas addition above 0.5 wt.% increases γ-SFE (Fig. 2.3), thus 

preventing ε-martensite formation [67]. It imparts solid solution strengthening and also 

increases γ stability. For an Fe-22Mn steel, the γ-SFE decreases from 30 to 22 mJ/m2 by the 

addition of 1 wt.% C [57].  

 

 

Figure 2.3: Influence of carbon content on the γ-SFE for an Fe-22Mn-C steel [67]. 

 

(v) Nickel (Ni) increases the γ-SFE, thus preventing the formation of ε and α′-martensite and also 

enhancing the corrosion resistance [68]. The hot ductility of high Mn steels alloyed with Al can be 

improved by the small additions of Boron, Titanium and Zirconium [69]. Nitrogen addition 

produces the strengthening of γ along with an increase in γ-SFE [57]. It was reported [70] that 

the addition of Nitrogen to an Fe-16.5Mn steel leads to a decrease in the volume fraction of ε-

martensite due to the decrease in the Ms. 

The γ-SFE of high Mn steels in literature is presented in Table 2.1. In general, it can be observed 

that steels containing relatively higher Mn concentration show higher γ-SFE. It can be observed 

that with increasing the Al content an increase in γ-SFE is observed for the same concentration of 

Mn and C. However, the addition of Si is observed to significantly reduce the γ-SFE. 
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Table 2.1 γ-stacking fault energy in high Mn steels in literature. 

Composition γ-SFE  γ-SFE 

 temperature  

γ-SFE 

calculation method 

Deformation 

mode 

Deformation  

temperature 

Strain rate 

�̇� (s-1) 

Microstructural constituents Ref. 

Before After 

Mn Al Si Ni C 

12    0.6 11.8 RT Thermodynamic  model Tensile testing RT 10−3 γ, ε and α′-martensite γ twins, ε and α′-martensite [43] 

12 1.5   0.6 25.5 RT Thermodynamic  model Tensile testing RT 10−3 - γ twins [43] 

12 2   0.6 29.9 RT Thermodynamic  model Tensile testing RT 10−3 - - [43] 

15    0.6 12.4 RT Thermodynamic  model Tensile testing RT 10−3 γ γ twins and ε-martensite [43] 

15 1.5   0.6 25.8 RT Thermodynamic  model Tensile testing RT 10−3 - γ twins [43] 

15 2   0.6 30.1 RT Thermodynamic  model Tensile testing RT 10−3 - - [43] 

17 3 2 1 0.06 14.5 RT Thermodynamic  model Cold rolling RT - γ, ε and α′-martensite γ, ε and α′-martensite [71]* 

18    0.6 14.3 RT Thermodynamic  model Tensile testing RT 10−3 - γ twins [43] 

18    0.6 13 ± 3 RT WBDF Tensile testing RT - γ - [72] 

18    0.6 16 RT Thermodynamic  model Tensile testing RT 5 × 10−3 γ γ twins [73] 

18    0.6 19.3 RT XRD analysis Tensile testing RT 10−4 γ γ twins [74] 

18  1.5  0.6 13.8 RT XRD analysis Tensile testing RT 10−4 γ γ twins [74] 

18  1.5  0.6 29.1 RT XRD analysis Tensile testing RT 10−4 γ γ twins [74] 

18  1.5  0.6 30 ± 10 RT WBDF Tensile testing RT - γ - [72] 

18  1.5  0.6 27.6 RT Thermodynamic  model Tensile testing RT 10−3 - γ twins [43] 

18 2.5   0.6 38 RT Thermodynamic  model Tensile testing RT 5 × 10−3 γ γ twins [73] 

18 3   0.6 40 RT Thermodynamic  model Tensile testing RT 10−3 - - [43] 

20    1.2 15 RT WBDF Tensile testing RT - γ γ twins [75] 

22 3 3   15 ± 3 RT WBDF Tensile testing RT 4 × 10−4 γ γ, ε and α′-martensite [76] 

24.7 2.66 2.92   16 ± 4 RT WBDF Tensile testing RT 4 × 10−4 γ γ twins and ε-martensite [76] 

25 3 3   21±3 RT WBDF Tensile testing  -25 °C 4 × 10−4 γ γ, ε and α′-martensite [76] 

28 3 3   40 ± 5 RT WBDF Tensile testing  -100 °C 4 × 10−4 γ γ and ε -martensite [76] 

31  0.25  0.8 17.4 RT XRD analysis Tensile testing  RT 2 × 10−3 γ - [77] 

31  2  0.8 14.7 RT XRD analysis Tensile testing  RT 2 × 10−3 γ - [77] 

31  5.3  0.8 10.5 RT XRD analysis Tensile testing  RT 2 × 10−3 γ γ and ε-martensite [77] 

31  8.7  0.8 6.3 RT XRD analysis Tensile testing  RT 2 × 10−3 γ γ and ε-martensite [77] 

Legend: RT= room temperature, WBDF = weak beam dark-field imaging, Thermodynamic model [78]: Eq. 2.4, * = present steel composition. 
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2.3 Determination of γ stacking faults energy  

The γ-SFE can be determined using two methods: (a) theoretical ab-initio calculations and (b) 

experimentally using weak beam dark-field imaging (WBDF). 

The theoretical calculation of γ-SFE was done by applying density functional theory using the 

Vienna ab inito simulation package.  In the first step shearing a block of atoms with fcc lattice is 

performed to generate a suitable type of stacking fault. A block of 12 atomic layers in the 〈111〉γ 

the direction was created and sheared by 
a

6
〈112〉γ to generate a γ-ISF [79]. The next step involves 

determining the change in internal energy of the sheared crystal with respect to the undeformed 

crystal. Using this method the stacking fault energies of Fe-Cr-Ni -based metastable austenitic 

steels were calculated [80]. For the Fe-13Cr-12Ni and Fe-18Cr-12Ni steels, the γ-SFE was 

determined to be 36 and 30 mJ/m2, respectively. However, this method was not applied to 

calculate the γ-SFE of high Mn steels. 

In the experimental method, the dislocation cores of γ are imaged in TEM by WBDF technique. If 

the dissociation of a 
a

2
[110]γ perfect dislocation is observed in two 

a

6
[112]γ Shockley partial 

dislocations, then the separation of the dislocations in γ can be related to the γ-SFE using the 

equation [76, 81, 82]:          

     γ =
µb2

8πd
(

2−ν

1−ν
)(1 −

2νcos2α

2−ν
)   (2.1) 

where γ is the SFE (mJ/m2), µ is the shear modulus on the (111)γ fault plane, b  is the Burgers 

vector of the partial dislocations, d is the separation between the dislocations, ν is the Poisson’s 

ratio, α is the angle between Burgers vector and the dislocation line vector. µ, ν are calculated 

using the equation:          

     µ = (C44
(C11−C12)

2
)0.5    (2.2) 

1

1−ν
=

1

3µ
([

1

2
C11(C11 + C12 + 2C44)]

0.5

+ C12) [
C44(C−C12)

C11(C+C12+2C44)
]

0.5

(1 + 2
C11

[
1

2
C11(C11+C12+2C44)]

0.5) (2.3) 

The distance between the separated two partial dislocations is proportional to the attractive force 

by the fault and the repulsive force between the partials. In this method, the determination of γ-

SFE is based on the anisotropic theory of elasticity. Using the WBDF technique, Pierce et al. [76] 

have determined the γ-SFE for the Fe-22Mn, Fe-25Mn and Fe-28Mn steels to be 14 ± 3, 19 ± 3 and 

35 ± 5 mJ/m2, respectively. 

Another popular method used for the determination of γ-SFE is based on the use of empirical 

equation developed from thermodynamics. The γ-SFE can be analysed by using the equation [78]

     Γ = 2ρΔGγ→ε + 2σ     (2.4) 

In Eq. 2.4, ρ represents the molar surface density of the {111}γ, ΔGγ→ε represents the Gibbs free 

energy change due to the γ to ε-martensite transformation and σ represents the surface energy 
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of {111} interface between γ and ε-martensite. The Eq. 2.4 is valid for γ-SFE calculation at room 

temperature (25 °C). 

The γ-SFE can also be calculated via XRD peak analysis method using the equation [69]  

     γ =
K111ωG111aA−0.37

π√3

〈ε〉111
2

α
   (2.5) 

where K111ω is proportional constant with a value of 6.6, G111 is the shear modulus on {111}γ, a 

is the lattice parameter, A is the Zener anisotropy parameter with a value of 3.43, 〈ε〉111
2 is the 

mean square micro-strain and α is the stacking fault probability.  

The γ-SFE determined using the theoretical ab-inito calculations showed a large deviation from 

the experimentally derived γ-SFE [80]. On the other hand, Eq. 2.4 assumes the surface energy of 

{111} interface between γ/ε-martensite to be a value that was not experimentally determined. 

This can lead to the introduction of errors in the calculation of γ-SFE. For an Fe-18Mn-0.6C steel, 

the thermodynamic model gives different values depending on the assumed surface energy of 

{111} interface values between γ/ε-martensite. It can be noted that the γ-SFE calculated from the 

XRD peak analysis method is close to that determined via WBDF method for an Fe-18Mn-1.5Si-

0.6C steel. Thus, γ-SFE can be determined using both the WBDF and XRD peak analysis methods. 

Table 2.1 summaries the γ-SFE of high Mn steels present in literature.  

 

2.4 Deformation mechanisms in high Mn steel 

The plastic deformation of polycrystalline materials can be accommodated via a combination of 

three processes: (i) slip via dislocation glide, (ii) mechanical twinning and (iii) martensite 

formation. The occurrence of these processes depends on the SFE of the material [83]. With 

increasing γ-SFE, the deformation mechanism changes from the transformation of γ to ε-

martensite to α′-martensite to mechanical twinning in γ to dislocation glide. The effect of γ-SFE 

and the deformation temperature is summarised in Table 2.2. Increasing the temperature during 

deformation results in increasing the γ-SFE which returns a similar trend in the deformation 

mechanism [83].  

The γ-SFE values between 15-20 mJ/m2 show the occurrence of both twinning and martensite 

transformation (Table. 2.2). For a γ and α′-martensite,  dual-phase Fe-19.7Mn-3.1Al-2.9Si steel, it 

was reported [84] that deformation takes place by ε-martensite formation assisted by 

deformation twinning at temperatures below 86 °C, whereas exclusively by deformation 

twinning at temperatures greater than 160 °C. 
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Table 2.2 Effect of γ-SFE/deformation temperature on the deformation mechanisms of γ [83]. 

SFE 

(mJ/m2) 

Temperature  

(°C) 

Active deformation mechanisms of γ 

<15 <5 martensite transformation, Shockley partial dislocation glide 

15-20 5-50 martensite transformation, twinning, Shockley partial dislocation 

glide 

20-30 50-120 twinning, Shockley partial dislocation glide 

30-40 120-400 twinning, dislocation glide 

>40 >400 dislocation glide 

 

2.4.1 Partial slip via dislocation glide 

The deformation by slip occurs by the motion of multiple dislocations along a slip plane in the slip 

direction. Slip results in the formation of steps on the surface of the crystal.  The glide of individual 

dislocations is restricted to the plane containing both the dislocation line vector and Burgers 

vector. The slip planes are normally the planes with the highest density of atoms and the direction 

of slip is the direction in the slip plane corresponding to the shortest lattice translation vector 

(the directions where atoms are most closely spaced) [85]. For fcc crystals, the slip plane is {111}γ 

and the slip direction is 〈110〉γ [85]. 

 

2.4.2 Formation of γ stacking faults  

The stacking faults are planar defects created by the disruption of the local atomic sequence. Slip 

in γ occurs in {111}γ plane and along the 〈110〉γ direction.  As a unit translation along the 〈110〉γ 

direction leaves the stacking sequence unchanged, the dislocations having a Burgers vector of 

a

2
〈110〉γ are considered to be perfect dislocations. Stacking faults are created by the dissociation 

of a perfect dislocation into two Shockley partial dislocations having a Burgers vector of  
a

6
〈112〉γ. 

The region bounded by the two Shockley partial dislocations represents a stacking fault as shown 

in Fig. 2.4.  

 

 

Figure 2.4: Dissociation of screw dislocation into two Shockley partial dislocations [85]. 
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Outside the partial dislocations the stacking sequence of the {111}γ planes will be perfect 

ABCABC… whereas the region bounded by partial dislocations will have a stacking fault of 

ABCACABC... The formation of γ stacking faults can occur at two places: (i) at γ grain boundaries 

and annealing twins and (ii) at the intersection of a different family of slip planes. 

There can be two types of stacking faults in γ lattice.  

(i) Intrinsic stacking faults (ISFs): For γ stacking sequence ABCABC… the removal of an atomic 

plane creates ABCAB|ABC… stacking called as intrinsic stacking fault (ISF). In ISF, there is a 

creation of a local layer of hcp stacking sequence ACAC… as shown in Fig. 2.5. ISFs in fcc crystals 

are created by the dislocation reaction given by       

     
a

2
〈1̅10〉γ  →

a

6
〈2̅11〉γ +

a

6
〈1̅21̅〉γ  (2.6) 

where a is the lattice parameter of fcc crystal. 

ISFs are bounded by two Shockley partials dislocations of Burgers vectors 
a

6
〈2̅11〉γ and 

a

6
〈1̅21̅〉γ. 

Physically, the formation of γ-ISFs occurs by the condensation of vacancies on an octahedral 

{111}γ plane. 

 

Figure 2.5: Atomic configurations for stacking faults in fcc. The dashed line indicates ISFs or 

ESFs. The X and Y-axis show the directions in a fcc crystal [86]. 

 

The formation of Shockley partial dislocations can be explained via the pole mechanism. This 

mechanism was proposed by Hoshino et al. [41]. In this mechanism the multiplication of Shockley 

partial dislocations on every second (111)γ plane takes place around an immobile pole 

dislocation leading to the formation of ε-martensite. The formation of a pole dislocation takes 

place by the dissociation of a perfect dislocation into Frank and Shockley partial dislocations.

   

   
a

2
[11̅0]γ +

a

2
[011]γ  + 

a

2
[01̅1]γ →

2a

3
[11̅1]γ +

a

6
[1̅12]γ  (2.7) 
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where 
2a

3
[11̅1]γ is the pole dislocation. It can be noted that the total dislocation energy remains 

the same from the above reaction if dislocation energy is taken to be proportional to the square 

of the Burgers vector. 

 

(ii) Extrinsic stacking faults (ESFs): When an extra layer of atoms is inserted creating a stacking 

sequence of ABCAB|ACABC… it leads to the formation of extrinsic stacking fault (ESF) [87]. The 

ESFs (Fig. 2.5) could be formed by the precipitation of interstitial atoms on the octahedral {111}γ 

planes. Therefore, the energy of ESFs is slightly greater than that of ISFs. Due to its lower energy, 

the formation of ISFs is more favoured than that of ESFs. As ESF formation is closely related to γ 

twin nucleation, it was described in Section 2.1.2, Chapter 2. It has to be noted that Weertman 

convention [88] is followed throughout the text by which an ISF is defined with the stacking 

sequence of ABCAB|ABC… or ABAB|CBCBCB…., whereas ESF is defined with a stacking sequence 

of ABCAB|ACABC… or ABAB|C|ABAB  for both γ and ε-martensite.  

  

2.4.3 γ twinning  

Twinning is a phenomenon where a parent crystal undergoes a homogeneous shear deformation 

to produce a crystal of new orientation as illustrated in Fig. 2.6. The parent and daughter crystal 

are mirror images of each other. Twins can form during γ deformation as well as recrystallisation. 

Deformation twins are finer having a lenticular shape whereas annealing twins are coarser with 

two parallel straight facets. Twinning in γ occurs in the {111}γ plane along the 〈112̅〉γ direction 

[89]. Twins are formed by the passage of Shockley partial dislocations on every {111}γ plane. The 

shear strain associated with twinning in fcc metals is  
1

√2
  which manifest itself in the deformation 

of the crystal.  

 

 

Figure 2.6: Schematic diagram showing the twinning mechanism in fcc crystal [90]. 
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The twinning mechanism proposed by Mahajan and Chin [91] leads to the glide of coplanar 

Shockley partial dislocations on the adjacent {111}γ planes following the reaction.  

    
a

2
[1̅10]γ  +  

a

2
[011̅]γ  →  

3a

6
[1̅21̅]γ    (2.8) 

The dislocation reaction forms an ESF-ISF pair that thickens by the glide of Shockley partial 

dislocations on adjacent {111}γ planes. As more Shockley partial dislocations glide past each 

other, a microscopic twin is formed. The γ-ISFs and twins form predominantly in the 〈110〉γ 

orientated grains. Alternatively, twins and γ-ESFs form in  〈100〉γ || tensile direction γ oriented 

grains at higher strains in TWIP steel [92]. ESFs was shown [92, 93] to help in the growth of γ-

twins at higher strain in 〈100〉γ || tensile axis oriented grains. The above reaction is repulsive in 

nature but can occur in high-stress concentration areas.  

Another mechanism for twin formation is the pole mechanism proposed by Venables [94]. The 

mechanism consists of the dissociation of perfect dislocation into Shockley and Frank dislocations 

such that Shockley partial dislocation revolves around the Frank partial dislocation generating a 

microscopic twin. The observation of this mechanism was also reported [93, 95]. Twin nucleation 

by the synchronized activation of Shockley partial dislocations is also active in the 〈100〉γ || tensile 

axis oriented γ grains in TWIP steel [92, 93]. Twin nucleation in 〈111〉γ || tensile axis oriented γ 

grains is accompanied by the formation of ISFs.  

Karaman et al. [96] also proposed the formation of Lomer-Cottrell locks by the interaction of two 

different Shockley partial dislocations gliding on different {111}γ type planes acting as the high-

stress concentration region. Due to the high-stress concentration, the trailing Shockley partial 

dislocation undergoes cross slips into the (1̅11̅)γ plane. After further dissociation into the (11̅1̅)γ 

plane it forms an ESF. Due to the pinning of the trailing dislocation in the ESF by the other 

dislocations, the leading partial creates a dislocation loop. The leading partial then cross slips into 

the parallel (11̅1̅)γ plane. The overlapping of faults on the (11̅1̅)γ plane forms the micro twin. 

 

2.4.4 ε-martensite formation  

The formation of ε-martensite from γ takes place by the motion of Shockley partial dislocations 

on alternate {111}γ planes (Fig. 2.7). A sequence of Shockley partial dislocations between every 

alternate {111}γ plane will create a glissile interface separating γ and ε-martensite.  The Burgers 

vector of these dislocations lies in the glide plane forming a continuous interface at a macroscopic 

interfacial plane as represented in Fig. 2.7. The gliding of this dislocation network brings the 

transformation of γ to ε-martensite, whereas the transformation of ε-martensite to γ takes place 

by the reverse motion. As the interfacial plane lies at an angle to  {111}γ or (0001)ε plane, it is 

not irrational.  
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Figure 2.7: The mechanism of ε-martensite formation by the motion of an array of Shockley 

partial dislocations [97]. 

 

At a microscopic level, the interface consists of stepped planar coherent facets parallel to {111}γ 

or (0001)ε planes with the height of a step of two atomic closed packed planes (Fig. 2.7) [97]. The 

transformation of γ to ε-martensite leads to volume contraction. The amount of contraction 

depends on the total number of ε-martensite variants formed. Due to self-accommodation of 

transformation strain between ε-martensite variants, the formation of four ε-martensite variants 

leads to a volume contraction of 0.29% contrary to 1.16% when only one ε-martensite variant is 

realised [98].  

The ε-martensite formation was explained by invoking the stacking fault mechanism (i.e., the 

extension and overlapping of stacking faults). Based on the formation of ε-martensite in 18/8 

stainless steel, Fujita et al. [99] described the three stages of this process: (i) the formation of 

wide stacking faults, (ii) irregular overlapping of stacking faults and (iii) regular overlapping of 

stacking faults. 

In γ crystal, all four {111}γ type planes are the shear planes, each containing 〈112〉γ type shear 

direction. There are a total of four distinct variants of ε-martensite crystals that can form from 

one γ grain [100]. Since there are three different 〈112〉γ directions, two types of stacking of ε-

martensite variants can be obtained. 

 

(i) Self-accommodated stacking: As shown in Fig. 2.8a self-accommodated stacking consists of an 

arrangement of three 〈112〉γ type shear directions within a {111}γ plane such that the shear 

strains associated with each ε-martensite variant nullify each other leading to a zero macroscopic 

shape change [101]. 
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(ii) Mono partial stacking: In this kind of stacking the ε-martensite variants are arranged in a 

manner producing the highest lattice shape change. This also represents a homogeneous lattice 

shear of 35.3% at an angle of 19.47° (Fig. 2.8b) [101]. 

 

(a)  (b)  

Figure 2.8: The stacking of ε-martensite variants for (a) self-accommodated and (b) mono 

partial stacking [101]. 

 

2.4.4.1 Athermal and deformation-induced ε-martensite 

The formation of ε-martensite takes place upon quenching after annealing and also on 

deformation. The ε-martensite formed by these two ways can be distinguished by three methods: 

 

(i) High-resolution transmission electron microscopy (HR TEM) imaging: The previous studies 

have revealed that the quenched ε-martensite forms in the self-accommodated stacking form (Fig. 

2.8a), whereas the stress-induced ε-martensite appears in the mono partial stacking sequence as 

depicted in Fig. 2.8b. Therefore, imaging the interface between γ and ε-martensite can be used to 

separate the ε-martensite formed by the two processes. In the case of ε-martensite formed upon 

quenching after annealing, the γ/ε-martensite interface is expected to be atomically smooth, 

whereas in the case of deformation-induced ε-martensite the interface is expected to contain 

ledges [101]. 

 

(ii) Optical microscopy: It was reported that the colour etchant with a composition of 1.2% K2S2O5 

+ 0.5% NH4HF2 with distilled water can be used to distinguish between the two types of ε-

martensite. The etchant delineates the ε-martensite formed upon quenching after annealing as 

white (Fig. 2.9a) whereas the deformation-induced ε-martensite is black (Fig. 2.9b). The γ and α′-

martensite appear as brown and blue colours, respectively. 
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(a)  (b)  
Figure 2.9: Microstructure of ε-martensite after colour etching (a) athermal martensite (in 

white) and  (b) stress-induced martensite (in dark striations) [101]. 

 

(iii) Atomic force microscopy: During the formation of quenched in ε-martensite, there is an 

increase in the local γ surface elevation (Fig. 2.10a) whereas, for deformation-induced martensite, 

there is a decrease in the γ surface elevation as shown in Fig. 2.10b. Thus, measuring the surface 

height by using an atomic force microscope, the martensite formed in the two processes could be 

distinguished [101]. 

 

(a)  (b)  
Figure 2.10: Surface topographies created by martensitic transformation by (a) thermal -

martensite and (b) stress-induced -martensite [101]. 

 

2.4.4.2 Stacking faults in ε-martensite  

In ε-martensite, three types of faults namely ISFs, ESFs and twin faults are formed. The formation 

of a partial dislocation in ε-martensite takes place by the splitting of a perfect dislocation 

a

3
[21̅1̅0]ε (lattice parameter a) gliding on the (0001)ε basal plane of an hcp crystal into two 

Shockley partial dislocations by the reaction:       

    
a

3
[21̅1̅0]ε →

a

3
[101̅0]ε +

a

3
[11̅00]ε    (2.9) 

(i) ISF: ISFs created by the motion of Shockley partial dislocations in ε-martensite can be of two 

types I1 and I2. I1 type ISF depicted in Fig. 2.11a can be presented by the dislocation reaction where 



19 
 

a Shockley partial dislocation reacts with a Frank dislocation with Burgers vector 
a

2
[0001] to 

produce a Frank-Shockley composite dislocation [53]. The dislocation reaction is given as: 

    
a

3
[101̅0]ε +

a

2
[0001]ε →

a

6
[202̅3]ε   (2.10) 

Due to the composite nature (Frank-Shockley dislocation), the resultant fault is sessile. Another 

possible way to visualise I1 type faults is by the removal of one layer of basal plane atoms followed 

by the slip of the crystal by  
a

3
[101̅0]ε. The intermediate stage in the above process produces a 

fault with a very high energy due to the overlapping of the same layer of stacking. The process 

can be described as: 

ABABABABABAB….   → ABABBABABAB…. → ABAB|CBCBCB….. 

The formation of sessile ISFs of type I2 is described as ABABABABAB…→ABAB|C|ACACA… and its 

dislocation reaction is identical to Eq. 2.6 and facilitated by the motion of 
a

3
[101̅0]ε Shockley 

partial dislocations.  

 

(ii) ESF: The formation of ESFs is due to the glide of two Shockley partial dislocations with Burgers 

vector 
a

3
[101̅0]ε of opposite sign, on the top and bottom adjoining basal planes resulting in the 

insertion or removal of multiple layers of basal stacking from the lattice [53]. This dislocation 

motion occurs on the basal plane creating a stacking sequence of ABAB|C|ABAB… (presented in 

Fig. 2.11b) without altering the nearest-neighbour arrangement of the hcp stacking sequence. The 

dislocation reaction for the formation of ESF can be represented by the equation [53]  

   
a

2
[0001]ε +

a

3
[101̅0]ε +

a

3
[1̅010]ε →

a

2
[0001]ε   (2.11) 

The stacking sequence changes from: 

ABABABAB… → ABAB|CABAB… or BABABABA… → BABA|CBCB… 

 

(a)  (b)  

Figure 2.11: Stacking sequence in ε-martensite for (a) intrinsic (type I1) and (b) extrinsic faults 

[85]. In Figs. 2.11a, 2.11b AS/SA and σS/Sσ are dislocations with Burgers vector 
1

6
[2̅203]ε and 

1

2
[0001]ε, respectively. 
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(iii) Twin fault: Another type of fault, which is uncommon, is twin fault because of its mirror 

symmetry about the basal plane. The formation of twin faults was described by the shearing of 

subsequent basal planes by dislocations with Burger vector 
a

3
[101̅0]ε [102]. The atomic stacking 

of these faults can be visualised by ABABABABAB…→ ABAB|C|BABAB… Twin faults are not twins 

despite the occurrence of a mirror symmetry [103]. A homogenous shear is required to produce 

a twin fault whereas a homogeneous shear cannot produce a twin. 

In the basal faults, the appearance of the local fcc-like environment (highlighted in bold fonts) 

takes place in the above stacking arrangement. In ISFs, ESFs and twin faults there are one, three 

and two fcc-like environments occurring, respectively. Therefore, the energy of the faults follows 

E(ESF)≈
3

2
E(Twin)≈3E(ISF) [104]. Thus, it is expected for ε-martensite to contain more ISF than 

ESF or twin faults. 

 

2.4.5 α′-martensite formation 

Martensitic transformation occurs by the shearing of the lattice, with the atoms moving only a 

fraction of the interatomic distance. There is no compositional change associated with martensitic 

transformation. Based on the phenomenological theory of martensite crystallography (PTMC), 

for the accomplishment of martensitic transformation, the presence of an invariant line (for the 

glissile interface) and invariant plane (observed experimentally) is required. The two conditions 

are met by the combination of the following processes:  

 

(i) Bain strain: This is a homogenous pure distortion which converts γ lattice into the α′-

martensite lattice by expansion and contraction of the three axes of γ crystal with the minimum 

atomic displacement (Figs. 2.12a, 2.12b). Fig. 2.12b shows that a body-centred tetragonal cell 

(bct) can be visualized between two γ unit cells. A bct lattice can be considered as a bcc with c/a 

≈1.4. So, the bct lattice (between two fcc lattices) can be converted into bcc lattice by a 

compression parallel to the b3 axis (Fig. 2.12b) and extension parallel to b1 and b2 axis (Fig. 

2.12b). Therefore, the application of Bain strain leads to the increase in volume upon γ to α′-

martensite transformation. The Bain strain can be expressed mathematically as  

     Bain strain=(

η1 0 0
0 η2 0
0 0 η3

)   (2.12) 

where η1, η2 and η3 are the strains in the three principal directions. 
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Figure 2.12: (a) Bct unit cell within fcc lattice and (b) Bain strain along the b1, b2 and b3 axis 

returning the transformation of an fcc/bct to bcc lattice [105]. In Figs. 2.12a and 2.12b a1, a2, 

a3 and b1, b2, b3 are the principal axis of the fcc and bct/bcc lattice, respectively. 

 

(ii) Rigid body rotation: As there is no undistorted line associated with Bain strain, thus the 

invariant line strain associated with martensitic transformations cannot be explained by Bain 

strain alone. This leads to the requirement of a rigid body rotation along with Bain strain which 

leaves a line both undeformed and unrotated (invariant line strain). The Bain strain along with 

rigid body rotation is not a pure strain as the principal axes are rotated. The combination of Bain 

strain and rigid body rotation is called a lattice transformation strain. This strain is an invariant 

plane strain (IPS) which acts on the habit plane (p) and along the shear direction (d) to return the 

shape change observed during the γ to α′-martensite transformation. Mathematically shape 

deformation can be expressed as         

     IPS=I+m*[p][d]    (2.13) 

     I = (
1 0 0
0 1 0
0 0 1

)     (2.14) 

where m is the magnitude of shape deformation, I is the identity matrix. 

 

(iii) Shear deformation of γ/α′-martensite interface: The experimentally observed shape change 

during the γ to α′-martensite transformation is an invariant plane strain. The shear at the 

interface occurs by the heterogeneous invariant lattice deformation such as slip or twinning [105] 

without changing the crystal structure of α′-martensite. 
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2.4.5.1 Mechanism of deformation-induced α′-martensite formation 

It is generally assumed that the formation of deformation-induced α′-martensite takes place at 

the intersection of two slip bands as described below. This is due to the favourable shear strain 

created at the intersection site by two intersecting slip bands. The α′-martensite is observed to 

grow in the form of plates and these plates will stop at γ high angle grain boundaries (HAGBs) or 

at other α′-martensite plates. The shear required for the transformation of γ lattice into α′-

martensite can be divided into two invariant plane strains which can occur simultaneously or 

successively in accordance with the Bogers-Burgers model [103].  

(i) The first invariant plane strain can be due to one-third of twinning shear in γ with a 

displacement 
a

18
〈112〉γ and denoted by T/3. This shear can be achieved by the motion of an array 

of Shockley partial dislocations on every third {111}γ plane (Fig. 2.13).  

 

(ii) The second invariant plane strain can be attained by the application of a second shear 

component corresponding to one-half of the twinning shear (displacement of  
a

12
〈112〉γ) in the γ 

lattice and is represented as T/2 in Fig. 2.13. The movement of Shockley partial dislocations on 

every second plane {111}γ plane can achieve this invariant plane strain. 

 

(a)  (b)  

Figure 2.13: Schematic illustration of intersecting shears due to two arrays of 
a

6
〈112〉γ partial 

dislocations in γ (a) before and (b) after the intersection of localised slip band. One array has 

partial dislocations on every third {111}γ plane and averages one-third of a twinning shear 

while another array has partial dislocations on every second {111}γ plane and averages one 

half of a twining shear. The resulting double-faulted intersection has an exact bcc structure  

[106]. 
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2.4.5.2 Stress and strain-induced α′-martensite 

Fig. 2.14a shows the thermodynamics involved in the transformation of γ to α′-martensite. ΔGγ−α′
 

is the total free energy change/driving force for the γ to α′-martensite transformation which can 

be calculated as           

     ΔGγ−α′
= Gγ − Gα′

    (2.15) 

where Gγ and Gα′
are the free energy of γ and α′-martensite, respectively. At the Ms, the free 

energy change for γ to α′-martensite transformation is zero. At temperatures below Ms, the 

ΔGγ−α′
 is negative and at temperatures above Ms, the ΔGγ−α′

 is positive. This implies that at 

temperatures higher than Ms, Gγ > Gα′
 whereas below Ms Gγ < Gα′

. Near the Ms temperature, 

the ΔGγ−α′
can be approximated as  

     ΔGγ−α′
=  ΔHγ−α′ T−Ms

Ms
    (2.16) 

where ΔHγ−α′
is the enthalpy change during γ to α′-martensite transformation and T is the 

temperature. The total free energy change due to α′-martensite transformation can be 

supplemented via plastic deformation. In Fig. 2.14a U is the free energy change/driving force 

associated with the plastic deformation. The formation of deformation-induced martensite can 

be categorised into two types: (i) stress-induced and (ii) strain-induced martensite.  

(i) The nucleation of α′-martensite under the influence of elastic stress produces stress-induced 

α′-martensite. In this case, α′-martensite nucleates at stress levels below the yield stress of γ at 

pre-existing nucleation sites (Fig. 2.14b).  

 

(ii) The nucleation of α′-martensite above the yield stress of γ is strain-induced. Plastic 

deformation above yielding leads to the formation of new potent nucleation sites [103]. Fig. 2.14 

shows the temperature range between MS and MS
σ where yielding under the applied stress is 

initiated by the onset of α′-martensite formation and above which yielding is initiated by regular 

slip processes in γ. In Fig. 2.14 Ms is the martensite start temperature,  MS
σ is the temperature 

where stress required to initiate stress-induced α′-martensite is equal to the yield stress of γ and 

Md is the temperature above which plastic deformation cannot produce α′-martensite.  
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(a)  (b)  
Figure 2.14: Schematic representation of (a) change in Gibbs free energy with temperature and 

(b) deformation mechanism as a function of temperature. MS is the martensite start 

temperature. MS
σ is the temperature at which the stress required for the onset of martensite is 

greater than the yield stress of γ. Md is the temperature above which no martensite formation 

is possible [107]. 

 

The γ-stacking faults produced by the deformation of γ are one of the potent nucleation sites for 

ε-martensite. Thus, ε-martensite can be considered to be strain-induced. The formation of α′-

martensite at the intersection of two ε-martensite plates or by the intersection of the ε-martensite 

plate with a twin or at γ grain boundary in deformed 304 austenitic stainless steel are cases where 

a nucleating site was created by plastic straining. Thus, in such cases, the α′-martensite 

generation may be construed as a strain-induced process. However, the α′-martensite formation 

can also be stress-induced. With the use of DIC technique, Eskandari et al. [41] detected the 

formation of stress-induced martensite before yielding. Thus, in metastable austenitic steel, the 

occurrence of both stress and strain-induced martensite was reported in the literature. 

 

2.5 Crystallography of γ/ε-martensite and γ/α′-martensite transformations 

Four ε-martensite variants form from a single γ grain following the Shoji-Nishiyama (S-N) 

orientation relationship ({111}γ||{0001}ε,〈011〉γ||〈112̅0〉ε) as shown in Table 2.3 [105].  

Table 2.3 Four ε-martensite variants generated during the phase transformation of γ to ε-

martensite via S-N orientation relationship [100]. 

ε-martensite variant Plane-Direction in γ Plane-Direction in ε-martensite 

V1 (111)[101̅]γ (0002)[21̅1̅0]ε 

V2 (1̅11)[011̅]γ (0002)[21̅1̅0]ε 

V3 (1̅1̅1)[1̅01̅]γ (0002)[21̅1̅0]ε 

V4 (11̅1)[01̅1̅]γ (0002)[21̅1̅0]ε 
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Similarly, the formation of α′-martensite from ε-martensite was described to follow the Burgers 

orientation relationship ({110}α′||{0001}ε,〈111〉α′||〈112̅0〉ε) [108]. Due to the α′-martensite bcc 

crystal symmetry, during the hcp to bcc transformation, six variants of α′-martensite can be 

obtained from one ε-martensite crystal upon phase transformation via the Burgers orientation 

relationship. The six variants of α′-martensite are listed in Table 2.4.  

 

Table 2.4 Six variants of α′-martensite generated during the phase transformation of ε to α′-

martensite via the Burgers orientation relationship [100]. 

α′-martensite variant Plane-Direction in ε-

martensite 

Plane-Direction in α′-

martensite 

V1 (0002)[21̅1̅0]ε (011)[111̅]α′ 

V2 (0002)[112̅0]ε (011)[111̅]α′ 

V3 (0002)[1̅21̅0]ε (011)[111̅]α′ 

V4 (0002)[2̅110]ε (011)[111̅]α′ 

V5 (0002)[1̅1̅20]ε (011)[111̅]α′ 

V6 (0002)[12̅10]ε (011)[111̅]α′ 

 

The misorientation angle-axis pairs obtained from a single ε-martensite grain upon phase 

transformation to α′-martensite grains with different variants are presented in Table 2.5. 

 

Table 2.5 Misorientation angle-axis pairs between α′-martensite variants obtained from a single 

ε-martensite grain upon phase transformation via the Burgers orientation relationship [109]. 

Misorientation angle Misorientation axis 

10. 5° [110]α′ 

49.5° [110]α′ 

60.0° [110]α′ 

60.0° [111]α′ 

 

The fcc crystal can transform to a bcc crystal by the observation of Kurdjumov-Sachs (K-S) 

orientation relationship {111}γ‖{011}α′, 〈1̅01〉γ‖〈11̅1〉α′ [53] or  Nishiyama-Wassermann (N-W) 

orientation relationship {111}γ‖{011}α′ , 〈11̅0〉‖〈001〉α′ [105]. However, during the γ to α′-

martensite transformation in high Mn steels, the occurrence of K-S orientation relationship was 

reported most commonly. The formation of twenty-four variants of α′-martensite takes place via 

the K-S orientation relationship, which is listed in Table 2.6. 



26 
 

 

Table 2.6 Twenty four α′-martensite variants generated during the phase transformation of γ to 

α′-martensite via the K-S orientation relationship [110]. 

 

α′-martensite variant Plane-Direction in γ Plane-Direction in α′-martensite 

V1 (111)[1̅01]γ (011)[1̅1̅1]α′ 

V2 (111)[1̅01]γ (011)[1̅11̅]α′ 

V3 (111)[011̅]γ  (011)[1̅1̅1]α′ 

V4 (111)[011̅]γ  (011)[1̅11̅]α′ 

V5 (111)[11̅0]γ  (011)[1̅1̅1]α′ 

V6 (111)[11̅0]γ  (011)[1̅11̅]α′ 

V7 (11̅1)[101̅] (011)[1̅1̅1]α′ 

V8 (11̅1)[101̅] (011)[1̅11̅]α′ 

V9 (11̅1)[1̅01]γ (011)[1̅1̅1]α′ 

V10 (11̅1)[1̅01]γ (011)[1̅11̅]α′ 

V11 (11̅1)[011]γ (011)[1̅1̅1]α′ 

V12 (11̅1)[011]γ (011)[1̅11̅]α′ 

V13 (1̅11)[01̅1]γ (011)[1̅1̅1]α′ 

V14 (1̅11)[01̅1]γ (011)[1̅11̅]α′ 

V15 (1̅11)[1̅01̅]γ (011)[1̅1̅1]α′ 

V16 (1̅11)[1̅01̅]γ (011)[1̅11̅]α′ 

V17 (1̅11)[110]γ (011)[1̅1̅1]α′ 

V18 (1̅11)[110]γ (011)[1̅11̅]α′ 

V19 (111̅)[1̅10]γ (011)[1̅1̅1]α′ 

V20 (111̅)[1̅10]γ (011)[1̅11̅]α′ 

V21 (111̅)[01̅1̅]γ (011)[1̅1̅1]α′ 

V22 (111̅)[01̅1̅]γ (011)[1̅11̅]α′ 

V23 (111̅)[101]γ (011)[1̅1̅1]α′ 

V24 (111̅)[101]γ (011)[1̅11̅]α′ 

 

The Fig. 2.15 shows the hierarchical structure of lath α′-martensite formed with changing C 

content. In low C steels containing 0-0.4 wt.% C [110, 111], inside a prior γ grain, the α′-

martensite laths are organized into crystallographic packets, blocks and laths (Fig. 2.15a). Each 
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packet is divided into blocks which contain laths of the same or similar orientations. Inside a 

crystallographic packet, all the α′-martensite laths contain the same habit plane and are arranged 

in a parallel morphology. A twinning relationship may exist between different blocks within a 

packet. A prior γ grain can transform into four kinds of crystallographic packets containing α′-

martensite variants: (i) V1-V6, (ii) V7-V12, (iii) V13-V18 and (iv) V19-V24 (Table 2.4). In low C 

steels (0-0.4 wt.%) the blocks within a packet are parallel. With an increase in the C content from 

~0-0.6 wt.% the block and packet sizes decrease [110]. The blocks are much finer in high C steel 

(in micron size) compared to lower C steels. Each block in a high C steel with 0.6 wt.% C contains 

six crystallographic packets with each packet containing laths of a single α′-martensite variant. In 

medium C steels containing 0.75 wt.% C, the α′-martensite laths are not arranged in blocks of 

similar orientations as shown in Fig. 2.15b. However, each crystallographic packet contains two 

twin related variants of lath α′-martensite.  

For high C steels containing 1.8 wt.% C the α′-martensite morphology changes to plates as shown 

in Fig. 2.15c [112]. However, in the plate morphology, the sizes of the plates vary considerably 

along with their non-parallel arrangement. Plate α′-martensite contains a distinct midrib which 

is parallel to the growth direction. The width of the plate α′-martensite is restricted by the 

formation of α′-martensite plates of different orientations near the side of a growing α′-

martensite plate. Further on small α′-martensite plates form between two large α′-martensite 

plates. This is due to the restricted growth of these smaller plates by the presence of large plates. 

A large fraction of retained γ is observed in high C steels. With increasing the C content to 1.8% 

the tendency for formation of α′-martensite variant having the same habit plane within a group 

of plates decreases. The higher C content leads to the formation of lath α′-martensite having twin 

relation to each other [112].  

 

 

(a) (b) (c) 

Figure 2.15: Schematic showing the change in the microstructure of α′-martensite with C 

content (a) ~0, (b) 0.75 and (c) 1.8 wt.% C [112]. Each colour represents laths with similar α′-

martensite orientations/variants. CP: crystallographic packet. 
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In metastable austenitic stainless steel containing low C ≈0.017 wt.%, the formation of 

deformation-induced lath and dislocation cell type α′-martensite was observed [99] on cold 

rolling to 45% thickness reduction [99]. The dislocation cell type α′-martensite is formed upon 

the subsequent deformation of lath α′-martensite. The diffraction pattern of lath α′-martensite 

displays a standard pattern similar to that of a single crystal lattice whereas the diffraction 

pattern from a dislocation cell α′-martensite exhibits ring pattern due to the misorientation 

between multiple subgrains/cells present within the lath. 

 

2.6 Effect of deformation on the α′-martensite variant selection 

Bowles and Mackenzie [113] proposed that change in shape during the formation of an α′-

martensite plate can be described by an invariant plane strain along with a small dilatation. It was 

observed that the atomic displacements involved in α′-martensite formation cannot be achieved 

via a homogenous strain as the homogenous strain does not convert the initial structure to the 

final observed structure of α′-martensite. Thus, the simultaneous action of two strains was 

proposed. The first strain changes the shape of the γ to α′-martensite whereas the second strain 

changes the crystal structure of γ to α′-martensite. It was proposed that the shape change strain 

comprises a shear (s) and dilatation (δ) strain components, leaving the habit plane undistorted 

and unrotated. The second strain that converts the crystal lattice was assumed to be a simple 

shear via slip or twinning on the slip/twinning planes in the slip/twinning direction. Both the 

shape and lattice strains were assumed to be an invariant plane strain. 

For the formation of α′-martensite, the values of s~0.22-0.26 and δ~0.03 are observed which are 

much larger than the elastic strains. Due to the involvement of deformation, the externally applied 

stress can influence the total driving force accompanying the transformation. To explain the 

influence of external stress, Patel and Cohen [114] have proposed the equation  

     U = σNδ +  τs     (2.17) 

where  σN and τ are the normal and shear stress, respectively, on the habit plane, whereas δ and 

s are the dilatation and shear components, correspondingly. Therefore, it is expected that during 

the formation of deformation-induced α′-martensite one or more out of 24 variants will be 

favoured. During the uniaxial tensile testing, those α′-martensite variants with their habit plane 

inclined at 45° to the stress axis are favoured [100].  
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2.7 Kinetics of deformation-induced α′-martensite formation 

There are two widely used equations to model the transformation kinetics of γ to deformation-

induced α′-martensite. 

 

(i) Guimares et al. [25] suggested the following equation     

     f = 1 − exp (−kεz)     (2.18) 

where f is the volume fraction of deformation-induced α′-martensite, ε is the strain and k, z are 

constants. In this model, the rate of increase of volume fraction of deformation-induced α′-

martensite was observed to change from a linear behaviour to a sigmoidal behaviour with an 

increase in strain.  

 

(ii) Olson and Cohen [103] introduced the following equation     

    f = 1 − exp (−β(1 − exp(−αε))n)   (2.19) 

where f is the volume fraction of deformation-induced α′-martensite, ε is the strain, α, β, n are 

constants. α is the rate of formation of shear bands with strain. β represents the probability of α′-

martensite nucleation at the shear band intersection. Both the terms α, β are sensitive to 

temperature. This model is based on the mechanism of strain-induced α′-martensite nucleation 

at the intersection of shear bands and hence is more realistic to apply in the present case as shown 

in Fig. 2.16. It can be noted that the experimentally measured α′-martensite volume fraction 

matches very closely to that predicted with Eq. 2.9. 

 

 

Figure 2.16: Variation in the volume fraction of deformation-induced α′-martensite with a 

plastic strain in a 304 stainless steel at various deformation temperatures. The solid line and 

broken line are the predicted (Eq. 2.19) and the experimentally measured α′-martensite 

volume fraction, respectively [115].  
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2.8 Effect of cold rolling on the microstructure of high-Mn steels 

Lü et al. [8, 46] reported the microstructure and texture evolution during cold rolling between 20 

and 50% thickness reductions of an Fe-22Mn-0.38C steel. On cold rolling, the γ transforms to ε-

martensite with a maximum volume fraction of 28% at 50% thickness reductions. The 

deformation mechanisms observed during cold rolling were (i) partial slip, (ii) twinning and (iii) 

γ to ε-martensite transformation. The formation of shear bands was also observed to take place 

after 43% thickness reduction. Shear bands are regions of localised deformation that takes place 

when the material hardening rate decreases during the later stages of cold rolling. It was stated 

that γ to ε-martensite transformation contributed to less than 10% of the total plastic strain 

whereas partial dislocation slip and twinning were the dominant deformation mechanism. On 

cold rolling, Lü et al. [8] also observed lamellar lines which were ascribed to either slip, twins or 

ε-martensite. On increasing the thickness reduction to 50%, the lamellar lines were observed to 

be bent. Haase et al. [116] described the formation of deformation twins and slip bands during 

the deformation of an Fe-28Mn-0.28C steel to 30% thickness reduction.  

Fig. 2.17 shows the microstructure evolution with increasing cold rolling thickness reduction of 

an Fe-26Mn-3Si-3Al steel. During the cold rolling of an Fe-26Mn-3Si-3Al steel to 10% thickness 

reduction (Fig. 2.17a), Kowalska et al. [11] observed the onset of γ to ε and α′-martensite 

transformation. Further cold rolling to 30% thickness reduction (Fig. 2.17b) led to the formation 

of deformation twins, more ε and α′-martensite with the presence of γ containing high dislocation 

density [10]. The twin intersection was observed to be the preferred nucleation site for ε-

martensite.  

Upon further deformation to 57% thickness reduction (Fig. 2.17c), the microstructure comprised 

lath α′-martensite with a trace amount of ε-martensite. Gazder et al. [7] also revealed that during 

66% cold rolling of an Fe-17Mn-2Si-3Al-1Ni-0.06C steel the transformation of γ to (i) ε and (ii) 

α′-martensite takes place. The cold-rolled microstructure consisted of blocky ε-martensite along 

with elongated α′-martensite grains and a small amount of remnant γ. The presence of stacking 

faults in ε-martensite indicating its deformation was also stated in Ref. [7]. 

 

(a)  (b)  
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(c)  
Figure 2.17: Bright-field transmission electron micrographs showing the microstructure 

evolution with increasing cold rolling thickness reductions to (a) 10%, (b) 30% and (c) 57% 

for an Fe-26Mn-3Si-3Al steel [11].  

 

A study conducted by Lü et al. [8] by measuring the hardness of ε-martensite for different cold-

rolled samples showed the value to remain constant (≈10.5 GPa). The ε-martensite basal 

(0001)ε poles were observed to remain at a constant separation of ~20° deviated from the ND 

without any (0001)ε pole rotation. On the basis of the above observations, Lü et al. [8] described 

ε-martensite to be a hard phase without undergoing any deformation during cold rolling.   

Contrary to the above studies, Wenk et al. [117] have observed the rotation of the basal 

(0001)ε poles during the compression of hcp ε-iron to 200 GPa pressure. By the application of 

ViscoPlastic Self-Consistent modelling [117], the above authors suggested that basal slip might 

be an active deformation mechanism causing the (0001)ε pole rotation. The observation of 

dislocations with a 〈c〉 component and deformation bands in ε-martensite during the tensile 

testing of an Fe-17Mn steel also pointed out to the occurrence of dislocation activity on the 

(0001)ε basal plane [47]. Saleh et al. [24] showed ε-martensite to accommodate compressive load 

during cyclic in-situ neutron diffraction.  Using XRD peak analysis of an Fe-17Mn-0.02C steel, an 

earlier study suggested that ε-ISFs are responsible for the reverse transformation of ε-martensite 

back to the γ phase during tensile deformation [22].  

In the literature [8, 24, 47, 117] there are two opposing views regarding the deformation 

accommodation by ε-martensite. Lü et al. [8] by measuring the hardness of ε-martensite for the 

cold-rolled samples in addition to measuring the separation of the basal (0001)ε poles proposed 

ε-martensite to be a hard phase without accommodating any deformation during cold rolling.  On 

the other hand, Wenk et al. [117] observed the rotation of the basal (0001)ε poles during 

compression of hcp ε-iron. Also, Saleh et al. [24] and Gazder et al. [7, 48] showed ε-martensite to 

accommodate compressive stress by cyclic in-situ neutron diffraction and transmission Kikuchi 

diffraction (TKD)/TEM, respectively. Therefore, a detailed investigation needs to be undertaken 
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to reveal the micro-mechanisms operating during the deformation accommodation in ε-

martensite via aberration-corrected transmission electron microscopy.  

 

2.9 Effect of tensile testing on the microstructure of high Mn steels 

Ding et al. [118] defined four stages of strain hardening during the tensile testing (ε̇ = 10−3s−1) 

of an Fe-18.8Mn-3Al-3Si steel at room temperature as shown in Fig. 2.18a.  

(i) Stage 1 (ε = 0 - 0.06)  

Elastic region and the onset of yielding in the sample.  

 

(ii) Stage 2 (ε = 0.06 - 0.14), γ to ɛ-martensite to α′-martensite transformation  

The volume percentage of ε and α′-martensite increases in this strain range. The width of the 

stacking faults increases and the overlapping of the stacking faults is found at the intersection of 

active slip planes. The formation of ε-martensite takes place through the overlapping of stacking 

faults. The nucleation of α′-martensite takes place at the intersection of two ε-martensite plates. 

The further growth of α′-martensite grains takes place by coalescence.  

 

(iii) Stage 3 (ε = 0.14 - 0.35), γ twinning   

The volume fraction of γ, ε and α′-martensite remains unchanged but the true stress sharply 

increases due to the deformation twinning, which was observed in the microstructure. This can 

be explained by the increase in strain hardening rate as deformation twin boundaries hinder the 

dislocation motion by acting as obstacles (Fig. 2.18b). 

 

(iv) Stage 4 (ε = 0.35-0.45), γ to α′-martensite transformation 

During the loading between 0.35 to 0.45 strains, the volume fraction of (i) α′-martensite increases 

and (ii) of ε-martensite decreases. This indicates the dominance of (i) γ to α′-martensite and (ii) 

ε-martensite to α′-martensite transformation. At this stage, nucleation of α′-martensite was also 

noticed directly in γ at the high-stress concentration regions such as twin/twin, shear-

band/shear-band and twin/shear-band intersections [119]. Also, thickening of the existing 

deformation twins takes place. The α′-martensite formation leads to volume expansion which 

creates dislocation pile-ups at the interfaces, reducing the interfacial energy (γ/α′-martensite). 

As the α′-martensite starts to deform, the interface separates easily leading to micro-cracking. 

The above processes result in the decrease in work hardening rate and eventually failure. 
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(a)  (b)  
Figure 2.18: (a) Engineering stress-strain curve (b) strain hardening curve for an Fe-18.8Mn-

3Al-3Si steel [118]. 

 

During a recent study by Chen et al. [52], tensile testing of an Fe-15Mn steel having an initial 

microstructure containing γ and ε-martensite formed upon quenching after annealing led to γ to 

ε-martensite transformation at lower engineering strains than 0.1 whereas ε to α′-martensite 

transition was the main deformation mechanism along with slip and tensile twining in ε-

martensite at higher engineering strains between 0.1-0.3.  The nucleation of α′-martensite was 

observed at the intersection of two ε-martensite plates. All the α′-martensite grains were found 

inside ε-martensite grains. Due to ε and α′-martensite transformation the steel showed an 

excellent combination of UTS of 772 MPa and ductility of 0.42.  

Grassel et al. [120] stated that during the tensile testing of an Fe-20Mn-3Si-2Al TRIP-TWIP steel 

the volume fraction of γ decreases and of α′-martensite increases whereas that of ε-martensite 

remains constant. This indicates the direct transformation of γ to α′-martensite. During the 

tensile testing (ε̇ = 4 × 10-4 s-1) of an Fe-15.5Cr-6.1Mn-6.1Ni steel at temperatures between -60 to 

200 °C two stages were observed: (a) deformation banding in γ, ε and α′-martensite formation 

between -60 to 40 °C, (b) ε-martensite formation between 40 and 100 °C and (c) deformation 

twinning between 100 and 200 °C [121]. The deformation bands were also observed in γ at low 

temperatures (less than 20 °C) and shown to consist of multiple stacking faults which overlap 

with increasing amount of deformation. The tensile testing of an Fe-24Mn steel containing coarse 

γ grains and athermal ε-martensite was also done at (i) 20 °C and (ii) -196 °C [122]. Tensile testing 

at both 20 and -196 °C leads to the formation of ε-martensite laths, however testing at -196 °C 

leads to a slight increase in the volume fraction of ε-martensite. The dislocation motion was 

observed to be planar and localised with the formation of deformation bands with high 

dislocation densities in γ was also observed during tensile testing at 20 °C. The inhomogeneous 

dislocation structures also developed within ε-martensite similar to those observed in γ upon 

tensile testing at 20 °C. 
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Lee et al. [123] studied the tensile deformation behaviour of an Fe-12Mn-0.6C steel. It was 

reported that the main deformation mechanism changed from ε-martensite formation to 

deformation-induced twinning with increasing strain rate above 10−2 s−1. This resulted in the 

enhanced work hardening and increased total elongation. This was due to the increase in the 

critical resolved shear stress (CRSS) for the onset of ε-martensite transformation with increasing 

strain rate. With increasing strain rate the CRSS of ε-martensite formation became higher than 

the CRSS of γ twinning leading to the occurrence of deformation twinning in preference to the ε-

martensite formation. 

 

2.10 Annealing of cold-rolled high Mn steels 

Annealing treatment is an important stage in the industrial production of metals and alloys as it 

increases ductility by removal of prior defect structure and controls the final microstructure 

(grain shape and size) and crystallographic texture [124]. Thus, the final mechanical properties 

of metallic metals and alloys depend on annealing parameters such as temperature, time and 

heating rate.  

During the annealing of high Mn steels, a number of events take place. These include ε and α′-

martensite recovery and subsequent reversion, γ recovery, recrystallisation and grain growth.  

The ε-martensite reversion was shown to occur at a lower temperature (100-250 °C) for the Fe-

17Mn-3Al-2Si-1Ni-0.6C steel [40]. The reversion of α′-martensite to γ starts at ~500 °C [40]. At 

this temperature, the simultaneous occurrence of recovery of the (i) reverted γ from ε-martensite 

and (ii) retained γ during cold rolling takes place.  Annealing at 600 °C leads to the onset of 

recrystallisation of the retained/reverted γ along with the reversion of α′-martensite. The grain 

growth of recrystallised γ is also observed to take place. The γ recrystallisation is completed at 

700 °C. 

 

2.10.1 Reversion of deformation-induced ε and α′-martensite  

Before the onset of the displacive ε-martensite reversion the shrinkage of ε-martensite stacking 

faults takes place. The ε-martensite reverts to γ via a displacive mechanism in which the reverted 

γ grain inherits the same shape as the parent ε-martensite grain. The reversion starts within and 

outside of the parent ε-martensite grain leading to the formation of a thin γ/ε-martensite lamellar 

structure [34]. Also during the displacive ε-martensite reversion, the transformation start 

temperature is found to be independent of the heating rate during annealing [8]. 

There are two possible mechanisms of α′-martensite reversion: (i) displacive and (ii) diffusional. 

(i) In displacive reversion, the α′-martensite revert to γ via shear without any significant change 

in the microstructure (grain shape and size) as shown in Fig. 2.19. The reverted γ contains a high 



35 
 

density of dislocations which were introduced by the shear reversion [27]. The validation of the 

K-S orientation relationship between γ/α′-martensite is observed during displacive reversion.  

 

(ii) In diffusional reversion, the reverted γ grains bounded by HAGBs nucleate within α′-

martensite grains (Fig. 2.19) and grow by consuming the surrounding α′-martensite grains. The 

K-S orientation relationship is observed between γ and α′-martensite during diffusional 

reversion.  

 

 

Figure 2.19: Illustration of the two α′-martensite  reversion mechanisms  [27]. 

 

The occurrence of displacive and diffusional α′-martensite reversion mechanisms depends on 

factors such as (i) heating rate [29], (ii) annealing temperature/change in free energy and (iii) α′-

martensite morphology [125]. Heating rates higher than 10 °Cs−1 was reported [29, 126] to 

favour displacive transformation due to less available time for diffusion of different elements. For 

displacive α′-martensite reversion, the reversion temperature is independent of the heating rate. 

The free energy required for displacive reversion is higher than that for diffusional reversion [97]. 

So, annealing at high temperatures, favours the displacive α′-martensite reversion mechanism. 

The higher ratios of γ/α stabilisers were shown to increase the free energy change, thus reducing 

the critical temperature for displacive α′-martensite reversion [27]. Lath α′-martensite with 

randomly arranged dislocations was reported to transform via displacive transformation [125, 

127], whereas the one with dislocation cell structure has undergone diffusional transformation  

[125] during annealing.  

During the operation of diffusional α′-martensite reversion, a wide range of γ grain sizes is 

observed [128]. This is due to the dependence of reverted γ grain nucleation on the α′-martensite 

morphology. The presence of both types of α′-martensite within the same sample can be ascribed 

to 90% thickness reduction during cold rolling in which some of the already formed lath type α′-
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martensite transforms to dislocation cell type α′-martensite by an increase in dislocation density 

to accommodate deformation. Thus, for a fixed annealing time, the γ nucleates and grows 

preferentially earlier in dislocation cell α′-martensite containing a density of dislocation and slip 

bands compared to lath α′-martensite leading to a wide range of γ grain sizes. 

Escobar et al. [40] studied the reversion of ε and α′-martensites occurring in an Fe-17Mn-3Al-2Si-

1Ni-0.06C steel using dilatometry and indicated the reversion temperature range of ε and α′-

martensites to be 100-250 °C and 500-700 °C, respectively. The reversion temperature range of 

α′-martensite is the same as the recrystallisation of reverted γ (600-700 °C) during isochronal 

heating.  

The reversion temperature range of ε-martensite was measured to be 200-375 °C and 100-250 

°C for 57% cold-rolled Fe-22Mn-0.38C and 45% cold-rolled Fe-17Mn-3Al-2Si-1Ni-0.06C steels, 

respectively. The reversion temperatures were determined by dilatometry heating experiments 

with a heating rate of 1°Cs−1. The reversion temperatures of ε and α′-martensite remained 

unchanged when the cold rolling thickness reductions increased from 35% to 81% [129] 

indicating the transformation to occur by the displacive mechanism.  Gazder et al. [7] described 

the incomplete reversion of α′-martensite to γ during the isochronal annealing of 66% cold-rolled 

Fe-17Mn-3Al-2Si-1Ni-0.06C steel at 625 °C for 300 s. The annealed microstructure consisted of 

predominantly γ along with α′-martensite. The presence of a trace amount of ε-martensite was 

also observed along the γ grain boundaries. During the annealing of 66% cold-rolled Fe-17Mn-

3Al-2Si-1Ni-0.06C steel at 625 °C for 5 min, the reverted γ was found to be encircled by α′-

martensite grains [7]. The displacive reversion of α′-martensite was also observed in a 73.5% 

cold-rolled Fe-16Cr-10Ni-0.008C stainless steel annealed at 900 °C for 1 s [130] and in a 90% 

cold-rolled Fe-18Cr-9Ni steel (with C content less than 0.005 wt.%) annealed at 750 °C for 10 s 

[27]. 

During the annealing of 98 % cold-rolled Fe-33.5Ni alloy initially containing γ and α′-martensite 

the formation of γ-twins was witnessed [35]. In that study, the formation of fine γ-twins was 

observed after heating to 50 °C above the α′-martensite reversion finish temperature. 

Furthermore, γ-twin was observed during the in-situ TEM annealing of an Fe-5Mn-0.2C steel at 

650 °C [33]. Kowalska et al. [10] noted the formation of deformation-induced α′-martensite after 

57% thickness reduction. Upon annealing at 500 °C for 30 min, the α′-martensite transformed to 

reverted γ containing fine twins as shown in Fig. 2.20. The formation of fine twins was also 

reported during the early stages of annealing of other cold-rolled low SFE fcc materials, such as 

brass [131, 132] and Co-Cr-Mo alloy [133]. However, in all the previous studies [33, 35, 131-133] 

the mechanism of formation of these fine twins was not clearly stated which needs to be explored. 
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(a)  (b)  

(c)  
Figure 2.20: Bright-field transmission electron micrographs of an Fe-26Mn-3Al-3Si steel 

showing the microstructure evolution after cold rolling to 57% thickness reduction and 

isochronal annealing for 30 min at (a) 500 °C, (b) 650 °C and (c) 750 °C, respectively [10].  

 

In-situ annealing studies of ε and α′-martensite were also undertaken using TEM [30-32, 34]. 

They showed that the reversion of ε-martensite also occurred via a displacive mechanism. The 

key features of this included the formation of γ/ε-martensite lamellar structure due to the onset 

of reversion within and outside of the ε-martensite grains during in-situ annealing of an Fe-24Mn-

6Si shape memory alloy [34]. The reverted γ was observed to contain dislocations in which the 

cross slip of dislocations was noted. An in-situ TEM isothermal annealing study of an Fe-20Ni-

5.4Mn alloy at 560 °C for holding duration of 0, 30 and 135 s containing lath α′-martensite showed 

that the γ/lath α′-martensite interface migrates by the fast motion in a direction normal to the 

γ/α′-martensite interface and by a slow lateral motion of the ledges (Fig. 2.21) [30]. The 

dislocations were also observed to move along the ledge and normal to the γ/α′-martensite 

interface.  

 

 

(a)  (b)  (c)  
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Figure 2.21: Bright-field transmission electron micrographs showing the motion of γ/α′-

martensite interface during the isothermal in-situ annealing at 560 °C for (a) 0 s, (b) 30 s and 

(c) 135 s [30]. 

 

For an Fe-5Mn-0.2C steel processed by annealing at 1200 °C for 1800 s followed by quenching to 

produce α′-martensite, in-situ annealing at 650 °C showed the reversion of α′-martensite to occur 

via the nucleation and growth at the α′-martensite lath boundaries [33]. The ex-situ annealing at 

700 °C on the Fe-17Mn-3Al-2Si-1Ni-0.06C steel showed the reversion of ε and α′-martensite to γ 

[134]. However, the ε and α′-martensite reversion mechanisms was not explored in details. It was 

reported [125, 135, 136] that the ε and α′-martensite reversion mechanisms change with the 

chemical composition of metastable austenitic steels. Thus, it is important to study the reversion 

mechanism in high Mn steels. To the best of our knowledge, the literature does not contain any 

in-situ TEM based annealing study of ε and α′-martensite reversion in high Mn steels. Therefore, 

the study of the evolution of the microstructure to determine the ε and α′-martensite reversion 

mechanisms during the in-situ annealing of high Mn steel is essential.  

 

2.10.2 Recovery, recrystallisation and grain growth of reverted γ 

On annealing, the recovery of reverted γ takes place. Recovery is the process by which the γ grains 

reduce their internal stored energy by the annihilation of excess defects and the rearrangement 

of dislocations resulting in the formation of dislocation cell structure, which is bounded by low-

angle grain boundaries (LAGBs). LAGBs are defined as boundaries that have a misorientation 

angle between 2° and 15°.  No long-range migration of HAGBs with misorientation angle greater 

than 15° takes place during recovery. Recovery is followed by γ recrystallisation. Recovery 

proceeds spontaneously, whereas recrystallisation requires an incubation period to develop a 

nucleus. In low SFE materials recovery is very limited due to the large separation between the 

Shockley partial dislocations hindering the rearrangement of dislocations. The driving force for 

recrystallisation is the stored energy of cold deformation. In a fully recovered/polygonised 

microstructure, the stored energy is assumed to be in the dislocations present in the cell walls. 

 

The mechanisms of static recrystallisation can be of two types:  

(i) In continuous recrystallisation, there is no long-range migration of HAGBs. Continuous 

recrystallisation occurs by coarsening of subgrains as shown in Fig. 2.22 [137]. The dislocation 

cells developed during recovery, coarsen leading to the formation of subgrains. As more 

dislocation merging takes place at subgrain walls, the LAGBs transform to HAGBs [124]. This 

process is characterised by a gradual buildup of the grain boundary misorientation. 
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(a)  (b)  (c)  

Figure 2.22: Schematic showing the evolution of microstructure during continuous 

recrystallisation for (a) initial subgrain structure, (b) the middle subgrain growth over the 

smaller ones and (c) boundary of the middle subgrain free from defects [137].  

 

(ii) Discontinuous recrystallisation occurs by the nucleation of new strain-free grains by grain 

boundary bulging, which consumes the deformed elongated grains to produce the recrystallised 

grain structure. The boundary of the recrystallised nucleus moves into the deformed grain to form 

a strain-free region which leads to the decrease in the number of deformed grains [138, 139]. The 

various stages of discontinuous recrystallisation is shown in Fig. 2.23. 

 

 

Figure 2.23: Schematic showing the discontinuous static recrystallisation of cold-rolled metals 

[140]. 

 

The conditions required for a potential nucleus to grow are the possession of HAGBs due to their 

high mobility, a minimum size for growth and the presence of a non-uniform distribution of 

dislocations around the newly formed nuclei [124]. Generally, during recrystallisation, the 

formation of nuclei with HAGBs takes place [25, 124, 140]. Due to the difficulty in the 

simultaneous attainment of the above three conditions, the nuclei are observed to form in regions 

of high local strain. Some of the most common nucleation sites are HAGBs, transition band, highly 

misoriented deformation zones around particles and misoriented regions within shear bands. 

To date, there are no publications on the exclusive study of the recovery of reverted γ. Lü et al. 

[46] reported that on isothermal annealing of an Fe-21.6Mn-0.38C steel at 560 °C for 600 and 

1800 s, the nucleation of new strain-free γ grains takes place at shear bands and grain boundary 
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triple junctions. The nucleation near the vicinity of (i) deformation twins and (ii) at the 

intersection of twins and shear bands were also observed. The growth rate of the nucleus was not 

constant and decreased with increasing annealing time during isothermal annealing. This was 

attributed to the decrease in the driving force. Site saturated nucleation was reported during the 

isothermal annealing at both 560 and 700 °C by observing optical microstructures from relatively 

large areas (670 × 540 µm2). The partial reversion together with the onset of recrystallisation 

during the isochronal annealing of a 66% cold-rolled Fe-17Mn-2Si-3Al-1Ni-0.06C steel at 625 °C, 

300 s was observed [7]. Kowalska et al. [10] observed the onset of γ recrystallisation after 

annealing for 30 min at 650 °C of an Fe-26Mn-3Al-3Si steel cold-rolled to 57% thickness 

reduction.  However, after annealing at 750 °C for 30 min the completion of recrystallisation was 

not observed.  

Haase et al. [141] observed the nucleation of γ grain in the vicinity of prior HAGBs and triple 

junctions during the annealing at 700 °C for a 30% cold-rolled Fe-28Mn-0.28C steel. Relatively 

fewer nucleation sites were detected inside the γ grains such as the intersection of slip bands and 

deformation twin bundles. The γ nucleus is observed to develop from γ subgrains or dislocation 

cells containing HAGBs with the neighbouring deformed γ grain. Subsequently, the nuclei grew 

by local grain boundary bulging into the neighbouring deformed γ grain.   

After the completion of recrystallisation, the grain growth of γ grains takes place. The driving 

force for grain growth is to reduce the surface energy associated with grain boundary. The grains 

grow in size with their number and grain boundary area decreases, thus the total surface energy 

is reduced. During γ grain growth, the curvature-driven grain boundary migration, i.e. the motion 

of the grain boundaries towards the centre of their curvature, takes place (Fig. 2.24). During γ 

grain growth random HAGBs are observed to grow at a higher rate as compared to the LAGBs 

[124]. In particular, HAGBs having a misorientation of 40° across the 〈111〉 axis was observed to 

possess a very high mobility. For LAGBs, vacancy diffusion between dislocations is the mobility 

determining factor, whereas for a HAGB the jump of atoms from the shrinking to growing grain 

is the mobility determining factor.  

However, if all the grain boundaries are assumed to have the same energy then, the equilibrium 

orientation of the boundaries shall be obtained when the boundaries meet each other at 120° 

(Fig. 2.24).   
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Figure 2.24: Effect of grain boundary curvature on grain growth [97]. 

 

The driving force for grain growth can be quantified as      

     ΔG =
2γVm

D
      (2.20) 

where ΔG is the driving force created due to grain boundary curvature, Vm is the molar volume, γ 

is the surface energy, D is the grain size. Thus, fine-grained γ is more susceptible to grain growth 

[142]. 

The grain growth during isothermal annealing is usually quantified by the equation  

    dt − d0 = (Aexp (−
Q

RT
)) ∗ t    (2.21) 

where dt is the grain size after time t, d0 is the initial grain size (at t = 0), Q is the activation energy 

of grain growth, T is the temperature, t is the time and A is a constant.  Due to the presence of ε 

and α′-martensite that formed during the quenching from high temperature after annealing, it is 

difficult to determine accurately the γ grain size. This may lead to the inaccurate determination 

of γ grain growth activation energy.  

The studies of γ grain growth in an Fe-22Mn steel have shown a sluggish grain growth at 

temperatures below 1000 °C, thus yielding a high activation energy value of 363 ± 60 kJ/mol 

[143]. The grain growth in an Fe-22Mn steel resulted in the increase from 14 to 40% in the 

annealing twin area percentage [143]. The γ grain growth studies during the isothermal 

annealing of an Fe-29.2Mn-5.2Al steel at 1000 °C between 300 and 1800 s demonstrated a fast 

grain growth, which yielded a lower activation energy of 208 kJ/mol [144]. During the γ grain 

growth in high Mn steels, the formation of Σ3 boundaries (annealing twins) with misorientation 

60°〈111〉γ and Σ9 (secondary twins) boundaries with misorientation 38.9°〈101〉γ are commonly 

observed as shown in the misorientation angle distribution in Fig. 2.25. The Σ9 boundaries can 

form by the impingement of two Σ3 boundaries at a triple junction [145]:    

     Σ3 + Σ3 → Σ9     (2.22) 
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During the annealing of low SFE materials generally, a large fraction of Σ3 boundaries and low 

fraction of Σ9 boundaries are obtained.  

 

 

Figure 2.25: Misorientation angle distribution showing the occurrence of Σ3 and Σ9 boundaries 

[146]. 

 

2.11 Tensile properties of high Mn steels 

Table 2.7 is a literature-based summary of the tensile properties according to the steel processed 

via (i) solution treatment and hot rolling followed by air cooling/water quenching or, (ii) solution 

treatment, hot rolling, cold rolling and annealing.  

In the case of the first processing route (i) high Mn steels typically containing ≈19-24 Mn wt.% 

and the initially single-phase γ which transforms to α′+ ε-martensite during tensile testing, return 

600-1020 MPa UTS and 0.66-0.86 total elongation [23, 147, 148]. Initially, dual-phase γ + ε-

martensite containing high Mn steels (≈15-20 Mn wt.%) transform to α′ + ε-martensite during 

tension with 574-1234 MPa UTS. The latter range of UTS values for dual-phase steels is higher 

than that for single-phase γ containing steels [21, 26, 28, 37-39, 52]. In case of Ref. [37], an initially 

dual-phase γ + ε-martensite microstructure obtained after solution treatment, water quenching 

and hot rolling transformed to ε-martensite during tension and returned a UTS of 842 MPa. 

Alternatively, when the same steel was processed by solution treatment, liquid nitrogen 

quenching and hot rolling, the same dual-phase microstructure transformed to α′ + ε-martensite 

on tension and recorded a higher UTS of 924 MPa  [38]. Initially multiphase high Mn steels with 

γ + ε + α′-martensite and/or α phases are composed of ≈9-19Mn, 2.4-3Al, ≈3Si and transform to 

α′ + ε-martensite during tension with 728-1437 MPa UTS. The latter value is higher than those of 

steels containing initially single or dual-phase microstructures [21, 118, 149-151]. 
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In the case of further processing via cold rolling and annealing, initially single-phase γ steels 

containing ≈12-24Mn and 0.12-0.32C transform to α′ and/or ε-martensite during tension with 

698-822 MPa UTS [9, 36, 81, 152]. Initially dual-phase γ + ε-martensite/α steels with ≈23-5Mn 

and 0.08-0.32C transform to α′ + ε-martensite after tension with 696-1547 MPa UTS [9, 36, 153-

158]. Multiphase high Mn steels containing ≈4-17 Mn with initially γ + ε + α′-martensite 

microstructures transform to α′+ ε-martensite during tension with 856-1378 MPa UTS, which is 

higher than the UTS for similarly processed single and dual-phase high Mn steels [159-161]. 

Alternatively, other metastable multiphase steels with γ + ε + α′-martensite initial phases and 

carbides/carbonitrides within γ are composed of ≈9-10 Mn and record even higher 1193-1360 

MPa UTS. The higher UTS values are ascribed to precipitation hardening [149, 155]. Frommeyer 

et al. [21] studied the uniaxial tensile behaviour of an Fe-20Mn-3Al-3Si steel and stated high UTS 

(1100 MPa) and total elongation of ≈0.55 values as due to γ to ε and α′-martensite. Similar 

transformation behaviour of γ to ɛ-martensite to α′-martensite, γ to α′-martensite was described 

upon the tension of Fe-23.8Mn steel [148]. During the tension of the Fe-15Mn-3Al-3Si and Fe-

20Mn-3Al-3Si steels, extensive γ-twinning and γ to ε-martensite transformation were reported 

[162] leading to a high strain hardening rate.  

Table 2.7 clearly shows that for high Mn steels that have only been processed by solution 

treatment and hot rolling, further processing by cold rolling and annealing leads to higher UTS 

and total elongations on account of grain refinement in the latter case. Furthermore, an initially 

dual-phase Fe-23.4Mn-0.03Al-0.06Si-0.08C steel with approximately equal area fractions of 

reverted/recrystallised γ and ε-martensite returns a UTS of 844-875 MPa [9]. On the other hand, 

the same steel comprising an initially fully recrystallised γ microstructure returns UTS of only 

792 MPa. It follows that the reverted microstructures possess higher UTS than their fully 

recrystallised counterparts. 
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Table 2.7 Tensile properties of metastable Mn steels in literature. 

Composition Solution HT HR Other CR Annealing Other Phases LT(°C) Speed(mm/min) �̇�(s-1 × 𝟏𝟎−𝟑) YS(MPa) UTS(MPa) eu  ef Ref 

Mn Al Si Ni Mo Cr V Nb C N T(°C) t (h)  Med T(°C) R (%)  R(%) T(°C) t (h)  Med  Before  After          

 

23.8 2.7 3      0.6  1100 1 WQ  -       γ α′+γ RT 1.5 1 339 666 ≈0.67 ≈0.8 [148] 

23.3 1.9 2.1     0.017  0.008 1230 1  1150        γ α′+ε+γ -75 - 1 220 800 0.72 0.86 [147] 

19.1 1.8    4.4   0.07  1200 0.5  1200 88   1000 1 WQ  γ γ+ε+α′ -273 0.42 0.14 195 1020 - 0.68 [23] 

19.1 1.8    4.4   0.07  1200 0.5  1200 88   1000 1 WQ  γ α′+ε+γ RT 0.42 0.14 160 600 - 0.66 [23] 

 

20.1 2.9 2.8             S(77%)  1000 2 WQ  γ+ε α′+γ+ε RT - 0.1 289 764/1365‡ 0.58 - [21] 

20 3 3        1000 2    S(77%)      γ+ε α′+γ+ε 100 - 1 184 574 0.68 0.78 [26] 

20 3 3        1000 2    S(77%)      γ+ε α′+γ+ε 22 - 1 268 ≈600 0.73 0.85 [26] 

20 3 3        1000 2    S(77%)      γ+ε α′+γ+ε -200 - 1 393 1234 0.45 0.5 [26] 

17.8  5.2      0.35  1100 0.67    F      γ+ε γ+ε+α′  2 0.667 425 918/1111‡ 0.21/0.19‡ - [28] 

17        0.3  1000 1 WQ 1000        γ+ε ε+γ 100 - 0.170 259 842 0.71 - [37] 

17        0.3  1000 1 WQ 1000        γ+ε ε+γ RT - 0.170 180 730 0.11 - [37] 

17        0.3  1000 1 WQ 1000        γ+ε ε+γ 0 - 0.170 197 720 0.06 - [37] 

17        0.3  1000 1 LNQ 1000        γ+ε α′+ε+γ 100 - 0.170 381 924 - 0.21 [38] 

17        0.3  1000 1 LNQ 1000        γ+ε α′+ε+γ RT - 0.170 236 752 - 0.13 [38] 

17        0.02  1150 2  1150 55       γ+ε ε+γ+α′ -273 0.8 1 558 1073 0.65 0.75 [39] 

17        0.02  1150 2  1150 55       γ+ε ε+γ+α′ RT 0.8 1 343 691 0.25 0.26 [39] 

15  0.02      0.005  1200 2  1150    900 5 WQ  γ+ε α′+γ+ε RT 3 1.25 ≈450 ≈773 0.35 0.39 [52] 

 

18.8 2.9 2.9      0.04  1150 2  1150 91 F  1100 1 WQ  γ+α′+ε α′+γ+ε RT - 1 420 829/1300‡ 0.57/0.45‡ - [118] 

15.3 2.4 2.9      0.07 0.002 1100 2 AC 900 80   900 0.167 WQ  ε+γ+α′ α′ RT 0.6 0.2 332 1165 0.33 0.35 [150] 

12             1100 83       γ+ε+α′ α′+ε+γ RT 7.5 10 309 943/1032‡ 0.09/0.09‡ 0.21 [93] 

12             1100 83       γ+ε+α′ α′+ε+γ -150 7.5 10 548 1237/1395‡ 0.13/0.12‡ 0.22 [93] 

12             1100 83       γ+ε+α′ α′+ε+γ -196 7.5 10 676 1437/1704‡ 0.19/0.17‡ 0.25 [93] 

19.6 3.1 2.9        1100 24  1200 70   900 1   γ+α+α′ α+α′+γ+ε RT - - 397 781/1177‡ 0.5/0.41‡ - [151] 

19.6 3.1 2.9        1100 24  1200 70   1000 1   γ+α+α′ α+α′+γ+ε RT - - 336 728/1166‡ 0.6/0.47‡ - [151] 

16 3 2.8        1100 24  1200 70   900 1   γ+α+α′ α+α′+γ+ε RT - - 595 994/1303‡ 0.31/0.27‡ - [151] 

16 3 2.8        1100 24  1200 70   1000 1   γ+α+α′ α+α′+γ+ε RT - - 558 963/1301‡ 0.35/0.3‡ - [151] 

9        0.05  1200 2  900    620 0.167   γ+α+Fe3C γ+α+α′+Fe3C RT 0.15 1 830 1034 ≈0.18 0.27 [149] 

15.8 3 2.9             S(77%)  1000 2 WQ  γ+α+α′+ε α+α′+ γ+ε RT - 0.1 406 1073/1585‡ 0.48/0.39‡ - [21] 

 

24.1     
0.00

8 
  0.12 0.02 1200 24  1150  

 
33 1000 0.5 AC  γ γ+ε 42 

0.9 
1 168 772/1175‡ 0.42‡ - [152] 

22 3 3           1100   50 900 0.5   γ γ+ε - - 0.4 290 698/1199‡ 0.54‡ - [81] 

16.8 1.5 0.03      0.32  1150 5  1150 96  50 600 0.033   γ - RT 1.8 1 434 822 0.48 0.54 [9] 

12 3       0.3     -   50 750 0.167   γ γ+α′ RT 1.5 1 429 785 0.28 - [36] 

 

23.4 0.3 0.06      0.08  1150 5  1150 96  50 350 0.033  5%† γ+ε - RT 1.8 1 254 844 0.276 0.28 [9] 

23.4 0.3 0.06      0.08  1150 5  1150 96  50 550 0.083  5%† γ+ε - RT 1.8 1 220 875 0.326 0.33 [9] 

23.4 0.3 0.06      0.08  1150 5  1150 96  50 800 1   γ+ε - RT 1.8 1 279 792 0.205 0.21 [9] 

23.4 0.3 0.06      0.08  1150 5  1150 96  50 800 1  5%† γ+ε - RT 1.8 1 496 869 0.22 0.22 [9] 

16.8 1.5 0.03      0.32  1150 5  1150 96  50     γ+ε - RT 1.8 1 1278 1547 0.014 0.03 [9] 

16.8 1.5 0.03      0.32  1150 5  1150 96  50 350 0.033   γ+ε - RT 1.8 1 1249 1541 0.014 0.03 [9] 
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16.8 1.5 0.03      0.32  1150 5  1150 96  50 550 0.033   γ+ε - RT 1.8 1 1140 1331 0.022 0.07 [9] 

16     4   0.1        20 700 0.0028   γ+ε - RT 1.5 1 780 1190 - 0.42 [153] 

16     4   0.1        35 700 0.28   γ+ε - RT 1.5 1 890 1340 - 0.41 [153] 

16     4   0.1        50 700 0.28   γ+ε - RT 1.5 1 970 1380 - 0.37 [153] 

15.9     3.9   0.09     900   17 700 0.283 LNQ  γ+ε α′+γ+ε - - 1 543 1222/1700‡ 0.33‡ - [154] 

 

10.6  0.36  0.28    0.08 0.003 1200 1  1200   50 610 0.133 WQ  γ+α α′+ε+γ+α  1.5 1 1080 1390 - 0.27 [163] 

10 3 2         0.3         1200    50   800       γ+α α′+α+γ - - 1 862 1128 0.63 0.64 [156] 

6.1 2.2 1.6     0.23   0.29   -           810 0.167 WQ   γ+α α′+α+γ   - 1 711 1530 0.19 0.2 [157] 

5             0.1         -    70 650 18  AC   γ+α α′+α+γ RT - 0.250 410 696 - ~0.4 [158] 

 

10.6  0.36  0.28    0.08  1200 1  1200  
 

50 550 2 WQ  
γ+α+ 

V4(C,N)3 

α′+ε+ γ+α 

+V4(C,N)3 
- 

1.5 
1 1240 1360 - 0.09 [163] 

9 0.08 0.3      0.05  1200 2  900   60 620 0.167   γ+α+Fe3C α′+α+γ+Fe3C RT 0.15 0.1 1060 1193 ≈0.23 ≈0.3 [149] 

17 3 2 1       0.06   1100 2   1070 50  45         α′+ε+γ - RT - 1 1200 - 0.01 0.02 [159] 

17 3 2 1       0.06   1100 2   1070 50  45 700 0.083     γ+ε+α′ - RT - 1 650 920 0.35 0.42 [159] 

17 3 2 1     0.06  1100 2  1100 52  42     γ+ε+α′ γ+ε+α′ RT 2.1 1 1080 1135/1157‡ 0.02/0.02‡ 0.05 * 

17 3 2 1     0.06  1100 2  1100 52  42 500 0.083   γ+α′ γ+α′ RT 2.1 1 1075 1150/1173‡ 0.02/0.02‡ 0.42 * 

17 3 2 1     0.06  1100 2  1100 52  42 625 0.083   γ+ε+α′ α′+ε+γ RT 2.1 1 810 1006/1237‡ 0.26/0.23‡ 0.02 * 

17 3 2 1     0.06  1100 2  1100 52  42 700 0.083   γ+ε+α′ α′+ε+γ RT 2.1 1 465 856/1121‡ 0.36/0.31‡ 0.25 * 

13        0.1     -   67 580 0.167   γ+ε+α′ - - 2 - 1231 1257 0.17 0.33 [160] 

13        0.1     -   67 600 0.167   γ+ε+α′ - - 2 - 1007 1296 0.2 0.21 [160] 

13        0.1     -   67 620 0.167   γ+ε+α′ - - 2 - 561 1321 0.24 0.3 [160] 

13        0.1     -   67 640 0.167   γ+ε+α′ - - 2 - 484 1378 0.23 0.26 [160] 

4.6  0.003      0.092     1200   70 670 1 AC  α+γ+α′  α+α′+γ - 24 8 - 950 ≈0.16 0.18 [161] 

4.6  0.003      0.092     1200   70 670 2 AC  α+γ+α′  α+α′+γ - 24 8 - 951 ≈0.18 0.21 [161] 

4.6  0.003      0.092     1200   70 670 4 AC  α+γ+α′  α+α′+γ - 24 8 - 933 ≈0.16 0.19 [161] 

4.6  0.003      0.092     1200   70 670 5 AC  α+γ+α′  α+α′+γ - 24 8 - 959 ≈0.16 ≈0.2 [161] 

4.6  0.003      0.092     1200   70 670 7 AC  α+γ+α′  α+α′+γ - 24 8 - 868 0.21 ≈0.3 [161] 

4.6  0.003      0.092     1200   70 670 8 AC  α+γ+α′  α+α′+γ - 24 8 - 977 0.13 0.14 [161] 

4.6  0.003      0.092     1200   70 670 9 AC  α+γ+α′  α+α′+γ - 24 8 - 961 0.14 0.16 [161] 

4.6  0.003      0.092     1200   70 670 10 AC  α+γ+α′  α+α′+γ - 24 8 - 950 0.13 0.14 [161] 

Legend: HT = heat treatment, T = temperature, Med= medium, AC= air cooling, WQ= water quenching, LNQ= liquid nitrogen quenching, HR =hot rolling, CR =cold rolling, R = reduction, γ = austenite, ε = epsilon martensite, α′ 

= alpha martensite, LT = loading temperature, ε̇ = initial strain rate, YS = yield stress , UTS = ultimate tensile strength (engg), eu = uniform elongation, ef  = total elongation, ‡ = true stress/strain,  * = present work, † = tension. 

The order of phases are in their decreasing amount of volume fraction. 
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2.11.1 Digital image correlation studies of metastable austenitic steels 

Tension complemented with DIC is a viable tool to investigate the deformation accommodation 

and/or phase transformation behaviour in high Mn steels [164, 165]. In this regard, several authors 

[166-170] have used microscopic-DIC (µ-DIC) technique to measure the strain distribution in the 

microstructure upon tension. The difference between conventional DIC and µ-DIC is that the former 

is done on optical images whereas the latter is done on in-situ scanning electron microscopy (SEM) 

images of the sample surface upon tension. The µ-DIC provides higher resolution imaging of the 

phase and defect structure associated with the microstructure. However, the field of view of µ-DIC is 

restricted compared to conventional DIC. For conventional DIC, the tensile sample is sprayed upon 

with black and white paint to create a speckle pattern. However, in µ-DIC, the electropolished sample 

surface is coated with a ≈50 nm thick layer of gold [171, 172]. The sample is then heated at 350 °C 

for 90 min in a humid atmosphere. This leads to the redistribution of the gold particles creating a 

speckle pattern. The strain distribution was calculated by the geometric changes in the speckle 

pattern upon tension.  As heating to 350C will result in the reverse transformation of ε-martensite, 

the µ-DIC is not suitable to study the mechanical behaviour of steels containing ε-martensite in the 

initial microstructure.    

The DIC study on the metastable austenitic stainless steel comprising γ showed the development of 

regions of high axial and shear strains along the gauge length corresponding to localised areas 

undergone a phase transformation to α′-martensite [170]. DIC investigation on an Fe-10.3Mn-2.9Al-

0.2C steel comprising an α+γ starting microstructure showed the localised transformation of γ to α′-

martensite during the propagation of PLC bands [173]. Similar observations were also reported for 

a dual-phase α+γ Fe-5Mn-2.5Al-0.2C steel [174]. The µ-DIC studies on α/α′-martensite dual-phase 

steels showed strain localisation in an α grain constrained between two α′-martensite grains. During 

further loading strong strain heterogeneity develops in the microstructure. The µ-DIC investigation 

also showed the nucleation of micro-cracks at the α grain boundaries orientated at ≈45° to the 

loading direction and also at α/α′-martensite interphase boundaries [167-169]. In that study, the 

damage resistance of α/α′-martensite boundaries was observed to increase with the decrease in the 

α′-martensite thickness. The DIC studies on TRIP-aided multiphase steel showed strain partitioning 

effects in the softer α phase compared to the harder bainitic α and α′-martensite phases [175]. The 

DIC studies on an Fe-25Mn-12.1Cr-0.42N-0.33C TWIP steel showed homogenous strain distribution 

across the gauge length until UTS [176]. However, strain localisation due to shear banding at ~54° to 

the tension axis was noted after UTS. The strain localisation associated with the initiation and 

propagation of Portevin-Le Chatelier (PLC) bands was also observed in high Mn TWIP steels [177-

180]. 
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For high Mn TRIP-TWIP steels, Eskandari et al. [41] used a combination of EBSD and DIC to 

characterise an Fe-21Mn-2.5Si-1.6Al-0.11C steel subjected to room temperature tension at 0.001 s-1 

strain rate. At the onset of micro-yielding (~0.02 true strain), the single-phase γ microstructure 

began transforming to deformation-induced ε-martensite (Fig. 2.26a). Higher tensile strains resulted 

in the further phase transformation to α′-martensite (Figs. 2.26b and 2.26c); along with a 

concomitant increase in strain inhomogeneity across the gauge length. Thereafter, the fracture was 

ascribed to the nucleation and coalescence of cracks at the intersection of α′-martensite plates (Fig. 

2.26d). 

 

Figure 2.26: The DIC axial strain distribution for engineering strains (a) 0.02, (b) 0.2, (c) 0.54 and 

(d) 0.58. The black arrows in Fig. 2.26d indicate the volume fraction of α′-martensite [41]. 

 

Tensile testing at 0.003 s−1 strain rate resulted in a greater strain localisation and was attributed to 

more phase transformation to ε-martensite compared to tension at  0.001 s−1 strain rate [42]. 

Furthermore, tension at 180 and 300 °C, 0.001 s−1 strain rate revealed the preference for γ-twinning 

over phase transformation to ε and α′-martensite [42] along with the early onset of strain localisation 

in axial strain along the gauge length. 

 

2.12 Texture of high Mn steels 

The texture is the prefered crystallographic orientation of several crystals in the microstructure. The 

crystallographic orientation of a particular crystal with respect to an external frame of reference can 

be described by several methods:  

(1) Miller indices: By the application of two sets of Miller indices, the crystal orientation (notation 

{hkl}〈uvw〉) can be defined as the crystal plane normal parallel to the normal direction (ND) and the 

crystal direction parallel to the rolling direction (RD). The Miller indices are easy to use for the 



48 
 

description of the ideal orientations of fcc, bcc and hcp metals as shown in Tables 2.8, 2.9 and 2.10, 

respectively. 

 

(2) Euler angles: It is convenient to use Miller indices for the description of the ideal orientation of 

crystals however, it is difficult to describe the orientations of crystals that are slightly rotated from 

the ideal orientations. By the use of a set of three Euler angles the above problem is solved. The three 

Euler angles (ϕ1, Φ, ϕ2) signify the three rotations that are needed to be given to each crystal in the 

crystal reference frame in order to bring its crystallographic axes (〈100〉, 〈010〉, 〈001〉) into 

coincidence with the specimen reference frame comprising the ND, RD and transverse direction (TD). 

The Euler angles for the ideal orientations of the fcc, bcc and hcp metals are shown in Tables 2.8, 2.9 

and 2.10, respectively. In Table 2.9, the [101̅0]ε || RD and [0002]ε || ND convention was used for 

representing the ideal hcp orientations. 

 

Table 2.8 Ideal orientations for fcc metals [146]. 

Fcc orientations  Miller indices ({𝐡𝐤𝐥}〈𝐮𝐯𝐰〉) Euler angles (𝛟𝟏, Φ, 𝛟𝟐) 

Cube (Cγ) {001}〈100〉γ (0, 0, 0) 

Goss (Gγ) {110}〈100〉γ (90, 90, 45) 

Goss/Brass (Gγ/Brγ) {110}〈115〉γ (74, 90, 45) 

Brass (Brγ) {110}〈112〉γ (35, 45, 0) 

Aγ {110}〈111〉γ (35, 90, 45) 

Rotated Goss (Rt-Gγ) {011}〈011〉γ (0, 90, 45) 

Rotated Cube (Rt-Cγ) {001}〈110〉γ (0, 0, 45) 

Goss Twin (G-Tγ) {113}〈332〉γ (90, 25, 45) 

Copper (Cuγ) {112}〈111〉γ (90, 35, 45) 

Copper twin (CuTγ) {552}〈115〉γ (90, 74, 45) 

Rotated Copper (Rt-Cuγ) {112}〈011〉γ (0, 35, 45) 

Sγ {123}〈634〉γ (59, 37, 63) 

Eγ {111}〈011〉γ (0, 55, 45) 

Fγ {111}〈112〉γ (30, 55, 45) 
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Table 2.9 Ideal orientations for bcc metals [181]. 

Miller indices ((𝐡𝐤𝐥)[𝐮𝐯𝐰]𝛂′) Euler angles (𝛟𝟏, Φ, 𝛟𝟐) 

(001)[01̅0]α′ (45, 0, 45) 

(001)[11̅0]α′ (0, 0, 45) 

(111)[11̅0]α′ (0/60, 55, 45) 

(111)[1̅1̅2]α′ (30/90, 55, 45) 

(114)[1̅10]α′ (0, 20, 45) 

(112)[1̅10]α′ (0, 30, 45) 

(223)[1̅10]α′ (0, 40, 45) 

(110)[001]α′ (90, 90 ,45) 

(110)[11̅0]α′ (90, 90 ,45) 

 

Table 2.10 Ideal orientations for hcp metals [182]. 

hcp orientations/fibres Miller indices {𝐡𝐤𝐢𝐥}〈𝐮𝐯𝐭𝐰〉𝛆 Euler angles (𝛟𝟏, Φ, 𝛟𝟐) 

Basal fibre {0001}〈uvtw〉ε (0-90, 0, 0-60) 

{hkil}ε-fibre {hkil}〈uvtw〉ε (0-90, 15-25, 0-90) 

{0001}〈101̅0〉ε (30, 0, 0) 

{0001}〈112̅0〉ε (0, 0, 0) 

{101̅0}ε-fibre {101̅0}〈uvtw〉ε (0-90, 90, 30) 

{101̅0}〈0001〉ε (90, 90, 30) 

{101̅0}〈112̅0〉ε (0, 90, 30) 

{112̅0}ε-fibre {112̅0}〈uvtw〉ε (0-90, 90, 0/60) 

{112̅0}〈0001〉ε (90, 90, 0/60) 

{112̅0}〈101̅0〉ε (0, 90, 0/60) 

 

The representation of orientations can be done via the following methods: 

(1) Pole figures: Pole figures are two-dimensional stereographic projections in which the positions 

and intensities of orientations are plotted in relation to the specimen reference frame (RD, ND and 

TD). Stereographic projections are angle true projections such that the angular relationships 

between different directions and planes can be obtained [183]. 

 

(2) Orientation distribution function (ODF): In ODF the three Euler angles (ϕ1, Φ, ϕ2) are used to 

describe the orientation of a crystal and can be calculated from the measured pole figures. ODF 
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presents the probability density of an orientation to occur in the Euler space. Most commonly, the 

ODFs are presented in sections of a constant ϕ2 values. Due to the presence of sample symmetry of 

most cold rolling textures for cubic metals the ODF sections are plotted in the range of 0°≤ϕ1≤90°, 

0°≤Φ≤90° and 0°≤ϕ2≤90°. During cold rolling and annealing of hcp metals, the ODF sections are 

plotted in the range of 0°≤ϕ1≤90°, 0°≤Φ≤90° and 0°≤ϕ2≤30°. The ideal orientations produced during 

cold rolling and annealing of fcc metals appear in the ϕ2 = 0°, 45° and 65° ODF sections and are 

represented in the Euler space as shown in Fig. 2.27.  

 

 

Figure 2.27: ϕ2 = 0°, 45° and 65° ODF sections representing the ideal fcc orientations [7]. 

 

Fig. 2.28 shows the position of the ideal orientations produced during the cold rolling and annealing 

of bcc metals in the ϕ2 = 0° and 45° ODF sections.  

 

 

Figure 2.28: ϕ2 = 0 and 45° ODF sections representing the ideal bcc orientations [7]. 



51 
 

The ideal orientations of hcp metals represented in the ϕ2 = 0° and 30° ODF sections are shown in 

Fig. 2.29. 

 

Figure 2.29: ϕ2 = 0° and 30° ODF sections representing the ideal hcp orientations [7]. 

 

(3) Inverse pole figures (IPF): In IPF the distribution of a certain selected sample direction (RD, ND 

and TD) in relation to the crystal directions ((100), (010), (001)) is depicted. The representation in 

the IPF is exactly inverse of the pole figure. The projection plane for an IPF is a standard projection 

of the crystal where the unit stereographic triangle is shown [183]. For cubic crystal symmetry, as 

the twenty-four crystallographic triangles are crystallographically equivalent, therefore one of the 

unit triangles is used as shown in Fig. 2.30.  

 

 
Figure 2.30: Schematic inverse pole figure representation for direction 〈001〉||RD for cubic crystal 

[13]. 
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2.12.1 Deformation texture in high Mn steels 

2.12.1.1 γ texture after plane strain compression/cold rolling 

After cold rolling, the fcc metals with medium/high SFE develops Cuγ-type texture whereas low SFE 

metals develop Brγ-type texture. The Cuγ-type texture consists of orientations: Cuγ, Brγ and Sγ 

whereas Brγ-type texture consists of orientations: Brγ and Gγ with a negligible fraction of Cuγ. Initially, 

it was proposed that the tendency of easy cross slip in high SFE metals lead to Cuγ-type texture [184]. 

Later it was suggested that the evolution of Brγ-type texture in low SFE materials is related to 

deformation twinning [185]. However, it was experimentally observed that the propensity of 

twinning decreases at intermediate levels of cold rolling and also the volume fraction of twins is very 

low to have a direct effect on the texture evolution. Therefore, it was proposed that deformation 

twinning leads to the formation of shear bands at higher strains and dislocation glide within shear 

bands leads to the formation of Brγ orientation [186].  

Lü et al. [8] reported the evolution of Brγ orientation with a spread towards Gγ orientation in an Fe-

21.6Mn-0.38C steel during cold rolling to 50% thickness reduction. With increasing thickness 

reduction upon cold rolling the volume fraction of Cγ orientation decreased and the orientation 

completely disappeared after thickness reduction higher than 20%. After thickness reduction to 

30%, a decrease in the intensity of Cuγ and Sγ orientations was noted. This was ascribed to the phase 

transformation of these γ grain orientations to ε-martensite orientations. The Fe-26Mn-3Si-3Al steel 

in the initial state shows, the orientations with weak intensities along the αγ-fibre (〈110〉γ||RD) and 

with Cuγ orientation [11]. After cold rolling to 40% thickness reduction, the intensity of Brγ 

orientation along the αγ-fibre is observed to increase. Upon cold rolling, to 56% thickness reduction 

the intensity of Gγ/Brγ and Cuγ orientations is observed to increase and decrease, respectively [10]. 

For an Fe-24Mn-3Al-2Si-1Ni-0.0C steel, after cold rolling to 42% thickness reduction shows strong 

intensities around the Gγ and Brγ orientations [187]. The formation of similar orientations was noted 

during the cold rolling to 80% thickness reduction for the Fe-18Mn-0.6C and Fe-18Mn-1.5Al-0.06C 

steels [188]. 

 

2.12.1.2 Deformation-induced ε-martensite texture  

The texture of hcp metals after cold rolling can be classified into three categories depending on the 

ideal c/a ratio (= 1.633) as shown in Fig. 2.31. The three classes are: (a) c/a ratio ≈ 1.633, (b) c/a 

greater than 1.633 and (c) c/a less than 1.633. The metals such as Mg (c/a ≈ 1.624) with c/a ratio ≈ 

1.633 forms hcp orientations along the basal fibre; as slip predominantly occurs on the (0001)εbasal 

plane after cold rolling (Fig. 2.31a). The metals such as Zn (c/a = 1.856) and Cd (c/a = 1.885) with c/a 

ration greater than 1.633 produce hcp orientations with the (0001)ε basal plane tilted ±15–25° 
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towards the RD along with the (112̅0)ε plane aligned along the RD (Fig. 2.31b). Such orientations are 

produced due to the operation of both basal slip and large-scale deformation-induced twinning. The 

metals such as Zr (c/a =1.589) and Ti (c/a = 1.587) with c/a less than 1.633, form hcp orientations 

with the (0001)ε basal  plane tilted ± 20-40° away from the ND towards the TD and (101̅0)ε prismatic 

plane aligned towards RD (Fig. 2.31c) due to slip-on the (101̅0)ε prismatic plane.  

 

 

Figure 2.31: (0001)ε and (101̅0)ε pole figures showing cold rolling texture of hcp metals with c/a 

ratio (a) ≈1.633, (b) greater than 1.633, (c) less than 1.633 [182]. 

 

During the cold rolling to 66% thickness reduction of an Fe-17Mn-3Al-2Si-1Ni-0.06C steel, Gazder et 

al. [7] reported ε-martensite orientations comprising (0001)ε basal  plane tilted 15° away toward the 

RD, the (101̅0)ε prismatic plane aligned towards the TD. In ϕ2 = 0° and 30° ODF sections of ε-

martensite, it is represented as {ℎ𝑘𝑖𝑙}𝜀-fibre which is offset from the ideal (0001)ε basal-fibre by 

angle of ≈15-25° towards the RD [7]. The c/a ratio of ε-martensite is 1.627 for the Fe-17Mn-3Al-2Si-

1Ni-0.06C steel [24] but the experimentally observed texture corresponds to hcp metals with c/a 

ratio greater than 1.633. This was explained by the occurrence of two consequent processes: (i) γ to 

ε-martensite deformation-induced phase transformation and (ii) the deformation accommodation of 

ε-martensite [7]. With regards to (i), the ε-martensite forms from a pre-textured γ. The ε-martensite 

then deforms via mechanisms similar to hcp metals with c/a ratio less than 1.633 [7]. 

For an Fe-21Mn-3Si-3Al steel cold rolled to 18 and 29% thickness reductions, the deformation-

induced ε-martensite (0001)ε basal poles were observed to be deviated by 32° and 26°,  respectively, 

towards the RD [11]. Lü et al. [8, 46]  showed the formation of {1129}〈3362〉ε orientation after cold 
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rolling to 50% thickness reduction for an Fe-21.6Mn-0.4C steel. A decrease in the intensity of Cuγ and 

Sγ orientations was observed due to the transformation of these orientations to {1129}〈3362〉ε 

orientation. During the deformation of high Mn steel, the ε-martensite orientations obtained from γ 

orientations were not correlated [8, 11]. Fig. 2.32 shows the superimposition of the schematic  (111)γ  

pole figure containing the ideal γ orientations on the experimental (0001)ε pole figure. The ε-

martensite orientations along the {ℎ𝑘𝑖𝑙}𝜀-fibre originated from the γ orientations between the Gγ and 

Brγ along the αγ-fibre and also from the Cuγ orientation upon phase transformation via the S-N 

orientation relationship [7]. 

 

 

Figure 2.32: (111)γ pole figure superimposed on experimental  (0001)ε pole figure. Legend: solid 

square Aγ {110}〈111〉γ, hollow square Cuγ {112}〈111〉γ, solid diamond Gγ {110}〈001〉γ, hollow 

diamond Cγ {001}〈001〉γ, solid triangle Rt-Gγ {110}〈110〉γ and solid circle Brγ {110}〈112〉γ [7]. 

 

The orientations along the {ℎ𝑘𝑖𝑙}𝜀-fibre  of ε-martensite remained stable upon increasing cold rolling 

thickness reduction to 50% [8]. This was explained as ε-martensite being a hard phase subsequently 

unable to accommodate deformation during cold rolling.  

 

2.12.1.3 Deformation-induced α′-martensite texture 

Gazder et al. [7] reported the formation of deformation-induced α′-martensite with strong intensities 

centred around the (112)[1̅10]α′ , (223)[1̅10]α′ and (111)[01̅1]α′ orientations with weak intensities 

around the (001)[100]α′ orientation after cold rolling to 66% thickness reduction. After cold rolling 

the Fe-26Mn-3Al-3Si steel to 57% thickness reduction, strong intensity centred around the 

(112)[1̅10]α′orientation along the bcc-α fibre (〈110〉α′‖ RD) was witnessed [10]. The intensity of the 

deformation-induced α′-martensite orientations was relatively weaker than γ orientations after cold 

rolling [10]. The deformation-induced α′-martensite orientations were ascribed to the phase 
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transformation from γ to α′-martensite with the subsequent deformation of α′-martensite. Fig. 2.33 

shows the particular deformation-induced α′-martensite orientations (in black) produced from the γ 

orientations (in red) upon the phase transformation via the K-S orientation relationship [7, 189]. It 

can be observed that (i) (112)[1̅10]α′, (ii) (111)[01̅1]α′ and (iii) (001)[100]α′  orientations originate 

from the (i) Gγ, Cuγ, (ii) Gγ and (iii) Gγ orientations upon phase transformation via the K-S orientation 

relationship. There are presently no studies relating the ε-martensite to α′-martensite orientations 

produced upon phase transformation via the Burgers orientation relationship.  

 

 
Figure 2.33: ϕ2 = 45° ODF section showing the α′-martensite orientations (in black) generated 

from the γ orientations (in red) upon the phase transformation via the K-S orientation 

relationship [7, 189]. 

 

2.12.2 Annealing texture of high Mn steels 

2.12.2.1 Remnant α′-martensite texture 

For an Fe-26Mn-3Al-3Si steel cold-rolled to 57% thickness reduction, upon annealing at 500 °C for 

30 min shows the intensity of α′-martensite orientations increased slightly due to α′-martensite 

recovery [10]. Upon further annealing at 650 °C for 30 min, the intensity of the α′-martensite 

orientations decreases due to the onset of α′-martensite reversion to γ. In that study, the formation 

of (001)[110]α′  orientation and weak intensities around the orientations along the γα′-fibre 

(〈111〉α′|| ND) was observed during the annealing at 650 °C for 30 min. For an Fe-17Mn-3Al-2Si-1Ni-

0.06C steel cold-rolled to 66% thickness reduction; on annealing at 625 °C for 5 min, the unreverted 

α′-martensite shows strong intensities around the (001)[110]α′  orientation with weak intensities 

around the (111)[1̅1̅2]α′ and (554)[2̅2̅5]α′  orientations [7].  
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2.12.2.2 Reverted γ texture  

The reverted γ orientations are mainly derived from the ε and α′-martensite orientations following 

the S-N and K-S orientation relationships, respectively. For an Fe-26Mn-3Al-3Si steel cold-rolled to 

57% thickness reduction upon the annealing at 500 °C, for 30 min showed the formation of strong 

intensities centred around the Gγ orientation and weak intensities around the Cuγ orientation [10]. 

This was ascribed to ε and α′-martensite reversion and subsequent γ recovery. Upon further 

annealing at 650 and 750 °C for 30 min, the retention of the γ orientations was observed with the 

decrease in intensities due to recrystallisation. Lü et al. [8] during the annealing at 630 °C for 16 s of 

an Fe-21.64Mn-0.376C steel cold-rolled to 50% thickness reduction noted an increase in the 

intensities centred around the Sγ orientation due to the reversion from the {1129}〈3362〉ε 

orientations via the S-N orientation relationship [8]. For an Fe-17Mn-2Si-3Al-1Ni-0.06C steel cold-

rolled to 66% thickness reduction, annealing at 625 °C for 300 s presented the formation of Brγ 

orientation which was ascribed to the deformation-induced α′-martensite (001)[110]α′ and 

(111)[1̅1̅2]α′ orientations upon phase transformation via the K-S orientation relationship [7].  

During cold rolling to 57% thickness reduction of an Fe-26Mn-3Al-3Si steel, strong intensity around 

the (112)[1̅10]α′ orientation along the αα′-fibre (〈110〉α′‖ RD) was witnessed [10]. The γ and ε-

martensite orientations that resulted in the formation of the αα′-fibre orientations were not explored.  

Kowalska et al. [10] did not correlate the γ orientations Gγ and Cuγ  obtained during the reversion 

from the ε and α′-martensite orientations during the annealing of an Fe-21Mn-3Al-3Si high Mn steel 

at 500 °C, for 30 min. During the annealing of high Mn steel at 630 °C for 16 s, Lü et al. [8] tracked the 

evolution of only one {1129}〈3362〉ε orientation upon reversion to γ. However, during the annealing 

of an Fe-17Mn-2Si-3Al-1Ni-0.06C steel, Gazder et al. [7] correlated the γ orientations obtained from 

the α′-martensite orientations upon reversion using the K-S orientation relationship. Therefore, a 

comprehensive study needs to be carried out to correlate the ε-martensite orientations obtained 

from the γ orientations and also the α′-martensite orientations obtained from the ε-martensite 

orientations upon cold rolling along with the γ orientations found from the ε and α′-martensite 

orientations upon reversion. 

 

2.12.2.3 γ recrystallisation and grain growth textures  

During γ recovery, the slight strengthening of the deformation texture orientations is observed which 

is due to the annihilation of defects by the short-range interaction between dislocations and subgrain 

boundaries. The recrystallisation of γ may result in three different kinds of texture: (i) with the 

retention of orientations produced upon deformation, (ii) formation of new orientation with strong 

intensities and (iii) formation of random orientations [190]. In some cases, annealing after cold 
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rolling to lower thickness reduction leads to the retention of deformed γ orientations or the 

formation of random orientations. The formation of γ orientations with strong intensities after 

recrystallisation upon cold rolling to large thickness reduction can be explained by two theories: (i) 

oriented nucleation and (ii) oriented growth. In oriented nucleation theory, the γ grains of certain 

orientations nucleate more than other orientations which dominate the final recrystallisation 

texture.  In oriented growth theory, the γ grains of the dominant orientations are produced by their 

(i) faster growth and/or (ii) coarse grain size. This can be achieved by the presence of special 

boundaries in fcc crystals having misorientations axis-angle of 〈111〉/40° in fcc crystal which has 

higher mobility.     

The γ recrystallisation texture was stated to be similar to the reverted γ texture upon annealing of 

high Mn steels. Somani et al. [191] showed that after annealing at 800 and 1000 °C for 1 s of a 17/7 

metastable austenitic stainless steel cold-rolled to 63% thickness reduction resulted in ε and α′-

martensite reversion and γ recrystallisation, respectively.  The γ have strong intensities around the 

Brγ and Gγ orientations and weak intensities around the Cuγ and Sγ orientations were observed to be 

present after recrystallisation. In that study [191], annealing at 800 °C for 1 s, at 900 °C for 1 s and 

1000 s of a 301LN metastable austenitic stainless steel cold-rolled to 60% thickness reduction 

resulted in the reversion, recrystallisation and grain coarsening of γ, respectively, with the reverted 

Gγ, Brγ, Cuγ and Sγ orientations retained during γ recrystallisation. The intensities of Gγ and Brγ 

orientations were stronger than Cuγ and Sγ orientations. However, on γ grain growth, the weakening 

of intensity around the Gγ and Brγ orientations were observed along with the disappearance of Cuγ 

and Sγ orientations. Chowdhury et al. [192] reported the weakening of the reverted Brγ, Gγ and Sγ 

orientations with the increase in spread around the Brγ, Gγ and Sγ orientations upon recrystallisation 

after annealing at 800 °C  for 1 h for a 304L metastable austenitic stainless steel cold-rolled to 95% 

thickness reduction.  

 

2.13 Gaps in the existing body of knowledge 

(1) The literature [8, 24, 47, 117] contains contrary views regarding the deformation accommodation 

of ε-martensite. However, the most prevalent view is the deformation accommodation of ε-

martensite. In this regard, the mechanism of ε-martensite nucleation and subsequent deformation 

accommodation via the formation of stacking faults are also not explained in the existing literature 

and require further investigation. 

 

(2) Lü et al. [8, 46] observed a displacive reversion of ε-martensite followed by the discontinuous 

recrystallisation of γ. However, the microstructural changes occurring during the displacive 
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reversion was not studied in details, as this requires direct observation via in-situ experiments. Thus, 

further in-situ experiments based study on ε and α′-martensite reversion upon annealing need to be 

undertaken.  

 

(3) The formation of twins in the reverted γ was observed during the annealing of cold-rolled high 

Mn steel [10]. Currently, there is no explanation for the mechanism of γ-twin formation. Thus, it is 

important to gain insight into this phenomenon. 

 

(4) There are also limited studies on the texture evolution during the cold rolling and annealing of 

high Mn steels. The evolution of orientations of three phases (γ, ε and α′-martensite) during the cold 

rolling and annealing of an Fe-21Mn-3Al-3Si high Mn steel was reported by Kowalska et al. [10, 11]. 

However, Refs. [10, 11] did not correlate the ε and α′-martensite orientations obtained during the 

transformation from the initial γ orientations during cold rolling and the γ orientations obtained 

during the reversion from ε and α′-martensite orientations during annealing. Lü et al. [8] tracked the 

evolution of {1129}〈3362〉ε orientation upon reversion to γ but such a study is limited to only one ε-

martensite orientation. Thus, a comprehensive study needs to be carried out to correlate the ε-

martensite orientations obtained during the transformation from γ and the α′-martensite 

orientations obtained by the transformation from ε-martensite.
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CHAPTER 3 EXPERIMENTAL AND ANALYTICAL PROCEDURES 

 

This chapter reviews the materials investigated and the experimental procedures used in this thesis. 

The sample preparation and the microstructural characterisation techniques are also introduced 

with their basic principles discussed. 

 

3.1 Material 

The composition of steel was selected based on the occurrence of both ε and α′-martensite formation 

during its deformation. The high Mn steel was supplied in the form of as-cast slabs from Universidade 

Federal de Minas Gerais, Brazil. The as-cast slab dimensions were: 245 (length) × 60 (width) × 20.6 

(height) mm3. The composition of the studied steel is given in Table 3.1.  

 

Table 3.1 Nominal chemical composition of the studied steel (wt.%) 

Mn Al Si Ni C Fe 

17.2 2.9 2.2 1.3 0.06 Balance 

 

3.2 Processing 

A schematic showing the processing stages of samples preparation along with their dimensions is 

shown in Fig. 3.1. The various processing steps involved are discussed in the following sections. 

 

 

Figure 3.1: Schematic showing the processing of the samples. 
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3.2.1 Hot rolling 

To break the as-cast structure the material was hot-rolled to 52% thickness reduction. The slabs were 

reheated to 1100 °C for 7200 s followed by hot rolling in 4 passes with 17% thickness reduction per 

pass on the laboratory 4-high rolling mill at Deakin University followed by water quenching.  The 

hot-rolled plates were of dimensions: 516 (length) × 60 (width) × ≈9.8 (height) mm3. 

 

3.2.2 Plane strain compression by Gleeble 3500 thermomechanical simulator 

Physical simulation of the plane strain deformation process can be successfully done using a Gleeble 

3500 thermomechanical simulator. Another advantage associated with the Gleeble 3500 

thermomechanical simulator over cold rolling is the use of a relatively small sample.  

Thus, the Gleeble 3500 thermomechanical simulator was used in a hydra-wedge mode to simulate 

the plane strain compression until a maximum of 20% thickness reduction. For processing, samples 

of dimension 8 mm along the RD, 20 mm along the TD and 6 mm along the ND were cut from the hot-

rolled plate as shown in Fig. 3.2a. Then the samples were plane strain compressed at room 

temperature to 5, 10, 15 and 20% thickness reductions using a strain rate of 1.7 × 10−2 s-1. The 

maximum thickness reduction was governed by the maximum possible applied load of ≈10 kN in 

Gleeble 3500 thermomechanical simulator. The sample after plane strain compression is shown in 

Fig. 3.2b.   

 

(a)  
(b)  

Figure 3.2: Schematic of the sample geometry (a) before and (b) after plane strain compression 

using Gleeble 3500 thermomechanical simulator. 
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The raw load-displacement data from the Gleeble 3500 thermomechanical simulator was converted 

to equivalent stress and strain values using the following equations [29]:    

      ε = (
2

√3
)ln(

t

t0
)     (3.1) 

      σ = (
√3

2
)

F

l0w0
     (3.2) 

where, l0 × w0 × t0 = 8 × 20 × 5 mm3 are the initial sample length, width and height that correspond 

to the RD, TD and ND of the hot-rolled plate, respectively. The symbols t and F denote the 

instantaneous sample height and load, respectively. 

 

3.2.3 Plane strain compression by cold rolling  

To keep the strain rate the same (= 1.7 × 10−2 s−1) during cold rolling, the reduction per pass (r) was 

calculated using the diameter and the speed of the rolls according to the equations [193]: 

      ε = ε̇t      (3.3) 

      r =
h0−h1

h0
     (3.4) 

      r = 1 −
1

eε     (3.5) 

      t =
60L

2πNR
     (3.6) 

      L = √2R(h0 − h1)    (3.7) 

where ε̇ is the strain rate, ε is the strain per pass, h0 is the initial height and h1 is the final height of 

the sample after one pass, t is time required for the  workpiece to pass, L is the effective roll contact 

length, N is the speed of the rolls, R is the roll radius. For the present schedule, the roll diameter and 

speed were 350 mm and 14.5 rpm, respectively. The cold rolling of the hot-rolled plates to three 

different thickness reductions of 42, 66 and 88% was done using the calculated value of 4.8% 

thickness reduction per pass. This corresponds to the equivalent strains of 0.63, 1.24 and 2.45, 

respectively, calculated using Eq. 3.1. After cold rolling the final thickness of the plates were ≈5.4 mm, 

≈3.1 mm, ≈1.1 mm after 42, 66 and 88% thickness reductions, respectively. 

 

3.2.4 Isochronal annealing  

Samples were cut from the 42% cold-rolled plates into dimensions:  10 (RD) × 7 (TD) × 5 (ND) mm3 

and isochronally annealed in a muffle furnace in open atmosphere. The samples were annealed at 

500, 600, 625, 650, 700, 750, 800 and 850 °C. After annealing the samples were immediately 

quenched in water. During annealing, the holding time at the selected temperature was 300 s and the 

total annealing time was 400 s for each annealing temperature. The heating rate was not constant for 
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each annealing temperature during annealing. After fixing the annealing temperature, 100 s was the 

estimated time from the sample placement into the furnace to reaching of the selected temperature 

upon which the sample was held at the temperature for 300 s. 

  

3.2.4.1 Calculation of ε and α′-martensite formation start temperatures  

Based on the equation proposed by Yang et al. [5]: 

Ms(K) = 576 − 489(wt. % C) − 9.1(wt. % Mn) − 17.6(wt. % Ni) − 9.2(wt. % Cr) + 21.3(wt. % Al) +

4.1(wt. % Si) − 19.4(wt. % Mo) − 1(wt. % Co) − 41.3(wt. % Cu) − 50(wt. % Nb) − 86(wt. % Ti) −

4(wt. % V) − 13(wt. % W)         (3.8) 

the calculated ε-martensite transformation start temperature for the Fe-17Mn-3Al-2Si-1Ni-0.06C 

steel is 174 °C, which is above the room temperature. Thus, the formation of ε-martensite on 

quenching after annealing is expected in the steel. The calculated result is very close to the ε-

martensite start temperature (177 °C) obtained by Tsuzuki et al. [6] using dilatometry for an Fe-

16Mn-0.01Si-0.006C steel.   

The α′-martensite transformation start temperature for the Fe-17Mn-3Al-2Si-1Ni-0.06C steel was 

also calculated from the empirical equation obtained for Mn steels [194] 

 Ms(°C) = 539 − 423(wt. % C) − 30.4(wt. % Mn) − 7.5(wt. % Si) + 30(wt. % Al) (3.9) 

Using the Eq. 3.9, the α′-martensite start temperature for the Fe-17Mn-3Al-2Si-1Ni-0.06C steel was 

calculated to be 72 °C. It can be observed that the α′-martensite formation start temperature is also 

higher than the room temperatures. Thus, the formation of α′-martensite upon quenching after 

annealing to room temperature is also expected. 

 

3.3 Tensile testing using digital image correlation  

Dog-bone-shaped ASTM-EM8-04 standard subsize tensile samples of dimensions: 35 mm gauge 

length, 6 mm width and 2 mm thickness were wire-cut from the centre of the 42% cold-rolled plate 

with the dimensions parallel to the RD, TD and ND, respectively, (Fig. 3.3) and isochronally annealed 

at 500, 625, 650, 700 and 800 °C for 300 s. 

The uniaxial tensile tests were conducted on an Instron 1341 tensile testing machine with a 100 kN 

load cell at a strain rate of 10−3 s−1. The initial crosshead speed of the grips was 0.035 mms−1. 
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Figure 3.3: Schematic of the dog bone tensile sample. 

 

The evolution of strain during the uniaxial tensile testing was recorded by DIC cameras (Fig. 3.4). To 

perform strain measurements via DIC, the sample was coated with a speckle pattern. In general, a 

stochastic pattern composed of two colours with large contrast with each other is used. The common 

colours are black and white. The distribution of the speckle pattern is dependent on the camera’s 

proximity. Fig. 3.4 shows a schematic of the DIC system with the speckle pattern and two cameras.  

 

 

Figure 3.4: Schematic of the DIC camera configuration [195]. 

 

As the sample is lit up, the black regions absorb most of the incident light whereas the white regions 

reflect most of the light. The domain containing random white and black speckles forms a pattern 

containing grayscale values. The initial sample surface containing the grayscale values is discretised 

into a number of subset images allowing to track the strains and displacements as the sample surface 

deforms upon tension. In this procedure, a one to one correspondence is assumed between the initial 

and the deformed states. In theory, one camera can be used to capture the displacements in two-
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dimensional space. However, in the present experiment, two charge coupled device (CCD) cameras 

manufactured by Dantec Dynamics operating at 10 frames per second with an exposure time 

between 20-50 milliseconds and a resolution of 5 megapixels were used to increase the accuracy of 

the measurement. Also to increase the accuracy of the measurement, the strain was measured over 

the whole gauge section [41]. The post-processing of the DIC data was carried out using the Dantec 

Instra 4D software. During post-processing, the shear strain is defined as the strain in the XY 

(transverse-axial) plane. 

 

3.4 Hardness testing 

The hardness of the samples was measured by a Vickers micro-hardness tester (Struers Emco Test 

Durascan-70) using a 10 kgf load on the ND-RD plane. Ten measurements per sample were taken and 

the average hardness was reported with standard deviation. The load of 10 kgf was selected to 

minimise the effect of ε and α′-martensite on the hardness values; as with increasing load, the depth 

of indentation increases. The deformation-induced ε and α′-martensite forms on the surface during 

polishing. The distance between the two indentations was kept to five times the size of the 

indentation. 

 

3.5 Sample preparation and microstructure characterisation techniques 

The sample preparation for microstructural characterisation was undertaken by wire cutting the 

plane strain compressed, tensile deformed and annealed samples. Samples of dimensions: 10 (RD) × 

7 (TD) × 5 (ND) mm3 were machined from the plane strain deformed and annealed conditions. 

Rectangular samples of dimension: 15 (tension axis||RD) × 6 (TD) × 2 (ND) mm3 was also machined 

from the parallel gauge section away from the fracture region for the 42% cold-rolled and 500, 625 

and 700 °C samples after tensile testing. 

Subsequent grinding of the samples was performed manually using silicon carbide abrasive paper of 

grit sizes: 400, 800, 1200, 2000 and 4000.  The mechanical grinding operation can result in the 

transformation of metastable γ into deformation-induced ε and α′-martensite. To remove the 

deformation-induced ε and α′-martensite, if any formed during prior sample preparation, and 

improve the surface finish for EBSD characterisation, the samples were further electropolished using 

a solution of 330 ml methanol, 330 ml butoxyethanol and 40 ml perchloric acid in Struers LectroPol-

5 operating at 50V and time period of 90 s. 

Thin foils for TEM/STEM was prepared first by grinding the deformed and annealed samples to ≈70 

μm thickness and then by punching out the 3 mm thin disks. The disks were twin jet electropolished 
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using a solution of 90% methanol and 10% perchloric acid in a Struers Tenupol-5 operating at 30 V 

(≈150 mA) at -25 °C. 

 

3.5.1 Scanning electron microscopy 

SEM of the fracture surfaces for the 42% cold-rolled, 625 and 700 °C samples was conducted using a 

JEOL JSM-7001F field emission gun scanning electron microscope (FEG-SEM) operating at 15 kV with 

a working distance of 25 mm. Secondary electron detector was used for imaging the fracture surfaces 

using a probe current of ≈6.5 nA. 

 

3.5.2 Electron back-scattering diffraction 

EBSD is conducted by acquiring and subsequently indexing of electron back-scattering patterns 

known as Kikuchi patterns from a sample tilted at 70° from the horizontal stage position as shown in 

Fig. 3.5. The tilting of the sample is done to increase the number of back-scattering electrons exiting 

the sample. Fig. 3.5 shows the typical setup for the EBSD mapping consisting of EBSD detector, the 

sample and the FEG-SEM pole piece.  

 

 
Figure 3.5: Setup for the electron back-scattering diffraction mapping in the scanning electron 

microscope chamber [196]. 

 

The back-scattering electrons escaping at Bragg angle diffract to form the Kikuchi patterns which are 

detected on the phosphor screen of the EBSD detector. The sample volume from which the back-

scattering electrons are generated is dependent on the given step size. The Kikuchi patterns comprise 

bands which are indexed individually to return the unique crystal orientation. The EBSD mapping is 

https://en.wikipedia.org/wiki/Kikuchi_band
https://en.wikipedia.org/wiki/Phosphor
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conducted by focusing the electron beam onto the surface of the electropolished sample and scanning 

the beam in a grid across the sample to return grain orientation, morphology and boundaries. The 

shape of the gird depends on the specific EBSD system. For the acquired EBSD maps in this study, the 

beam scanned the sample in a square grid. During EBSD mapping, the simultaneous measurement of 

the chemical composition can be also done using the EDS detector. 

The EBSD mapping was performed on a JEOL JSM-7001F FEG-SEM operating at 15 kV and ≈6.5 nA 

probe current, equipped with Nordlys-II detector interfacing the Oxford Instruments (OI) AZtec 

software suite.  

The EBSD scans were executed with a step size of 1 μm for the hot-rolled sample, 5% plane strain 

compressed sample and 30 nm for the 10, 15, 20, 42, 66 and 88% plane strain compressed/cold-

rolled samples. A step size of 30 nm was used for the 42% cold-rolled and 500, 600, 625 and 650 °C 

samples and 100 nm for the 700, 750, 800 and 850 °C samples. The EBSD scans were acquired at a 

working distance of 12 mm at the centre of the ND-RD sample cross-sections.  

The EBSD maps for the cold-rolled and 500, 625 and 700 °C samples after tensile deformation was 

collected at 100 nm step size at a working distance of 15 mm on the transverse direction-tensile 

direction plane. 

The EBSD scans were also conducted for the measurement of texture on the ND-RD sample plane 

with a coarse step size of 2 µm for the samples annealed at 700 and 750 °C, 2.5 μm for the hot-rolled, 

800 and 850 °C samples, whereas 1 μm step size was used for the 5, 10, 15, 20, 42, 66 and 88% plane 

strain compressed/cold-rolled samples and 500, 600, 625 and 650 °C samples. For the measurement 

of texture at 15 mm working distance, the area of EBSD scans was 2.4×1.8 mm2 for the hot-rolled, 

700, 750, 800 and 850 °C samples, 1.2×0.9 mm2 for the plane strain compressed/cold-rolled, 500 and 

625 °C samples and 1×0.9 mm2 for the 600 and 650 °C samples.  

 

3.5.2.1 Electron back-scattering diffraction data post-processing 

OI Channel-5 software package was utilised for post-processing of the EBSD maps using well-

established procedures [197] by eliminating any potential wild orientation spikes. This was 

subsequently followed by the filling in of the zero solutions using cyclic extrapolation from 8 to 5 

neighbours. The pixels with negative slopes generated by cyclic extrapolation were removed after 

each step, which rules out the introduction of any artificial grains.  

The subgrain boundaries were defined by a minimum of three pixels, which was bounded by 

misorientations (θ) ≥ 2°. 2° ≤ θ < 15° are classified as LAGBs, whereas θ ≥ 15° denote HAGBs. For the 

EBSD maps acquired on the samples after tensile deformation, LAGBs was defined between 5° and 
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15°. The γ twin boundaries of the first order were defined as Σ3 = 60°〈111〉γ for a maximum deviation 

(Δθ) of 6.03° following the Palumbo-Aust criterion (Δθ ≤15° Σ−5/6) [198]. The {101̅2}〈1̅011〉ε 

extension twins in ε-martensite were defined as having a misorientation angle of ≈86° ± 5° about the 

〈12̅10〉ε axis [52]. The ODFs was plotted after exporting the orientation data from the OI Channel-5 

software to JTEX software [199]. 

 

3.5.2.2 Segmentation of the electron back-scattering diffraction maps 

The EBSD maps for the 600, 625 and 650 °C samples were segmented into the recrystallised and 

reverted/recovered γ grain fractions by the application of internal misorientation and subgrain 

aspect ratio threshold.  

The procedure began with the creation of a subset containing only the γ grains using the OI Channel-

5 software (Fig. 3.6a). A threshold based on the grain orientation spread (GOS) was applied to the γ 

grains subset to separate the reverted/recovered and recrystallised γ grains. GOS is an indicator of 

internal misorientation within a grain and is estimated by calculating the average misorientation 

between all the pixels within a grain/subgrain [200]. The GOS threshold (θc) used was determined 

based on noting where the change in slope of the normalised cumulative distribution vs. internal 

misorientation of the grains corresponds to 1 (Fig. 3.6b) [201]. The GOS thresholding resulted into 

two subsets of γ grains having misorientations: (a) less than θc = 0.95 (Fig. 3.6c) and (b) greater than 

θc = 0.95 (Fig. 3.6d). The γ grains with GOS values greater than θc was also found to be elongated and 

coarse.  Thus, it could be assumed that these may be reverted γ grains. The γ grains with GOS values 

less than θc was observed to be fine but of varying different morphology. It could be speculated that 

some of these γ grains are recrystallised whereas the others (elongated) may be formed by the 

recovery of the reverted γ.  

A second step was therefore applied using an aspect ratio (AR) threshold to the γ subset with GOS 

value less than θc to separate out the higher AR grains. The AR threshold used was determined in a 

similar manner to the GOS threshold by tracking the change of the slope of the normalised cumulative 

distribution vs. AR and accepting the value where the change of slope equals to 1 (Fig. 3.6e). The AR 

threshold was determined to be 2.65. The γ grains with AR lower than the critical value comprised 

the recrystallised γ grains (Fig. 3.6g). The γ grains with AR higher than the critical AR were observed 

to be fine and elongated (Fig. 3.6f) and considered to be the recovered γ grains. The above subset was 

merged with the subset of γ grains having GOS values above θc (Fig. 3.6d) to create a subset 

containing the reverted/recovered γ grains (Fig. 3.6h).  
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

Figure 3.6: EBSD maps after annealing at 600 °C: (a) full γ grains map, (b) cumulative distribution of 

internal grain orientation spread indicating the threshold used for segmentation; (c) map of all the  

recrystallised  and recovered γ grains, (d) map of reverted γ grains; (e) cumulative distribution of 

grain aspect ratio indicating the threshold used for segmentation; (f) map of the recovered γ grains; 

(g) map of all the recrystallised γ grains, (h) map of the reverted/recovered γ grains. 
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3.5.2.3 Analytical procedure for delineation of γ-γ boundaries 

For the 700, 750, 800 and 850 °C samples due to the presence of ε and α′-martensite within the γ 

grain, it is difficult to determine the γ grain sizes accurately. Thus, a procedure was developed to 

identify the γ-γ grain boundaries and to calculate the γ grain sizes more precisely. The 850 °C sample 

is used to describe this procedure. The methodology uses image processing of the γ grain boundary 

maps and does not utilise any orientation data. The procedure started with the creation of a map (Fig. 

3.7a) containing γ-γ HAGBs (in black), 60°〈111〉γ γ twin boundaries (TBγ, in red) and ε-γ, α′-γ 

interphase boundaries (in blue). The colour of the γ twin and interphase boundaries was re-assigned 

to white in order to yield an incomplete γ-γ grain boundary map (Fig. 3.7b).  

The incomplete γ-γ boundary map was saved as a tagged image format file image and imported into 

the ImageJ software package [202]. A pixel-based image scale was defined. The image was then 

cropped to remove legend information. The cropped red green blue image was then converted to an 

8-bit binary image and inverted such that the pixels comprising the incomplete γ-γ grain boundaries 

were white while the pixels denoting the γ grain interior were black (Fig. 3.7c).  

The above procedure was necessary to reveal the incomplete γ-γ grain boundaries and to enable 

image thresholding into two distinct pixel sets comprising: 0 (or black) and 255 (or white) colour 

channels. Next, the watershed algorithm was applied to complete the γ-γ boundaries by connecting 

the end pixels of the incomplete γ-γ boundaries to their nearest neighbouring pixels by the shortest 

linear distance (Fig. 3.7d) [203]. Following this, Fig. 3.7d and Fig. 3.7b were visually compared in 

order to manually remove any artificially introduced boundaries (see the boundaries highlighted by 

red cross marks in Fig. 3.7d). Subsequently, the γ-γ grain boundary outlines were detected (Fig. 3.7e), 

the number of pixels within each outlined grain was quantified in order to determine the γ grain 

areas. The equivalent circle diameter (ECD) was calculated from the γ grain areas along with the 

average and standard deviation of the ECD distribution. It follows that the ECD value corresponds to 

that diameter of a circle whose area is equivalent to the area of a γ grain [202].  
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(a)  (b)  

(c)  (d)  

(e)  

 

Figure 3.7: Representative boundary maps for the annealed sample showing (a) γ-γ (black), TBγ 

(red), ε-martensite/γ and α′-martensite/γ interphase (blue) boundaries, (b) incomplete γ-γ 

boundaries, (c) 8 bit binary, inverted and thresholded incomplete γ/γ grain boundaries, (d) 

complete γ/γ boundaries after applying watershed algorithm (artificially introduced boundaries 

are shown by red “X”) and (e) identifying individual γ grains to compute the equivalent circle 

diameter. RD = horizontal, TD = vertical. 

3.5.3 Energy dispersive spectroscopy 

Energy dispersive spectroscopy (EDS) was undertaken on the 625 °C sample to verify the distribution 

of elements: Mn, Al, Si and Ni. The EDS analysis was performed on JEOL JSM-7001F FEG-SEM 

operating at 15 kV at 10 mm working distance. Based on the EDS analysis shown in Fig. 3.8, it can be 

observed that the distribution of alloying elements is homogenous. 
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(a)  (b)  

(c)  (d)  
Figure 3.8: EDS maps showing the distribution of elements (a) Mn, (b) Al, (c) Si and (d) Ni. 

 

3.5.4 Transmission electron microscopy  

TEM studies were carried out using JEOL JEM-2010 LaB6 TEM operated at 200kV and fitted with 

Gatan Orius CCD ≈4000 × 2000 camera. Bright-field (BF), selected area electron diffraction (SAED) 

and displaced aperture dark-field (DF) imaging were conducted on the samples during all the TEM 

imaging. Imagining of the Shockley partial dislocations in γ and ε-martensite was performed under 

WBDF condition. To attain WBDF condition in γ and ε martensite, the sample was tilted to [111]γ and 

[21̅1̅0]ε zone axis, correspondingly. Then the samples were tilted along the [202̅]γ, [101̅0]ε, [0002]ε 

to form one line diffraction pattern, followed by sample tilting perpendicular to [202̅]γ, [101̅0]ε, 

[0002]ε to form a strong two beam condition with the g = [202̅]γ,  g = [101̅0]ε, g = [0002]ε. The beam 

was then tilted to bring g to the centre resulting in the desired g-3g condition.  WBDF imaging was 

executed by using the g vector at the centre.  

Further analysis of the local atomic structure of γ and ε-martensite was carried out using probe 

corrected STEM in JEOL JEM-ARM 200F which has a resolution of 0.8 nm at 200 kV. Double tilt holder 

with ± 35° tilting was used in JEOL JEM-ARM 200F equipped with a cold field emission gun. Atomic 

resolution high angle annular dark-field scanning transmission electron microscopy (HAADF STEM) 

micrographs were acquired using a hexagonal probe corrector in JEOL JEM-ARM200F with 68 and 
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180 mrad inner and outer collection angles, respectively, with a dwell time of 38 µs. The images were 

acquired with Gatan UltraScan 1000XP CCD camera and cleaned using the HRTEM filter tool in the 

Gatan DigitalMicrograph software suite [204].  

The widths of ε-martensite plates/laths (w) was estimated using the measured widths (wL) from the 

TEM micrographs via the following equation [205]:       

      w =
2wL

π
     (3.10) 

 

3.5.4.1 In-situ heating in transmission electron microscope 

In-situ heating of the thin foils was carried out in a JEOL 2200FS TEM operating at 200 kV at the 

University of Sydney using a Gatan double tilt heating stage. The JEOL 2200FS was equipped with a 

thermal FEG and Gatan ultra scan 2000 × 2000 camera. Gatan 652 double tilt heating stage was used 

containing tantalum heating furnace with a maximum heating temperature of 1000 °C. The heating 

experiments were performed using a heating rate of 20 °Cmm−1 to the maximum temperature of 900 

°C. The in-situ heating was interrupted at temperatures of every 50 or 100 °C to acquire diffraction 

patterns from the regions of interest to check for the reversion of ε, α′-martensite and γ twinning.  

The analysis of the diffraction patterns was carried out utilising the Digital Micrograph software 

[206]. The Java electron microscopy simulation software by Stadelmann et al. [207] was used for the 

simulation of the diffraction patterns. 
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CHAPTER 4 EFFECT OF PLANE STRAIN COMPRESSION AND COLD ROLLING ON THE 

MICROSTRUCTURE AND TEXTURE EVOLUTION IN HIGH MANGANESE STEEL  

 

This chapter includes the characterisation of microstructure during the plane strain 

compression/cold rolling using EBSD and TEM in Section 4.2. The investigation of the nucleation and 

coarsening behaviour of ε-martensite with increasing plastic strain is presented in Section 4.3. The 

ε-martensite deformation accommodation mechanism via the formation of ε-ISF and change in the 

stacking fault character are elucidated by aberration-corrected TEM and discussed in Section 4.4. 

Finally, the evolution of texture in the γ, ε and α′-martensite phases with increasing thickness 

reduction is discussed in Section 4.5. The orientations of the deformation-induced ε and α′-

martensite are correlated to the γ orientations by S-N and K-S orientation relationships, respectively.  

4.1 Stress-strain and strain hardening curve upon plane strain compression  

Fig. 4.1a shows the equivalent stress-strain curve for plane strain compression via Gleeble 

thermomechanical simulator up to 20% thickness reduction. The curve shows a linear increase 

followed by a slow rising stress region and an approximately linearly rising equivalent stress values. 

The start of the slow rising stress region is commonly ascribed to the onset of ε and α′-martensite 

transformation. The intersection point between the elastic modulus and the tangent to the end of the 

plateau region is defined as the triggering stress required for the onset of ε and α′-martensite 

transformation [208] and is calculated as 229 MPa. While the concept of triggering stress was mainly 

applied to phase transforming metastable β-Ti alloys, it was also used for CrNi metastable austenitic 

stainless steel subjected to tension [45]. 

The strain hardening curve is given in Fig. 4.1b shows three regions consisting of (i) sharp initial 

decrease, (ii) constant region of strain hardening followed by (iii) an increasing strain hardening rate. 

The Region 1 is due to the elasto-plastic transition [209, 210] and Region 2 is due to the onset of 

deformation-induced ε and α′-martensite formation (Fig. 4.1b). The increasing strain hardening rate 

in the Region 3 is due to further transformation of γ to ε and α′-martensite and ε to α′-martensite and 

the subsequent deformation accommodation by all three phases. 
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(a)  (b)  
Figure 4.1: Equivalent (a) stress-strain and (b) strain hardening curves upon plane strain 

compression to 20% thickness reduction. In Fig. 4.1a the blue squares correspond to 5, 10, 15 and 

20% thickness reductions. The red dashed lines are extrapolations of the elastic modulus and the 

tangent to the end of the plateau region for the calculation of the triggering stress. 

 

4.2 Microstructural changes with increasing thickness reduction 

Figs. 4.2 and 4.3 show the superimposed band contrast and phase maps after hot rolling and plane 

strain compression/cold rolling to 88% thickness reduction. The hot-rolled microstructure shows 

coarse γ grains (red) containing annealing twins (yellow) as well as ε (green) and α′-martensite 

(blue) formed upon quenching after hot rolling. As shown in Fig. 4.2a inset, the dark lines in γ grains 

showing no misorientation across their boundaries are probably due to γ stacking faults carried over 

from hot rolling [211]. The ε-martensite morphology consists of long thin laths or coarse plates 

running across γ grains. Inside the γ grains, parallel and intersecting ε-martensite plates are observed 

which belong to the same or different ε-martensite variants, respectively. Lenticular α′-martensite 

grains are present within thick ε-martensite plates. The formation of α′-martensite from ε-martensite 

was also observed in an Fe-15Mn-0.5C high Mn steel after solution treatment at 1000 °C for 1 h 

followed by water quenching [212]. 

Figs. 4.2b-4.2d and Figs. 4.3a-4.3d depict the microstructure evolution with increasing thickness 

reduction via plane strain compression and cold rolling. Coarse γ grains containing Σ3 annealing 

twins carried from the hot-rolled microstructure are observed to 20% thickness reduction (Figs. 

4.2b-4.2d and Fig. 4.3a). Inside γ grains, the formation of fine deformation-induced ε-martensite laths 

occurs at γ stacking faults, which were determined to be of intrinsic type by TEM [50] (dark band 
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contrast regions) shown in the top right inset in Fig. 4.2b or at pre-existing γ Σ3 annealing twin 

boundaries (top right inset (1) in Fig. 4.2d). The presence of a coarse γ grain can be observed in the 

sample after 5% thickness reduction (Fig. 4.2b). It can be seen that a higher fraction of ε and α′-

martensite is associated with the coarse γ grains due to a higher surface area available for nucleation 

and subsequent growth. The formation of {101̅2}〈1̅011〉ε extension twins with ~86° misorientation 

in ε-martensite grains are denoted in fuchsia (bottom left inset (2) in Fig. 4.2d).  

 

(a)  (b)  

(c)  (d)  
Figure 4.2: Superimposed band contrast and phase maps after (a) hot rolling and room 

temperature thickness reduction to (b) 5%, (c) 10% and (d) 15%. Red = γ, green = ε-martensite, 

blue = α′-martensite, white = unindexed areas, silver = low-angle grain boundaries, black = high-

angle grain boundaries, yellow = γ twin boundaries. Rolling direction (RD) = horizontal. Insets 1 

and 2 in Fig. 4.2d are magnified views of regions highlighted by white dashed rectangle 1 and 2, 

correspondingly. 

 

The formation of deformation-induced α′-martensite with a lenticular morphology in thick ε-

martensite plates carried over from quenching after hot rolling or by phase transformation from ε-

martensite (Fig. 4.3a), or in a blocky morphology at the intersection of two ε-martensite laths (top 

left inset (1) in Fig. 4.3a) and at γ grain boundaries (bottom left inset (2) in Fig. 4.3a) is observed. Due 
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to the sub-division of the ε-martensite plates carried from quenching and also during deformation 

after hot rolling by colonies of deformation-induced α′-martensite, the remnant ε-martensite has a 

blocky morphology as shown in the bottom left inset (2) and top right inset (3) in Fig. 4.3a by white 

arrows. 

After 42% thickness reduction, the microstructure showed a majority of α′-martensite area fraction, 

minor ε-martensite area fraction and a trace amount of untransformed γ as shown in Fig. 4.3b. The 

pockets of ε-martensite in the cold-rolled sample (Fig. 4.3b) is the remnant ε-martensite formed due 

to the subdivision of a thick ε-martensite plate by lenticular α′-martensite [81]. The remnant γ which 

is localised in the 42% cold-rolled sample are less favourably oriented for phase transformation to ε 

and α′-martensite.  

Upon 66% thickness reduction, further transformation of ε-martensite takes place to α′-martensite 

producing trace areas of ε-martensite and untransformed γ (refer to the arrows in Fig. 4.3c). The ε-

martensite undergoes a change in morphology from blocky to elongated grains after 42% and 66% 

thickness reduction, respectively, indicating deformation accommodation while undergoing 

transformation to α′-martensite. During the thickness reduction from 42% to 88%, the α′-martensite 

widths, which were measured via the linear intercept method along the ND, decreased from 0.26 ± 

0.1 to 0.15 ± 0.12 µm. In Fig. 4.3d, the white areas denote unindexed regions as well as regions of 

highly localised strain such as macroscopic shear bands. 

 

(a)  (b)  
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(c)  (d)  

Figure 4.3: Superimposed band contrast and phase maps after thickness reduction to (a) 20%, (b) 

42%, (c) 66% and (d) 88%. Red = γ, green = ε-martensite, blue = α′-martensite, white = unindexed 

areas, silver = low-angle grain boundaries, black = high-angle grain boundaries, yellow = γ twin 

boundaries. Rolling direction (RD) = horizontal. Insets 1-3 in Fig. 4.3a are the magnified views of 

regions highlighted by white dashed rectangle 1-3, correspondingly.  

 

Figs. 4.4a-4.4c show the misorientation angle distributions of all the three phases after plane strain 

compression and cold rolling. With increasing thickness reduction, the γ shows an increase in LAGBs 

fraction from ≈0.14 to 0.97 and a decreasing fraction of Σ3 twin boundaries (Fig. 4.4a). The decrease 

in the twin boundary fraction is due to the accumulation of dislocations at twin boundaries [213] 

during deformation leading to the deviation away from the Palumbo-Aust criterion [198] as well as 

the nucleation of ε-martensite at twin boundaries. 

The inter-variant boundary population in Figs. 4.4a-4.4c shows the occurrence of S-N orientation 

relationship between γ and ε-martensite [105], K-S orientation relationship between γ and α′-

martensite [53] and Burgers orientation relationship between ε and α′-martensite [108]. 

In Fig. 4.4b, ε-martensite shows a high fraction of LAGBs and grain boundaries having misorientation 

angle/axis of 70°/〈112̅0〉ε which is due to inter-variant boundaries between ε-martensite 

plates/laths [109, 214]. The fraction of inter-variant boundaries decreases with increasing thickness 

reduction due to the transformation to α′-martensite. Smaller fractions of HAGBs are also observed 

at 86° and 90° misorientation angles with 〈112̅0〉ε misorientation axis due to  {101̅2}〈1̅011〉ε 

twinning. The {101̅2}〈1̅011〉ε extension twins also deviate away from their ideal misorientation 

angle/axis with increasing thickness reduction. The ε-martensite LAGBs population is seen to 

increase with thickness reduction. 

In Fig. 4.4c, the α′-martensite shows high fractions of 10°/〈110〉α′ , 50°/〈110〉α′ , 60°/〈110〉α′ and 

60°/〈111〉α′ misorientation angle/axis boundaries; which correspond to inter-variant crystal pairs 
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[109]. The α′-martensite misorientation angle distribution matches with the misorientation angle 

distribution obtained in a titanium alloy as presented in Table 2.6 of Chapter 2. The bcc α′-martensite 

forms from the hcp ε-martensite via the operation of Burgers orientation relationship, which is also 

obeyed during the β (bcc) to α (hcp) phase transformation process in titanium alloys.  

With increasing thickness reduction the LAGBs population is observed to increase. The α′-martensite 

inter-variant boundary fraction decreases due to the deviation away from the angle-axis criteria. This 

is due to the accumulation of dislocation at the α′-martensite inter-variant interface. With increasing 

thickness reduction the population of LAGBs in α′-martensite is noted to increase.  

 

(a)  (b)  

(c)  
Figure 4.4: Misorientation angle distributions of (a) γ, (b) ε-martensite and (c) α′-martensite with 

thickness reduction up to 88%.  
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In Fig. 4.5, bright-field and dark-field TEM micrographs show the microstructure evolution with 

increasing thickness reduction to 20%. The coarse ε-martensite plates having S-N orientation 

relationship with their parent γ grains are present in the hot-rolled sample (Figs. 4.5a). Between 5 

and 20% thickness reductions, the formation of deformation-induced ε and α′-martensite is seen in 

Figs. 4.5b-4.5e. The inset diffraction patterns in the Figs. 4.5b-4.5d shows the formation of 

deformation-induced ε-martensite to occur with S-N orientation relationship. The substructure of 

deformation-induced α′-martensite was detected to contain dislocations which are shown in Fig. 

4.5d. Similar dislocation substructures in α′-martensite were witnessed in an Fe-17Mn-0.05C steel 

after tension to 15% engineering strain [212]. 

 

(a)  (b)  

(c)  (d)  
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(e)  

 

Figure 4.5: Representative bright-field transmission electron micrographs after (a) hot rolling and 

thickness reductions to (b) 10%, (c, d) 15% and (e) 20%. The inset diffraction patterns in Figs. 

4.5a-4.5d are from the regions demarcated by yellow/white/blue circles or the complete area of 

interest. The top left and right diffraction patterns are from the yellow and white circular regions, 

respectively, in Fig. 4.5d. The zone axes are [101]γ, [112̅0]ε , [1̅11]α′  in Figs. 4.5a-4.5e.  

Thickness reduction to 42% shows the coarsening of the deformation-induced ε and α′-martensite 

(Fig. 4.6a). The TEM data confirms the same results obtained by EBSD. Thickness reductions to 66% 

and 88% (Figs. 4.6b-4.6e) produce elongated α′-martensite grains. The dark-field micrograph shows 

the remnants of ε-martensite along the α′-martensite boundaries (Figs. 4.6c and 4.6e). 

 

(a)  

(b)  
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(c)  
(d)  

(e)  

 

Figure 4.6: Representative (a, b, d) bright-field, (c, e) dark-field transmission electron micrographs 

after thickness reduction to (a) 42%, (b, c) 66% and (d, e) 88%. The inset diffraction patterns in 

Figs. 4.6a, 4.6b and 4.6d are from the regions demarcated by yellow circles or the complete area of 

interest. The zone axes are [11̅1̅]α′ , [112̅0]ε in Fig. 4.6a. 

4.3 Nucleation of deformation-induced ε-martensite  

Fig. 4.7a is a bright-field TEM micrograph obtained in the sample after 5% thickness reduction which 

shows the nucleation of fine, deformation-induced ε-martensite laths. The inset diffraction pattern 

shows the occurrence of S-N orientation relationship. The dark-field micrograph in Fig. 4.7b shows a 

deformation-induced ε-martensite of 3 ± 1 nm width along with 19 ± 3 nm lath which is expected to 

be carried over upon quenching after hot rolling. Along the 3 nm deformation-induced ε-martensite 

lath the intensity disappears. 

HAADF STEM micrographs from regions: (1) along the edge, which is very close to the tip and (2) 

within the ε-martensite lath are given in Figs. 4.7c and 4.7d, respectively.  The edge region near the 

tip shows γ containing ISFs with ABCA|CABC.. stacking along with a 4 layer nucleus of deformation-

induced ε-martensite (Fig. 4.7c). Inside the deformation-induced ε-martensite lath, a thin layer of 

untransformed γ is also present (Fig. 4.7d). The interface between the γ and ε-martensite phases 

along the [0002]ε direction is smooth having a one-to-one congruence between the fcc and hcp 

atoms.  
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(a)  (b)  

(c)  (d)  
Figure 4.7: Representative (a) bright-field, (b) dark-field transmission electron micrographs and 

(c, d) HAADF STEM images after 5% thickness reduction. The Figs. 4.7c, 4.7d are from the regions 

(1) and (2) in Fig. 4.7b, respectively. In Figs. 4.7c and 4.7d, the blue solid lines denote fault planes 

in γ. The inset diffraction pattern in Fig. 4.7a is from the region demarcated by a yellow circle. The 

zone axes are [101]γ and [112̅0]ε. 

 

The nucleation of deformation-induced ε-martensite seen in Figs. 4.7c and 4.7d after 5% thickness 

reduction are in agreement with previous observations [15, 215-217], which report that γ-ISFs in γ 

nucleate ε-martensite and in turn coarsen laterally to form the fine deformation-induced laths. The 

occurrence of an untransformed γ region in Fig. 4.7d displays incomplete lateral coarsening. Pierce 

et al. [76, 82] also observed the formation of wide γ-ISFs on tension to 0.002 and 0.015 engineering 

strains, which resulted in the transformation of γ-ISFs to ε-martensite. This finding agrees with the 
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present result. Also, Figs. 4.7c and 4.7d do not support the earlier suggestion of ε-martensite 

comprising a bundle of γ stacking faults [218].  

A similar type of nucleation and coarsening mechanism was also reported by Kikuchi et al. [14], 

wherein  1-2 nm wide ε-martensite laths nucleated and coalesced with neighbouring ε-martensite 

plates; thereby increasing the thickness of the latter. Fujita and Ueda [15] also made a similar 

observation. In that study, it was proposed that stacking faults form irregularly on the (111)γ plane 

supported by the motion of Shockley partial dislocations emitted from the γ grain boundaries; which 

coarsen laterally to nucleate deformation-induced ε-martensite. The width of the stacking faults 

increases due to the activation of more faults in the nearby (111)γ planes which enhance the lateral 

coarsening as ε-martensite propagates within γ grains [15].  

Fig. 4.8 is a schematic illustrating the coalescence of two fine, deformation-induced ε-martensite laths 

containing a thin region of untransformed γ. The coalescence occurs by the motion of Shockley partial 

dislocations on alternate “C” planes and ending in the “A” plane of γ. This mechanism is valid only 

when Shockley partial dislocations pass through the configuration in γ shown in Fig. 4.8. The passage 

of dislocations in a different configuration will lead to the occurrence of the same type of planes on 

top of each other, which is not energetically favourable. 

 

 

Figure 4.8: Schematic of coarsening by coalescence of ε-martensite laths. The red and green circles 

represent fcc and hcp stacking sequences, respectively. Shockley partial dislocations are given by 

the symbol “ ”. 
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Figs. 4.9a and 4.9b show bright-field STEM micrographs comprising deformation-induced ε-

martensite laths in the sample after 10% thickness reduction. The HAADF STEM micrographs of the 

regions (1), (2) and (3) from Fig. 4.9b are presented in Figs. 4.9c, 4.9d and 4.9e, respectively, which 

illustrates the interfacial structure and the internal structure within the deformation-induced ε-

martensite laths. In Fig. 4.9c, the interaction region represented using dashed blue lines depicts a 

distorted γ lattice. The shear associated with this region was calculated to be 0.09, which causes a 

localised distortion when moving from the fcc to hcp lattices along the [101̅0]ε direction. In Fig. 4.9d 

the interface between γ and ε-martensite is smooth and without ledges along the [0002]ε direction. 

Similar observations were reported in Ref. [101] where the deformation-induced ε-martensite was 

observed to have a smooth interface with γ. The tips of ε-martensite laths terminate in a Shockley 

partial dislocation (Fig. 4.9e). 

 

(a)  (b)  

(c)  (d)  
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(e)  
Figure 4.9: Representative (a, b) bright-field STEM micrographs and (c-e) HAADF STEM images 

after 10% thickness reduction. Fig. 4.9b is a magnified view of the region denoted by red dashed 

square in Fig. 4.9a. Figs. 4.9c-4.9e are from the regions (1) to (3) in Fig. 4.9b, respectively. In Figs. 

4.9c-4.9e, the blue solid/dashed lines denote the γ/ε-martensite interface while Shockley partial 

dislocations are given by the symbol “ ”.   

 

4.4 Deformation accommodation mechanisms in γ and ε-martensite  

Fig. 4.10a is a magnified, dark-field TEM micrograph of a ε-martensite plate from the hot-rolled 

sample. Fig. 4.10a is taken from the dashed white rectangular region shown in Fig. 4.5a. The interface 

between γ and ε-martensite is shown by HAADF STEM micrograph in Fig. 4.10b. The ε-martensite 

plate, formed on quenching after hot rolling, does not contain any faults. However, γ-ISFs are 

observed to be present. The dark-field TEM micrograph of the sample after 5% thickness reduction 

in Fig. 4.10c shows the distribution of relatively fine and coarse deformation-induced ε-martensite 

laths. The 65 nm wide ε-martensite lath in Fig. 4.10c returns I1 -type ε-ISF in Fig. 4.10d. Fig. 4.10e 

shows the dark-field micrograph revealing γ-ISFs under two beam condition using the g = [11̅1]γ in 

the sample after 15% thickness reduction. This indicates the operation of partial basal slip. 
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(a)  (b)  

(c)  (d)  

(e)  

 

Figure 4.10: (a, c, e) Dark-field micrographs and (b, d) HAADF STEM micrographs after (a, b) hot 

rolling, thickness reduction to (c, d) 5% and (e) 15%. The inset diffraction patterns in Fig. 4.10c 

are from regions demarcated by a red square. Fig. 4.10e is observed under two beam conditions 

using g = [11̅1]γ. The zone axes are [101]γ, [112̅0]ε in Fig. 4.10c. 
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Fig. 4.11 shows dislocations in the pyramidal plane of ε-martensite in the sample after 15% thickness 

reduction. The formation of stacking faults (highlighted by black arrows) and dislocations tangles 

(highlighted by black arrows in inset) can also be observed. This indicates the occurrence of a 

pyramidal slip in ε-martensite. High activity of pyramidal dislocations was also observed in an Mg-

3Y alloy after 3% plastic deformation [219]. The possibility of occurrence of {101̅1}ε pyramidal slip 

in Mg was also proposed by molecular dynamics simulations [220]. 

 

 

Figure 4.11: ε-martensite bright-field micrograph for the sample after 15% thickness reduction taken 

from the zone axis [011̅1]ε. 

 

Figs. 4.12a and 4.12b are bright and dark-field TEM micrographs, respectively, from ε-martensite 

plates in the sample after 10% thickness reduction. The HAADF STEM micrograph of the 20 nm wide 

ε-martensite lath shows an I2 -type ε-ISF highlighted by blue lines in Fig. 4.12c. In Fig. 4.12d the 

presence of multiple I1 -type ε-ISFs highlighted by blue lines on parallel (0002)ε planes within a 64 

nm wide ε-martensite lath can be observed. ε-ISFs (Fig. 4.12e) was also identified in the samples after 

15% thickness reduction in the dark-field images obtained under two beam condition using the g = 

[011̅1]ε [221] and by employing the procedures outlined in Ref. [222]. 

In ε-martensite, I1 and I2 -type ε-ISFs are created by the motion of Shockley partial dislocations that 

form by the dissociation of  
a

3
[21̅1̅0]ε perfect dislocations by the reaction:    

    
a

3
[21̅1̅0]ε →

a

3
[101̅0]ε +

a

3
[11̅00]ε    (4.11) 

The HAADF STEM micrograph of a 223 nm wide ε-martensite plate observed in the sample after 42% 

thickness reduction which is taken from the yellow circular region in Fig. 4.6a and shown in Fig. 4.12f 

shows I1 -type ε-ISFs. The strain fields of the Shockley partial dislocations distort the atomic layers 



88 
 

in the micrograph in Fig. 4.12f due to the obstruction of electron channelling along atomic columns. 

The presence of ε-ISFs was reported in deformation-induced ε-martensite formed in metastable 

austenitic steels [101]. 

Therefore, the present EBSD and TEM results show that deformation accommodation in ε-martensite 

upon plane strain compression/cold rolling takes place via a combination of perfect and partial basal 

slip, pyramidal slip along with {101̅2}〈1̅011〉ε extension twinning.  

 

(a)  (b)  

(c)  (d)  
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(e)  

(f)  
Figure 4.12: (a) Bright-field micrograph, (b, e) dark-field micrographs, (c, d, f) HAADF STEM 

micrographs after thickness reduction to (a-d) 10%, (e) 15% and (f) 42%. Shockley partial 

dislocations are shown by the symbol “ ” in Fig. 4.12f. The inset diffraction patterns in Figs. 4.12a 

and 4.12e are from the regions demarcated by yellow circles/whole micrograph. Fig. 4.12e is taken 

under two beam conditions using g = [011̅1]ε. The zone axes are [101]γ, [112̅0]ε in Fig. 4.12a.  

 

A mechanism is proposed for the deformation of ε-martensite via the formation of ε-ISF as shown in 

Fig. 4.13. The schematic explains the formation mechanism of ε-martensite and subsequent 

deformation accommodation by ε-martensite through a change in ε-ISF character. In step 1, the 

motion of Shockley partial dislocations on every second plane leads to the transformation γ to ε-

martensite. In step 2, the motion of Shockley partial dislocation via the “A” stacking sequence returns 

the formation of an I2 -type ε-ISF. In step 3, the I2 -type ε-ISF transforms to an I1 -type ε-ISF via the 

motion of Shockley partial dislocations through every plane. Steps 2 and 3 show the formation of I2 -

type ε-ISFs and the change in stacking fault character results in the ε-martensite deformation 

accommodation. The formation of I2  ε-ISF takes place first as it requires the motion of relatively less 

number of Shockley partials compared to  I1 ε-ISF. 
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Figure 4.13: Schematic of the phase transformation from γ to ε-martensite followed by a transition 

in the stacking fault character from I2 to I1 -type ε-ISFs. The red and green circles represent fcc and 

hcp stacking sequences, respectively. Shockley partial dislocations are given by the symbol “ ”. 

 

4.5 General overview of microstructure changes during plane strain compression and cold 

rolling 

Based on the above results a schematic of the transformation and deformation accommodation 

behaviour with increasing thickness reduction is provided in Fig. 4.14. Upon quenching after hot 

rolling the microstructure consists of γ with stacking faults (in purple) and annealing twins (in 

yellow) as shown in Fig. 4.14, step 1. The parallel and intersecting ε-martensite plates and α′-

martensite plates that form upon quenching are present within individual γ grains. However, this is 

not shown in the schematic in Fig. 4.14 as the discussion here is focused on the deformation and 

subsequent transformation behaviour of γ and does not include the deformation of ε and α′-

martensite formed upon quenching after annealing.  

In Fig. 4.14 step 2, after 10% thickness reduction, the γ deformation accommodation takes place by 

partial slip leading to the formation of γ-ISFs and also via the transformation to deformation-induced 

ε-martensite which appear either alongside ε-martensite plates or in isolation and at γ annealing 

twins. Concurrently, I2 ε-ISFs (in orange) and I1 ε-ISFs (in brown) form in fine ε-martensite laths.  

In Fig. 4.14, up to ~20% thickness reduction (Fig. 4.14, step 3), the transition of I2 -type ε-ISFs to I1 -

type ε-ISFs (in brown) occurs in ε-martensite. Concomitantly, the α′-martensite forms at the 

intersections of ε-martensite plates/laths, within ε-martensite plates/laths and also within the γ 

matrix. The formation of {101̅2}〈1̅011〉ε extension twins (in fuschia) also occurs in ε-martensite. The 

operation of partial slip leading to the formation of γ-ISFs also continues at this stage of deformation. 

However, the formation of ε and α′-martensite in γ is the dominant mechanism. 
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Thickness reduction up to ≈42% (Fig. 4.14, step 4) results in the blocky ε-martensite morphology 

and elongated, fragmented α′-martensite morphology whereas after thickness reduction to 66% (Fig. 

4.14, step 5) the morphology of α′-martensite is pancaked.  In the sample after 88% thickness 

reduction (Fig. 4.14, step 6), the microstructure predominantly contains α′-martensite with 

macroscopic shear bands and trace fractions of γ and -martensite. Therefore, α′-martensite 

accommodates deformation up to 88% thickness reduction via slip and macroscopic shear banding. 

 

 

Figure 4.14: Schematic of deformation and transformation behaviour of high Mn steel with increasing 

thickness reduction up to 88%. Red = γ, green = ε-martensite, blue = α′-martensite. γ intrinsic stacking 

faults are shown in purple while I2 and I1 faults in ε-martensite are shown in orange and brown, 

respectively. Annealing twins in γ and {101̅2}〈1̅011〉ε extension twins in ε-martensite are shown in 

yellow and fuchsia, respectively. 

 

4.6 Texture changes of γ, ε and α′-martensite with increasing thickness reduction  

Fig. 4.15a shows the ideal γ orientations (in red) plotted in the ϕ2 = 0°, 45° and 65° ODF sections. The 

γ orientations in the samples after hot rolling and plane strain compression/cold rolling to 42% 

thickness reduction are presented in Figs. 4.15b-4.15g. The ODF sections of γ were not plotted after 

thickness reduction to 66 and 88% due to its low area fraction.  

The hot-rolled γ returns weak αγ-fibre (〈110〉γ||ND) {110}〈223〉γ (ϕ1 = 42°, Φ = 90°, ϕ2 = 45°) 

orientation, along with Copper (Cuγ, {112}〈111〉γ), Sγ ({123}〈634〉γ) and Cube (Cγ, {100}〈001〉γ) 

orientations (Fig. 4.15b). After thickness reductions to 5 and 10%, the γ shows orientations along the 

αγ-fibre Goss (Gγ, {110}〈001〉γ), (011)[31̅1]γ(ϕ1 = 20°, Φ = 45°, ϕ2 = 0°), Brass (Brγ, {110}〈112〉γ), 

Cuγ and Brγ, Aγ, Sγ, Cuγ in Figs. 4.15c and 4.15d, respectively. Similar γ orientations were observed 

after thickness reduction to 15 and 20% (Figs. 4.15e and 4.15f). After thickness reduction to 42%, 

strong intensities around the Brγ and Sγ orientations is noted along with the weak intensities around 
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the Cγ and Rotated-Goss (Rt-Gγ, {011}〈011〉γ) orientations (Figs. 4.15g). In summary, after thickness 

reduction to 42%, the strengthening of intensities around the Brγ, Sγ and Cuγ orientations (Fig. 4.15c-

4.15f) occurs. The strengthening of intensities around the Brγ orientation during the cold rolling of 

an Fe-22Mn-0.37C steel was also reported [8]. During the cold rolling of an Fe-22Mn-0.37C steel, Lü 

et al. [8] observed the formation of a strong Brγ orientation along with a spread towards the Gγ 

orientation. In that study, weak intensities around the Cuγ and Sγ orientations were also observed. 

Similar orientations were observed during the cold rolling of an Fe-26Mn-3Si-3Al steel to 56% 

thickness reduction [11]. 

 



93 
 

(a)  
(b)  

(c)  (d)  

(e)  (f)  

(g)  
Figure 4.15: ϕ2 = 0°, 45° and 65° ODF sections of γ showing (a) the ideal orientations and after (b) hot rolling, thickness reduction to (c) 5, (d) 10, (e) 

15, (f) 20 and (g) 42%. Contour = 0.5× 
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The ideal ε-martensite orientations (in green) [182] are plotted in the ϕ2 = 0° and 30° ODF sections 

(Fig. 4.16a) using the [101̅0]ε||RD, [0002]ε||ND convention on which particular γ orientations (in 

red) are superimposed. The ε-martensite orientations are formed from the γ orientations by phase 

transformation via the S-N orientation relationship upon plane strain compression/cold rolling.  

Figs. 4.16b-4.16h shows the ε-martensite ϕ2 = 0° and 30° ODF sections for the samples after hot 

rolling and thickness reduction to 66%. Due to the low volume fraction of ε-martensite in the sample 

after thickness reduction to 88% texture measurements were not taken. 

As shown in Fig. 4.16b, the ε-martensite formed upon quenching after hot rolling shows weak 

intensity along the {ℎ𝑘𝑖𝑙}𝜀-fibre ~{1̅21̅5}〈12̅13〉ε (ϕ1 = 90°, Φ = 24°, ϕ2 = 0°) and  ~{011̅3}〈01̅12〉ε 

(ϕ1 = 88°, Φ = 34°, ϕ2 = 30°) orientations. After thickness reduction to 5 and 10% the formation of 

deformation-induced ε-martensite {ℎ𝑘𝑖𝑙}𝜀-fibre ~{011̅3}〈12̅13〉ε (ϕ1 = 72°, Φ = 34°, ϕ2 = 30°) 

orientation takes place along with the formation of {112̅0}⟨1̅010⟩ε and {112̅0}⟨0001⟩ε orientations 

(Figs. 4.16c and 4.16d).  

After 15 and 20% thickness reductions the deformation-induced ε-martensite {ℎ𝑘𝑖𝑙}𝜀-fibre comprise 

~{1̅21̅5}〈12̅13〉ε (ϕ1 = 90°, Φ = 32°, ϕ2 = 0°) and (011̅3)[01̅12]ε (ϕ1 = 90°, Φ = 34°, ϕ2  = 30°) 

orientations, as shown in Figs. 4.16e and 4.16f. The {ℎ𝑘𝑖𝑙}𝜀-fibre orientations are deviated by ~30° 

along the RD after 20% thickness reduction.  

After 42% thickness reduction the deformation-induced ε-martensite {ℎ𝑘𝑖𝑙}𝜀-fibre is deviated by 

~25° towards the RD comprising ~{1̅21̅5}〈12̅12〉ε (ϕ1 = 90°, Φ = 24°, ϕ2  = 0°) and ~{011̅4}〈13̅23〉ε 

(ϕ1 = 72°, Φ = 23°, ϕ2  = 30°) orientations (Fig. 4.16g).  The presence of weak intensities around the 

deformation-induced ε-martensite {101̅0}〈0001〉ε, {112̅0}⟨0001⟩ε and {1̅21̅3}〈101̅0〉ε (ϕ1 = 0°, Φ = 

45°, ϕ2  = 0°)  orientations was also observed after 42% thickness reduction. 

After thickness reduction to 66%, the {ℎ𝑘𝑖𝑙}𝜀-fibre [182] is observed to deviate by ~18° towards the 

RD. The strong intensities around the deformation-induced ε-martensite {0001}〈12̅11〉ε (ϕ1 = 84°, Φ 

= 16°, ϕ2 = 0°) and {0001}〈01̅11〉ε (ϕ1 = 76°, Φ = 18°, ϕ2 = 30°) orientations are seen in the sample 

after thickness reduction to 66% (Fig. 4.16h). The ε-martensite micro-texture of an Fe-17Mn-3Al-

2Si-1Ni-0.06C steel cold-rolled to 66% thickness reduction showed ~{0117̅}〈36̅21〉ε and 

~{0001}〈2̅2̅31〉ε orientations [7]. The decrease in deviation of the basal poles towards RD with 

increasing thickness reduction can be ascribed due to the deformation accommodation in ε-

martensite. Similar results was presented during the compression of hcp ε-iron [117]. 

The formation of {ℎ𝑘𝑖𝑙}𝜀-fibre {1̅21̅5}〈12̅12〉ε (ϕ1 = 90°, Φ = 24°, ϕ2 = 0°), ~{011̅3}〈01̅12〉ε and  

~{011̅4}〈13̅23〉ε orientations takes from the (213)[02̅1]γ (ϕ1 = 32°, Φ = 37°, ϕ2 = 65°), Gγ and  

(011)[31̅1]γ orientations, respectively. The formation of {112̅0}⟨1̅010⟩ε, {112̅0}⟨0001⟩ε, 
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{101̅0}〈0001〉ε and {1̅21̅3}〈101̅0〉ε  orientations can be ascribed to the Brγ, Aγ, Cuγ and ~Sγ 

orientations, correspondingly. The above ε-martensite orientations are formed from the γ 

orientations upon phase transformation via the S-N orientation relationship (Fig. 4.16a). 
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(a)  
(b)  (c)  

(d)  
(e)  (f)  

(g)  (h)  

Figure 4.16: ϕ2 = 0° and 30° ε-martensite ODF sections showing (a) ideal ε-martensite orientations, after (b) hot rolling and thickness reduction to (c) 5, (d) 10, 

(e) 15, (f) 20, (g) 42, (h) 66%. In Fig. 4.16a, some γ orientation are provided for the S-N orientation relationship. Contour = 0.5× 
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The ideal α′-martensite orientations (in blue) are presented in the ϕ2 = 0° and 45° ODF sections in Fig. 

4.17a on which the γ (in red) and ε-martensite (in green) orientations are superimposed. The 

deformation-induced α′-martensite orientations are formed from the γ and ε-martensite by phase 

transformation via the K-S and Burgers orientation relationships, respectively. 

The α′-martensite formed upon quenching after hot rolling returns αα′-fibre (〈110〉α′||RD) (001)[11̅0]α′ 

orientation and weak intensities around the γα′-fibre (〈111〉α′||ND) (111)[1̅1̅2]α′ orientation (Fig. 

4.17b). After thickness reduction to 5 and 10%, the retention of αα′ and γα′-fibre (001)[11̅0]α′ and 

(111)[1̅1̅2]α′orientations, respectively, (Figs. 4.17c and 4.17d) with the formation of (112)[11̅0]α′ 

orientation. After thickness reduction to 15 and 20% the strengthening of intensities around the 

(001)[11̅0]α′ and (111)[1̅1̅2]α′ orientations are witnessed (Figs. 4.17e and 4.17f). Similar orientations 

were obtained during the formation and the subsequent deformation of α′-martensite in high Mn steels 

[49].  

After cold rolling to 42% thickness reduction the formation of relatively strong intensities around the 

orientations along the αα′-fibre (001)[11̅0]α′ and relatively weak intensities around the orientations 

along the γα′-fibre (〈111〉α′||ND), (111)[1̅1̅2]α′, and (554)[2̅2̅5]α′ takes place (Fig. 4.17g). 

Strengthening of the αα′-fibre (001)[11̅0]α′ orientation was also observed for the samples after 42, 66 

and 88% thickness reductions (Figs. 4.17g-4.17i).  

After cold rolling to 66 and 88% thickness reductions, the orientations (001)[11̅0]α′ and  (112)[11̅0]α′ 

along the αα′-fibre is observed (Figs. 4.17h and 4.17i). For the samples after 66 and 88% thickness 

reductions the α′-martensite orientations are retained from the sample after 42% thickness reduction. 

α′-martensite micro-texture measurements of an Fe-17Mn-3Al-2Si-1Ni-0.06C steel cold-rolled to 66% 

thickness reduction have shown the formation of (001)[11̅0]α′ and (111)[1̅1̅2]α′  orientations [7] which 

are similar to the observed α′-martensite orientations after 66% thickness reduction. 

The  formation of the (i)  (001)[11̅0]α′ , (ii) (114)[11̅0]α′, (iii) (112)[11̅0]α′ , (iv) (223)[11̅0]α′ , (v) 

(111)[1̅1̅2]α′ and (vi) (554)[2̅2̅5]α′ orientations can be attributed the (i) Cγ, Brγ, (ii) Cuγ, (iii, iv) Cuγ, Gγ, 

(v) Brγ and (vi) Brγ orientations upon phase transformation via the K-S orientation relationship. 

Alternatively, these γ orientations can be ascribed to the  (i) {112̅0}〈0001〉ε, (ii), {101̅0}〈0001〉ε (iii, iv) 

{101̅0}〈0001〉ε, {011̅4}〈13̅23〉ε (ϕ1 = 72°, Φ = 26°, ϕ2  = 30°)  and (v) {112̅0}〈1̅010〉ε orientations upon 

phase transformation via the Burgers orientation relationship (Fig. 4.17a).  
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(a)  (b)  
(c)  

(d)  
(e)  

(f)  

(g)  (h)  
(i)  

Figure 4.17: α′-martensite ϕ2 = 0° and 45° ODF sections showing (a) ideal orientations, after (b) hot rolling, cold deformation to (c) 5, (d) 10, (e) 15, (f) 20, (g) 

42, (h) 66 and (i) 88% thickness reduction. In Fig. 4.17a, some γ and ε-martensite orientations are provided for the K-S and Burgers orientation relationships. 

Contour = 0.5× 
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4.7 Conclusions 

Characterisation via electron back-scattering diffraction and high-resolution transmission electron 

microscopy of the hot-rolled and plane strain compressed/cold-rolled samples led to the following 

conclusions: 

 

(1) During plane strain compression/cold rolling, deformation-induced α′-martensite forms via two 

processes: (i) directly from γ and (ii) from γ via ε-martensite. The latter process was observed to be 

dominant during plane strain compression/cold rolling in the present study. Both the deformation-

induced ε and α′-martensite were observed to nucleate with Shoji-Nishiyama and Kurdjumov-Sachs 

orientation relationships, respectively.  

 

(2) During the plane strain compression and cold rolling of an Fe-17Mn-3Al-2Si-1Ni-0.06C steel, the γ 

deforms by partial slip, resulting in the formation of intrinsic stacking faults. Upon further plane strain 

compression/cold rolling, the nucleation of deformation-induced ε-martensite takes place at γ intrinsic 

stacking faults and pre-existing annealing γ twin boundaries. The growth of the deformation-induced ε-

martensite takes place via lateral coarsening and coalescence with thick ε-martensite plates upon 

subsequent plane strain compression. 

 

(3) ε-martensite accommodates deformation via perfect and partial basal slip, pyramidal slip and 

{101̅2}〈1̅011〉ε extension twinning. Upon deformation, the formation of ε-martensite stacking faults in 

the basal plane by the activation of partial basal slip is noted. A mechanism for ε-martensite deformation 

accommodation via a change in stacking fault character from I2 to I1 -type intrinsic stacking faults with 

increasing thickness reduction was proposed.  

 

(4) The α′-martensite accommodates deformation with increasing thickness reduction via slip as 

evidenced by the increase in low angle grain boundary fractions and the formation of local macroscopic 

shear bands. 

 

(5) After deformation, the γ shows the formation of Brγ, Sγ and Cuγ orientations. The analysis of texture 

development showed that the (i) (001)[11̅0]α′, (ii) (112)[11̅0]α′ and (iii) (111)[1̅1̅2]α′ orientations 

arise from the (i) Cγ, Brγ, (ii) Cuγ, Gγ and (iii) Brγ orientations, respectively and alternatively from the (i) 

{112̅0}⟨0001⟩ε, (ii) {101̅0}〈0001〉ε, {011̅4}〈13̅23〉ε and (iii) {112̅0}⟨1̅010⟩ε orientations upon phase 

transformation via the Kurdjumov-Sachs and Burgers orientation relationships, respectively. 

 

(6) The analysis of texture components showed that the deformation-induced ε-martensite {ℎ𝑘𝑖𝑙}𝜀-fibre 

{1̅21̅5}〈12̅12〉ε, {011̅3}〈01̅12〉ε and {011̅4}〈13̅23〉ε orientations form from the (213)[02̅1]γ, Gγ and 

(011)[31̅1]γ orientations, respectively. The formation of {112̅0}⟨1̅010⟩ε,  {112̅0}⟨0001⟩ε, 
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{101̅0}〈0001〉ε and {1̅21̅3}〈101̅0〉ε orientations can be ascribed to the Brγ, Aγ, Cuγ and ~Sγ orientations, 

respectively, upon phase transformation via the Shoji-Nishiyama orientation relationship. 
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CHAPTER 5 EVOLUTION OF MICROSTRUCTURE DURING IN-SITU HEATING OF 42% COLD-

ROLLED HIGH MANGANESE STEEL  

 

This chapter studies the evolution of microstructure during in-situ transmission electron microscopy 

heating up to 900 °C of the 42% cold-rolled high Mn steel. The displacive mechanism of ε and α′-

martensite reversion were noted upon in-situ transmission electron microscopy annealing. The 

formation of recovery twins in reverted γ was detected, for which a suitable mechanism of their 

formation was proposed. 

 

5.1 ε-martensite reversion upon in-situ annealing 

Fig. 5.1 shows the evolution of ε-martensite (with a representative diffraction pattern shown as an inset 

in Fig. 5.1a) during the in-situ annealing in TEM. In the magnified view in Fig. 5.1b, ε-martensite in the 

cold-rolled condition shows the presence of stacking faults (marked by white arrows) formed to 

accommodate deformation after cold rolling to 42% thickness reduction. The increase in the stacking 

fault spacing with increasing annealing temperature up to 390 °C is detected in Fig. 5.1d. Tomota et al. 

[34] also reported a reduction in the density of stacking faults in ε-martensite prior to the reverse 

transformation during in-situ annealing of an Fe-24Mn-6Si shape memory alloy. The superimposition 

of the micrographs after heating to 390 °C and 410 °C showed no change in shape and size of the parent 

ε-martensite grain (at 390 °C, Fig. 5.1d) and daughter reverted γ grain (at 410 °C, Fig. 5.1e). Also a jump 

of the foil was detected during our experiment due to the phase transformation of ε-martensite. Minor 

changes to the spacing between the reflections due to ε-martensite reversion are detected in the inset 

diffraction pattern in Fig. 5.1e. The remnant faults are present in the reverted γ after annealing at 410 

°C. These remnant faults present at 410 °C disappeared after heating to 650 °C (Fig. 5.1f). However, the 

remnant dislocations (highlighted by white arrows) are revealed in γ. This is due to the low γ-SFE of 

14.5 mJ/m2 [71], which in turn, leads to limited recovery.  

 

(a)  (b)  
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(c)  (d)  

(e)  (f)  
Figure 5.1: Bright-field transmission electron micrographs showing (a, b, c, d) ε-martensite and (e, f) 

γ at (a, b) 24 °C (room temperature) and after in-situ annealing to temperatures of (c) 240 °C, (d) 390 

°C, (e) 410 °C and (f) 650 °C. Fig. 5.1b is the magnified view of the white dashed rectangle in Fig. 5.1a. 

The inset diffraction patterns were obtained from the solid circles in Figs. 5.1a and 5.1e for the zone 

axis [2̅42̅3]ε, [1̅22]γ, respectively. The white arrows in Figs. 5.1b-5.1d and Fig. 5.1f indicate ε-

martensite stacking faults and remnant dislocations, respectively. 

 

The γ diffraction pattern was simulated from the known [2̅42̅3]ε ε-martensite zone axis using the S-N 

orientation relationship [105] which shows that the (101̅0)ε/(022̅)γ, (011̅2̅)ε/(4̅02̅)γ and 

(112̅2̅)ε/(4̅22̅)γ spot pairs are very closely spaced (Fig. 5.2a).  The spacing between the spots is 

measured with increasing annealing temperature which is shown in Fig. 5.2b. The decrease in the spot 

spacing of (112̅2̅)ε/(4̅22̅)γ and (011̅2̅)ε/(4̅02̅)γ at 410 °C indicates the reverse transformation of ε-

martensite to γ.  

During the ε-martensite to γ reversion, the [12̅10]ε zone axis was used to track the γ/ε-martensite 

interface as the interface is in the edge on condition. This is favourable for determining the exact position 

of the γ/ε-martensite interface [223]. The [2̅42̅3]ε zone axis used here makes an angle of 24.7° with 

the [12̅10]ε zone axis. Although, the γ/ε-martensite interface is not in the edge on condition for the 

[2̅42̅3]ε zone axis; the migration of the inclined γ/ε-martensite interface should be possible to detect.  
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However, this still was not observed in the present case. This indicates the displacive ε-martensite 

reversion.  

 

(a)  (b)  

Figure 5.2: (a) Simulated diffraction pattern of γ/ε-martensite based on the S-N orientation 

relationship for the [2̅42̅3]ε zone axis and (b) evolution of spot spacing of γ/ε-martensite reflections 

with temperature. The red and blue spots in Fig. 5.2a are for the γ and ε-martensite, respectively. 

 

Another ε-martensite grain (Fig. 5.3) in another sample also shows the reduction in the density of 

stacking faults in the cold-rolled condition (Figs. 5.3a and 5.3b) upon heating to 400 °C (Fig. 5.3c). 

Further heating to 420 °C (Fig. 5.3d) does not show any change in the grain shape or the migration of 

the γ/ε-martensite interface. However, the recorded diffraction pattern in Fig. 5.3d, inset clearly 

indicates the reversion of ε-martensite to γ. The diffraction pattern of the reverted γ was simulated using 

the S-N orientation relationship (Fig. 5.3e) and the ε-martensite [72̅5̅3]
ε
 zone axis (inset Fig. 5.3a). The 

[72̅5̅3]
ε
zone axis makes an angle of 19.8° with the [12̅10]ε zone axis. Similar to the previous case in Fig. 

5.1 and despite the γ/ε-martensite interface not being in the edge on condition, the migration of the 

inclined γ/ε-martensite interface should be possible to detect, but still, it was not visible.  The 

transformation occurred across the entire grain without any change in the grain shape and/or the 

motion of the γ/ε-martensite interface. Consequently, the above observations also indicate the 

operation of a displacive ε-martensite transformation in this grain. 
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(a)  (b)  

(c)  (d)  

(e)  
Figure 5.3: Bright-field transmission electron micrographs of (a, b, c) ε-martensite and (d) γ at (a, b) 

24°C (room temperature) and after in-situ annealing to (c) 400 °C, (d) 420 °C and (e) simulated 

diffraction pattern of γ/ε-martensite by the Shoji-Nishiyama orientation relationship for the 

[72̅5̅3]
ε
 zone axis. The inset diffraction patterns were obtained from the circled regions in Figs. 5.3a 

and 5.3d for the zone axis [72̅5̅3]
ε
and [103]γ, respectively. In Fig. 5.3e, the red and blue spots are for 

γ and ε-martensite, respectively. 

 

Tomota et al. [34] during the in-situ annealing of an Fe-24Mn shape memory alloy observed the 

displacive reversion of ε-martensite to γ. However, the formation of reverted γ reported by Tomota et 

al. [34] was different in comparison to the present investigation. Tomota et al. [34] observed the ε-
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martensite reverse transformation to start from inside and outside of the ε-martensite plates. This was 

due to the presence of γ and ε-martensite in the initial microstructure such that the pre-existing γ 

provides nucleation sites for reverted γ. The ε-martensite to γ reversion leads to the formation of a thin 

γ/ε-martensite lamellae [34]. In contrast, the present investigation does not show the formation of a 

thin γ/ε-martensite lamellae during ε-martensite reversion.  

 

5.2 Twinning in reverted γ 

After heating to 700 °C, the formation of twins (highlighted by white arrows in Fig. 5.4a) in the reverted 

γ grains is witnessed. The twin spacing (w) is calculated to be 7.6 ± 2.3 nm from the measured spacings 

(wL) using the equation  [205]:         

      w =
2wL

π
     (5.1) 

The diffraction pattern shows additional weak reflections/streaks in the inset diffraction pattern in Fig. 

5.4a due to the oxidation of the foil at high temperature. The lower (bright) region of Fig. 5.4a depicts 

areas where the foil has oxidised whereas the other (darker) regions show mottled contrast which 

indicates that an oxide skin has formed on the surfaces of the foil. 

The twin reflections are not clearly visible in the γ diffraction pattern (Fig. 5.4a, inset) due to the overlap 

between the twin and γ main spots. The simulated diffraction pattern in Fig. 5.4b returns the overlap 

between the (11̅3)γ twin and (311̅)γ matrix spots.  

Since the recrystallisation of γ was not detected after annealing at 700 °C (Fig. 5.4a), the twins are 

formed due to the recovery of γ. The formation of twins in reverted γ from α′-martensite was reported 

during the annealing of the 98% cold-rolled Fe-33.5Ni alloy initially containing γ and α′-martensite [35]. 

In that study, the fine twins were observed upon heating to 50 °C above the α′-martensite reversion 

temperature during the early stages of γ recovery. The similar formation of twins in reverted γ was 

reported during the in-situ TEM annealing of an Fe-5Mn-0.2C steel at 650 °C [33]. In that study, the 

reversion of γ from α′-martensite occurred via the nucleation and growth process at α′-martensite lath 

boundaries. The formation of fine twins during recovery was also reported during the annealing of other 

cold-rolled low SFE fcc materials such as brass [131, 132] and Co-Cr-Mo alloy [133].  
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(a)  (b)  
Figure 5.4: Bright-field transmission electron micrograph of (a) γ after in-situ annealing  to 700 °C 

and (b) simulated diffraction pattern of γ/γ twin (γtw) for the [103]γ zone axis. The inset diffraction 

pattern was obtained from the circular region in Fig. 5.4a for the zone axis [103]γ. In Fig. 5.4b, the red 

and blue spots are for γ and γtw, respectively. 

 

The mechanism of ε-martensite reversion and the subsequent γ twin formation is shown in schematic 

Fig. 5.5. Earlier studies on the same steel by Saleh et al. [24] and Gazder et al. [7, 224] showed that ε-

martensite can accommodate deformation via basal slip and the formation of stacking faults. In the 

follow-up study on the same investigated steel, the presence of ISFs of type I1 in ε-martensite was noted 

after cold rolling to 42% thickness reduction (Section 4.5, Chapter 4).  The reversion of the faulted ε-

martensite upon annealing at 420 °C occurs by the motion of Shockley partial dislocations with Burgers 

vector 
a

3
[101̅0]ε (where a is the lattice parameter of ε-martensite) on alternate planes. The net shear 

due to the propagation of the two Shockley partial dislocations below the plane of the ε-martensite ISF 

(I1) is 
2a

3
[101̅0]ε. In addition, Shockley partial dislocations do not pass on the alternate planes of ε-

martensite due to the presence of I1-type ε-ISFs. The passing of 
a

3
[101̅0]ε Shockley partial dislocations 

through I1-type ε-ISFs leads to the transformation of I1-type ε-martensite ISFs into a γ-ISF in the reverted 

γ lattice. In this regard, the white arrows in Fig. 5.3d indicates the presence of faint contrast due to faults 

in reverted γ. After annealing to 700 °C, the growth of these γ-ISFs occurs by the migration of Shockley 

partial dislocations 
a

6
[112̅]γ (where a is the lattice parameter of γ) on the adjacent to the γ-ISF (111)γ 

planes. This leads to the change in the local stacking sequence to that of γ twins. A macroscopic twin 

then forms as more and more Shockley partial dislocations glide along with each other. 

 



107 
 

 
Figure 5.5: Schematic showing the reversion of faulted ε-martensite and twinning due to γ recovery 

with the red and green circles representing fcc and hcp stacking sequences, respectively, along with 

the Shockley partial dislocations which are shown by the symbol  “ ”. 

 

5.3 α′-martensite reversion upon in-situ annealing 

Fig. 5.6 presents the microstructural evolution during subsequent annealing up to 900 °C. The bright- 

field TEM micrograph at 800 °C shows elongated α′-martensite grains carried over from prior cold 

rolling. After holding at 800 °C for 10 min (Fig. 5.6b), no change in the grain shape or the migration of 

the γ/α′-martensite interface was noted. However, the recorded diffraction pattern (Fig. 5.6b, inset) 

clearly indicates the reversion of α′-martensite to γ. Upon holding for 20 min at 800 °C, (Fig. 5.6c), 

further heating to 850 °C (Fig. 5.6d) and 900 °C (Fig. 5.6e) the escape of dislocations from the foil surface 

is visible. 

 

(a)  (b)  
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(c)  (d)  

(e)  

 

Figure 5.6: Bright-field transmission electron micrographs of (a) α′-martensite and (b) γ after (a) in-

situ annealing to 800 °C, (b) holding at 800 °C for 10 min, and (c) simulated diffraction pattern of γ/α′-

martensite by Kurdjumov-Sachs orientation relationship for [011]α′  zone axis. The inset diffraction 

patterns were obtained from the white circular regions in Figs. 5.6a and 5.6b for the zone axes [011]α′ 

and [111]γ, respectively. In Fig. 5.6c, the red and blue spots are for γ and α′-martensite, respectively. 

 

The γ diffraction pattern was simulated from the [011]α′ zone axis pattern (Fig. 5.6a, inset) using the K-

S orientation relationship [53] and is shown in Fig. 5.7a. By comparing the experimental and simulated 

diffraction patterns the operation of K-S orientation relationship is confirmed. 
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Figure 5.7: The simulated diffraction pattern of γ/α′-martensite by the K-S orientation relationship 

for [011]α′ zone axis. The red and blue spots are for γ and α′- martensite, respectively. 

 

For the observation of the migrating γ/α′-martensite interface during the displacive transformation, as 

per the K-S OR the [111]α′|| [011]γ zone axes were used as the {111}γ plane is on the edge during the 

in-situ annealing of an Fe-20.2Ni-5.5Mn steel [31]. The [011]α′ zone axis makes an angle of 35.3° with 

the [111]α′ zone axis. Although, the γ/α′-martensite interface is not in the edge on condition for the 

[011]α′|| [111]γ zone axes; the migration of the inclined γ/α′-martensite interface should be possible to 

detect. However, this still was not observed in the present case. Thus, the reverse transformation 

occurred across the entire grain without any change in the grain shape or the motion of the γ/α′-

martensite interface which shows displacive α′-martensite reversion mechanism. 

In an Fe-9.6Ni-7Mn steel (subjected to solution treatment at 950 °C for 3600 s followed by quenching to 

28 °C), the formation of reverted γ from α′-martensite was reported to occur by the diffusional and 

displacive transformations at relatively lower (540-585 °C) and higher annealing temperatures (585-

640 °C), respectively [136]. During the annealing of an 92.5% cold-rolled Fe-12Cr-8.9Ni-4Mo-1.9Cu-

1.4Ti steel to 750 °C with a heating rate of 10 °Cs−1 the initial α′-martensite with lath morphology 

without a dislocation cell arrangement transformed by a displacive mechanism [125]. Thus, in the 

present investigation the relatively high annealing temperature (800 °C) and the presence of α′-

martensite with lath morphology favours the displacive α′-martensite reversion. 

However, due to the high annealing temperature of 800 °C along with the holding time of 600 s, it can 

be speculated that the diffusion of C may be involved during α′-martensite reversion. The C diffusion 

during the reversion of α′-martensite to γ by displacive transformation was also suggested in an Fe-

5Mn-0.15C steel which was solution treated at 1000 °C for 1800 s followed by water quenching [225].  
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5.4 Feasibility of α′-martensite reversion via a displacive or diffusional mechanism 

The probability of occurrence of displacive/diffusional α′-martensite reversion mechanisms was also 

evaluated by calculating the time required for the migration of Fe atoms in α′-martensite by diffusion. 

The atomic jump frequency during annealing at 800 °C, which is inversely proportional to the time 

required for the diffusional transformation, was calculated using the following equations [226]: 

      D = Doexp (
−Q

RT
)                                            (5.2) 

      1/Γ = α2/8D    (5.3) 

where D is the diffusion coefficient in paramagnetic α′-martensite at 800 °C, Do is the frequency factor 

(= 1.92 cm2s−1), Q is the activation energy, R is the universal gas constant (= 8.314 Jmol−1K−1), T is the 

temperature (K), Γ is the jump frequency of an atom and α is the interatomic distance (= 2.48×10−8 cm) 

[226]. Using the activation energy of self-diffusion for bcc Fe (≈239 kJmol−1K−1) [227], the mean time 

of stay (
1

Γ
) for Fe atoms at 800 °C (i.e., the time required for diffusional transformation) is calculated to 

be ≈1.8×10−5 s. The time required for the displacive transformation of γ to α′-martensite with lath 

morphology was reported to be ≈10−5 s [228]. Assuming the reversion time of α′-martensite to γ to be 

the same (≈10−5 s), the required times for diffusional and displacive α′-martensite reversion during 

annealing at 800 °C are very similar. Consequently, either of the diffusional/displacive α′-martensite 

reversion mechanism could be operational. 

 

5.5 Effect of thin foil surface on α′-martensite reversion mechanism 

In addition to the factors listed in Section 2.10.1, Chapter 2, the occurrence of the displacive/diffusional 

α′-martensite reversion also depends on the availability of a constraint free sample surface present on 

a thin foil. Previous investigations [229-233] suggested a strong correlation between the presence of a 

sample surface and displacive α′-martensite transformation. In-situ observations using a laser scanning 

confocal microscope on an Fe-7.1Ni-2Mn-0.03C steel showed displacive α′-martensite formation 

mechanism on the sample surface at 452 °C, compared to 338 °C within the bulk [230]. This indicates a 

lower driving force is required on the sample surface. Here, the formation of α′-martensite on the sample 

surface reduces the stain energy (due to the shape change associated with the formation of α′-

martensite) which in turn favours displacive transformation. Similarly, during the formation of α′-

martensite in an single crystal of Fe-30Ni-0.04C alloy, the α′-martensite start temperature at the sample 

surface was found to be higher than in the bulk by 5-30 °C which indicates that a lower undercooling is 

required at the sample surface [229]. This was due to the availability of a free surface which assisted in 

the relief of shear strain caused by displacive α′-martensite transformation. For an Fe-6Mn-16Cr-3Ni-

0.03C duplex stainless steel, the formation of a trench of width and depth of 1 μm was undertaken by 

focussed ion beam milling to create a free surface. In that study, the formation of a free surface, results 

in the transformation of neighboring retained γ grain to α′-martensite [231]. This was due to the 

lowering of the α′-martensite nucleation barrier as the strain energy is reduced which consequently 

favours displacive transformation. In this regard, the recovery of the α′-martensite surface relief (i.e., 
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negative shape strain) was observed during reversion of α′-martensite to γ in an Fe-31Ni-0.4C alloy 

[234]. Thus the negative shape strain due to displacive α′-martensite reversion is also expected to be 

accommodated easily on the sample surface of thin foils compared to the bulk. Thus, it could be assumed 

that the availability of free surface due to thin foils, favours displacive α′-martensite reversion in the 

present investigation.  

The α′-martensite reversion mechanism can differ when in-situ heating experiments are done on thin 

foils in comparison to postmortem observations on bulk samples. Thus, it has to be stated that more 

experimental work is required to draw a definite conclusion and to support the proposition of displacive 

α′-martensite reversion in this steel. 

 

5.6 ε and α′-martensite reversion temperature of thin foils compared to bulk samples 

The ε and α′-martensite reversion temperatures is higher during annealing of thin foils compared to the 

bulk samples. During the in-situ heating of thin foils the ε-martensite reversion was not observed on 

heating to 400 °C. However, during the heating of bulk samples by dilatometer, ε-martensite reversion 

was obtained between 100-250 °C. 

During the heating of an Fe-24Mn-6Si alloy containing an initial microstructure of γ (70%) and ε-

martensite (30%), the ε-martensite transformation in thin foils was observed at 227 °C which was 

higher in comparison to the bulk samples (183 °C) [34]. The differences in the composition and initial 

microstructures of the studied steel and the alloy in Ref. [34] are most likely responsible for the 

observed variation in the ε-martensite transformation temperatures. 

The α′-martensite reversion was not observed on heating of thin foils between 600-800 °C whereas, 

during the heating of bulk samples by dilatometry it was noted between 500-700 °C [40]. For an Fe-

20Ni-5Mn alloy the α′-martensite reversion was observed at 400 °C in bulk samples, however during 

the in-situ heating of thin foils reversion was noted at 550 °C [31].  

The theoretical α′-martensite transformation temperature (To) at which the free energy of γ and α′-

martensite is equal (Gα = Gγ) was estimated by observing the change in the free energy for α′-

martensite reversion (ΔGα−γ, J/mol) for the Fe-17Mn-3Al-2Si-1Ni-0.06C steel using the following 

equations [27, 191, 235]: 

ΔGα−γ = 10−2(ΔGFe
α−γ

)(100 − Creq − Nieq) − (97.5 × Creq) + (2.02Creq × Creq) − 108.8Nieq +

(0.52Nieq × Nieq) − 0.05(Creq × Nieq) + 10−3(73.3 × Creq − 0.67 × Creq × Creq + 50.2 × Nieq −

0.84 × Nieq × Nieq − 1.51 × Creq × Nieq)       (5.4) 

ΔGFe
α−γ

= 6190.8 − 14.3 × 10−2T2 + 2 × 10−6T3    (5.5)  

Creq = Cr + 4.5 × Mo    (5.6) 

Nieq = Ni + 0.6 × Mn + 20 × C + 4 × N + 0.4 × Si  (5.7) 

where, ΔGFe
α−γ

 (J/mol) is the free energy of pure iron (Fe), T (K) is the temperature, Nieq and Creq are the 

Ni and Cr equivalent (in wt.%), respectively, calculated using the present Mn, Si, Ni and C content (in 

wt.%). The variation in the free energy change with annealing temperature is shown in Fig. 5.8 along 
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with the To at ~602 °C.  Thus, the reversion of α′-martensite is expected to occur on heating above 602 

°C. This calculated temperature is in agreement with the annealing of the bulk samples of the same steel 

where α′-martensite reversion was observed at 700 °C [40]. However, as mentioned above, α′-

martensite reversion was not observed on heating of thin foils below 800 °C. This indicates that more 

driving force is required for α′-martensite reversion in thin foils compared to the bulk samples. 

 

 

Figure 5.8: Free energy change for α′-martensite reversion to γ of high Mn steel as a function of 

annealing temperature. 

 

During the electron back-scattering diffraction in-situ heating of an Fe-1.5Mn-1.5Si-0.2C steel 

(processed by annealing at 780 and 400 °C for 300 s), Tomota et al. [236] reported the decrease in the 

surface concentration of Mn and C measured using optical emission spectroscopy. The reduction in Mn 

and C concentration was due to the desorption of Mn atoms from the sample surface under high vacuum 

owing to its higher equilibrium vapour pressure along with decarburisation at the sample surface. The 

stability of γ in compared to α′-martensite is increased by both Mn and C. Thus, the decrease in their 

surface concentration leads to higher α′-martensite to γ reversion temperature [236]. Similar reasoning 

can be used for the increase in α′-martensite transformation temperature during our in-situ TEM 

heating experiment. 

 

5.7 Conclusions 

The microstructural characterisation by in-situ transmission electron microscopy heating of the 42% 

cold-rolled sample led to the following conclusions: 

(1) The transformation on in-situ heating of thin foils resulted in the γ inheriting the shape of either ε 

or α′-martensite grains and exhibiting the S-N and K-S ORs, respectively. The ε and α′-martensite 

reversion occurred without any visible migration of the ε-martensite/γ and α′-martensite/γ interfaces 
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by displacive mechanism. For in-situ heating of thin foils, the transformation of ε and α′-martensite 

occurred at higher temperature compared to the bulk samples. 

 

(2) The formation of fine twins in reverted γ during recovery can be explained based on the growth of 

γ-ISFs derived from the faulted ε-martensite using a mechanism of gliding Shockley partial dislocations.  
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CHAPTER 6 EFFECT OF ISOCHRONAL ANNEALING ON THE MICROSTRUCTURE, TEXTURE AND 

MECHANICAL PROPERTIES OF A COLD-ROLLED HIGH MANGANESE STEEL 

 

This chapter studies the effect of isochronal annealing for 300 s on the microstructure and texture of 

high Mn steel cold-rolled to 42% thickness reduction with characterisation conducted using electron 

back-scattering diffraction and transmission electron microscopy. The segmentation of the 

reverted/recovered and recrystallised γ grains and the calculation of activation energy for γ grain 

growth was performed using the analytical procedures developed in Section 3.5.2.2, Chapter 3. The γ 

orientations obtained after reversion was correlated to the deformation-induced ε and α′-martensite 

orientations. 

 

6.1 Hardness after cold rolling and annealing 

The variation of hardness with annealing temperature is shown in Fig. 6.1. The softening fraction (X) 

was calculated from the hardness values using the equation [25]:     

      X =
HR−HT

HR−H0
     (6.1) 

where HR is the hardness of the cold-rolled sample, HT is the hardness of the sample annealed at a 

particular temperature T and H0 is the hardness of the sample annealed at 850 °C for 300 s. 

The hardness curve can be divided into regions showing: (i) small reduction on annealing at 500 °C for 

300 s due to the completion of ε-martensite reversion, recovery of the cold-rolled α′-martensite and the 

onset of α′-martensite reversion; (ii) large reduction after annealing for 300 s at temperatures between 

600 and 650 °C due to α′-martensite reversion and subsequent γ recrystallisation; (iii) gradual decrease 

upon annealing for 300 s at temperatures between 700 and 850 °C arising from the completion of γ 

recrystallisation and subsequent grain coarsening.  

 

 
Figure 6.1: Variation in hardness and the softened fraction with annealing temperature. 



115 
 

6.2 Microstructure changes after cold rolling and annealing 

The cold-rolled samples manifest microstructure containing elongated, fragmented α′-martensite as the 

dominant phase along with remnant ε-martensite and a trace amount of untransformed γ (Fig. 6.2a). 

Cold rolling of high Mn steels is reported [7, 48] to produce similar microstructures. After annealing to 

500 °C the microstructure shows the completion of ε-martensite reversion and the onset of α′-

martensite reversion to γ (Fig. 6.2b) along with twinning in the reverted/recovered γ grains (inset, Fig. 

6.2b).  

 

(a)   (b)  

Figure 6.2: Superimposed band contrast and phase maps after (a) cold rolling and subsequent 

annealing at (b) 500 °C. Red = γ, green = ε-martensite, blue = α′-martensite, white = unindexed areas, 

silver = LAGBs, black = HAGBs, yellow = γ twin boundaries, rolling direction = horizontal. Inset in Fig. 

6.2b shows twins in the reverted/recovered γ. White arrows in Fig. 6.2a shows the subdivision of the 

α′-martensite grains. 

 

Upon annealing to 600 and 625 °C the microstructure consists of an approximately equal area fraction 

of α′-martensite, reverted/recovered and recrystallising γ (Figs. 6.3a and 6.3b). Annealing at 650 °C 

results in a microstructure comprising a mixture of recrystallised polygonised γ grains along with 

reverted/recovered γ and further reduced area fraction of α′-martensite (Fig. 6.3c). Annealing at 700 °C 

shows the completion of γ recrystallisation along with γ annealing twins (Fig. 6.3d).  

Further annealing between 750 and 850 °C results in the γ grain coarsening (Figs. 6.3e-6.3g). The 

formation of plate-like ε-martensite and/or lenticular α′-martensite upon quenching after annealing is 

observed in the reverted/recovered/recrystallised γ grains (Figs. 6.3a, 6.3b and 6.3e-6.3g). The area 

fraction of ε and α′-martensite produced upon quenching after annealing increases with increasing 

annealing temperatures between 700 and 850 °C (Figs. 6.3d-6.3g). The increase in ε and α′-martensite 

area fraction is ascribed to the higher number of nucleation sites for their formation and the availability 

of a large γ grain area for growth. Also, the low γ-SFE (γ-SFE = 14.5 mJ/m2 [71]) of the present high Mn 

steel favours the formation of ε and α′-martensite. A similar trend in the increase in ε and α′-martensite 

volume fractions with increasing γ grain size was observed  [98].
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  
Figure 6.3: Superimposed band contrast and phase maps after annealing at (a) 600 °C, (b) 625 °C, (c) 

650 °C, (d) 700 °C, (e) 750 °C, (f) 800 °C and (g) 850 °C. Red = γ, green = ε-martensite, blue = α′-

martensite, white = unindexed areas, silver = LAGBs, black = HAGBs, yellow = γ twin boundaries, 

rolling direction = horizontal.  
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Figs. 6.4a-6.4c shows the γ grains segmented using the procedure illustrated in Section 3.5.2.3, Chapter 

3 into the reverted/recovered (in green) and recrystallised (in fuchsia) grain fractions upon annealing 

at (a) 600 °C, (b) 625 °C and (c) 650 °C. The recrystallised γ grain size increased from 0.21 ± 0.1 µm to 

0.23 ± 0.11 µm to 0.33 ± 0.25 µm with increasing annealing temperatures from 600 to 625 to 650 °C, 

respectively. The percentage of LAGBs decreased and HAGBs increased upon annealing between 600 

and 650 °C for the reverted/recovered and recrystallised γ grains, correspondingly (Fig. 6.4d). It has to 

be stated that as one EBSD map was done per condition, error bars are missing in the segmented γ 

LAGBs and HAGBs fractions in Fig. 6.4d.  

 

(a)  (b)  

(c)  (d)  
Figure 6.4: The γ grains segmented into reverted/recovered (in green), recrystallised (in fuchsia) 

fractions after annealing at (a) 600 °C, (b) 625 °C and (c) 650 °C, (d) the variation of γ low angle and 

high angle grain boundaries percentages with annealing temperature. The white regions in Figs. 6.4a-

6.4c indicate ε and α′-martensite along with the unindexed areas. 

 

The representative bright-field TEM micrographs in Fig. 6.5 shows the evolution of the microstructure 

after cold rolling and annealing at 500, 600, 625 and 650 °C.  The micrographs of the cold-rolled sample 

(Figs. 6.5a and 6.5b) depict elongated α′-martensite grains and ε-martensite grains containing stacking 

faults (highlighted by green arrows, Fig. 6.5b) along with untransformed γ. Gazder et al. [7, 224] showed 

the formation of stacking faults in ε-martensite by TEM/TKD and suggested the deformation 

accommodation in ε-martensite. Using in-situ tensile testing accompanied by neutron diffraction, Saleh 

et al. [24] demonstrated ε-martensite to undertake compressive strains, which also indicates that ε-



118 
 

martensite accommodates deformation. During the plane strain compression of the present steel to 20% 

thickness reduction, the transformation of γ to deformation-induced ε and α′-martensite was observed 

without the formation of deformation-induced twins in γ. 

 

(a)  (b)  

(c)  (d)  

(e)  (f)  
Figure 6.5: Representative (a-f) bright-field transmission electron micrographs after (a, b) cold rolling 

and annealing at (c) 500 °C, (d) 600 °C, (e) 625 °C and (f) 650 °C. The bottom left inset diffraction 

patterns in Figs. 6.5a-6.5f are from the regions delineated by white circles. The top left inset diffraction 

pattern in Fig. 6.5c is from the red circular region. The zone axes are [111]α′ in Fig. 6.5a, [21̅1̅0]ε, [110]γ 

in Fig. 6.5b, [011̅]γ, [111̅]α′ in Figs. 6.5c-6.5e and [110]γ in Fig. 6.5f. 

 
The formation of stacking faults in ε-martensite after cold rolling was discussed in Section 4.4, Chapter 

4. In Chapter 4 a mechanism enabling the change in stacking fault character was proposed which 

involves the motion of Shockley partial dislocations on every plane below the stacking fault plane. The 

formation of fine twins in the reverted/recovered γ grains was observed upon annealing between 500 

and 650 °C. In this regard, twinning in the reverted/recovered γ grains was also reported during the 

annealing at 500 °C for 30 min for an Fe-26Mn-3Si-3Al steel cold-rolled to 52% thickness reduction [10]. 
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The actual thickness of the twins (w) was calculated from the measured thickness (wL) using the 

equation [205]            

     w = (2wL)/π      (6.2) 

which returned ≈6.5 ± 4.2 nm for the samples annealed between 500 and 650 °C.  

Twinning in reverted/recovered γ (verified by the top left inset diffraction pattern in Fig. 6.5c) was 

detected upon the in-situ TEM annealing after cold rolling to 42% thickness reduction and discussed in 

Section 5.2, Chapter 5. Twinning was attributed to the recovery of γ which reverted from the ε-

martensite containing stacking faults. The recovery-induced twinning in γ which reverted from α′-

martensite was witnessed during the annealing of an Fe-33.5Ni alloy [35].  

The nucleation of recrystallised γ grain occurs at the boundary of two reverted/recovered γ grains is 

observed after annealing at 600 °C (Fig. 6.5d, top right inset). Similar nucleation events were depicted 

in the segmented EBSD map after annealing at 600 °C in Fig. 6.4a. The inset diffraction pattern shows 

the occurrence of S-N [105] and K-S [53] orientation relationships in Fig. 6.5b and Figs. 6.5c-6.5e, 

respectively. 

 

6.2.1 Recrystallised γ grain growth 

The γ grain sizes evaluated using the analytical procedure described in Section 3.5.2.3, Chapter 3 for the 

samples annealed between 700 and 850 °C are shown in Fig. 6.6. The γ grain size estimated excluding 

the ε and α′-martensite laths/plates present inside the γ grain is much larger than those directly 

estimated with the presence of ε and α′-martensite laths/plates. The difference between the γ grain sizes 

determined using the two techniques is higher at the annealing temperature of 850 °C due to the higher 

area fraction of ε and α′-martensite formed upon quenching from relatively higher annealing 

temperature. A similar trend in the increase in γ grain size with an order of magnitude faster kinetics 

was also observed in the Fe-18Mn [20] and Fe-18Mn-1.5Si-0.6C [26] steels annealed between 700 and 

1100 °C. 

 
Figure 6.6: The variation of γ grain size with annealing temperature with and without considering γ 

twin boundaries ε and α′-martensite. 
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For the high Mn steel, the activation energy for γ grain growth was evaluated using the equation[144]:

     dT
1/N

− d0
1/N

= K0tne(−Q/RT)    (6.3) 

where dT is the γ grain size at a given temperature T, d0 is the initial average γ grain size at 700 °C (1.85 

± 1.4 μm), N = 0.34 is the grain growth exponent, K0 is a kinetic constant (equivalent to the y-intercept) 

t = 300 s is the holding time during annealing, n = 1 is a constant, Q is the computed activation energy 

for γ grain growth (J/mol), R = 8.314 J/molK is the universal gas constant and T is the annealing 

temperature (K).  

Although isothermal annealing was not undertaken in the present work, the value of N from a similar 

isothermal annealing done on an Fe-29Mn-5Al-0.06C steel [144] was taken on the reasoning that the 

value of N does not change much with the composition for the same class of steels. The value of N 

changes from 0.36 (316L stainless steel) to 0.42 (301LN stainless steel) [144].  

The assumptions of Eq. 6.3 are: no inclusions or chemical segregations are present at grain boundaries 

and the grain morphology is equiaxed with the microstructure containing uniform grain size [144]. Fig. 

6.7 shows the determination of the activation energy (Q) from the slope of ln(dT
1/N

− d0
1/N

)  vs 1/T. 

Using Eq. 6.3, the activation energy for γ grain growth was estimated with and without considering γ 

twins, ε and α′-martensite (Fig. 6.7). The obtained value of activation energy for γ grain growth without 

the presence of γ twins, ε and α′-martensite (solid circles, Fig. 6.7) is 235.2 ± 17.6 kJ/mol, whereas the 

value determined including γ twins, ε and α′-martensite (solid squares, Fig. 6.7) is 229.6 ± 88.7 kJ/mol.  

The activation energy taking into account γ twins, ε and α′-martensite is slightly lower than that 

obtained excluding γ twins, ε and α′-martensite.  

 

 
Figure 6.7: Fit for the calculation of γ grain growth activation energy. 
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The activation energy for γ grain growth was also determined using the γ grain size data for the two 

high Mn steels [156, 237]. The values of 253.8 ± 38.4 and 233.2 ± 74.5 kJ/mol were obtained for the Fe-

18Mn and Fe-18Mn-1.5Si-0.6C steels, respectively. They are close to the determined value excluding γ 

twins, ε and α′-martensite. In addition, the activation energy of γ grain growth in an Fe-29Mn-0.06C high 

Mn steel during isothermal annealing at 1000 °C was reported as 208 kJ/mol [238]. In this regard, the 

activation energy for γ grain growth for the Fe-1.51Mn-0.03Si-0.17C, Fe-1.43Mn-0.03Si-0.12C and Fe-

0.86Mn-0.03Si-0.11C plane C steels was reported as ≈262, 271 and 272 kJ/mol, respectively [93]. These 

values are slightly higher than the value for high Mn steel. For C-Mn-V, C-Mn-Ti, C-Mn-Nb based micro-

alloyed low C steels the activation energy for γ grain growth was reported as 400, 437 and 435 kJ/mol, 

respectively [155]. These values are much higher compared to high Mn steels. 

The γ grain growth activation energy with and without considering the presence of ε and α′-martensite 

formed upon quenching after annealing is lower than the activation energy for the self-diffusion of γ (Q 

= 270 kJ/mol) [46] indicating γ grain boundary diffusion as the main mechanism for γ grain growth 

compared to lattice self-diffusion. Higher errors are obtained for the activation energies when 

considering the ε and α′-martensite formed upon quenching after annealing due to an error in the 

accurate determination of γ grain size. For 316L austenitic stainless steel, Kashyap and Tangri [239] 

observed that γ grain growth at annealing temperatures lower than 0.85Tm (Tm is the melting 

temperature) occurs by grain boundary diffusion. At annealing temperatures higher than 0.85Tm γ grain 

growth takes place via lattice diffusion due to a higher concentration of vacancies. The annealing 

temperatures in the present condition between 700 and 850 °C for γ grain growth are below 0.85Tm 

(1150 °C, Tm greater than 1400 °C) [240] which favours γ grain boundary diffusion. 

 

6.3 Changes in texture after cold rolling and annealing 

Figs. 6.8-6.12 shows the α′, ε-martensite and γ orientation distribution function (ODF) sections in the 

cold-rolled and annealed samples. As α′ and ε-martensite are the major phases in the cold-rolled sample 

which transform to γ upon reversion their ODF sections are presented first. The ε-martensite ODF 

sections for the samples annealed between 500-650 °C are not plotted due to its low fraction.  

Fig. 6.8 shows the ϕ2 = 0° and 45° ODF sections of α′-martensite. Fig. 6.8a displays the ideal α′-

martensite orientations (in blue) on which particular γ and ε-martensite orientations that form upon 

the phase transformation via the K-S and Burgers orientation relationships are shown in red and green, 

respectively. Similar bcc ODF sections correlating bcc and fcc orientations formed upon phase 

transformation by K-S orientation relationship was reported [241, 242]. TEM micrographs in Figs. 6.5c-

6.5e showed the occurrence of K-S orientation relationship between the reverted/recovered γ and α′-

martensite. Thus, only the K-S orientation relationship was chosen for texture analysis between γ and 

α′-martensite. 

Figs. 6.8b-6.8f shows the ODF sections of the α′-martensite after cold rolling and annealing between 

500-650 °C. The deformation-induced α′-martensite (Fig. 6.2a) and the remnant α′-martensite after 
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annealing between 500-650 °C shows relatively stronger intensities along the ideal αα′-fibre (〈110〉α′ || 

RD) centred around the (001)[110]α′ orientation and weaker intensities along the ideal γα′-fibre 

(〈111〉α′ || ND) spread around the (111)[1̅1̅2]α′ and (554)[2̅2̅5]α′ orientations. Similar α′-martensite 

orientations were reported for an Fe-17Mn-3Al-2Si-1Ni-0.06C steel subjected to cold rolling up to 66% 

thickness reduction and subsequent annealing at 625 °C [7].  

The α′-martensite (001)[110]α′ orientation forms upon the phase transformation of the ideal Cγ and Brγ 

orientations via the K-S orientation relationship. Alternatively, it can also form from the transformation 

of {011̅2}〈11̅01〉ε orientation via the Burgers orientation relationship. The (111)[1̅1̅2]α′ and 

(554)[2̅2̅5]α′ orientations form upon the phase transformation of the ideal Brγ or {112̅0}〈1̅010〉ε 

orientations via the K-S and Burgers orientations relationships, respectively. 

 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.8: ϕ2  = 0° and 45° orientation distribution function sections of α′-martensite showing the 

(a) ideal orientations (in blue), after (b) cold rolling and annealing at (c) 500 °C, (d) 600 °C, (e) 625 °C 

and (f) 650 °C. In Fig. 6.8a, the particular γ (in red) and ε-martensite (in green) orientations are 

provided for the K-S and Burgers orientation relationships, respectively. Contour levels = 0.5×. 
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Fig. 6.9 depicts the ϕ2 = 0° and 45° ODF sections of α′-martensite formed upon quenching after 

annealing between 700-850 °C showing intensities centred around the (001)[110]α′ and (110)[001]α′ 

orientations. The (110)[001]α′ orientation forms on the phase transformation of the {123̅1}〈0001〉ε 

orientation via the Burgers orientation relationship. 

 

(a)  (b)  

(c)  (d)  
Figure 6.9: ϕ2 = 0° and 45° orientation distribution function sections of α′-martensite after 

annealing at (a) 700 °C, (b) 750 °C, (c) 800 °C and (d) 850 °C. Contour levels = 0.5×. 

 
Figs. 6.10 and 6.11 shows the ϕ2 = 0° and 30° ODF sections of ε-martensite using the [101̅0]ε || RD and 

[0002]ε || ND convention. Fig. 6.10a is a schematic with the ideal ε-martensite orientations shown in 

green. The γ orientations that form upon the phase transformation from the particular ε-martensite 

orientations via the S-N orientation relationship are shown in red. 

The ODF sections of deformation-induced ε-martensite are presented in Fig. 6.10b which depicts strong 

intensities centred around the {1̅21̅5}〈12̅12〉ε and {011̅4}〈13̅23〉ε orientations along the {ℎ𝑘𝑖𝑙}ε-fibre. 

The {ℎ𝑘𝑖𝑙}ε-fibre have orientations with their {0001}ε poles deviated by ≈24°-26° towards the RD. The 

formation of {ℎ𝑘𝑖𝑙}ε-fibre was reported in the Fe-17Mn-3Al-2Si-1Ni-0.06C and Fe-21.6Mn-0.38C steels 

cold-rolled to 66% and 50% thickness reductions, respectively [7, 8]. The relatively weaker intensities 

around the {101̅0}〈0001〉ε, {112̅0}〈0001〉ε and {1̅21̅3}〈101̅0〉ε orientations are also noted.  

The deformation-induced ε-martensite orientations: {1̅21̅5}〈12̅12〉ε, {011̅4}〈13̅23〉ε, {101̅0}〈0001〉ε, 

{112̅0}〈0001〉ε and {1̅21̅3}〈101̅0〉ε are obtained upon the phase transformation from the γ orientations: 

(213)[02̅1]γ, (011)[31̅1]γ, Cuγ, Aγ and ≈Sγ via the S-N orientation relationship, respectively. 
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(a)  (b)  

Figure 6.10: ε-martensite ϕ2 = 0° and 30° orientation distribution function sections showing (a) the 

ideal orientations (in green) and (b) after cold rolling. In Fig. 6.10a, the particular γ orientations (in 

red) are provided for the S-N orientation relationship. Contour levels = 0.5× 

 

Fig. 6.11 presents the ϕ2 = 0° and 30° ODF sections of the plate-like ε-martensite formed upon quenching 

after annealing between 700 and 850 °C. The ε-martensite shows intensities around the {011̅2}〈11̅01〉ε 

and {1̅21̅3}〈101̅0〉ε orientations. The {011̅2}〈11̅01〉ε and {1̅21̅3}〈101̅0〉ε orientations form via the S-N 

orientation relationship upon the phase transformation of the Aγ and ≈Sγ orientations, respectively. 

 

(a)  (b)  

(c)  (d)  

Figure 6.11: ϕ2 = 0° and 30° orientation distribution function sections of ε-martensite after annealing 

at (a) 700 °C, (b) 750 °C, (c) 800 °C and (d) 850 °C. Contour levels = 0.5× 

 

Fig. 6.12 shows the ϕ2  = 0°, 45° and 65°  ODF sections of γ. Fig. 6.12a is a schematic displaying the ideal 

γ orientations and fibres in red and also the γ orientations that form upon the phase transformation of 

the particular ε (green) and α′-martensite (blue) orientations via the S-N [105] and K-S [53] orientation 

relationships, respectively. 
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Figs. 6.12-6.14 shows the ODF sections of γ after cold rolling and annealing between 500 and 850 °C. 

The untransformed γ after cold rolling and the reverted, recovered and recrystallised γ after annealing 

between 500-650 °C show strong intensities along the ideal αγ-fibre (〈110〉γ || ND) centred around the 

Brγ orientation (Figs. 6.12 and 6.13). The formation of weaker intensities around the Cuγ, Sγ and 

(213)[02̅1]γ orientations are also noted. The higher intensities near the ideal ≈Sγ orientation were 

reported upon the reversion of ε-martensite to γ orientations after annealing at 630 °C for an Fe-22Mn-

0.4C steel cold-rolled to 50% thickness reduction [8]. Similar orientations were also observed in an Fe-

17Mn-3Al-2Si-1Ni-0.06C steel upon cold rolling to 66% thickness reduction and subsequent annealing 

at 625 °C [7].  
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(a)  (b)  

(c)  (d)  

Figure 6.12: ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ showing (a) ideal orientations (in red), after (b) cold rolling and annealing 

at (c) 500 °C. In Fig. 6.12a, the particular ε-martensite (in green) and α′-martensite (in blue) orientations are provided for the S-N and K-S orientation 

relationships, respectively. Contour levels = 0.5× 
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(a)  (b)  

(c)  

 

Figure 6.13: ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ after annealing at (a) 600 °C, (b) 625 °C and (c) 650 °C. Contour levels = 

0.5× 

The recrystallised γ formed after annealing between 700 and 850 °C (Fig. 6.14) shows weak intensities around the ideal Cube (Cγ, {001}〈100〉γ), Aγ, Cuγ and 

Sγ orientations. The (i) Brγ, (ii) Cuγ, (iii) (213)[02̅1]γ and (iv) Sγ orientations are obtained from the α′-martensite orientations: (i) (001)[11̅0]α′, (111)[1̅1̅2]α′ 

and (554)[2̅2̅5]α′ , (ii) (112)[11̅0]α′ , (iii) (112)[11̅0]α′ and (111)[1̅1̅2]α′ and (iv) (001)[11̅0]α′ via the K-S orientation relationship. Alternatively, the Brγ, 

Cuγ, (213)[02̅1]γ and Sγ orientations can also form from the {112̅0}〈0001〉ε, {101̅0}〈0001〉ε, {1̅21̅5}〈12̅12〉ε and {1̅21̅3}〈101̅0〉ε orientations via the S-N 

orientation relationship, respectively. 

 



128 
 

(a)  (b)  

(c)  (d)  
Figure 6.14: ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ after annealing at (a) 700 °C, (b) 750 °C, (c) 800 °C  and (d) 850 °C. Contour 

levels = 0.5× 

Fig. 6.15 shows the ODF sections presenting the orientations of the γ grains segmented into the reverted/recovered and the recrystallised fractions after 

annealing between 600-650 °C (Figs. 6.4a-6.4c). After annealing, the reverted/recovered γ grains return the formation of strong micro-texture orientations: 

Gγ/Brγ and (213)[1̅5̅2]
γ

 after annealing at 600 °C (Fig. 6.15a), Gγ, Brγ, (214)[1̅2̅1]γ orientations after annealing at 625 °C (Fig. 6.15c) and Cγ, Brγ orientations 

after annealing at 650 °C (Figs. 6.15e). The recrystallised γ grains have similar orientations compared to the reverted/recovered γ grains orientations after 

annealing at 600, 625 and 650 °C (Figs. 6.15b, 6.15d and 6.15f). This indicates that the recrystallised γ grains nucleate from the reverted/recovered γ grains 

inheriting similar orientations. Similar recrystallisation behaviour was reported during the annealing of other metastable austenitic steels [191]. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6.15: ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ grains segmented into the (a, c, e) reverted/recovered  and (b, d, f) 

recrsytallised fractions after annealing at (a, b) 600 °C, (c, d) 625 °C and (e, f)  650 °C. Contour levels = 0.5× 
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6.4 Conclusions 

The characterisation of the 42% cold-rolled and isochronally annealed samples using electron back-

scattering diffraction and transmission electron microscopy led to the following conclusions: 

 

(1) Upon isochronal annealing to 650 °C for 300 s, the reversion of deformation-induced ε and α′-

martensite to reverted/recovered γ is observed. The reverted/recovered γ showed the formation of 

fine twins.  

 

(2) During heating, the nucleation of new γ grains takes place at the boundary of two of the 

reverted/recovered γ grains after annealing at 600 °C. Upon annealing to 700 °C, the completion of γ 

recrystallisation is noted with γ grain coarsening taking place upon annealing to temperatures higher 

than 700 °C. 

 

(3) The calculated value of activation energy for γ grain growth is lower than the lattice self-diffusion 

energy of γ indicating that γ grain growth takes place via grain boundary diffusion mechanism. 

 

(4) The ε and α′-martensite grain orientations produced the orientations of the reverted/recovered 

γ grains via phase transformation following the Shoji-Nishiyama and Kurdjumov-Sachs orientation 

relationships, respectively. Upon γ grain segmentation, the recrystallised γ grains were observed to 

nucleate with orientations similar to the reverted/recovered γ grain orientations.  
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CHAPTER 7 EFFECT OF MICROSTRUCTURE ON THE TENSILE BEHAVIOUR OF HIGH 

MANGANESE STEEL 

 

The high Mn steel was characterised via digital image correlation and electron back-scattering 

diffraction. The true stress-strain curves of the cold-rolled and 500, 625, 650, 700 and 800 °C samples 

are presented along with their corresponding strain hardening curves. The digital image correlation 

results show strain localisation due to the γ phase transformation in the 625, 650, 700 and 800 °C 

samples upon tensile testing (Section 7.2). The electron back-scattering diffraction maps of the post-

mortem microstructures after tension are also presented. The study of micro-texture evolution 

before and after tensile testing was also undertaken. Finally, the mode of fracture was also analysed.  

 

7.1 Mechanical properties after cold rolling and annealing 

Figs. 7.1a and 7.1b are the true stress-strain and strain hardening curves, respectively, for the cold-

rolled and the 500, 625, 650, 700 and 800 °C samples. The tensile properties are listed in Table 7.1. 

The error in the tensile testing machine was 0.5%.  

The cold-rolled and the 500 C samples are observed to fracture at 0.02 true strain, immediately after 

reaching the YS of 1080 and 1075 MPa (Table 7.1), respectively. The cold-rolled and incompletely 

recovered states of the predominantly α′-martensite microstructures (Figs. 6.2a and 6.2b) are unable 

to undertake further deformation, in the cold-rolled and 500 °C samples, respectively, leading to very 

low elongation values. 

In contrast, the shape of the true stress-strain curves for the 625 and 650 C samples are different 

from those for the cold-rolled and 500 °C samples (Fig. 7.1a). The initial microstructure consisting of 

reverted/recrystallising metastable γ and α′-martensite was formed after annealing at 625 and 650 

C (Figs. 6.2c and 6.2d). Upon tension, YS is observed at 810 and 732 MPa (Table 7.1), 

correspondingly, followed by a linear increase in the stress values reaching the UTS values of 1273 

and 1259 MPa (Table 7.1), respectively. Similar trends in the true stress-strain curves were obtained 

in high Mn steels with an initial microstructure comprising dual phases [155]. In Ref. [155], upon 

tension the formation of ε and α′-martensite at γ grain boundaries takes place followed by the 

transformation of the adjacent γ and ε-martensite to α′-martensite. Upon the tension of an Fe-

10.6Mn-0.17C-0.5Mo steel annealed at 850 °C for 3 min followed by water quenching, the 

transformation of metastable lamellar γ to α′-martensite was observed [243]. The tension of the 

same steel after further annealing at 200 °C for 10-40 min reduced the tendency of α′-martensite 

formation due to the partition of C in γ, which increases γ stability. 
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Based upon the slope, the true stress-strain curves and the corresponding strain hardening curves 

for the 625 and 650 °C samples can be classified into the Regions A625 (blue circle, Fig. 7.1a, true strain 

0-0.015), A650 (orange circles, Fig. 7.1a, true strain 0-0.015), B625 (blue triangles, Fig. 7.1a, true strain 

0.02-0.15), B650 (orange triangles, Fig. 7.1a, true strain 0.02-0.15) and C625 (blue stars, Fig. 7.1a, true 

strain 0.2-0.23), C650 (orange stars, Fig. 7.1a, true strain 0.25-0.26) comprising: (i) the elasto-plastic 

transition (Region A), (ii) uniform strain hardening rate (Region B) and (iii) a reduction in the strain 

hardening rate with increasing true strain (Region C), respectively.  

 

(a)  (b)  

Figure 7.1: (a) True stress-strain and (b) strain hardening rate curves for the cold-rolled and 500, 

625, 650, 700 and 800 °C samples.  

 

Table 7.1 True tensile properties of the cold-rolled and 500, 625, 650, 700 and 800 °C samples. 

Tensile properties Sample condition 

Cold-rolled 500 °C 625 °C 650 °C 700 °C 800 °C 

Yield stress (MPa) 1080 ± 3 1075 ± 4 810 ± 5 732 ± 2 465 ± 4 360 ± 2 

Ultimate true tensile 

strength (MPa) 

1135 ± 4 1150 ± 3 1237 ± 3 1259 ± 4 1121 ± 3 1067 ± 3 

Uniform true 

elongation 

0.02 ± 

0.0012 

0.02 ± 

0.0014 

0.23 ± 

0.003 

~0.26 ± 

0.004 

0.31 ± 

0.003 

~0.26 ± 

0.002 

 

The Region A with decreasing strain hardening rate shows similar characteristics for all the sample 

conditions. The reduction in the strain hardening rate in Region A is due to elasto-plastic transition 
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accompanied by the initiation of partial slip in γ via the motion of Shockley partial dislocations. The 

Region B with the uniform strain hardening rate in the 625 and 650 °C samples is due to the phase 

transformation of γ to ε and α′-martensite. In-situ neutron diffraction during monotonic uniaxial 

tensile loading of the present steel cold-rolled and subsequently annealed at 900 °C also displayed 

the decrease in the fraction of γ with an increase in the fraction of ε and α′-martensite at engineering 

strains greater than ≈0.025 and ≈0.05, respectively [24]. The formation of deformation-induced ε and 

α′-martensite leads to the reduction in the mean free path of dislocations which results in strain 

hardening. Also in Region B, the deformation of pre-existing retained α′-martensite takes place. The 

Region C for the 625 and 650 °C samples shows a reduction in the strain hardening rate due to the 

exhaustion of the existing strain hardening mechanisms.  

Tensile testing of the 700 and 800 C samples results in the yielding of the recrystallised metastable 

γ at 465 and 360 MPa (Table 7.1), correspondingly, followed by a slow stress rising region up to a 

UTS of 1121 and 1067 MPa (Table 7.1), respectively. The intersection of the linearly extrapolated 

elastic modulus and the tangent drawn to the slow rise in stress region is defined as the triggering 

stress [208] and was calculated to be ≈518  and ≈419 MPa for the 700 and 800 °C samples (Fig. 7.1a), 

respectively. Similar shape of the true stress-strain curve was reported for an Fe-15Mn-3Al-3Si steel 

with initial microstructures comprising recrystallised γ, α′ and ε-martensite [21]. The triggering 

stress calculated for the 700 °C sample is higher than that for the 800 °C sample. This is due to the 

presence of relatively coarse grains in the 800 °C sample, which provides more grain boundary area 

for the nucleation and subsequent growth of ε and α′-martensite  compared to the 700 °C sample.  

The YS of the 800 °C sample containing a relatively higher area fraction of ε and α′-martensite formed 

upon quenching after annealing is lower than that of the 700 °C sample due to the coarsening of the 

γ grain size from 1.9 ± 1.4 to 4.3 ± 2.7 µm upon annealing at 800 °C (Fig. 6.6). Alternatively, the total 

elongation is the largest after annealing at 700 °C. This is due to the higher γ area fraction available 

for phase transformation to deformation-induced ε and α′-martensite leading to a pronounced strain 

hardening and higher total elongation. 

The uniform true elongation obtained for the 800 °C sample is lower in comparison to the 700 °C 

sample. This was due to a relatively higher area fraction of ε and α′-martensite plate intersections, as 

well as of γ/α′-martensite interface for the 800 °C sample compared to the 700 °C sample. The 

presence of interfaces between the α′-martensite was associated with the nucleation and coalescence 

of cracks upon tension [118]. 

The true stress-strain curves (Fig. 7.1a) and the corresponding strain hardening rate curves  (Fig. 

7.1b) for the 700 and 800 °C samples can be roughly divided into the Regions A700 (red circle, true 
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strain 0-0.01), A800 (fuchsia circle, true strain 0-0.01), B700 (red squares, true strain 0.015-0.09), B800 

(fuchsia squares, true strain 0.015-0.09), C700 (red triangles, true strain 0.1-0.25), C800 (fuchsia 

triangles, true strain 0.1-0.2), D700 (red stars, true strain 0.3-0.31) and D800 (fuchsia stars, true strain 

0.25-0.26) comprising: (i) the elasto-plastic transition, (ii) increasing strain hardening rate, (iii) 

decreasing strain hardening rate and (iv)  drastic reduction in the strain hardening rate with true 

strain, respectively. 

The slow rising stress Region B in the 700 and 800 °C samples is due to the onset of the phase 

transformation of γ to ε and α′-martensite. Similar slow rising stress regions was observed in 

metastable austenitic steels upon tension [244]. The slope of the Region B in the 700 and 800 °C 

samples is observed to be different. This is due to the presence of high area fraction of ε and α′-

martensite formed upon quenching after annealing at 800 °C compared to the 700 °C sample, which 

leads to the load partition between γ and ε and α′-martensite in the 800 °C condition. Due to the 

formation of deformation-induced ε-martensite in the Region B for the 700 and 800 °C samples, the 

γ is subdivided which increases the strain hardening rate. The Region C for the 700 and 800 °C 

samples is due to the strain hardening caused by the newly formed deformation-induced ε and α′-

martensite along with deformation of the ε and α′-martensite. Also, there is a reduction in the rate of 

ε and α′-martensite formation in the Region C compared to the Region B for both the conditions. This 

leads to a decreasing slope in the Region C compared to Region B for the 700 and 800 °C samples 

which are caused by the decrease in the amount of γ available for transformation to ε and α′-

martensite along with the deformation of newly formed α′-martensite. The Region D for these 

samples is similar to the Region C for the 625 and 650 °C samples where strain localisation due to 

fracture occurred.    

The distinct difference in the duration and  shape of the strain hardening rate curves in the Region 

B625 and B650 in the 625 and 650 °C samples compared to those of 700 and 800°C samples is due to 

the combined effects of the additional strain hardening capacity from the pre-existing α′-martensite 

[155] and from the transformation of γ to ε and α′-martensite. The strain hardening Region B in the 

700 and 800 °C samples is only associated with the transformation of γ to ε and α′-martensite. 

However, the strain hardening Region C in the 700 and 800 °C samples is predominantly due to the 

deformation-induced phase transformation of ε-martensite to α′-martensite along with the 

deformation of the remnant ε-martensite and newly formed α′-martensite. 

The measured value of Young’s modulus for the cold-rolled, 500, 625, 650, 700 and 800 °C samples 

are 201, 198, 197, 196, 194 and 195 GPa, respectively. This is due to the presence of a mixture of 

phases (γ, ε and α′-martensite) with different crystal structures and in varying fractions which affects 
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Young’s modulus. The Youngs’s modulus of α′-martensite is greater than that of γ due to the coupling 

of the electron spin moments owing to the ferromagnetic nature of α′-martensite [245]. Thus, on 

annealing, a decrease in Young’s modulus is observed due to the decrease of the α′-martensite 

fraction. It can be noted from Table 7.1 that the best strength-ductility combination is achieved for 

the 625 and 650 °C samples.  

In relation to the mechanical properties in the literature (Chapter 2, Table. 2.7), the present steel 

cold-rolled to 42% thickness reduction shows slightly lower YS compared to the same steel cold-

rolled to 45% thickness reduction [159]. The present steel after annealing at 700 °C, shows slightly 

higher YS compared to a single phase Fe-16.8Mn-1.5Al-0.03Si-0.32C steel (YS = 434 MPa) [9]. The 

UTS achieved for the present steel after annealing at 700 °C  is much higher than for the Fe-16.8Mn-

1.5Al-0.03Si-0.32C steel (UTS = 1121 MPa). This is ascribed to the formation of both ε and α′-

martensite in the present steel compared to the Fe-16.8Mn-1.5Al-0.03Si-0.32C steel in which only 

the formation of ε-martensite takes place [9]. The hard α′-martensite formed leads to the increase in 

UTS compared to the Fe-16.8Mn-1.5Al-0.03Si-0.32C steel. However, the Fe-16.8Mn-1.5Al-0.03Si-

0.32C steel annealed at 600 °C shows much higher total elongation (≈0.54) compared to the present 

steel annealed at 700 °C. The deformation-induced α′-martensite can act as nucleation sites for cracks 

which decreases the elongation [41, 42].  

The YS of the high Mn steel after annealing at 800 °C is lower than after annealing at 700 °C due to γ 

grain coarsening from 1.9 ± 1.4 µm to 4.3 ± 2.7 µm (Chapter 6, Fig. 6.6). Tomota et al. [246] reported 

a higher YS for the annealed samples having a relatively coarse γ grain size due to the higher fraction 

of plate-like ε-martensite formed upon quenching after annealing. However, in the present study, 

annealing at 800 °C returns a higher fraction of ε and α′-martensite and lower YS than after annealing 

at 700 °C. 

Alternatively, the total elongation is the largest after annealing at 700 °C due to the higher γ fraction 

available for phase transformation to deformation-induced ε and α′-martensite. The total elongation 

obtained after annealing at 800 °C is lower than the above condition on account of the relatively 

higher fractions of ε and α′-martensite and γ/ε-martensite and γ/α′-martensite interfaces which 

contribute to the nucleation and coalescence of cracks upon tensile testing [41]. The above results 

indicate that once γ is fully recrystallised and polygonised, the initial γ grain size has a more 

significant effect on YS than the ε and α′-martensite phase fractions. Alternatively, the initial ε and α′-

martensite fractions tend to affect the total elongation. 
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7.2 DIC of cold-rolled and annealed samples upon uniaxial tension 

The distribution of axial and shear true strains along the entire gauge length and up to the UTS of the 

cold-rolled and 500, 625, 650, 700 and 800 °C  samples is presented in Figs. 7.2-7.8.  

For the cold-rolled and 500 °C samples (Fig. 7.2), the distribution of axial true strain is nearly uniform 

up to 0.005 true strain. This is followed by the onset of localised plastic deformation and subsequent 

strain localisation above 0.005 true strain, respectively, resulting in higher axial true strains 

compared to the average true strain values across the gauge length. The onset of local strain 

concentration upon tension for the cold-rolled sample can be attributed to the microstructures 

containing predominantly α′-martensite in the cold-rolled condition. Upon tension, the strain 

localisation in the 500 °C sample is due to the α′-martensite in the incomplete recovered state. Similar 

strain localisation was noted for an Fe-21Mn-2.5Si-1.6Al-0.11C steel upon uniaxial tensile testing 

[41]. 

 

(a)  (b)  

Figure 7.2: Digital image correlation axial true strain distribution maps of the (a) cold-rolled and 

(b) 500 °C samples.  

 

Upon tensile testing, the axial true strain distribution for the 625 °C sample (Fig. 7.3a) is observed to 

show strain localisation occurring at the fracture. In Fig. 7.3b the axial true strain distribution at 

0.005 and 0.01 true strains in Region A625 shows higher strain regions uniformly distributed 

throughout the gauge length. As the initial microstructure for the 625 °C sample contains both γ and 

remnant α′-martensite which are distributed uniformly (Fig. 6.3b), the localised transformation of γ 

to ε and α′-martensite occurs, but overall the transformation occurs uniformly across the gauge 
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length which can lead to the formation of these uniformly distributed high strain regions across the 

gauge length. Eskandari et al. [41] reported strain localisation before macroscopic yielding in an Fe-

21Mn-2.5Si-1.6Al-0.11C steel subjected to tension and ascribed it to the γ to -martensite 

transformation. The appearance of more pronounced strain concentration region in the top part of 

the gauge section between 0.005 and 0.015 true strain for Region A625 in Fig. 7.3b is due to the stress 

concentration associated with the grip ends. The Region B625 shows axial and shear strains (Fig. 7.3a, 

7.3c) which are higher in the upper part of the gauge length. The occurrence of load partitioning 

between γ and newly formed deformation-induced martensite along with the deformation of γ and 

ε-martensite is the reason for the observed strain localisation. The DIC investigation of strain 

localisation via the formation and propagation of Lüders bands in an Fe-7Mn-0.14C-0.23Si steel 

containing initial microstructure comprising γ and α′-martensite were also reported [164, 247, 248]. 

In that study, the nucleation of Lüders bands at one end of the grip occurred which subsequently 

propagated towards the other end. Similar to the present study, the strain localisation in Lüders 

bands was associated with the onset of the deformation-induced α′-martensite formation. µ-DIC 

strain mapping showed higher strains in γ compared to α′-martensite indicating strain partitioning 

during tensile deformation of an Fe-12Mn-3Al-0.05C steel [166]. This was attributed to the 

transformation of γ to ε and α′-martensite and the lower rate of dynamic recovery in γ. Upon tension 

to 5 and 7% strains, the γ accommodated the majority of the strain. However, on further strain α′-

martensite accommodated higher strains compared to γ. 

In the Region C625 at 0.23 true strain, the local strain concentration at the centre of the gauge length 

is observed due to fracture. Increase in the shear strain distribution along the gauge length is 

detected in the B625 Region due to the transformation of γ to deformation-induced ε and α′-martensite 

(Fig. 7.3c). Fig. 7.3d shows the distribution of axial strain across the line AA (Fig. 7.3a). For the ≈0.01-

0.2 macroscopic true strains, the axial strains are witnessed to increase between 0 and ≈4 mm (in 

green, Fig. 7.3d) followed by a plateau between ≈4 and 20 mm (in orange, Fig. 7.3d). After 20 mm the 

axial strain is noted to decrease (in blue, Fig. 7.3d) with an increase in the gauge length.  
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(a)  
(b)  

(c)  

(d)  

Figure 7.3: Digital image correlation maps for the 625 °C sample presenting the distribution of (a, 

b) axial true strain, (c) shear strain and (d) distribution of axial true strain along the line AA′ (Fig. 

7.3a). Fig. 7.3b is the scaled axial true strain distribution of the Region A625 in Fig. 7.3a. 

 

Upon tension, the axial true strain distribution for the 650 °C sample in Fig. 7.4a shows non-uniform 

strain distribution along the gauge length similar to the 625 °C condition. In Fig. 7.4a and 7.4c 

between the axial true strains 0.15 and 0.26, the regions associated with low strain concentration (in 

blue) in the top part of the gauge length is due to the misindexing of pixels in DIC due to tearing off 

the paint from the surface. In the Region A650, the true strain distribution at 0.1 true strain shows 

strain localisation (Fig. 7.4b). This could be due to the strain partitioning between the hard α′-

martensite and soft recrystallised γ (Fig. 6.3c). The local regions showing high shear strain 

concentration distributed uniformly throughout the gauge length can be observed in the Region B650 
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(Fig. 7.4c). Similar to the 625 °C condition, load partition between the γ and ε/α′-martensite takes 

place locally to accommodate the strain during tension which leads to strain localisation. Subsequent 

axial and shear strain localisation observed in the Region C650 is due to fracture (Figs. 7.4a and 7.4c). 

Fig. 7.4d shows the distribution of the axial true strain along the line AA in Fig. 7.4a.  

 

(a)  

(b)  

(b)  

(d)  

Figure 7.4: Digital image correlation maps for the 650 °C sample presenting the distribution of (a, 

b) axial true strain, (c) shear strain and (d) distribution of axial true strain along the line AA′ (Fig. 

7.4a). Fig. 7.4b is the scaled axial true strain distribution of the Region A650 in Fig. 7.4a. The regions 

of low strain concentration in the upper part of the gauge length in Figs. 7.4a and 7.4c are due to 

tearing off the paint. 
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In the 650 °C sample, for the 0.05-0.2 macroscopic true strains, the axial true strain along the gauge 

length is detected to increase between 0-5 mm (in green, Fig. 7.4d) followed by a nearly constant 

region between 5 and 20 mm (in orange, Fig. 7.4d). This is followed by a decline in the axial true 

strain from 20-35 mm (in blue, Fig. 7.4d) along the gauge length. The higher strain region can be 

ascribed to the formation of deformation-induced ε and α′-martensite. However, at 0.26 macroscopic 

true strain, the local strain concentration at the centre of the gauge length due to fracture is observed 

(Fig. 7.4c). 

For the 700 °C sample, Fig. 7.5a shows the distribution of axial true strain along the gauge length with 

increasing strain. Strain localisation can be observed at 0.01 true strain at the end of the Region A700 

(Fig. 7.5b) and throughout the Region B700 (Figs. 7.5c). An example of strain localisation is the 

increase of local strain to ≈0.033 at the ends of the gauge length for the macroscopic strain of 0.02. 

This strain localisation is due to the onset of the transformation of γ to deformation-induced ε and 

α′-martensite. Similar observations were reported during the tensile testing of an Fe-21Mn-2.5Si-

1.6Al-0.11C steel [41]. In that study, strain localisation was proposed due to the local transformation 

of γ to deformation-induced α′-martensite which was verified by magnetic measurements along the 

gauge length [41].  

 

(a)  
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(b)  (c)  
Figure 7.5: Digital image correlation maps for the 700 °C sample presenting the distribution of (a, 

b, c) axial true strain. Figs. 7.5b and 7.5c are the scaled axial true strain distribution of the Regions 

A700 and B700, correspondingly, of Fig. 7.5a. 

 

The shear strain distribution in the Region C700 shows a nearly uniform strain distribution (Fig. 7.6a). 

This can be due to the deformation of ε and α′-martensite along with the further transformation of γ 

to ε and α′-martensite along the gauge length. The strain concentration due to fracture can be 

observed at the lower end of the gauge section in the Region D700 in Fig. 7.6a. Compared to the 625 

°C condition, slightly higher shear strains are observed in the 700 °C sample at the macroscopic strain 

of 0.05 in the Region B700. Also, at 0.1 true strain, localisation of the shear strains at the ends of the 

gauge length is observed for the 700 °C sample in the Region B700 as compared to the 625 °C sample 

where localisation is observed at the top region of the gauge length at strain 0.1 in the Region B625. 

This is due to the higher fraction of γ available for the transformation to ε and α′-martensite in the 

700 °C sample. Also, for the 625 °C sample, the majority of the ε and α′-martensite formation occurs 

during the strain hardening Region B625 whereas for the 700 °C sample the onset of martensite 

transformation takes place in the slowly rising stress Region B700 and continues in the Region C700. 

Fig. 7.6b shows the distribution of the axial true strains along the line AA in Fig. 7.5a for various 

macroscopic true strains. It is apparent that up to ≈0.1 macroscopic true strain, the axial true strains 

between ≈0-9 mm and ≈27-35 mm (in grey and orange, Fig. 7.6b) are higher near the grip ends than 

in the middle of the gauge length between ≈9-27 mm (in green, Fig. 7.6b). The axial true strains are 

lowest at 0 and 35 mm of the gauge length. The local true strain maxima at ≈3 and ≈33 mm are 

followed by a decrease in the axial true strains up to ≈9 and ≈27 mm (in orange, Fig. 7.6b). Thereafter, 

the true strain distribution remains constant across the ≈9-27 mm of the gauge length (light green 
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region, Fig. 7.6b). Similar propagation of high strain regions along the gauge length is observed for 

an Fe-21Mn-2.5Si-1.6Al-0.11C steel between 0.5-0.58 macroscopic true strains upon tension [41]. 

For the 0.15-0.25 macroscopic true strains, the axial true strain distribution increases to ≈3 and ≈33 

mm along the gauge length (in blue, Fig. 7.6b) followed by a nearly constant value between ≈3-33 

mm of the gauge length (in aqua, Fig. 7.6b). Beyond macroscopic true strain of 0.3 high strain 

concentration is observed at ≈30 mm of the gauge length due to fracture. 

 

(a)  

(b)  
Figure 7.6: Digital image correlation maps for the 700 °C sample presenting the distribution of 

(a) shear strain and (b) axial true strain along the line AA′ in Fig. 7.5a. Regions in grey, blue show 

increasing, orange show decreasing, green, aqua show uniform axial true strain distribution along 

the gauge length in Fig. 7.6b. 

 

The total fraction of γ decreases at the gauge end due to the early onset of phase transformation by 

the stress concentration associated with the grip ends. Thus, the γ at the centre of the gauge length 
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between 3-33 mm is activated for the phase transformation which manifests as a local strain 

propagation. Once the high strain region nucleates at  3 and 33 mm along the gauge length; it can 

propagate at stress equal to/lower than the nucleation stress resulting in slow rising stress [249]. 

The local strain in front of the propagating high strain region (in orange, Fig. 7.6b) is observed to be 

lower than the macroscopic true strain. This is due to the local partition of higher strain into the γ 

transforming into ε and α′-martensite in the high strain regions resulting in a lower strain in the 

nearby γ. The high strain regions at ~3 and ~33 mm along the gauge length propagate towards the 

centre of the gauge length until the macroscopic true strain becomes approximately equal throughout 

the gauge length. This corresponds to the end of the Region B700. In the Region C700, the formation and 

subsequent deformation of the newly formed α′-martensite take place. 

Fig. 7.7a shows the distribution of axial true strain along the gauge length with macroscopic true 

strain for the 800 °C sample. Compared to the 700 °C sample, strain localisation is observed in the 

lower end of the gauge length at 0.01 macroscopic true strain in the 800 °C sample at the end of the 

Region A800 (Fig. 7.7b). However, a higher strain concentration is visible at the lower end of the gauge 

length compared to the upper end at 0.01 true strain (Fig. 7.7b). This could be due to the stress 

concentration associated with the grips. In the Region B800 between 0.05-0.09 macroscopic true 

strains, the strain localisation occurs at both the centre and at the end of gauge lengths (Fig. 7.7c). 

As phase transformations start at the ends of the gauge sections at a macroscopic true strain of 0.01 

in the Region A800, the deformation-induced phase transformation starts in the centre of the gauge 

length at true strains between 0.05-0.09. Compared to the Region B800, a significant increase in the 

shear strains is observed in the Region C800 at a macroscopic true strain of 0.2. This is due to the 

activation of the remnant areas containing γ for transformation to ε and α′-martensite. Finally similar 

to the 700 °C condition, strain localisation is detected to take place at bottom of the gauge length due 

to fracture in the Region D800.  
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(a)  

(b)  (c)  

Figure 7.7: Digital image correlation maps for the 800 °C sample presenting the distribution of (a, 

b, c) axial true strain. Figs. 7.7b and 7.7c is the scaled axial true strain distribution of the Regions 

A800 and B800, correspondingly, of Fig. 7.7a. 

 

The distribution of shear strains and axial strains along the line AA (Fig. 7.7a) in the gauge length is 

presented in Figs. 7.8a and 7.8b, respectively. Up to 0.1 macroscopic true strain, local maxima in the 

axial true strain distribution is observed at 3 mm of the gauge length (in grey, Fig. 7.8b) followed by 

a slight decrease in the axial strain between 3 and 8 mm (in orange, Fig. 7.8b). Beyond ≈8 mm of the 

gauge length, an increase in the axial true strain is observed with the increase in the gauge length (in 

green, Fig. 7.8b). This indicates that strain localisation at the lower end of the gauge length due to the 

transformation of γ to deformation-induced ε and α′-martensite.  For the 0.15 and 0.20 macroscopic 

true strains, the axial strain distribution is nearly constant between ~3 and 33 mm of the gauge 

length (in aqua, Fig. 7.8b). The axial strain distribution is lowest at the ends of the gauge length (in 
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blue, Fig. 7.8b). Beyond, 0.20 macroscopic true strains high strain concentration is detected at ~31 

mm along the gauge length due to the fracture of the sample. 

 

(a)  
(b)  

Figure 7.8: Digital image correlation maps for the 800 °C sample presenting the distribution of (a) 

shear strain and (b) axial true strain along the line AA in Fig. 7.7a. Regions light grey, light blue, 

light green show increasing, light orange show decreasing and light aqua show uniform axial true 

strain distribution along the gauge length in Fig. 7.8b. 

 

A higher strain accumulation at the bottom of the gauge section may indicate a higher volume fraction 

of α′-martensite [41]. This leads to the presence of a greater number of crack nucleation sites as the 

intersection of α′-martensite grains/platelets was reported [41] to nucleate cracks. 

In the 800 °C sample, the regions of local high strain concentration are distributed along the gauge 

length uniformly in the Regions B800, C800 and D800. As the initial microstructure for the 800 °C sample 

(Fig. 6.3f) consists of γ distributed uniformly with ε and α′-martensite; the γ is thus expected to 

transform locally to ε and α′-martensite resulting in the high strain concentration regions. Another 

explanation of the local strain concentration can be due to unequal load partitioning between the 

relatively soft γ and hard α′-martensite. 

The DIC axial strain localisation in the stress plateau region of the stress-strain curve in an Fe-7Mn-

0.14C-0.23Si steel was observed during the transmission of Lüders bands [164]. In this steel, within 

the Lüders bands, the transformation of γ to deformation-induced α′-martensite also takes place 

simultaneously [164]; for which a decrease in the γ volume fraction from 29% to 9% was confirmed 

by XRD. Thermal measurements via infrared thermography also showed higher heat dissipation 

during the propagation of Lüders bands which was ascribed to the α′-martensite transformation. In 

addition, the microstructure within the Lüders bands showed the transformation of γ to α′-

martensite compared to the microstructure outside the Lüders bands. Furthermore, the regions 
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deformed by the propagation of Lüders bands showed an increase in hardness due to the 

transformation to α′-martensite. For this steel, PLC bands were also observed but were associated 

with serration in the strain hardening curve occurring after the stress plateau region of the tensile 

stress-strain curve. 

A similar transformation of γ to α′-martensite was recorded by XRD during the interrupted tensile 

testing of an Fe-7Mn-2Al-0.3C steel annealed at 720 °C for 60 min resulting in the strain localisation 

by the propagation of PLC bands [250]. However, the formation of α′-martensite also leads to the 

strong resistance to the transmission of PLC bands. Thus, the PLC bands were observed to propagate 

discontinuously across the gauge section [250].  

Lüders band propagation was also witnessed in an Fe-7Mn-0.14C-0.23Si steel deformed at room 

temperature and also at 100 and 300 °C [165]. Martensite transformation takes place during the 

tensile testing at room temperature, however, it does not proceed when tensile testing is performed 

at 100 and 300 °C. Thus, strain localisation can also be caused only by the propagation of Lüders band 

without the occurrence of martensite transformation [165]. However, in the present investigation, 

strain localisation was attributed only to martensite transformation as shown in Figs. 2c and 2d 

without the presence of Lüders or PLC bands.  

The DIC axial strain localisation was observed during the uniaxial tension of a metastable Fe-21Mn-

2.5Si-1.6Al-0.11C-0.02Nb-0.02Ti-0.01V steel deformed to 0.02 and 0.025 true strains at strain rates 

of 0.001 and 0.003 s−1, respectively [42]. The optical and EBSD micrographs at strain rates of 0.001 

and 0.003 s−1 at 0.02 and 0.025 true strains, respectively, showed the formation of only ε-martensite 

without the formation of α′-martensite. Thus, the transformation of γ to ε-martensite can also lead to 

strain localisation. 

In-situ neutron diffraction tensile testing of the 900 °C sample showed the formation of α′-martensite 

at a strain of 0.05 which is in the middle of the slowly rising stress region [24]. Also, the onset of γ to 

ε-martensite transformation was recorded before the start of the ε to α′-martensite transformation. 

Thus, the strain localisation can be ascribed to the onset of both γ to ε-martensite and ε to α′-

martensite transformations. 

Figure 7.9 shows the transverse strain distribution at the corresponding fracture strains for the 

samples after cold rolling and annealing at 500, 625, 650, 700 and 800 °C, respectively. Note that the 

colour scheme of the transverse strain maps is inverted as compared to the axial true strain 

distribution maps (Figs. 7.2-7.8), as the transverse strains were recorded as negative by the DIC 

software. As observed for all the samples, the distribution of transverse strain is uniform along the 

gauge length with the exception of local transverse strain concentration at the fracture region at the 
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centre or the end of gauge section. The concentration of strains at the ends of the gauge length due 

to grips is also present. 

 

(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 7.9: Digital image correlation maps showing the distribution of transverse strain at the 

macroscopic fracture strains for the samples after (a) cold rolling, annealing at (b) 500 °C, (c) 625 

°C, (d) 650 °C, (e) 700 °C and (f) 800 °C. The colour scale of the transverse strain distributions is 

inverted compared to the axial strain distributions. 

 

7.3 Microstructure changes after uniaxial tension 

Fig. 7.10 shows the microstructures of the cold-rolled and 500, 625 and 700 °C samples at the true 

strain corresponding to the UTS. The microstructures of the 650 and 800 °C samples were not 

examined, as their tensile behaviour was similar to the 625 and 700 °C samples, respectively. The 

cold-rolled and 500 °C microstructures in Figs. 7.10a and 7.10b have similar morphologies and phase 

fractions compared to the undeformed samples in Figs. 6.2a and 6.2b, respectively.  

The deformation of the 625 and 700 °C samples results in the phase transformation of the reverted 

and/or recrystallised γ into fine deformation-induced ε and α′-martensite (compare Figs. 7.10c and 

7.10d to their undeformed counterparts in Figs. 6.3b and 6.3d). The variation in morphology of the 

deformation-induced α′-martensite is due to the size differences of the γ grains prior to uniaxial 

tensile testing. The relative area fraction of the untransformed γ is lower in the 700 °C sample 
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compared to the 625 °C sample. This is due to the higher strain (uniform elongation =  0.31) for the 

700 °C sample compared to the 625 °C sample upon tension (uniform elongation =  0.26). The 

presence of ε-martensite grain containing {101̅2}〈1̅011〉ε extension twin (inset) in the 700 °C sample 

after deformation is shown in Fig. 7.10d.  

 

(a)  (b)  

(c)  (d)  
Figure 7.10: Superimposed band contrast and phase maps after subjected to tension for the 

samples after (a) cold rolling and annealing at (b) 500 °C, (c) 625 °C and (d) 700 °C. Red = γ, green 

= ε-martensite, blue = α′-martensite, white = unindexed areas, silver = LAGBs, black = HAGBs, 

yellow = γ twin boundaries and RD || tensile axis = horizontal. Fig. 7.10d (inset) is from the white 

dashed region showing {101̅2}〈1̅011〉ε twins in ε-martensite highlighted by white arrows in the 

inset. 

 

{101̅2}〈1̅011〉ε twins in ε-martensite were previously reported during the plane strain compression 

of the same steel (Fig. 4.2d, Chapter 4) and upon the tension of an Fe-30Mn-6Si shape memory alloy 

[51]. It has to be stated here that for the nucleation of {101̅2}〈1̅011〉ε extension twin, slip on the basal 

and pyramidal planes in ε-martensite must be initiated [251]. Thus, the basal and pyramidal planes 

in ε-martensite accommodate deformation.  
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Figs. 7.11a-7.11c are the misorientation angle distributions before and after tension for the γ, ε and 

α′-martensite phases, respectively. The γ, ε and α′-martensite phases record an increase in LAGBs 

fraction indicating deformation during tension.  In the case of the 625 and 700 °C samples, γ shares 

the applied load via transformation to ε and α′-martensite. With higher tensile strain, deformation 

accommodation takes place by newly formed ε and α′-martensite and further γ transformation. For 

the 500, 625 and 700 °C samples, a decrease in the 60°/〈111〉γ twin fraction after tension is noted. 

The α′-martensite also shows a decrease in intensity of the 50°/〈110〉α′, 60°/〈111〉α′ and 60°/〈110〉α′ 

inter-variant peaks [252] after tensile testing. This is due to the deviation from the twin/matrix or 

inter-variant misorientation relationships resulting in local lattice rotations via dislocation 

accumulation at annealing twin [253] or inter-variant boundaries during tension. The ε-martensite 

phase records a small peak between 86°-90° around the 〈112̅0〉ε axis after tension due to 

{101̅2}〈1̅011〉ε extension twinning. The formation of parallel {101̅2}〈1̅011〉ε extension twins with 

similar orientations inside a single ε-martensite lath during the tension of an Fe-15Mn-0.005C steel 

were also reported [52]. The formation of {101̅2}〈1̅011〉ε extension twins at the intersection of 

different ε-martensite variants were detected in an Fe-30Mn-6Si shape memory alloy [51]. In that 

study, four different {101̅2}〈1̅011〉ε extension twin variants of ε-martensite were observed. 

 

(a)  (b)  
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(c)  

Figure 7.11: Misorientation angle distributions for (a) γ, (b) ε-martensite and (c) α′-martensite 

before and after tensile testing for the cold-rolled and 500, 625 and 700 °C samples. 

 

7.4 Micro-texture changes after tension for the cold-rolled and annealed samples 

Fig. 7.12 shows the experimental {111}γ, {100}γ, {0001}ε and {110}α′ pole figures of the cold-rolled 

and annealed samples before (Figs. 7.12a, 7.12c, 7.12e and 7.12g) and after (Figs. 7.12b, 7.12d, 7.12f 

and 7.12h) tension with the tensile axis parallel to the RD. Due to the low volume fraction of ε and α′-

martensite, the pole figures in the 500, 625 and 700 °C samples are not plotted. The ε-martensite 

{0001}ε  pole figures were plotted using the [101̅0]ε || RD and [0002]ε || ND convention.  

For the γ in the cold-rolled samples shown in Fig. 7.12a, the red dashed lines connect the Aγ 

({110}〈111〉γ) and Copper (Cuγ, {112}〈111〉γ) orientations belonging to the 〈111〉γ partial fibre while 

the blue dash and dot lines connect the Goss (Gγ, {110}〈001〉γ) and Cube (Cγ, {001}〈100〉γ) 

orientations belonging to the 〈100〉γ partial fibre. The occurrence of the S-N, Burgers and K-S 

orientation relationships between γ and ε and α′-martensite phases (Fig. 7.10a) was obtained upon 

superimposing the ideal fcc orientations and partial fibres onto the {0001}ε and {110}α′ pole figures. 

The tension in γ results in the typical development of relatively stronger 〈111〉γ and a weaker 〈100〉γ 

double-fibre texture parallel to the tensile axis [254] comprising Brass (Brγ, {110}〈112〉γ), Cuγ and 

weak Gγ orientations (Fig. 7.12f). The evolution of relatively strong 〈111〉γ and weak 〈100〉γ fibres 

are ascribed to the increase in latent hardening on non-coplanar systems, which in turn promotes co-

planar slip and results in an overall weakening of the 〈100〉γ fibre [255]. Similar texture development 

in γ was reported for an Fe-18.4Mn-3.2Si-3Al steel subjected to tension up to 0.4 true strain [256] 

and an Fe-17Mn-3Al-2Si steel [24] cycled between +0.035 and -0.028 true strains. Upon the phase 
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transformation of the above γ orientations via the S-N orientation relationship results in the 

formation of  {ℎ𝑘𝑖𝑙}ε-fibre [182] {011̅3}〈11̅01〉ε orientation where the {0001}ε poles are deviated by 

≈24°-30° towards the RD (or tensile axis) (Fig. 7.12f).  

The development of the 〈110〉α′||ND fibre is observed due to the phase transformation of the above 

γ and ε-martensite orientations to α′-martensite orientations via the K-S and Burgers orientation 

relationships, respectively, followed by the α′-martensite deformation accommodation during 

tension (Fig. 7.12f, 7.12h). In the 〈110〉α′ || ND fibre strong intensities around the (001)[11̅0]α′ and 

(112)[11̅0]α′ orientations are observed due to the transformation from (i) Brγ and Cuγ, Gγ 

orientations, respectively, or (ii) ε-martensite {ℎ𝑘𝑖𝑙}ε-fibre orientations.  
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Figure 7.12: γ, ε and α′-martensite pole figures of the (a, b) cold-rolled and annealed at (c, d) 500 °C, (e, f) 625 °C and (g, h) 700 °C samples, (a, c, e, g) 

before and (b, d, f, h) after tension. In Fig. 7.12a, the ideal fcc orientations on (111) pole figure is superimposed on ε, α′-martensite and (100)γ, (111)γ. 

Key:  Gγ = {110}〈001〉γ,  Cγ = {001}〈100〉γ,  Cuγ = {112}〈111〉γ,  Aγ = {110}〈111〉γ,  Brγ = {110}〈112〉γ,  Rt-Gγ = {011}〈011〉γ In Figs. 7.12b, 

7.12d, 7.12f, 7.12h, RD || tensile axis = vertical. Contours levels = 0.5×. 
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7.5 Fractography  

Figs. 7.13 and 7.14 are the micrographs showing the fracture surfaces of the cold-rolled, 500, 625 and 

700 °C samples. The fracture surface of the cold-rolled and the 500 °C sample depicts secondary 

cracks highlighted by the red arrow in Fig. 7.13a and 7.13b along with flat ledge-like morphologies 

highlighted by the red arrow in Fig. 7.13b and 7.13d. This shows the occurrence of quasi-cleavage 

due to rapid crack propagation in α′-martensite [257] and shallow dimples; reminiscent of mixed 

brittle and ductile fracture modes.  

 

(a)  (b)  

(c)  (d)  
Figure 7.13: Fractography of the fractured tensile samples after (a, b) cold rolling and (c, d) 

annealing at 500 °C. Figs. 7.13b and 7.13d, are the zoomed-in views of the regions highlighted by 

red dashed rectangles from Figs. 7.13a and 7.13c, respectively. 

 

The 625 °C (Figs. 7.14a and 7.14b) and 700 °C (Figs. 7.14c and 7.14d) samples return rugged facets 

and ledge-like morphologies. The zoomed-in views (Figs. 7.14b and 7.14d) of the 625 and 700 °C 

samples record shallow dimples due to ductile fracture [258-260] and voids caused by particle 

pull out highlighted by red arrows in Fig. 7.14b. In Fig. 7.14d, coarse particles of ≈5 μm size are 
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present in the voids. On coalescence, micro-voids (see red arrow in Fig. 7.14d) can lead to the 

formation of shallow dimples. 

 

(a)  (b)  

(c)  (d)  
Figure 7.14: Fractography of the fractured tensile samples after annealing at (a, b) 625 °C and (c, 

d) 700 °C. Figs. 7.14b and 7.14d are the zoomed-in views of regions highlighted by red dashed 

rectangles in Figs. 7.14a and 7.14c, respectively. 

 

The characterisation of fracture surfaces in an Fe-22Mn-0.6C-0.2V steel also showed the presence of 

submicron sized dimples indicating limited void growth [261]. The voids nucleated around the fine 

spherical precipitates of vanadium carbide or at the intersection points between vanadium carbide 

precipitates and fine twins. The investigation of the fracture surfaces of an Fe-22.3Mn-0.6C-0.2Si 

steel demonstrated the propagation of quasi-cleavage cracks or formation of a sheet of voids. The 

voids were less than 1 μm size and were free from inclusions [262].  
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7.6 Conclusions 

Characterisation via digital image correlation during tensile testing and electron back-scattering 

diffraction of the 42% cold-rolled and 500, 625, 650, 700 and 800 °C samples led to the following 

conclusions: 

(1) The microstructures of the cold-rolled and 500 °C samples contain predominantly α′-martensite 

and either remnant ε-martensite or γ, respectively. The microstructure remained unchanged upon 

tensile testing due to the early necking at ≈0.02 true strain. The digital image correlation 

investigation of the cold-rolled and 500 °C samples showed the axial true strain distribution to be 

uniform followed by strain localisation at necking. Based on electron back-scattering diffraction and 

digital image correlation observations, the load was carried by α′-martensite in the cold-rolled and 

incompletely recovered states for the cold-rolled and 500 °C samples, respectively.  

(2) Electron back-scattering diffraction analysis showed that the 625 and 650 °C samples contains 

reverted/recrystallised γ and α′-martensite. During their tensile loading, the axial strain remains 

approximately uniform followed by the strain localisation in axial and shear strain in the upper 

section of the gauge length initiated by the stress concentration associated with the grip ends. The 

strain localisation is due to the load partitioning between the reverted/recrystallised γ and newly 

formed deformation-induced ε and α′-martensite along with the deformation of γ, ε and α′-

martensite. Also during fracture, strain localisation is observed. Supporting the digital image 

correlation observations, upon tensile loading the electron back-scattering diffraction map showed 

that the microstructure consists of deformation-induced ε and α′-martensite in the 625 °C sample.  

(3) Electron back-scattering diffraction mapping showed that the 700 °C sample contains fully 

recrystallised γ. During tensile loading, strain localisation in axial and shear strain in the upper and 

lower sections of the gauge length is observed in comparison to the upper sections for the 625 and 

650 °C samples due to the higher fraction of γ available for the transformation to ε and α′-martensite 

in the 700 °C sample.  Strain localisation for the 700 °C sample is due to the deformation of ε and α′-

martensite along with the further transformation of γ to ε and α′-martensite along the gauge length. 

Upon fracture, strain concentration can be observed in the lower end of the gauge length. 

(4) The 800 °C sample contains recrystallised γ along with ε and α′-martensite formed upon 

quenching after annealing. In comparison to the 700 °C sample, for the 800 °C sample strain 

localisation is observed at the centre and in the lower end of the gauge length at higher macroscopic 

true strains and at the bottom of the gauge length at fracture.  

(5) The formation of {101̅2}〈1̅011〉ε extension twins in ε-martensite were also detected after tensile 

testing of the 700 °C sample, which suggests the deformation of ε-martensite. 



156 
 

(6) The formation of 〈111〉γ, 〈100〉γ double-fibre texture was observed in γ whereas the ε and α′-

martensite showed {ℎ𝑘𝑖𝑙}𝜀-fibre and 〈110〉α′ || ND fibre, respectively, after tensile loading.  

(7) The fracture surfaces showed a mixed brittle and ductile fracture mode for the cold-rolled and 

500 °C samples and ductile fracture mode for the 625 and 700 °C samples. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter recapitulates the general conclusions, key contributions to the original knowledge and 

also suggests some potential directions for future study. 

 

8.1 General Conclusions 

8.1.1 Effect of plane strain compression/cold rolling on microstructure and texture: 

 The hot-rolled sample upon quenching shows the presence of ε and α′-martensite in γ. With 

increasing thickness reduction, the formation of γ-intrinsic stacking faults takes place followed 

by the deformation-induced ε and α′-martensite formation via (i) γ to  to α′-martensite 

(dominant) and (ii) γ to α′-martensite routes. The nucleation of ε-martensite occurs at γ-intrinsic 

stacking faults and at pre-existing γ annealing twin boundaries. The lateral growth via 

coalescence leads to the coarsening of ε-martensite plates. The transformation of ε to α′-

martensite transpires within the coarse ε-martensite plates and at the intersection of two ε-

martensite laths.  

 The deformation of ε-martensite occurs via a combination of perfect and partial basal slip, 

pyramidal slip and {101̅2}〈1̅011〉ε extension twins. The formation of I2 type ε-martensite intrinsic 

stacking faults was observed in relatively thin (thickness between 20-60 nm) ε-martensite laths 

whereas I1 type ε-martensite intrinsic stacking faults were present in thick ε-martensite plates. 

The transition of I2 to I1 ε-martensite intrinsic stacking faults occurred due to the deformation 

accommodation by ε-martensite. The increase in the low angle grain boundary fraction in -

martensite with an increase in thickness reduction also provides evidence of ε-martensite 

deformation accommodation. 

 Using the orientation distribution function sections correlating the orientations of γ to ε and α′-

martensite, it was revealed that during plane strain compression/cold rolling the {ℎ𝑘𝑖𝑙}𝜀-fibre 

orientations are acquired from the (213)[02̅1]γ (ϕ1 = 32°, Φ = 37°, ϕ2 = 65°), Gγ, (011)[31̅1]γ (ϕ1 

= 20°, Φ = 45°, ϕ2 = 0°) orientations via the Shoji-Nishiyama orientation relationship. The 

{001}〈110〉α′ orientation is obtained primarily from the {112̅0}〈0001〉ε orientation while the 

(112)[11̅0]α′ orientation is formed from the {101̅0}〈0001〉ε orientation.  The Cγ, Brγ, and Cuγ, Gγ 

orientations transform to {001}〈110〉α′ and (112)[11̅0]α′ orientations, respectively, upon 

increasing thickness reduction. 
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8.1.2 Microstructure and texture changes during ε and α′-martensite reversion: 

 On annealing, the reversion of ε and α′-martensite to γ takes place. In-situ transmission electron 

microscopy annealing study has shown that ε and α′-martensite reversion occurred by a 

displacive mechanism without any visible migration of the inclined ε-martensite/γ and α′-

martensite/γ interfaces. The transformation resulted in the γ inheriting the shape of either ε or 

α′-martensite grain via a displacive mechanism and exhibiting the Shoji-Nishiyama and 

Kurdjumov-Sachs orientation relationships, respectively. The ε and α′-martensite transformation 

temperatures during the heating of thin foils were observed to be higher than bulk samples.  

 The presence of fine twins was observed in the 500, 600, 625 and 650 °C samples in electron 

back-scattering diffraction and transmission electron microscopy studies. In-situ annealing 

experiments of the cold-rolled sample elucidated the origin of their formation to be the recovery 

of reverted γ from -martensite. The mechanism was explained based on the glide of Shockley 

partial dislocations leading to the conversion of γ-ISFs, derived after reversion from faulted ε-

martensite to twins.  

 The orientation correlation between the three phases showed that the reverted γ orientations 

originated from both the ε and α′-martensite orientations following the Shoji-Nishiyama and the 

Kurdjumov-Sachs orientation relationships, correspondingly. The {1̅21̅5}〈12̅12〉ε (ϕ1 = 90°, Φ = 

24°, ϕ2  = 0°) and (ii) {011̅4}〈13̅23〉ε (ϕ1 = 72°, Φ = 23°, ϕ2  = 30°) orientations revert to (i) 

(213)[02̅1]γ and (ii)  (011)[31̅1]γ orientations,  respectively. The (i) (001)[11̅0]α′ , (111)[1̅1̅2]α′ 

and (554)[2̅2̅5]α′ , (ii) (112)[11̅0]α′  , (iii) (112)[11̅0]α′ and (111)[1̅1̅2]α′ and (iv) 

(001)[11̅0]α′orientations produce the (i) Brγ, (ii) Cuγ, (iii) (213)[02̅1]γ and (iv) Sγ orientations,  

correspondingly, via the Kurdjumov-Sachs orientation relationship. 

 

8.1.3 Microstructure changes during γ recrystallisation and subsequent grain growth: 

 Recrystallisation of the reverted γ grains takes place concurrently with reversion. Electron back-

scattering diffraction and transmission electron microscopy micrographs showed the occurrence 

of nucleation from the reverted/recovered γ grains upon annealing between 600-650 °C. At later 

stages of recrystallisation, the recrystallised γ grains show the formation of annealing twins. The 

calculated value of activation energy for γ grain growth (237.2 ± 17.3 kJ/mol)  is lower than the 

self-diffusion of γ (Q = 270 kJ/mol) indicating grain boundary diffusion as a key mechanism for γ 

grain growth rather than lattice self-diffusion.  
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8.1.4. The effect of microstructure on the tensile properties:  

 The best combination of yield stress and total elongation was observed for the 625 and 650 °C 

samples due to a microstructure containing nearly equal fractions of highly dislocated reverted 

γ, soft recrystallised γ and hard α′-martensite. In general, a decrease in the yield stress, ultimate 

tensile strength and an increase in the uniform true elongation compared to the cold-rolled and 

500 °C samples were observed with an increase in the annealing temperature. The decrease in 

yield stress is due to the decrease in the deformation-induced ε and α′-martensite area fraction 

upon annealing. The increase in uniform true elongation is due to strain hardening from the 

transformation of recrystallised γ to deformation-induced ε and α′-martensite. However, the 

uniform true elongation of the 800 °C sample is lower than that of 700 °C sample due to a higher 

area fraction of ε and α′-martensite formed upon quenching after annealing in the former and 

thus providing a higher number of crack nucleation sites.  

 The electron back-scattering diffraction maps revealed that no significant changes in the 

microstructures of the cold-rolled and 500 °C samples occurred upon tensile testing. However, 

the 625 and 700 °C samples showed the transformation of nearly all γ and ε-martensite to 

deformation-induced α′-martensite. The digital image correlation axial true strain distribution is 

in line with the microstructural observation displaying strain concentration after yielding for the 

cold-rolled and 500 °C sample due to the onset of necking. Upon tension, digital image correlation 

studies for the 625, 650 and 800 °C samples showed the formation of strain localisation regions 

which was ascribed to the load partitioning between the γ/α′-martensite phases and phase 

transformation of γ to ε and α′-martensite. The formation and propagation of strain localisation 

regions were observed for the 700 °C sample from the ends to the centre of the gauge length. This 

was only due to the phase transformation of γ.  

 The orientations of γ, ε and α′-martensite remained unchanged upon tension for the cold-rolled 

and 500 °C samples, which is in line with the microstructural observations. The formation of 

{ℎ𝑘𝑖𝑙}𝜀-fibre takes place in ε-martensite upon tension whereas strengthening of the {001}〈110〉α′ 

α′-martensite orientation, 〈203〉α′ fibre formation occurs after subjecting to tension for the 625 

and 700 °C samples, respectively. Upon tensile testing, the formation of strong  〈111〉γ and weak 

〈100〉γ fibres takes place in the 700 °C sample. The γ and α′-martensite orientations after tension 

are different to those after plane strain compression/cold rolling. In γ and α′-martensite upon 

tension, the formation of orientations along the 〈111〉γ, 〈100〉γ, 〈203〉α′  fibres takes place whereas 

upon plane strain compression/cold rolling the formation of γ orientations along the αγ-fibre and 
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α′-martensite orientations belonging to the αα′-fibre transpires. This indicates that the strain 

path affects the texture formation.  

 A mixed mode of fracture (ductile and brittle) was noticed for the cold-rolled and 500 °C samples 

due to rapid crack propagation in α′-martensite whereas a ductile mode of fracture was detected 

for the 625 and 700 °C samples due to the formation of deformation-induced ε and α′-martensite 

formation. 

 

8.2 Contribution to the original knowledge 

Based on the extensive experiments using advanced characterisation techniques, the following key 

contributions were made to highlight the plane strain deformation and annealing behaviour of high 

Mn steels. 

 

 This study for the first time shows the nucleation and growth of ε-martensite upon plane strain 

compression/cold rolling. The high angle annular dark-field scanning transmission electron 

microscopy micrographs showed that overlapping γ-intrinsic stacking faults on the (111)γ plane 

leads to ε-martensite nucleation. The growth of ε-martensite takes place via the coalescence with 

the existing ε-martensite plates. A mechanism of ε-martensite coarsening via coalescence was 

proposed involving the motion of Shockley partial dislocations. These observations confirmed 

the operation of the ε-martensite nucleation mechanism proposed by Fujita and Ueda [15].  

 The present investigation using the high angle annular dark-field scanning transmission electron 

microscopy imaging revealed the evolution of ε-martensite intrinsic stacking faults with 

increasing thickness reduction. After 10% thickness reduction the presence of I2-type ε-

martensite intrinsic stacking faults was noted. Upon thickness reduction to 15 and 42%, the 

presence of I1-type ε-martensite intrinsic stacking faults was detected. The formation of I1 and I2-

type ε-martensite intrinsic stacking faults upon tension was proposed in an Fe-17Mn-0.02C steel 

based on X-Ray diffraction analysis [22]. A novel mechanism of the change in ε-martensite 

stacking fault character via the motion of Shockley partial dislocation was introduced, which 

indicates the deformation accommodation in ε-martensite with an increase in thickness 

reduction. The deformation accommodation in ε-martensite also occurred via a combination of 

perfect and partial basal slip (I1 and I2 ε-martensite intrinsic stacking faults), pyramidal slip and 

{101̅2}〈1̅011〉ε extension twinning. The ε-martensite deformation accommodation was also 

observed where dislocations with a 〈c〉 component in ε-martensite dissociated into Shockley 
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partial dislocations in the basal plane during uniaxial tensile testing of an Fe-17Mn steel to 0.05 

engineering strain [25].  

 A new insight into the reversion mechanism of ε and α′-martensite was obtained in the present 

study. The reversion of ε-martensite without the nucleation of γ or the motion of γ/ε-martensite 

inclined interface was noted in the present investigation. The ε-martensite reversion occurred 

via a displacive mechanism. However, previous in-situ transmission electron microscopy 

annealing study [34] on ε-martensite reversion showed the nucleation of γ inside and outside of 

ε-martensite grain leading to the formation of a γ/ε-martensite lamellar structure. Similar to ε-

martensite reversion, the reversion of α′-martensite occurred without the motion of ledges or the 

inclined γ/α′-martensite interface during in-situ annealing at a high temperature of 800 °C for 

600 s indicating a displacive mechanism. Previous in-situ annealing study [30] on the α′-

martensite reversion showed the operation of the diffusional mechanism via the migration of 

dislocation ledges at the γ/α′-martensite interface.  

 The present study for the first time also explored the formation of fine twins in γ reverted from 

ε-martensite. The twins in γ were observed to have nanoscale dimensions with a thickness 7.6 ± 

2.3 nm, thus excluding them from the category of coarse annealing twins. A novel mechanism via 

the growth of remnant γ stacking faults retained after ε-martensite reversion was proposed to 

explain the twins in reverted γ. Similar recovery-induced twins in γ were reported in γ reverted 

formed from α′-martensite [34].  

 The present study carries out a detailed analysis of the ε and α′-martensite orientations formed 

from γ during deformation and γ orientations formed from the ε and α′-martensite orientations 

upon reversion during annealing via phase transformations following the Shoji-Nishiyama and 

Kurdjumov-Sachs orientation relationships, respectively. The presence of such extensive 

correlation between γ, ε and α′-martensite orientations was lacking in the literature. The 

previous study by Lü et al. [8] showed the formation of {123}〈412〉γ orientation from the 

~{1129}〈3362〉ε orientation after reversion upon annealing. This study fills the gap in the 

literature and expands the list of γ orientations that are formed during the reversion from ε and 

α′-martensite orientations via the Shoji-Nishiyama and Kurdjumov-Sachs orientation 

relationships. As an example, the {1̅21̅5}〈12̅12〉ε orientation obtained after cold rolling to 42% 

thickness reduction transforms to the (213)[03̅1]γ orientation upon reversion during annealing. 

This study also correlates the α′-martensite orientations formed from the ε-martensite 

orientations via phase transformation following the Burgers orientation relationship.  
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 The present literature lacks experimental data on the calculation of γ grain growth activation 

energy for phase transforming high Mn steels. A novel image analysis technique was developed 

in the present study to determine the γ grain size in the 700-850 °C samples to delineate the prior 

γ/γ grain boundaries. From the γ grain size data, the activation energy of γ grain growth was 

calculated to be 237.2 ± 17.3 kJ/mol which indicated that grain boundary diffusion is the main 

mechanism. The calculated activation energies for γ grain growth in the Fe-18Mn and Fe-18Mn-

1.5Si-0.6C steels was similar to the one for the present steel [156, 237].  

 

8.3 Future Work 

The microstructural evolution during deformation and annealing of a Fe-17Mn-3Al-2Si-1Ni-0.06C 

steel was studied by electron back-scattering diffraction, transmission electron microscopy and high 

angle annular dark-field scanning transmission electron microscopy. The mechanical properties of 

the annealed samples were evaluated using tensile testing via digital image correlation. Some aspects 

of future work on high Mn steels are given below: 

 Plane strain compression between 20 and 42% thickness reduction and subsequent 

microstructural characterisation via electron back-scattering diffraction, transmission electron 

microscopy and high angle annular dark-field scanning transmission electron microscopy will 

provide insight into the drastic microstructural change occurring between 20 and 42% thickness 

reductions.  

 In-situ deformation experiments using electron back-scattering diffraction or transmission 

electron microscopy will offer direct evidence of the deformation accommodation mechanisms 

operating in γ, ε and α′-martensite.  

 High angle annular dark-field scanning transmission electron microscopy based geometric phase 

analysis will provide local strain fields at the γ/ε-martensite interfaces, at the tips of growing ε-

martensite and at the intersections of ε-martensite plates. This will deepen our knowledge of the 

presence and interactions of dislocations during the nucleation and growth of ε-martensite 

plates.  

 The modelling of the texture evolution of γ, ε and α′-martensite with increasing thickness 

reduction and its correlation to tensile properties will further advance our understanding 

regarding the deformation accommodation mechanisms of γ, ε and α′-martensite. 
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APPENDIX 

 

A.1 Stacking fault energies of γ and ε-martensite via the weak beam dark-field technique 

The γ-SFE was determined using the anisotropic theory of elasticity via calculating the width 

between the partial dislocations considering the attractive force of the stacking fault and repulsive 

forces of the partial dislocations which is represented by the following equation [263]:  

     SFE =
µb2

8πd
(

2−ν

1−ν
)(1 −

2νcos2α

2−ν
)    (A.1) 

where SFE is the γ-SFE (mJ/m2), µγ and νγ are the effective shear modulus and the Poisson’s ratio of 

the (111)γ fault plane, b is the Burgers vector of the partial dislocations, d is the width between the 

partial dislocations and α is the angle between the Burgers vector and the dislocation line vector.  

The effective shear modulus and Poisson’s ratio on the (111)γ fault plane was determined using the 

elastic stiffness constants as follows [263]:        

     µγ = (C44
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γ
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 where, Cγ = [
1

2
C11

γ
(C11

γ
+ C12

γ
+ 2C44

γ
)]

0.5
      (A.3) 

The γ single crystal elastic stiffness constants, C11
γ

 = 163 GPa, C12
γ

 = 114.5 GPa, C44
γ

 = 132 GPa were 

estimated by extrapolating the values from Ref. [264] for the Fe-Mn-Al/Si steels; which in turn were 

determined by ab-initio calculation. A similar determination of the elastic stiffness constants via 

interpolation was used in Ref. [265] in the case of an Fe-24Mn-3Al-2Si-1Ni-0.06C steel. Using the Eqs. 

A.2 and A.3, for the (111)γ fault plane the effective shear modulus and Poisson’s ratio was calculated 

as 57 GPa and 0.4, respectively.  

Fig. A.1a shows the WBDF image taken using the g = [202̅]γ which was verified by the diffraction 

pattern in the top left inset Fig. A.1a. After 5% thickness reduction, the splitting of a perfect 

dislocation (red arrows in Fig. A.1a inset) into two Shockley partial dislocations (blue arrows in Fig. 

A.1a inset) was noticed. Using the gγ.b = 0 invisibility criteria and the lattice parameters of γ (aγ = 

0.3602 nm [24]) the Burgers vector was determined as 0.254 nm for the perfect 
a

2
[101̅]γ dislocation 

and 0.147 nm for the Shockley partial dislocations with Burgers vector 
a

6
[112̅]γ and 

a

6
[21̅1̅]γ. Fig. A.1b 

shows the variation of the width of Shockley partial dislocations with the angle between the Burgers 

vector and the dislocation line vector. Using Eq. A.3 the average γ-SFE was estimated as 12.3 ± 1.3 

mJ/m2.  
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 (a)  (b)  

Figure: A.1 Representative (a) weak beam dark-field micrograph and (b) the distribution of the 

measured width of the Shockley partial dislocations with respect to the angle between the Burgers 

vector and the dislocation line vector for γ in the sample after 5% thickness reduction. The inset 

diffraction patterns in Fig. A.1a is from the regions demarcated by a white dashed rectangle in Fig. 

A.1a using g = [202̅]γ. The red and blue arrows in Fig. A.1a show the perfect and Shockley partial 

dislocations.  

 

It has to be pointed out that Eq. A.1 is based on the repulsion between two Shockley partial 

dislocations which are under equilibrium separation and the attraction by the γ-stacking fault. In Fig. 

A.1a a large density of dislocations is observed after the plane strain compression to 5% thickness 

reduction. The Shockley partial dislocations are observed to be interacting with other dislocations in 

the γ grain. This will lead to the non-equilibrium separation in the spacing between the Shockley 

partial dislocations which is expected to be higher than the equilibrium separation between the 

Shockley partial dislocations. Thus in the present case, the application of Eq. A.1 results in the 

inaccurate determination of γ-SFE, which is lower than the γ-SFE calculated under the equilibrium 

separation of Shockley partial dislocations. 

For ε-martensite, the basal ε-SFE was also estimated using the Eq. A.1 by calculating the distance 

between the Shockley partial dislocations with respect to the angle between the Burgers vector and 

the dislocation line vector. The same approach was used to estimate the basal SFE I2 -ISFs in Mg-Y 

alloy subjected to 3-5% cold rolling thickness reductions [219, 266].  

Using the  isotropic elasticity theory [95] by taking advantage of the isotropy in the basal plane of the 

hcp crystal structures the determination of the effective shear modulus (µε) and Poisson’s ratio (νε) 
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of the basal (0001)ε fault plane was done using the equations:     

     µε = (
C44

ε

2
(C11

ε − C12
ε ))0.5    (A.5) 
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ε C33
ε )0.5    (A.6) 

As reported in Refs. [267-269], the single crystal elastic stiffness constants of ε-martensite were 

calculated from the single crystal elastic stiffness constants of the γ using the equations:  

 C̅11
ε =

1

2
(C11

γ
+ C12

γ
+ 2C44

γ
), C̅12

ε =
1

6
(C11

γ
+ 5C12

γ
− 2C44

γ
), C̅13

ε =  
1

3
(C11

γ
+ 2C12

γ
− 2C44

γ
), 

   C̅33
ε =

1

3
(C11

γ
+ 2C12

γ
+ 4C44

γ
), C̅44

ε =
1

3
(C11

γ
− C12

γ
+ C44

γ
)  (A.7) 

     Δε =
1

3√2
(C11

γ
− C12

γ
− 2C44

γ
)    (A.8) 

     X1 =
Δε

22

C44
ε̅̅ ̅̅ ̅, X2 =

2Δε
2

C̅11
ε −C̅12

ε      (A.9) 

  C11
ε = C̅11

ε − X1, C12
ε = C̅12

ε + X1, C13
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ε , C33
ε = C̅33

ε , C44
ε = C̅11

ε − X2  (A.10) 

By application of Eqs. A.7-A.10, the single crystal elastic stiffness constants for ε-martensite was 

calculated as: C11
ε = 227.9 GPa, C12

ε = 121.5 GPa, C33
ε = 306.7 GPa, C13

ε = 42.7 GPa, C44
ε = 33.3 GPa. 

Using the calculated values of single crystal elastic constants in Eq. A.6 produced an effective shear 

modulus of 42.1 GPa and a Poisson’s ratio of 0.46 for the basal (0001)ε plane of ε-martensite. 

The splitting of a perfect dislocation in ε-martensite into two Shockley partial dislocations can be 

clearly observed in the inset bright-field image in Fig. A.2a. The Figs. A.2b and A.2c show the WBDF 

images of a ε-martensite plate after 5% thickness reduction using the g = [101̅0]ε and g = [0002]ε, 

respectively. While the perfect and Shockley partial dislocations are visible for the gε = [101̅0], they 

are invisible for g = [0002]ε (inset Fig. A.2c). Using the g. b = 0 invisibility criteria, the dislocations 

were revealed to be of the basal type with the Burgers vector of perfect dislocation, b =  
a

3
[112̅0]ε and 

Shockley partial dislocation, b =  
a

3
[101̅0]ε, 

a

3
[1̅100]ε.  

The Burgers vector of the perfect dislocation was calculated as 0.254 nm and 0.147 nm for the perfect 

and Shockley partial dislocations, respectively, which in turn are associated with the formation of I2 

-type ε-ISFs. The lattice parameters of ε-martensite (aε = 0.2545 nm, cε = 0.414 nm) used for 

calculating the Burgers vectors of the perfect and Shockley partial dislocations was obtained from 

the Rietveld refinement of the neutron diffraction patterns of the same steel composition [24].  

Fig. A.2d shows the distribution of the measured width of the Shockley partial dislocations to the 

angle between the Burgers vector and the dislocation line vector along with the theoretical 
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separations of Shockley partial dislocations for a range of ε-SFE. Using Eq. A1, the ε-SFE for I2 -type 

stacking faults was calculated as 4.6 ± 1.4 mJ/m2.  

 

(a)  (b)  

(c)  (d)  
Figure A.2: Representative (a) bright-field image, (b, c) weak beam dark-field images and (d) the 

distribution of the measured width of the Shockley partial dislocations with respect to the angle 

between the Burgers vector and the dislocation line vector for ε-martensite after 5% thickness 

reduction. The inset diffraction patterns in Figs. A.2b, A.2c are from the regions demarcated by red 

dashed rectangles/squares in Figs. A.2a, A.2c, respectively. The inset diffraction patterns in Figs. 

A.2b, A.2c use g = [101̅0]ε and g  = [0002]ε.  

 

The Shockley partial dislocations in Fig. A.2a are observed to be non-parallel to each other producing 

a non-equilibrium dislocation spacing between the Shockley partial dislocations. This can be 

attributed to the interaction of Shockley partial dislocations with other dislocations in the ε-

martensite grain. Also, the action of image forces on the Shockley partial dislocations can lead to the 

non-equilibrium spacing between the Shockley partial dislocations. Thus in the present case, the 

calculated ε-SFE for I2 -type stacking faults using the non-equilibrium dislocation spacing is lower 

than when measured under equilibrium Shockley partial dislocations spacing. This can be a possible 
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reason for the lower calculated values of ε-SFE of I2 -type stacking faults compared to that of the SFE 

values of I2 -type stacking faults determined using the density functional theory/first principle 

calculations [219, 270]. 
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