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Abstract: Coagulation, magnetic ion exchange resin (MIEX) and biological activated carbon (BAC)
were examined at lab scale as standalone, and sequential pre-treatments for controlling the organic
fouling of a microfiltration membrane by biologically treated secondary effluent (BTSE) using
a multi-cycle approach. MIEX gave slightly greater enhancement in flux than coagulation due
to greater removal of high molecular weight (MW) humic substances, although it was unable to
remove high MW biopolymers. BAC treatment was considerably more effective for improving the
flux than coagulation or MIEX. This was due to the biodegradation of biopolymers and/or their
adsorption by the biofilm, and adsorption of humic substances by the activated carbon, as indicated
by size exclusion chromatography. Coagulation or MIEX followed by BAC treatment further reduced
the problematic foulants and significantly improved the flux performance. The unified membrane
fouling index showed that the reduction of membrane fouling by standalone BAC treatment was 42%.
This improved to 65%, 70%, and 93% for alum, ferric chloride and MIEX pre-treatment, respectively,
when followed by BAC treatment. This study showed the potential of sequential MIEX and BAC
pre-treatment for controlling organic fouling and thus enhancing the performance of microfiltration
in the reclamation of BTSE.

Keywords: biological activated carbon; biopolymers; coagulation; magnetic ion exchange; membrane
fouling; secondary effluent

1. Introduction

Low pressure membrane (LPM) processes such as microfiltration (MF) and ultrafiltration (UF)
systems are attractive and reliable for the treatment of potable water and secondary effluent since
they have many advantages such as small footprint, high pollutant removal efficiency, low energy
consumption and good mechanical and chemical stability. However, these membranes are subject
to fouling by effluent organic matter (EfOM) during the filtration of biologically treated secondary
effluent (BTSE) [1,2], since it contains nucleic acids, polysaccharides, proteins, amino-sugars, humic
materials, cell components and organic acids [3]. This membrane fouling is a major barrier to the
application of these processes, as it can reduce permeability and so increase the need for frequent
hydraulic backwashing and/or chemical cleaning which leads to increased operational costs and
reduced membrane life span. Therefore an appropriate pre-treatment is required for the successful
application of LPM systems.

Pre-treatment of feedwater is widely used to reduce the organic load on the membrane and to
modify the character of the organics [4,5], and thus to reduce membrane fouling. Coagulation has
been used to mitigate membrane fouling during drinking water and secondary effluent treatment.
Fan et al. [6] found that coagulation with either alum or ferric chloride could improve the flux performance
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for MF and UF of BTSE. This was due to the removal of major foulants such as biopolymers and humic
substances. The efficacy of organics removal by coagulation varies according to the characteristics of the
feedwater, and the dose and type of the coagulant [7]. Some studies found that in-line coagulation (i.e.,
low dosages) had a negative impact on membrane performance [8,9] since it led to the aggregation of
particles into larger masses and hence greater filter cake resistance. However, different pre-treatments
have different capacities for the removal of the various types of organics and so have a different effect
on membrane fouling. There has been limited investigation of the removal of different fractions of
organic matter from BTSE by coagulation and the subsequent impact on LPM fouling.

Anion exchange resin (AER) is widely used as a simple and effective means for the removal of
organic materials from water and wastewater. Filloux et al. [10] reported that conventional AER did
not improve the flux performance for MF/UF of secondary effluent. However, Myat et al. [11] found
that magnetic anion exchange resin (MIEX) could improve both UF and MF performance for secondary
effluent treatment. Kabsch-Korbutowicz et al. [12] noted that the MIEX process is better for removing
organics than conventional AER as it has 2–5 times greater external surface area and thus allows
faster sorption kinetics. Moreover, it contains a high proportion of magnetic iron oxide, which can
transform the agglomerate of fine resin beads into larger, fast-settling particles. Aryal et al. [13] found
that biological activated carbon (BAC) and MIEX pre-treatment (individually and in combination) of
secondary effluent was effective for controlling the fouling of a nanofiltration membrane. However,
only a few studies have been conducted on MIEX treatment for mitigating LPM membrane fouling.

A study by Marco et al. [14] suggested that the operating and capital costs of physico-chemical
processes are markedly higher (3–10 and 5–20 times, respectively) than for biological treatment
processes such as slow sand filtration (SSF) and BAC. BAC appears to be a better solution for
foulant mitigation compared with SSF as BAC can lead to both physico-chemical adsorption of
humic substances and biodegradation of the biopolymers, whereas SSF was found to be ineffective
for the removal of non-biodegradable humic substances [15]. It has been demonstrated that BAC
treatment was very effective for degrading high MW biopolymers and adsorbing humic substances
from a BTSE [16,17], thereby contributing to improvement in the flux. Pramanik et al. [18] also noted
that the flux improvement decreased with the service time of the BAC column, which was due to
decreased removal of humic substances as a result of gradual reduction in the adsorption capacity
of the activated carbon. Therefore, coagulation or MIEX followed by BAC filtration could be used to
remove the humics and so enable sustainable application of MF processes to secondary effluent, since
both coagulation and MIEX preferentially remove high MW humic substances.

The objective of the present work was to compare the effect of coagulation, MIEX and BAC
as feedwater pre-treatments for improving microfiltration performance for the treatment of a BTSE.
The effect of sequential coagulation-BAC and MIEX-BAC treatments was also investigated to determine
the benefits of the treatment combinations in removing different types of organic foulants.

2. Experimental Section

2.1. BTSE Source

The BTSE was taken from a local wastewater treatment plant that utilizes an activated
sludge-lagoon treatment process. After passing through activated sludge ponds with anoxic and
aerobic zones, the effluent enters a clarifier. The clarified stream then passes through a series of lagoons
and is collected in storage ponds, and is disinfected on release for reuse. The sample was kept at 4 ˝C
and warmed to room temperature (22 ˘ 2 ˝C) prior to all experiments. The pH of the BTSE was 7.6.

2.2. Pre-Treatment

2.2.1. BAC Treatment

The BAC column was glass, with an internal diameter of 2.3 cm and carbon bed height of 22 cm.
The column was run in down flow mode, and empty bed contact time was 40 min. The column was
backwashed every 14 days for 10 min to prevent clogging.
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A coal-based granular activated carbon (GAC 1300, Activated Carbon Technology, Melbourne,
Australia) was utilized, and its characteristics are shown in Table S1 (Properties of the activated carbon
used in the column). Before packing the column, the GAC was inoculated with activated sludge which
had been supplemented with nutrients (C, P and N as described by Lu et al. [19]) and aerated for
five days to promote biofilm growth on the carbon surface. It was then gently washed using Milli-Q
(Millipore, Darmstadt, Germany) water to reduce excess biofilm and transferred to the BAC column,
and BTSE feed commenced. After 90 days, the reduction in dissolved organic carbon (DOC) was
consistent (30% ˘ 3%), indicating that stable function of the system had been established. The results
reported here are for samples collected after the column had run continuously for 840 days.

2.2.2. Coagulation

Coagulation was performed in a jar test apparatus (Phipps and Bird, PB-700, Richmond, VA,
USA) at room temperature (20 ˘ 2 ˝C). The coagulant was alum (Al2(SO4)3¨18H2O) or ferric chloride
(FeCl3¨6H2O) (Chem-Supply, Pty Ltd., Adelaide, Australia). The samples were mixed for 2 min at
250 rpm, slow mixed for 30 min at 30 rpm, and then allowed to settle for 2 h before taking the
supernatant for experiments. This experiment was performed at pH 5 with a dose of 5 mg/L (Al3+ or
Fe3+) based on chemical used and DOC removal (Table S2 DOC removal using alum and ferric chloride
coagulation). Prior to use, the supernatant was adjusted to pH 7.6 with 1 M NaOH to make it the same
as the un-treated BTSE.

2.2.3. MIEX Treatment

MIEX resin was supplied by IXOM, Melbourne, Australia. Prior to the tests, the resin was
thoroughly washed with Milli-Q water. A range of dosages was tested (2–12 mL/L) and 10 mL/L
was used as maximum DOC removal occurred at this dose. Resin was added to 2 L of BTSE in the
laboratory jar test apparatus and the samples were mixed for 30 min at 170 rpm as recommended by
IXOM, and then settled for 5 min before taking supernatant samples. Prior to the BAC or filtration tests,
resin fines were removed by filtration (1 µm, Whatman GF/C, Sigma-Aldrich, St. Louis, MO, USA).

2.2.4. Microfiltration Experiment Set-Up

Microfiltration experiments were conducted with a stirred cell of dead-end configuration (effective
membrane area 13.4 cm2, Amicon 8050). A 0.1 µm hydrophilic polyvinylidene fluoride membrane
(Millipore, Billerica, MA, USA) was used. The trans-membrane pressure of 50 kPa was maintained
using compressed nitrogen gas, and the stirring speed was 430 rpm. A digital balance (BS210S,
Sartorius, Germany) linked to a computer was used to continuously record permeate weight and thus
to monitor the cumulative volumetric flux. These data were used to compute the permeate flux (J).
Filtration was performed at room temperature (22 ˘ 2 ˝C).

Before filtration, membranes were soaked in Milli-Q water for 2 h to remove membrane
preservatives, after which 500 mL of Milli-Q water was passed through them to determine the pure
water flux (Jo), which varied by only 3%. All MF experiments comprised three consecutive filtration
cycles. After each cycle, and after inverting the fouled membrane in the cell, it was backwashed with
50 mL Milli-Q water. On returning it to its original orientation, 100 mL Milli-Q water was then passed
through it to enable the determination of the reversibility of fouling. The backwash and permeate
samples were analysed to quantify and identify the organics responsible for reversible and irreversible
fouling. Trans-membrane pressure was 50 kPa during the backwash procedure. Duplicate filtration
runs were conducted for each sample, and as the trends were consistent (final flux varied by ď4%),
only one set of flux data is reported in this paper.
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2.2.5. Calculation of Fouling Resistance

The following equation [20] was used to determine both reversible and irreversible
fouling resistance:

R f “
∆P
uJ
´ Rm (1)

where Rf = fouling resistance (/m); µ = water viscosity (Ns/m2, Pa¨s) = 497 ˆ 103/(T + 42.5)1.5;
T = feedwater temperature (˝C); ∆P = trans-membrane pressure, TMP (N/m2, Pa); Rm = membrane
resistance (/m) as calculated from the pure water flux and J = permeate flux at the end of filtration run
(m3/m2¨s).

2.3. Analytical Methods

DOC was measured with a Sievers 820 TOC analyser (Boulder, CO, USA). Absorbance at 254 nm
(UVA254) was determined with a UV-Vis spectrophotometer (UV2, Unicam) and colour with a Hach
spectrophotometer (Model DR/5000) (Ames, IA, USA). Fluorescence excitation-emission matrix (EEM)
spectra were obtained with a PerkinElmer Spectrometer (LS55, PerkinElmer, Waltham, MA, USA)
over an excitation range of 220–465 nm and emission range of 280–550 nm. All samples were filtered
(0.45 µm) prior to these analyses. The pH was determined using a pH meter (Hach Sension, 156, Ames,
IA, USA).

The protein concentration in the water samples was determined using the bicinchoninic acid
(BCA) method with a QPBCA QuantiPro™ BCA Assay Kit (Sigma Aldrich, St. Louis, MO, USA) and
bovine serum albumin (Sigma Aldrich) as the standard protein. The concentration of carbohydrate
was measured using the phenol-sulfuric method [21] and D-glucose as the standard carbohydrate.

The apparent molecular weight distribution of the organic content of the water samples was
determined by liquid chromatography with organic carbon detection (LC-OCD) (Model 8, DOC-Labor)
at the Water Research Centre at the University of New South Wales, Australia. The detailed technique
can be found in Huber et al. [22].

Determination of the hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) contents of
the EfOM was undertaken by use of the non-ionic macroporous resins Amberlite XAD-4 (Supelco,
Sigma Aldrich, NSW, Australia) and Supelite DAX-8 (Supelco, Sigma Aldrich, NSW, Australia).
The samples were pre-filtered (0.45 µm), adjusted to pH 2 with 2M HCl, and then passed through the
DAX-8 followed by the XAD-4 resin at 3 mL/min. The detailed fractionation procedure can be found
in Lee et al. [23].

The fouling on the membrane surfaces was analysed using ATR-FTIR (100 FTIR spectrometer,
PerkinElmer, Waltham, MA, USA). The membranes were dried for 24 h at room temperature prior
to analysis.

3. Results and Discussion

3.1. Water Quality

The characteristics of the BTSE before and after the different treatments are presented in Table 1.
MIEX led to greater removal of DOC, UVA254 and colour than BAC treatment, which in turn was
greater than for coagulation by alum or ferric chloride. The organic matter removal by MIEX was due
to the adsorption of the organics by the resin as well as ion exchange of the negatively charged organic
molecules with the cationic functional groups on the resin [12]. The removal by BAC was attributed
to the adsorption of some organics by the activated carbon and the biofilm, and the biodegradation
of others. Removal of the organics by coagulation involves charge neutralization and the adsorption
of organics on the metal hydroxide [24,25]. Coagulation with ferric chloride gave marginally greater
removal of DOC, UVA254 and colour content compared with alum, which was attributed to the larger
floc sizes [25] and higher charge density [26] than for alum. MIEX gave greater reduction in specific
ultraviolet absorbance (SUVA) than treatment by either BAC or coagulation, indicating the preferential
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removal of UV-absorbing organics. Similar findings were noted by Mergen et al. [27] who found
that MIEX was more effective than coagulation for the removal of UV-absorbing organic matter from
drinking water.

Table 1. Characteristics of the BTSE sample before and after various treatments.

Treatment DOC (mg/L) UVA254
(/cm)

SUVA
(L/m¨mg)

Colour
(Pt-Co Units)

Protein
(mg¨BSA/L)

Carbohydrate
(mg¨glucose/L)

BTSE 11.79 ˘ 0.12 0.271 ˘ 0.003 2.29 86 ˘ 2 14.63 ˘ 0.31 12.25 ˘ 0.41
BAC 8.64 ˘ 0.08 0.169 ˘ 0.005 1.95 29 ˘ 2 9.22 ˘ 0.20 8.33 ˘ 0.25
Alum 9.87 ˘ 0.09 0.216 ˘ 0.006 2.19 41 ˘ 1 11.45 ˘ 0.25 9.80 ˘ 0.32

Ferric chloride 9.61 ˘ 0.11 0.208 ˘ 0.004 2.16 37 ˘ 2 10.95 ˘ 0.25 10.41 ˘ 0.31
MIEX 7.28 ˘ 0.12 0.089 ˘ 0.007 1.22 13 ˘ 1 9.72 ˘ 0.16 9.02 ˘ 0.34

Alum + BAC 7.15 ˘ 0.07 0.120 ˘ 0.010 1.68 16 ˘ 1 6.73 ˘ 0.25 6.42 ˘ 0.30
Ferric chloride + BAC 7.59 ˘ 0.07 0.114 ˘ 0.010 1.50 10 ˘ 1 6.52 ˘ 0.30 7.17 ˘ 0.39

MIEX + BAC 6.01 ˘ 0.07 0.063 ˘ 0.001 1.04 6 ˘ 1 5.42 ˘ 0.20 6.12 ˘ 0.24

Note: BAC = biological activated carbon; BTSE = biologically treated secondary effluent; SUVA = specific
ultraviolet absorbance.

MIEX led to slightly lower removal of protein and carbohydrate content than BAC treatment.
This was attributed to these molecules lacking negatively charged functional groups at neutral pH [28].
The removal efficiency for both protein and carbohydrate content was greater for MIEX than for
coagulation. Compared with alum, ferric chloride removed more protein and less carbohydrate.
BAC gave greater reduction of protein (37%) than carbohydrate content (32%) due to extracellular
proteins being more biodegradable than polysaccharide-like materials, as found by Flemming and
Wingender [29] and cited by Haberkamp et al. [30].

The sequence of coagulation or MIEX followed by BAC led to further removal of organic
compounds. There was greater removal of DOC when alum rather than ferric chloride coagulation
preceded BAC, although standalone ferric coagulation gave greater removal of DOC than alum.
This was probably because ferric chloride preferentially removes protein whereas alum preferentially
removes carbohydrate, so that when the alum-treated sample was passed through the BAC
column, there was greater utilization and thus removal of the residual organics than in the ferric
chloride-treated sample.

In order to gain further insight into the composition of the organics after the different
pre-treatments, the relative proportions of the carbohydrate and protein contents were determined to
understand their importance in membrane fouling. After coagulation, the ratios of carbohydrate/DOC
and protein/DOC were 0.99 and 1.16 for alum, and 1.09 and 1.13 for ferric chloride, respectively,
indicating that the alum-treated effluent had lower proportions of carbohydrate and slightly higher
proportions of protein than ferric chloride-treated effluent. For MIEX, the carbohydrate/DOC and
protein/DOC ratios were 1.24 and 1.33, respectively, showing higher proportions of both carbohydrate
and protein remaining than after coagulation. After BAC treatment, the ratios of carbohydrate/DOC
and protein/DOC were 0.96 and 1.06, respectively. Therefore, the ratios of carbohydrate and protein
to DOC were lower after BAC than after coagulation, which, in turn, were lower than after MIEX
treatment. Sequential treatment gave lower ratios of protein and carbohydrate to DOC than the
standalone processes, and MIEX and coagulation followed by BAC gave similar ratios of protein to
DOC, whereas MIEX followed by BAC gave a higher ratio of carbohydrate to DOC than coagulation
followed by BAC.

3.2. Microfiltration Performance after Different Pre-Treatments

3.2.1. Flux Performance

The normalised flux profiles obtained after the various pre-treatments of BTSE are shown in
Figure 1. For each cycle, the permeate volume of the MF membrane for both un-treated and treated
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samples was set at 300 mL. The un-treated BTSE led to severe flux decline, with approximately 95%
decrease in flux at the end of the filtration cycle. Feedwater pre-treatment significantly reduced the flux
decline, indicating the foulant causing severe flux reduction was removed by the treatment process.
Greater flux enhancement was obtained with BAC than with MIEX, which, in turn, was greater
than for both coagulants, and for cycle 1 300 mL permeate was achieved after 41 min (Figure 1a).
Both coagulated samples had a similar flux decline pattern in the initial 10 min of filtration, however,
after this alum gave greater flux improvement than ferric chloride.
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Figure 1. Effect of pre-treatment on flux performance (a) standalone treatment and (b) combination of
different treatments with BAC.

Although each standalone pre-treatment led to the removal of some of the organics in the BTSE,
the residual organic matter still caused membrane fouling. Therefore, coagulation or MIEX followed
by BAC were investigated for the further removal of organics and thus membrane foulants prior to
MF. There was a greater improvement in flux after the sequential treatments than the standalone
processes. MIEX followed by BAC was more effective than coagulation followed by BAC (Figure 1b).
This was primarily due to greater removal of organic content (in terms of DOC, UVA254, protein
and carbohydrate) (Table 1). Although standalone alum coagulation was better than ferric chloride
coagulation for improving the flux, ferric chloride coagulation followed by BAC gave a greater
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improvement in flux than the alum-BAC process. With successive filtration cycles, there was a greater
decline in flux for all feed types. This was due to greater retention of the organics (in terms of DOC,
protein and carbohydrate) with successive filtration cycles as shown by mass balances (Figure S1
Distribution of organics in reversible and irreversible fouling after MF). The trend for flux decline for
each sample with successive filtration cycles was the same as for cycle 1.

3.2.2. Fouling Resistance

Both reversible and irreversible resistance were decreased markedly after pre-treatment of the
feedwater (Figure 2). The reduction after BAC was greater than after the MIEX or coagulation
processes. BAC led to a larger reduction in irreversible (73%) than reversible fouling resistance (41%),
indicating a decrease in pore blocking and/or pore adsorption of the membranes. The reduction in
hydraulically reversible fouling was greater after MIEX than alum treatment, which, in turn, was
greater than that after ferric chloride coagulation. Although MIEX and alum gave similar performance
in reducing the irreversible fouling, MIEX led to a greater improvement in flux. This was likely due to
greater reduction in reversible fouling resistance as it contributed more than 90% of the total filtration
resistance. The sequence of MIEX or coagulation followed by BAC treatment gave greater reduction of
hydraulically reversible and irreversible fouling resistance than the standalone treatments, and MIEX
followed by BAC gave greater reduction of both fouling resistances. With successive filtration cycles,
the reversible and irreversible fouling resistance increased for all treatments, with high resistance being
correlated with low flux.
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duplicate samples).

3.2.3. Determination of Unified Membrane Fouling Index

The unified membrane fouling index (UMFI) values for total fouling for the different treatments
were determined after filtration cycle 1. Using the relationship developed by Huang et al. [31], whereby
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the UMFI can be calculated from the linear fitting of Jo/J versus specific volume (V), the values for
after the various treatments were determined. A higher UMFI value generally indicates greater total
membrane fouling. Ferric chloride gave less reduction in UMFI than the alum treatment, which gave
less than the MIEX treatment (Figure 3). BAC led to 42% reduction in UMFI, i.e., slightly greater than
MIEX treatment, which, in turn, was greater than for coagulation.
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Consistent with the flux and filtration resistance, there was a marked reduction in total fouling
for the sequential treatment processes. The decrease in UMFI was 65%, 70% and 93% for alum, ferric
chloride and MIEX, respectively, when combined with BAC treatment, clearly demonstrating that
MIEX pre-treatment led to greater reduction in UMFI than coagulation followed by BAC treatment.

In order to better understand the impact of pre-treatment on fouling reduction, the proportion
of fouling per mg DOC remaining in the feed was calculated. The UMFI value per mg DOC
was 0.0091 m2/mg for BTSE. The UMFI value per mg DOC reduced to 0.0074, 0.0088, 0.0089 and
0.0068 m2/mg after alum, ferric chloride, MIEX and BAC treatment, respectively. Hence, the value was
decreased after pre-treatment of the feedwater, and BAC was very effective for reducing membrane
foulants. As shown in Section 3.2.1, the trend for the improvement of the flux for cycle 1 was
BAC > MIEX > alum > ferric whereas for the UMFI value per mg DOC it was BAC > alum > ferric
= MIEX. A similar finding was reported in our earlier study that BAC gave lower removal of DOC
(31%) than granular activated carbon (74%), but it led to significantly greater improvement in flux [16].
This provides further evidence that the characteristics of the organics in the feedwater play a more
significant role in the fouling of membrane than the DOC concentration alone. Similar to the standalone
processes, the sequence of coagulation or MIEX followed by BAC further reduced the UMFI value
per mg DOC, and MIEX with BAC treatment gave a markedly lower value than coagulation with
BAC treatment.

3.3. Characterisation of Organics Using Advanced Techniques

3.3.1. ATR-FTIR

ATR-FTIR spectroscopy was used to identify the major foulant groups retained reversibly and
irreversibly on the membrane surface after the various pre-treatments. The contribution of the foulants
was determined by subtracting the spectrum of a pristine membrane from that of the fouled membrane
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after cycle 1. Using the assignation of spectral bands according to Cho et al. [32] and Howe et al. [33],
it was shown that functional groups associated with polysaccharide-like substances, protein-like
substances and humic substances were present on the membranes. BAC treatment increased the
transmittance of the assigned peaks more than MIEX treatment or coagulation with alum or ferric
chloride (particularly for polysaccharide-like substances at 3000–3650/cm), indicating that there were
less of these substances residing in the foulant layer (Figure 4a). This was also confirmed by the
mass balance result which showed that the rejection of the organics (in terms of DOC, protein and
carbohydrate) was greater for coagulation than for MIEX, which, in turn, was greater than for BAC
(Figure S1).
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sequential treatments.

The transmittance at the assigned bands was significantly lower for the combinations of
coagulation or MIEX with BAC treatment than the standalone processes (Figure 4b), indicating that
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the sequential treatment process was more effective for removing the organic matter resulting in less
deposition of organics on the surface of the MF membrane. MIEX followed by BAC treatment led to
lower rejection of these organics compared with the BAC followed by coagulation treatment, consistent
with the lower degree of fouling.

3.3.2. Size Exclusion Chromatography

LC-OCD analysis was performed in order to understand the effect of pre-treatment on the
molecular weight distribution of the organic matter. As seen in Figure 5, a greater proportion of the
biopolymers (protein-like material, amino sugars, polysaccharide-like material, ě20,000 Da) than
humic substances (1000–20,000 Da) was retained by the membrane, followed by building blocks
(breakdown materials of humic substances, 350–500 Da) and low MW organics (acids and neutrals,
<350 Da), indicating that these high MW biopolymers and humic substances played a vital role in the
fouling of MF membrane. These high MW organics lead to reversible fouling as they tend to form a gel
layer on the membrane surface, whereas low MW organics would have blocked the membrane pores
partially or completely which contributed to irreversible fouling resistance. Moreover, some smaller
molecules may be prevented from entering the membrane structure by the layer of biopolymers [34].
The contributions to the total DOC for the BTSE were 9% by biopolymers, 43% by humic substances,
12% by building blocks and 36% by low MW organics.

To obtain a better understanding of the composition of the organic matter after the pre-treatments,
the relative proportions of each fraction of the organics were determined to reveal their role in
fouling the membrane. After coagulation, the ratios of biopolymers/DOC and humics/DOC were
0.100 and 0.522 for alum, and 0.098 and 0.512 for ferric chloride, respectively, indicating that the
ferric chloride-treated effluent had very slightly lower proportions of humic substances. The ratios
of biopolymers/DOC and humics/DOC were 0.187 and 0.224, respectively, after MIEX treatment.
This indicates that it was highly effective for removing humic substances. After BAC treatment,
the ratios of biopolymers/DOC and humics/DOC were 0.095 and 0.522, respectively, and indicate
that the BAC effluent had a slightly lower proportion of biopolymers compared with coagulation.
As mentioned in Section 3.1, the ratios of protein and carbohydrate to DOC were lower for BAC than
coagulation, which, in turn, were lower than for MIEX. It may be concluded that BAC treatment led to
lower fouling per mg DOC (Section 3.2.3) due to preferential removal of the biopolymers.

In terms of absolute concentration, BAC treatment led to greater removal of biopolymers
than coagulation, and alum and ferric chloride had approximately similar removal efficiency for
biopolymers (Figure 5a). On the other hand, MIEX treatment did not remove biopolymers, probably
because the large molecules are unable to penetrate into the pores of the resin, and their neutral and/or
hydrophilic character [28]. It was noted that MIEX could reduce the concentration of the hydrophilic
organics (Figure S2 Organic fractions in BTSE and variously treated-BTSE samples). This was probably
due to the low MW of some protein and carbohydrate molecules, which enabled them to penetrate
into the pores of the resin. The removal efficiency of humics and building blocks was greater for MIEX
than for BAC or coagulation. Consistent with this resin fractionation showed that removal of the HPO
fraction was substantially better for MIEX than BAC or coagulation (Figure S2). The fluorescence
spectra also provide evidence that MIEX led to significantly greater removal of fluorescent humic
acid-like and fulvic acid-like substances than the BAC treatment or coagulation (Figure S3 EEM
spectrum volumes of the untreated and variously treated BTSE samples). MIEX gave less removal of
building blocks than humic substances. This is because building blocks contain a higher proportion of
amine functionalised compounds than the humic fractions, and the anionic exchange character of the
MIEX resin would adsorb organic acids in preference to amine functional groups [35]. The removal
efficiency of low MW organics was significantly higher for BAC than for both coagulants. MIEX was
ineffective for reducing the low MW neutral organics due to their neutral charge. When the coagulated
or MIEX-treated sample was subjected to BAC treatment, there was further removal of biopolymers,
humics and building blocks (Figure 5b).
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4. Conclusions

All pre-treatments (coagulation, MIEX and BAC) led to reduction in the reversible and irreversible
fouling of the MF membrane by the secondary effluent. MIEX treatment gave greater reduction of
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fouling resistances than coagulation, due to the greater removal of humic substances. However, greater
improvement in flux was obtained with BAC treatment than with coagulation or MIEX treatment.
This was attributed to the breakdown of biopolymers by micro-organisms and adsorption of those
molecules on the biofilm, and adsorption of humic substances by activated carbon, hence lower
amounts of these foulants deposited on the membrane surface. BAC effectively removed low MW
organics, which may decrease the risk of biofouling in subsequent processes or use of the water,
whereas coagulation and MIEX were less effective for removing these organics.

Sequential coagulation or MIEX and BAC treatment provided further marked reductions in
reversible and irreversible membrane fouling resistance. The addition of MIEX prior to BAC treatment
gave greater removal of DOC, protein and carbohydrate, thus contributing greater flux improvement,
which would reduce the frequency of hydraulic or chemical cleaning of the membrane and thus help
in extending the membrane lifetime. This work was based on a single dose of MIEX and a single EBCT
for BAC, both of which were higher than typically used; therefore, further work would be required to
determine the optimum conditions and sequence of the two unit processes.

Supplementary Materials: The following are available online at www.mdpi.com/2077-0375/6/3/39/s1, Table S1:
Properties of the activated carbon used in the column, Table S2: DOC removal using alum and ferric chloride
coagulation, Figure S1: Distribution of organics in reversible and irreversible fouling after MF (a) DOC (b) protein
and (c) carbohydrate contents (data points are average values of duplicate samples), Figure S2: Organic fractions
in BTSE and variously treated-BTSE samples (data points are average values of duplicate samples), Figure S3:
EEM spectrum volumes of the untreated and variously treated BTSE samples.
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