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Abstract 

 

Two Ni-Cu alloys (Monel K500 and FM60) having various Mn, Fe, Al, Ti and C contents 

were deposited on a Monel K500 plate at three different speeds using wire arc additive 

manufacturing technique. Microstructure characterisation, in particular a detailed study of 

precipitates, was carried out using optical and scanning electron microscopy. Mechanical properties 

were assessed using hardness, tensile and wear testing. For similar deposition conditions, Monel 

K500 has exhibited smaller secondary dendrite arm spacing and higher number density of Ti-rich 

particles, although the Ti concentration in FM60 was higher. Finer microstructure and Ti 

precipitation led to superior hardness, tensile and wear resistance of Monel K500 compared to 

FM60. The variation in microstructure-properties relationship with alloy composition is discussed. 

 

Key words: Ni-Cu alloys; wire arc additive manufacturing; microstructure characterisation; 

mechanical properties; wear resistance. 

 

Introduction 

 

Nickel has good mechanical properties and excellent resistance to various corrosive 

environments. It is the “base” for the Ni-base alloys families, which are amongst the most important 

classes of engineering materials [1]. Ni-base alloys retain austenitic matrix from solidification to 

absolute zero that is why they can be used both at cryogenic temperatures and at temperatures 

approaching 1200 °C. They sustain high strength, ductility and toughness in this whole temperature 

range [2].  Ni-base alloys have a higher tolerance for alloying elements in solid solution than 

stainless steels and other iron-base alloys but maintain good metallurgical stability. These factors 

have resulted in development of Ni-base alloys with multiple alloying additions to provide wide 

variety of properties [3]. Major additions of copper (28-34%) provide solid solution strengthening 

[4] and improve the resistance of Ni to nonoxidizing acids [5, 3]. The Ni-Cu system has complete 

solid solubility, which allows production of single-phase alloys over the entire composition range 

[6]. The Ni-Cu system forms the basis for the Monel alloy family. Additions of Al and Ti help to 

produce a stronger version of the Ni-Cu alloy that would contain nano-size precipitates when 

properly heat-treated [7]. This alloy is known as Monel K500 and is widely used in marine industry 

to produce parts of heavy machinery, such as submarine propeller shafts, diesel engine piston rods, 

centrifugal pump shafts.  

Despite its good mechanical and corrosion resistance properties, Monel K500 components 

may fail in operation. As this alloy is often used for manufacturing of machine parts with mating 

metal surfaces, wear is one of the key failure origins. Not only this directly affects equipment life, 

especially when operated in corrosion environment, but also it may endanger an entire mechanical 

system if a critical part is damaged [8]. Pitting corrosion, which is extremely localized corrosion 

leading to the creation of small holes on the surface, is another form of failure of Monel K500 
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components. Since Ni-base alloys are expensive, repair is often a more economic choice than 

replacement.  

A promising alternative to traditional subtractive manufacturing is additive manufacturing or 

3D printing. It can be applied not only for production of new functional components, but also for 

repair of old components. Based on the supply material (feedstock), additive manufacturing of 

metals can be divided into two major groups: one that deposits powder and another that deposits 

melted wire to build/repair a component. Powder-based principle has a number of downsides such 

as porosity, low deposition rates, component size limitation, high cost [9]. Wire-based deposition 

technologies, on the other hand, provide stronger adhesion of deposited layers due to full melting of 

wire, have higher production capacity, and often do not have component geometry restrictions. 

Moreover, wire-based additive manufacturing allows using of wire with a very complicated 

chemical composition which, when used for repair, gives an opportunity to deposit material with 

matching chemical composition to the damaged part.  

Wire arc additive manufacturing (WAAM) has been closely investigated since the 1990s [10] 

to nowadays [11]. This technique combines an electric arc as heat source and a wire as feedstock 

and employs either gas metal arc welding (GMAW) [12], gas tungsten arc welding (GTAW) [13] or 

plasma arc welding (PAW) [14]. A consumable electrode is deposited layer by layer to manufacture 

a new component or repair an old component reducing material wastage and production/repair time 

[15]. This technique is advantageous due to its high deposition rate and low cost. A number of 

recent publications reported successful application of WAAM for fabricating of components made 

of Ti-base [16, 17], Fe-base [18, 19], Al-base [20], Cu-base [21] and Ni-base alloys (Ni-Cr) [22, 

23]. However, the WAAM of Ni-Cu alloys has not been previously reported. 

This study focuses on the WAAM of two Ni-Cu alloys, namely Monel K500 and FM60. 

Single-bead multi-layer wall structures as well as multi-bead single-layer plate structures have been 

successfully fabricated to investigate the microstructure and mechanical properties of wire arc 

additively manufactured Ni-Cu alloys. Particularly, the effect of chemical composition and heat 

input (wire deposition speed) on microstructure (in particular, particle precipitation), hardness, 

tensile strength and wear resistance was thoroughly investigated. If proved being successful, the 

WAAM of Ni-Cu alloys may provide an economic way of repairing the damaged parts instead of 

their entire replacement. 

 

Materials and experimental techniques 

 

Two welding consumables, commercially produced Monel K500 wire with diameter 1.0 mm 

and ERNiCu-7 (FM60) wire with diameter 1.2 mm were used in this study for comparison. A 

Monel K500 plate with dimensions 600x260x8 mm was used as the substrate. The chemical 

compositions of the materials are listed in Table 1. 

 

Table 1. Chemical compositions of Monel K500 and FM60 used in the study (wt. %) 

Alloy Ni Mn Fe Si Al Ti C S P Cu 

Monel K500 68.3 0.8 1.29 0.17 3.0 0.5 0.088 0.003 0.003 bal. 

FM60 67.2 3.2 0.08 0.07 0.2 1.5 0.004 0.014 0.003 bal. 

 

A robotic welding system at the University of Wollongong was used to produce samples as 

shown in Figure 1a. The wire deposition was carried out by cold metal transfer (CMT) technology 

using an ABB 1400 robot with a Fronius CMT welder in flat position. Welding grade argon 

(99.995% purity) was used for shielding with 10 L/ min gas flow rate. Both alloy compositions 

(Monel K500 and FM60) have been tested in three welding conditions: 300, 400 and 500 mm/min 

of welding speeds and 8.3 m/min of the wire feed.  
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Figure 1. Illustration of the sample preparation process by WAAM: (a) experiment set-up, (b) 

deposition of plates, (c) deposition of multiple layered walls, (d) tensile test specimen, and (e) wear 

test sample geometry. 

      

To produce samples for the wear test, multi-bead single-layer plates (55 mm wide by 180 mm 

long) were produced by depositing one pass of material next to the other until the required width 

was reached (Figure 1b). Fewer layers were required for a slower travel speed and more layers for a 

faster travel speed. To produce samples for the microstructure characterisation and tensile testing, 

single-bead multi-layer walls (40 mm high by 180 mm long) were built by depositing one layer of 

material on top of another until the required height was reached (Figure 1c). The number of layers 

varied with a welding travel speed: bigger bead was produced with slower travel speed, so that 

fewer layers were required to build the wall with 300 mm/min travel speed, than with 500 mm/min 

travel speed. All samples were cut on a horizontal band saw and wire cutting machine according to 

the required geometry. 

Optical microscopy was carried out by using Leica M205A stereo microscope and Leica DM 

600 microscope equipped with Leica Application Suite (LAS) 4.0.0 image processing software. 

Scanning electron microscopy was conducted using JEOL7001F FEG scanning electron microscope 

(SEM) operating at 10 kV. Optical microscopy and SEM were carried out on depositions cross 

sections. Sample preparation included mounting of samples in Polyfast resin, polishing on Struers 

Tegramin automatic polisher to 1 μm finish and etching with ferric chloride solution. The energy 

dispersive X-ray spectroscopy (EDS) semi-quantitative point analysis of precipitates and the 

element distribution mapping were carried out using an AZtec 2.0 Oxford SEM EDS system. For 

the determination of particle compositions, 40 - 60 particles were analysed from the fusion zone for 

each studied condition. The element distribution mapping was carried out 2-3 times from various 

locations for each weldment. 

Tensile tests were performed on MTS Landmark servohydraulic test system, model 370.02. 

Flat dog-bone type samples of 10-mm gage length, 2-mm width, and 1.5-mm thickness (Figure 1, d) 

were cut from the deposited walls perpendicular to the direction of material deposition. For each 

condition, 3 samples were tested at an ambient temperature at a strain rate of 1 x 10-3 s-1. 

Microhardness testing was performed on all bead on plate samples on Struers DuraScan 

Vickers hardness tester with 0.5 kg load. The data was acquired from the base metal, heat affected 

zone (HAZ), remelted zone (RZ) and fusion zone (FZ). Up to ten indentations were performed in 

each section, with a distance of approximately ten times the length of the indent diagonals to ensure 

that the results were not contaminated by work hardening from previous indentations. 

Wear resistance of material depositions was investigated using the pin-on-disk type of test 

utilised in a CETR apparatus. The wear testing was performed according to the standard ASTM G 

99-95a. Discs for the wear testing were cut from the deposited plates (Figure 1, e), grinded to flat 

surface and polished on Struers Tegramin automatic polisher with silicon carbide polishing foil 
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2000 (10 micron). The stainless steel 316 ball was used as a pin. Each sample underwent 3 

successive testing cycles, 750 sec of total sample-disk interaction time, track diameter 30 mm, 

velocity 0.758 m/c (500 rpm), total path length 600 m. One test cycle included vertical loading of 

the pin to 15 N load (in compression against the sample disk) and rotation of the disk for 250 sec. 

The wear resistance was assessed via the sample mass loss measured after each cycle (i.e. after 250, 

500 and 750 sec of testing time). The sample mass was measured on fine analytical scales Nuweight 

AS 310.R2 with accuracy of 0.0001 gram.    

 

3. Results and Discussion 

 

Grain structure 

 

Optical microscopy of 6 single weld beads deposited on Monel K500 plate was applied to 

analyse the shape and size variation of the bead cross sections with different welding parameters. 

As shown in Figure 2, with an increase in travel speed (decrease in heat input) the dilution of welds 

(the cross-section area of the melted base metal divided by the total area of the weld metal) 

decreased for both deposited materials. 

 
Figure 2. Optical images at low (x14) magnification taken from the cross section of single bead 

depositions of (a) Monel K500 and (b) FM60; the deposition speed is increasing from left to right. 

 

The microstructure of Monel K500 base plate consisted of single phase fcc grains with 

average size of 25 μm. Microalloying elements particles of 200-600 nm size were evenly distributed 

through the volume. The mean hardness value of the plate was measured to be 170 HV. No grain 

growth was observed in the HAZ. 

Columnar grain growth in the FZ (Figure 3a, b) and heterogeneous epitaxial grain growth in 

the HAZ of base metal (Figure 3c) were observed for both materials at all deposition speeds. The 

grain growth occurred along the heat flow direction (from the base metal towards the fusion zone). 

The grain size in the FZ was characterised as the secondary dendrite arm spacing, SDAS (Figure 3d 

and e). This was measured to be smaller in Monel K500, 4-9 μm, compared to FM60, 6-12 μm 

(Table 2). Probably, strong TiCN particles, present in Monel K500, effectively pinned the dendrite 

boundaries retarding the dendrite growth in this alloy. Capability of TiCN particles to control the 

grain size was previously observed in Ti-microalloyed steels [24, 25]. In Monel K500 the average 

SDAS slightly decreased with an increase in deposition speed (decrease in heat input), what could 

be a result of faster cooling, lower average temperature and less pronounced dendrite growth during 

deposition at a higher speed. Although in FM60 the SDAS did not vary significantly with 

deposition speed.  
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Figure 3. Optical micrographs of Monel K500: (a) welding bead cross section showing hardness 

variation in different welding zones, (b) columnar grains in the fusion zone, (c) epitaxial grains in 

the heat effected zone, (d) dendritic microstructure in the FZ and (e) a scheme of measurement of 

the secondary dendrite arm spacing. 

 

Particle precipitation 

 

Energy dispersive X-ray spectroscopy (EDS) of two alloys revealed moderate segregation of 

Cu in the fusion zone in all welding conditions (Figure 4a, b, d, e). This was caused primarily by the 

large difference in melting points of Ni (1455 °C) and Cu (1085 °C) and by the low diffusivity of 

Cu in Ni [26]. With a decrease in heat input the segregation decreased. No segregation was found 

for other alloying elements (Figure 4c, f). 

 

 
Figure 4. Representative SEM images of microstructure in (a) Monel K500 and (d) FM60, 

and EDS maps showing Cu segregation in (b) Monel K500 and (e) FM60 and absence of Ti 

segregation in (c) Monel K500 and (f) FM60. 
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In Monel K500 in FZ the Ti-rich particles of TiCN and TiCAlMgS type dominated (64-72% 

of the total amount analysed); other particles including Mn-rich ones of MnS, MnSMgO, 

MnMgSTiC, and MnMgSAlO type (14-18%) and Al-rich particles of AlOMgS type (11-18%) were 

also observed (Figure 5 a-c, Table 2). The particle sizes were in the range of 300-700 nm for 300 

and 400 mm/min deposition speeds and in the range of 250-550 nm for the 500 mm/min deposition 

speed. The average particle size decreased with an increase in deposition speed, which can be 

explained by faster cooling and less time available for the particle growth. The particle number 

density decreased from 3.64 to 2.62 x10-3 μm-2 with an increase in deposition speed from 300 to 500 

mm/min, which is consistent with the decrease in average particle size.   

In FM60 in FZ the majority of particles were Mn-rich of MnSMgO and MnSAlMgCaO type 

(66 to 80% of the total amount analysed); Ti-rich ones of TiAlMgO and TiSAlMgO type (18-30%)  

and Al-rich particles of AlMgO type (2-7%) were also present (Figure 5 d-f, Table 2). It is worth to 

note a much lower fraction of Ti-rich particles in FM60, compared to Monel K500, although the Ti 

content in FM60 composition is higher. This could result from a lower carbon and nitrogen contents 

in FM60, and a possible increase in solubility of Ti in FM60 due to increased Mn content. In Ti-

microalloyed steels the rate of Ti particle precipitation has been shown to decrease with an increase 

in Mn content [27, 28]. The particle sizes were in the range of 200-800 nm for all deposition speeds. 

The average particle size showed a maximum at the speed of 400 mm/min, although the particle 

size variation with deposition speed was within the measurement error. The particle number density 

in FM60 decreased from 11.4 to 4.7 x10-3 μm-2 with an increase in deposition speed from 300 to 500 

mm/min, which is consistent with the similar trend in Monel K500. The average particle size was 

slightly larger in Monel K500 than in FM60, because the temperature of TiCN precipitation is 

usually higher (1000-1500 °C [29]) than that of MnS precipitation (800-1000 °C [30]). Thus, TiCN 

particles have more time for growth.  

 

 
Figure 5. EDS spectra showing chemical composition of particles in deposited (a-c) Monel K500 

and (d-f) FM60; the matrix spectrum is shown in black, the particle spectrum is shown in red. 
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Table 2. Microstructural parameters and mechanical properties of the studied alloys. 

Parameter 
Monel K500 FM60 

300 400 500 300 400 500 

SDAS, μm 6-9 5-9 4-8 6-10 6-12 6-10 

P
ar

ti
cl

es
 

size, nm 437±150 448±140 331±160 311±170 392±150 388±160 

ND*  

x10-3 μm-2 
3.64 3.06 2.62 11.39 7.24 4.71 

Chemistry,

% 

72Ti-rich 

17Mn-rich 

11Al-rich 

69Ti-rich 

14Mn-rich 

17Al-rich 

64Ti-rich 

18Mn-rich 

18Al-rich 

67Mn-rich 

26Ti-rich 

7Al-rich 

66Mn-rich 

30Ti-rich 

4Al-rich 

80Mn-rich 

18Ti-rich 

2Al-rich 

Hardness in 

FZ/RZ/HAZ 

141/145/ 

156 

144/146/ 

159 

145/152/ 

163 

134/135/ 

141 

133/135/ 

139 

136/137/ 

142 

YS, MPa 170±5 165±10 160±5 146±14 160±12 150±5 

UTS, MPa 430±15 410±10 408±15 356±10 363±20 360±5 

Elongation, % 47±2 51±3 50 48±3 47±1 48±2 

MPa·% 14100 14662 14200 12048 12290 12240 

Wear mass 

loss, g 
0.0560 0.0420 0.0460 0.0622 0.0574 0.0628 

ND* - number density of particles 

 

Mechanical properties and wear resistance 

 

The microhardness (HV), yield stress (YS) and ultimate tensile strength (UTS) in Monel 

K500 plates obtained in this work using WAAM were in the range of 141-163 HV, 160-170 MPa 

and 408-430 MPa, respectively. This is about 1.7, 2.4 and 1.6 times lower than the values expected 

for a cast microstructure, 277 HV, 415 MPa and 690 MPa, respectively [31]. In accordance with 

lower strength, the elongation to failure (El) 47-51 % was 5 times higher than this for a cast 

microstructure, 10 %. On the contrary, hardness 133-142 HV, YS = 146-160 MPa and UTS = 356-

363 MPa in FM60 were only 5.5, 6 and 24 % lower than the corresponding values in cast Monel 

400 with composition similar to FM60, 150 HV, 170 MPa and 450 MPa, respectively. And the 

elongation to failure, 48 % in FM60, was about 2 times higher compared to the cast Monel 400, 25 

% [31]. The significant variation in properties of Monel K500 could be explained by the variation in 

cooling rates between WAAM and casting: very fast cooling rates (short cooling time) inherent for 

WAAM prevent particle precipitation required for enhanced strength of Monel K500. However, for 

FM60 the same variation in cooling rates is not so critical for the mechanical properties variation, 

because the FM60 and Monel 400 are not designed for age-hardening (the precipitation 

strengthening mechanism is weak). Analysis of the stress-strain curves (Figure 6 a-c) has shown 

that Monel K500 exhibits slightly higher YS, UTS and elongation to failure than FM60, which was 

expected due to the variation in alloy composition, in particular a higher C content (Table 2). 

Although the particle number density measured using SEM imaging was higher in FM60, a higher 

C content in Monel K500 could result in more pronounced particle precipitation in the <15 nm size 

range. This would explain higher strength and ductility in Monel K500. To support this a more 

detailed characterisation of particles with transmission electron microscopy is required. For the 

tested deposition speed range, no significant variation in tensile properties with speed was observed. 

Toughness, evaluated as a product of 0.5(YS·UTS) and El [32], was higher in Monel K500 than in 

FM60. This corresponds to the higher strength and ductility of Monel K500. For both alloys the 

maximum average toughness was observed for the medium deposition speed of 400 mm/min.  

The average microhardness of Monel K500 depositions decreased from 170 HV for the base 

metal to 160 HV for HAZ, to 150 HV for the remelted zone and to 145 HV for the fusion zone 

(Figure 6 d-f). The average microhardness of FM60 depositions decreased from 170 HV for the 

base metal to 140 HV for HAZ, to 135 HV for the remelted and fusion zones. The decreased 

microhardness in HAZ, compared to the base metal, can be related to stress relief and dislocation 
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annihilation following heating in this area. Remelted and fusion zones exhibited typical cast 

microstructure the hardness of which is obviously lower than that of base metal with deformed 

microstructure. The microhardness in different zones of the weld cross section did not vary 

significantly with the deposition speed for both alloys (Table 2). However, the hardness of Monel 

K500 was definitely higher than that of FM60 for all deposition speeds, which corresponds to the 

smaller SDAS and precipitation of hard TiCN particles in Monel K500. 

The wear resistance of Monel K500 depositions was higher (mass loss lower) than that of 

FM60 depositions for all three speeds (Figure 6g-e). This corresponds to the higher hardness and 

toughness of Monel K500, related to its smaller SDAS and precipitation of hard TiCN particles. For 

both alloys the highest toughness at 400 mm/min deposition speed corresponded to the highest wear 

resistance (lowest mass loss during the wear testing) for this speed. An increase in wear resistance 

with an increase in hardness was previously observed in medium carbon steels [33, 34]. In 

particular, wear resistance increased with precipitation of hard Nb- and Cr-rich carbides [35, 36]. 

On another hand, increased toughness, or rather a proper balance between hardness and toughness, 

was suggested to be the major reason for increased wear resistance [37, 38]. 

On the next stage of our research we are going to modify the precipitate distributions with 

age-hardening heat treatment and further improve the mechanical properties of WAAM-deposited 

Ni-Cu alloys. In addition to the Ti-rich particles, Ni-rich gamma prime particles may be expected to 

affect the microstructure-properties relationship in the studied alloys. However, due to their small 

size, <15 nm, they cannot be observed in SEM. Therefore, an in-depth study of precipitates will be 

conducted using transmission electron microscopy. 

 

 
Figure 6. Mechanical properties of wire deposited Monel K500 (red) and FM60 (black) for the three 

studied deposition speeds: (a-c) tensile stress-strain curves; (d-f) hardness in different zones of the 

weld cross section; and (g-i) wear resistance (mass loss). 
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Conclusions 

 

Investigation of the microstructure and mechanical properties of WAAM-produced Ni-Cu 

alloys resulted in the following conclusions: 

1. In Monel K500 the secondary dendrite arm spacing was smaller than in FM60, which 

corresponded to a higher number density of TiCN precipitates in Monel K500. 

2. Moderate Cu segregation in depositions was observed in both alloys. This could result from a 

variation in the Ni and Cu solidification temperatures irrespective of other elements 

concentrations.  

3. The majority of precipitates were Ti-rich particles in Monel K500 and Mn-rich ones in FM60, 

although the Ti content is higher in FM60. This could result from the lower carbon and nitrogen 

contents in FM60 and a possible increase in Ti solubility in FM60 due to an increased Mn 

content in it. With an increase in deposition speed the particles number densities decreased in 

both alloys, which can be explained by a faster cooling rate (less time available for precipitation) 

for a faster deposition speed. 

4. Hardness, strength, ductility, toughness and wear resistance were higher in Monel K500, 

compared to FM60. This mainly resulted from the precipitation of Ti-rich particles in Monel 

K500. For both alloys the highest wear resistance corresponded to the highest toughness 

observed at the medium deposition speed of 400 mm/min. 
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