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Abstract 

This study examined the effects of shoes’ segmented forefoot stiffness on athletic performance 

and ankle and metatarsophalangeal joint kinematics and kinetics in basketball movements. 

Seventeen university basketball players performed running vertical jumps and 5-meter sprints at 

maximum effort with three basketball shoes of various forefoot plate conditions (medial plate, 

medial+lateral plates, and no-plate control). One-way repeated measures ANOVAs were used to 

examine the differences in athletic performance, joint kinematics, and joint kinetics among the 

three footwear conditions ( = .05). Results indicated that participants wearing medial+lateral 

plates shoes demonstrated 2.9% higher jump height than wearing control shoes (p = .02), but there 

was no significant differences between medial plate and control shoes (p > .05). Medial plate shoes 

produced greater maximum plantarflexion velocity than the medial+lateral plates shoes (p < .05) 

during sprinting. There were no significant differences in sprint time. These findings implied that 

inserting plates spanning both the medial and lateral aspects of the forefoot could enhance jumping, 

but not sprinting performances. The use of medial plate alone, though induced greater 

plantarflexion velocity at the metatarsophalangeal joint during sprinting, was not effective in 

improving jump heights or sprint times.  

Keywords: ankle joint, metatarsophalangeal joint, sprinting, jumping, joint moment 

Word Count: 191 (Abstract), 2671 (Main text) 
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Introduction 

Previous studies have shown that shoe bending stiffness was related to changes in joint 

kinematics and kinetics as well as athletic performance.1 Increasing forefoot bending stiffness of 

a shoe, which can be achieved by inserting a forefoot plate or increasing the midsole hardness, has 

the potential to enhance sports performance such as forward acceleration, jumping and agility 

tasks.1-3 Stefanyshyn and colleagues1 found an improvement in maximum-effort sprint 

performance when participants ran in shoes inserted with very stiff carbon plates at the soles 

compared with those without. It has been suggested that increasing shoe bending stiffness could 

provide a longer lever arm for greater moment generation4 and reduce the amount of energy 

absorbed at the metatarsophalangeal joint.1 The effects of changing stiffness at different forefoot 

regions of the shoes on sports performance, remains uncertain.5 

 Vertical jumping and forward sprinting and are repetitively performed in the game of 

basketball.6 Great jump height and quick sprint actions are expected to take an advantage over 

opponents, higher propulsive forces are also reported to correlate with better sports performance.7-

9 Previous studies showed higher plantar pressures and shear forces in the medial forefoot region 

during propulsion in typical basketball manoeuvres (e.g. sprinting, jumping, and side-cutting) 

when compared with running.10-12 Although inserting a plate into a basketball shoe may enhance 

propulsive forces, scientific guidelines on the location of the plate are scarce. On one hand, 

inserting a medial stiffening only the medial aspect of forefoot region of the shoe may induce 

forefoot instability.13 On the other hand, inserting plates in both medial and lateral aspects may 

increase lateral foot loading.14 High loading at the lateral aspect of the foot is undesirable as it is 

associated with Jones fracture (i.e. fifth metatarsal diaphysis), which is one of the recurrent stress 

fractures in basketball that is difficult to treat.14,15 Thus, it is of interest to consider if inserting a 
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plate in the medial region of the forefoot alone would be equally effective to improve athletic 

performance. 

The objective of this study was to examine the influence of locations of stiffness plates at 

the forefoot regions of the shoes (i.e., medial plate, medial+lateral plates versus no-plate control) 

on athletic performance and ankle and metatarsophalangeal joint kinematics and kinetics during 

running vertical jump and sprinting. Based on the previous findings,1,16,17 the hypotheses were that 

comparing to the no-plate control shoes, 1) medial plate and medial+lateral plates shoes would 

enhance jump and sprint performance, and 2) both medial plate and medial+lateral plates shoes 

would minimise the energy dissipation (i.e., less power absorption) at the ankle and 

metatarsophalangeal joints. 

Methods 

Test shoe conditions: Three identical pairs of US9.0 basketball shoes (Li Ning Yushuai 9, 

Beijing, China), 1) with a medial thermoplastic polyurethane plate, 2) with medial and lateral 

thermoplastic polyurethane plates, and 3) without any additional plates, were custom-made in this 

study (Figure 1). The control shoe condition was unmodified from its original specifications (Shoe 

mass = 392.6g). The medial plate shoe (Shoe mass = 408.6g) was customised by positioning one 

thermoplastic polyurethane plate at the medial forefoot midsole. The medial+lateral plates shoe 

(Shoe mass = 410.1g) was customised by positioning one plate in the medial and one plate in the 

lateral forefoot midsole. All plates used in the medial plate and medial+lateral plates shoes had 

identical material thickness (3mm) and hardness (Shore 90A). The plates were embedded in the 

foam underneath the sockliner during the shoe construction process. The shoe mass was affected 

by both the plate and the amount of sole materials taken out when embedding the plates. Forefoot 

bending stiffness of each test shoe was quantified with a mechanical flexion tester (ASTM F911-
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85). In brief, 65 consecutive mechanical flexion trials were performed at the forefoot at about 70% 

shoe length with a flexion angle of 45 deg at a frequency of 2.7 Hz. The mechanical axis was 

carefully aligned with the axis of the flexion at the metatarsophalangeal joint of the shoe.18 The 

trials from the 61th to 65th were averaged for the calculation of shoe bending stiffness. The overall 

bending stiffness for medial plate, medial+lateral plates, and no-plate control shoes were 0.277, 

0.376, and 0.261, Nm/deg, respectively. 

Participants: Seventeen male university basketball players (mean age 24.5 ± 1.5 years; 

height 172.9 ± 6.4 cm; body mass 68.3 ± 6.3 kg; playing experience 8.4 ± 2.9 years) were recruited. 

Only participants having the foot length of American size 9 with a maximum tolerance of ± 0.5 

for heel-to-toe length were included. All participants were right leg dominant and had no lower 

extremity injuries in the past six months prior to the start of the study. The study was approved by 

the Nanyang Technological University Institutional Review Board. All the participants signed a 

written informed consent form before the test. 

Movement protocols: Maximum running vertical jump and 5-meter forward sprint were 

evaluated as these movements were commonly investigated in previous studies on basketball 

shoes19 and footwear bending stiffness.1,16 In brief, for running vertical jump (Figure 2a), 

participants approached from a 5-meter distance and performed a maximum hand reach after 

taking off with the left foot on the force plate (Kistler, Winterthur, Switzerland). Participants took 

off with left leg for a stimulated lay-up shooting with right (preferred) hand. The hand reach height 

was measured with the Vertec height measurement system (Sports Imports, Columbus, OH). Jump 

height was calculated by subtracting the participant’s standing hand reach height from the 

maximum jumping hand reach height. A pair of double beam timing gates (SWIFT Timing Gates, 

SWIFT Performance Equipment, Alstonville, Australlia) were used to measure the approach speed 
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prior to contact with the force plate. One set of timing gates was placed near edge of the force 

platform, while the other set was placed 1.0 meter ahead.  

For the 5-meter sprint test (Figure 2b), participants were instructed to sprint with 

maximum-effort until passing through the end position. The start and end positions were pre-

determined for individual participants in order to have the second acceleration step (left foot) 

striking on the force plate. The elapsed times determined from the timing gates set at 0-meter and 

5-meter were taken to indicate sprint performance (Figure 2b). 

Procedures: Prior to the actual data collection, participants performed five minutes of self-

selected warm-up protocol. They were then given time to familiarise themselves with the testing 

protocol including the placement of the left foot on the force platform in each of the tested 

movements (running vertical jump and 5-meter forward sprint). Thirteen reflective markers (95 

mm diameter) were firmly affixed on the left leg (Figure 3).11 For the actual tests, participants 

were instructed to perform five trials of each movement while wearing all three pairs of test shoes 

(medial plate, medial-lateral plates, and control). The trial order was randomized. A trial was 

considered valid only if the position of the entire left foot was within force platform during ground 

contact. In total, each participant performed 30 trials (5 valid trials × 3 shoes x 2 movements). To 

minimise the influence of fatigue, 1-minute and 10-minute resting periods were mandatory 

between trials and between shoe conditions, respectively. 

During these movements, synchronised ground reaction force and lower limb kinematics 

data were taken using a force platform (Kistler, Winterthur, Switzerland, sampled at 1000 Hz)  and 

an eight-camera motion analysis system (Vicon, Oxford Metrics, UK, sampled at 200 Hz). Marker 

trajectories were low-pass filtered at 16Hz using a Butterworth filter. A spline interpolation was 

performed for minor missing marker trajectories using three frames of data before and after the 
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missing data point.20 From the ground reaction force, ankle and metatarsophalangeal joint angles, 

angular velocities, moments, and powers were calculated as these variables are of direct relevance 

to athletic performances.1,2,16 An inverse dynamic model in Visual 3D (C-Motion Inc, 

Germantown, USA), which comprised of shank, rearfoot and forefoot segments, was used for 

calculation of joint moments and powers. The metatarsophalangeal joint was modeled as a single 

hinge joint rotating about an axis perpendicular to the sagittal plane. The segmental masses of the 

shank and foot were taken from a previous study.21 In brief, the foot mass was then partitioned 

between the rearfoot and forefoot segments in the same ratios as their respective volumes, 

modeling each as simple geometric solids with uniform densities.21 Positive work or energy 

generation (negative work or energy absorption) occurs when the resultant joint moment is in the 

same (opposite) direction as the joint angular velocity. 

Statistical analyses: Maximum jump height, approach speed for vertical jump, fastest sprint 

time, ankle and metatarsophalangeal joint angles, angular velocities, moments and powers were 

averaged across all trials for each shoe condition and then analysed using SPSS 22.0 (IBM Corp., 

Armonk, NY, USA). In each tested movement, a one-way repeated measures analysis of variance 

(ANOVA) was performed to examine if there was any significant difference ( = 0.05) across 

three shoes for each variable of interest. Bonferroni corrected post-hoc tests were employed for 

any significant main effect.   

Results 

In running vertical jump, there was a significant difference on jump height (F2,32 = 3.47, p 

= 0.04, n2 = 18, Figures 4 & 5) among shoe conditions. Post-hoc tests indicated that participants 

wearing medial+lateral plates shoes (63.2 cm) jumped higher than that wearing the control shoes 

(61.5cm, p < 0.05, ~2.9%) but the performance did not differ between medial plate (62.7 cm) and 
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control shoes (61.5 cm). No significant difference was found for the ankle and metatarsophalangeal 

joint kinematic, moment or power variables (p  > 0.05, Table 1).  

For the 5-meter sprint, there was no significant difference on sprint time among the medial 

plate (1.13s), medial+lateral plates (1.12s), and control shoes (1.12s, p > 0.05, Figures 4 & 5). 

There was a significant main effect of shoe in maximum metatarsophalangeal joint plantarflexion 

velocity (F2,32 = 5.12, p < 0.05, n2 = 44, Table 2). Post-hoc tests indicated that participants wearing 

medial plate shoe (1082 deg/s) experienced higher maximum plantarflexion velocity compared 

with medial+lateral plates condition (1039 deg/s, P < 0.05) but no difference was found between 

medial plate and control shoe conditions. No other significant differences in ankle or 

metatarsophalangeal joint kinemtatic, moment, or power variables were found (p > 0.05). 

Discussion 

 This study examined the influence of segmented midsole stiffness of basketball footwear 

at various forefoot regions (medial plate, medial+lateral plates, and no-plate control) on running 

vertical jump and sprinting performance. The current results indicated that the participants wearing 

stiffer shoes (i.e. medial+lateral plates) led to an average of 1.7 cm (+2.9%) improvement in 

running vertical jump. On the contrary, some other studies found no difference in vertical jump 

performance when wearing the test shoes inserted with increased forefoot stiffness.2,22 These 

opposing results in the literature may be due to the differences in shoe prototype constructions. 

When this study inserted plates at different forefoot regions of the shoes, Worobets and Wannop 

(2015) changed the stiffness of the shoes by cutting out a small vertical portion of the exterior 

midsole on the lateral side of the shoe. These cutting procedures might have caused structural 

damage to their shoe prototypes and thereby influence jump performance. The differences in 

findings could further reflect the importance of locations of plates. The other plausible 
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explanations would be related to the participants’ characteristics (anthropometry, comfort 

preference, training background, playing level, etc) and the methodologies used in assessing jump 

performances. Further investigations on the influence of shoe bending stiffness on both 

performance and comfort perception would be helpful to guide how forefoot plate should be 

inserted to meet individual needs. 

 Regarding the 5-meter forward sprint performance, although participants wearing less stiff 

shoes (i.e. medial plate) displayed greater maximum plantarflexion velocity compared with the 

stiffer shoes (i.e. medial+lateral plates), no difference in sprint time was found between these two 

shoes (Figure 4c). The lack of benefit of stiffer shoes in sprinting performance was in contrast with 

others.3,22 One plausible explanation is that the subtle increase in footwear bending stiffness (stiffer 

shoes versus less-stiff shoes) may not elicits a decrease in metatarsophalangeal joint motions which 

are important in sprint performance. This argument agrees with a previous study on straight line 

sprinting which showed 1.0% faster in 10-meter sprint time between the least stiff and the stiffest 

shoes only, while no improvement was seen in the medium stiff shoe.21 Another factor that may 

be associated with the lack of improvement in sprint performance is the location of the inserted 

plate. Asymmetrical segmented shoe hardness across the medio-lateral direction of forefoot (e.g., 

harder at medial than the lateral side) might comprise the frontal foot placement and alignment for 

the overall ability of muscle-tendon unit to allow for fast plantarflexion.24 Quantifying the 

metatarsophalangeal joint stiffness and torque of the human foot25,26 may provide further insights 

on the application of forefoot plate in athletic footwear. While the beneficial effect of wearing 

stiffer shoes on sprint performance might be rather individualised (Figure 5), the current findings 

provided no clear evidence that implementing forefoot plate can enhance sprint performance.5  
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 Although significant increase in running vertical jump height was found in the stiffer shoes 

(medial+lateral plates) compared with less stiff shoes (i.e. control shoe), no difference in ankle or 

metatarsophalangeal joint kinematics or kinetics was found (Table 1). The values of joint moment 

and power absorption in the present study were comparable to those reported in previous studies 

on jumping2 and sub-maximal running.4 However, the ankle power absorption (29 to 60 J) were 

less than the values (64 to 86 J) reported by Stefanyshyn and colleagues.16,17,27 These differences 

in the magnitudes of joint energetics may be due to the methodology involved in obtaining joint 

kinematic data. The present study and studies of Toon et al. and Willwacher et al.,2,4 utilised 3D 

motion capture systems whereas the studies of Stefanyshyn and colleagues.16,17,27  obtained 

kinematic data via 2D video analysis. Furthermore, compared to the low-collar running shoes used 

in studies of Stefanyshyn and colleagues, the present study used high-collar basketball shoes which 

might limit the total ankle range of motion.7,28 The restricted ankle motion may affect joint 

kinematics as well as joint energy generation and absorption. In the future, the effects of systematic 

changes in segmental forefoot plate stiffness and location (e.g. combined effect of location, shape 

and thickness of plate) on sports performance and the underlying mechanisms (via analysing joint 

moment and power) should be investigated before a valid conclusion can be made.  

When interpreting our results, it is important to consider several limitations to the present 

study. First, we did not differentiate foot type29 nor anthropometry30 of the participants and these 

factors like the length of forefoot bones, metatarsophalangeal joint and Achilles tendon stiffness, 

and medial arch stiffness may have influenced the jumping and sprinting performance. Second, 

we did not measure plantar pressure nor comfort perception. Adding forefoot plate at the forefoot 

region might induce discomfort and mechanical stress. Studying plantar pressure on the plate 

locations would provide insights into plantar stress-related injuries and stability.13 For performance 
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aspect, the optimal pathway hypothesis proposed that better comfort perception might allow for 

optimal movement pathway of individual.31 Future investigation should strike a balance between 

performance and comfort associated with different forefoot bending stiffness and locations of the 

inserted plates. Thirdly, we included only male basketball players and did not consider their 

playing levels or positions. It is possible that loading characteristics are influenced by sex, playing 

level and position. Finally, it should be noted that both the location of the plates and their bending 

stiffness could have contributed to the observed changes in jumping and sprinting performance.  

In summary, basketball shoes inserted with medial+lateral plates in the forefoot region 

could enhance running vertical jumping but not sprinting performances. The use of medial plate 

alone was not effective in improving jump heights or sprint times, though it induced greater 

plantarflexion velocity at the metatarsophalangeal joint during sprinting. Although the underlying 

mechanism remains unclear, further optimisation of forefoot plate location may be useful in the 

development and design of basketball footwear. 
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Figure 1 — Test shoe conditions 
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Figure 2 — Equipment setup and movement sequences: a) running vertical jump and b) 5m sprint 

acceleration. 
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Figure 3 — Placement of  retro-reflective marker on the left leg: 1) medial malleolus, 2) lateral 

malleolus, 3) four-marker cluster on the shank, 4) medial epicondyle, 5) lateral epicondyle, 6) 

lateral aspect of first metatarsal, 7) lateral aspect of fifth metatarsal, 8) superior aspect of hallux 

and 9) heel. 

 

  

D
ow

nl
oa

de
d 

by
 H

ar
la

n 
H

at
ch

er
 G

ra
d 

L
br

y 
M

I 
on

 0
9/

27
/1

7,
 V

ol
um

e 
0,

 A
rt

ic
le

 N
um

be
r 

0

mzingel
Sticky Note
None set by mzingel

mzingel
Sticky Note
MigrationNone set by mzingel

mzingel
Sticky Note
Unmarked set by mzingel



 

 
 

Figure 4 — a) Maximum jump height, b) approach speed for vertical jump, and c) fastest sprint 

time across three shoe conditions. 
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Figure 5 — Relative improvement (With plate – without plate) of individual participants in 

maximum jump height and fastest sprint time. 
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Table 1: Ankle and metatarsophalangeal joint kinematics and kinetics variables during running 

vertical jump expressed in mean (standard deviation). 

 
 

Control 

Medial 

plate 

Medial+lateral 

plates 

Shoe effect 

 
p 

2

p  
β 

Ankle joint         

Total ankle range of motion (deg)  49(5.2) 48(5.3) 48(4.4) 0.82 0.01 0.08 

Maximum dorsiflexion (deg)  10(4.4) 9(4.4) 10(4.0) 0.56 0.09 0.13 

Maximum plantarflexion (deg)  -38(4.0) -39(4.0) -38(3.9) 0.16 0.25 0.36 

Maximum plantarflexion velocity (deg/s)  -968(94.6) -955(89.1) -960(99.2) 0.83 0.03 0.07 

Resultant joint moment (Nm)  85.51(19.30) 89.19(20.89) 90.72(20.23) 0.07 0.15 0.53 

Joint power absorption (J)  -24.21(9.17) -23.73(7.73) -25.28(7.64) 0.64 0.03 0.12 

Joint power generation (J)  59.56(10.61) 59.68(12.38) 61.34(13.42) 0.39 0.06 0.21 

        

Metatarsophalangeal joint        

Total metatarsophalangeal range of motion (deg)  47(5.9) 46(5.6) 45(4.7) 0.15 0.13 0.39 

Maximum dorsiflexion (deg)  8(3.0) 7(2.5) 8(2.4) 0.13 0.27 0.39 

Maximum plantarflexion (deg)  -5(1.3) -5(1.8) -5(1.7) 0.91 0.02 0.06 

Maximum plantarflexion velocity (deg/s)  -389(97.2) -362(76.6) -363(77.3) 0.15 0.25 0.37 

Resultant joint moment (Nm)  8.91(8.81) 9.59(7.90) 12.73(13.94) 0.14 0.12 0.40 

Joint power absorption (J)  -1.46(2.80) -1.22(1.80) -2.39(4.00) 0.12 0.13 0.43 

Joint power generation (J)  0.49(0.30) 0.62(0.36) 0.52(0.47) 0.42 0.05 0.19 

Note. 
2
p =partial eta squared; β=observed power. 
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Table 2: Ankle and metatarsophalangeal joint kinematics and kinetics variables during 5-meter sprint expressed in mean (standard 

deviation). 

 

 
Control 

Medial 

plate 

Medial+lateral 

plates 

Shoe effect 

 p 
2

p  
β Post-hoc 

Ankle joint         

Total ankle range of motion (deg)  50(5.5) 51(5.1) 49(5.0) 0.63 0.03 0.12 - 

Maximum dorsiflexion (deg)  30(5.6) 29(5.3) 29(5.5) 0.24 0.20 0.28 - 

Maximum plantarflexion (deg)  -20(7.9) -22(5.2) -21(5.2) 0.34 0.15 0.21 - 

Maximum plantarflexion velocity (deg/s)  -1025(171.7) -1030(166.5) -1001(146.80) 0.21 0.21 0.30 - 

Resultant joint moment (Nm)  104.28(24.96) 105.81(17.01) 107.45(21.39) 0.51 0.04 0.16 - 

Joint power absorption (J)  -29.14(8.97) -28.78(7.51) -30.6(9.41) 0.38 0.06 0.21 - 

Joint power generation (J)  43.81(16.08) 44.38(13.88) 44.21(12.71) 0.94 0.00 0.06 - 

         

Metatarsophalangeal joint         

Total metatarsophalangeal range of motion (deg)  52(11) 53(8.7) 53(7.5) 0.57 0.04 0.14 - 

Maximum dorsiflexion (deg)  32(5.4) 32(4.7) 32(4.2) 0.99 0.00 0.05 - 

Maximum plantarflexion (deg)  4.0(2.6) 4(2.8) 4(2.3) 0.70 0.05 0.10 - 

Maximum plantarflexion velocity (deg/s)  -1029(273.8) -1082(199.1) -1039(177.1) 0.02 0.44 0.72 Medial > Medial+lateral  

Resultant joint moment (Nm)  20.23(12.29) 16.83(7.68) 14.19(7.09) 0.69 0.16 0.53 - 

Joint power absorption (J)  -8.09(6.18) -6.38(4.12) -5.27(3.45) 0.13 0.13 0.36 - 

Joint power generation (J)  4.81(5.69) 13.60(3.01) 2.66(1.96) 0.11 0.13 0.44 - 

Note. 
2
p =partial eta squared; β=observed power. Significant p-values (p <.05) are shown in bold 
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