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ABSTRACT: Exploring economically efficient electrocatalysts with good electrocatalytic activity 

is essential for diverse electrochemical energy devices. Series of ultrathin metallic nickel-based 

holey nitride nanosheets were designed as bifunctional catalysts for the oxygen evolution reaction 

(OER) and hydrogen evolution reaction (HER). They exhibit improved catalytic properties owing 

to the inherent advantages of their plentiful active reaction sites resulting from the complete 

exposure of the atoms in the large lateral surfaces and from the edges of pore areas, together with 

expanded lattice spacing distance. This obtained three-dimensional conductive integral 
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architecture can not only accelerate the electron transportation by the highly orientated crystalline 

structure, but also facilitate the diffusion of intermediate and gases. In terms of the OER 

electrocatalytic property, a quite low overpotential (300 mV) is required for the holey two-

dimensional (2D) Ni3Fe nitride nanosheets to deliver a current density about 100 A g-1, with an 

enhanced improvement than IrO2 by a factor of nearly 25 times. The holey 2D Ni3Fe nitride 

nanosheets also exhibit enhanced catalytic performance towards the HER, with a tiny overpotential 

(233 mV) to achieve the current density about 100 A g-1 and much better kinetic property than 

those of highly-active Pt/C.  

Keywords: Two-dimensional; Nitride electrocatalyst; LDH; Oxygen evolution reaction; Hydrogen 

evolution reaction 

1. INTRODUCTION 

Ultrathin two-dimensional (2D) holey nanostructures have drawn significant research attention 

for energy storage, catalysis, electronics, and biomedical science because their unique feature 

could provide unprecedented chemical, electronic, and physical properties resulting from the 

electron confinement in two dimensions. 1-6 Due to their huge lateral surface area and atomic 

thickness, this special feature allows for direct correlation between the properties and the structure, 

giving superior atomic transport. They are frequently used as a bridge between microscale and 

nanoscale features to realize the fabrication of future microscale devices. 7-11 In contrast to the 

intact lateral surface, the holes on the lateral surface will result in ultrahigh specific surface area 

and a continuously connected integrated network, while maintaining atomic thickness, because the 

reaction intermediates can easily be transferred and diffuse throughout the whole porous system, 

not only along the large lateral surface direction, but also through holes on the surface, which can 

be considered as channels among numerous nanosheets. 12-18 2D holey nanosheets have inherent 
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advantages for surface-related applications such as catalysis. For example, owing to the complete 

exposure of the large lateral surface atoms and the much greater number of catalytic active atoms 

in the hole area, it will dramatically accelerate the reaction kinetics, which would be much more 

favorable for achieving outstanding electrocatalytic performance towards the oxygen evolution 

reaction (OER) and hydrogen evolution reaction (HER). 8, 19 Meanwhile, this ultrathin holey 2D 

structure also presents excellent properties through accelerating the diffusion of the evaluated 

gases and electrolyte accessibility. 2, 20 Moreover, because of the excellent mechanical strength 

from the strong in-plane covalent bonds, this 2D porous nanostructured catalyst can also alleviate 

or even solve many of physical issues regarding state-of-the-art nanoparticle catalysts, such as 

aggregation or peeling off during the reaction, resulting in significant descent of the 

electrocatalytic performance. 7, 21-26 A number of 2D structured materials are employed as catalysts 

to facilitate the sluggish evolution reaction kinetics, for example precious metals, metal 

hydroxides/oxides, and metal sulfides. 22, 27-38 Among these, transition metal nitrides have the 

inherent advantages of high catalytic activity, economic efficiency, and superior electrical 

conductivity due to the introduction of nitrogen atoms into the metal hosts, which exhibit a metallic 

state with continuous conductivity near the Fermi level according to the computer calculations. 32, 

39-43 Therefore, in this work, a strategy is proposed to develop ultrathin 2D holey structured 

bimetallic nitride materials with a strong high-orientation crystalline texture. A series of ultrathin 

2D holey nickel-based nitrides (Ni3M nitride, M = Fe, Co, Mn) has been designed and successfully 

synthesized, with a satisfactory specific surface area (189.6 m2 g-1), maintaining 0.6 - 0.8 nm 

nanosheet thickness. The hierarchical porous continuously conductive architecture caused by the 

holey nitride nanosheets is much more beneficial to transport of reaction intermediates and gas 

diffusion throughout the entire electrode. The faster electron transportation along the ultrathin 2D 
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direction can be further enhanced by their nearly single-crystalline structure, while the superior 

electrocatalytic performance could be ascribed to the highly exposed atoms on the large lateral 

surfaces, resulting from the vast surface area and plentiful exposed catalytically active atoms or 

lattice planes in the hole area. Furthermore, the influence of lattice spacing on the catalytic 

activities was investigated by comparing three different nickel-based nitrides which have different 

lattice spacing after introducing nitrogen. 

 

2. EXPERIMENTAL SECTION 

Synthesis of Ni3Fe-LDH. The Ni3Fe-LDH nanosheets were synthesized based on previous 

procedures. 44 In general, Fe(NO3)3·9H2O (140 mg) and NiCl2 (188 mg) were dispersed into 

deionized (DI) water (80 mL) under severely stirring for 10 min, followed by adding urea (168 

mg) and Na3C6H5O7 (5.16 mg). After another 10 min, the reaction proceeded for 24 h with a 

Teflon-lined autoclave under 150 ˚C. The Ni3Fe-LDH was obtained after washing three times by 

ethanol and DI water. 

 

Synthesis of Ni3Co-LDH. The Ni3Co-LDH nanosheets were fabricated based on previous 

procedures. 45 In general, Ni(NO3)2·6H2O (727 mg), CO(NH2)2 (2.25 g), and Co(NO3)2·6H2O 

(1153 mg) were dispersed into DI water to form a mixture (50 mL) with a volume ratio of V(ethylene 

glycol)/V(DI water) = 3:1. After refluxing 3 h under 90 ̊ C, the product was collected after washing three 

times by ethanol and DI water. 

 

Synthesis of Ni3Mn-LDH. The Ni3Mn-LDH nanosheets were synthesized with previous 

procedures. 46 In general, Ni(NO3)2·6H2O (245 mg), NaNO3 (153 mg), NH4F (185 mg), and 
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Mn(NO3)2·4H2O (50 mg) were added into DI water (250 mL) under severely stirring with N2 

atmosphere. After 30 min, H2O2 (30 wt. %, 25 μL) was added dropwise into the solution. NaOH 

solution (50 mL, 0.12 M) was then dispersed dropwise into the solution. After stirring 12 h under 

room temperature, the product was collected after washing three times by ethanol and DI water. 

 

Synthesis of holey 2D nitride nanosheets. To synthesize holey 2D Ni3Fe nitride, Ni3Co nitride, 

and Ni3Mn nitride nanosheets, Ni3Fe LDH, Ni3Co LDH, and Ni3Mn LDH nanosheets were 

calcined 1 min at NH3 atmosphere at 500 ˚C (ramp rate about 10 ℃ min-1). 

 

Materials characterizations. The crystalline structures were analyzed with GBC MMA powder 

X-ray diffraction. As for the morphologies, JEOL JSM-7500FA scanning electron microscopy and 

JEM-ARM200F transmission electron microscopy were utilized. Atomic force microscopy was 

from Asylum AFM facility. The specific surface areas were investigated through Quantachrome 

Instruments Autosorb iQ2 through N2 adsorption at -196 °C with Brunauer-Emmett-Teller (BET) 

method. The vacuum pressure was kept under 10−4 Pa to degas the samples at 100 °C. The mean value 

was calculated after obtaining three measurements for each sample. The conductivities of the samples 

were measured by the four-probe method (9 T Physical Properties Measurement System). 

 

Electrochemical measurements: A three-electrode glasscell with an Ag/AgCl reference 

electrode and a graphite rod counter electrode on Princeton 2273 and 616 workstations were 

employed to test electrochemical performance. 47 In order to make the catalyst inks,  sample (5 

mg) was added in mixed solution (1100 μL) with 5 % Nafion® solution (100 μL), isopropanol (250 

μL), and DI water (750 μL). The working electrodes were obtained through dripping the catalyst 
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ink (5 μL) on the pre-polished glassy carbon disk electrodes and drying for 20 min at 80 °C oven. 

Linear sweep voltammetry were performed use 1 M KOH. Electrochemical impedance 

spectroscopy tests were conducted at 0.607 V. To determine the active surface areas, 

electrochemical double-layer capacitance measurements was performed between 0.2 and 0.3 V at 

various scan rates. All potentials were referenced to reversible hydrogen electrode (RHE) with the 

following calculation: ERHE = 0.059 pH + 0.197 + EAg/AgCl. For the overall water-splitting 

performance, nickel foam (1 cm2) was utilized as working electrode. And the active material 

loading was 0.3 mg cm-2. SRI 8610C gas chromatograph was utilized to record the evaluated H2 

gas during the overall water splitting. Faradaic efficiency is calculated with the following equation:   

Faradaic efficiency = 
𝑉/𝑉𝑚

𝑄/(2∗F)
 

where V is the volume of H2 gas experimentally evolved, Vm is the molar volume (24.5 L mol-1), 

Q stands for the number of charge travelled through two electrodes, 2 means 2 moles of electrons 

per mole for H2, and F represents the Faraday constant (96485 C mol-1).   

Calculation Method: The Vienna Ab-initio Simulation Package package was utilized when 

carring out the density functional theory for the First-principle calculations. In order to define 

electronic exchange and correlation effects, the generalized gradient approximation with the 

Perdew-Burke-Ernzerhof functional was employed. For geometric optimization, Methfessel-

Paxton electronic smearing and uniform G-centered k-points meshes (resolution of 2π*0.035 Å-1) 

were employed for the Brillouin zone integration. One cutoff energy (550 eV) was applied during 

the computations. Above parameters guarantee that the total energies convergence is below 1 

meV/atom. After relax of the structure, forces between atoms were below 1 meV Å -1 with the 

complete stress tensor less than 0.01 GPa of the target number. 
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3. RESEARCH AND DISCUSSION 

The synthesis strategy for the ultrathin 2D holey nitride materials is illustrated in Figure 1(a). 

The morphology and structure are characterized with scanning electron microscopy (SEM) and X-

ray diffraction (XRD). A series of nickel-based layered double hydroxide (LDH) nanosheets were 

synthesized as precursors, including Ni3Fe LDH, Ni3Co LDH, and Ni3Mn LDH, as illustrated in 

transmission electron microscopy (TEM) images (Figure 2a, d, g). All the LDH samples showed 

a uniform, silk-like, 2D nanosheet structure with big lateral size about several micrometers. In the 

following nitridation by annealing in an NH3 atmosphere, the corresponding nitride products were 

obtained with numerous holes on the in-plane surface, as revealed in Figure 1(b, c, d) and Figure 

2(b, e, h), but the products still maintained the 2D nanosheet structure. All the nitride materials 

exhibit a standard cubic diffraction pattern corresponding to (111), (200), and (220) planes as 

shown in Figure 1(e, f). 32-33, 40 The distances of corresponding lattice spacing of Ni3Fe nitride is 

much larger than those of Ni3Co nitride and Ni3Mn nitride, which could modify the distance of 

surface atoms with varying the surface electronic structure and catalytic activity.48-49 As can be 

seen from Figure S1, compared with metallic state samples, the peaks of three samples have been 

shifted to the left after introducing nitrogen, indicating that the nitrogen could increase the lattice 

spacing of the metallic state materials. The peak shifts of Ni3Fe is much larger than the Ni3Co and 

Ni3Mn as well, implying that the lattice spacing of Ni3Fe nitride is significantly increased after the 

induction of nitrogen. The morphology of the nitride materials is much more uniform than that of 

the oxide materials, indicating that the nitrogen also could assist the form of uniform nanopores 

on the nanosheets, as can be seen from Figure S2.  
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Figure 1. (a) Fabrication process of 2D holey Ni3M nitride; SEM images of (b) 2D holey Ni3Fe 

nitride; (c) 2D holey Ni3Co nitride; (d) 2D holey Ni3Mn nitride; (e) XRD pattern and (f)   the 

corresponding distance of lattice plate.  

 

The variations of the surface area and pore size range before and after nitridation process were 

further characterized, as shown in Figure 2. Taking Ni3Fe nitride for example, after the nitridation 

process, the specific surface area was dramatically enlarged from 114.9 to 189.6 m2 g-1, while 

numerous nanopores were generated, with the process primarily driven by the phase 
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transformation and Kirkendall effect. 13-14, 50 Meanwhile, the specific surface area of Ni3Co nitride, 

and Ni3Mn nitride were dramatically increased from 125.6 to 197.2, and from 108.5 to 168.3m2 g-

1, respectively. Compared to those deposited on porous substrate, such as nickel foam, a 

remarkable enhancement of specific surface area was got because the high weight ratio of the 

substrate will decrease the whole electrode specific surface area to some extent. 51-52 It is concluded 

that designed ultrathin holey 2D structured nitrides can be successfully obtained by annealing the 

corresponding LDH precursors, and the surface area can be dramatically increased by the 

generation of numerous holes on the large lateral surface. 

 

Figure 2. TEM images of 2D holey Ni3M (M = Co, Mn, Fe) LDH nanosheets; 2D holey Ni3M (M 

= Co, Mn, Fe) nitride nanosheets and Specific surface area of 2D Ni3M (M = Co, Mn, Fe) LDH 

nanosheets and 2D holey Ni3M nitride nanosheets (c); inset: pore size distributions; (a - c) M = 

Co; (d - f) M = Mn; (g - i) M = Fe. 
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Morphological characterization of the as-fabricated materials was studied by scanning TEM 

energy-dispersive X-ray spectroscopy (STEM-EDS) and atomic force microscopy (AFM), as 

shown in Figure 3 and Figures S3-4. Compatible with the conclusions on the surface area and 

pore distribution, nitride materials present an obvious holey structure with pore size ~ 15 nm. 

Meanwhile, all the elements demonstrate a homogenous distribution over the whole area and 

maintain similar molar ratios (Figure S5 and Table S1). Furthermore, after the nitridation process, 

a solo phase component distribution still exists, which is compatible with the XRD. The AFM was 

employed to estimate the thickness and surface structure of the as-synthesized 2D holey Ni3Fe 

nitride nanosheets. As revealed in Figure 3g-j, the thickness of 2D holey Ni3Fe nitride nanosheets 

is within the range of 0.6-0.8 nm, a thickness of approximately 3 atomic layers of (001) lattice 

planes. The trend in the curves also indicates the holey structure on the lateral 2D surfaces. High-

angle annular dark-field STEM (HAADF-STEM) was utilized to characterize the structure of the 

ultrathin nitride nanosheets. As indicated in Figure 3k, l and Figures S6-7, in contrast to the intact 

surfaces, these holey nanosheets generate numerous edge areas and expose abundant lattice plates, 

which can thereby provide abundant catalytically active sites. More importantly, the ultrathin 

nanosheets show a nearly single-crystal structure with a strong high-orientation pattern, which can 

significantly increase the electrical conductivity. It is well acknowledged that there is a definite 

link between electrical conductivity and catalytic activity. High electrical conductivity can 

dramatically accelerate the kinetic rate of the catalytic reaction. 39, 44, 53 Generally, the integration 

of the huge surface area, abundant defects the exposed catalytic sites near the edges, and the 

ultrahigh electrical conductivity resulting from the nearly single-crystal structure, as well as the 

connected holey architecture will make this type of nitride nanosheet a satisfactory electrocatalyst, 

particularly for gas generation processes.  
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Figure 3. (a) HAADF-STEM image of holey Ni3Fe nitride nanosheets; (b-e) STEM-EDS mapping 

of (a); (f) the phase distribution in (a); (g-j) AFM results for the holey Ni3Fe nitride nanosheets; 

(k, l) HAADF-STEM images of holey Ni3Fe nitride nanosheets; molecular diagram with fast 

Fourier transform (FFT) pattern as inset image in (k). 
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A rotating disk electrode (RDE) was utilized to explore the electrocatalytic properties of these 2D 

structured materials, including LDH and holey nitride nanosheets, commercial IrO2 and Pt/C with 

1.0 M KOH.  IrO2 was purchased from Sigma with the size about 100 nm, as shown in Figure S8. 

The OER curves were investigated to determine each sample’s OER catalytic activity based on 

mass-normalized current density (Figure 4a and Figure S9-12). It is obvious that the 2D holey 

Ni3Fe nitride nanosheets exhibit the highest current density compared with Ni3Co nitride, Ni3Mn 

nitride, and IrO2. A quite small overpotential (300 mV) is required for the 2D holey Ni3Fe nitride 

nanosheets to deliver the current density about 100 A g-1, which is smaller than those of 2D holey 

Ni3Co nitride nanosheets (340 mV), 2D holey Ni3Mn nitride nanosheets (429 mV), and IrO2 (465 

mV). The small peak at 1.46 V of the Ni3Fe nitride could be ascribed to the redox reaction of 

Ni2+/Ni3+/Ni4+.54 The 2D nickel-based LDH and 2D nickel-based oxides nanosheets were also 

investigated for comparison (Figure S9 and Figure S10). To generate 100 A g-1, 2D Ni3Fe LDH 

nanosheets, 2D Ni3Co LDH nanosheets, and 2D Ni3Mn LDH nanosheets required the overpotential 

of 413, 430, and 423 mV, respectively. Meanwhile, 2D Ni3Fe oxide nanosheets, 2D Ni3Co oxide 

nanosheets, and 2D Ni3Mn oxide nanosheets required the overpotential of 357, 369, and 386 mV, 

respectively. It is clear that those 2D Ni3M LDH nanosheet composites have higher overpotentials 

than their corresponding holey 2D nickel-based nitride nanosheet counterparts, which can be 

attributed to the excellent electrical conductivity, the architecture, and the numerous highly 

catalytically active sites. As revealed in Figure 4b, c, the excellent OER activities of the 2D holey 

Ni3Fe nitride nanosheets were further confirmed by using Tafel plots and overpotential. The 2D 

porous Ni3Fe nitride nanosheets has the smallest Tafel slope (51 mV dec-1), indicating more 

enhanced OER kinetic activity for the holey 2D Ni3Fe nitride electrode when comparing with 

Ni3Co nitride (55 mV dec-1), Ni3Mn nitride (64 mV dec-1), and IrO2 (69 mV dec-1). As revealed in 
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Figure 4d, the holey 2D Ni3M nitride nanosheets exhibit huge activity enhancements over the 

commercial IrO2, which could be due to excellent conductivity of the Ni3M nitrides and the holey 

nanosheets structure. In particular, the holey 2D Ni3Fe nitride nanosheets reveals the highest 

performance compared with IrO2. With overpotential of 300 mV, the 2D porous Ni3Fe nitride 

nanosheet sample shows an improvement over IrO2 by a factor of nearly 25 times. Moreover, we 

investigated the long-term electrocatalytic stability of these 2D holey Ni3M nitride nanosheets with 

high current density (100 A g-1), as revealed in Figure 4e. Obviously, the holey 2D Ni3Fe nitride 

nanosheet electrode requires the lowest overpotential compared to the holey 2D Ni3Co nitride 

nanosheets and holey 2D Ni3Mn nitride nanosheets, indicating its excellent stability and 

electrocatalytic activity. For comparison, Ni3Fe nitride nanoparticles with the size about 20 nm 

were also synthesized (Figure S11). As shown in Figure S12a, the Ni3Fe nitride nanoparticles 

also demonstrate a good OER performance, with a small overpotential (303 mV). However, the 

stability of the Ni3Fe nitride nanoparticles is quite low compared with the 2D holey Ni3Fe nitride 

nanosheets. As demonstrated in Figure S12b, the Ni3Fe nitride nanoparticles has significant 

performance decay, which could be contributed to the aggregation of the small nanoparticles. The 

excellent OER activities of the holey 2D Ni3Fe nitride nanosheets could be ascribed to its excellent 

electrical conductivity and the numerous catalytically active sites provided by the newly formed 

in-plane nanopores. Moreover, the metallic nitride products exhibit excellent electrical 

conductivity (Figure 4f, Figure S13, and Table S2), resulting from their metallic properties, 

highly-orientated crystalline texture, and large lattice spacing, which is also superior to those of 

reported nitride and other types of materials, such as sulfides, oxides and phosphates, primarily 

resulting from the highly orientated crystal structure. 28, 32, 39 The electrical conductivity were 

further measured by four-probe method. The electrical conductivity of Ni3Fe nitride is 270 S m-1, 
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which is higher than that of Ni3Co nitride (200 S m-1) and Ni3Mn nitride (70 S m-1). In addition, 

the highest conductivity of Ni3Fe nitride could be attributed to its larger crystal lattice, which could 

significantly facilitate the electron transport and leading to excellent conductivity. 
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Figure 4. (a) Linear sweep voltammetrys (LSVs) of 2D holey Ni3M Nitride nanosheets and IrO2 

with for the OER based on mass-normalized current density (scan rate of 10 mV s-1); (b) Tafel 

plots of 2D holey Ni3M Nitride nanosheets and IrO2; (c) The overpotential required to realize the 

current density of 100 A g-1; (d) Corresponding activity enhancement of 2D holey Ni3M Nitride 

nanosheets relative to IrO2; (e) Stability curves of the 2D porous Ni3M nitride nanosheets; (f) 

Electrochemical impedance spectroscopy (EIS) curves of holey Ni3M nitride nanosheets, the 

equivalent circuit diagram as inset. RHE: reversible hydrogen electrode. 

 

In addition, the electrocatalytic HER activities of these holey 2D Ni3M nitride nanosheets were 

also studied in 1.0 M KOH (Ar-saturated). The holey 2D Ni3Fe nitride nanosheets electrode 

exhibited a quite tiny onset potential (209 mV), which is just huger than Pt/C (50 mV), but it is 

obviously smaller than those of the holey 2D Ni3Co nitride nanosheets (273 mV) and the holey 2D 

Ni3Mn nitride nanosheets (282 mV) (Figure 5a-e). Also, the holey 2D Ni3Fe nitride nanosheets 

exhibited a small overpotential (233 mV) to realize the current density about -100 A g-1, which is 

only bigger than Pt/C (95 mV) but smaller than the holey 2D Ni3Co nitride nanosheets (319 mV) 

and the holey 2D Ni3Mn nitride nanosheets (451 mV). Moreover, the HER current density of the 

holey 2D Ni3Fe nitride nanosheets is considerable higher than those of the holey 2D Ni3Co nitride 

nanosheets and the holey 2D Ni3Mn nitride nanosheets at a given voltage. For instance, the current 

density of the 2D holey Ni3Fe nitride nanosheets is -492.4 A g-1 with overpotential about 300 mV. 

This is 6.54 and 12.54 times higher than those of the holey 2D Ni3Co nitride nanosheets and the 

holey 2D Ni3Mn nitride nanosheets, respectively. Meanwhile, the holey 2D Ni3Fe nitride 

nanosheets demonstrated an enhanced reaction kinetic rate with a lower Tafel slope than for the 

commercial Pt/C. After 1000 cycles, there is no obvious passivation of catalytic activity, as shown 

in Figure 5(f). On basis of the above results, it is clear that the holey 2D nickel-based nitrides 

nanosheets derived from 2D nickel-based LDH nanosheets have significantly enhanced OER and 

HER catalytic activities. The improved catalytic activities can be due to the excellent conductivity 
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of the Ni3M nitrides, abundant active sites, and huge surface area provided by the 2D holey 

nanosheet structure. It is clear that the 2D holey Ni3Fe nitride nanosheets with holey nanostructure 

exhibit a lower overpotential used as OER and HER bifunctional electrocatalyst. 

 

Figure 5. (a) LSVs of 2D holey Ni3M nitride nanosheets and Pt/C for the HER based on mass-

normalized current density (scan rate of 10 mV s-1); (b) Comparison of the onset potentials; (c) 
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The overpotential required for achieve the current density of 100 A g-1; (d) Current density at  = 

-300 mV; (e) The corresponding Tafel plots for 2D holey Ni3M nitride nanosheets and Pt/C; (f) 

LSV curves of holey 2D Ni3Fe nitride nanosheets before and after 1000 cycles. 

 

It is well known that there is a definite link between catalytic performance and active surface 

area, therefore, the electrochemical surface area (ECSA) was calculated through the corresponding 

electrochemical double-layer capacitance (Cdl) to demonstrate the advantages of the 2D holey 

nanosheets structure in determining the catalytic activity. 55-58 The slope of capacitive current 

density (∆j = janode – jcathode) at 1.273 V against different scan rates is twice of the Cdl, utilized to 

stand for the corresponding ECSA. Typical CV curves of Ni3Fe nitride, Ni3Co nitride, Ni3Mn 

nitride, and nickel-based LDH in different scan rates are shown in Figure 6(a - c) and Figure S14. 

As can be seen in Figure 6(d), 2D holey Ni3Fe nitride exhibits the largest Cdl compared with those 

of the other catalysts. From LDH to 2D holey nitride, the ECSA values increased by around twice. 

This increase is mainly assigned to the formation of abundant defects and uniform nanopores on 

the nanosheets during the nitridation process. More importantly, compared with 2D holey Ni3Co 

nitride and Ni3Mn nitride nanosheets, 2D holey Ni3Fe nitride nanosheets has 104.2 % and 128.8 

% higher ECSA, more than 9 - fold and 64 - fold times of OER current density at η = 320 mV 

achieved, respectively. Such enhancement of the electrocatalytic activity can not only be ascribed 

to the larger surface area, but also due to the higher intrinsic catalytic activity due to the 

significantly enlarged lattice spacing after introducing nitrogen, leading to much more 

electrochemically accessible inner layer surface.  
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Figure 6. Typical CV curves of (a) Ni3Fe nitride, (b) Ni3Co nitride, and (c) Ni3Mn nitride in 1M 

KOH with various scan rates. (d) Differences of current density (∆j = janode - jcathode) at 1.273 V 

plotted vs. the scan rates. The Cdl is half of the slope.  

 

The overall water-splitting performance of 2D holey Ni3Fe nitride nanosheets was evaluated in 1.0 

M KOH, in which Ni3Fe nitride was utilized as electrocatalyst both at the two electrodes. The 

electrocatalyst achieved a current density about 100 A g-1 at 1.60 V (Figure S15a). The inset in 

Figure S15a reveals the formation of oxygen and hydrogen bubbles on the nickel foam. The 

electrolyser exhibits considerable overall water-splitting durability for over 10 h with no obvious 

performance decay (Figure S15b). The Faradaic efficiency of this electrolyser was determined 

with chronopotentiometry over 120 min (inset in Figure S15b). The inset in Figure S15b 
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demonstrated that the H2 generated experimentally were similar with the theoretically calculated 

results during this time. The overall water-splitting has a very high Faradaic efficiency (close to 

100 %). These results also suggest that the 2D holey Ni3Fe nitride nanosheets are promising 

bifunctional electrocatalysts for economically efficient water-splitting electrocatalysts. 

 

Even after 1000 CV cycles, the Ni3Fe nitride nanosheets still preserve the 2D holey morphology 

(Figure S16a). HRTEM image indicates that there is a quite thin oxides layer about 1-2 nm on the 

Ni3Fe nitride nanosheets (Figure S16b), suggesting the oxidization of Ni3Fe nitride nanosheets. 

The compositions changes of the 2D holey Ni3Fe nitride nanosheets after 1000 CV cycles were 

explored with X-ray photoelectron spectroscopy (XPS), as revealed in Figure S16d - f. The peaks 

of Ni2+ and Fe3+ indicate that the existence of surface oxidation in Ni3Fe nitride nanosheets into 

NiFe oxide/hydroxide. However, there is no NiFe oxide/hydroxide diffraction peak, indicating the 

main phase was still Ni3Fe nitride (Figure S16c). In addition, there is no significant elements 

contents changes before and after CV cycles (Table S3). All of the above characterizations provide 

solid evidence that the major phases are Ni3Fe nitride with a very thin oxide layer during the 

catalytic process. 

 

To further investigate and understand the enhanced OER and HER performance of the Ni3Fe 

nitride, the oxygen adsorption energy (EO) and hydrogen adsorption energy (EH) on the Ni3Fe 

nitride (111) and (200) lattice were studied by conducting density functional theory (DFT) 

calculations. Figure S17a-d and Table S4 reveal that the (111) lattice possesses more moderate 

hydrogen adsorption energy (-1.18 eV) and oxygen adsorption energy (-3.47 eV) than these of the 

(200) lattice (-3.87 and -6.93 eV, respectively), indicating that the (111) lattice is more favorable 
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than the (200) lattice for the OER and HER reactions. DFT calculations for the EO and EH on the 

Ni3Fe nitride (111), Ni3Co nitride (111), and Ni3Mn nitride (111) were further conducted. Figure 

S17c-h and Table S4 demonstrate that the Ni3Fe nitride (111) possesses a moderate oxygen 

adsorption energy (-3.47 eV), which is favorable for the OER reaction than that of Ni3Co nitride 

(111) (-2.80 eV) and Ni3Mn nitride (111) (-3.29 eV). In addition, Ni3Fe nitride (111) also exhibits 

optimized hydrogen adsorption energy (-1.18eV) when compared with Ni3Co nitride (111) (-0.67 

eV) and Ni3Mn nitride (111) (-0.59 eV). The above calculations could prove that the larger lattice 

spacing could enhance the catalytic activities through changing the hydrogen adsorption energy 

and oxygen adsorption energy. 

 

 

 

4. CONCLUSIONS 

In summary, ultrathin holey 2D nickel-based nitride lateral nanosheets (less than 1 nm thick) 

were designed and successfully synthesized by nitridation treatment of the corresponding 

hydroxide precursors. Owing to the highly-orientated crystalline texture, large lattice spacing, 

abundant exposed catalytically active sites resulting both from the atoms on the large lateral 

surfaces and the areas near the edges of the generated holes, as well as the hierarchical porous 

continuously conductive architecture suitable for transport of intermediate reaction products and 

diffusion of generated gases, these metallic nitride holey nanosheets showed excellent 

electrocatalytic property for the OER and HER. Among them, the ultrathin holey 2D Ni3Fe nitride 

nanosheets demonstrated a quite lower overpotential (300 mV) towards oxygen evolution to 

deliver a current density of 100 A g-1, a large enhancement over commercial IrO2 by a factor of 

nearly 25 times. Meanwhile, they also accelerate the catalytic HER with a tiny overpotential (233 
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mV) to achieve the current density about 100 A g-1, a kinetic rate higher than commercial Pt/C 

catalytic activity. The robust electrocatalytic activity of 2D Ni3Fe nitride nanosheets is largely 

ascribed to the enhanced electrochemical surface area, owing to the larger surface area and 

excellent intrinsic electrocatalytic property due to the significantly enlarged lattice spacing after 

introducing nitrogen, leading to much more electrochemically accessible inner layer surface. 

Therefore, in this work, the concept of designing 2D ultrathin highly-orientated and holey nitride 

nanosheets has been explored for electrocatalyst application.  
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