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Abstract 

Despite the continuous improvement of bulk heterojunction solar cell performance, their 

power conversion efficiency lags far behind inorganic counterparts. A better understanding of 

underlying mechanisms that limit the device performance allows the development of strategies 

to improve the power conversion efficiency of the devices. Of particular importance is the 

dynamics of charge carriers (generation, transportation, collection, and recombination) within 

the bulk heterojunction or at interfaces with electrodes. Within this body of work, charge carrier 

dynamics of bulk heterojunction solar cells were investigated as a function of (i) the use of 

electron transport layer poly[(9,9-bis(3՜-(N,N-dimethylamino)-propyl)-2,7-fluorene)-alt-2,7-

(9,9-dioctyl)-fluorene] (PFN), (ii) altering dielectric constant by considering Clausius-Mossotti 

relation, and (iii) the appearance of the S-shaped current density-voltage curve. 

While PFN has been extensively used as electron transport layer to modify the interface, 

a number of issues over the optimum PFN film can be found in the literature. To address the 

issues, the modification of the interface between the cathode electrode and bulk heterojunction 

compose of Poly[N-9՜-heptadecanyl-2,7-carbazole-alt-5,5-(4՜,7՜-di-2-thienyl-2՜,1՜,3՜-

benzothiadiazole)] and 1-[3-(Methoxycarbonyl)propyl]-1-phenyl-[6.6]C71 (PCDTBT:PCBM) 

were studied. It was determined that for a range of PFN solutions (from 0.5 to 0.2 mg/ml) cast 

at a wide range of spin speed (from 1000 to 8000 rpm), the performance of the solar cell devices 

is lower or similar to the control devices. Further investigation of devices revealed no 

substantial alteration in recombination or mobility of charge carriers upon incorporation of PFN 

interlayer. It was proposed that PFN interlayer is unable to modify the interface and therefore 

charge carrier dynamics of the solar cell devices, contrary to what has been reported in the 

literature.   

Secondly, increasing dielectric constant of the bulk heterojunction was considered as an 

alternative path to influence recombination of charge carriers. Based on the Clausius-Mossotti 
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relationship, the polymeric dielectric constant has consisted of two parts, i.e., polarization and 

free volume. It was speculated that replacing air in the free volume of bulk heterojunction with 

an organic filler may enhance the dielectric constant. A series of materials with higher dielectric 

constant than air (PFN = 2.16, rhodamine 101 = 4.73, Isopropyl alcohol:17.9) was incorporated 

to the bulk heterojunction. Then, the dielectric constant of the bulk was measured as a function 

of the incorporated materials. The bulk heterojunction was composed of either polymer 

(PCDTBT) or small molecule 7,7՜-[4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b՜]dithiophene-

2,6-diyl]bis[6-fluoro-4-(5՜-hexyl-[2,2՜-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole] (p-

DTS(FBTTh2)2) as donor and PC60BM as acceptor. It was determined that the dielectric 

constant varied only slightly depending on the bulk system and the used materials. In addition, 

the photovoltaic performance of the solar cell devices is affected, mostly due to the interference 

of the incorporated materials with the generation and collection of charge carriers. These results 

imply that free volume of the bulk heterojunction may not be readily accessible to modify and 

Clausius-Mossotti relation cannot be thus employed to enhance BHJ dielectric constant.         

Thirdly, the charge carrier dynamics of solution-processed small molecule bulk 

heterojunction (p-DTS(FBTTh2)2:PC70BM) was investigated when it was influenced by S-

shaped current-voltage phenomena. The power conversion efficiency of the S-curve devices 

was considerably decreased, mostly due to the reduction of fill factor and short-circuit current. 

It was proposed that the formation of a thin layer of the small molecule near cathode electrode 

was responsible for the occurrence of the S-shaped curve. It was determined that the thin layer 

not only participates in photogeneration process but also hinders the collection of charge 

carriers via introducing an additional energy barrier. In addition, charge carrier recombination 

was found to be faster in S-curve devices. A novel method was examined to recover device 

performance and a normal diode-like current-voltage curve was accomplished when PCBM 

content of the bulk heterojunction was increased.      
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1.1. ORGANIC PHOTOVOLTAICS: A CASE FOR FUTURE ENERGY 

n a world where the engine of economic growth and human development is driven 

by the energy, supplying a clean, sustainable, reliable and affordable source of 

energy is a great challenge of our time and expected for the foreseeable future. The economic 

growth - indicated by the gross domestic product (GDP) – is the key determinant for energy 

demands around the world. With a projected 3.3%/year GDP from 2012 to 2040 particularly 

led by countries outside the Organization of Economic Corporation and Development (OECD), 

it comes as no surprise that the global demand for energy will continue to increase over the 

coming decades. Indeed, estimates by U.S. Energy Administration Information (EIA) 

anticipate that total world energy consumption will rise from 549 quadrillions Btu1 in 2012 to 

815 quadrillion Btu by 2040.1 This huge expansion of projected energy use raises questions 

such as i) what are sources to supply this amount of energy, ii) what are the consequences 

regarding utilization of these energy sources. Such questions are amongst the most significant 

challenges facing humanity and how to address said questions will shape the future of human 

and other life forms for generations. 

 

1.1.1. Energy Sources and Global Warming 

Before addressing future energy challenges, it is informative to survey the current energy 

supply sources, see Figure 1.1a. The British Petroleum (bp) company estimates that the primary 

source of energy in 2016 was fossil fuels which include petroleum, coal and natural gas, 

amounting to 85% of the world’s energy consumption (Figure 1.1a).2 On the contrary, non-

fossil fuel based energy sources in 2016 consisted of nuclear 4%, hydroelectric 7% and Climate  

                                                

1- Btu is acronym for British thermal unit. A quadrillion Btu is about equal to amount of energy of 45 
million tons of coal, 1 trillion feet cubic of natural gas and 170 million barrels of crude oil. 
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Figure 1.1. (a) Global energy consumption breakdown by energy source in 2016 taken from bp statistical 

reference case,2 (b) total energy consumption by energy source, 1990-2040 (quadrillion Btu) from EIA reference 

case.1  

renewable (solar, wind, tidal, geothermal, wood and waste) 4%. This demonstrates the 

dominance of the fossil fuel in the energy marketplace, which can be mostly due to their 

abundance, industrial demands, research and a long history of heavy investment by governing 

body across the globe. It is even projected by the EIA that fossil fuels will still account for the 

78% of energy consumption by 2040 (Figure 1.1b). Although liquid fossil fuel (petroleum) 

remains the main source of energy for world energy consumption, natural gas is on the rise 

expected to surpass coal (the slowest-growing energy source) by 2030.1  

Given the projection of world energy consumption, serious concerns have been raised in 

the scientific community and public domain regarding the impact of using of fossil fuel, on a 

massive scale for such a prolonged period of time, in addition to the effect(s) on the quality of 

the human life and on planet earth. Even though the global reserve of the fossil fuel will be 

eventually depleted, the current stockpiles are more than ample to inflict an irreversible climate 

catastrophe. Multiple lines of scientific evidence have indicated the rise of average temperature 

of Earth’s climate system, known as global warming.3-4 The Intergovernmental Panel on 

Climate Change (IPCC) has concluded the following in its Fifth Assessment Report:5 
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“It is extremely likely that human influence has been the dominant cause of the observed 

warming since the mid-20th century.” 

The human influence is primarily related to the release of greenhouse gasses (GHG) such 

as carbon dioxide (CO2), methane, and nitrous oxide (N2O), among others. It is generally 

accepted that the combustion of fossil fuels is one of the main sources of GHG emissions. An 

estimation by the EIA has projected a 34% increase in world energy-related CO2 emission from 

32.2 million metrics tons at 2012 to 35.6 million metrics tons by 2040.1 Unless a substantial 

reduction of GHG emissions occurs, the climate disruption can take an immense toll on natural 

and socioeconomic system including i) more frequent extreme weather events (droughts, 

floods, wildfires) resulting in the death of thousands,6-9 ii) rising sea levels causing the gradual 

submergence of low-level coastal area,10-11 iii) power outages,12 iv) crop failure.13 A significant 

shift in energy sources from fossil fuels toward a less polluting is indispensable. Renewable 

energy potentially offers clean, yet sustainable sources of energy for the future.    

 

1.1.2. Renewable Energy 

Renewable energy is energy sources that originate from nature and continuously 

replenished by natural processes on a human timescale. The renewable energy can be harnessed 

from different natural sources such as sunlight, wind, plant growth, tidal, and geothermal which 

are widespread over geographical areas. Figure 1.2 represents various kinds of renewable 

energy resources. It is believed that the rapid deployment of the renewable energy will not only 

improve public health,14-15 create jobs,16-17 and contain financial benefits,18 but also mitigate 

global warming by reducing GHG emission arising from the burning of fossil fuel. However, 

the feasibility of implementation and degree of limitation associated with the use of renewable 

energy sources should be considered. 
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Figure 1.2. Overview of renewable energy resources. 

  

Hydropower is the power that can be harnessed from moving water. It is a reliable, well-

advanced technology with more than a century of practical advancement which already 

supplies 0.5 terawatts (TW) electricity worldwide.19 However, hydropower technology is 

extremely site-specific and the majority of feasible locations (rivers) have already been 

identified and exploited, thereby leaving small room for more expansion of utilization of the 

energy. In addition, it brings about substantial changes to lands, rivers and the ecosystem.20    

Geothermal energy exploits the heat energy within the Earth which is generated via the 

temperature difference between the planet core and its surface.21 Geothermal energy is cost-

effective, reliable and sustainable, yet have some limitation including i) limit to specific areas 

(near tectonic boundaries), ii) require advanced technology to drill through the planet's crust, 

iii) releasing greenhouse gases and toxic elements.22-23  

Biomass energy is the energy from the Sun which is collected and stored in the plants, 

trees, and crops through photosynthesis processes.21 The energy of biomass can be directly 

obtained via burning or can be converted into biofuel. Although it may play a role in the context 

of liquid fuel, there are some challenges to overcome for practical electricity production from 

biomass sources including low energy density, and costly storage and transportation. 

Moreover, there is a competition between biomass farming and food production arising from 

the global shortage of productive land, water, and fertilizer.21  
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Wind power is the conversion of flowing air via wind turbines into electricity. It is one 

of the main sustainable energy sources that emit no greenhouse gases and use no water during 

its operation. The advancement of technology within the turbine wind has paved the way for 

the deployment of multiple wind farms during the past decades. However, power production 

varies significantly especially in short time frames, making it supplement to other power supply 

sources.21  

Ocean energy refers to energy that can be harnessed from waves, tides, salinity and 

difference temperature in the oceans to produce electricity.21 While ocean energy technology 

is at the early development stage, however, serious concerns have been raised regarding side 

effects on the marine systems.24   

The renewable energy sources above are almost indirect branches of solar energy. This 

is the energy of the Sun that drives winds and ocean currents, evaporates water and produces 

clouds, and stores it in the plants through photosynthesis. An abundant amount of the solar 

energy reaches the surface of the Earth every day in the form of irradiation and heat. This 

widely available energy can be directly exploited to produce useful outputs. The International 

Energy Agency (IEA) has said:25  

“The development of affordable, inexhaustible and clean solar energy technologies will have 

huge longer-term benefits. It will increase countries ‘energy security through reliance on an 

indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, 

reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices 

lower than otherwise. These advantages are global.” 

Despite numerous advantages of solar energy, there are a few limitations including i) solar 

radiation level is very low at night, ii) The amount of sunlight fluctuates, depending on 

geographical location and weather condition. In addition, there are some concerns regarding 

health and environmental impact of manufacturing processes of photovoltaic solar cells.26   
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1.1.3. Photovoltaic Solar Cells 

Several approaches have been adopted to capture the solar energy including photovoltaic 

solar cell (PV),27 concentrated solar panels (CSP),28 solar thermal heating,29 and solar fuels.30 

The Photovoltaic cells are the leading technology for solar energy and seem to be the backbone 

of solar power generation for forthcoming decades. Seth et al. have shown that if 2% of Earth’s 

land is covered by photovoltaic solar panels with an average power conversion efficiency of 

12%, an approximation of 67 TW of electricity can be supplied which is twice than that of total 

projected energy demand in 2050.19 As of 2016, the global capacity of the installed solar 

photovoltaic was 303 gigawatts (GW).31 The fast deployment of the solar PV is attributed to 

advances in the technologies which increase the effici[ency of installed photovoltaics together 

with the reduction of the costs owing to massive scale production.32 In addition, PV is highly 

modular technology which allows for the economy of scales and ease of deployment.33 Of 

noteworthy importance is solar PV technology is environmentally benign and once installed no 

greenhouse gases, in particular, are emitted.  

The photovoltaic solar cell refers to a device that directly converts sunlight into 

electricity. The device is comprised of a semiconducting material which generates electrical 

power upon exposure to the light. This involves the absorption of the light and the generation 

of charge carriers which are then separated and collected at respective electrodes. A wide 

variety of materials have been employed to fabricate photovoltaic solar cells. Figure 1.3 

exhibits the major PV solar cells categorized based on semiconducting materials. These 

semiconducting materials differ from each other in terms of light absorption, power conversion 

efficiency, production cost and manufacturing technology. 
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Figure 1.3. Various types of photovoltaic solar cells. Abbreviation: DSSC: Dye-synthesized Solar Cell; PSC: 

Perovskite Solar Cells; OSC: Organic Solar Cells; QDSC: Quantum-Dot Solar Cells; GaAs: Gallium Arsenide; 

InP: Indium Phosphide; sc-Si: Monocrystalline silicon; mc-Si: multi-crystalline silicon; CdTe: Cadmium 

Telluride; CIS: Copper Indium di-Selenide; CIGS: Copper Indium Gallium di-selenide; CZTS: Copper Zinc Tin 

Sulfide; CZTSS: Copper Zinc Tin Sulfide Selenide; a-Si: Amorphous Silicon, µ-Si: microcrystalline Silicon. The 

efficiencies have been taken from Green et al.34, *: the efficiency was not reported in the ref [34].  
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The most prevalent PV solar cells on the market are crystalline silicon (c-Si) (also known 

as the first generation) which are made of monocrystalline (sc-Si) and polycrystalline (mc-Si) 

silicon. The sc-Si solar cells are fabricated from a single crystal of silicon (sliced from a big 

size ingot) by a process known as Czochralski process.35 The sc-Si solar cells are highly reliable 

and their efficiency lies around 26-27%.34, 36 However, the manufacturing process of sc-Si solar 

cells is costly and time-consuming.37 The polycrystalline solar cells, on the other hand, are 

composed of a number of different crystals attached to each other on a single crystal. The 

manufacturing process of mc-Si is cheaper and requires fewer materials compared to sc-Si solar 

cells, yet compensate with lower power conversion efficiency (21%).34, 36   

Thin film solar cells are the next generation of the solar cells which consist of a thin layer 

of photovoltaic materials deposited on a supporting substrate such as metal, glass or plastic 

coil.38-41 The thickness of PV layer in thin film solar cells is in the range of few micrometers 

which is due to higher absorptivity of the PV materials compared to the crystalline materials. 

Since fewer materials are used and simpler techniques (spray coating) are employed to fabricate 

the thin film solar cells, the manufacturing cost is reduced. Examples are cadmium telluride 

(CdTe), copper zinc gallium di-selenide (CIGS) and amorphous silicon (a-Si). The efficiency 

of the CdTe and CIGS are comparable and close to the mc-Si solar cell (21% and 21.7%, 

respectively),34 making them appealing options for further commercialization.  

The newest generation of the photovoltaic solar cell on the verge of commercialization 

is organic photovoltaics. The light-sensitive layers in this type of solar cell are organic materials 

such as conjugated polymers or small molecules. Examples of these classes of solar cells are 

organic solar cells,42-43 dye-synthesized solar cells,44 perovskite solar cells,45 and quantum-dot 

solar cells.46 There are advantages associated with employing the organic photovoltaics 

including i) semiconducting properties of the organic materials can be tuned via engineering 

of chemical structures, ii) organic materials have high absorption coefficient (~ 1000 times 
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higher than polycrystalline silicon), enabling a thin layer of few hundred nanometers to absorb 

a large portion of incident light, iii) the organic photovoltaics are lightweight, flexible and 

visually aesthetic which can be integrated within current infrastructure,43, 47-48 iv) the 

manufacturing process of organic photovoltaics is simpler and cheaper than crystalline silicone 

which benefits bulk scale production.49 However, several challenges need to be addressed in 

order to make the solar cell commercially viable. Some of the challenges are 1) the power 

conversion efficiency of organic photovoltaic module remains very low, 2) the operational 

lifetime of OPV devices is far shorter than inorganic counterpart, 3) variation in batch-to-batch 

production of organic material seems to be a difficulty for performance consistency.19, 50 

Noteworthy that a transition from a small scale, spin-coated laboratory-based solar cell to a 

flexible large-scale coupled with roll-to-roll printing technique and environmentally friendly 

formulation must take place to achieve scalable manufacturing.  
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1.2. ORGANIC SOLAR CELLS 

Among organic photovoltaic technologies, organic solar cells (OSC) have made a 

significant contribution to the research filed over the past 15 years. The prospect of cost-

effective throughput fabrication using roll-to-roll printing technology has inspired a great deal 

of research which has advanced our knowledge about organic electronics and paved the way 

future commercialization of organic solar cells. Organic solar cells consist of a photoactive 

layer which is sandwiched between two electrodes with different work functions. While the 

photoactive layer is responsible for transforming part of the solar electromagnetic spectrum 

(radiation) into charge carriers (electricity), the electrodes are responsible for collecting those 

charge carriers. The photoactive layer has composed of two major compounds; so-called 

electron donor and electron acceptor material. The donor and acceptor materials govern 

fundamental processes that determine the performance of organic solar cells. These 

fundamental processes are i) photon absorption by electron donor and exciton (electron-hole 

pair) generation, ii) exciton diffusion to donor-acceptor interface, iii) exciton dissociation to 

free charge carriers at the interface, and iv) charge carrier transport and collection at the 

respective electrodes. The processes are discussed in details in the following section. The 

efficiency of the abovementioned steps and consequently device overall performance is 

dependent crucially on the morphology of the photoactive layer, i.e., how donor and acceptor 

materials dwell throughout the active layer. 

The donor and acceptor can be both polymers, small molecules and/or combination of 

polymer and small molecule (Figure 1.4). A characteristic that all donor and acceptor materials 

have in common is a large conjugated system, i.e., the alternation of single and double bonds 

between the carbon atoms. The ground state configuration of a carbon atom is 1s2 2s2 2p2.47, 51 

The s orbital interact with Px and Py orbitals and form three sp2 orbitals which then form the σ 

bonds. But, the Pz orbital which is perpendicular to the plane of sp2 orbitals does not participate 
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in σ bond. Instead, the overlap of Pz orbital electron wavefunction leads to the formation of two 

new orbitals called bonding (� ) and antibonding (�*). The charge in these orbitals are 

delocalized which is the reason for conductivity in the carbon-based semiconductor. The 

bonding and antibonding orbital also known as highest occupied molecular orbital (HOMO) 

and the lowest unoccupied molecular orbital (LUMO), respectively. The band gap in organic 

semiconductors refers to the energy difference between the HOMO and LUMO level which is 

in order of 1-3 eV.47 These HOMO and LUMO energy levels can be used to obtain many 

properties of organic semiconductors including open-circuit voltage,52 ionization energy, 

electron affinity,53 electronic band gap, and the driving force for charge separation.54 

 

 

Figure 1.4. Chemical structures of some polymers and small molecule used as either acceptor or donor. 
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1.2.1. Bulk Heterojunction  

The performance of organic solar cells is largely dependent on the distribution and 

interaction of donor and acceptor materials within the photoactive layer. In the case of most 

efficient OSC, donor and acceptor materials are intimately mixed to form a bicontinuous 

interpenetrating network known as bulk heterojunction (BHJ). The idea of bulk heterojunction 

was first introduced by Heeger et al.55 in 1995 to overcome the low rate generation of free 

charge carriers in the planar structure OSC. Due to short exciton lifetime (and therefore 

diffusion length), the efficiency of the devices is inherently limited. The exciton is Coulombic-

bound electron-hole pair with no net charge. The binding energy between electron and hole in 

the organic semiconductor is much large than that of thermal energy (kBT = 0.025 eV). As such, 

dissociation of exciton to free electron and hole requires an additional driving force to 

overcome the binding energy.  

The bulk heterojunction facilitates scavenging exciton to free charge carriers by 

providing the driving force at donor-acceptor interface. The concept of bulk heterojunction has 

the advantage of exciton dissociation all over the photoactive layer, thereby leading to dramatic 

enhancement of charge carrier generation. In addition, it contains large enough percolating path 

that allows free charge carriers to reach their respective electrode. However, difficulty to 

control the exact nature of BHJ morphology has made it necessary to use some pre- or 

posttreatment techniques such as thermal/annealing or processing additives to further fine-tune 

3D nanostructure of BHJ morphology.56 The BHJ morphology is the most dominant active 

layer geometry in OSC offering advantages including low-cost, large-scale fabrication process 

over silicon solar cells.57 

 

1.2.2. Device Physics 

Figure 1.5 presents a simplified overview of photoinduced processes happens within the  
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bulk heterojunction solar cells following photoexcitation. First, absorption of photon produces 

excitons. The exciton then diffuses to the interface of donor/acceptor phase. Once at the 

interface, a charge transfer (CT) state is formed with an electron in acceptor phase and the hole 

in the donor phase. If the binding energy of the electron and hole (CT state) can be overcome, 

the electron will be transferred to the LUMO level of acceptor and the hole to the HOMO level 

of the donor. These free charge carriers are described as charge separate (CS) state that can 

travel through pure domain phase of donor and acceptor to be collected by their respective 

electrodes.58-59 Noteworthy, it is believed that these free charges can distort the position 

surroundings their nuclei and form a pseudo particle known as polaron which is comprised of 

charge and phonon.47 

  

Figure 1.5. Schematics of charge carrier generation in polymer-PCBM bulk heterojunction active layer from 

exciton formation to free charge carrier collection (for the case of donor phase absorption) consider Braun-

Onsager model.  
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1.2.2.1. Exciton generation and dissociation  

The primary product of the light interaction with semiconductors is an exciton. Exciton 

is a pair of electron and hole which are bound to each other by the electrostatic Coulomb force. 

The low dielectric constant of organic materials (e.g. benzol = 2.28) leads to the formation of 

Frenkel-type excitons.60 The binding energy of electron and hole in Frenkel-type exciton is 

around 0.5-1 eV. The exciton usually has a certain lifetime (around 1 ns) and afterward 

recombines radiatively. As mentioned earlier, the exciton binding energy by far exceeds 

thermal energy (kBT = 0.025 eV) at room temperature. Before dissociation of the exciton can 

take place, it must travel to the donor/acceptor interface. Since the exciton is a neutral species, 

its motion cannot be influenced by an electric field and therefore they randomly diffuse. Hence, 

donor/acceptor interface must be in the range of exciton diffusion length. Various diffusion 

lengths have been reported in the literature, ranging from 3-30 nm.47 For example, the diffusion 

length of P3HT and C60 excitons are reported to be around 4 and 12 nm, respectively.61-62 

Upon arrival to the donor/acceptor interface, the exciton can transfer its electron to the 

electronegative acceptor. Many studies have shown that the charge transport is extremely fast 

and on the order of tens of femtoseconds (< 100 fs).63-66 The exciton dissociation takes place 

when energy gain is larger than the binding energy of electron and hole. Only then, charge 

transfer process generates an electron in acceptor phase and a hole in donor phase. The energy 

gain has been related to the energy offset between the LUMO of the donor and the LUMO of 

the acceptor. Several studies have reported a universal prerequisite of 0.3 eV offset energy 

between donor and acceptor for the efficient exciton dissociation. However, the theoretical 

basis regarding the assumption is limited 59 and some exceptions have been observed.67-68 

Moreover, limited the dissociation to energy offset between LUMO of donor and acceptor 

appears to be a rough estimate as some other factors have been identified that could have 
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contributed to the exciton dissociation including doping,69 mixed phases,70 charge defects,71 

and entropy gains from increased electron and hole separation.59, 72 

 

1.2.2.2. Charge transfer (CT) state 

It is shown that after transfer of electron and hole to the acceptor and donor phases, 

respectively, electron and holes are still Coulombically bound together.54, 59, 73-75 This 

intermediate state is called charge transfer (CT) state and exists at the interface of donor and 

acceptor phases. The binding energy of electron and hole in CT state has been estimated to be 

around a few hundred millielectronvolts which is still large than the thermal energy available 

at room temperature.73, 76-77 Once the CT state form, there is a competition between separation 

into free charge carriers and recombination (geminate) into ground state or triplet state (if 

energetically suitable). As such, an excess energy is needed to separate this electron-hole pair 

(polaron pair) into free charge carriers. In addition to factors mentioned in the previous section 

causing exciton dissociation, the role of electronic delocalization has been also explored. 

Several studies have reported that short-lived hot and delocalized CT states can help to 

overcome the Coulomb attraction by increasing effective separation of an electron-hole pair.54, 

59, 73, 78-80 It has been also reported that the excess energy arising from absorbing above bandgap 

photon can lead to faster and efficient free charge carrier generation in some polymer/fullerene 

systems which are consistent with hot CT concept.78, 80  However, the role of hot CT state 

regarding charge carrier generation process has been found to be insignificant in several other 

polymer/system.81-83 Nevertheless, recent studies have shown that in the efficient bulk 

heterojunction the charge generation doesn’t pass through the bottleneck of CT states and the 

majority of free charge carriers are directly produced via delocalized states.74, 84 Hence, this 

field of study still remains a matter of research and debate. 
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1.2.2.3. Charge carrier transport/mobility         

Following exciton dissociation and CT state separation, transportation of charge carriers 

toward their respective electrode takes place. Charge carrier mobility in the crystalline 

semiconductor is in order of 102 - 103 cm2 V-1 s-1 due to 3D rigid lattice ensuring wide valence 

and conduction bands. In contrast, organic semiconductor suffering from weakness of the 

electronic coupling, large electron-vibration coupling, and disorder which give rise to the 

localization of charge carriers and formation of polaron.73 As such, charge carrier transport is 

limited to thermally assisted hoping process from one localized state to another across the 

different molecule. As a result, charge carrier mobility strongly relies upon the morphology of 

the active layer (bulk heterojunction) and varies largely over ranges from 10-6-10-3 cm2 V-1 s-1 

in highly disorder materials to > 1 cm2 V-1 s-1 in highly ordered materials.73 

 In the most BHJ system, the mobility of the electron is governed by the transport through 

the LUMO level of acceptor toward the cathode electrode, whereas the hole mobility originates 

from transport through the HOMO level of donor toward the anode electrode. The fact that 

bulk heterojunction composes of a disordered blend of donor and acceptor materials, the 

mobility of individual charge carrier is heavily influenced by the ratio of donor/acceptor and 

the morphology of the bulk heterojunction.85-86 For example, the hole mobility of pristine P3HT 

(donor) is around 1.4 × 10-4 cm2 V-1 s-1, whereas a four order of magnitude drops when it is 

blended with PCBM (acceptor). The other factor can influence charge carrier mobility are 

temperature, energetic disorder (trap density), and electric field.87-91       

The performance of the OSC is largely dependent on the collection of photogenerated 

charge carriers at the electrodes. This process competes with recombination (nongeminate) loss 

mechanisms and mostly depends upon the mobility of charge carriers within the bulk 

heterojunction. The higher the charge carrier mobility is, the more charge carrier can be 

extracted. On the other hand, low charge carrier mobility results in accumulation of charge 



 

17 

 

carrier within the bulk heterojunction due to less efficient extraction, leading to more 

recombination (nongeminate) and consequently low efficient devices. Therefore, some studies 

have indicated that 10-4 cm2 V-1 s-1 as a minimum mobility required for the efficient solar cell 

devices.92-95 

 

1.2.2.4. Charge carrier extraction/collection 

Charge extraction/collection is the last step that charge carriers undergo to produce a 

photocurrent. The electron is extracted through the cathode electrode and the hole via anode 

electrode and the extracted charge carries thus generate the resulting photocurrent. An efficient 

charge carrier extraction is complementary to an efficient charge generation which should take 

place before charge carrier concentration can be significantly reduced by recombination 

processes. It is shown that at short-circuit conditions (strong internal electric field) the charge 

carriers are swept-out of the bulk heterojunction on the order of 100 ns.96-97 In the swept-out 

process, the free charge carriers are extracted via drift transport under influence of built-in 

electric field. The swept-out process competes with recombination processes (nongeminate) 

such that charge carriers can be efficiently collected at the electrodes. It is shown that charge 

carrier sweep-out is proportional to the magnitude of the internal electric field and is restricted 

by the charge carrier mobility.84, 96 Noteworthy, at the voltage near open-circuit condition 

where internal electric field approaches zero, the drift current contribution to the charge 

extraction is in insignificant and diffusion current may play a significant role.84  

It should be noted that the contact between the electrode and the active layer plays a large 

role in the extraction/collection of charge carriers into the electrodes. Various metals including 

aluminum, gold, silver together with transparent conducting oxide, conducting polymer, 

graphene, and carbon nanotube are commonly employed to make contact in OSC devices. As 

mentioned above, efficient charge collection is due to a drift electric field (it is assumed that 
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there is no sufficient charge carrier density or mobility that can compensate the applied field) 

which is set up by the metallic and semiconducting contacts.84, 96, 98-99 Given the thickness of 

the active layer, the drift electric field should be uniform in the efficient solar cell devices. 

Other important factors of contact that can influence device performance are contact 

workfunction, stability, the ability to block opposing charge, and favorable chemical 

interaction with the active layer.84 For example, it is shown that PSS dopant of PEDOT:PSS 

layer migrates to the active layer and significantly reduce the lifetime of the devices.100  

Some other factors have also been reported that significantly influence the 

extraction/collection of charge carriers. For instance, imbalanced mobility between electron 

and hole and space charge formation can locally screen electric field near electrodes, leading 

to significant suppression of drift current and consequently charge carrier collection.101 

Another issue is the occurrence of the S-shaped current density-voltage curve which seriously 

undermines the collection of charge carriers. Several explanations have been reported in the 

literature for the S-shaped characteristics including the formation of a dipole at the interface,102 

or reduction of charge transfer rate over the interface or by the surface recombination.47, 103-104       
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1.2.3. Energy Loss Mechanisms 

Recombination of charge carriers reduces the short-circuit current, open-circuit potential, 

and fill factor in BHJ solar cells, thereby limiting power conversion efficiency (PCE) of the 

organic solar cells. Hence, identifying recombination mechanism would help to develop 

strategies preventing charge carriers annihilation and therefore enhances the PCE. In an ideal 

scenario, every absorbed photon by active layer would be converted into free charge carriers 

which are collected at the electrodes. However, under real circumstances, every step from 

exciton generation to charge carrier collection is prone to lose mechanisms. Once exciton is 

generated, it has only a few nanoseconds to reach a donor/acceptor interface prior to relaxing 

to the ground state. If nanoscale domain sizes are larger than exciton diffusion length, it is more 

likely that exciton recombine. Once CT state form, there is still the possibility of recombination 

of the electron-hole pair rather than dissociating into free charge carriers. After successful 

dissociation of CT states into free charge carriers, the charge carrier must travel to their 

respective electrode. A possible route of recombination is to encounter an oppositely charged 

free carrier on their way to the electrodes. Charge carrier recombination in organic solar cells 

has been categorized into two major group, i.e., geminate and non-geminate recombination. 

The geminate term refers to recombination of electron and hole (pair) which originates from a 

single photon, while non-geminate considers recombination whose electron and hole are 

created by different photons.  

  

1.2.3.1. Geminate recombination 

The process of recombination of an electron-hole pair originated from some photon is 

known as geminate recombination. The driven force for the geminate recombination is the 

strong Coulomb attraction between the electron-hole pair in the organic semiconductor. This 

recombination process includes excitons which are lost to ground state before reaching to the 
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interface and electron-hole pair that recombines at the donor/acceptor interface before separate 

into free charge carriers. Numerous factors have been reported that affect the geminate 

recombination including nanoscale domain size of the active layer, energy offset between 

donor and acceptor, delocalization of CT state, the energy of triplet exciton, electric field, and 

phase purity.92 The photocurrent of bulk heterojunction system can be significantly limited y 

the geminate recombination in some systems. It is also shown that geminate recombination can 

be increased by the applied bias, thereby affecting fill factor.105-107 However, it is shown that 

geminate recombination does not play a significant role in recombination of charge carriers 

and the efficiency is mainly limited by the non-geminate recombination.84, 97, 108-109    

 

1.2.3.2. Nongeminate recombination 

The nongeminate recombination encompasses recombination of charge carriers that have 

not been originated from absorption of a single photon. The order of nongeminate 

recombination can be classified based on the number of the participant into three categories: 

monomolecular (trap-assisted) recombination, bimolecular recombination, and trimolecular 

(Auger) recombination.92 Recombination of free charge carriers with trapped carriers 

considered first order process, especially when the concentration of trapped charges exceeds 

mobile’s one. If two free and independent charge carriers recombine, bimolecular 

recombination rate describes electron-hole recombination. Higher order recombination process 

is well established in the inorganic solar cell where three particles are involved such as Auger 

recombination. However, this has been rarely observed in organic solar cells.92, 110-112  

The nongeminate recombination can effectively eliminate charge carriers that could 

otherwise contribute to the photocurrent. As a result, photocurrent could be significantly 

reduced by the recombination. This is mostly dependent on the thickness of the active layer, 

the mobility of charge carriers, and degree of phase separation between donor and acceptor.92 
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The nongeminate recombination becomes significant at the open-circuit conditions where the 

applied bias and injection of dark carriers screen the internal electric field within the bulk 

heterojunction. Hence, fill factor of the devices could also be affected. Establish an efficient 

and balanced charge carrier mobility in conjunction with strong internal electric field can help 

to reduce the effect of the nongeminate recombination on the photocurrent and fill factor. It is 

also reported that nongeminate recombination could influence the open-circuit potential of the 

solar cell.113-114  

 

1.2.3.2.1. Bimolecular recombination 

The most common type of recombination observed in the organic solar cell is bimolecular 

recombination. Bimolecular recombination involves recombination of two free mobile charge 

carriers. The bimolecular recombination in the disordered organic semiconductor with 

localized states depends on the rate at which opposite charge carriers meet each other. As a 

result, the rate of bimolecular recombination is proportional to the mobility of charge carriers 

in organic semiconductors. The most widely used model to describe bimolecular recombination 

rate is Langevin which correlate the rate to the charge carrier density, mobility of charge carrier 

and dielectric constant of the medium as follow:84, 92 

R = e nenh 
µ�� µ�

����
  (1-1)  

where e is elementary charge, ne and nh represents electron and hole density, µ� and µ� are 

mobility of electron and hole and ����  stands for effective dielectric constant of medium. 

Considering Langevin model, one may expect that increasing mobility of charge carriers would 

eventually enhance bimolecular recombination in organic solar cells. This is not generally the 

case as some studies have shown that increasing mobility reduce the bimolecular 

recombination yield in OSC.104, 115 This is due to enhance charge extraction, leading to decrease 
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the density of charge carriers within the device. Although bimolecular recombination in organic 

solar cells has been satisfactorily described by the Langevin model, the strength of this model 

in many BHJ system has been found less pronounced. This is commonly referred to reduced 

Langevin recombination and several reasons for the reduction of the rate have been reported in 

the literature.92, 105, 116-120 It should be noted that bimolecular recombination is charge carrier 

density- and bias dependent and is responsible for the majority of recombination from short-

circuit to open-circuit conditions.84, 97, 109 

   

1.2.3.2.2. Trap-assisted recombination 

Trap-assisted recombination is a first-order recombination process in which a free charge 

carrier recombines with opposite charge through a localized energetic trap. The rate of trap-

assisted recombination depends on traps density and how fast the free charge carrier finds the 

trap. A model for the trap-assisted recombination was developed for the inorganic solar known 

as Shockley-Read-Hall (SRH) which has been lately applied to organic solar cells.121-123 The 

trap-assisted recombination in the organic semiconductor is controlled by the diffusion of free 

charge carrier toward the trapped-charge. As a result, trap-assisted recombination is governed 

by the charge carrier transport.124 In most BHJ systems, donor materials or impurities are the 

main culprits for the trap-assisted recombination as it is known that acceptor materials (mainly 

fullerene) are trap free. It is shown that any materials with LUMO level above approximately 

3.6 eV are expected to include electron-trapping, thereby inducing trap-assisted 

recombination.92, 125   
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1.2.4. OSC Challenges & Motivation 

It is generally accepted that OSCs are currently facing a number of ‘grand challenges’ 

before achieving their practical use in society. Some examples include overcoming low 

efficiencies,126-127 low operational lifetimes under ambient conditions,84, 128 improvements of 

the manufacturing processing methods,84 amongst others. More specific challenges associated 

with bulk heterojunction based solar cells can include the design new of materials with high 

efficiency, increased stability, resistance to unwanted environmental conditions, and 

compatible with the processing of large volumes, understanding/characterization of the 

photophysical mechanisms resulting in device failure, reduction energy loss during charge 

carrier photogeneration and collection, fine-tuning of bulk heterojunction morphology, and 

spectral sensitivity.43, 47-48, 50, 84 To address some of these issues, this section outlines the 

challenges associated with (a) dielectric constant, (b) interfacial layer, and (c) low efficiencies 

associated with the occurrence of the S-shaped current density-voltage curve.    

 It is believed that the dielectric constant can have a profound effect on the efficiency of 

OSCs. Koster et al.129 have argued that enhancing dielectric constant properties of the bulk 

heterojunction can lead to a reduction of the exciton binding energy, the singlet-triplet energy 

splitting, the reorganization energy, the Coulomb attraction within the CT exciton, the geminate 

recombination back to the CT state, the bimolecular and trap-assisted recombination and space-

charge effects. It was proposed that if one changed the dielectric constant from a low constant 

of e.g. 3 to a higher constant of e.g. 10, an increase in efficiency of up to 21% can result. While 

this is theoretically based, the possibility of achieving this is an intuitively attractive 

proposition to explore. It is therefore surprising to find that little attention has been given to 

the pursuit of this concept. The major challenge here involves maintaining the delicate balance 

between many aspects, e.g. if one changes the chemical structure, the morphology will change 

as a result. 
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 Modification of the interface between the bulk heterojunction and the electrodes has 

been one of the most important methods to improve in both efficiency and stability of solar 

cells. Numerous materials have been explored as the interfacial layer including metal, metal 

oxide, inorganic, organic, self-assembled monolayers, and salts.130-132 One of the most widely 

used interfacial layers is PFN. It has been claimed that the interface modification by PFN can 

simultaneously enhance open-circuit potential, short-circuit current and fill factor altogether, 

thereby improving the efficiency of the devices.133 However, an extensive review of the 

literature was revealed a number of discrepancies. For example, while it was claimed that PFN 

prevents Fermi level pinning at the interface,133 another study showed that this is not true and 

pinning occurred, which concluded with the message that PFN did not introduce any significant 

changes to the device.134 These results confirmed the need for the further investigation of the 

effect(s) of PFN on the performance of the solar cells. The challenge here is to investigate 

fundamental assumptions appearing within the literature and discrepancies/disagreements 

between accepted published articles. 

S-shaped current density-voltage curve has been known for its devastating impact on the 

performance of the organic solar cells. Generally, the appearance of the S-curve phenomenon 

is related to the inefficient charge carrier extraction due to non-ideal morphological or 

interfacial issues. While several studies have been carried out on polymer-based BHJ solar 

cells, there are very few or no studies related to addressing the S-curve phenomenon in solution-

processed small molecule (SM) BHJ devices. Given the fact that small molecules are an 

emerging alternative to polymer-based systems, it is important to examine solutions for 

resolving the S-curve characteristics in SM BHJ solar cells. 
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1.3. HYPOTHESES 

 The main goal of this thesis was to enhance dielectric constant of the BHJ solar cells. 

However, prior to investigating this hypothesis, two issues were encountered, which required 

examination before proceeding. 

The first issue which took place at the early stage of this study was the use of PFN as the 

interfacial layer. It was noticed that the more efficient a solar cell device is, the better 

mechanistic results can be obtained. To achieve this, modification of the interface between the 

bulk heterojunction and the electrodes was considered. The most widely adopted material in 

use by far for the interfacial layer is PFN. Following a literature review in addition to 

ascertaining preliminary results, some questions were raised regarding the capability of PFN 

to modify the interface. This interestingly develops into a whole new study warranting 

investigation resulting in the first hypothesis: 

“Modification of the interface by means of a PFN electron transport layer can affect charge 

carrier generation, transportation, recombination and/or collection, and therefore affect the 

efficiency of BHJ solar cells.” 

In order to improve power conversion efficiency in organic solar cells, one major 

influencing factor is their inherently low dielectric constant. According to the Clausius-

Mossotti relationship, the dielectric constant of polymeric materials is determined by its 

polarization (a partial separation of charges due to the different electronegativity of atoms) and 

free volume (a spaced not occupied by polymeric materials). While polarization is an inherent 

characteristic of the material and therefore cannot be changed, it is possible to tune the free 

volume. This allows for the formulation of the second hypothesis, which is as follows: 

“Incorporation of materials with a higher dielectric constant than air set to occupy the free 

volume of the bulk can enhance the dielectric constant and consequently the efficiency of the 

bulk heterojunction solar cells.” 
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The second issue encountered was the appearance of the S-shaped current-voltage curve 

in high-performance solution-processed small molecule bulk heterojunction. The whole study 

of the dielectric constant of the small molecule was contingent upon solving the S-curve 

behavior. The S-curve phenomenon is generally the result of an energy barrier at the interface 

or within the bulk heterojunction, which gives rise to significant recombination of charge 

carriers and therefore reduction of efficiency. The rectification of S-curve phenomenon 

requires an additional treatment which varies depending on the BHJ system and source of the 

S-curve. Finding a solution for the phenomenon affected performance of the small molecule 

bulk heterojunction led therefore to the third hypothesis: 

“Alteration of the ratio between donor and acceptor may resolve the S-shaped current 

density-voltage curve in solution-processed small molecule bulk heterojunction solar cells.” 

 

1.3.1. Research Questions 

To evaluate the aforementioned hypotheses, the following research questions will be 

addressed within the working chapters: 

1. PFN electron transport layer (Chapter 3) 

• Can a PFN interfacial layer modify the interface between the bulk heterojunction and 

the cathode electrodes? 

• What is the effect of PFN on the photovoltaic performance of OSC devices? 

• What is the effect of PFN film on the generation of charge carriers? 

• Can recombination of charge carriers be suppressed in the presence of a PFN 

interlayer? 

• Can mobility of charge carriers be enhanced by modification of interface by PFN? 
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2. Dielectric Constant (Chapters 4 & 5) 

• Can the Clausius-Mossotti relation be applied to bulk heterojunction solar cells? 

• What are the impacts of the incorporated materials on the performance of the device? 

• Does the dielectric constant of devices differ before and after the introduction of these 

materials into the bulks? 

• Does recombination and mobility of charge carriers change following doping of the 

bulk with these materials? 

3. S-shaped current density-voltage curve (Chapter 6) 

• What is the reason for the appearance of the S-shaped current density-voltage curve? 

• What is the origin of the S-curve phenomenon? 

• How can a normal diode-like curve be revived? 

• What is the difference between a normal device and device showing S-curve in terms 

of charge carrier generation, collection or recombination? 

• Does charge carrier mobility of the S-curve devices differ from the normal device? 

  



 

28 

 

1.3.2. Thesis Overview 

 

Figure 1.6. The overarching theme of the thesis. 

 

Figure 1.6 illustrated the structure of this thesis. An overview of each chapter is as follow: 

Chapter 1: This current chapter introduces the need for renewable energy sources and 

technologies that are helping to meet the need and their limitations. Following an overview of 

photovoltaic technologies, a survey of literature in relation to the principal operation of the 

organic solar cells as well as limitations are provided. Subsequently, hypotheses and associated 

research questions are presented.  

Chapter 2:  This chapter provides general information about fabrication processes of the 

organic solar cell. In addition, the details of steady-state and transient techniques employed to 

study solar cell devices are also outlined. 



 

29 

 

Chapter 3: This chapter responses to the questions regarding the use of PFN electron 

transport layer. The interface between the active layer and the cathode electrode is modified 

with a range of PFN films and photovoltaic parameters of the solar cell devices are investigated 

as a function of PFN films. Furthermore, the effect of the interlayer on the charge carrier 

dynamics of the devices is also studied. 

Chapter 4:  This chapter relates to the questions regarding dielectric constant. The focus 

of this study was to alter dielectric constant of the polymer-based bulk heterojunction. The 

addition of materials to bulk heterojunction and their impact on the dielectric constant and 

photovoltaic characteristics of the devices are demonstrated. In addition, charge carrier 

generation, recombination, and mobility of the devices are investigated with regard to the added 

materials.  

Chapter 5: This chapter expands similar concept presented in chapter 4, except the focus 

of the study is solution-processed small molecule bulk heterojunction.  

Chapter 6: In this chapter, the research questions related to the S-shaped current density-

voltage curve are answered. Several parameters that could revive normal current density-

voltage curve in solution-processed small molecule solar cells are probed and the origin of the 

S-curve is identified. The performance discrepancy between normal and S-curve devices is 

studied using steady-state techniques. A surface morphology study of the active layers is 

carried out. An equivalent circuit considering an energy barrier is discussed. The charge carrier 

recombination and mobility of normal and S-curve devices are compared. Some suggestions 

for further examination are suggested.      

Chapter 7: The outcomes of each chapter are summarized and overall conclusion 

regarding research hypotheses are presented.   

  



 

30 

 

1.4. REFERENCES 

1. International Energy Outlook 2016; U.S. Energy Information Administration: 2016. 

2. Bp Statistical Review of World Energy; British Petroleum Oil Industry Company: 2017. 

3. Mauritsen, T.; Pincus, R., Committed Warming Inferred from Observations. Nature 

Clim. Change 2017, advance online publication. 

4. Raftery, A. E.; Zimmer, A.; Frierson, D. M. W.; Startz, R.; Liu, P., Less Than 

2[Thinsp][Deg]C Warming by 2100 Unlikely. Nature Clim. Change 2017, advance online 

publication. 

5. Climate Change 2014 Synthesis Report Summary for Policymakers; Intergovernmental 

Panel on Climate Change (IPCC): 2014. 

6. Forzieri, G.; Cescatti, A.; e Silva, F. B.; Feyen, L., Increasing Risk over Time of 

Weather-Related Hazards to the European Population: A Data-Driven Prognostic Study. The 

Lancet Planetary Health 2017, 1, e200-e208. 

7. Poumadère, M.; Mays, C.; Le Mer, S.; Blong, R., The 2003 Heat Wave in France: 

Dangerous Climate Change Here and Now. Risk Analysis 2005, 25, 1483-1494. 

8. Desantis, L. R. G.; Bhotika, S.; Williams, K.; Putz, F. E., Sea‐Level Rise and Drought 

Interactions Accelerate Forest Decline on the Gulf Coast of Florida, USA. Global Change 

Biology 2007, 13, 2349-2360. 

9. Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J., Widespread 

Crown Condition Decline, Food Web Disruption, and Amplified Tree Mortality with Increased 

Climate Change-Type Drought. Proceedings of the National Academy of Sciences 2011, 108, 

1474-1478. 

10. Moorhead, K. K.; Brinson, M. M., Response of Wetlands to Rising Sea Level in the 

Lower Coastal Plain of North Carolina. Ecological Applications 1995, 5, 261-271. 



 

31 

 

11. Frihy, O. E., The Nile Delta-Alexandria Coast: Vulnerability to Sea-Level Rise, 

Consequences and Adaptation. Mitigation and Adaptation Strategies for Global Change 2003, 

8, 115-138. 

12. Vine, E., Adaptation of California’s Electricity Sector to Climate Change. Climatic 

Change 2012, 111, 75-99. 

13. D'Amato, G.; Cecchi, L., Effects of Climate Change on Environmental Factors in 

Respiratory Allergic Diseases. Clinical & Experimental Allergy 2008, 38, 1264-1274. 

14. Rabl, A.; Spadaro, J. V., Public Health Impact of Air Pollution and Implications for the 

Energy System. Annual Review of Energy and the Environment 2000, 25, 601-627. 

15. Haines, A.; Kovats, R. S.; Campbell-Lendrum, D.; Corvalan, C., Climate Change and 

Human Health: Impacts, Vulnerability and Public Health. Public Health 2006, 120, 585-596. 

16. Eric Martinot; Akanksha Chaurey; Debra Lew; José Roberto Moreira; Wamukonya, N., 

Renewable Energy Markets in Developing Countries. Annual Review of Energy and the 

Environment 2002, 27, 309-348. 

17. Yi, H., Clean Energy Policies and Green Jobs: An Evaluation of Green Jobs in U.S. 

Metropolitan Areas. Energy Policy 2013, 56, 644-652. 

18. Branker, K.; Pathak, M. J. M.; Pearce, J. M., A Review of Solar Photovoltaic Levelized 

Cost of Electricity. Renewable and Sustainable Energy Reviews 2011, 15, 4470-4482. 

19. Darling, S. B.; You, F., The Case for Organic Photovoltaics. RSC Advances 2013, 3, 

17633-17648. 

20. Mohtasham, J., Review Article-Renewable Energies. Energy Procedia 2015, 74, 1289-

1297. 

21. Ellabban, O.; Abu-Rub, H.; Blaabjerg, F., Renewable Energy Resources: Current 

Status, Future Prospects and Their Enabling Technology. Renewable and Sustainable Energy 

Reviews 2014, 39, 748-764. 



 

32 

 

22. Amponsah, N. Y.; Troldborg, M.; Kington, B.; Aalders, I.; Hough, R. L., Greenhouse 

Gas Emissions from Renewable Energy Sources: A Review of Lifecycle Considerations. 

Renewable and Sustainable Energy Reviews 2014, 39, 461-475. 

23. Bargagli, R.; Cateni, D.; Nelli, L.; Olmastroni, S.; Zagarese, B., Environmental Impact 

of Trace Element Emissions from Geothermal Power Plants. Archives of Environmental 

Contamination and Toxicology 1997, 33, 172-181. 

24. Zhang, J.; Kitazawa, D.; Taya, S.; Mizukami, Y., Impact Assessment of Marine Current 

Turbines on Fish Behavior Using an Experimental Approach Based on the Similarity Law. 

Journal of Marine Science and Technology 2017, 22, 219-230. 

25. Solar Energy Prospectives; International Energy Agency: 2011. 

26. Bakhiyi, B.; Labrèche, F.; Zayed, J., The Photovoltaic Industry on the Path to a 

Sustainable Future — Environmental and Occupational Health Issues. Environment 

International 2014, 73, 224-234. 

27. Parida, B.; Iniyan, S.; Goic, R., A Review of Solar Photovoltaic Technologies. 

Renewable and Sustainable Energy Reviews 2011, 15, 1625-1636. 

28. Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L. F., 

State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—

Concepts, Materials and Modellization. Renewable and Sustainable Energy Reviews 2010, 14, 

31-55. 

29. Thirugnanasambandam, M.; Iniyan, S.; Goic, R., A Review of Solar Thermal 

Technologies. Renewable and Sustainable Energy Reviews 2010, 14, 312-322. 

30. Gust, D.; Moore, T. A.; Moore, A. L., Solar Fuels Via Artificial Photosynthesis. 

Accounts of Chemical Research 2009, 42, 1890-1898. 

31. Renewables 2017 Global Status Report; Renewable Energy Policy Network for the 21st 

Century: 2017. 



 

33 

 

32. Swanson, R. M., Photovoltaics Power Up. Science 2009, 324, 891-892. 

33. Pearce, J. M., Photovoltaics — a Path to Sustainable Futures. Futures 2002, 34, 663-

674. 

34. Green, M. A.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; 

Ho-Baillie, A. W. H., Solar Cell Efficiency Tables (Version 50). Progress in Photovoltaics: 

Research and Applications 2017, 25, 668-676. 

35. Wurfel, P.; Wurfel, U., Physics of Solar Cells: From Basic Principles to Advanced 

Concepts.; John Wiley & Sons, 2009. 

36. Lee, Y.; Park, C.; Balaji, N.; Lee, Y.-J.; Dao, V. A., High-Efficiency Silicon Solar 

Cells: A Review. Israel Journal of Chemistry 2015, 55, 1050-1063. 

37. Louwen, A.; van Sark, W.; Schropp, R.; Faaij, A., A Cost Roadmap for Silicon 

Heterojunction Solar Cells. Solar Energy Materials and Solar Cells 2016, 147, 295-314. 

38. Chopra, K. L.; Paulson, P. D.; Dutta, V., Thin-Film Solar Cells: An Overview. Progress 

in Photovoltaics: Research and Applications 2004, 12, 69-92. 

39. Green, M. A., Thin-Film Solar Cells: Review of Materials, Technologies and 

Commercial Status. Journal of Materials Science: Materials in Electronics 2007, 18, 15-19. 

40. Lee, T. D.; Ebong, A. In Thin Film Solar Technologies: A Review, 2015 12th 

International Conference on High-capacity Optical Networks and Enabling/Emerging 

Technologies (HONET), 21-23 Dec. 2015; 2015; pp 1-10. 

41. Shah, A. V.; Schade, H.; Vanecek, M.; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, 

U.; Droz, C.; Bailat, J., Thin-Film Silicon Solar Cell Technology. Progress in Photovoltaics: 

Research and Applications 2004, 12, 113-142. 

42. Yeh, N.; Yeh, P., Organic Solar Cells: Their Developments and Potentials. Renewable 

and Sustainable Energy Reviews 2013, 21, 421-431. 

43. Li, G.; Zhu, R.; Yang, Y., Polymer Solar Cells. Nat Photon 2012, 6, 153-161. 



 

34 

 

44. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar 

Cells. Chemical Reviews 2010, 110, 6595-6663. 

45. Yang, S.; Fu, W.; Zhang, Z.; Chen, H.; Li, C.-Z., Recent Advances in Perovskite Solar 

Cells: Efficiency, Stability and Lead-Free Perovskite. Journal of Materials Chemistry A 2017, 

5, 11462-11482. 

46. Choi, H.; Nahm, C.; Kim, J.; Kim, C.; Kang, S.; Hwang, T.; Park, B., Review Paper: 

Toward Highly Efficient Quantum-Dot- and Dye-Sensitized Solar Cells. Current Applied 

Physics 2013, 13, S2-S13. 

47. Carsten, D.; Vladimir, D., Polymer–Fullerene Bulk Heterojunction Solar Cells. Reports 

on Progress in Physics 2010, 73, 096401. 

48. Nelson, J., Polymer:Fullerene Bulk Heterojunction Solar Cells. Materials Today 2011, 

14, 462-470. 

49. Lo, V.; Landrock, C.; Kaminska, B.; Maine, E. In Manufacturing Cost Modeling for 

Flexible Organic Solar Cells, 2012 Proceedings of PICMET '12: Technology Management for 

Emerging Technologies, July 29 2012-Aug. 2 2012; 2012; pp 2951-2956. 

50. Chidichimo, G.; Filippelli, L., Organic Solar Cells: Problems and Perspectives. 

International Journal of Photoenergy 2010, 2010. 

51. Pope, M.; Swenberg, C. E., Electronic Processes in Organic Crystals and Polymers 

2nd Edn; New York: Oxford University Press, 1999. 

52. Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; 

Brabec, C. J., Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % 

Energy‐Conversion Efficiency. Advanced Materials 2006, 18, 789-794. 

53. Risko, C.; McGehee, M. D.; Bredas, J.-L., A Quantum-Chemical Perspective into Low 

Optical-Gap Polymers for Highly-Efficient Organic Solar Cells. Chemical Science 2011, 2, 

1200-1218. 



 

35 

 

54. Ohkita, H., et al., Charge Carrier Formation in Polythiophene/Fullerene Blend Films 

Studied by Transient Absorption Spectroscopy. Journal of the American Chemical Society 

2008, 130, 3030-3042. 

55. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: 

Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 

1995, 270, 1789-1791. 

56. Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C., Bulk Heterojunction Solar Cells: 

Morphology and Performance Relationships. Chemical Reviews 2014, 114, 7006-7043. 

57. Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K., Bulk-Heterojunction Organic 

Solar Cells: Five Core Technologies for Their Commercialization. Advanced Materials 2016, 

28, 7821-7861. 

58. Pelzer, K. M.; Darling, S. B., Charge Generation in Organic Photovoltaics: A Review 

of Theory and Computation. Molecular Systems Design & Engineering 2016, 1, 10-24. 

59. Clarke, T. M.; Durrant, J. R., Charge Photogeneration in Organic Solar Cells. Chemical 

Reviews 2010, 110, 6736-6767. 

60. Muntwiler, M.; Yang, Q.; Tisdale, W. A.; Zhu, X. Y., Coulomb Barrier for Charge 

Separation at an Organic Semiconductor Interface. Physical Review Letters 2008, 101, 196403. 

61. Lüer, L.; Egelhaaf, H. J.; Oelkrug, D.; Cerullo, G.; Lanzani, G.; Huisman, B. H.; de 

Leeuw, D., Oxygen-Induced Quenching of Photoexcited States in Polythiophene Films. 

Organic Electronics 2004, 5, 83-89. 

62. Stübinger, T.; Brütting, W., Exciton Diffusion and Optical Interference in Organic 

Donor–Acceptor Photovoltaic Cells. Journal of Applied Physics 2001, 90, 3632-3641. 

63. Jespersen, K. G.; Zhang, F.; Gadisa, A.; Sundström, V.; Yartsev, A.; Inganäs, O., 

Charge Formation and Transport in Bulk-Heterojunction Solar Cells Based on Alternating 

Polyfluorene Copolymers Blended with Fullerenes. Organic Electronics 2006, 7, 235-242. 



 

36 

 

64. Bakulin, A. A.; Hummelen, J. C.; Pshenichnikov, M. S.; van Loosdrecht, P. H. M., 

Ultrafast Hole-Transfer Dynamics in Polymer/Pcbm Bulk Heterojunctions. Advanced 

Functional Materials 2010, 20, 1653-1660. 

65. Brabec, C. J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J. C.; 

Sariciftci, S., Tracing Photoinduced Electron Transfer Process in Conjugated 

Polymer/Fullerene Bulk Heterojunctions in Real Time. Chemical Physics Letters 2001, 340, 

232-236. 

66. Hwang, I. W.; Soci, C.; Moses, D.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. J.; 

Heeger, A. J., Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk 

Heterojunction Material. Advanced Materials 2007, 19, 2307-2312. 

67. Vandewal, K.; Ma, Z.; Bergqvist, J.; Tang, Z.; Wang, E.; Henriksson, P.; Tvingstedt, 

K.; Andersson, M. R.; Zhang, F.; Inganäs, O., Quantification of Quantum Efficiency and 

Energy Losses in Low Bandgap Polymer:Fullerene Solar Cells with High Open‐Circuit 

Voltage. Advanced Functional Materials 2012, 22, 3480-3490. 

68. Gong, X.; Tong, M.; Brunetti, F. G.; Seo, J.; Sun, Y.; Moses, D.; Wudl, F.; Heeger, A. 

J., Bulk Heterojunction Solar Cells with Large Open‐Circuit Voltage: Electron Transfer with 

Small Donor‐Acceptor Energy Offset. Advanced Materials 2011, 23, 2272-2277. 

69. Liu, A.; Zhao, S.; Rim, S. B.; Wu, J.; Könemann, M.; Erk, P.; Peumans, P., Control of 

Electric Field Strength and Orientation at the Donor–Acceptor Interface in Organic Solar Cells. 

Advanced Materials 2008, 20, 1065-1070. 

70. Groves, C., Suppression of Geminate Charge Recombination in Organic Photovoltaic 

Devices with a Cascaded Energy Heterojunction. Energy & Environmental Science 2013, 6, 

1546-1551. 

71. Gregg, B. A., Charged Defects in Soft Semiconductors and Their Influence on Organic 

Photovoltaics. Soft Matter 2009, 5, 2985-2989. 



 

37 

 

72. Gregg, B. A., Entropy of Charge Separation in Organic Photovoltaic Cells: The Benefit 

of Higher Dimensionality. The Journal of Physical Chemistry Letters 2011, 2, 3013-3015. 

73. Brédas, J.-L.; Norton, J. E.; Cornil, J.; Coropceanu, V., Molecular Understanding of 

Organic Solar Cells: The Challenges. Accounts of Chemical Research 2009, 42, 1691-1699. 

74. Bakulin, A. A.; Rao, A.; Pavelyev, V. G.; van Loosdrecht, P. H. M.; Pshenichnikov, M. 

S.; Niedzialek, D.; Cornil, J.; Beljonne, D.; Friend, R. H., The Role of Driving Energy and 

Delocalized States for Charge Separation in Organic Semiconductors. Science 2012, 335, 

1340-1344. 

75. Clarke, T. M.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R., Free 

Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The 

Influence of Thermal Annealing on P3ht/Pcbm Blends. Advanced Functional Materials 2008, 

18, 4029-4035. 

76. Gélinas, S.; Paré-Labrosse, O.; Brosseau, C.-N.; Albert-Seifried, S.; McNeill, C. R.; 

Kirov, K. R.; Howard, I. A.; Leonelli, R.; Friend, R. H.; Silva, C., The Binding Energy of 

Charge-Transfer Excitons Localized at Polymeric Semiconductor Heterojunctions. The 

Journal of Physical Chemistry C 2011, 115, 7114-7119. 

77. Zhu, X. Y.; Yang, Q.; Muntwiler, M., Charge-Transfer Excitons at Organic 

Semiconductor Surfaces and Interfaces. Accounts of Chemical Research 2009, 42, 1779-1787. 

78. Grancini, G.; Maiuri, M.; Fazzi, D.; Petrozza, A.; Egelhaaf, H. J.; Brida, D.; Cerullo, 

G.; Lanzani, G., Hot Exciton Dissociation in Polymer Solar Cells. Nat Mater 2013, 12, 29-33. 

79. Jailaubekov, A. E., et al., Hot Charge-Transfer Excitons Set the Time Limit for Charge 

Separation at Donor/Acceptor Interfaces in Organic Photovoltaics. Nat Mater 2013, 12, 66-73. 

80. Dimitrov, S. D.; Bakulin, A. A.; Nielsen, C. B.; Schroeder, B. C.; Du, J.; Bronstein, H.; 

McCulloch, I.; Friend, R. H.; Durrant, J. R., On the Energetic Dependence of Charge 



 

38 

 

Separation in Low-Band-Gap Polymer/Fullerene Blends. Journal of the American Chemical 

Society 2012, 134, 18189-18192. 

81. Zhou, Y.; Tvingstedt, K.; Zhang, F.; Du, C.; Ni, W. X.; Andersson, M. R.; Inganäs, O., 

Observation of a Charge Transfer State in Low‐Bandgap Polymer/Fullerene Blend Systems by 

Photoluminescence and Electroluminescence Studies. Advanced Functional Materials 2009, 

19, 3293-3299. 

82. Lee, J.; Vandewal, K.; Yost, S. R.; Bahlke, M. E.; Goris, L.; Baldo, M. A.; Manca, J. 

V.; Voorhis, T. V., Charge Transfer State Versus Hot Exciton Dissociation in 

Polymer−Fullerene Blended Solar Cells. Journal of the American Chemical Society 2010, 132, 

11878-11880. 

83. Hofstad, T. G. J. v. d.; Nuzzo, D. D.; Berg, M. v. d.; Janssen, R. A. J.; Meskers, S. C. 

J., Influence of Photon Excess Energy on Charge Carrier Dynamics in a Polymer‐Fullerene 

Solar Cell. Advanced Energy Materials 2012, 2, 1095-1099. 

84. Organic Solar Cells Fundamentals, Devices, and Upscaling; Taylor & Francis Group, 

2014  

85. Walker, B.; Tamayo, A. B.; Dang, X. D.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, 

M.; Nguyen, T. Q., Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐

Processed, Small‐Molecule Bulk Heterojunction Solar Cells. Advanced Functional Materials 

2009, 19, 3063-3069. 

86. Guo, X.; Zhang, M.; Tan, J.; Zhang, S.; Huo, L.; Hu, W.; Li, Y.; Hou, J., Influence of 

D/a Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System. 

Advanced Materials 2012, 24, 6536-6541. 

87. Ebenhoch, B.; Thomson, S. A. J.; Genevičius, K.; Juška, G.; Samuel, I. D. W., Charge 

Carrier Mobility of the Organic Photovoltaic Materials Ptb7 and Pc71bm and Its Influence on 

Device Performance. Organic Electronics 2015, 22, 62-68. 



 

39 

 

88. Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Österbacka, R.; Westerling, 

M.; Juška, G., Charge Transport and Recombination in Bulk Heterojunction Solar Cells 

Studied by the Photoinduced Charge Extraction in Linearly Increasing Voltage Technique. 

Applied Physics Letters 2005, 86, 112104. 

89. Mozer, A. J.; Dennler, G.; Sariciftci, N. S.; Westerling, M.; Pivrikas, A.; Österbacka, 

R.; Juška, G., Time-Dependent Mobility and Recombination of the Photoinduced Charge 

Carriers in Conjugated Polymer/Fullerene Bulk Heterojunction Solar Cells. Physical Review B 

2005, 72, 035217. 

90. Mozer, A. J.; Sariciftci, N. S.; Pivrikas, A.; Österbacka, R.; Juška, G.; Brassat, L.; 

Bässler, H., Charge Carrier Mobility in Regioregular Poly(3-Hexylthiophene) Probed by 

Transient Conductivity Techniques: A Comparative Study. Physical Review B 2005, 71, 

035214. 

91. Mendil, N.; Daoudi, M.; Berkai, Z.; Belghachi, A., Disorder Effect on Carrier Mobility 

in Fullerene Organic Semiconductor. Journal of Physics: Conference Series 2015, 647, 

012057. 

92. Proctor, C. M.; Kuik, M.; Nguyen, T.-Q., Charge Carrier Recombination in Organic 

Solar Cells. Progress in Polymer Science 2013, 38, 1941-1960. 

93. Mandoc, M. M.; Koster, L. J. A.; Blom, P. W. M., Optimum Charge Carrier Mobility 

in Organic Solar Cells. Applied Physics Letters 2007, 90, 133504. 

94. Baumann, A.; Lorrmann, J.; Rauh, D.; Deibel, C.; Dyakonov, V., A New Approach for 

Probing the Mobility and Lifetime of Photogenerated Charge Carriers in Organic Solar Cells 

under Real Operating Conditions. Advanced Materials 2012, 24, 4381-4386. 

95. Deibel, C.; Wagenpfahl, A.; Dyakonov, V., Influence of Charge Carrier Mobility on 

the Performance of Organic Solar Cells. physica status solidi (RRL) – Rapid Research Letters 

2008, 2, 175-177. 



 

40 

 

96. Cowan, S. R.; Street, R. A.; Cho, S.; Heeger, A. J., Transient Photoconductivity in 

Polymer Bulk Heterojunction Solar Cells: Competition between Sweep-out and 

Recombination. Physical Review B 2011, 83, 035205. 

97. Kniepert, J.; Schubert, M.; Blakesley, J. C.; Neher, D., Photogeneration and 

Recombination in P3ht/Pcbm Solar Cells Probed by Time-Delayed Collection Field 

Experiments. The Journal of Physical Chemistry Letters 2011, 2, 700-705. 

98. Barker, J. A.; Ramsdale, C. M.; Greenham, N. C., Modeling the Current-Voltage 

Characteristics of Bilayer Polymer Photovoltaic Devices. Physical Review B 2003, 67, 075205. 

99. Mihailetchi, V. D.; Koster, L. J. A.; Hummelen, J. C.; Blom, P. W. M., Photocurrent 

Generation in Polymer-Fullerene Bulk Heterojunctions. Physical Review Letters 2004, 93, 

216601. 

100. Lloyd, M. T.; Peters, C. H.; Garcia, A.; Kauvar, I. V.; Berry, J. J.; Reese, M. O.; 

McGehee, M. D.; Ginley, D. S.; Olson, D. C., Influence of the Hole-Transport Layer on the 

Initial Behavior and Lifetime of Inverted Organic Photovoltaics. Solar Energy Materials and 

Solar Cells 2011, 95, 1382-1388. 

101. Mihailetchi, V. D.; Wildeman, J.; Blom, P. W. M., Space-Charge Limited Photocurrent. 

Physical Review Letters 2005, 94, 126602. 

102. Kumar, A.; Sista, S.; Yang, Y., Dipole Induced Anomalous S-Shape I-V Curves in 

Polymer Solar Cells. Journal of Applied Physics 2009, 105, 094512. 

103. Nelson, J.; Kirkpatrick, J.; Ravirajan, P., Factors Limiting the Efficiency of Molecular 

Photovoltaic Devices. Physical Review B 2004, 69, 035337. 

104. Wagenpfahl, A.; Deibel, C.; Dyakonov, V., Organic Solar Cell Efficiencies under the 

Aspect of Reduced Surface Recombination Velocities. IEEE Journal of Selected Topics in 

Quantum Electronics 2010, 16, 1759-1763. 



 

41 

 

105. Albrecht, S.; Schindler, W.; Kurpiers, J.; Kniepert, J.; Blakesley, J. C.; Dumsch, I.; 

Allard, S.; Fostiropoulos, K.; Scherf, U.; Neher, D., On the Field Dependence of Free Charge 

Carrier Generation and Recombination in Blends of Pcpdtbt/Pc70bm: Influence of Solvent 

Additives. The Journal of Physical Chemistry Letters 2012, 3, 640-645. 

106. Credgington, D.; Jamieson, F. C.; Walker, B.; Nguyen, T. Q.; Durrant, J. R., 

Quantification of Geminate and Non‐Geminate Recombination Losses within a Solution‐

Processed Small‐Molecule Bulk Heterojunction Solar Cell. Advanced Materials 2012, 24, 

2135-2141. 

107. Dibb, G. F. A.; Jamieson, F. C.; Maurano, A.; Nelson, J.; Durrant, J. R., Limits on the 

Fill Factor in Organic Photovoltaics: Distinguishing Nongeminate and Geminate 

Recombination Mechanisms. The Journal of Physical Chemistry Letters 2013, 4, 803-808. 

108. Koster, L. J. A.; Kemerink, M.; Wienk, M. M.; Maturová, K.; Janssen, R. A. J., 

Quantifying Bimolecular Recombination Losses in Organic Bulk Heterojunction Solar Cells. 

Advanced Materials 2011, 23, 1670-1674. 

109. Mauer, R.; Howard, I. A.; Laquai, F., Effect of External Bias on Nongeminate 

Recombination in Polythiophene/Methanofullerene Organic Solar Cells. The Journal of 

Physical Chemistry Letters 2011, 2, 1736-1741. 

110. Juška, G.; Genevičius, K.; Nekrašas, N.; Sliaužys, G.; Dennler, G., Trimolecular 

Recombination in Polythiophene: Fullerene Bulk Heterojunction Solar Cells. Applied Physics 

Letters 2008, 93, 143303. 

111. Shuttle, C. G.; O’Regan, B.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C.; Mello, J. 

d.; Durrant, J. R., Experimental Determination of the Rate Law for Charge Carrier Decay in a 

Polythiophene: Fullerene Solar Cell. Applied Physics Letters 2008, 92, 093311. 

112. Deibel, C.; Baumann, A.; Dyakonov, V., Polaron Recombination in Pristine and 

Annealed Bulk Heterojunction Solar Cells. Applied Physics Letters 2008, 93, 163303. 



 

42 

 

113. Blakesley, J. C.; Neher, D., Relationship between Energetic Disorder and Open-Circuit 

Voltage in Bulk Heterojunction Organic Solar Cells. Physical Review B 2011, 84, 075210. 

114. Credgington, D.; Durrant, J. R., Insights from Transient Optoelectronic Analyses on 

the Open-Circuit Voltage of Organic Solar Cells. The Journal of Physical Chemistry Letters 

2012, 3, 1465-1478. 

115. Deibel, C.; Wagenpfahl, A.; Dyakonov, V., Influence of Charge Carrier Mobility on 

the Performance of Organic Solar Cells. physica status solidi (RRL) - Rapid Research Letters 

2008, 2, 175-177. 

116. Pivrikas, A.; Sariciftci, N. S.; Juška, G.; Österbacka, R., A Review of Charge Transport 

and Recombination in Polymer/Fullerene Organic Solar Cells. Progress in Photovoltaics: 

Research and Applications 2007, 15, 677-696. 

117. Albrecht, S., et al., Fluorinated Copolymer Pcpdtbt with Enhanced Open-Circuit 

Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells. Journal of the 

American Chemical Society 2012, 134, 14932-14944. 

118. Mauer, R.; Howard, I. A.; Laquai, F., Effect of Nongeminate Recombination on Fill 

Factor in Polythiophene/Methanofullerene Organic Solar Cells. The Journal of Physical 

Chemistry Letters 2010, 1, 3500-3505. 

119. Proctor, C. M.; Kim, C.; Neher, D.; Nguyen, T. Q., Nongeminate Recombination and 

Charge Transport Limitations in Diketopyrrolopyrrole‐Based Solution‐Processed Small 

Molecule Solar Cells. Advanced Functional Materials 2013, 23, 3584-3594. 

120. Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M., Bimolecular Recombination in 

Polymer/Fullerene Bulk Heterojunction Solar Cells. Applied Physics Letters 2006, 88, 052104. 

121. Cowan, S. R.; Roy, A.; Heeger, A. J., Recombination in Polymer-Fullerene Bulk 

Heterojunction Solar Cells. Physical Review B 2010, 82, 245207. 



 

43 

 

122. Wetzelaer, G. A. H.; Kuik, M.; Lenes, M.; Blom, P. W. M., Origin of the Dark-Current 

Ideality Factor in Polymer:Fullerene Bulk Heterojunction Solar Cells. Applied Physics Letters 

2011, 99, 153506. 

123. Wetzelaer, G. J. A. H.; Kuik, M.; Blom, P. W. M., Identifying the Nature of Charge 

Recombination in Organic Solar Cells from Charge‐Transfer State Electroluminescence. 

Advanced Energy Materials 2012, 2, 1232-1237. 

124. Street, R. A.; Krakaris, A.; Cowan, S. R., Recombination through Different Types of 

Localized States in Organic Solar Cells. Advanced Functional Materials 2012, 22, 4608-4619. 

125. Lenes, M.; Shelton, S. W.; Sieval, A. B.; Kronholm, D. F.; Hummelen, J. C.; Blom, P. 

W. M., Electron Trapping in Higher Adduct Fullerene‐Based Solar Cells. Advanced Functional 

Materials 2009, 19, 3002-3007. 

126. Scharber, M. C., On the Efficiency Limit of Conjugated Polymer:Fullerene-Based Bulk 

Heterojunction Solar Cells. Advanced Materials 2016, 28, 1994-2001. 

127. Scharber, M. C.; Sariciftci, N. S., Efficiency of Bulk-Heterojunction Organic Solar 

Cells. Progress in Polymer Science 2013, 38, 1929-1940. 

128. Cheng, P.; Zhan, X., Stability of Organic Solar Cells: Challenges and Strategies. 

Chemical Society Reviews 2016, 45, 2544-2582. 

129. Koster, L. J. A.; Shaheen, S. E.; Hummelen, J. C., Pathways to a New Efficiency 

Regime for Organic Solar Cells. Advanced Energy Materials 2012, 2, 1246-1253. 

130. Yip, H.-L.; Jen, A. K. Y., Recent Advances in Solution-Processed Interfacial Materials 

for Efficient and Stable Polymer Solar Cells. Energy & Environmental Science 2012, 5, 5994-

6011. 

131. Steim, R.; Kogler, F. R.; Brabec, C. J., Interface Materials for Organic Solar Cells. 

Journal of Materials Chemistry 2010, 20, 2499-2512. 



 

44 

 

132. Yin, Z.; Wei, J.; Zheng, Q., Interfacial Materials for Organic Solar Cells: Recent 

Advances and Perspectives. Advanced Science 2016, 3. 

133. He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y., 

Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill 

Factor in Polymer Solar Cells. Advanced Materials 2011, 23, 4636-4643. 

134. Hu, Z.; Zhong, Z.; Chen, Y.; Sun, C.; Huang, F.; Peng, J.; Wang, J.; Cao, Y., Energy‐

Level Alignment at the Organic/Electrode Interface in Organic Optoelectronic Devices. 

Advanced Functional Materials 2015, 26, 129-136. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2: General Experiments 

 

 



 

45 

  

2.1. MATERIALS AND SOLVENTS 

PCDTBT (Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-

benzothiadiazole)]) (purity of > 99.5%, Solaris Chem. Inc.), PC70BM ([6,6]-Phenyl C71 butyric 

acid methyl ester) (purity of > 99.5%, Solaris Chem. Inc.),        PFN (Poly[(9,9-bis(3'-(N,N-

dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene)) (Solaris Chem. Inc.), p-

DTS(FBTTh2)2 (7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-

fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl) benzo[c][1,2,5]thiadiazole)) (purity of > 99%, 1-

Material), Rhodamine 101 (Sigma-Aldrich), PC60BM ([6,6]-Phenyl C61 butyric acid methyl 

ester) (purity of > 99.5%, Solaris Chem. Inc.) were purchased commercially and used without 

further purification. 

Chlorobenzene (CB) (anhydrous, purity of > 99.9%, Sigma-Aldrich), 1,8-diiodooctane 

(DIO) (Sigma-Aldrich), Methanol (purity of > 99.9%, Sigma-Aldrich ), 1,2-dichlorobenzene 

(o-DCB) (anhydrous, purity of > 99.9%, Sigma-Aldrich), isopropyl alcohol (IPA)  (Sigma-

Aldrich) Acetic Acid (purity of > 99.5%, Sigma-Aldrich), dimethyl sulfoxide (DMSO) 

(anhydrous, purity of > 99.9%, Sigma-Aldrich ) and N,N-Dimethylformamide (DMF) (purity 

of > 99.9%, Sigma-Aldrich ) were commercially available and used as received. Poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) solution (PEDOT:PSS) (CleviosTM P VP AI 

4083) was supplied by “Heraeus Deutschland GmbH & Co.” and kept in the dark and under 

ambient temperature and pressure. 

Pre-patterned indium tin oxide (ITO) coated glasses (Rs ≤ 15 Ω sq-1) were purchased from 

“Xin Yan Technology LTD”. Aluminum with high purity was bought from “AVT Services”.  
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2.2. SOLAR CELL DEVICES FABRICATION 

2.2.1. Architecture of the Solar Cell Devices 

 An organic bulk heterojunction solar cell comprises a multilayer structure which is 

sandwiched between two metal electrodes of two different work functions.  The multilayer 

structure includes a hole transport layer (HTL), photoactive layer and an electron transport layer 

(ETL). Different techniques could be used to deposit each layer, depending on the size of the 

substrate and the amount of materials, such as spin coating, spray coating, doctor blading, 

screen printing, inject printing etc.1 It should be noted that there are two architectures for bulk 

heterojunction solar cells: conventional and inverted. In the conventional geometry, the anode 

electrode is ITO and cathode is a low work function metal (aluminum). Conversely, in the 

inverted architecture, the ITO electrode is modified to be used as an anode and a high work 

function metal (gold or silver) is deposited as a cathode electrode.  

   A conventional architecture was chosen for studying the solar cell devices throughout 

this thesis. The general structure of the devices is glass/indium tin oxide (ITO)/HTL/ active 

layer (bulk heterojunction)/ETL/cathode electrode. The general procedure of solar cell 

fabrication is provided in this chapter and fabrication details of each set of solar cell devices 

are mentioned in the associated chapters.  

 

2.2.2. Active Layer Solution 

Active layer solutions were prepared inside a glovebox (Innovative Technology) with 

monitored oxygen (≤5 ppm) and humidity (≤1 ppm) levels. An exact amount of donor 

materials and acceptor materials (based on the ratio) were measured by a scale separately and 

added to a bottle. Then, one milliliter (ml) of an appropriate solvent was poured into the bottle. 

Finally, the solution was stirred and heated during the night for several hours. The temperature 

of the hotplate (IKA RCT basic) was controlled by a thermocouple. 
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2.2.3. ITO Substrate Cleaning  

The first step of cleaning procedure was to remove the presence of any dust and dirt on 

the substrates. The substrates were loaded into a beaker filled with deionized (DI) water and 

the beaker was placed into a sonicator for 20 minutes sonication. Thereafter, the substrates were 

thoroughly dried with nitrogen gas to remove remaining DI water. To further clean the 

substrates and to remove any organic residual, the substrates were sonicated in acetone and IPA 

each for 20 minutes successively whereas the substrates were dried by the nitrogen gas between 

each step. Eventually, in order to prepare the ITO surface for deposition of PEDOT:PSS film, 

the substrates were treated by a “Novascan” UV ozone cleaner for another 20 min. In Figure 

2.1(top left), an ITO substrate after the cleaning process is shown. 

 

2.2.4. Hole Transport Layer - PEDOT:PSS Film 

The PEDOT:PSS solution was filtered through a 0.45 µm syringe filter (Sigma-Aldrich) 

prior to spin casting. A 40 µl of PEDOT:PSS solution was deposited by a pipette on top of the 

substrate and spun cast at 5000 rpm for 40 s. The thickness of PEDOT:PSS film was measured 

by a surface profiler (Veeco, Dektak 150) and found to be approximately 30-40 nm. The quality 

of the PEDOT:PSS film was inspected visually and any substrate with defects on the film was 

discarded from further processing. The last step before active solution casting was to anneal the 

PEDOT:PSS film for 10 min at 140 C˚, in order to remove residual water from the film. 

 

2.2.5. Bulk Heterojunction Active Layer 

 A spin casting technique was employed in this thesis to make bulk heterojunction (BHJ) 

films from the active layer solution. The thickness of the BHJ film was controlled by several 

parameters in the spin casting process e.g. active layer solution concentration (viscosity) and 

temperature, spin speed and acceleration and spinning time. The substrate was held onto a 
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digitally-controlled spinner by vacuum. In order to accelerate evaporation of the solvent and 

obtain a homogeneous film, the active layer solution temperature was set at 60-70 ˚C prior to 

casting.  The active layer solution was dropped then onto the substrate by a pipette (30-40 µl) 

and the substrate was spun at a determined spin and acceleration for a given time. Duration of 

the spinning was different based on the solvent e.g. for CB was less than 1 minutes, whereas it 

was more than 1 min for o-DCB. A dried film with a given thickness was attained. The final 

thickness of BHJ film was measured by stylus surface profiler (Veeco, Dektak 150). Figure 2.1 

(top right) shows an ITO substrate fully covered by the active layer film. Finally, the active 

layer film on top of the cathode strip was wiped clean by a cotton bud dipped in toluene. 

 

2.2.6. Thermal Evaporation of Cathode Electrode  

The completion of the solar cell device structure was achieved by thermal evaporation 

(AVT Services thermal evaporator) of 100 nm of aluminum (Al) as the cathode electrode. The 

substrates were placed face down in an evaporation shadow mask and were kept in place by 

Kapton tape (Ted Pella Inc.). The evaporation shadow mask was then adhered upside-down to 

a plate by Kapton tape. The plate was positioned above clamps that hold a tungsten filament 

(Ted Pell Inc.) and rotating at a constant speed throughout the evaporation. A high purity of 

cathode material (aluminum wire) was cut into small pieces and hung onto the filament. After 

that, the ambient pressure was gradually decreased to the 10-6 bar. Then, a high-voltage 

radiofrequency current was applied to the filament, causing temperature elevation enough to 

vaporize the aluminum pieces. The evaporation rate was held at 0.1 A°/s and monitored through 

a quartz crystal microbalance (QCM). The solar cell device area after deposition of cathode 

electrode was 0.06 cm2.  
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2.2.7. Encapsulation 

Encapsulation is an important step in the fabrication of organic solar cells and is required 

to protect them from moisture and oxygen and to increase their lifetime under ambient 

conditions. To encapsulate the solar cell devices, a piece of glass cut into a proper size and a 

UV curable encapsulation epoxy (Ossilla Ltd.) were employed to encapsulate the devices. A 

single drop of UV curable epoxy was dropped onto the middle of the cathode and the glass 

piece was placed on top of it. After thorough spreading of resin underneath the glass, a UV gun 

was used to cure the epoxy over the course of 60 s. The encapsulation process was performed 

inside the glovebox.   

 

2.2.8. Soldering onto ITO  

Any residual of active layer materials that remained on the ITO parts of the substrates 

was thoroughly removed by toluene and acetone. A thin layer of soldering (MBR Cerasolzer) 

was deposited by an ultrasonic soldering on top of the ITO stripes. A complete solar cell device 

was shown in Figure 2.1 (bottom left and bottom right). 
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Figure 2.1. Photos of (Top left) an ITO substrate. The yellow strips are ITO parts. (top right) the ITO substrate 

after spin casting of active layer materials. (bottom left) A complete solar cell device from cathode electrode side. 

The excess active layer film on sides and bottom was wiped out. (bottom right) A complete solar cell device from 

ITO side.  
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2.3. CHARACTERIZATION TECHNIQUES 

2.3.1. UV-Visible Spectroscopy 

UV-Vis absorption spectra of the BHJ films were obtained in the wavelength range of 

300 to 800 nm. Absorption of BHJ film was recorded on a Shimadzu UV-3600 

spectrophotometer connected to a PC running UV probe software. The films were cast on a 

microscope glass slide for absorption measurement. The baseline was corrected for glass 

absorption and single point absorption at 800 nm. 

 

2.3.2. Current-Voltage Characterization 

The most prevalent technique to measure the performance of a solar cell is current-voltage 

(I-V) measurement. The measurement is based on sweeping a range of potential across the solar 

cell and record the current response of the device, while the solar cell is illuminated. The 

intensity of the lamp for routine measurement (1 sun) is 100 mW cm-2. Figure 2.1 represents 

current-voltage characteristics of a typical solar cell under operational conditions. Power 

conversion efficiency (PCE) is the primary parameter obtained from the current-voltage 

measurement. PCE indicates the overall efficiency of a solar cell and is calculated by dividing 

electrical power output (Pout) of solar cell device by incident light power (Pin) multiplied by 

100. The formula of PCE is as follow 2: 

PCE (%) =   
Pout
Pin

 ×100   (2-1) 

The short-circuit current (Isc) is defined as the current produced by the cell when the applied 

potential is zero. Open-circuit potential (Voc), on the other hand, is the voltage delivered by the 

cell at a given light intensity when the current flow through the cell is zero. At these two special 

conditions, the power output of the cell is zero. The power output of a solar cell is the  
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Figure 2.2. Typical current-voltage curve a solar cell under operation condition with output parameters: Jsc (short-

circuit current), Voc (open-circuit potential), FF (fill factor), MPP (maximum power point), IMPP (current at 

maximum power point) and VMPP (voltage at maximum power point). 

product of the voltage and current at each point of the I-V curve. Hence, there is a point between 

Isc and Voc where the maximum value of electrical power is delivered to the external load. This 

point is called the maximum power point (MPP) and the ideal operation of a solar cell is 

therefore taken place at the MPP. The corresponding values of the MPP on the current and 

voltage axes are IMPP and VMPP, respectively. The last determining factor in the overall behavior 

of a solar cell performance is the fill factor (FF). The FF is calculated as follow 3: 

FF = 
&'()

*+, -.,
 = 

*/00  -/00

*+, -.,
 (2-2) 

The fill factor determines the shape of the I-V curve and it ideally should reach 1.0. However, 

recombination of charge carriers throughout the cell always causes values less than 1.0. It 

should be noted that the I-V curve of devices having high FF (>50%) is convex-shaped (d2I/dV2 

> 0), whereas low fill factor devices with (<12.5%) show concaved-shaped (d2I/dV2 < 0) 

characteristics.4  
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The performance of the solar cell devices was probed by using a PV Measurement Inc. 

solar simulator (Class ABA) or Newport solar simulator (Class ABA) equipped with an Air 

Mass (AM) 1.5G filter as white light illumination source (100 mW cm-2). The irradiance was 

calibrated with a standard silicon photovoltaics certified by National Renewable Energy 

Laboratory. A Keithley 2400 source meter unit connected to PC running software (PV 

Measurements I-V Measurement Software) was used to apply potential and record the current 

response of the solar cell devices in the dark and under illumination conditions. The potential 

was swept from +1.5 V to -1.5 V. All encapsulated solar cells were tested in ambient conditions. 

All solar cell devices were masked to ensure a well-defined active area. In addition, efforts were 

made to ensure repeatability of the measurements, including using a darkroom throughout the 

experiment, examining room temperature (25 ± 3 ℃), maintaining a constant vertical distance 

between the lamp and the devices throughout the experiment, in addition to other standard setup 

considerations such as similar potential window, identical swept rate, etc.  

 

2.3.3. Light Intensity-dependency Measurement 

Light intensity-dependency measurement has been widely used to study dynamics of 

charge carriers under steady-state conditions. In this experiment, the intensity of the incident 

light was decreased gradually and photovoltaic parameters of the solar cell devices recorded as 

a function of light intensity. As such, the dynamics of charge carriers can be understood at both 

short-circuit conditions and open-circuit conditions. It is shown that charge carriers dynamics 

evolves from extraction at the short-circuit conditions to recombination around the open-circuit 

potential.5  

Under short-circuit conditions, charge carriers are collected at electrodes via a drift 

current due to the high internal electric field (built-in potential). The drift current is defined as 

Jd = eµneE, which e is elementary charge, µ is mobility of charge carrier, ne stands for density 
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of electrons (assuming density of hole is the same) and E is internal electric field.2, 6 It is 

predicted based on the drift current equation that there is a linear proportionality between short-

circuit current and density of the photo-generated charge carriers. Therefore, the relationship 

between the short-circuit current (Jsc) and the intensity of incident light (I) can be expressed as 

Jsc ∝ Iα.7 There are a few common interpretations for values of fitting parameters α in the 

literature. α = 1 is attributed to first order (monomolecular) recombination, whereas α = 0.75 

and α = 0.5 are related to space charge effects.2, 5, 7 and second order (bimolecular) 

recombination, respectively. Moreover, It is shown that there is a small bimolecular current loss 

at the short-circuit conditions which cause a small deviation in the linearity relation of light 

intensity-dependency of short-circuit current.2, 8 

 Under recombination regime under open-circuit conditions, charge carriers dynamics are 

mostly described by bimolecular recombination as results of increased charge carrier density in 

the device. As such, recombination dynamics of charge carriers is examined by studying Voc as 

a function of light intensity. In the presence of bimolecular recombination, Voc of the solar cell 

is given by 9: 

Voc = 
34(5

6
 - 

78

6
 ln [

(:; &<)>?,
@

A&<
]  (2-3) 

where Egap  is the energy difference between the highest occupied molecular orbital (HUMO) 

of the donor and the lowest unoccupied molecular orbital (LUMO) of the acceptor, e is 

elementary charge, k stands for Boltzmann constant, T is temperature in Kelvin, PD is 

dissociation probability of the electron-hole pair, γ is Langevin recombination constant, NC is 

the effective density of states and G is generation rate of bond electron-hole pair.9 Given that G 

is the only term that can be related to light intensity, the slope of Voc versus natural logarithm 

of the incident light intensity is predicted to be kT/e. It has been shown that bigger values than 
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kT/e appear when trap-assisted (Shockley-Red-Hall) recombination competes with bimolecular 

recombination, resulting in a stronger dependency on the light intensity.5, 10  

In order to study device light intensity dependency, solar cells were subjected to different 

incident light intensities. A series of neutral density (ND) filters were employed to attenuate the 

light intensity from 100 mW cm-2 to 1 mW cm-2. The photovoltaic parameters of the devices 

were recorded by the same solar simulator described at 2.3.2 section.  

2.3.4. Quantum Efficiency Measurement 

Quantum efficiency (QE) is the spectral distribution of the short-circuit current and 

indicates the amount of current that can be produced by photons of a particular wavelength 

when absorbed by a solar cell. In order to obtain QE of a device, two parameters must be 

determined: the intensity (power) of monochromatic light incident reaching the device and the 

generated current at each wavelength by the device. To perform the QE measurement, a 

monochromatic light beam scans over a given wavelength range for both solar cell devices and 

a calibrated reference detector (usually silicon) separately or simultaneously. The ratio between 

the current produced by the devices (Idev(λ)) and the reference detector (Iref(λ)) is called the cell 

responsivity.  Thus, the QE of the solar cell devices can be calculated by the equation below 11: 

QE = 
BC

6D
 × 

*EFG(D)

*HFI(D)×J(D)
 × 100%  (2-4) 

where h stands for Plank’s constant, c is the speed of light, e is elementary charge, λ is 

wavelength, and R(λ) is known as responsivity value of the calibrated reference detector. 

The quantum efficiency can be expressed in two ways: external quantum efficiency 

(EQE) and internal quantum efficiency (IQE). The EQE is the ratio of the number of collected 

free charge carriers to the number of incident photons of a given energy. Therefore, it represents 

the efficiency of three processes in photovoltaic devices: absorption efficiency (ηAbs), charge 

separation efficiency (ηCS) and charge collection efficiency (ηCC). A range of EQE from 60% 
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to 80% has been reported in the literature for various types of photovoltaic devices which 

indicate 85 to 95% efficiency for each of individual steps.2  

External quantum efficiency (EQE) was measured using a QEX10 quantum efficiency 

measurement system (PV Measurement Inc.). The EQE system was calibrated for spectral 

response via a reference photodiode prior to any measurement. AC mode was chosen for both 

calibration and measurement. The rate of the mechanical chopper to modulate light was 100 

Hz. The wavelength range of 300 – 800 nm was set to record photocurrent response of the 

devices. The wavelength interval was 10 nm. Focused beam size is about 1 mm x 5 mm 

independent of wavelength. The solar cell devices were kept in the dark (inside a black box) 

throughout the measurement.  

 

2.3.5. Photo-Voltage Decay (PVD) 

The open-circuit potential (Voc) decay or photo-voltage decay technique is a simple 

measurement to observe decay of voltage over the course of the time. Having kept device under 

open-circuit conditions throughout the measurement, an excess voltage is generated by 

illumination and decay the photo-voltage is monitored over the time. This technique was 

initially adapted to the dye-synthesized solar cell (DSSC) 12-13 and was then extended to the 

BHJ solar cells.   

In order to perform photo-voltage decay technique, the solar cell devices were held at 

open-circuit conditions (2.2 mΩ) by using a nanosecond switch (Asama Lab). A laser pulse (6 

ns, repetition rate 10 Hz) generated by Nd:YAG laser (Spectra-Physics, INDI-40-10) with a 

pump wavelength of 532 nm was used to excite the devices. Then, the photogenerated voltage 

decay was monitored over the time by a digital oscilloscope (Tektronix, DPO4054). The 

intensity of the laser pulse was adjusted by ND filters and measured repeatedly throughout the 

experiments. The devices were illuminated through ITO side.  
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2.3.6. Time-resolved Charge Extraction Technique 

The charge extraction (CE) technique was introduced by Shuttle et al. to determine the 

charge carrier density of organic solar cells under steady-state operational conditions. In CE 

technique, a solar cell is initially held at a potential (bias) away from short-circuit conditions 

(zero bias) under dark or illumination. Then the device is switched to short-circuit conditions, 

at which a current transient is produced as charge carriers are extracted. It is assumed that 

recombination of charge carriers is insignificant during extraction and therefore integral of the 

current transient is given a number of charge carriers at that particular potential prior to 

extraction.14 An established similar technique to the CE techniques is time-resolved charge 

extraction (TRCE) measurement, by which charge carrier extraction can be accomplished as a 

function of light intensity and time delay between photo-generation and extraction of charge 

carriers. It is principally similar to CE technique and involves three steps: 1) holding the device 

at open-circuit conditions, 2) photo-generation of charge carrier with a nanosecond laser pulse, 

3) switching device to short-circuit conditions after a well-defined, adjustable delay time 

following photo-generation.15-16 The schematic representation of the TRCE setup and typical 

charge extraction curves as a function of delay time are shown in Figure 2.3. 

Given the time dependency of charge carriers extraction and subsequently charge carriers 

density (n), bimolecular recombination coefficient (β) and bimolecular recombination lifetime 

(τ) were calculated by the following equations 17: 

β(t) = - 
KL

KM
 

:

L@
  (2-5) 

τ = 
:

LN
 = - n (

KL

KM
)-1  (2-6) 

It was assumed that β is dependent on charge carriers density and charge carrier density of holes 

(p) is equivalent to the charge carrier density of electrons (n).17 
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Figure 2.3. Schematic representation of time-resolved charge extraction setup and (bottom right) charge extraction 

curves as a function of delay time between photo-generation and extraction of charge carriers at a fixed excitation 

laser energy. Integration of each curve provides charge carrier density for the specified conditions. 

TRCE measurement was performed using a nanosecond switch (Asama Lab.). The rolemi 

of the switch is to hold the device at open-circuit conditions (2.2 MΩ impedance) for a well-

defined, adjustable delay time after charge carrier generation. The devices were illuminated by 

the laser pulse as above. The photogenerated charge carriers were kept at a high impedance 

(open-circuit condition) by the nanosecond switch. After a given time set by a digital time delay 

generator (Stanford research DG 535, 250 ns switching time), the impedance is switched to 

low, allowing extraction of photogenerated charge carriers take place under the built-in 

potential. The resulting photocurrent transient is recorded by a digital oscilloscope (Tektronix, 

DPO4054). The photocurrent transient curve was integrated to obtain the number of the charge 

carriers. Then, charge carriers density was calculated by dividing the number of charge carriers 

with the active layer film volume. The charge carrier density associated with switch and dark 



 

59 

  

capacitive response was also subtracted to ascertain photo-generated charge carriers density at 

each delay time. 

 

2.3.7. Photo-induced Charge Extraction by Linearly Increasing Voltage  

The charge extraction by linearly increasing voltage (CELIV) technique is developed to 

study charge carrier transport and recombination in organic and inorganic solar cells.18-19 The 

CELIV technique can be performed without and with a light source. The light source is required 

to generate charge carriers for less conductive, undoped organic semiconducting film. As such 

the technique is called photo-CELIV. Typically, the photo-CELIV is a two-step measurement. 

First, charge carriers are generated within the photoactive layer by a laser pulse. Then, the 

photo-generated charge carriers are extracted by a linearly increasing voltage pulse. A 

schematic diagram of applied voltage and subsequent current response versus time in photo-

CELIV measurement is shown in Figure 2.4. Upon illumination of the device and after an 

adjustable delay time, a triangle shape voltage pulse with a slope of A = 
O

M5PQ+F
 is applied to 

extract the charge carriers. Initially, the capacitive current response (R�) of the devices appeared. 

Thereafter, the current (∆R) started rising due to the transportation of charge carriers within the 

active layer and increased conductivity. The current steadily increased as a result of increasing 

applied voltage until all the charge carriers were extracted. Next, the current declined to the 

capacitive current step provided that the electrodes had a good blocking property (prevent 

injection of charge carriers into the film) and the pulse duration was long enough. In the case 

of moderately conductive film and ∆R ≪ R�, the mobility of the charge carriers was obtained 

from the following equation 15, 20-22: 

µ =
UV@

WX YZ[\
@ [:��.W_

∆`

`�
]
  (2-7) 
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where d is the active layer thickness, A stands for voltage pulse (
∆b

∆Y
), cdef account for time that 

the photocurrent response reaches its maximum value, ∆R  is the photo-generated current 

response and R� (= CU) is the capacitive current response of the devices in the dark. 

To perform a photo-CELIV experiment, the solar cell devices were illuminated by the 

nanosecond laser pulse and held at open-circuit conditions as described in section 2.3.6. After 

an adjustable delay time, the extraction of the photo-generated charge carriers was 

accomplished by applying a linearly increasing voltage pulse produced by a function generator. 

The current transient was recorded by the oscilloscope. To compensate for the built-in voltage, 

an offset potential equal to Voc of the devices was applied. It should be noted that the nanosecond 

switch was used for the all photo-CELIV experiments. Clarke et al. have mentioned that due to 

the high impedance of the circuit, using the nanosecond switch causes reduction of normal 

photocurrent response prior to t = 0 and Voc conditions are therefore present. 
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Figure 2.4. (top) Applied triangle voltage pulse versus time and (bottom) current response of the device versus 

time. j� (= CU) is the capacitive current response of the device in the dark. ∆jis photogenerated current response 

overlay on j� upon illumination. tghi represents the time that the highest value of the photocurrent acquired. tK6j 

is the delay time between when the device is illuminated and when the voltage pulse is applied. tkljm6 stands for 

the duration of time that the voltage pulse is applied. Unoo is the offset potential applied to compensate for the built-

in potential after illumination. 
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3.1. INTRODUCTION 

It is well established that the overall performance of the organic photovoltaic device is 

significantly dependent upon the nature of the electrical contact between the active layer and 

the electrodes 1-4. Hence, for an efficient charge carrier collection/extraction, an ohmic contact 

is required. In recent years, a thin layer of alcohol-soluble conjugated polyelectrolyte, [(9,9-

bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene) (PFN) has 

been proposed to provide an ohmic contact between the bulk heterojunction and the cathode 

electrode, giving rise to simultaneous enhancement of the photovoltaic parameters of solar cell 

devices5,6. The underlying mechanism is believed to be attributable to the deposition of the PFN 

film, which causes the formation of a permanent electrical dipole at the interface due to the 

strong interaction of the amino group at the side chain of the PFN and cathode electrode 

(aluminum). It is therefore claimed that a higher built-in potential is achievable based on the 

alignment of the electric dipole with the direction of the built-in potential. Consequently, the 

fill factor of solar cell devices is shown to be improved and higher values for both open-circuit 

potential and short-circuit current are obtainable. The enhancement of the photovoltaic 

parameters is attributed to higher charge carrier mobility, balanced charge carrier mobility, 

superior diode quality and the reduction of charge carriers recombination. Furthermore, it is 

believed that the PFN interlayer prevents Fermi level pinning between PCBM component of 

the active layer and the cathode electrodes, resulting in contact selectivity for the electrons and 

blocking hole transfer across the interface. Conversely, it is shown that generation of charge 

carriers upon insertion of the PFN layer is not affected, however, the collection of charge 

carriers around maximum power output condition is increased 5. 

Although PFN as an interfacial layer for polymer solar cells was introduced in 2010,7 it 

was just a year later that a report was published on the substantial improvement of solar cell 

performance upon the insertion of a thin layer of PFN.5 Since then the PFN interlayer has been 
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widely used in the conventional and inverted structures of solar cell devices i.e., as an electron 

transport layer. However, after reviewing the literature, one can identify a vast variability of the 

conditions under which the PFN interlayer is applied onto the active layers. Primarily, there is 

a huge discrepancy reported over the concentration of the PFN solution and its casting condition 

onto the active layer.8-22 This is an important factor in determining the thickness of the film. 

Nevertheless; an overwhelming majority of the publications has stated the thickness of their 

film to be 5 nm. In one study, it was reported that the thickness of the interlayer was measured 

by means of a surface profiler in combination with extrapolation from an absorbance-thickness 

curve which assumes a linear relationship between absorption of the PFN film at 380 nm and 

the film thickness.5,7,23 However, experimental proof to verify the exact thickness of the PFN 

film independently is not evident in the literature. Instead, there is a long line of citation 

propagating back to the original study.24-36 Yet it is worth noting that other techniques have 

been used to determine the thickness of PFN film, but precision and film preparation procedure 

are still questionable e.g. Long et al.37 measured PFN film thickness (20, 10 and 5 nm) by 

atomic force microscopy (AFM) technique and Srinivasan et al.38 used 3D laser scanning 

microscope to estimate the thickness of PFN film cast by spray coating and spin coating. 

However, no details of film preparation procedure (PFN solution, substrate) or methods 

(masking substrate or scratching the film to measure z-step) was provided. It should be also 

mentioned that the amount of the acetic acid used to dissolve the PFN in the polar solvents 

(mostly methanol) also differs within the literature. Eventually, it was shown by Hu et al. that 

the introduction of PFN to solar cell devices does not modify energy levels at the interface. It 

was also shown that the work function of the cathode electrode pins to the fullerene energy 

levels (E*q8
; ), which implies that open circuit potential of solar cell devices is independent of 

the work function of the cathode electrode.39 
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The first aim of this study was to realize the condition to achieve an optimal PFN film as 

an electron transport layer in the conventional architecture of the BHJ solar cells. Hence, a 

series of PFN solutions with difference concentrations, i.e. 0.5, 0.4, 0.3, 0.2 mg/ml were 

prepared. The solutions were spun cast on top of the active layer, with the spin speed varying 

from 1000 to 8000 rpm. Subsequently, the photovoltaic parameters of the solar cell devices 

were recorded as a function of the PFN film. Noteworthy that the preparation procedure 

(solution concentration and spin speed) encompasses a variety ranges of PFN film (thickness), 

however, PFN film thicknesses were undetermined. The second aim was to understand the 

extent to which the PFN film contributes to the charge carrier dynamics of the solar cell devices. 

Thus, the influence of the PFN interlayer on the recombination processes of the charge carriers 

was investigated by a combination of steady state and transient techniques. This involved the 

employment of the light intensity dependency measurement in addition to charges extraction, 

photovoltage decay, and photo-CELIV techniques. The light intensity dependency 

measurement was used to examine recombination dynamics of the device under the operational 

condition, whereas the transient techniques provide information about the influence of PFN on 

the lifetime and bimolecular recombination rate and mobility of the charge carriers. It should 

be noted that choosing PCDTBT as donor polymer in this study were based on the facts that it 

is a low-bandgap, high-performance, well-characterized polymer which commercially available 

(inexpensive) and does not require special treatments (pre- or post-treatment) in the bulk 

heterojunction. Moreover, it has been claimed that PFN effectively increases the performance 

of BHJ solar cell made of polymers containing N-heterocycle structure.40 
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3.2. EXPERIMENTAL  

3.2.1 Materials 

[6,6]-Phenyl C61 butyric acid methyl ester (PC60BM) with a purity of > 99.5%, Poly[N-

9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] 

(PCDTBT),  [6,6]-Phenyl C71 butyric acid methyl ester (PC70BM) with a purity of > 99.5% 

and Poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene) 

(PFN) were sourced from Solaris Chem. Inc. (Qc, Canada). Methanol (HPLC grade), 1,2-

dichlorobenzene (o-DCB) and Acetic Acid were also sourced from Sigma-Aldrich. All 

materials were of analytical grade and used as received without further purification.  

 

3.2.2. Film and Device Fabrication 

Solar cell devices were fabricated with an architecture consisting of 

ITO/PEDOT:PSS/PCDTBT:PCBM/PFN/Al. Patterned ITO-coated glasses were cleaned by 

sequential sonication in DI water, Acetone, and Isopropanol (IPA) and then treated with UV-

Ozone for 20 min. PEDOT:PSS solution was spin-coated on the substrate at 5000 rpm for 40 s 

to form a 30~40 nm thick film. After that, the substrates were annealed at 150 °C for 10 min in 

ambient air. The active layer was coated on top of the PEDOT:PSS film from a solution of 1,2-

dichlorobenzene containing PCDTBT:PC70BM or PCDTBT:PC60BM (1:4 ratio) at an overall 

concentration of 20 mg/ml. The final thickness of the active layer was 80 nm (± 5) as measured 

by a surface profiler (Dektak 150, Veeco). PFN solutions at 4 different concentrations were 

prepared, i.e., at 0.5, 0.4, 0.3 and 0.2 mg/ml by adding PFN into 1cc methanol in the presence 

of 1µL acetic acid. PFN solutions were spin-coated onto active layer at various spin speed, i.e., 

1000 to 8000 rpm. Finally, the cathode electrode was deposited by thermal evaporation of 100 

nm of aluminum. The device active area was 0.06 cm2. It should be noted in both reference and 

PFN-based devices cast from 0.5, 0.4, and 0.3 mg/ml solutions, PC70BM was used as acceptor, 
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whereas PC60BM was used as acceptor in both reference and PFN-based devices cast from 0.2 

mg/ml solution. PC70BM has a relatively bigger size and stronger absorption than PC60BM. 

Therefore, it is expected that the performance of the device using PC70BM would be higher 

compared to PC60BM. In addition, LUMO energy levels of both PC70BM and PC60BM are 

comparable. Thus, electrons may experience similar energy cascade (electrons travel from 

LUMO of acceptor to the cathode electrode) regardless of which molecule is used as acceptor. 

Nevertheless, both PC70BM and PC60BM do not contain N-heterocycle function group - the 

cardinal factor for PFN to interact with.40 As such, the mechanism with which PFN interlayer 

influences the performance of the devices is independent of which molecule is used as acceptor 

in the bulk heterojunction. 

    

3.2.3. Chemical Structure and Device Architecture 

The chemical structures of the polymer donor PCDTBT, fullerene-derivative acceptors 

PC70BM, PC60BM, PFN molecule and the schematic illustration of the solar cell energy levels 

in the conventional structure are shown in Figure 3.1.   

 

Figure 3.1. Chemical structures of (a) PCDTBT, (b) PC70BM, (c) PC60BM, (d) PFN and (e) the schematic 

representation of the solar cell energy levels. The energy levels were obtained from ref. [8].  
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3.3. RESULTS AND DISCUSSION 

3.3.1. Current density-Voltage Measurements 

Figure 3.2 shows comparison of power conversion efficiency (PCE) of the PCDTBT-

based bulk heterojunction solar cell devices without (reference) and with PFN interlayer (PFN-

based) as a function of spin speed of PFN solution casting (The full set of data including 

statistics, current density-voltage curves, external quantum efficiency, dark current and 

photocurrent analysis for both the reference devices and PFN-based devices are shown in 

Appendix). The PFN solutions were spin-coated on top of the active layer from PFN solutions 

with different concentrations and the spin speed was increased from 1000 to 8000 rpm. It is 

clear that for the whole range of PFN solutions and spin speed no substantial enhancement was 

observed in the overall performance of the PFN-based solar cell devices compared to reference 

devices. Moreover, the PCE of the devices are conversely degraded (Appendix) upon 

introduction of the PFN interlayer at some spin speeds (PFN film thickness). Generally, PFN 

film (thickness) effect (based on spin speed) on the overall performance of the solar cell devices 

can be categorized into three regions, i.e., i) low spin speed (1000 to 3000 rpm), ii) moderate 

spin speed (4000 to 6000 rpm), and iii) high spin speed (7000 and 8000 rpm). It can be seen 

that at low spin speed region, poor performance device compared to the reference devices 

become apparent which can be related to the formation of a thick PFN film at the interface that 

significantly blocks passages of the charge carriers to the cathode electrode. While at the 

moderate spin speed region PFN-based devices with similar efficiencies compared to reference 

devices appears, PCE of the PFN-based devices varies at the high spin speed region. It should 

be noted that PCE of reference devices in section b (0.4 mg/mg PFN) of Figure 3.2 is slightly 

lower than that of devices in sections a and c (0.5 and 0.3 mg/ml PFN). This is mostly due to 

the lower molecular weight of PCDTBT used in these series of experiments, resulting in lower 

Voc and Jsc (Appendix, Table 3.6.2) and consequently lower PCE. Nevertheless, this does not  
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Figure 3.2. Comparison of the power conversion efficiency (PCE) of the PCDTBT-based bulk heterojunction 

solar cells in the absence (black) and presence (red) of the PFN interlayer spin coated from PFN solutions with 

concentration of (a) 0.5 mg/ml, (b) 0.4 mg/ml, (c) 0.3 mg/ml, and (d) 0.2 mg/ml as a function of spin speed. The 

acceptor molecule in the bulk heterojunction for all device was PC70BM, except the reference and PFN-based 

device with 0.2 mg/ml which PC60BM is used. 

 

affect the fact that the PFN interlayer has not shown the ability to modify the interface and 

thereby improving solar cell devices efficiency. In the following, the effect of the PFN film 

(thickness) on each photovoltaic parameter of the solar cell devices is discussed. 

The open-circuit potential of the PFN-based devices remained independent of the PFN 

film (thickness) regardless of the concentration of PFN solutions or solution casting velocity, 

i.e. the Voc values before and after deposition of the PFN interlayer are comparable (Appendix, 

Table 3.6.1, Table 3.6.2, Table 3.6.3 and Table 3.6.4). This implies that the interface between 
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the cathode electrode and the active layer was not modified by insertion of the PFN interlayer. 

This might be due to deposition process of the cathode electrode (aluminum), Fermi level 

pinning between the cathode electrode and PCBM or band bending of the active layer. For 

example, deposition of aluminum is done through thermal evaporation. Given the thickness of 

the PFN layer, the hot particles of aluminum could penetrate the ultra-thin layer and either 

destroy the PFN film or result in the pinning of the Fermi level of the cathode electrode to the 

LUMO level of PCBM molecules. Under these circumstances, the Voc of the devices is 

independent of the PFN interlayer and determined by the work function of the aluminum. It 

should be noted that a thick PFN layer could resist either above-mentioned scenarios as the 

existence of such a thick film can be proved through its detrimental impact on the photovoltaic 

characteristics of the devices (Appendix, Table 3.6.1, 1000 rpm PFN-based devices). 

Zhang et al.6 has reported the improvement of the open-circuit potential of the 

PCDTBT:PC70BM BHJ solar cells upon incorporation of the PFN interlayer. However, it is 

apparent that there was only 0.01 V difference between Voc of the devices treated with methanol 

(0.92 ± 0.01 V) and the device containing PFN (0.93 ± 0.01 V).  Moreover, the open-circuit 

potential of the control devices (without PFN interlayer or methanol treatment) is relatively low 

(0.8 V) compared to those reported in the literature (0.9 V). He et al.5 also report improving Voc 

from 0.7 V to 0.9 V following the addition of PFN interlayer and calcium. It is also shown by 

Guo et al.15 that Voc slightly increases from 0.845 V to 0.890 V after incorporation of PFN film.  

Therefore, it could be understood that the PFN interlayer has no and/or a small impact on the 

Voc of the devices which were already acquired the highest possible open-circuit potential. This 

conclusion has been reflected in the results presented here where Voc remains almost unchanged 

following deposition of the PFN interfacial layer. A similar trend can also be found in solar cell 

consisted of other donor materials such as P3HT, PTB7, etc.   
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The short-circuit current of the PFN-based devices fluctuates over values less than that of 

the reference devices (Appendix, Table 3.6.1, Table 3.6.2, Table 3.6.3 and Table 3.6.4) across 

the whole range of spin speeds and concentrations. The external quantum efficiency of the best 

devices with PFN interlayer (Appendix, Figures 3.6.3, 3.6.7, 3.6.11, and 3.6.15) also shows a 

slight decrease (devices fabricated with PFN solutions 0.5, 0.4 and 0.3 mg/ml) or increase 

(devices fabricated with 0.2 mg/ml) compared to the respective reference devices. These results 

are consistent with current density-voltage measurement and imply that the conversion 

efficiency of the incoming photon to collected electron has not been altered following the 

introduction of PFN interlayer. In other words, generation, transportation, collection and 

recombination of charge carriers are likely to be similar in the absence and presence of the PFN 

film.    

He et al.5 show that PFN/Ca interlayer can moderately increases (0.7 mA cm-2) the short-

circuit current. Zhang et al.6 report PFN interlayer film cast from methanol solvent enhances 

Jsc around 0.5 mA cm-2. Guo et al.15, on the other hand, demonstrated that methanol solely 

increases the Jsc more than that of PFN. The other BHJ solar cells have also demonstrated an 

increase in the short-circuit current upon methanol treatment.41,42 As such, it would be difficult 

to exclude the contribution of the methanol into the enhancement of the Jsc, since PFN has been 

always cast from methanol solvent. However, no considerable changes in the short-circuit 

current were observed here upon the inclusion of PFN interlayer.   

The impact of PFN interlayer was observed to be on the fill factor of PFN-based devices 

(Appendix, Table 3.6.1, Table 3.6.2, Table 3.6.3 and Table 3.6.4). The FF of PFN-based 

devices were reduced significantly at the low spin speeds compared to the reference devices. 

This perhaps was due to the formation of a relatively thick film at the interface which would 

hamper collection of charge carriers (electrons) at the cathode electrode. As a result, charge 

carriers recombine which would lead to a subsequently lower fill factor. At the moderate speed 
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spin region, the fill factor started rising whereas at the high-speed spin region it fluctuates with 

values close to or less than that of the reference devices. Thus, improvement of the fill factor is 

not observed here upon introduction of the PFN layer between the active layer and the cathode 

electrode. It is worth pointing out that fill factor of the devices (references) reported in this 

chapter is slightly smaller (~0.52) than those that are reported in the literature (vide infra), which 

could be due to inherent impurity containing within the active materials. Nevertheless, the FF 

of the PFN-based devices was lower or remained almost unchanged compared to the reference 

devices. FF is an indicator of competition between extraction and recombination which is 

dependent on the mobility of charge carriers. Hence, one may conclude that PFN interlayer 

unable to modify either the mobility of charge carriers or interface characteristics (in terms of 

recombination) between the active layer and the cathode electrode. 

It has been reported that PFN interlayer could improve the FF of the solar cell devices. 

He et al.5 reported a 26% increase in the FF (from 0.49 to 0.62) due to PFN interlayer. A more 

balanced and increased mobility of charge carriers were accounted for the enhancement. Zhang 

et al.6 claimed that FF increases 17% (from 53.6 to 62.8) upon insertion of PFN film. This 

increase was related to better diode quality of devices due to hole-blocking characteristics of 

the amino groups of the PFN side chain. A similar improvement of the FF (from 0.57 to 0.67) 

was reported by Guo et al.15 and correlated to the effect of PFN in the reduction of space-charge 

build-up and charge carrier recombination. Such an enhancement on fill factor was not observed 

here.     
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3.3.2. Dark Current Measurement 

To gain more understanding of the effect of the PFN interlayer on the electrical 

characteristics of the solar cell devices, the current-voltage characteristics of the devices were 

measured in the dark condition. Figure 3.3 exhibits dark current characteristics of the solar cell 

devices without and with PFN interlayer. For the purpose of comparison, only the best devices 

were compared here, however, the full sets of dark current measurement containing all spin 

speed are presented in the Appendix (Figures 3.6.2, 3.6.6, 3.6.10, and 3.6.14). It is clear that 

there is only quite small difference between dark currents characteristics of the solar cell devices 

in the absence and presence of the PFN interlayer. The key characteristics of the devices in the 

dark such as turn-on voltage or rectification ratio have not been significantly altered. It is  

 

Figure 3.3. Comparison of the dark current density of PCDTBT:PCBM solar cell devices without (black line) and 

with (red line) the PFN interlayer as a function applied voltage. The concentration of the PFN solutions were (a) 

0.5 mg/ml, (b) 0.4 mg/ml, (c) 0.3 mg/ml, and (d) 0.2 mg/ml. 
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claimed that PFN interlayer results in a reduced current density in the reverse bias (known as 

leakage current region).7 This reduction is ascribed to increasing of contact barrier for hole 

injection at the semiconductor/metal interface and subsequently lower reverse dark current 

saturation. Such a reduction in the reverse bias (-1.5 V) for the majority of the PFN-based 

devices fabricated with 0.2, 0.3 and 0.4 mg/ml PFN solutions was not observed (Appendix, 

Figures 3.6.6, 3.6.10, and 3.6.14), whereas devices with PFN interlayer casted from 0.5 mg/ml 

solution exhibit the reduction (Appendix, Figure 3.6.2). On the other hand, the current density 

in forward bias bigger than 1V (known as space charge limited current region) is at the same 

level or decreases in devices containing PFN interfacial layer compared to the control devices 

(Appendix, Figures 3.6.2, 3.6.6, 3.6.10, and 3.6.14). The current is an indication of series 

resistance in solar cell devices and demonstrates the injection of electrons from the cathode 

electrode (flowing electrons from the cathode to anode).43,44 Therefore, it could be surmised 

that series resistance has not been changed or even increased following the deposition of PFN 

interlayer. This possible increase in series resistance could stem from the bulk resistance of the 

PFN layer (thick PFN film) or interfacial resistance at the PFN/Al interface (thin PFN film).  

As mentioned earlier, the turn-on voltage of the solar cell devices has not been 

significantly modified following the addition of PFN interlayer. The turn-on voltage is an 

indication of built-in voltage (Vbi) that influences the internal electric field in BHJ solar cells 

and determines the maximum attainable Voc provided that difference of electrodes’ work 

functions is larger than the offset between HOMO-donor and acceptor-LUMO.42 He et al.5 has 

mentioned enhancement of Vbi and consequently the open-circuit potential of 

PCDTBT:PC70BM BHJ is primarily due to the formation of a dipole (originating from amino 

group in side chain of PFN) and its alignment with internal electric field. Furthermore, the 

authors claimed that turn-on voltage increase to 0.8 – 1V from pristine values of 0.5 - 0.6 V 

(toward higher voltage) upon incorporation of PFN as interlayer. Such a drastic enhancement 
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in the turn-on voltage is not clearly observed here. In addition, similar to turn-on voltage, Vbi 

remained also unaltered. Therefore, the fact that open-circuit potential of the solar cell devices 

has not been enhanced after addition of PFN interfacial layer can be ascribed to the unchanged 

turn-on voltage and subsequent Vbi. 
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3.3.3. Charge Generation and Collection 

Figure 3.4 and 3.5 compares the photocurrent density (Jph) and charge collection 

probability (Pc) of the PCDTBT:PCBM devices without and with PFN interlayer cast from 

different PFN solutions as a function of effective voltage (Vint). Given PFN solution 

concentrations and spin speed, PFN-based devices showing highest PCE were chosen to be 

compared to the reference devices here. In addition, the photocurrent density and charge 

collection probability for the lowest and highest rpm for each PFN solution concentration are 

shown in the Appendix (Figures 3.6.4, 3.6.8, 3.6.12 and 3.6.16). Generally, the photocurrent 

density in the devices containing PFN interfacial layer is lower compared to the reference 

device (Figure 3.4a-d). The photocurrent density flowing through a solar cell can be expressed 

as a function of charge generation rate and charge collection probability. Hence, it can be 

written as below 45,46: 

Jph = edGmaxPc  (1) 

where e is elementary charge, d is the thickness of the active layer, Gmax is the maximum photo-

induced charge carrier generation rate per unit volume and Pc is the charge collection 

probability. The charge collection probability approaches unity (PC = 1) at saturated 

photocurrent (Jph,sat = qLGmax) when the internal electric field within the device is strong enough 

to sweep out all charge carriers. Thereby the Pc can be determined as below 45,46:  

Pc = 
r5s

r5s,+(u
 (2) 

The Gmax values of the devices for both reference and PFN-based solar cell devices are 

shown in Table 3.1. It is clear that Gmax values for the PFN-based devices are slightly smaller 

than that of the reference counterparts. The Gmax corresponds to the maximum number of the 

photons absorbed by the active layer. Therefore, the Gmax results imply that the absorption of 

the light has not been enhanced following insertion of the PFN layer between the active layer 
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Figure 3.4. Comparison photocurrent density of the best efficient PCDTBT:PCBM solar cell devices as a function 

of the effective voltage without (black line) and with (red line) the PFN interlayer casted from solution with 

concentration of (a) 0.5 mg/ml (donor is PC70BM), (b) 0.4 mg/ml (donor is PC70BM), (c) 0.3 mg/ml (donor is 

PC70BM), and (d) 0.2 mg/ml (donor is PC60B). 

 

Table 3.1. The calculated Gmax values for the devices without and with PFN interlayer cast from PFN solution 

with different concentration.  

PFN solution 

concentration 

(mg/ml) 

Spin speed 

(rpm) 

Gmax (m-3 s-1) 

(PFN-based device) 

Gmax (m-3 s-1) 

(Reference device) 

0.5 5000 9.5 × 1027 1.0 × 1028 

0.4 5000 8.7 × 1027 9.3 × 1027 

0.3 6000 8.8 × 1027 9.4 × 1027 

0.2 8000 6.2 × 1027 6.6 × 1027 
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and the cathode electrode. Indeed, it appears that PFN has a small negative impact on the 

generation rate of the charge carrier (Table 3.1). The above-mentioned negative effect is even 

more pronounced in the PFN containing devices cast at lowest spin speed, e.g. 1000 rpm 

(Appendix, Figures 3.6.4, 3.6.8, 3.6.12 and 3.6.16).  This may indicate the PFN film does not 

have characteristics of an optical spacer. The optical spacer gives rise to a better spatial 

distribution of incident light throughout the bulk heterojunction, leading to increase light 

absorption and subsequent photo-generated charge carriers. Thus, one may conclude that PFN 

interfacial layer not only contributes to the spatial distribution of the incident light but also 

interferes with bulk heterojunction absorption. 

The charge collection probability (Pc) of the devices is also compared in Figure 3.5a-d. 

There are no appreciable changes in the Pc values before and after deposition of the interlayer 

at the high effective voltage (Vint > 0.3 V). Besides, the Pc values of PFN-based devices are 

lower compared to the reference devices at low Vint (< 0.3 V). The exception is the devices with 

PFN interlayer cast from 0.2 mg/ml solution (Figure 3.5d). The observed reduction of charge 

collection in PFN-based BHJ devices at low effective voltage (close to open-circuit conditions) 

where the internal electric field is weak, may indicate the enhancement of charge carrier 

recombination.      

Generally, it could be concluded that both charge carrier generation and collection of the 

PCDTBT:PCBM BHJ devices have been declined after incorporation of the PFN interlayer. As 

such, this may explain the reduction of the short-circuit current and fill factor of the PFN-based 

devices.  
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Figure 3.5. Comparison charge collection probability of the best efficient PCDTBT:PCBM solar cell devices as a 

function of the effective voltage without (black line) and with (red line) the PFN interlayer casted from solution 

with concentration of (a) 0.5 mg/ml (acceptor is PC70BM), (b) 0.4 mg/ml (acceptor is PC70BM), (c) 0.3 mg/ml 

(acceptor is PC70BM), and (d) 0.2 mg/ml (acceptor is PC60BM).   
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3.3.4. Light-Intensity Dependency Measurement 

To study the effect of the PFN interfacial layer on the charge carrier recombination 

kinetics, the dependency of the short-circuit current and open-circuit potential as a function of 

the illumination intensity is examined. Given that PFN interlayer did not substantially enhance 

the performance of the BHJ devices, the highest achieved PCE of PFN-based devices cast at 

5000 rpm from 0.5 mg/ml solution was selected for comparison with its respective reference 

device for this study. In Figure 3.6a, the short-circuit currents of the device are plotted against 

the incident light intensity on a log-log scale and fitted to a power law based one the Jsc ∝ Iα 

relationship, where α is indicative of the recombination dynamics.45-48 The α values for the 

reference and PFN-based devices are 0.945 and 0.943, respectively. These values suggest that 

recombination dynamics of the charge carriers at the short-circuit conditions has not been 

altered upon insertion of the PFN film between the active layer and the cathode electrode. 

Similar results were reported by He et al. 5 It is pointed out that a sole monomolecular 

recombination at short-circuit conditions gives rise to an α value close to unity, whereas 

deviation from unity could be due to strong bimolecular recombination, space charge effect and 

different in mobility of the charge carriers 45,48. Considering the mobility measurement results 

(Section 3.3.8), the deviation from unity could result from the bimolecular recombination of 

the charge carriers.   

In order to further investigate the impact of the PFN interlayer on the recombination 

dynamics of the charge carriers at the low effective voltage, the open circuit potential of the 

solar cell devices is studied as a function of the incident light intensity (Figure 3.6b). According 

to equation 2-3 and given the fact that all charge carriers are recombined at the open-circuit 

condition via bimolecular recombination, the slope of Voc versus the natural logarithm of the 

light intensity is kT/e.45-48 The slope values for the reference and PFN-based devices are 1.44  
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Figure 3.6. (a) Short circuit currents and (b) open circuit potentials plot against light intensity for the PCDTBT: 

PC70BM solar cell devices without (black line) and with (red line) the PFN interlayer. The adjacent R2 for fitting 

parameters are more than 0.99. PFN solution concentration was 0.5 mg/ml and was cast at 5000 rpm. 

 

kT/e and 1.55 kT/e, respectively. Although the difference between the slopes is not huge, the 

slope values suggest that recombination dynamics at the open-circuit is not purely bimolecular 

and the addition of the PFN interfacial layer results in the stronger dependency of the open- 
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circuit potential to the incident light intensity. According to Kway et al. 45,46, interfacial trap 

states are responsible for the stronger dependency of the open-circuit potential to the light 

intensity and subsequent deviation of the slope from kT/e. The authors have shown that 

interfacial trap states can be mitigated by insertion of an interfacial layer between the active 

layer and the cathode electrode. Thus it can be inferred that both bimolecular recombination 

and trap-assisted recombination are present at the open-circuit condition. Moreover, charge 

carrier recombination via trap states enhanced in devices with the interlayer. Hence, reduction 

of charge collection in PFN-based devices, especially at low effective voltage (close to open-

circuit conditions), can be attributed to the enhancement of trap-assisted recombination (also 

known as monomolecular or Shockley-Read-Hall recombination). The reason for such an 

enhancement remains unclear. One possible explanation can be that PFN acts as a 

recombination center and facilitate the monomolecular recombination as it has been claimed 

that amino group in PFN side chain are the hole trapping center.6     
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3.3.5. Photovoltage Decay Measurement 

To study the effect of the interlayer on the recombination dynamics of the charge 

carriers, the decay of photovoltage over the time for the BHJsolar cell devices in the absence 

and presence of the PFN interlayer is examined. Figure 3.7 compares the photovoltage decay 

of the  PCDTBT:PC70BM BHJ solar cells without and with PFN interlayer cast at 5000 rpm 

from 0.5 mg/ml solution. It is clear that both devices possess similar Voc initially, which are 

close to the open-circuit potential values obtained from the current density-voltage 

measurement. This implies that the open-circuit potential of the PFN-based device is 

independent of the interlayer. Moreover, the photovoltage of the device with PFN interlayer 

decays faster than that of the control devices. This means charge carriers recombine faster in 

the presence of the PFN in particular at the longer time. This finding is consistent with light 

intensity dependency results.    

 It should be noted that Voc in BHJ solar cells is determined by quasi-Fermi level 

splitting that is obtained when available electronic states are occupied by a certain amount of 

the charge carriers. The charge carriers density, on the other hand, at the open circuit conditions 

is determined by a competition between generation and recombination of the charge carriers, 

considering recombination term has a charge carriers dependency. Therefore, any change in 

either the generation or recombination rates could affect charge carrier density and subsequently 

the Voc.49 Maurano et al. 50 have also shown that Voc is determined by the energy levels of the 

donor and acceptor materials as well as recombination dynamics of the charge carriers. All in 

all, it could be rationalized that neither recombination dynamics nor generation rates of the 

charge carriers at the open-circuit conditions were influenced by the introduction of PFN 

interlayer. Two possible scenarios for this can be i) the contact between active layer and the 

cathode electrode is ideal and ohmic which  cannot be further improve by PFN interlayer, ii) 
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the PFN interfacial layer would have been destroyed during thermal evaporation of cathode 

electrode such that there is no longer an intact interfacial layer on top of the active layer to  

 

Figure 3.7. The decay of photovoltage over time of the PCDTBT:PC70BM solar cell devices without (black line) 

and with (red line) the PFN interlayer. PFN solution concentration was 0.5 mg/ml and was cast at 5000 rpm.   

 

modify the interface. Given the second scenario, Hu et al.39 have reported that cathode electrode 

(Al) diffuses into the PFN film and the interface is a mixture of Al, PFN, and fullerene. The 

above-mentioned findings are not in agreement with findings report by He et al.5 that suggest 

incorporation of the PFN film results in the reduction of the bimolecular recombination and 

therefore increase of Voc.  
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3.3.6. Charge Extraction Measurement 

The dynamics of the charge carrier over the time for the solar cell devices in the absence 

and presence of the PFN interfacial layer were measured and presented in Figure 3.8. The best 

efficient devices without an with PFN interlayer (0.5 mg/ml cast at 5000 rpm) were chosen for 

this study. As shown in Figure 3.8a, the amount of charge carrier density at the early time 

acquired by both reference and PFN-based devices is comparatively similar. However, charge 

carrier density is lower in the device with PFN interfacial layer at the longer time. This means 

that the decay of the charge carriers in the PFN-base devices are faster compared to the control 

device. The charge carrier bimolecular recombination coefficient (β) and bimolecular 

recombination lifetime (τ) were calculated based on equation (2-5) and (2-6), respectively. It 

can be seen that β is slightly higher in the presence of the PFN interfacial layer (Figure 3.8c). 

Nevertheless, τ for both devices is almost identical over the course of the time (Figure 3.8b). 

These findings suggest that recombination of charge carriers is enhanced following the 

inclusion of PFN interlayer. This may result from recombination through interfacial trap states. 

The bimolecular recombination at the longer time is attributed to the bimolecular recombination 

of the charge carrier in the presence of the exponentially distributed localized (trap) states.51 

Given the higher value of β in the PFN-based devices (especially at the longer time), one may 

conclude that recombination via trap states has been enhanced in the presence of the PFN. The 

charge extraction results are in good agreement with light-intensity dependency as well as 

photovoltage decay results. 

 

 



 

88 

  

  

Figure 3.8. (a) Charge density and (b) bimolecular recombination lifetime and (c) bimolecular recombination 

coefficient (β) as a function of time of the PCDTBT:PC70BM solar cell devices without (black line) and with (red 

line) the PFN interlayer. The concentration of PFN solution was 0.5 mg/ml. The PFN solution was cast at 5000 

rpm.  
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3.3.7. Photo-CELIV Measurement 

In order to study the effect of the PFN interfacial layer on the transportation of the 

charge carriers, the mobility of the PCDTBT:PC70BM BHJ solar cell devices before and after 

insertion of the PFN interlayer is measured by photo-CELIV technique. The photo-CELIV 

curves of the devices under illumination and in the dark are shown in Figure 3.9. the calculated 

mobility based on equation (2-7) is 1.2 × 10-5 cm2 V-1 s-1 prior to insertion of the PFN interlayer. 

Once the interlayer is introduced, the mobility is calculated to be 1.01 × 10-5 cm2 V-1 s-1. The 

mobility values are quite similar and imply that mobility of the charge carriers has not improved 

by the inclusion of the PFN interlayer between the active layer and the cathode electrode. Given 

that, similar values of short-circuit current and fill factor can be attributed to the almost equal 

charge carrier mobility before and after the incorporation of the PFN interlayer.   

He et al.5 claimed that the introduction of the PFN gives rise to a more balanced as well 

as increased charge carrier mobility. The results showed that electron mobility was slightly 

increased, whereas hole mobility was enhanced by almost one order of magnitude (from 3.2 × 

10−4 cm2 V−1 s−1 to 1.7 × 10−3 cm2 V−1 s−1) following incorporation of the PFN interlayer. The 

authors claim that increased charge carrier mobility is due to boost of Vbi across the device and 

strong local field at the interface which cause the charge carriers escape shallow traps and 

acquire subsequently higher mobility. As mentioned earlier, PFN did not rise to enhancement 

of Vbi here. Notably, there are some reports that show methanol treatment can enhance the 

mobility of charge carriers.41,42,52 For example, Zhang et al.6 claimed that upon methanol 

treatment of the PCDTBT:PC70BM film, no change in electron mobility was observed whereas 

the hole mobility was improved. Given that the PFN cast from methanol solvent, the observed 

enhanced mobility with PFN may come from methanol treatment. Nevertheless, no change on 

the charge carrier mobility was observed here. Noteworthy that the charge carrier mobility in 

the abovementioned publications was measured by space charge limited current (SCLC) model 
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in conjunction with Mott-Gurney law. In the SCLC regime, the current characteristic is 

quadratic (I ~ V2) and depends only on the charge carrier mobility. Hence, the mobility can be 

estimated by the Mott-Gurney law from a simple current-voltage measurement.53 Given that 

mobility is charge density dependent, the difference between mobility results reported here and 

those reported in the literature may come from variation of charge density across the devices. 

It should also be mentioned that operational devices are used in photo-CELIV measurement, 

whereas SCLC technique can be only performed on electron-only or hole-only devices.   

 

Figure 3.9. Light and dark photo-CELIV curves of the PCDTBT:PC70BM solar cell devices (a) without and (b) 

with PFN interlayer. The applied voltage was 2 V with a width of 5 µs. The delay time between photogeneration 

and extraction was set 2 µs. The laser intensity was 10 µj. 
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3.4. CONCLUSION  

 The interface between the PCDTBT:PC70BM bulk heterojunction and the cathode 

electrode (aluminum) was modified by the insertion of PFN as an electron transport layer. 

Several solutions with various concentration of PFN were prepared and the solutions were spin-

coated on top the BHJ active layer by varying the spin velocity from 1000 to 8000 rpm. The 

photovoltaic characteristics of the solar cell devices were investigated as a function of PFN 

interlayer. Upon incorporation of the PFN interlayer, no significant enhancement regarding the 

overall performance of the BHJ solar cell devices was observed contradictory to the published 

work.5,6 Charge carrier dynamics of the devices including generation, recombination, and 

mobility were examined and found to be quite similar or slightly degraded after deposition of 

the PFN interlayer. It is concluded that either the contact between BHJ and the cathode electrode 

is ideal and ohmic that can no longer be boosted by the interlayer or the PFN film would have 

been destroyed during thermal evaporation of the cathode electrode.   

 

3.5. FUTURE WORK 

While the body of the work presented in this chapter has disputed the impact of the PFN 

on improving the performance of the BHJ solar cell, a few aspects could be further examined.  

Firstly, establish a procedure to determine the thickness of the optimal PFN film (if any) 

accurately rather than inferring PFN thickness through extrapolation technique and changing 

concentration and deposition speed rates. This includes using different techniques such as 

AFM, SEM and/or TEM simultaneously to verify the thickness fo the PFN on both bare glass 

and BHJ active layer. Another aspect is to examine the effect of the PFN (if any) on different 

BHJ systems such as small molecules and polymer-polymer. 
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3.6. APPENDIX  

 PFN solution concentration - 0.5 mg / 1 cc  

Table 3.6.1. Photovoltaic parameters of the PCDTBT:PC70BM solar cell devices without and with the PFN 

interlayer. The concentration of the PFN solution was 0.5 mg/ml. The results are average of 12 devices. 

 Voc (mV) Jsc (mA cm-2) FF PCE (%) 

Reference 886.33 ± 5.2 10.82 ± 0.96 0.52 ± 0.05 5 ± 0.4 

1000 rpm 400.5 ± 74.2 0.8 ± 0.1 0.21 ± 0.01 0.07 ± 0.02 

2000 rpm 892 ± 8.8 9.5 ± 0.9 0.36 ± 0.04 3.03 ± 0.6 

3000 rpm 881.4 ± 8.3 8.7 ± 3.4 0.46 ± 0.02 4.1 ± 0.1 

4000 rpm 892.7 ± 8.8 9.9 ± 0.3 0.50 ± 0.02 4.5 ± 0.3 

5000 rpm 899.1 ± 8.5 10.2 ± 0.1 0.52 ± 0.01 4.7 ± 0.1 

6000 rpm 892.7 ± 8.8 9.5 ± 0.6 0.43 ± 0.02 3.65 ± 0.2 

7000 rpm 873.5 ± 25.5 8.9 ± 0.8 0.49 ± 0.03 3.8 ± 0.5 

8000 rpm 886.35 ± 2.1 9.9 ± 0.79 0.45 ± 0.01 4 ± 0.2 

 

 

Figure 3.6.1. Comparison of the current density-voltage curves of PCDTBT:PC70BM solar cell devices without 

and with the PFN interlayer as a function of the spin speed of the PFN solution casting. The concentration of the 

PFN solution was 0.5 mg/ml. 
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Figure 3.6.2. Comparison of the dark current density of PCDTBT:PC70BM solar cell devices without (black line) 

and with (red line) the PFN interlayer as a function of the spin speed of the PFN solution casting. The concentration 

of the PFN solution was 0.5 mg/ml. 

  

Figure 3.6.3. External quantum efficiency of PCDTBT:PC70BM solar cells without and with the PFN interlayer 

cast at the spin speed of 5000 rpm. The concentration of the PFN solution was 0.5 mg/ml. The Jsc obtained from 

EQE for reference and PFN-based devices are 10.37, and 10.01 mA cm-2, respectively. 
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Figure 3.6.4. (a) & (c) Photocurrent density and (b) & (d) charge collection probability as a function of the 

effective voltage of PCDTBT:PC70BM solar cell devices without (black line) and with (red line) the PFN 

interlayer. The spin speed for (a) & (b) devices is 1000 rpm. The spin speed for (c) & (d) is 8000 rpm. The 

concentration of PFN solution was 0.5 mg/ml. 
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PFN solution concentration - 0.4 mg / cc 

Table 3.6.2. Photovoltaic parameters of the PCDTBT:PC70BM solar cell devices without and with the PFN 

interlayer. The concentration of the PFN solution was 0.4 mg/ml. Eight devices were measured and averaged. 

 Voc (mV) Jsc (mA/cm2) FF PCE (%) 

Reference 854.1 ± 5.7 10.02 ± 0.6 0.48 ± 0.02 4.1 ± 0.2 

1000 rpm 855.7 ± 3.2 7.3 ± 0.2  0.47 ± 0.005 3 ± 0.1 

2000 rpm 860.2 ± 2.8 8.03 ± 0.7 0.42 ± 0.03 3 ± 0.3 

3000 rpm 857 ± 5.2 8.7 ± 0.07 0.43 ± 0.01 3.2 ± 0.06 

4000 rpm 864.2 ± 5.5 9 ± 0.2 0.42 ± 0.01 3.25 ± 0.03 

5000 rpm 863.7± 4.5 8.95 ± 0.1 0.45 ± 0.02 3.46 ± 0.1 

6000 rpm 856.3 ± 3.5 8.2 ± 0.4 0.46 ± 0.01 3.20 ± 0.1 

7000 rpm 862.3 ± 5.1 8.6 ± 0.8 0.44 ± 0.01 3.3 ± 0.3 

8000 rpm 855.2 ± 2.5 7.9 ± 0.3 0.47 ± 0.01 3.2 ± 0.2 

 

 

Figure 3.6.5. Comparison of the current density-voltage curves of PCDTBT:PC70BM solar cell devices without 

and with the PFN interlayer as a function of the spin speed of the PFN solution casting. The concentration of the 

PFN solution was 0.4 mg/ml. 
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Figure 3.6.6. Comparison of the dark current density of PCDTBT:PC70BM solar cell devices without and with the 

PFN interlayer as a function of the spin speed of the PFN solution casting. The concentration of the PFN solution 

was 0.4 mg/ml. 

  

Figure 3.6.7. External quantum efficiency of PCDTBT:PC70BM solar cells without and with the PFN interlayer 

cast at the spin speed of 5000 rpm. The concentration of the PFN solution was 0.4 mg/ml. The obtained Jsc from 

EQE for the reference and PFN-based devices are 10.08, and 9.13 mA cm-2. 
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Figure 3.6.8. (a) & (c) Photocurrent density and (b) & (d) charge collection probability as a function of the 

effective voltage of PCDTBT:PC70BM solar cell devices without (black line) and with (red line) the PFN 

interlayer. The spin speed for (a) & (b) devices is 1000 rpm. The spin speed for (c) & (d) is 8000 rpm. The 

concentration of PFN solution was 0.4 mg/ml. 
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PFN solution concentration - 0.3 mg / cc 

Table 3.6.3. Photovoltaic parameters of the PCDTBT:PC70BM solar cell devices without and with the PFN 

interlayer. The concentration of the PFN solution was 0.3 mg/ml. The results are average of 8 devices. 

 Voc (mV) Jsc (mA cm-2) FF PCE (%) 

Reference 890.6 ± 8 10.7 ± 0.25 53.3 ± 0.01 5.1 ± 0.25 

1000 890.5 ± 9.9 9.53 ± 0.6 36.7 ± 2.7 3.13 ± 0.4 

2000 891.1 ± 4.8 10.1 ± 0.3 37.6 ± 1.9 3.4 ± 0.3 

3000 893.7 ± 5.7 9.66 ± 0.2 38.3 ± 3.5 3.3 ± 0.37 

4000 897.9 ± 6.4 9.8 ± 0.4 44 ± 4 3.9 ± 0.4 

5000 889.8 ± 1.8 9.6 ± 0.4 0.51 ± 0.01 4.4 ± 0.2 

6000 881.5 ± 16 10.8 ± 0.6 53 ± 0.03 5.1 ± 0.5 

7000 886.4 ± 4 10.7 ± 0.6 54.7 ± 0.01 5.2 ± 0.2 

8000 876.1 ± 9.3 10.8 ± 0.4 51 ± 0.05 4.8 ± 0.5 

 

 

 

Figure 3.6.9. Current density-voltage curves of PCDTBT:PC70BM solar cell devices without and with the PFN 

interlayer cast at different spin speeds. The concentration of the PFN solution was 0.3 mg/ml. 
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Figure 3.6.10. Comparison of the dark current density of PCDTBT:PC70BM solar cell devices without and with 

the PFN interlayer as a function of the spin speed of the PFN solution casting. The concentration of the PFN 

solution was 0.3 mg/ml. 

  

Figure 3.6.11. External quantum efficiency of PCDTBT:PC70BM solar cells without and with the PFN interlayer 

cast at the spin speed of 6000 rpm. The concentration of the PFN solution was 0.3 mg/ml. The obtained Jsc from 

EQE for the reference and PFN-based devices are 10.57, and 10.53 mA cm-2, respectively. 
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Figure 3.6.12. (a) & (c) Photocurrent density and (b) & (d) charge collection probability as a function of the 

effective voltage of PCDTBT:PC70BM solar cell devices without (black line) and with (red line) the PFN 

interlayer. The spin speed for (a) & (b) devices is 1000 rpm. The spin speed for (c) & (d) is 8000 rpm. The 

concentration of PFN solution was 0.3 mg/ml. 
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PFN solution concentration - 0.2 mg / cc 

Table 3.6.4. Photovoltaic parameters of the PCDTBT:PC60BM solar cell devices without and with the PFN 

interlayer. The concentration of the PFN solution was 0.2 mg/ml. The results are average of 8 devices. The acceptor 

is PC60BM. 

 Voc (mV) Jsc (mAcm-2) FF PCE (%) 

Reference 847.8 ± 4.5 6.81 ± 0.42 0.51 ± 0.006 2.93 ± 0.14 

1000 rpm 855.8 ± 7.6 6.51 ± 0.55 0.49 ± 0.009 2.75 ± 0.2 

2000 rpm 846.3 ± 8.6 6.34 ± 0.13 0.47 ± 0.002 2.56 ± 0.12 

3000 rpm 850.8 ± 4.3 6.5 ± 0.3 0.48 ± 0.03 2.7 ± 0.09 

4000 rpm 831 ± 7.9 6.6 ± 0.22 0.47 ± 0.03 2.6 ± 0.15 

5000 rpm 837 ± 3.8 7.11 ± 0.4 47.9 ± 0.006 2.85 ± 0.2 

6000 rpm 844.3 ± 5.1 6.61 ± 0.25 0.52 ± 0.016 2.9 ± 0.06 

7000 rpm 854.25 ± 8.5 6.9 ± 0.6 0.5 ± 0.42 2.94 ± 0.3 

8000 rpm 857 ± 6.3 6.53 ± 0.4 0.55 ± 0.09 3.1 ± 0.1 

 

 

Figure 3.6.13. Comparison of the current density-voltage curves of PCDTBT:PC60BM solar cell devices without 

and with the PFN interlayer as a function of the spin speed of the PFN solution casting. The concentration of the 

PFN solution was 0.2 mg/ml. The acceptor is PC60BM. 
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Figure 3.6.14. Comparison of the dark current density of PCDTBT:PC60BM solar cell devices without and with 

the PFN interlayer cast at different rpm. The concentration of the PFN solution was 0.2 mg/ml.  

 

Figure 3.6.15. External quantum efficiency of PCDTBT:PC60BM solar cells without and with the PFN interlayer 

cast at the spin speed of 8000 rpm. The concentration of the PFN solution was 0.2 mg/ml. The acceptor is PC60BM. 

The obtained Jsc from EQE for the reference and PFN-based devices are 6.25 and 6.62 mA cm-2, respectively. 
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Figure 3.6.16. (a) Photocurrent density and (b) charge collection probability as a function of the effective voltage 

of PCDTBT:PC60BM solar cell devices without (black line) and with (red line) the PFN interlayer. The spin speed 

was 1000 rpm. The concentration of PFN solution was 0.2 mg/ml. 
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4.1. INTRODUCTION 

To achieve high performance organic solar cells, it is necessary to suppress the 

recombination losses of charge carriers throughout the bulk heterojunction. It is proposed that 

enhancing dielectric constant properties of the bulk heterojunction can lead to reduction of the 

exciton binding energy, the singlet-triplet energy splitting, the reorganization energy, the 

Coulomb attraction within the CT exciton, the geminate recombination back to the CT state, 

the bimolecular and trap-assisted recombination and space-charge effects.1 It is predicted that 

if one changed the dielectric constant from a low constant of e.g. 3 to a higher constant of e.g. 

10, an increase in efficiency of up to 21% can result. In practice, a few attempts have been made 

to design and synthesize organic semiconductors (mostly polymer) with high dielectric 

constant. The approach was based upon structural changes of polymers by incorporation of new 

functional groups. For instance, Cho et al.2 claimed that the dielectric constant of the PIDT-

DPP-Alkyl polymer was improved from 3.5 to 5 upon incorporation a nitrile-side chain. It was 

further discussed that the structural change resulted in the suppression of the non-geminate 

recombination losses in planar heterojunction solar cell and subsequent enhancement of the 

performance (from 0.75% to 1.44%).2 However, it was mentioned such a structural 

modification had not had any impact on the crucial properties of the polymers such as energy 

level or charge carrier mobility. Torabi et al.3 reported a 46% increase in PC60BM dielectric 

constant (from 3.9 to 5.7) upon adding an ethylene glycol (EG) functional unit. They showed 

the new product had a similar electron mobility to the pristine PC60BM, although no current-

voltage results of solar cell devices with the new product were provided. On the other hand, it 

is shown that however, the current approach increases the dielectric constant, it is more likely 

give rise to lower efficient devices due to the significant suboptimal morphology of the bulk 

heterojunction.4 Therefore, new approaches are necessary to improve the dielectric constant of 

the bulk heterojunction.  
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Quantitative description of dielectric constant in an electric field can be shown using 

Clausius-Mossotti relation:5 

P = 
��;:

��;U
 . 

v

w
 = 

xyz

W��
  (6-1) 

where P stands for molar polarizability, �� is the relative permittivity, �� is the permittivity in 

vacuum, M stands for molecular weight of a repeat unit, ρ is density, α is polarizability, and {X 

is the Avogadro constant.6 According to the Clausius-Mossotti relation, the dielectric constant 

of the polymeric materials is determined by the polarizability and free volume of the constituent 

element. The polarization term refers to the ability of the atom or molecule to form a dipole 

under the influence of an electric field. The free volume, on the other hand, is defined as a 

volume which is not occupied by the polymeric materials.6 It is shown that the amount of free 

volume, and its distribution throughout the matrix have a significate influence on the polymer 

properties. The fact that the free volume within the polymer is filled with air whose dielectric 

constant is about one will result in a decrease of the dielectric constant.6 It is indeed reported 

that the augmentation of the polymer free volume via introducing different functional units 

decreases the dielectric constant of the polymers.7 Thus, it may be possible to increase the 

dielectric constant of the polymer by replacing the air within the matrix of polymers with high 

dielectric constant materials. 

The aim of this chapter is to explore the idea of increasing dielectric constant of the bulk 

heterojunction by the introduction of materials with dielectric constant higher than air and 

investigate the subsequent impact on the charge carrier dynamics of the BHJ solar cells. It was 

assumed that there is a limit to the packing density of the donor and acceptor that can be 

achieved and some fraction of the bulk heterojunction 3D labyrinth are free and occupied with 

low dielectric constant gas like air. A range value of 0.11 to 0.23 fractional free volume was 

reported for variety (glassy) polymers,8,9 however, it would be technically difficult to estimate 
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the free volume of the BHJ structure. For this study, PCDTBT:PC60BM were chosen as 

polymer-based bulk heterojunction and the introduced materials to the bulk were PFN, 

rhodamine 101 and isopropyl alcohol (IPA). The reasons for choosing PFN and rhodamine 101 

are i) they have conjugated structure backbone similar to the BHJ systems, ii) they are soluble 

in polar solvents such as CB and o-DCB, iii) their dielectric constant can be determined via 

simple diode-like structure. In addition, IPA has relatively high dielectric constant and can 

easily penetrate into bulk heterojunction. Hence, the PFN and rhodamine 101 was incorporated 

directly into the bulk, whereas the bulk was treated with the IPA. It is expected a slight or 

moderate increase in the dielectric constant of the BHJ may be achieved upon introduction of 

the materials (based on the free volume of the BHJ). As such, recombination of charge carriers 

in the bulk heterojunction is expected to decrease, causing improvement of the overall 

performance of the BHJ solar cell devices. Thus, the photovoltaic characteristics of the devices 

are studied before and after the introduction of the materials along with dielectric constant. 

Then, further investigation of charge carrier recombination dynamics is carried out using 

techniques such as photo-CELIV, TRCE, and photo-voltage decay.  
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4.2. EXPERIMENTAL  

4.2.1. PFN-diode like Devices 

The dielectric constant of the PFN was measured using a diode-like device structure 

consisting of ITO/PFN/Al. The ITO substrates were thoroughly cleaned according to 

procedures described in chapter 2. The PFN film was processed from 250 µL CB containing 10 

mg PFN. The solution was cast at 3000 rpm for 60 s to form a film. The thickness of the film 

was measured by the surface profiler (Dektak 150, Veeco) to be around142 ± 4 nm. The 100-

nm aluminum was then deposited on top of the PFN film. The devices were encapsulated by 

UV-curable epoxy and a glass slide for testing in the air.   

 

4.2.2. Rhodamine 101-diode like Devices  

A diode-like structure of ITO/rhodamine 101/Al was used to measure the dielectric 

constant of the rhodamine 101. A similar procedure to PFN was used to fabricate the rhodamine 

101-diode like devices. The rhodamine 101 solution was prepared by dissolving 10 mg 

rhodamine 101 in 250 µL chlorobenzene. The solution was cast at 3000 rpm for 60 s to form a 

film with thickness around 121 ± 3 (measured by surface profiler Dektak 150 (Veecom)). Then, 

the device was completed by evaporation of 100 nm aluminum on top of the pure film. 

 

4.2.3. PFN-incorporated BHJ Devices 

The BHJ solar cell devices were fabricated based on the general procedures presented in 

detail in chapter 2. The solar cell structure was ITO/PEDOT:PSS/Active Layer/Al. The 

incorporation of the PFN into the active layer was accomplished by dissolving PFN in 1,2 

dichlorobenzene (o-DCB). First, 0.1 mg PFN was dissolved in 1 cc o-DCB. Then 100, 200 and 

500 µl PFN-contained o-DCB solutions were mixed with the pure o-DCB solution to prepare 1 

mL solution altogether. After that, the active material solutions were accomplished by adding 
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PCDTBT (donor) and PC60BM (acceptor) at a weight ratio of 1:4 at an overall concentration of 

20 mg mL-1. Thus, the weight percentage of PFN relative to active materials were 0.05%, 0.1% 

and 0.25% wt. 

  

4.2.4. Rhodamine 101-incorporated BHJ Devices 

The structure of the solar cell devices was ITO/PEDOT:PSS/Active Layer/Al. The active 

layer composed of PCDTBT and PC60BM as donor and acceptor, respectively. A similar 

process described in section 4.2.3 was used to incorporate rhodamine 101 into the active layer. 

The weight ratios of the rhodamine 101 to the active materials were 0.0025%, 0.005%, and 

0.025%. The chemical structure of the Rhodamine 101 is shown in Figure 1a. 

 

4.2.5. Isopropyl alcohol-treated BHJ Devices 

The PCDTBT:PC60BM BHJ was treated with 20 µl of the Isopropyl alcohol (IPA). It was 

dropped on top of the active layer and was then spin cast at 2000 rpm for the 60s. The chemical 

structure of the IPA is presented in Figure 1b. 

 

4.2.6. Dielectric Constant Measurement 

The dielectric constant of the solar cell devices was measured using dark CELIV 

technique. In this technique, the solar cell device is considered a capacitor, i.e. the active layer 

is sandwiched between two electrodes at x = 0 (blocking contact) and x = d. The d is the 

thickness of the active layer. Upon applying a negative ramp, an initial current step (J0) arises 

(Figure 2-4). The current step stems from the geometrical capacitance (capacitive current 

response) of the solar cell device and is defined as below:10 

J0 = 
|}}�

K
 (4-1) 
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which A (= 
∆O

∆M
) is voltage rise speed (V s-1), � is dielectric constant of the active layer, �� stands 

for the vacuum permittivity (8.854 × 10-12 F m-1) and d is the thickness of the active layer.  

 

4.2.7. Solar Cell Device Characterization  

The current density-voltage, EQE, photovoltage decay, time-resolved charge extraction 

and photo-CELIV measurements were carried out according to the procedure described in 

chapter 2. 

 

 

Figure 4.1. Chemical structures of (a) PFN, (b) rhodamine 101, and (c) isopropyl alcohol (IPA). 
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4.3. RESULT AND DISCUSSION 

4.3.1. PCDTBT:PC60BM:PFN-Incorporated 

4.3.1.1. PFN dielectric constant 

It is required to determine the dielectric constant of the PFN. Hence, diode-like devices 

with a PFN film (measured thickness by surface profiler was 142 ± 4 nm) sandwiched between 

ITO and aluminum were fabricated. The dark-CELIV technique was employed to measure the 

dielectric constant of the PFN devices. Figure 4.2 shows the dark CELIV current response of 

the PFN diode-like device after a triangle-shaped increasing voltage (2 V together with 50000 

Hz rise time) was applied. The dielectric constant of the PFN film is calculated according to 

equation 4-1 and estimated to be 2.16 ± 0.09. The value indicates that PFN meets the 

requirement of having dielectric constant bigger than air (1.0005 at 25 °C).11   

  

Figure 4.2. The measured dark-CELIV curve of the diode-like PFN-only device with a structure of ITO/PFN (142 

± 4 nm)/Al. The applied voltage was 2 V coupled with 50000 Hz rise time (A = 100000 V s-1). 
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4.3.1.2. Photovoltaic characteristics 

To demonstrate the effect of PFN on the photovoltaic characteristics, solar cell devices 

were fabricated with an active layer composed of PCDTBT:PC60BM or PFN-doped 

PCDTBT:PC60BM. The photovoltaic characteristics of the fabricated devices are summarized 

in Table 4.1. Figure 4.3 shows the current density-voltage curves of the devices before and after 

containing PFN. The PFN is added in mass fraction to the dissolved PCDTBT:PC60BM in 

chlorobenzene solution, i.e. 0.05%, 0.1% and 0.25% wt.  It is observed that the efficiency of 

the solar cell devices is reduced after PFN was introduced to PCDTBT:PC60BM bulk 

heterojunction. Devices fabricated with 0.05% PFN shows a small but appreciable reduction in 

Voc, Jsc and FF. When the PFN concentration increased to 0.1% and 0.25% wt, the photovoltaic 

parameters were significantly reduced and an S-shaped current density-voltage curve becomes 

apparent. Moreover, PFN-loaded devices exhibit lower charge carrier photogeneration 

compared to the reference devices especially at the low effective voltage (Figure 4.5.1a, 

Appendix). A similar impact on charge collection probability is also observed for devices with 

more than 0.1% PFN-loaded (Figure 4.5.1b, Appendix). Although morphology evidences were 

not provided, changes in BHJ morphology upon incorporation of the PFN would be expected 

particularly at the high concentration. Thus, the performance reduction in the PFN-loaded 

devices may come from the influence of the PFN on the BHJ morphology and enhanced 

recombination loss of charge carrier. Nian et al.12 have reported that performance of 

P3HT:PCBM BHJ devices deteriorate after incorporation of the PFN. The deterioration was 

attributed to degradation of the bulk morphology (less aggregation and crystallization of P3HT) 

and phase separation between P3HT and PCBM. An increase in the series resistance and 

decrease of shunt resistance was also reported. The authors proposed that energy level of the 

PFN (low HOMO and high LUMO) as well as the presence of PFN on top of the PEDOT:PSS 

would be origins of the increased series resistance, whereas conductivity enhancement 
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Table 4.1. Photovoltaic parameters of PCDTBT:PC60BM BHJ solar cell devices without and with PFN-

embedded into bulk heterojunction. The results of an average of 8 devices.  

Devices Voc (mV) Jsc (mA cm-2) FF PCE (%) 

Reference 881.0 ± 19 7.3 ± 0.7 0.53 ± 0.04 3.42 ± 0.5 

0.05% PFN-Inc. 877.3 ± 17 7.2 ± 0.36 0.50 ± 0.06 3.17 ± 0.5 

0.1% PFN-Inc. 842.0 ± 46 7.0 ± 0.82 0.42 ± 0.04 2.56 ± 0.4 

0.25% PFN-Inc. 327.0 ± 32 3.5 ± 0.78 0.20 ± 0.03 0.25 ± 0.1 

 

 

Figure 4.3. Comparison of current density-voltage characteristics of PCDTBT:PC60BM BHJ solar cell devices 

without and with the incorporation of the PFN into bulk heterojunction. 

 

(due to the polarization of PFN) may be the reason for the shunt resistance reduction. 

Noteworthy that it has been claimed that PFN is a hole blocking layer and its amino group acts 

like traps.13 Therefore, the S-shaped current-voltage curve of the 0.25% wt PFN-loaded devices 

may be attributed to the accumulation and subsequent recombination of the holes in the bulk or 

at the interface of the bulk-anode electrode. 



 

121 

  

4.3.1.3. Dielectric constant and mobility measurement  

To study the effect of the PFN on the dielectric constant of the PCDTBT:PC60BM BHJ, 

it is first necessary to obtain the dark CELIV response of the devices. The dark CELIV 

responses of the devices are shown in Figure 4.4. The dielectric constant of the 

PCDTBT:PC60BM devices containing PFN is calculated according to equation 4-1 and 

summarized in Table 4.2. Devices made with 0.05% and 0.1% wt PFN show slightly lower or 

similar dielectric constant compared to the reference device. But, increase the concentration of 

PFN to 0.25% reduce the dielectric constant. According to Clausius−Mossotti relation, 

polarization and free volume determine the dielectric constant of a polymer.  

 

Figure 4.4. Dark CELIV response of the PCDTBT:PC60BM BHJ solar cell devices (a) without,  and with (b) 

0.05% wt, (c) 0.1% wt, and (c) 0.25% wt PFN- loaded. The applied voltage was 1 V coupled with 50000 Hz rise 

time (A = 50000 V s-1). The thickness of the active layer for all devices was 80 ± 5.  
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Table 4.2. Calculated dielectric constant and charge carrier mobility of the PCDTBT:PC60BM BHJ solar cell 

devices before and after incorporation of PFN into bulk heterojunction. The results are average of 2 devices. 

Device Dielectric constant Mobility (cm2 V-1 s-1) 

Reference 3.9 ± 0.2 1.88 × 10-5 

0.05% wt PFN-Inc. 3.8 ± 0.2 2.10 × 10-5 

0.1% wt PFN-Inc. 3.9 ± 0.2 1.34 × 10-5 

0.25% wt PFN-Inc. 3.6 ± 0.2 1.11 × 10-5 

 

Given that polarization is an intrinsic characteristic of atoms and molecules, it is speculated that 

the slight reduction of the dielectric constant upon incorporation of 0.25% PFN in the 

PCDTBT:PC60BM bulk heterojunction may be the result of an increase in the free volume 

compared to the free-PFN bulk heterojunction.  

Constantinou et al.14 reported that dielectric constant of PCDTBT:PC70BM was enhanced 

from 3.32 to 3.87 by thermal annealing. As a result, a higher degree of CT state delocalized 

resulted in slightly higher photocurrent at reverse bias. It was mentioned that the alteration of 

the bulk morphology was not substantial after thermal annealing. However, the performance of 

the annealed devices decreases due to higher recombination of charge carrier through Shockley-

Read-Hall (SRH) recombination. As such, considerable reduction of solar cell’s performance 

upon incorporation of PFN may be attributed to i) the deterioration of fundamental processes 

of the devices such as generation, transportation, and collection of charge carrier or ii) 

enhancement of the charge carrier recombination in the presence of the PFN and/or iii) 

combination of both. To study the effect of the incorporated PFN on the transportation, charge 

carrier mobility of the devices is measured using the photo-CELIV technique. The mobility 

results are shown in Table 4.2 (Figure 4.5.2 shows photo-CELIV curves, Appendix A). The 
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mobility of the devices slightly increases with the inclusion of 0.05% PFN, whereas increasing 

concentration of PFN gives rise to slightly lower charge carrier mobility. Noteworthy that 

several parameters could be responsible for the reduction of mobility in the PFN-loaded devices 

including increased disorder, impurity and trap effects, and degraded molecular packing. 
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4.3.2. PCDTBT:PC60BM:Rhodamine 101-loaded 

4.3.2.1. Rhodamine 101 dielectric constant  

To establish the dielectric constant of the rhodamine 101, the rhodamine 101 diode-like 

devices composed of ITO/rhodamine101 (121 ± 3 nm)/Al were fabricated. A 2 V triangle-

shaped voltage associated with 50000 Hz rise time is applied and the dark CELIV current 

response of the devices is recorded (Figure 4.3). According to equation 4-1, the dielectric 

constant of the rhodamine 101 is 4.73 ± 0.08. The rhodamine 101 is a zwitterion which is a 

neutral molecule carrying both positive and negative electrical charges (Figure 4.1a). The 

rhodamine 101 has been used as interfacial electron transport layer in solar cell devices. It is 

said that formation of dipoles at the interface reduces the work function of the electrode, giving 

rise to enhancement of the solar cell performance.15,16  

 

Figure 4.5. Dark CELIV curve of diode-like Rhodamine 101 device with structure of ITO/rhodamine101 (121 ±  

3 nm)/Al. The voltage speed rise (A) was set to 100000 V s-1. 
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4.3.2.2. Photovoltaic characteristic 

The photovoltaic performance of the PCDTBT:PC60BM BHJ solar cell devices when 

various concentrations of rhodamine 101 were introduced to the bulk are studied by the current 

density-voltage measurement. The current density-voltage curves of the devices are shown in 

Figure 4.6. The photovoltaic parameters of the devices are also summarized in Table 4.3. It is 

observed that the increase of the concentration of the rhodamine 101 from 0 to 0.025% wt 

results in a decrease of the power conversion efficiency of devices from 3.7 ± 0.2% to 2.6 ± 

0.4%. The external quantum efficiency of the device is shown in Figure 4.7. The Jsc of the 

devices obtained from EQE for 0%, 0.0025%, 0.005% and 0.025% wt rhodamine 101-

embedded devices are 7.8, 7.6, 7.38 and 7.08 mA cm-2, respectively. These currents are in good 

agreement with Jsc obtained from the current density-voltage measurement. The EQE data 

shows that the addition of rhodamine 101 to the bulk reduces the efficiency of photon-to-

electron conversion, especially between 500 to 650 nm. Hence, the reduction of the  

 

Figure 4.6. Current density-voltage curves of the PCDTBT:PC60BM BHJ solar cell devices before and after 

incorporation of various concentration of rhodamine 101 in the bulk heterojunction. 
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Table 4.3. Photovoltaic parameters of the PCDTBT:PC60BM BHJ solar cell devices before and after adding 

rhodamine 101 into the bulk heterojunction. The results are average of 8 devices. 

Devices Voc (mV) Jsc (mA cm-2) FF PCE (%) 

Reference 891.0 ± 7 8.1 ± 0.4 51.5 ± 1.95 3.7 ± 0.2 

0.0025% wt R101-Inc. 869.0 ± 14 7.6 ± 0.3 53.1± 0.9 3.5 ± 0.4 

0.005% wt R101-Inc. 833.0 ± 34 7.5 ± 0.6 45.1 ± 1.54 2.8 ± 0.3 

0.025% wt R101-Inc. 785.0 ± 28 7.4 ± 0.4 45.0 ± 3.9 2.62 ± 0.4 

 

 

Figure 4.7. EQE curves of the PCDTBT:PC60BM BHJ solar cell devices without and with incorporation various 

concentrations of rhodamine 101 into the bulk. 

performance in rhodamine 101-doped solar cell devices perhaps come from the enhancement 

of the charge carrier recombination. 
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4.3.2.3. Dielectric constant, mobility and TRCE measurements 

The dark CELIV response of PCDTBT:PC60BM solar cell devices before and after the 

introduction of the rhodamine 101 are shown in Figure 4.8. The calculated dielectric constants 

of the solar cell devices are presented in Table 4.4. It can be seen that the dielectric constant of 

the bulk heterojunction has not been altered upon introduction of the rhodamine 101. This 

indicates that the parameters determine the dielectric constant of the bulk, i.e. polarization and 

free volume, has not been affected by the presence of the rhodamine 101. Nevertheless, 

photovoltaic characteristics of the devices are influenced significantly. 

Further investigation of the devices was accomplished using TRCE techniques. Figure 

4.9a compare the charge carrier density of the solar cell devices before and after incorporation 

of the rhodamine 101. The charge carrier density of 0.0025% wt-loaded rhodamine 101 BHJ 

device is initially quite similar to the reference device but slightly decreases at the longer time, 

whereas both 0.005% wt- and 0.025% wt-loaded devices possess lower charge density over the 

course of the time in comparison with reference device. In addition, bimolecular recombination 

coefficient increased in devices with 0.005% and 0.025% wt loaded rhodamine 101. However, 

bimolecular recombination lifetimes of the solar cell devices are quite comparable except at the 

longer time (Figure 4.9b). These results imply that the addition of the rhodamine 101 into 

PCDTBT:PC60BM BHJ intensifies recombination of the charge carriers. Hence, the 

performance reduction of the rhodamine 101-loaded solar cell devices could be related to the 

enhanced charge carrier recombination. Cowan et al.17 report that the addition small amount of 

impurity like PC84BM into the PCDTBT:PC60BM BHJ solar cells alters the electronic 

characteristics of devices, leading to the reduction of Voc, Jsc, FF, and PCE. The authors describe 

that PC84BM acts like trap states and subsequently give rise to enhanced recombination of 

charge carriers, especially via the trap-assisted mechanism.  
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Figure 4.8. Measured dark CELIV of the PCDTBT:PC60BM solar cell devices (a) without, (b) 0.0025% , (c) 

0.005%,  and (d) 0.025% wt rhodamine 101 loaded-bulk heterojunction.. The voltage speed rise (A) was 100000 

V s-1. The resistance used on oscilloscope was 10 Ω. The thickness of the bulk film was 80 ± 5 nm. 

 

Table 4.4. The calculated dielectric constant and charge carrier mobility of the PCDTBT:PC60BM BHJ solar cell 

devices before and after incorporation of rhodamine 101. Three devices were measured and averaged.  

Device Dielectric constant Mobility (cm2 V-1 s-1) 

Reference 3.7 ± 0.2 1.77 × 10-5 

0.0025%-loaded rhodamine 101 3.7 ± 0.1 1.52 × 10-5 

0.005%-loaded Rhodamine 101 3.5 ± 0.2 2.11 × 10-5 

0.025%-loaded Rhodamine 101 3.5 ± 0.2 1.1 × 10-5 
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Figure 4.9. (a) Charge carrier density, (b) bimolecular lifetime, and (c) bimolecular recombination coefficient as 

a function of time of PCDTBT:PC60BM BHJ solar cell devices without and with various concentrations rhodamine 

101 introduced to the bulk heterojunction. The energy of laser was 10 µj.  

 

Charge carrier mobility of the solar cell devices with and without rhodamine 101 are 

reported in Table 4.4 (the associated photo-CELIV curves are shown in Figure 4.6.3). The 

charge carrier mobility of rhodamine-incorporated devices is close to the reference device, 

though slightly higher for 0.005% and 0.025% wt-loaded devices. It is predicted that traps 

enhance energy disorder in P3HT:PCBM bulk heterojunction system which hampers charge 

carrier transport and therefore reduce the mobility of charge carriers around two orders of 

magnitude.18 Given that the rhodamine 101 may have introduced trap into the PCDTBT:PCBM 

bulk, such a decrease in the charge carrier mobility is not observed in the rhodamine-loaded 

devices. Clarke et al.19 have studied the mobility of the KP115:PCBM solar cell before and 
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after photodegradation using the photo-CELIV technique. While the photodegradation 

introduces traps into the system, no sign of mobility reduction was observed. The authors 

propose two possible reasons i) recombination of charge carrier within the duration of the laser 

pulse or during actual charge carrier extraction, ii) only free, delocalized charge carriers that 

are being extracted are visible in photo-CELIV technique and deeply trapped charges may not 

be observable.19       
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4.3.3. PCDTBT:PC60BM:IPA-treated 

4.3.3.1. Photovoltaic characteristics 

It is observed that the introduction of PFN and rhodamine 101 have not altered the 

dielectric constant of the PCDTBT:PC60BM bulk heterojunction, yet the performance of the 

devices was reduced due to perhaps morphological issues. To minimize the effect of the 

introduced materials on the BHJ morphology, a solvent with high dielectric constant was 

therefore selected for further investigation. For the purpose of the study it is assumed that 1) 

the solvent effect is not limited to the surface treatment, 2) the solvent penetrates into a complex 

labyrinth of 3D bulk heterojunction structure and 3) some amount of solvent remains within the 

bulk after the fabrication process. It is understood that there is a concern regarding the 

remaining of the solvent within the bulk structure. It is however reported that removal of the 

solvent within the bulk requires rigorous elongated vacuum process together with baking.20,21 

The Isopropyl alcohol (IPA) with the dielectric constant of 18 was chosen. The 

PCDTBT:PC60BM BHJ was treated with 20 µl of IPA. The photovoltaic parameters of the solar 

cell devices before and after treatment with IPA are summarized in Table 4.5. The current 

density-voltage curves of the best efficient devices are shown in Figure 4.10. The reference 

devices exhibited average power conversion efficiency of 4.3 ± 0.3%. On the other hand, the 

IPA treatment generally leads to no significant changes in the performance devices and the IPA 

treated devices exhibit PCE of 4.2 ± 0.2% due to slightly decrease open-circuit potential and 

Table 4.5. Current density-voltage characteristics of the PCDTBT:PC60BM BHJ solar cell devices before and after 

treatment with IPA. The results are average of 8 devices for each set. 

Device Voc (mV) Jsc (mA cm-2) FF PCE (%) 

References 910.0 ± 7 7.8 ± 0.4 61.2 ± 3.2 4.3 ± 0.3 

IPA treated 903.0 ± 4 7.6 ± 0.5 61.4 ± 1.3 4.2 ± 0.2 
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Figure 4.10. Current density-voltage curves of the PCDTBT:PC60BM BHJ solar cell devices before and after IPA 

treatment. 

 

 

Figure 4.11.The water contact angle photos of the PCDTBT:PC60BM BHJ film (a) before and (b) after treatment 

with 20 µl of IPA. 

short-circuit current. A similar result has been observed in a BHJ device composed of 

PCDTBT:PC71BM. The increase of the roughness and appearance an extremely uneven surface 

with anomalous hills after IPA treatment was accounted for the slight reduction of short-circuit 
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current and consequently the performance.22 It should be noted that thickness of the active layer 

was examined before and after the IPA treatment by using profilometer. No substantial changes 

were observed in the film thickness which is in agreement with the results reported in the 

literature.22, 23, 26  

The water contact angle (~) of PCDTBT:PC60BM active layer was measured to probe the 

changes in top surface before and after treatment with IPA. As shown in Figure 4.11a, the water 

contact angle of the pristine PCDTBT:PC60BM is 96º ± 2º, indicating a largely hydrophobic 

surface. The measured water contact angle of the BHJ film after IPA treatment remain almost 

unchanged with values around 96º ± 3º (Figure 4.11b). It is reported that surface condition of 

the BHJ film can be affected by the surface charge density, surface traps, surface reconstruction, 

and chemical composition, etc.23-25 Given almost identical ~ of the film, one may conclude that 

surface condition of the films has not been affected before and after treatment with isopropyl 

alcohol.  

 The UV-Vis absorption spectra of the bulk heterojunction before and after treatment with 

IPA is shown in Figure 4.12a. The absorption of the active layer following IPA treatment 

decreases in the wavelength range of 350 to 600 nm and then increases slightly thereafter. It 

can also be seen that the absorption peak between 500-600 nm is slightly red-shifted after the 

treatment. It is shown that alcohol treatment causes no observable changes in thickness of the 

active layer.23 Zhang et al.22 report a reduction in absorption of PCDTBT:PC71BM film 

following treatment with IPA. Guo et al.26 report that domain and structure sizes of 

PTB7:PC71BM film shrinks after treatment with various alcohols including IPA. Therefore, the 

changes in the absorption after the IPA treatment may be an indication of the rearrangement of 

the donor and/or the acceptor within the BHJ film after IPA treatment.  

Figure 4.12b shows the EQE of the devices before and after IPA treatment. The EQE of 

the IPA treated device decrease in the wavelength range of 500-600 nm, whereas it slightly  
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Figure 4.12. (a) UV-Vis spectra of the PCDTBT:PC60BM BHJ film before and after treatment with IPA. The 

absorption spectra were corrected for absorption of bare glass. (b) External quantum efficiency of the 

PCDTBT:PC60BM BHJ solar cell devices before and after IPA treatment. 

enhances between 300-400 nm compared to the reference device. The Jsc of the devices 

obtained from EQE before and after the treatment are 7.91 and 7.85 mA cm-2, respectively. The 

current values are quite similar and in good agreement with current density-voltage results. This 
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suggests that the fundamental processes determine the performance of the devices has not been 

affected by IPA treatment of the bulk heterojunction. 

To study the charge carrier generation and collection of the devices, photocurrent density 

and charge collection probability as a function of effective voltage were examined (Figure 

4.14). It can be seen that both devices show similar behavior and immediately saturate in the 

low effective voltage (around 0.2 V). This indicates that internal electric field within the bulk 

heterojunction is quite comparable before and after the IPA treatment and charge carriers are 

effectively swept out by drift current (large internal electric field). At saturation regime, the 

photocurrent (Jph,sat) is only limited by the number of the absorbed photon and can be defined 

as Jph,sat = edGmax where e is elementary charge, d is thickness of the active layer (80 nm) and 

Gmax stands for the maximum photo-induced charge carrier generation rate per volume. The 

calculated Gmax values for the reference and IPA treated devices are 6.97 × 1027 m-3 s-1 (89.34 

A m-2) and 6.86 × 1027 m-3 s-1 (87.95 A m-2), respectively. This suggests that treatment with IPA 

has not altered optical (such as light absorption) and electrical characteristics of the 

PCDTBT:PC60BM BHJ devices. Similar results were observed in the PCDTBT:PC71BM BHJ 

treated with IPA.22 
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Figure 4.13. (a) Photocurrent and (b) charge collection probability as a function of effective voltage of 

PCDTBT:PC60BM BHJ solar cell devices before and after treatment with 20 µ1 IPA.  
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4.3.3.2. Dielectric constant, PVD, TRCE and photo-CELIV measurements 

The dark CELIV responses of the PCDTBT:PC60BM BHJ solar cell devices before and 

after IPA treatment are shown in Figure 4.14a, b. The calculated dielectric constant of the 

devices is reported in Table 4.6. The dielectric constant of the device following IPA treatment 

shows a slight increase compared to the reference device. Considering Clausius-Mossotti 

relation, either polarization or free volume of the bulk may be affected after treatment with IPA, 

resulting in a slight change of the dielectric constant.   

The effect of the increase of the dielectric constant on charge carrier dynamics of the 

devices is examined using transient techniques. Photovoltage decay of the reference and IPA 

treated devices are shown in Figure 4.15a. It is clear that there is no considerable difference 

between photovoltage decay of the devices.  The voltage decay at the early time shows that 

both devices have almost the same Voc values (~ 0.9 V), followed by quite similar decay 

behavior over the course of time. However, the photovoltage decay versus extracted charge 

carrier density exhibits a slight downward shift in the IPA treated devices compared to the 

reference devices (Figure 4.15b). This may imply that recombination of charge carrier is 

slightly higher after IPA treatment (and a slight increase of the dielectric constant). The 

bimolecular recombination lifetime plot versus time shown there is no difference before and 

after treatment with IPA (Figure 4.16a). Moreover, bimolecular recombination coefficient is 

slightly higher at the longer time in the IPA treated devices, suggesting faster recombination of 

charge carriers (Figure 4.16b). These findings indicate that recombination dynamic of the 

charge carriers has not been significantly altered by changes in the dielectric constant. It is 

reported that the performance of PTB7-based BHJ has been improved upon treatment with IPA. 

The improvement was attributed to the morphological rearrangement of the bulk 

heterojunction, causing better charge carrier separation, transportation, and extraction.26 
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Table 4.6. The calculated dielectric constant and charge carrier mobility of PCDTBT:PC60BM BHJ solar cell 

devices before and after treatment with IPA. Two devices were measured and averaged.  

Device Dielectric Constant Mobility (cm2 V-1 s-1) 

Reference 3.6 ± 0.2 2.1 × 10-5 

IPA treated 4.1 ± 0.3 1.1 × 10-5 

 

 

Figure 4.14. (a) and (c) Measured dark CELIV of the PCDTBT:PC60BM BHJ solar cell devices (a) before, (b) 

after treatment with 20 µl IPA. (c) and (d) The photo-CELIV curves of the corresponding devices. The energy of 

the laser was set to 10 µj. The applied potential was 2 V together with a rise time of 50000 Hz (A = 100000 V s-

1). The delay time between photogeneration and extraction of charge carrier was 2 µs. The thickness of the active 

layer was 80 ± 5 nm. 

The effect of the IPA treatment on charge carrier transportation was studied by examining 

charge carrier mobility. The charge carrier mobility of the devices is summarized in Table 4.6. 

The corresponding photo-CELIV curves are also shown in Figure 4.13c, d. The charge carrier 
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mobility of the devices is quite comparable, although slightly smaller value for IPA treated 

device. It is shown that the solvent treatment (methanol) improves hole mobility in BHJ devices 

consisted of PTB7:PC70BM, leading to a more balanced charge transport and consequently 

higher fill factor values (an indication of less charge carrier recombination).23 It is clear that 

such an effect was not observed here. Moreover, it is demonstrated in the literature that IPA 

treatment has not significantly improved the hole mobility in the PCDTBT:PC70BM BHJ 

devices.22  

As discussed earlier, polarizability and free volume are two important factors that 

influence the dielectric constant characteristics of the polymeric materials as formulated by the 

Clausius – Mossotti relationship. One of the aims was to increase the polarizable units per unit 

volume by the addition of the PFN and rhodamine 101 to the bulk heterojunction. Given the 

results, it appears that the incorporated amount of both PFN, rhodamine and IPA may not have 

been enough to substantially increase the polarizable units per unit volume. However, both 

materials have had a considerable impact on the performance of the devices. In a similar 

manner, it could also be argued that the amount of free volume within the bulk heterojunction 

structure may not be sufficient enough that filling it with high dielectric constant materials could 

give rise to significant enhancement of the dielectric constant. Another factor that could have 

an influence on the dielectric constant characteristics is the net polarity of the polymer 

structure.6 A polymer can be polar or non-polar and what determines whether a polymer is polar 

or non-polar is the presence of functional groups on the neat polymer chemical structure. In 

addition, functional group’s configuration on the chain is important to whether the resulting 

dipole moments reinforce or cancel each other.6 PCDTBT is highly likely a non-polar polymer 

since it does not have a big polarizable atom (bromine, chlorine) on its structure as well as its 

branched chain, which only contains sigma bonds (they are slightly hardly polarized when an 

electric field is applied). Therefore, this could be another reason explaining why the adopted  
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Figure 4.15. (a) Photovoltage decays of the PCDTBT:PC60BM BHJ solar cell devices before and after treatment 

with IPA. (b) Photovoltage decay as a function of extracted charge carrier density of the devices before after 

treatment with IPA. 

approach to enhance the dielectric constant did not produce favourable results. It should also 

be noted that one may argue the existence of a residual solvent inside the bulk heterojunction 

and its impact on the dielectric constant. The fact remains that the amount of residual solvent 

within 3D BHJ cannot straightforwardly hardly be determined. Nevertheless, the achieved 
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dielectric constants indicate that the amount of residual solvent is insignificant such that it 

cannot enhance dielectric constant or that the dielectric constant of the bulk heterojunction 

cannot simply be determined by the factors in the Clausius – Mossotti relationship. 

 

Figure 4.16. (a) bimolecular recombination lifetime, and (b) bimolecular recombination coefficient as a function 

of time of the PCDTBT:PC60BM BHJ solar cell devices before and after treatment with IPA. The energy of laser 

beam was 10 µj. 
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4.4. CONCLUSION 

This chapter reports attempts to increase the dielectric constant of PCDTBT:PC60BM 

based BHJ solar cell and its impact on the charge carrier dynamics of the solar cell devices. It 

is assumed that free volume of the 3D complex structure of the bulk heterojunction is filled 

with low dielectric gasses such as air and can be replaced through introduction or treatment of 

the BHJ by higher dielectric constant materials. Firstly, PFN and rhodamine 101 were 

introduced to the bulk. It was found out both materials have no significant impact on the 

dielectric constant of the BHJ film. However, they reduce the performance of the solar cell 

devices due to increase in the charge carrier recombination. Then, the PCDTBT:PC60BM BHJ 

was treated with isopropyl alcohol. The dielectric constant of the bulk heterojunction slightly 

increases after the treatment. But, the increase has not led to substantial alteration of the charge 

carrier dynamics. Therefore, these results may imply that the dielectric constant of polymer-

based solar cells can be hardly enhanced by proposed method considering only the free volume 

of the bulk heterojunction.   

 

4.5. FUTURE WORK 

Although the morphology of the BHJ was not investigated in this chapter, it would be 

beneficial to understand the morphological impact of the introduced materials or solvents. This 

may help to choose materials with less impact on the BHJ morphology. While AFM can provide 

information relevant to the surface of the BHJ film, a more in-depth study can be done by TEM.  

In this study, the bulk heterojunction was composed of the conjugated polymer 

(PCDTBT) as donor and PC60BM molecule as acceptor. Hence changing host bulk 

heterojunction to other kinds such as polymer-polymer, small molecule-small molecule based 

devices would be another option to investigate.  
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4.6. APPENDIX 

PCDTBT:PC60BM:PFN-Inc. 

 

Figure 4.6.1. Photocurrent and (b) charge collection probability as a function of effective voltage of 

PCDTBT:PC60BM BHJ solar cell devices before and after incorporation of PFN into bulk heterojunction.  
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Figure 4.6.2. Photo-CELIV curves of the PCDTBT:PC60BM BHJ solar cell devices (a) before adding PFN and 

after incorporation (b) 0.05%, (c) 0.1% and (d) 0.25% PFN into bulk heterojunction. The laser energy was set to 

10 µj. The applied voltage was 1 V coupled with 50000 Hz rise time (A=50000 V s-1)  
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PCDTBT:PC60BM:R101-Inc. 

 

 

Figure 4.6.3. Photo-CELIV curves of PCDTBT:PC60BM BHJ solar cell devices (a) without incorporation, and 

with incorporation of (b) 0.5%, (c) 1%, and (d) 5% rhodamine 101 into bulk heterojunction. The laser energy was 

set to 10 µj. The applied potential was 2 V coupled with 50000 Hz rise time. The delay between laser 

photoexcitation and extraction was set to 2 µs. 
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5.1. INTRODUCTION 

The idea of increasing dielectric constant was presented in the previous chapter and 

applied to the polymer-based bulk heterojunction solar cells. The aim of this chapter is to extend 

the similar concept to solution-processed small molecule-based bulk heterojunction (SM BHJ) 

solar cells. The solution-processed small molecule donors have attracted attention during the 

past decade due to potential advantages over low-bandgap conjugated polymer counterparts. 

For example, the solubility of the SM donor in organic solvents is higher compared to the 

polymer analogues which facilitate purification and characterization of the donors using 

standard organic chemistry procedures. Moreover, the molecular framework of the donor can 

be fine-tuned without the complexity of variating the average molecular weight and 

polydispersity of BHJ polymer systems. It has been demonstrated that the solution-processed 

small molecule donors can become a replacement to the narrow band-gap conjugated polymer 

donors.1-7 Indeed, the performance of BHJ solar cells composed of the solution-processed small 

molecular donor has considerably progressed in the past few years with several systems with 

efficiency over 8% being reported in the literature.8-12  

Although continuous improvement of the PCE has brought the solar cells to the point 

where they may become commercially viable, further investigation regarding increasing 

efficiency and device stability is required. As predicted,13 increasing dielectric constant may 

pave the way to further enhance PCE of the SM BHJ solar cell devices. Hence, small molecule 

BHJ solar cell devices composed of 7,7՜-[4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-

b՜]dithiophene-2,6-diyl]bis[6-fluoro-4-(5՜-hexyl-[2,2՜-bithiophen]-5-yl)benzo[c][1,2,5] 

thiadiazole] (p-DTS(FBBTh2)2) and PC60BM are the subject of dielectric constant study in this 

chapter. The small molecule donor p-DTS(FBBTh2)2 was first introduced in 2012.14 Its 

chemical structures allows to achieve better compatibility with hole transport layer 

PEDOT:PSS. The initial BHJ of the small molecule and PCBM shows very low efficiency due 



 

151 

  

to low phase separation and intimate mixing of the molecules. Hence, an optimal small 

molecule device requires specific processing condition such as alteration of the solvent, using 

additive and post-treatment (thermal annealing).15-19 The performance of the SM BHJ system 

has been progressively improved since 2012 and PCE over 8% in a single junction solar cell 

has been reported for the  BHJ system.19 Therefore, further enhancement of the dielectric 

constant may allow for achieving higher PCE in solution-processed high-performance small 

molecule BHJ systems. 
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5.2. EXPERIMENTAL  

5.2.1. PFN-incorporated BHJ Devices 

The small molecule-based BHJ solar cell devices were fabricated according to general 

procedures outlined in Chapter 2. A conventional structure composed of ITO/PEDOT:PSS/p-

DTS(FBTTh2)2:PC60BM/Al was used throughout. The p-DTS(FBTTh2)2 and PC60BM were 

added to 1 ml chlorobenzene at a weight ratio of 1:1.5 with an overall concentration of 35 mg 

mL-1. To incorporate PFN into bulk, 0.1 mg PFN was dissolved in 1 ml chlorobenzene and then 

50 and 100 µl of PFN-contained CB were mixed with pure CB to prepare 1 ml solution 

altogether. The weight ratios of PFN to the active materials are 0.014% and 0.029% wt, 

respectively. The active layer films with thickness of 100 ± 5 nm were made from solutions 

with and without PFN and subjected to thermal treatment for 10 min at 70 ºC and 5 min at 80 

Cº (inside a glovebox with oxygen concentration less than 1 ppm).  The solar cell device 

conventional structure and chemical structures of the donor and acceptor are shown in Figure  

 

5.2.2. Rhodamine 101-incorporated BHJ Devices 

The fabrication of rhodamine 101-incorporated devices was similar to PFN-incorporated 

devices. The 0.1 mg rhodamine 101 was dissolved in 1 ml CB and 10 and 50 µl of rhodamine 

101-contained CB solutions were mixed with pure CB solution to make 1 ml solutions. The 

weight ratios of the rhodamine 101 to active materials were 0.0029% and 0.014% wt, 

respectively. The active layers with and without embedded rhodamine 101 were subjected to 

thermal treatment as above.      

 

5.2.3. Isopropyl alcohol-treated BHJ Devices 

After thermal treatment of the active layer, IPA treatment was carried out by spin coating 

of 35 µl IPA solvent on top of the active layer at 2000 rpm for 60 s.    
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Figure 5.1. The solar cell device architecture and chemical structures of p-DTS(FBBTh2)2 and PC60BM. 

 

5.2.4. Solar cell device characterization 

The current density-voltage measurement, EQE, photovoltage decay, time-resolved 

charge extraction and photo-CELIV measurements were performed according to the procedures 

described in Chapter 2. The dielectric constant of the solar cell devices was measured using 

dark CELIV described in Chapter 4.  
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5.3. RESULTS AND DISCUSSION 

5.3.1. p-DTS(FBBTh2)2:PC60BM:PFN-incorporated 

5.3.1.1. Photovoltaic characteristics 

Figure 5.2 shows the current density-voltage curves of the representative devices 

fabricated from p-DTS(FBBTh2)2:PC60BM without and with the incorporation of PFN. The 

extracted parameters from current density-voltage curves are presented in Table 5.1. The PFN 

was added to the bulk solution in two concentrations by weight ratio, i.e., 0.014% and 0.029% 

wt. The power conversion efficiency of the device was reduced after the addition of the PFN 

mainly due to reduction of short-circuit current and fill factor. This may indicate the 

enhancement of charge carrier recombination. The external quantum efficiency measurement 

recorded at short-circuit condition (Vapp = 0 V) for pristine and PFN-containing devices are 

shown in Figure 5.3. The EQE data shows that the efficiency of photon-to-electron conversion 

has been decreased upon the addition of PFN. The obtained Jsc by integrating EQE spectrum  

 

Figure 5.2. Comparison of current density-voltage characteristics of p-DTS(FBTTh2)2:PC60BM BHJ solar cell 

devices without and with the incorporation of the PFN into bulk heterojunction. 
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Table 5.1. Photovoltaic parameters of p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after 

introduction of PFN into bulk heterojunction. Eight devices were measured and averaged. 

Devices Voc (mV) Jsc (mA cm-2) FF PCE (%) 

Reference 690.0 ± 10 8.9 ± 1.2 54 ± 1.9 3.3 ± 0.5 

0.014% wt PFN Inc. 710.0 ± 10 6.9 ± 1.2 52.2 ± 2.3 2.5 ± 0.5 

0.029% wt PFN Inc. 710.0 ± 70 3.4 ± 0.8 39 ± 4.3 0.94 ± 0.3 

 

 

Figure 5.3. EQE curves of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices without and with PFN embedded 

into the bulk. 

 

for the pristine, 0.014%, and 0.029% wt PFN-containing devices are 8.77, 8.06, and 4.11 mA 

cm-2, respectively. These results are consistent with current density-voltage measurement. The 

observed reduction of external quantum efficiency can be attributed to the presence of the PFN 

in the bulk which obstructs generation, transportation and/or collection of charge carriers. As 

such, the fraction of charge carriers that can be swept out, are mitigated, resulting in a reduction 

in short-circuit current and fill factor in the PFN-doped devices.  
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To examine the effect of the PFN on the photo-generation and collection of the charge 

carriers, photocurrent and charge collection probability dependence on the effective voltage 

were investigated. Figure 5.3a shows the photocurrent of the p-DTS(FBTTh2)2:PC60BM BHJ 

devices before and after incorporation of the PFN. It is immediately clear that the photocurrent 

of the PFN-doped devices was reduced across all effective voltage range compared to the 

reference devices. The maximum photo-induced charge carrier generation rate per volume 

(Gmax) is calculated for the devices. The Gmax values for pristine and 0.014%, 0.029% wt PFN-

doped devices are 7.44 × 1027 (119.22 A m-2), 5.68 × 1027 (91.056 A m-2), and 3.28 × 1027 m-3 s-

1 (52.604 A m-2), respectively. These values indicated that generation of charge carriers was 

diminished in the presence of the PFN which could potentially contribute to the lower short-

circuit current observed for the PFN-doped devices. The charge collection probability of 

devices versus effective voltage (Figure 5.4b) also exhibited collection of charge carrier in 

devices doped with 0.014% wt PFN was quite similar to the reference device, whereas 

increasing concentration of PFN to 0.029% wt resulted in a reduced collection of charge carrier, 

particularly at low Vint. Therefore, the poor collection of charge carriers implies an enhancement 

of the recombination loss in the 0.029% wt PFN-doped devices, which was reflected in the 

considerable reduction of short-circuit current and fill factor.  
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Figure 5.4. (a) Photocurrent (Jph), (b) charge collection probability (Pc) as a function of effective voltage (Vint) of 

the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices without and with PFN embedded into the bulk. 
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5.3.1.2. Dielectric constant, PVD, TRCE, and photo-CELIV measurements 

The dielectric constant of the p-DTS(FBBTh2)2:PC60BM BHJ solar cell devices were 

determined using CELIV technique (Figure 5.5). The calculated dielectric constant of the 

devices is listed in Table 5.2. A slight increase of the dielectric constant is observed following 

incorporation of the PFN into bulk heterojunction. This could be due to alteration of the 

polarization or free volumes within the bulk heterojunction after PFN being added. However, 

it appears that the added PFN interferes with internal mechanisms (generation, transportation, 

and collection) of the bulk heterojunction and the addition comes at cost of device’s 

performance.  

 

Figure 5.5. Measured dark CELIV of the p-DTS(FBTTh2)2:PC60BM solar cell devices (a) without PFN (b) 0.014% 

wt and (c) 0.029% wt PFN-doped into the bulk. The applied voltage was 2 V coupled with 25000 Hz rise time (A 

= 50000 V s-1). The thickness of the active layer was 100 ± 5 nm. 
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Table 5.2. Calculated dielectric constant and charge carrier mobility of p-DTS(FBTTh2)2:PC60BM BHJ solar cell 

devices before and after incorporation of PFN. Three devices were measured and averaged. 

Device Dielectric constant Mobility (cm2 V-1 s-1) 

Reference 4.0 ± 0.2 3.99 × 10-5 

0.014% loaded PFN 4.5 ± 0.2 4.08 × 10-5 

0.029% loaded PFN 4.4 ± 0.2 4.22 × 10-5  

 

 

Figure 5.6. Photovoltage decay of the p-DTS(FBTTh2)2:PC60BM solar cell devices before and after incorporation 

of PFN into bulk heterojunction. 

 

Figure 5.6 shows photovoltage decay of solar cell devices over time before and after the 

introduction of the PFN into the p-DTS(FBBTh2)2:PC60BM bulk heterojunction. The pristine 

device has a higher photovoltage at the early time compared to the PFN-doped devices. 

Moreover, at 35 µs a crossover happens such that at the longer time the PFN-doped devices 

have higher photovoltage. The lower photovoltage values at early time in the PFN-doped 

devices can be attributed to the reduction of charge carrier generation. The open-circuit 
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potential is determined by the quasi-Fermi levels (electrons and holes) splitting which is 

dependent on the available charge carriers and density of state. Therefore, the reduction of the 

charge carrier perhaps results in the lower quasi-Fermi level and consequently photovoltage in 

the PFN-doped devices. However, the photovoltage values in the PFN-doped devices are lower 

compared to open-circuit voltage values extracted from the current density-voltage 

measurement. The reason for such a difference remains unknown. But, it has been suggested 

by Clark et al.20 that variation in the results can be observed due to different nature of techniques 

(steady state versus transient).  

In order to investigate the effect of the dielectric constant alteration upon introduction of 

PFN of the charge carrier density and decay dynamics, TRCE measurement was employed. The 

pristine device shows higher charge carrier density compared to the PFN-loaded devices at early 

times (Figure 5.7a). The results are in agreement with photocurrent measurement. However, 

after 10 µs the PFN-doped BHJ devices charge carrier density decays slowly, leading to higher 

charge carrier density at the longer times. This is associated with slightly higher bimolecular 

recombination lifetime (Figure 5.7b) and lower bimolecular recombination coefficient (Figure 

5.7c) at long times in PFN-incorporated devices. These results are also consistent with the 

photovoltage decay results. However, there appears to be an inconsistency between these results 

and the constant reduction of Jsc upon increasing the concentration of the PFN. Clarke et al.20 

report similar results in a photo-degraded BHJ device composed of KP115:PCBM. The authors 

explain that it is probable after photodegradation, deeper and broader trap states reduce 

bimolecular recombination under open circuit condition (increasing charge carrier density at 

long times), whereas under short circuit conditions promote the recombination. Given that, one 

may conclude that slight enhancement of the dielectric constant (due to the addition of PFN) 

slows down the bimolecular recombination, giving higher charge carrier density at the longer 
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times. However, it should be noted that considerable interference of PFN with charge carrier 

generation and extraction could be accounted for the loss of short-circuit current.  

 

Figure 5.7. (a) charge carrier density, (b) bimolecular recombination lifetime and (c) bimolecular recombination 

coefficient versus time for the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after PFN 

incorporation into the bulk heterojunction. 

 

The charge carrier mobility of the p-DTS(FBBTh2)2:PC60BM BHJ solar cell devices 

before and after the addition of PFN has been accomplished using the photo-CELIV technique. 

The calculated mobility of the devices after 2 µs delay time are listed in Table 5.2 (the 

corresponding photo-CELIV curves are shown in Figure 5.6.1, Appendix). The charge carrier 

mobility of the device is quite comparable with slightly bigger values for the PFN-doped 

devices. One possibility is energetic disorders (trap states) within the bulk has not been affected 

by the introduction of the PFN, as it is shown that charge carrier mobility in organic 
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semiconductor decrease with increasing trap density.21 Another explanation is the photo-

CELIV technique may not be able to observe the mobility of all charge carriers, in particular, 

those who are deeply trapped. Therefore, the obtained mobility values represent charge carriers 

that have been extracted.20 
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5.3.2. p-DTS(FBBTh2)2:PC60BM:R101-incorporated 

5.3.2.1. Photovoltaic characteristics 

The photovoltaic parameters of the p-DTS(FBBTh2)2:PC60BM BHJ solar cell devices 

before and after doping with rhodamine 101 extracted from current density-voltage 

measurement are listed in Table 5.3. The representative current density-voltage curves are 

shown in Figure 5.8. The rhodamine 101-doped devices show lower power conversion 

efficiency compared to the pristine devices mainly because of the reduction of the fill factor. 

This suggests that recombination of charge carriers in the presence of the rhodamine 101 has 

been intensified. Figure 5.9 displays the external quantum efficiency of the devices. The EQE 

of rhodamine 101-doped devices was lower than that of the reference device, except slightly 

higher in the wavelength range 300-500 nm in 0.0029% wt device. The Jsc obtained from EQE 

for the pristine, 0.0029% wt, and 0.014% wt rhodamine 101-doped devices are 8.45, 8.24 and 

7.97 mA cm-2, respectively. The values were in good agreement with Jsc extracted from current 

density-voltage measurement and indicate that the efficiency of photon to electron conversion 

has been reduced in the rhodamine 101-doped devices (Figure 5.10).    

   

Table 5.3. Photovoltaic parameters of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices in the absence and 

presence of rhodamine 101 incorporated into the bulk heterojunction. The results are an average of 8 devices. 

Devices Voc (mV) Jsc (mA cm-2) FF PCE (%) 

Reference 670.0 ± 10 8.5 ± 0.2 57 ± 2 3.2 ± 0.1 

0.0029% wt R101-Inc. 660.0 ± 20 8.5 ± 0.4 51 ± 4 2.9 ± 0.3 

0.014% wt R101-Inc. 660.0 ± 10 8.0 ± 0.4 46 ± 3 2.4 ± 0.2 
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Figure 5.8. Recorded current density-voltage of p-DTS(FBTTh2)2:PC60BM solar cell devices in the absence and 

presence of Rhodamine 101 incorporated into BHJ. 

 

 

Figure 5.9. EQE curves of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices without and with Rhodamine 101 

embedded into the bulk. 
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To understand the effect of the rhodamine 101 on the generation and collection of the 

charge carriers, the photocurrent (Jph) and charge collection probability (Pc) of the devices were 

studied as a function of the effective voltage (Vint). The main effect of the rhodamine 101 on 

both photocurrent and charge collection probability emerge at the low effective voltage (< 0.3 

V) where due to the weakness of the internal electric field, the bimolecular recombination plays 

a significant role. This means that the addition of the rhodamine 101 increase recombination 

loss (around open-circuit potential), especially in the 0.014% wt device. On the other hand, both 

photocurrent and charge collection probability of the solar cell devices at high Vint (> 0.3 V) are 

quite the same, suggesting charge carrier recombination has not been affected in the absence 

and presence of the rhodamine 101. The Gmax values of the reference device, 0.0029% wt and 

0.014% wt rhodamine 101-doped devices were 6.12 × 1027 (98.0256 A m-2), 5.85 × 1027 

(93.7571 A m-2), and 5.92 × 1027 m-3 s-1 (94.8878 A m-2), respectively. The values were in almost 

similar range, though slightly less than the rhodamine 101-doped devices. Therefore, it could 

be concluded that the reduction of performance in the rhodamine 101-doped devices stems from 

enhancing of the recombination around open-circuit conditions which manifests in low fill 

factor. 
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Figure 5.10. (a) Photocurrent (Jph), (b) charge collection probability (Pc) as a function of effective voltage (Vint) 

of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after addition of rhodamine 101 the bulk. 
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5.3.2.2. Dielectric constant, PVD, TRCE and photo-CELIV measurements  

The dielectric constant of the p-DTS(FBBTh2)2:PC60BM BHJ solar cell devices before 

and after doping with rhodamine 101 was calculated according to equation 4-1 using the CELIV 

technique. A 2 V potential coupled with 50,000 Hz rise time was applied to the devices and the 

responses were recorded by oscilloscope over 10 Ω resistance. The CELIV curves of the devices 

are shown in Figure 5.11. The dielectric values are presented in Table 5.4. It was observed that 

the incorporation of 0.0029% wt rhodamine 101 into the SM BHJ had a marginal impact, 

whereas increasing the dopant content to 0.014% wt moderately reduces the dielectric constant. 

The reduction is perhaps due to the effect of rhodamine 101 on polarization and/or free volume 

 

Figure 5.11. Measured dark CELIV of the p-DTS(FBTTh2)2:PC60BM solar cell devices (a) without, and with the 

incorporation of (b) 0.0029% wt, and (c) 0.014% wt of rhodamine 101 into the bulk heterojunction. The voltage 

speed rise (A) was 100000 V s-1. The thickness of the active layer was 100 ± 5 nm. 
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Table 5.4. The calculated dielectric constant and charge carrier mobility of the bulk heterojunction p-

DTS(FBTTh2)2:PC60BM solar cell devices before and after the incorporation of rhodamine 101. Three devices 

were measured and averaged.  

Devices Dielectric constant Mobility (cm2 V-1 s-1) 

Reference 4.0 ± 0.2 3.11 × 10-5 

0.0029% wt Rh101-loaded 3.7 ± 0.2  3.56 × 10-5 

0.014% wt Rh101-loaded 3.4 ± 0.2  3.82 × 10-5 

  

of the bulk, the factors determining the dielectric constant. Further investigation of the devices 

was accomplished by performing TRCE measurement. Figure 5.13a shows charge carrier 

density of the devices before and after the addition of rhodamine 101 as a function of time. The 

reference device has a slightly higher charge carrier density compared to the devices containing 

rhodamine 101. This is in agreement with better charge carrier collection at low Vint and higher 

Gmax value in the reference device. Nevertheless, there is no appreciable discrepancy in 

bimolecular recombination lifetime (Figure 5.13b) and bimolecular recombination coefficient 

(Figure 5.13c) of the solar cell devices before and after incorporation of the rhodamine 101. 

This indicates that recombination dynamics of charge carrier has not been affected following 

the introduction of rhodamine 101 and consequently slight reduction of dielectric constant. It is 

reported that presence of the impurities increases energetic disorder in the solar cell and reduces 

the performance.22 Hence, one may conclude that introduction of rhodamine 101 into the bulk 

did not increase the energetic disorder.  
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Figure 5.12. (a) Charge carrier density, (b) bimolecular recombination lifetime, and (c) bimolecular recombination 

coefficient as a function of time for the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after loading 

various concentration of rhodamine 101 in the bulk heterojunction.  

 

The charge carrier mobility of the p-DTS(FBBTh2)2:PC60BM BHJ solar cell device 

without and with rhodamine 101 was measured using the photo-CELIV technique. The mobility 

of the devices is listed in Table 5.4. The mobility values are quite comparable, albeit slightly 

increased in the device containing rhodamine 101. This may be another indication that 

introduction of rhodamine 101 does not exacerbate the energetic disorder within the bulk 

heterojunction. The increased in energetic disorder is shown to be associated with decreasing 

the charge carrier mobility.21 Otherwise, this may be the inability of the photo-CELIV 

techniques to observer the charge carriers that are trapped as stated in the previous section. 
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5.3.3. p-DTS(FBTTh2)2:PC60BM:IPA treated Devices 

5.3.3.1. Photovoltaic characteristics 

The p-DTS(FBTTh2)2:PC60BM active layer was treated with 20 µl IPA and then the 

photovoltaic performances of the devices before and after the treatment were investigated 

(Table 5.5). Figure 5.13 shows current density versus voltage characteristics of the best 

performance devices with and without treatment with isopropyl alcohol under 100 W cm-2 air 

mass 1.5 global illumination. The pristine devices have Voc of 731 ± 14 mV, Jsc of 8 ± 0.8 mA 

cm-2 and FF of 55 ± 4.2 leading to PCE of 3.24 ± 0.2%. The photovoltaic parameters of the 

devices remain almost unchanged after treatment with IPA. Therefore, it is clear that IPA 

treatment leads to no significant changes in the performance of the device. Zhou et al.23 have 

reported that methanol treatment has no significant influence on the performance of the p-

DTS(FBTTh2)2:PC71BM BHJ devices.   

In order to explore the effect of the treatment on the optical properties, UV-Vis absorption 

characteristics of the active layer film before and after treatment with IPA was probed. As can 

be seen from the UV-Vis absorption spectra in Figure 5.14, the pristine p-

DTS(FBTTh2)2:PC60BM film show absorption features in the wavelength range of 400 to 750 

nm. The absorption peak observed at 680 nm is assigned to the vibronic structure of p-

DTS(FBBTh2)2. Following the treatment with IPA, the absorption of the active layer is slightly 

reduced, suggesting that the molecular ordering may be lowered. It is also reported that 

methanol treatment of the p-DTS(FBTTh2)2:PC71BM film was made no significant changes in 

the absorption coefficient of the film.23  
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Table 5.5. Current density-voltage characteristics of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before 

and after treatment with IPA. The results are an average of 8 devices. 

Device Voc (mV) Jsc (mA cm-2) FF PCE (%) 

References 730.0 ± 10 8.0 ± 0.8 55.0 ± 4.2 3.2 ± 0.2 

IPA-treated 720.0 ± 10 8.2 ± 0.6 54.0 ± 4.9 3.2 ± 0.4 

 

 

 

 

Figure 5.13. Current density-voltage curves of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and 

after IPA treatment. 
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Figure 5.14. UV-Vis spectra of the p-DTS(FBTTh2)2:PC60BM BHJ films before and after treatment with 20 µl of 

IPA. 

The external quantum efficiency of the solar cell devices is shown in Figure 5.15. The 

EQE of the IPA treated device is slightly higher in the wavelength range of 300 to 500 nm, 

whereas it decreases slightly in the wavelength range of 500 to 800 nm compared to control 

device. The maximum EQE values of the solar cell devices before and after treatment with 20 

µl IPA are 48.21% and 49.58% at 390 nm, respectively. The Jsc obtained from EQE for pristine 

and IPA treated devices are 8.29 and 8.22 mA cm-2, respectively. The Jsc values are almost 

identical and consistent with Jsc extracted from the current density-voltage measurement. These 

results imply efficiency of conversion processes of incoming photons to collected 

electrons/holes at the electrodes has not been influenced by the treatment. 
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Figure 5.15. External quantum efficiency of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after 

treatment with 20 µl IPA.  

    

Figure 5.16 shows the photocurrent (Jph) and charge collection probability (Pc) of the SM 

BHJ solar cell devices without and with IPA treatment as a function of effective voltage (Vint). 

There is a quite small difference between the pristine device and IPA treated device across 

almost all effective voltage range, indicating both Jph and Pc characteristics of the devices have 

not been altered by the isopropyl alcohol treatment.   
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Figure 5.16. (a) Photocurrent, and (b) charge collection probability as a function of effective voltage for the p-

DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after treatment with 20 µl IPA.  
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5.3.3.2. Dielectric constant, photo-CELIV, PVD, and TRCE measurements 

The bulk heterojunction solar cell devices composed of p-DTS(FBBTh2)2:PC60BM were 

subjected to treatment with IPA. The dark CELIV characteristics of the devices were achieved 

by applying a 2 V voltage coupled with 50000 Hz rise time (10 Ω internal resistance of the 

oscilloscope). The CELIV curves of the solar cell devices before and after treatment with IPA 

are shown in Figure 5.17. The dielectric values of the devices are listed in Table 5.6. The 

dielectric constant of the devices slightly increases upon the treatment. This agrees with device 

performance results, showing no substantial difference before and after the treatment with 

isopropyl alcohol.  

The mobility of the solar cell devices was measured using photo-CELIV techniques 

(Figure 5.17c, d). The charge carrier mobility results are presented in Table 5.6. The mobility 

of the IPA treated device is comparable to control devices with slightly smaller value. A similar 

result has been reported by Zhou et al.23 which hole mobility in p-DTS(FBBTh2)2:PC71BM BHJ 

solar cell device was slightly dropped upon treatment with methanol. The authors attribute the 

mobility decrease to the formation of isolated island structures. However, it is shown that 

solvent (methanol) treatment could improve hole mobility in PTB7:PC71BM BHJ solar cell 

devices results in more balanced charge transport and thus reduce charge carrier recombination 

and increase fill factor.24  
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Figure 5.17. Measured dark CELIV of p-DTS(FBBTh2)2:PC60BM BHJ solar cell devices (a) without, and with the 

treatment of (b) 20 µl IPA. The voltage speed rise was set to 100000 V s-1 (2 V coupled with 50 kHz rise time). (c) 

and (d) Photo-CELIV curve of the BHJ solar cell devices before and after treatment with IPA. The laser energy 

was set to 10 µj. There was 2 µs delay between photogeneration and extraction.  

 

Table 5.6. Calculated dielectric constant of p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after 

treatment with IPA. Two devices were measured and averaged. 

Device Dielectric Constant Mobility (cm2 V-1 s-1) 

Reference 3.9 ± 0.2 3.28 × 10-5 

20 µl IPA treated 4.1 ± 0.2 2.95 × 10-5 
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Figure 5.18. Photovoltage decay of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after 

treatment with 20 µl of IPA. The laser energy was 10 µj. 

 

Figure 5.18 displays the photovoltage decay of the solar cell devices without and with 

IPA treatment. The IPA treated devices shows slightly higher photovoltage at early time 

compared to the control device. This was consistent with higher charge carrier density (Figure 

5.18a) and slightly lower bimolecular recombination lifetime (Figure 5.18c). A similar trend 

also was observable at the longer time as well. Moreover, the bimolecular lifetime 

recombination of the solar cell device after IPA treatment was slightly higher than control 

device (Figure 5.18b). One possible explanation for the slower recombination in IPA treated 

device could be suppression of the trap states. The recombination of the charge carriers occurs 

in the presence of an exponential distribution of trap states, especially at the longer time.25 

Hence, it may be understood that suppression of trap state will give rise to higher lifetime and 

slower charge carrier recombination. Another possible reason could be a slight increase of 

dielectric constant for the IPA treated device, as it is predicted that increasing dielectric constant 

could slow recombination of charge carriers. 
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Figure 5.19. (a) Charge carrier density, (b) bimolecular recombination lifetime and (c) bimolecular recombination 

coefficient as a function of time of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices before and after treatment 

with 20 µl of IPA. The laser energy was 10 µj. 
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5.4. CONCLUSION 

The enhancement of the dielectric constant in SM BHJ solar cell and its impact on the 

charge carrier dynamics of the solar cells was the main aim of this chapter. First, PFN and 

rhodamine 101 was incorporated into the p-DTS(FBBTh2)2:PC60BM BHJ. Then, the bulk was 

treated with IPA. It was observed that PFN slightly increases the dielectric constant, whereas 

rhodamine 101 slightly decrease the dielectric constant. The treatment with IPA causes no 

significant alteration in the dielectric constant. The addition of the both PFN and rhodamine 

101 into the bulk results in the reduction of the power conversion efficiency due to their 

influence on the charge carrier generation, collection and recombination. On the other hand, the 

photovoltaic properties of the BHJ solar cell devices remain unchanged following treatment 

with IPA. Therefore, the proposed method based on the Clausius-Mossotti relationship, to 

reduce free volume in the bulk by introducing material with dielectric constant higher than air, 

may not be an effective method to enhance the dielectric constant of small molecule BHJ solar 

cells and improve device performance.  

 

5.5. FUTURE WORK 

 The results presented here were an exploration to examine new ways of increasing 

dielectric constant in BHJ systems. The effects of incorporated materials can be further 

investigated using spectroscopic ellipsometry and Fourier transform infrared spectroscopy 

spectra combined with the Kramers‐Kronig relation. These techniques will provide more 

information on the components (ionic, electronic, and orientational) which determine 

polarization part of the dielectric constant.      
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5.6. APPENDIX 

p-DTS(FBTTh2)2:PC60BM:PFN-Inc. 

 

 

Figure 5.6.1. Photo-CELIV curves of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices (a) without, and with 

the incorporation of (b) 0.014% wt and (c) 0.029% wt PFN in the bulk heterojunction. The laser energy was 10 µj. 

The applied voltage was 2 V with speed rise of 25000 Hz. The delay between photogeneration and charge 

extraction was 2 µs. 
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p-DTS(FBTTh2)2:PC60BM:R101-Inc. 

 

Figure 5.6.2. Photo-CELIV curve of the p-DTS(FBTTh2)2:PC60BM BHJ solar cell devices (a) without and with 

the incorporation of (b) 0.0029% wt,  and (c) 0.014% wt rhodamine 101 in the bulk heterojunction. The laser 

energy was set to 10 µj. The applied voltage was 2 V together with 50000 Hz speed rise. The delay between 

photogeneration and charge extraction was 2 µs. 
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6.1. INTRODUCTION 

Solution-processed small molecule-based BHJ solar cells are of keen interest as they have 

shown the potential to compete with traditional conjugated polymer-based solar cells.1,2 The 

well- defined chemical structure, batch-to-batch reproducibility, simple synthesis and 

purification, monodispersity coupled with relatively high mobility are some of their advantages 

over polymer counterparts.2-4 Enhancement of the small molecule-based solar cells has been 

mainly achieved via the new molecular framework,5-8 engineering bulk heterojunction 

morphology,9-12 and device architecture modification.13 Of particular importance is the 

morphological characteristics of the small molecule (SM) BHJ which significantly influence 

generation and extraction of charge carriers.11,12 An optimized morphology is a trade-off 

between domain size and domain purity of the donor and acceptor within the bulk film. The 

former (domain size) mostly controls charge carrier generation, while the latter provides 

uninterrupted paths for charge carrier collection at the electrode. Consequently, any 

morphological deformation within the bulk or at the electrode contact could potentially result 

in a poor performance solar cell device. 

S-shape characteristic is one of the efficiency-restricted phenomena that has been 

observed in organic photovoltaic systems. The origin of the S-shaped current-voltage curve has 

been ascribed to the morphological host or interfacial issues, leading to inefficient extraction of 

one of the charge carrier type. The so-called “kink” appears in the fourth quadrant of the current-

voltage curve and is usually associated with significant reduction of fill factor (FF) and power 

conversion efficiency (PCE). Several underlying causes have been suggested for the appearance 

of the S-shaped current-voltage curves in the literature including, vertical phase separation,14,15 

defect or surface dipoles at the interface,16-18 energy barrier,19-21 and imbalance mobility of 

charge carriers.22 A few models have also been proposed to address the physical underlying 

mechanism of the s-shape. Dyakonov et al.23 developed a numerical model and introduced 



 

187 

  

reduced surface recombination velocity of the majority carriers to explain the S-shape current-

voltage curve. Yang et al.24 suggested that the formation of a dipole is responsible for the kink 

in the current-voltage curve. Schwartz et al.25 reported a model based on the vertical phase 

separation of the active layer, suggesting that the mismatch in electron and hole mobility in 

conjunction with an abrupt change in the mobility at the interface can lead to the S-shape curve. 

Huh, et al.26 also reported a numerical model based on P3HT:PCBM solar cell devices. The 

authors proposed the S-shape curve appears provided that large imbalance mobility between 

charge carriers, accumulation of charge carriers at one of the electrodes and strong Langevin-

type bimolecular recombination present at the same time in the system. While the appearance 

of the S-shaped current-voltage curve have been extensively investigated in the polymer-based 

organic solar cell, there are very few reports on the origin of the S-curve phenomenon in 

solution-process small molecule BHJ solar cells.27 

In this study, the appearance of the S-shaped current density-voltage curve in high-

performance solution-processed small molecule bulk heterojunction solar cells composed of 

7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-fluoro-4-(5′-

hexyl-[2,2′-bithiophen]-5-yl) benzo[c][1,2,5] thiadiazole), and [6,6]-phenyl C70 butyric acid 

methyl ester, (p-DTS(FBTTh2)2:PC70BM) is investigated. The aim was to find a solution to 

revive the normal current-voltage curve. After that, the focus of the study was to understand the 

origin of the phenomenon and its effect on the photovoltaic characteristics of the BHJ solar cell 

devices. To achieve that, a range of steady state and transient techniques were employed. The 

photovoltaic performance of the devices was studied using current density-voltage, IPCE, and 

UV-Vis measurements. Atomic force microscopy was employed to study the top surface of the 

bulk heterojunction films. The charge carrier generation and collection of the devices were 

compared through analysis of photocurrent density-voltage curves. Finally, photovoltage 

decay, time-resolved charge extraction, and photo-CELIV techniques were carried out to 
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investigate the effect of the S-curve phenomenon on the charge carrier extraction, 

recombination, and mobility. 
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6.2. EXPERIMENTAL 

6.2.1. Device Fabrication 

The solution-processed small molecule BHJ solar cell devices were fabricated according 

to the general procedures outlined in chapter 2. The solar cells’ structure was conventional 

throughout the experiments and comprised of ITO/PEDOT:PSS/p-DTS(FBTTh2)2:PC70BM/Al. 

The schematic structure of the solar cell device, molecular structure of p-DTS(FBBTh2)2 and 

PC70BM and energy level diagram of the solar SMBHJ solar cell devices are shown in Figure 

1. The acceptor and donor materials were blended together in four different weight ratios, 

namely 1.5:1 (acceptor-rich, AR device), 1:1, 1:1.5 (donor-rich, DR device) and 1:2 in 

chlorobenzene solvent with 0.4% (v/v) of 1,8-diiodooctane (DIO) processing additive. The total 

concentration of the solutions was 35 mg/ml. The active materials were cast on top of the 

PEDOT:PSS layer at 2000 rpm for 45 s. The thickness of active layers was determined by 

Dektak 150 (Veeco) profilometer and was around 100 nm (± 5). In order to remove the residual 

solvent within the active layer, the substrates were heated at 70 ºC for 10 min and at 80 ºC for 

5 min inside the glovebox. Finally, a 100 nm of aluminum (cathode electrode) was deposited 

on top of the active layer by metal evaporation technique. The active area of the solar cell 

devices was 0.06 cm2. 

 

6.2.2. Film Characterization 

 The surface morphology of the acceptor-rich (AR) and donor-rich (DR) BHJ films was 

studied using atomic force microscopy (AFM) (Asylum Research, MFP-3D) in tapping mode. 

The sample BHJ films for the AFM measurement were prepared on top of the ITO coated with 

PEDOT:PSS. The BHJ film samples for the UV-Vis absorption measurements were cast on 

microscope glass slides. The UV-Vis absorption measurements were performed using a UV-  
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Figure 6.1. (a) Schematic of device architecture. (b) Molecular structures of p-DTS(FBTTh2)2 and PC70BM. (c) 

Energy level diagram of SM bulk heterojunction solar cell comprised of ITO/PEDOT:PSS/p-

DTS(FBTTh2)2:PC70BM/Al cathode. The energy levels were obtained from ref. [11, 13]. 

 

VIS-NIR spectrophotometer (Shimadzu, UV-3600). All spectra were scanned from 800 nm to 

300 nm, although only the section between 350 and 800 nm was shown in the figure. The 

baseline was corrected for the absorption of the glass at a single point at 800 nm.   

 

6.2.3. Device Characterization 

The current density-voltage, IPCE, light-intensity dependency, photovoltage decay, 

charge extraction and Photo-CELIV measurement were carried out according to the procedures 

outlined in Chapter 2.   
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6.3. RESULTS AND DISCUSSION 

6.3.1. Interface Modification 

It is reported that interfacial features such as partial metal coverage or top electrode 

corrosion could lead to imperfect interfaces between the BHJ and the cathode electrode. As a 

result, extraction of the charge carriers at the cathode side is obstructed, causing the appearance 

of the S-shaped current-voltage curve. To examine the nature of the interface between the SM 

BHJ and the cathode electrode, solar cell devices with TiOx and ZnO electron transport layers 

were fabricated. The TiOx and ZnO were prepared based on the work of Kim et al.28 and Kyaw 

et al.13, respectively. The photovoltaic parameters of the solar cell devices without and with 

electron transport layers are summarized in Table 6.1. The current density-voltage curves of the 

devices are shown in Figure 6.2. It is obvious that the insertion of the TiOx and ZnO at the 

interface does not resolve the S-shaped current-voltage characteristics and the fabricated 

devices with incorporated ETLs exhibit low fill factor together with PCE comparable to the 

reference device. This indicates that the S-curve phenomenon is not an interface-driven process 

and the imperfection of the interface due to thermal evaporation cathode electrode cannot 

account for the appearance of the S-shaped current-voltage curve and low-performance solar 

cell devices.  

Table 6.1. Photovoltaic parameters of p-DTS(FBTTh2)2:PC70BM BHJ solar cell device without and with two 

incorporated electron transport layers. The results are average 8 devices. 

ETL Voc (mV) Jsc (mA cm-2) FF PCE (%) 

- 721.0 ± 10 10.2 ± 0.5 0.35 ± 0.01 2.6 ± 0.3 

TiOx 738.0 ± 90 9.6 ± 0.4 0.4 ± 0.3 2.7 ± 0.3 

ZnO 735.0 ± 10 9.6 ± 0.6 0.36 ± 0.04 2.6 ± 0.3 
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Figure 6.2. Current density-voltage curves of the p-DTS(FBTTh2)2:PC70BM BHJ solar cell device without and 

with incorporated TiOx and ZnO electron transport layers in the dark and under illumination. 

There have been reports that the appearance of the S-shaped current-voltage curve was 

assigned to the interface between the active layer and cathode electrode. Vogel et al.29 report a 

bilayer structure device composed of ITO/ZnPc/C60/Al showed S-curve phenomenon. It was 

further shown that the S-curve phenomenon was removed by the insertion of a bathocuproine 

(BCP) interfacial layer. It was claimed that penetration of the aluminum into active layer results 

in a “structured interface” which either quench the excitons or enhance the exciton 

recombination at the interface.29 The authors concluded that insertion BCP prevents the 

recombination or quenching the exciton at the interface by increasing the distance between the 

excited molecules and the metal surface. Jin et al.30 have shown that oxidized Ca cathode 

electrode or poorly deposited Ca cathode electrode in the P3HT:PCBM BHJ devices gives rise 

to S-shaped current-voltage curve. They attributed the former to the chemical degradation of 

the Ca-polymer interface and the latter to the inefficient charge transfer at the polymer-metal 

interface. It was proposed that insertion of 5 nm CdS interlayer could alleviate imperfect 
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interface effects and revive normal diode-like current-voltage curve.30 The chemical 

degradation of metal-polymer interface or partial coverage of metal electrode over the polymer 

were also suggested by Gupta et al.16 The authors show that a normal current-voltage curve was 

revived when the cathode electrode was replaced with a low melting point alloy metal electrode 

(In-Sn-Pb-Bi). It is apparent that our findings are in contradiction of the abovementioned results 

in which interface modification is not the key to reviving the normal diode-like current-voltage 

curve and the S-curve phenomenon originates from the small molecule bulk heterojunction and 

probably its morphological characteristics. 

 

6.3.2. DIO Effect 

Given that the interface between the active layer and the cathode is not the culprit for the 

appearance of the S-shaped current-voltage curve, the remaining option is the bulk 

heterojunction. The performance of the p-DTS(FBBTh2)2:PC70BM solar cell devices relies 

crucially upon the BHJ morphology. Moreover, the processing additive DIO which has been 

widely used to optimize the small molecule BHJ morphology may be responsible for the S-

curve phenomenon. In this section, the results of devices fabricated with a range of DIO 

concertation from 0 to 0.6% is presented. The photovoltaic parameters of the additive-processed 

devices are summarized in Table 6.2. It is apparent that the devices fabricated with DIO clearly 

show S-shaped current density-voltage curve and suffer from low fill factor (Figure 6.3). This 

indicates that despite the impressive impact of the DIO on the solar cell performance, the kink 

near the Voc that dramatically change the shape of the current density-voltage curve appears 

regardless of the DIO concentration and therefore cannot be ascribed to DIO-driven 

morphological defects. It has been shown in the literature that the performance of small 

molecule devices can be vastly improved via incorporation of the small amount of the solution 

additive DIO in the casting solution.5,6,9,31-33 Recently, Love et al.27 report a reduction of the  
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Table 6.2. The photovoltaic characteristics of the solar cell devices fabricated with various concentration of DIO. 

Four devices were measured and averaged.  

DIO concentration Voc (mV) Jsc (mA cm-2) FF PCE (%) 

0% 550.0 ± 30 2.45 ± 0.2 0.25 ± 0.6 0.33 ± 0.01 

0.2% 720.0 ± 20 9.34 ± 0.3 0.31 ± 0.03 2.1 ± 0.5 

0.4% 740.0 ± 10 11.5 ± 0.3 0.41 ± 0.02 3.5 ± 0.2 

0.6% 700.0 ± 50 2.4 ± 0.4  0.16 ±0.02 0.24 ± 0.03 

 

 

Figure 6.3. Current density-voltage curves of p-DTS(FBTTh2)2:PC70BM fabricated with various concentration of 

DIO solution additive under illumination. 

 

S-shape of current-voltage curve in the small molecule devices composed of p-

SIDT(FBTThCA8)2:PC71BM. It is, however, apparent that S-curve phenomenon in our system 

is independent of the DIO. 
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6.3.3. Donor and Acceptor Ratio 

It is widely accepted that donor and acceptor form an interpenetrating network throughout 

the bulk heterojunction. The efficient exciton dissociation and charge carrier generation within 

the bulk depends on the interfacial area between donor and acceptor, whereas efficient charge 

carrier collection relies upon percolation pathways composed of pure donor/acceptor phase. A 

high-performance device has a large interfacial area over the bulk, yet long percolation paths 

toward electrodes. As a result, any morphological defects such as aggregation of donor/acceptor 

could potentially undermine the generation, transportation or collection of charge carriers, 

resulting in low-performance solar cell devices. In the last section, the results of DIO 

concentration on the device performance were presented. In this section, we examined the effect 

of the donor/acceptor ratio on the appearance of the S-curve phenomenon. The current density-

voltage characteristics of the p-DTS(FBTTh2)2:PC70BM solar cell devices fabricated with 1.5:1, 

1:1, 1.5:1, and 1:2 donor/acceptor (D/A) weight ratio are listed in Table 6.3. It is observed that 

the devices with 1.5:1 and 1:1 (D/A) weight ratio shows S-shaped current density-voltage curve, 

whereas normal diode-like curves are obtained for devices with higher content of PC70BM 

(1:1.5 and 1:2 weight ratio).  

Table 6.3. Photovoltaic parameters of p-DTS(FBTTh2)2:PC70BM BHJ solar cell device fabricated with various 

weight ratios of donor and acceptor. 

Donor:Acceptor ratio Voc (mV) Jsc (mA cm-2) FF PCE (%) Average 

1.5 : 1 780.0 ± 30 11.1 ± 0.8 0.39 ± 0. 03 3.3 ± 0.3 16 

1 : 1 740.0 ± 90 12 ± 0.4 0.44 ± 0.03 3.9 ± 0.4 8 

1 : 1.5 740.0 ± 12 14 ± 0.4 0.56 ± 0.04 6 ± 0.2 16 

1 : 2 740.0 ± 60 13 ± 0.4 0.55 ± 0.01 5.2 ± 0.2 12 
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Figure 6.4. (a) Current density-voltage characteristics of solar cell devices composed of p-

DTS(FBTTh2)2:PC70BM with 1.5 : 1 (DR Device, red) and 1 : 1.5 (AR Device, black) weight ratio of 

donor/acceptor, (b) Normalized UV-Vis absorption spectra of the corresponding photoactive layers, (c) External 

quantum efficiency of DR (red) and AR (black) solar cell devices. 

It is clear that the S-shaped curve stems from the bulk heterojunction (it is a morphology 

issue) and is significantly alleviated when the donor/acceptor ratio is altered. It is found that the 

best ratio to obtain a relatively high fill factor and short circuit current is 1:1.5 (D/A). The 1:2 

ratio devices show normal current density curves, but lower performance (compared to 1:1.5 

devices) due to lower Jsc. Moreover, the devices fabricated with 1:1 donor/acceptor ratio also 

demonstrate S-shaped curves, although slightly less pronounced as indicated by the higher fill 

factor (0.44 ± 0.03). Hence, solar cell devices with 1:1.5 ratio (donor-rich, DR) and 1:1.5 

(acceptor-rich, AR) were selected for further investigation. The current density-voltage curve 

of donor-rich and acceptor rich devices measured under 1 sun simulated illumination (100 mW 
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cm-2, AM 1.5) and in the dark, are presented in Figure 6.4a (the current density-voltage curves 

of devices with 1:1 and 1:2 D/A ratio are shown in Figure 6.6.1, Appendix). It can be seen that 

acceptor-rich devices demonstrate a power conversion efficiency (6 ± 0.2%) almost twice as 

large as donor-rich devices (3.3 ± 0.3%). In terms of current density-voltage curve, it is apparent 

that devices using DR active layer show an inflection point near the Voc and a clear kink in the 

fourth quadrant, whereas the AR devices show normal diode-like behavior. While open circuit 

potential of DR devices is slightly higher, the fill factor of the devices is 31% lower compared 

to the AR devices. Moreover, the forward bias injection potential for the DR device is shifted 

0.5 V to higher potential both in the dark and under illumination conditions. 

The current density-voltage curves suggest the presence of an injection/extraction barrier 

in the DR devices which is manifested by the S-curve behavior. It is speculated that 

accumulation of the donor materials and formation a thin donor-rich layer near and/or in contact 

with electron extracting cathode electrode could be the physical origin of the barrier. The 

extraction barrier would then stem from the voltage loss arising from the low electron 

conductivity (high electric resistance) of the donor-rich surface region. The increment of the 

acceptor content in the AR devices has probably caused better distribution of donor and 

acceptor throughout the bulk, leaving more PC70BM on the surface of active layer necessary 

for efficient charge carrier extraction. 

In Figure 6.4b, UV-Vis absorption spectra are shown for the donor-rich (1:1.5 D/A ratio) 

and acceptor-rich (1:1.5 D/A ratio) active layer thin films. The spectra were normalized to the 

absorption peak of PC70BM at 383 nm. The absolute absorbance values were in the range of 

0.25 to 0.5 depending on the wavelength. The donor-rich UV-Vis spectrum shows two 

absorption features at 380 nm and at 550 to 700 nm. This matches the reported absorption 

spectrum of the donor p-DTS(FBTTh2)2 with contribution from PC70BM absorption at 400 nm.9 

The acceptor-rich film exhibits similar phenomenology; however, the relative strength of 
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absorbance is weakened within the 550 nm to 700 nm wavelength range. This may suggest that 

the solid-state ordering of p-DTS(FBTTh2)2 is reduced in AR devices. 

External quantum efficiency (EQE) of the solar cell devices is shown in Figure 6.4c. It is 

clear that the EQE values of the DR devices are lower up to 10% compared to the AR devices 

within the 550 nm to 700 nm wavelength range, despite the fact that the absorption was found 

to be higher at the same range for the DR active layer film. The obtained Jsc values by 

integrating the EQE spectrum convoluted with a standard AM 1.5G spectrum are 13.7 mA cm-

2 and 11.8 mA cm-2 for the AR and DR devices respectively, which is consistent with Jsc obtained 

experimentally. The lower EQE values suggest that lower charge separation and/or collection 

in the DR type devices.6 
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6.3.4. Surface Morphology Studies 

The surface morphology of the DR and AR devices were evaluated with atomic force 

microscopy (AFM) technique. The AFM topographic and corresponding image phases of the 

sample are represented in Figure 6.5. It is clear from AFM images that there are no large-scale 

topographic features (such as aggregation of either the donor or the acceptor) presents in both 

AR and DR films but randomly oriented fibrillar-like structures. A root-mean-square (RMS) 

surface roughness of 1.73 nm (average of four measurements) was obtained for DR films, 

whereas AR films show smoother surface roughness (RMS of 0.84 nm) and smaller grain sizes. 

 

Figure 6.5. Tapping mode AFM topography (left) and corresponding phase images (right) of p-

DTS(FBTTh2)2:PC70BM film fabricated with (a) 1.5 : 1 weight ratio of donor : acceptor (top) (b) 1 : 1.5 weight 

ratio of donor : acceptor (bottom), respectively. 



 

200 

  

The AFM surface topography suggests that both domain size and surface roughness has 

been changed upon increasing the content of the PC70BM in AR film. Both properties could 

indicate changes at the top of the active layer. The extraction barrier in the DR devices would 

be reasonably expected if a thin donor-rich layer formed at the top of the active layer due to for 

example the solubility differences between the donor and acceptor materials.  

It is shown that DIO controls the crystallinity of the small molecule bulk heterojunction 

film and higher domain size and fibrillar structures together with rougher surface were reported 

with higher concentration of the solution additive.10 As such, the reduction of the surface 

roughness in AR film may imply the reduction of crystallinity. Given that the DIO content of 

the both DR an AR active solution is identical, the lowering content of small molecule donor 

in AR film may be accounted for the reduction of the crystallinity and subsequent surface 

roughness. 
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6.3.5. Charge Carrier Generation and Collection  

To understand the impact of the extraction/injection barrier on the performance of the 

solar cell devices, photocurrent (Jph) of both donor-rich and acceptor-rich devices was inspected 

as a function of the effective voltage (Vint). The photocurrent, Jph = JL - JD, is defined as a 

current density measured upon illumination subtracted from the current density measured in the 

dark (JD). The effective voltage, Vint = VBI - Vapp, is voltage difference between the applied 

voltage (Vapp) and the voltage at which the photocurrent is zero (VBI).13,34,35 Noteworthy that the 

effective voltage determines the strength of internal electric field within the device, indicating 

driving force for the extraction of charge carriers. In Figure 6.6a, the photocurrent of the DR 

device and AR device are shown as a function of the effective voltage. The Jph of AR device 

increases proportionally and in a linear fashion at the low effective voltage (VBI - Vapp < 0.2 V) 

and reaches a saturation regime at higher effective voltage (Vint < 0.3 V). In the DR device, the 

photocurrent does not follow a linear trend at low Vint and saturation regime occurs at nearly 

0.6 V. This indicated that the internal electric field within the DR device is reduced by the 

presence of the barrier.        

The internal electric field is small at the low effective voltage and therefore gives rise to 

a competition between drift and diffusion of photo-generated carriers towards contacts. At high 

effective voltage, On the other hand, the internal electric field is strong enough to sweep out all 

charge carriers and the photocurrent is independent of the voltage, tending to saturate. Hence, 

the photocurrent at the saturation regime is limited only by the number of absorbed photons and 

can be expressed as below:13,34,35  

Jph,sat = edGmax  (6-1) 

where e is elementary charge, d stands for thickness, and Gmax is maximum photo-induced 

charge carrier generation rate per unit volume. The Gmax value for the DR device was calculated 

as 7.811×1027 m-3 s-1 (Jph,sat  = 126.5 A m-2), whereas the Gmax value for the AR device was  
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Figure 6.6. (a) Photocurrent density and (b) Charge collection probability (Pc) as a function of effective voltage, 

of DR (red) and AR (black) solar cell devices. (c) Photocurrent overlay of DR device to AR device by subtracting 

- 0.32 V from effective voltage and adding 2.8 mA cm-2 to the photocurrent density. 

found to be 17% higher at 9.47×1027 m-3 s-1 (Jph,sat  = 151.7 A m-2). This indicates that generation 

of charge carriers in the DR device is reduced, albeit higher concentration of p-DTS(FBTTh2)2. 

This is probably due to low charge carrier generation yield in the thin donor-rich layer. As such, 

the 20% lower Jsc in the donor-rich devices can be attributed to the lower charge carrier 

generation.  

Figure 6.6b shows charge collection probability (Pc) of the solar cell devices with respect 

to the effective voltage. The photocurrent of a solar cell can be written as 13,34,35 

Jph = edGmaxPc  (6-2) 
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considering the equations (6-1) and (6-2), charge collection probability can be calculated by 

dividing Jph on Jph,sat (Pc = Jph/Jph,sat). Higher values of Pc are calculated for the AR device across 

the entire range of applied voltage. At short circuit conditions (high internal voltage), the 

difference in Pc is small (0.96 vs. 90). However, at a lower effective voltage close to open circuit 

potential (≅ Vint - 0.1 V), the Pc values are one order of magnitude higher in the AR devices. 

This suggests that charge carrier extraction is limited in the DR devices due to the lower internal 

electric field. The internal electric field is reduced due to the presence of the extraction barrier. 

To estimate the size of extraction barrier, the Jph versus Vint of the donor-rich devices was 

replotted to match the acceptor-rich device curve. To achieve a reasonably good overlay of the 

two solar cells curves, the photocurrent was adjusted by adding 2.8 mA cm-2 and the Vint was 

shifted 0.32 V (Figure 6.6c). The added value to the measured photocurrent was consistent with 

the difference in Jsc and the EQE results and stem from less charge carrier generation in the DR 

devices as explained above. Given that the calculated Vint is higher in the DR devices by 

approximately 0.2 V (The VBI was 0.8 and 1 V for AR and DR device, respectively), the 

additional barrier in the DR device is approximately 0.1 V. 
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6.3.5. Equivalent Circuit Model 

It is shown in the literature that a typical organic solar cell can be represented by an 

equivalent circuit comprised of a photocurrent source (Jph), diode, series resistance, (Rs) and 

shunt resistance (Rsh).36,37 The photocurrent source is the characteristics of the photo-generated 

current by the solar cell via converting of absorbed photons to free charge carriers. The diode 

represents the recombination of charge carrier within the devices. The series resistance accounts 

for the resistance of the bulk and the electrode to flow of the electric current, and leakage current 

(through pinholes or at the edge of devices) is modeled by the shunt resistance.36,37  

Having said that, however, the devices with S-shaped current density-voltage do not seem 

to be represented fully by the simple one-diode model and addition of another diode would be 

necessary for the description of the S-curve phenomenon. As discussed earlier, the S-shape of 

the current density-voltage curves is due to an extraction barrier originating from a thin donor-

rich layer on top of the active layer. Electrically, such a barrier would manifest the second diode 

in series to the bulk heterojunction diode, as illustrated in Figure 6.7. Under steady state 

conditions, a similar amount of current flows through both diodes. But, depending on the 

resistance, the voltage drop is divided between the two diodes. Given the current density-

voltage curve in Figure 6.4a, the second diode (D2, donor-rich layer), 1) the second diode opens 

at higher applied voltage (0.5 V) compared to the first diode (D1, bulk heterojunction), and   

 

Figure 6.7. (a) Equivalent circuit, (b) energy diagram, (c) schematic presentation of the DR devices in the presence 

of a thin donor-rich layer. 
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2) the second diode generates marginal photocurrent compared to the bulk heterojunction diode 

under illumination. This marginal, albeit non-zero photocurrent of the second diode, is likely 

the reason for the slightly increased Voc and VBI in the current density-voltage curves of S-

shaped donor-rich devices. Therefore, due to the additional voltage expended to facilitate 

charge extraction through the second diode is reduced, the charge carrier collection efficiency 

near the open circuit conditions is diminished, manifesting in a low fill factor and S-shaped 

current density-voltage curves. Tada reports the S-shaped current-voltage curves for devices 

fabricated from PTB7-Th/C70 composite using halogen-free solvent.38 An opposed two-diode 

equivalent circuit model was used to analyze the current-voltage curve. The diodes were 

accounted for normal characteristics of the photocell and a parasitic part responsible for the S-

curve. It was shown that the best fitting results were achieved when the parasitic part was 

assumed light-insensitive.  
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6.3.6. Charge Carrier Recombination at Steady State Conditions 

Recombination order of charge carrier at steady state condition can be determined using 

the light-intensity dependency current density-voltage technique, as described in section 2.3.3. 

The donor-rich and acceptor-rich devices were subjected to various incident light intensities 

ranging from 100 mW cm-2 to 1 mW cm-2 and their current density-voltage responses were 

recorded. Figure 6.8a shows short circuit current of the devices as a function of the incident 

light intensities. It is widely accepted that charge carriers are collected effectively at the 

electrodes at short circuit conditions due to the strong built-in electric field. Hence a power 

dependency is often observed between light intensity and short circuit current (Jsc ∝ Iα) where 

α is close to unity when the first-order recombination is dominant.13,34,35 The α values for donor-

rich and acceptor rich devices are 0.78555 and 0.77473, respectively. This indicates that other 

factors contribute to the annihilation of charge carriers at short circuit condition such as 

bimolecular recombination,34,39 space charge effect and charge carrier mobility imbalance.34 

The measured mobility of the DR and AR devices are quite similar (discussed in section 6.3.9). 

Thus, deviation of α from unity can be correlated to the bimolecular recombination of charge 

carriers. Moreover, analysis of the light intensity dependence of 4 DR and 5 AR devices shows 

slightly lower α values for the DR devices (Table 6.6.1 and Table 6.6.2, Appendix). This may 

be an indication of slightly higher bimolecular recombination of charge carrier at short circuit 

condition in the DR devices. However, it is reported that loss of current due to bimolecular 

recombination at short-circuit conditions is very small (2%-17% depending on the system and 

preparation procedure), given the fact that the concentration of charge carrier is low.40,41 Hence, 

bimolecular recombination cannot be accounted for the lower short-circuit current in the donor-

rich devices and the difference in Jsc between the devices is mainly due to the difference in the 

charge carrier generation, as discussed in section 6.3.5.  
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Figure 6.8. Measured (a) short circuit current, and (b) open circuit potential as a function of incident light intensity 

(100 to 1 mW cm-2) for donor-rich (red) and acceptor-rich (black) solar cell devices.  
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At open circuit condition, the net extraction of charge carrier is zero J = 0, therefore all 

charge carriers must recombine. As such, the concentration of charge carriers is high and 

higher-order recombination is expected. Of particular interest is bimolecular recombination 

which has been shown depends only on temperature and light intensity (section 2.3.3) at open 

circuit. For pure bimolecular recombination, the predicted slope of the Voc versus the natural 

logarithm of the light intensity is kT/e.13,34,35 In Figure 6.8b, the Voc of the DR and AR devices 

as a function of light intensity are depicted. The slope for both devices is similar and close to 

kT/e, implying that bimolecular recombination is dominant at the open circuit conditions. 

Further studying of 4 DR devices and 5 AR devices shows that the donor-rich devices have a 

slightly smaller slope than kT/e (0.98125), whereas the acceptor-rich devices possess slightly 

higher slope than kT/e (1.142).  The higher measured value than kT/e in AR devices shows the 

stronger dependence of the open circuit on the light intensity. This can be attributed to SRH 

recombination of the charge carriers due to the presence of the interfacial traps between the 

cathode electrode (aluminum) and the bulk heterojunction.35 Nevertheless, there is a marginal 

difference between slopes of the devices and one can conclude that the interface in donor-rich 

devices and acceptor-rich devices acts quite similar. As such, the S-shaped current density-

voltage curve is not brought about morphological defection (due to penetration of aluminum to 

the active layer) or charge trapping at the interface.      
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6.3.7. Recombination Dynamics under Transient Conditions 

Charge carrier density decay of the solar cell devices composed of AR and DR active 

layer measured by the TRCE techniques are presented in Figure 6.9a. Initially, the acceptor-

rich devices have higher charge density. These results are similar to those obtained from 

photocurrent versus voltage studies. At the longer time scales, however, the AR devices 

declines faster compared to the DR devices.   

Figure 6.9b compares photovoltage decay of the AR and DR devices. Initially, both 

devices show a similar photovoltage of around 0.76 V, which is close to the open circuit 

potential of the devices measured under steady-state conditions (1 sun illumination). The 

photovoltage decay of the DR devices features two distinguished regimes (<1 µs and > 1µs), 

while the photovoltage of the AR devices decays monotonously over time. This difference 

shows a faster photovoltage decay of the donor-rich devices in the in the 10-6 to 10-4 s time 

region, likely indicating an existence of a faster (transient) component of recombination near 

one of the contacts (the aluminum contact based on aforementioned discussion). Faster 

recombination in a donor-rich layer is feasible if electrons are localized in a scarce acceptor 

phase.  

The measured photovoltage decay for each solar cell devices depends on the charge 

density and the energetics (density of states (DOS)) of charge transport sites near the contacts. 

Plotting charge carrier density of the devices versus photovoltage (Figure 6.10a), both obtained 

from transient measurement, suggests no major differences between the energy level of the AR 

and DR devices, i.e. the same charge density leads to similar open circuit potential in the 

devices. This suggests that the difference in the photovoltage decay between acceptor-rich and 

donor-rich devices is related to the dynamics of the charge carrier density at the electrodes. 
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Figure 6.9. (a) Charge carrier density decay and (b) Photovoltage decay over time of acceptor-rich (black and red) 

and donor-rich (green and blue) solar cell devices. 
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Figure 6.10. (a) Charge carrier density and (b) charge carrier lifetime versus open circuit potential of acceptor-

rich (black and red) and donor-rich (green and blue) solar cell devices. 

The bimolecular recombination lifetime of the devices was calculated and plotted against 

the photovoltage (Figure 6.10b). A longer charge carrier lifetime is observed for the AR derive 

in the 1 µs to 10 µs (corresponding to 0.7 to 0.6 V in Figure 6b) time window. This explains the 

larger photovoltage for the AR devices.  
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6.3.8. Charge Carrier Mobility  

Photo-induced charge extraction using linearly increasing voltage (photo-CELIV) is used 

to measure charge carrier mobility of donor-rich and acceptor-rich devices. In this technique, 

the charge carriers are extracted by a linearly increasing voltage pulse (A = ∆�/∆c) after an 

adjustable dealy time between photogeneration and extractions. The photo-CELIV curves of 

the devices are shown in the Figure 6.11. It is immediately clear that the photo-CELIV curves 

shows only one extraction peak, implying that charge carrier mobile is fairly balanced within 

the active layer and both charge carriers (electrons and holes) possess similar mobility within 

experimental error. The calculated mobility for the DR an AR device are shown in Table 6.4. 

The calculated mobility values for both devices are quite similar with slightly higher value for 

the donor-rich devices. Therefore, it can be concluded that asymmetry between the mobility of 

the holes and electrons is not the main reason for the appearance of the S-shaped current 

density-voltage curve in the DR devices. It must be noted that the photo-CELIV technique relies 

upon the extraction of charge carriers after an adjustable delay time. The fact that a difference 

in charge carrier mobility between DR and AR devices was not observed, does not preclude the 

presence of the thin donor-rich layer with diminished electron mobility on the surface of the 

active layer. Given the experimental condition and smallness of the photo-generation in the thin 

donor-rich layer, transience charge extracting from this layer would not be visible. Under steady 

state condition, on the other hand, electrons must be transported through this layer limiting the 

total current through the devices. 

Table 6.4. Calculated values of the charge carrier mobility, electron (hole) density, and charge carrier sweep-out 

time for DR and AR devices. 

Devices Mobility (cm2 V-1 s-1) nsc (cm-3) τs (s) 

Donor-rich 4.19 × 10-5 9.46 × 1015 1.193 × 10-6 

Acceptor-rich 3.25 × 10-5 1.82 × 1016 1.923 × 10-6 
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Figure 6.11. The photo-CELIV curves of and DR (top) and AR (bottom) solar cell devices measured. The laser 

energy was set to 10 µj. The delay time between extraction and photoexcitation was 2 µs. The applied voltage was 

2 V coupled with 50000 Hz rising time. The dark CELIV traces are also shown. 
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Tremolet de Villers et al.14 report S-shaped current-voltage curve in a P3HT:PCBM solar 

cell results in the appearance of two peaks in photo-CELIV curves correlated to an imbalance 

between the mobility of electrons and holes. The authors claim that vertical phase segregation 

during spin coating drives PCBM component toward the bottom electrode (ITO), causing a 

P3HT-rich surface in contact with cathode electrode. It was shown that adding a layer of the 

PCBM on top of the active layer resolves the s-curve phenomenon and the asymmetry mobility 

between the charge carriers. However, Huh et al.26 show the imbalanced mobility cannot be 

solely accounted for the appearance of the S-curve and two other conditions are required to 

meet, i.e. accumulation of charge carriers at the electrodes and strong Langevin bimolecular 

recombination. The imbalance of the mobility between the electron and hole is not observed in 

the data presented here.  

 Having calculated mobilities, two electrical characteristics of the AR and DR devices are 

estimated, i.e. electron (hole) density (τs) and charge carrier sweep-out time (nsc) at short circuit 

conditions, using equation (6-3) and (6-4) respectively:34  

Jph,sat = edGmax = 2ensc µ
-��u

K
 (6-3) 

τs = 
K@

Uµ-��
  (6-4) 

where µ  is the mobility of charge carriers. The calculated values for both nsc and τs are shown 

in Table 6.4. Although both devices possess quite similar sweep-out time, the acceptor-rich 

device has a higher electron (hole) density at the short circuit conditions. This indicates that the 

difference between acceptor-rich and donor-rich devices at short circuit conditions comes from 

the generation of charge carriers, otherwise, the internal electric field in both devices is strong 

enough to suppress any barrier and extract all charge carriers into the respective electrodes.  
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6.4. CONCLUSION 

In this chapter, the appearance of the S-shaped current density-voltage curve in BHJ solar 

cells based on DTS(FBBTh2)2:PC70BM has been investigated. The formation of a thin donor-

rich layer on top of bulk heterojunction is proposed as the origin. The lower electron 

conductivity near the electron extracting electrode leads to an additional barrier of 0.1 V. As a 

result, the collection of electrons is hampered, giving rise to a low fill factor and consequently 

lower power conversion efficiency. It is determined that the key to the recovery of normal 

device behavior is to increase the PCBM content of the bulk heterojunction. The recombination 

dynamics of charge carrier in both S-shaped and normal devices are studied using both steady 

state and transient techniques. While the recombination dynamics for both devices are quite 

similar under steady state condition, transient technique results show that in the S-curve devices 

charge carriers recombine slightly faster.   

 

6.5. FUTURE WORK 

While the presented results in this chapter are consistent, it would be advantageous to 

directly determine the lateral morphology including the chemical compositions of the bulk 

heterojunction, e.g. by using secondary ion mass spectrometry,42 or x-ray reflectivity 

measurements.43 This may be lead to deeper understanding of the S-curve physical origin.   
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6.6. APPENDIX 

 

Figure 6.6.1 Current density-voltage curves of p-DTS(FBTTh2)2:PC70BM BHJ solar cell devices fabricated with 

1:1 (top) and 1:2 (bottom) donor/acceptor ratio.  
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Table 6.6.1. Photovoltaic parameters of 5 donor-rich devices and analysis of light intensity dependency of their 

short circuit current and open circuit potential  

ID Voc Jsc FF PCE Jsc 

slope 

R-

square 

Voc 

slope(kT/q) 

R-square 

DR 1 0.7888 10.101 42 3.35 0.74418 0.97481 0.97 0.99172 

DR 2 0.7852 11.989 41.1 3.87 0.77473 0.98084 1.03 0.98955 

DR 3 0.7895 10.203 40.2 3.24 0.76028 0.98189 0.95 0.988 

DR 4 0.7881 12.197 39.4 3.78 0.78169 0.98456 0.975 0.98868 

Average 0.7879 

± 

0.002 

11.1225 

± 1.12 

40.675 

± 1.12 

3.56 

± 

0.3 

0.76522 

± 0.016 

0.980525 

± 0.004 

0.98125 ± 

0.03 

0.9894875 

± 0.002 

 
 
Table 6.6.2. Photovoltaic parameters of 4 acceptor rich devices and analysis of light intensity dependency of their 

short circuit current and open circuit potential  

ID Voc Jsc FF PCE Jsc Slope R-

Square 

Voc 

slope(kT/q) 

R-

Square 

AR 1 0.7306 13.702 47.1 4.72 0.78957 0.9859 1.14 0.9332 

AR 2 0.7662 13.454 50.2 5.17 0.78555 0.98717 1.11 0.99185 

AR 3 0.7441 13.653 54.1 5.50 0.794 0.98264 1.18 0.98465 

AR 4 0.7531 13.225 54.3 5.41 0.7939 0.98344 1.14 0.99 

AR5 0.7603 13.613 51.5 5.33 0.7904 0.98 1.14 0.98503 

Average 0.75086 

± 0.014 

13.5294 

± 0.19 

51.44 

± 3 

5.226 

± 0.3 

0.790684 

± 0.0035 

0.98383 

± 0.003 

1.142 ± 

0.025 

0.976946 

± 0.025 

R-square is the coefficient of determination and shows how close data are to the plotted line. 
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7.1. SUMMARY 

Investigations into three key issues influencing the photovoltaic performance of the 

organic solar cells were carried out. Firstly, the interface between bulk heterojunction and the 

cathode electrode was modified by PFN electron transport layer and charge carrier dynamics 

of devices as a function of PFN film were probed. Followed by, an exploratory based concept 

to enhance dielectric constant of the bulk heterojunction. Finally, the performance of solution-

processed small molecule bulk heterojunction was investigated with regard to the appearance 

of the S-shaped current density-voltage curve, in order to study the impact of the phenomenon 

on the charge carrier generation, collection, mobility, and recombination.  

 

7.2. PFN ELECTRON TRANSPORT LAYER 

At this point, it is helpful to revisit the hypotheses presented in Chapter 1. The first 

hypothesis stated that PFN can affect the charge carrier dynamics and therefore increase the 

power conversion efficiency of bulk heterojunction solar cells. In order to examine this 

hypothesis, the interface between Poly[N-9՜-heptadecanyl-2,7-carbazole-alt-5,5-(4՜,7՜-di-2-

thienyl-2՜,1՜,3՜-benzothiadiazole)] (PCDTBT)-based bulk heterojunction and the cathode 

electrode (aluminum) were modified with a wide range of PFN interlayer films. The films were 

made from solutions with concentration ranging from 0.5 to 0.2 mg/ml spin cast at 1000 to 8000 

rpm. Photovoltaic characteristics of devices were then examined as a function of the PFN film 

thicknesses. It was observed that PFN layer induced no significant enhancement in open-circuit 

potential, short-circuit current, fill factor and therefore PCE of the solar cell devices. This 

finding was contrary to what has been reported in the literature. This was further confirmed 

with almost comparable external quantum efficiency, charge carrier generation and collection 

with regard to reference devices. It was proposed that either the interface is almost ideal, which 

cannot be further improved/modified by the PFN film or the PFN interlayer may have been 
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destroyed during thermal evaporation of cathode electrode. A further investigation of the 

devices by several techniques including light intensity dependency, photovoltage decay (PVD) 

and time-resolved charge extraction (TRCE) allowed evaluating the effect of the PFN film on 

the recombination of charge carriers. It was determined that introduction of PFN interlayer 

could not have a substantial influence on the recombination dynamics of charge carriers. 

Moreover, a relatively faster recombination was observed in the PFN-based devices. It was 

surmised that the PFN interlayer on top of the active layer may act as trap states, enhancing 

trap-assisted recombination. Comparable charge carrier mobility in the absence and presence 

of the PFN film revealed that transportation of charge carriers was not also affected. These 

results led to conclude that under circumstances explored the hypothesis was inconclusive and 

further investigation is warranted. 

 

7.3. DIELECTRIC CONSTANT  

 The second hypothesis investigated the incorporation of materials with dielectric 

constant higher than air to occupy free volume within the active layer to enhance dielectric 

constant and consequently increase the efficiency of the bulk heterojunction solar cells. This 

hypothesis was based on the Clausius-Mossotti relationship which determines polarization and 

free volume as key parameters influencing the dielectric constant in polymeric materials. It was 

assumed that the free volume content (air or other low dielectric constant gases) within the bulk 

heterojunction could be replaced with a higher dielectric material. Hence, poly[(9,9-bis(3՜-

(N,N-dimethylamino)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene] (PFN) (dielectric 

constant = 2.16) and rhodamine 101 (dielectric constant = 4.73) were directly incorporated into 

the bulk heterojunction. The bulk was composed of either Poly[N-9՜-heptadecanyl-2,7-

carbazole-alt-5,5-(4՜,7՜-di-2-thienyl-2՜,1՜,3՜-benzothiadiazole)] (PCDTBT) (conjugated 

polymer) or 7,7՜-[4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b՜]dithiophene-2,6-diyl]bis[6-
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fluoro-4-(5՜-hexyl-[2,2՜-bithiophen]-5-yl)benzo[c][1,2,5] thiadiazole] (p-DTS(FBBTh2)2) 

(small molecule) as donor and 1-[3-(Methoxycarbonyl)propyl]-1-phenyl-[6.6]C60 (PC60BM) as 

acceptor. In this study changes in dielectric constant taken via this approach were found to be 

minimum in the polymer-based bulk heterojunctions. In addition, the photovoltaic performance 

of the solar cells was noted to be degraded. The generation and collection of charge carriers 

were reduced especially at low effective voltage (around open-circuit conditions) when the 

content of both PFN and rhodamine 101 was increased in the bulk heterojunction. This was 

mostly due to increasing of charge carrier recombination as consequences of the incorporation 

of the materials. However, bimolecular recombination lifetime derived from TRCE results and 

mobility of charge carriers measured by photo-CELIV technique showed insignificant changes 

before and after the introduction of materials. Similar impacts were observed for the small 

molecule based-bulk heterojunction when PFN and rhodamine 101 were added. The bulk 

heterojunctions were also treated with isopropyl alcohol (dielectric constant = 17.9). While 

dielectric constant of polymer-based BHJ increased slightly, it remained almost unchanged in 

SM based-BHJ. Moreover, the open-circuit potential, short-circuit current, fill factor, and PCE 

of devices were almost similar before and after treatment with IPA. While absorption of the 

PCDTBT-based film was decreased following IPA treatment, IPA-treated SM-based film 

absorption was quite similar to pristine film. Both charge carrier generation and collection were 

not influenced upon treatment with isopropyl alcohol. Charge carrier dynamics of the solar cell 

devices including bimolecular recombination lifetime, bimolecular recombination coefficient 

and mobility were not substantially affected following IPA treatment in both polymer and SM-

based devices. These results imply that the adopted method derived from the Clausius-Mossotti 

relationship did not significantly enhance the dielectric constant and therefore the efficiency of 

the bulk heterojunction solar cells. 
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7.4. S-SHAPED CURRENT DENSITY-VOLTAGE CURVE IN SM BHJ   

The third hypothesis was to evaluate whether the idea that the alteration of the donor and 

acceptor ratio may resolve the S-shaped current density-voltage curve in solution-processed 

small molecule bulk heterojunction solar cells. To determine the origin of the S-curve 

phenomenon, the interface between the bulk and the cathode electrode was initially evaluated. 

Two electron transport layers (ETLs), i.e., ZnO and TiOx, were employed to modify the 

interface. The devices modified with ETLs demonstrated current density-voltage associated 

with S-curve characteristics. This revealed that the bulk heterojunction was responsible for the 

deformed current density-voltage curve. The characteristics of the bulk heterojunction and 

consequently devices performance was also investigated as a function of 1,8-diiodooctane 

(DIO) concentration. It was noted that regardless of DIO concentration, the device exhibited 

low power conversion efficiency due to S-shaped characteristics. Eventually, a normal diode-

like curve was retrieved when the PCBM content of the small molecule bulk heterojunction 

(SM BHJ) was increased. A further investigation of normal and S-curve devices was carried 

out using several steady state and transient techniques. Although UV-Vis absorption profile 

was higher in S-curve devices, external quantum efficiency (EQE) curves showed around 10% 

decrease within the wavelength range of 550-700 nm when compared to the normal diode-like 

curve device. This was consistent with lower short-circuit current (20% reduction) and it was 

pointed out that generation/collection of charge carriers were likely hindered in S-curve 

devices. Investigation of photocurrent and charge collection probability as a function of 

effective voltage confirmed the reduction of charge carrier generation/collection particularly 

around open-circuit voltage (low effective voltage). The atomic force microscopy (AFM) study 

of the bulk film revealed that S-curve devices’ bulk film was rougher with bigger grain size 

compared to normal device bulk. These results coupled with a 0.5 V shift of forward injection 

to higher potentials led to correlation between the appearance of the S-curve and an energy 
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barrier stemming from the formation of a small molecule rich thin film on top of the active 

layer. The energy barrier value was estimated to be around 0.1 V. An equivalent circuit was 

presented to model the S-curve device using an additional diode to account for the energy 

barrier. The light-intensity dependency measurement of the devices revealed that there was a 

slight difference regarding recombination of charge carriers at short-circuit and open-circuit 

conditions between the S-curve and normal curve devices. However, faster charge carrier 

recombination in S-curve devices was detected by the photovoltage decay and time-resolved 

charge extraction techniques. Given the fact that both normal and S-curve devices possessed 

comparable photovoltages (showing similar energy levels in both devices), the faster 

recombination was attributed to the dynamics of the charge carriers near the electrodes. 

Furthermore, charge carrier mobility of the devices was measured using the photo-CELIV 

technique and appeared to be in the same range. This indicated that mobility imbalance between 

hole and electron and the subsequent space charge effect cannot be the reason for the 

appearance of the S-shaped current density-voltage curve. Here, a new approach based on the 

alteration of donor an acceptor ratio was evaluated to resolve the S-shaped current density-

voltage curve in solution processed SM BHJ solar cells. From this, it was apparent that the 

approach could be used to revive the normal behavior of the current density-voltage curve and 

significantly alleviate the energy barrier hindering generation and collection of charge carriers 

within the bulk heterojunction.  

 

7.5. CONCLUSION    

  The work in this thesis represents a novel piece of work in relation to bulk heterojunction 

solar cells. It investigated the potential of novel exploratory approaches to enhance the dielectric 

constant of the bulk heterojunction. This involved an extensive study regarding the use of PFN 

as an electron transport layer and its impact on the charge carrier dynamics of the solar cells. It 
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proposed a novel, yet simple method to mitigate S-curve phenomenon and revive a normal 

current density-voltage curve. These investigations gave rise to interesting results and provided 

new avenues for further research and development.       
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