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Repeated cyclone events reveal potential causes of sociality in coral-
dwelling Gobiodon fishes

Abstract
Social organization is a key factor influencing a species' foraging and reproduction, which may ultimately
affect their survival and ability to recover from catastrophic disturbance. Severe weather events such as
cyclones can have devastating impacts to the physical structure of coral reefs and on the abundance and
distribution of its faunal communities. Despite the importance of social organization to a species' survival,
relatively little is known about how major disturbances such as tropical cyclones may affect social structures or
how different social strategies affect a species' ability to cope with disturbance. We sampled group sizes and
coral sizes of group-forming and pair-forming species of the Gobiid genus Gobiodon at Lizard Island, Great
Barrier Reef, Australia, before and after two successive category 4 tropical cyclones. Group sizes of group-
forming species decreased after each cyclone, but showed signs of recovery four months after the first cyclone.
A similar increase in group sizes was not evident in group-forming species after the second cyclone. There was
no change in mean pair-forming group size after either cyclone. Coral sizes inhabited by both group- and pair-
forming species decreased throughout the study, meaning that group-forming species were forced to occupy
smaller corals on average than before cyclone activity. This may reduce their capacity to maintain larger group
sizes through multiple processes. We discuss these patterns in light of two non-exclusive hypotheses regarding
the drivers of sociality in Gobiodon, suggesting that benefits of philopatry with regards to habitat quality may
underpin the formation of social groups in this genus.
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Abstract

Social organization is a key factor influencing a species’ foraging and reproduction, which

may ultimately affect their survival and ability to recover from catastrophic disturbance.

Severe weather events such as cyclones can have devastating impacts to the physical

structure of coral reefs and on the abundance and distribution of its faunal communities.

Despite the importance of social organization to a species’ survival, relatively little is known

about how major disturbances such as tropical cyclones may affect social structures or how

different social strategies affect a species’ ability to cope with disturbance. We sampled

group sizes and coral sizes of group-forming and pair-forming species of the Gobiid genus

Gobiodon at Lizard Island, Great Barrier Reef, Australia, before and after two successive

category 4 tropical cyclones. Group sizes of group-forming species decreased after each

cyclone, but showed signs of recovery four months after the first cyclone. A similar increase

in group sizes was not evident in group-forming species after the second cyclone. There

was no change in mean pair-forming group size after either cyclone. Coral sizes inhabited

by both group- and pair-forming species decreased throughout the study, meaning that

group-forming species were forced to occupy smaller corals on average than before cyclone

activity. This may reduce their capacity to maintain larger group sizes through multiple pro-

cesses. We discuss these patterns in light of two non-exclusive hypotheses regarding the

drivers of sociality in Gobiodon, suggesting that benefits of philopatry with regards to habitat

quality may underpin the formation of social groups in this genus.

Introduction

Social organization is an important determinant of a species’ survival [1], foraging efficiency

[2] and ability to reproduce successfully [3], factors which ultimately affect their potential to

recover from disturbances. Social structures may be as simple as monogamous pairing or as

complex as a eusocial colony with division of labour and non-reproductive castes. Social
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organization may be influenced by broad ecological [4] or life-history factors [5], within-

group social interactions [6] or genetic relatedness [7] and even individual variation in physi-

ology [8], neurophysiology and genetics [9]. Each social structure provides benefits to its con-

stituents, but often at a cost to their reproduction or access to some other resource [10–12].

That is to say, there are trade-offs associated with different social structures that individuals

must consider.

Group living is thought to have evolved in many lineages as a response to genetic (kinship)

and environmental factors [10–12]. With respect to environmental factors, many hypotheses

point toward variability in ecological factors as influencing the evolution of sociality [4, 13].

Hypotheses such as the benefits of philopatry [14–16] and ecological constraints models [4,

16–19] examine the idea that ecological factors, such as habitat quality (e.g. habitat size,

resource availability, defence) or the availability of suitable breeding territory (respectively),

influence the decision of subordinates to either disperse from their habitat or remain within a

group.

These two hypotheses are often viewed as two sides of the same coin as they both look at

aspects of ecology to explain social evolution and maintenance [20]. The benefits of philopatry

hypothesis focuses on the benefits conferred from residing in a high-quality habitat (e.g. inher-

itance of breeding status [21], increased fitness [22]). High-quality habitat is typically colo-

nized rapidly [13]. An individual living on low-quality habitat may therefore increase its

fitness by moving to a high-quality habitat as a subordinate [13]. However, this benefit must

be traded off against the associated costs (e.g. delayed reproduction, risk of movement). In

contrast, the ecological constraints hypothesis concentrates on factors of ecology that may

restrict subordinate individuals already residing in a group from dispersing (e.g. habitat satu-

ration [23], predation risk [24]). These two hypotheses are not mutually exclusive and often

operate alongside other effects (e.g. kinship, life-history). However, the question of which com-

bination of effects best describes social group formation and maintenance is still of interest as

each one emphasizes different costs and benefits [25].

While these hypotheses have been well studied in terrestrial organisms, they have only

recently been tested in marine environments [20, 26–28]. Of the marine taxa tested so far, hab-

itat-specialist coral-reef fishes are emerging as a useful model species to study theories of social

evolution and maintenance [20, 27, 28] and have shown similar responses to habitat manipula-

tion as terrestrial species (e.g. [23]). Many social fishes have a pelagic larval phase which sug-

gests low levels of kinship within groups, reducing the potential confounding factor of

relatedness (e.g. [20, 29, 30] but see [31]). Given the apparent influence of ecological factors on

the formation and maintenance of social groups, we would expect that disturbances capable of

altering a species’ habitat, such as severe weather events, would have a strong impact on social

organization [23, 32].

Many species of coral-reef fishes, especially habitat-specialists, can be found in social groups

[33, 34–36]. The size of these social groups is often related directly or indirectly to the size of

the habitat in which they reside [36–39]. Complex social structures such as size-based domi-

nance hierarchies, in which the largest dominants breed and smaller subordinates are repro-

ductively suppressed, have been documented in these groups [23, 38]. Further, they are known

to exhibit sequential hermaphroditism or bi-directional sex-change [38, 40, 41]. In such sys-

tems, the loss of a breeding individual results in the next subordinate in the queue taking its

place [6]. This social organization may provide a level of redundancy which could help a social

species recover quickly following a major disturbance. For example, Rubenstein [42] argued

that cooperative breeding could be a bet hedging strategy in variable environments as it may

buffer variance in fecundity between years. Duffy and Macdonald [26] also found that eusoci-

ality conferred advantages to sponge-dwelling shrimps allowing them to occupy a greater
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number of host sponge species and more sponges overall than less social sister species. This

finding, combined with research on host specialization and extinction by Munday [43], could

imply that more social species face lower extinction risk following a disturbance because their

sociality allows them to monopolize a greater host range. However, Courchamp et al. [44]

found that obligate cooperative breeders were more at risk of group extinction because of their

reliance on subordinates to reproduce and survive. These studies show that while complex

social structures may provide advantages allowing species to survive a severe disturbance and

to re-colonize afterwards, they may also result in localized extinctions. Further research into

the effects of ecological disturbance on social organization and how varying social systems,

such as pair- or group-forming, are able to cope with disturbance are clearly required.

Extreme climatic events such as tropical cyclones are known to have devastating impacts on

the physical structure of coral reefs [45–48]. The effects on fish and invertebrate communities

which depend on the coral structure for food and shelter are likewise devastating [45, 49–51].

The destructive forces of cyclones can have a strong influence on the re-distribution of species

and their relative abundances following the event [52]. However, relatively little is known

about the impacts that cyclones may have on the social organization of coral-reef inhabitants

and whether social organization may mediate disturbance-induced population trends in spe-

cies with different social structures. Given the importance of social organization for factors

such as reproduction [3], foraging efficiency [2] and ultimately the ability to recover from a

major disturbance, it is plausible that destructive events such as tropical cyclones may have a

detectable effect on a species’ social organization.

We evaluated the effects of cyclones on the social organization of coral gobies of the genus

Gobiodon. These species are small (3–4 cm) microbenthic [36] habitat-specialist fishes that live

within the structures of branching and plate-forming acroporid and pocilloporid corals [53,

54]. These fishes are highly site attached once settled, but have been shown to move between

corals [41]. Gobiodon spp. display a wide variety of social phenotypes from pair-forming (PF)

species to group-forming (GF) species that typically live in groups ranging from 3 to 12 indi-

viduals [55]. Social groups usually consist of two breeding individuals and one or more non-

breeding subordinates which form a size-based hierarchy and queue for a breeding position.

However there is some evidence to support multiple breeding individuals in larger group sizes

for some species [55].

In this study, we investigated how extreme climatic events influence the social organization

of colonies of Gobiodon fishes and discuss how these effects may impact their survival. Opportu-

nistic investigations of such disturbances (extreme climatic events) are important for theory devel-

opment as they can test well developed theory under extreme conditions [56]. Specifically, we

examined the effects of two successive category 4 cyclones that impacted the Great Barrier Reef,

on the group size (social structure) and coral size (ecological factor) of GF and PF species of

Gobiodon. As habitat patch size is known to be related to mean group size in some species, smaller

corals should be less capable of supporting larger groups [55]. Therefore, we expected that physical

damage caused by the cyclones would result in smaller corals, and that as coral size decreased, so

too would mean group size of both GF and PF coral gobies. We also expected that advantages

conferred from sociality would help GF species to recover from these disturbances [26, 43].

Additionally, we used the occurrence of these cyclones as a ‘natural experiment’ to examine

the related effects of ecological constraints and benefits of philopatry on the formation of social

groups in the GF species. Munday [57] demonstrated that coexistence between two species of

Gobiodon occurred through a competitive lottery, meaning that whichever species colonized a

particular coral was able to hold that territory. Our own observations show that while coral

gobies do show distinct preferences for certain species of coral, they can and will colonize a

wide range of species. It is therefore likely that Gobiodon species will colonize any available
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habitat following a severe disturbance. If ecological constraints (lack of available habitat) were

responsible for the formation of social groups, we would expect coral vacancy to be very low as

gobies would preferentially colonize vacant habitat over residing as a subordinate in a group.

That is, subordinates should disperse to seek independent breeding opportunities if there is

suitable vacant habitat. In contrast, if benefits of philopatry were driving group living, we

would expect greater coral vacancy as the GF species would vacate lower-quality corals in

favor of taking up residence as a subordinate in higher-quality corals. While we do not fully

understand what constitutes high- or low quality habitat in these species, we consider coral

size to be a reasonable proxy of habitat quality as Kuwamura et al. [58] and Hobbs and Mun-

day [59] demonstrated that growth, survival and reproductive success increased in larger habi-

tats for other species of coral associated fishes.

Materials and methods

Ethics statement

This research was conducted under research permits issued by the Great Barrier Reef Marine

Park Authority (G13/36197.1 and G15/37533.1) and with the approval of the University of

Wollongong Animal Ethics Committee (AE14-04).

Study area and survey sites

The study took place at Lizard Island, Great Barrier Reef, Queensland, Australia (14˚ 40.729’ S,

145˚ 26.907’ E) (Fig 1) between 2014 and 2016. Twenty three sites were surveyed in total over

four survey times, eleven of which were located within the sheltered lagoon. The remaining

twelve sites were located on the fringing reefs around Lizard Island. As this study was designed

to examine how sociality of Gobiodon spp. varied over successive impacts at Lizard Island as a

whole, we did not assess variation in sociality at smaller spatial scales (e.g. sites). As such, sur-

vey sites were chosen to give reasonable coverage of the reefs at Lizard Island. Not all sites

were assessed during each survey time as several sites were scoured down to bare rock after

each cyclone. These sites were not surveyed as our interest was in the surviving goby colonies

(see S1 Data for the range of sites covered at each survey time). The number of sites visited

during each survey time was 15, 14, 11, 17 respectively. All measurements were made on scuba

at depths ranging from less than one meter to five meters.

Cyclone activity and sampling periods

Two cyclones impacted the study site in consecutive years. Cyclone Ita impacted Lizard Island

in April 2014 as a category 4 system and cyclone Nathan in March 2015, also as a category 4

system. Both cyclones caused substantial damage to the fringing and lagoonal reefs including

greatly reduced coral cover and associated changes in reef fish diversity and abundance [60–

63]. We conducted surveys on coral sizes and group sizes of 13 Gobiodon spp. during February

and March 2014 (1 month prior to cyclone Ita), August and September 2014 (4 months after

cyclone Ita), January and February 2015 (1 month prior to cyclone Nathan and 9 months after

cyclone Ita) and January and February 2016 (10 months after cyclone Nathan) (Fig 2). These

repeated surveys provided us with a broad overview of the effects that multiple disturbances

had on the social organization of coral gobies.

Survey methods

Two types of transects were deployed over the four surveys. For this study however, we did not

attempt to assess any spatial patterns between sites. Transects were only used as a guide to
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Fig 1. Map of the survey sites. Dotted light grey line is the outline of reef areas around Lizard Island. All study sites are indicated on

map (regular font), specific reefs in the Lizard Island lagoon are numbered: Big Vickey’s Reef (1); Vickey’s Reef (2); Horse Shoe Reef

(3); Palfrey Reef (4–4a); Loomis Reef (5); Trawler (6); Picnic Beach (7); Ghost Beach (8); Bird Island Reef (9); Entrance Bommie (10);

Bird Bommie (11); Lizard Head Reef (12).

https://doi.org/10.1371/journal.pone.0202407.g001

Repeated cyclone events reveal potential causes of sociality in coral-dwelling Gobiodon fishes

PLOS ONE | https://doi.org/10.1371/journal.pone.0202407 September 5, 2018 5 / 22

https://doi.org/10.1371/journal.pone.0202407.g001
https://doi.org/10.1371/journal.pone.0202407


locate corals. Haphazardly placed 30 m line transects were used to locate corals one meter

either side during the first and fourth survey times. Cross transects (two 4 m x 1 m belt tran-

sects laid in a cross, designed to measure the community around a focal colony) were used

during the first (Palfrey reef only; Fig 1, sites 4 and 4a), second, third and fourth survey times.

Line transects were placed roughly parallel to each other and separated by at least 10 m and

cross transects were placed at least 8 m (twice the length of the transect on either axis) from

each other to ensure that any given coral was not measured twice during the survey period. As

coral gobies show strong preferences for certain species of branching and plate forming

(mostly) Acroporid corals [35, 53, 64], only these species of corals were counted on the tran-

sects. In total, 23 species of coral were surveyed for goby occupancy (S1 Data). Each coral’s liv-

ing part was measured along three axes (length (L) width (W) and height (H)) and the simple

average diameter calculated as (L + W + H)/3. Simple average diameter was used in this study

(as opposed to geometric mean diameter (L x W x H)1/3) as it provides a better representation

of the major axis of the coral [58]. All goby supporting corals occurring on the transects were

measured and searched for gobies. The number of adult gobies living within each coral head

was counted by visual inspection using a torch. Adults could be easily distinguished from juve-

niles by their distinct coloration and markings. While the number of juveniles (if present) was

recorded for each coral, they were not included in the group size observations as juveniles had

been observed moving between multiple corals during each survey (Hing pers. obs.). Addition-

ally, juvenile abundance was extremely low during all surveys and there was no difference in

abundance for either PF or GF species during any survey time (S2 Fig). In contrast, adults dis-

played remarkable coral-host fidelity, even tolerating extreme hypoxia and severe coral bleach-

ing [65, 66].

The number of transects at each site varied depending on the size of the reef. The number

of transects conducted at each site also varied from year to year depending on the perceived

abundance of suitable corals for habitation, and ranged from 1 to 44 transects. In total, the

number of transects placed around Lizard Island during each survey time was 56, 141, 109 and

140 for the February 2014, August 2014, January 2015 and January 2016 surveys respectively.

The methods of measuring goby group sizes and coral sizes (described in detail below)

Fig 2. Timeline of data collection. Timeline shows year and month of data collection (fish, dashed black arrow) and cyclone activity (cyclone,

blue arrow). In total, data on group size, coral size and proportion of corals occupied were collected at 4 time points for 13 species of Gobiodon.

https://doi.org/10.1371/journal.pone.0202407.g002
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remained exactly the same regardless of the different number and size of transects that were

used throughout the study. There was a significant difference in coral size measured between

the two transect types, however this was most likely a site effect as line transects were used

extensively on the fringing reefs in January 2016, after both cyclones. Corals at these sites sus-

tained heavy damage and were therefore smaller on average. We therefore pooled the data

from both types of transect and included site as a random effect in the statistical models.

Sociality in Gobiodon
We documented 15 species of Gobiodon at Lizard Island during the present study (Table 1).

However, two species (sp. A and sp. D) were excluded from later analyses as they were uncom-

mon at the study site. The remaining species displayed a range of sociality ranging from soli-

tary individuals to pairs and groups reaching up to 21 individuals. From here on we will use

the term “group” to refer to any colony with a group size of three or more. We used a sociality

index formulated by Avilés and Harwood [67] to categorize each species as either GF or PF:

Sociality ¼
Ad
Aa

� �
þ

Ng
NgþNpþNi

� �
þ

In
IrþIn

� �

3
ð1Þ

Where Ad = age at dispersal, Aa = age when adulthood is reached, Ng = number of groups,

Np = number of pairs, Ni = number of solitary adults, Ir = number of reproducing adults and

In = number of non-reproducing (subordinate) adults. The three components in the numera-

tor of Eq 1 represent the proportion of a species’ life-cycle spent in a group, the proportion of

groups in the population and the proportion of subordinates in the population (respectively).

Using this equation, we calculated a sociality index for each Gobiodon spp., making some

necessary but biologically relevant assumptions. Once coral gobies settle onto a coral as juve-

niles, they are not known to move frequently unless forcefully evicted from the coral [6, 68].

Although we do not have a precise estimate of the age at settlement for each species, Brothers

et al. [69] estimated the larval life of three species of Gobiodon ranging from 22 to 41 days.

Table 1. List of Gobiodon spp. and sociality categorization.

Species Individuals Groups Sociality index Categorization

G. axillaris 15 9 0.33 Pair

G. brochus 70 35 0.36 Pair

G. ceramensis 36 20 0.36 Pair

G. erythrospilus 138 69 0.41 Pair

G. histrio 79 43 0.43 Pair

G. oculolineatus 59 30 0.39 Pair

G. okinawae 33 19 0.46 Pair

G. quinquestrigatus 114 59 0.38 Pair

G. acicularis 48 17 0.56 Group

G. citrinus 37 9 0.63 Group

G. fuscorubera 142 51 0.57 Group

G. rivulatus 145 45 0.65 Group

Unknown species 28 8 0.63 Group

Gobiodon spp. observed at Lizard Island with their social index. The number of individuals and groups of each species recorded during the February 2014 survey are

provided. Species were categorized as group-forming (below dotted line) if their social index was greater than 0.5. Otherwise they were categorized as pair-forming

(above dotted line).
a G. fuscoruber is synonymous with G. unicolor [76]

https://doi.org/10.1371/journal.pone.0202407.t001
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Given that Gobiodon spp. live in the order of years [29, 70], we assume that each species spends

the majority of its life-cycle in a single coral. We therefore set the maximum proportion of the

life-cycle spent in the group (
Ad
Aa

) as 1 for each species. While there may be natural variation in

this parameter, this assumption is biologically realistic and enables us to make relative compar-

isons between species primarily based on the remaining two factors in Eq 1. The last two com-

ponents of the index were calculated as per Eq 1.

Having calculated the sociality indices, species were categorized as GF if their sociality

index was greater than 0.5 and remaining species with sociality indices less than 0.5 were cate-

gorized as PF (Table 1). The index value of 0.5 was defined as the cut-off value between PF and

GF species because it lies directly in the middle of the observed index range where there was a

natural split in the data (S1 Fig). It should be noted however that “PF” species were sometimes

observed in groups (i.e. 3 or more individuals) and “GF” species were sometimes observed in

pairs or as singles. The terminology used here therefore indicates the tendency of particular

species to form either groups or pairs. Importantly, calculations of sociality indices and subse-

quent categorization was based on data from surveys obtained before any recent cyclone activ-

ity (February 2014). We acknowledge that these reefs have been subjected to Crown of Thorns

Starfish (COTS) outbreaks in the past. Our measure of sociality may therefore vary from soci-

ality recorded at other locations. Unfortunately, COTS outbreaks are a relatively frequent

occurrence on the Great Barrier Reef and we therefore consider our measure of sociality to be

representative of the ‘normal’ social organization of the species in question.

Group size

To assess the effect of cyclone activity on social organization, we used a generalized linear

mixed model with a zero-truncated negative binomial distribution to analyze the effects of

sociality and survey time and their interaction on the group size of coral gobies. The zero trun-

cated distribution was used as it does not allow predictions of group size less than one. A nega-

tive binomial distribution was used to account for over-dispersion which rendered an initially

employed zero-truncated Poisson model unsuitable. The model contained survey time (Feb-

14, Aug-14, Jan-15 and Jan-16), social organization (PF or GF) and the interaction between

these factors as fixed effects. Site, coral species and goby species were included as crossed ran-

dom effects. Root mean square error (RMSE) was used to assess model performance. RMSE is

a measure of the overall agreement between model predictions and the observed data and is

measured in the same unit as the response variable. Generalized linear mixed models were

conducted in R using the glmmADMB package [71, 72] and pairwise comparisons conducted

with the emmeans package [73]. Figures were produced using the ggplot2 package [74].

Coral size and abundance of empty corals

To investigate changes in coral sizes for PF and GF species over the four survey times, we

tested the relationship between social organization, survey time and coral size. We used a gen-

eralized linear mixed model with survey time, social organization and their interaction as fixed

effects and site, goby species and coral species as crossed random effects. A gamma distribu-

tion was used to account for positive skew and heteroscedasticy in the data and because it gave

a better fit than models conducted with log-normal distributions. RMSE was used to assess

model performance.

To test the hypothesis that subordinates (i.e. non-reproducing individuals) in colonies of

GF species might be constrained by a lack of available habitat, we also assessed whether the

mean number of empty corals on a transect was different for transects with or without groups

of GF species. We used a generalized linear model for this analysis with the number of empty
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corals as the dependent variable and survey time and transect type (with or without groups of

GF species) as independent variables. The model was run with a zero-inflated negative bino-

mial distribution to handle the large number of zero counts and this produced a better model

than a zero-inflated Poisson model when compared with Akaike Information Criterion (AIC).

The model was conducted using the R package glmmADMB [71, 72].

Proportion of inhabited corals and probability of coral occupancy

We qualitatively reviewed the mean proportion of corals occupied on each transect to deter-

mine whether cyclone activity would change the relative proportion of either social organiza-

tion’s occupancy. Since we expected coral size to change with cyclone activity, we assessed

whether coral size (a potential aspect of habitat quality) was related to the type of goby species

(PF or GF) that occupied it during each survey. This was examined by assessing the multino-

mial probability that corals would be inhabited by either GF species, PF species or neither.

These data were modeled as a multinomial response with coral size and survey time as predic-

tors. Prior to cyclone Ita (survey 1), these data were only collected at one site (Palfrey; Fig 1).

For each of the remaining time points (surveys 2–4), data were collected from various sites

around Lizard Island (Fig 1; S1 Data). Misclassification error is the proportion of false classifi-

cations predicted by the model and was used to assess model performance. The multinomial

model was conducted in R using the nnet package [75].

Results

Categorization of social organization

Of the 13 Gobiodon spp. surveyed at Lizard Island, five species were categorized as “GF” spe-

cies and eight species were classified as “PF” (see above for definitions) (Table 1).

Group size

Prior to cyclone Ita (Feb 2014), GF species were observed with mean group sizes of 2.71

(± 0.17 SE) individuals per coral. The mean group size of GF species decreased to 2.13 (± 0.11

SE) following cyclone Ita (Aug 2014). Five months later (Jan 2015, 9 months after cyclone Ita)

the mean group size of GF species appeared to show some sign of recovery, increasing to

2.58 ± 0.11 (SE). This trend of recovering group sizes was not evident 10 months after cyclone

Nathan (Jan 2016), when mean group sizes for GF species was 2.27 ± 0.15 (SE), similar to

those just four months after cyclone Ita. Meanwhile PF species had a mean group size of 1.88

(± 0.05 SE) individuals per coral at the beginning of the study (Feb 2014) and maintained their

group sizes at a similar level through both cyclones. The mean group sizes of PF species was

1.81 (± 0.03 SE), 1.74 (± 0.04 SE) and 1.74 (± 0.04 SE) for the Aug 2014, Jan 2015 and Jan 2016

surveys respectively.

Group-forming species had larger mean group sizes than PF species at every survey time

(Fig 3), although the difference in group size between GF and PF species reduced substantially

following cyclone Ita (Aug 2014; Fig 3). This was due to the reduction in the mean group size

of the GF species after cyclone Ita. These patterns were supported by the statistical model

which had a RMSE of 1.36 (S1 Table). The model predicted an initial decrease in the mean

group size of GF species following cyclone Ita (pairwise comparison ratio 1.58 (Feb-14/group:

Aug-14/group, 95% CI (0.76, 1.83)). However, the predicted mean group sizes remained at

these lower sizes for the subsequent surveys (S2 Table; Fig 3). The model did show a slight

increase in mean group size of GF species in the Jan-15 survey (confidence interval was rela-

tively large; estimated marginal mean 1.78, 95% CI (1.10, 2.81); Fig 3).
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Mean group sizes of PF species did not change significantly throughout the study. The sta-

tistical model showed very little variation in group size during any survey time (Fig 3), but pre-

dicted lower mean group sizes than observed, ranging from 1.28 ± 0.16 (SE) before the

cyclones to 1.09 ± 0.19 (SE) after both cyclones.

Coral size

Over each successive survey, the mean size of corals inhabited by GF species, PF species and

the mean size of uninhabited corals all decreased (pairwise comparison ratio 1.23 (Feb-14:

Jan16, 95% CI (1.16, 1.32); Fig 4). The number of very large corals (greater than 50 cm mean

Fig 3. Variation in group size of PF and GF species in response to cyclone activity. Modeled mean group size of pair-forming (circles, pink dotted line) and

group-forming (triangles, blue dashed line) species at the four survey times. Error bars are 95% CI. Cyclone symbols show when each cyclone impacted the

research sites. Raw data for pair- (pink) and group-forming (blue) species are shown as jittered point clouds. Six observations of group sizes greater than 10 are

not shown here, but were included in the model.

https://doi.org/10.1371/journal.pone.0202407.g003
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diameter) also decreased substantially following the first cyclone (cyclone Ita; Fig 4) and were

detected in low numbers in all subsequent surveys. The interaction between sociality and sur-

vey time was not significant (analysis of deviance χ2 = 3.36, df = 3, P = 0.34), indicating that

the coral size decreased at a similar rate across the four survey times for each category of social

organization. As this interaction was non-significant, pairwise comparisons were conducted

on the main effects only. On average, GF species inhabited larger corals (26.93 ± 0.56 (SE))

than the PF species (19.76 ± 0.19 (SE)) during each survey and the mean size of uninhabited

corals (12.86 ± 0.25 (SE)) was always less than that of inhabited corals (Fig 4). The pattern of

decreasing coral size was supported by the statistical model (RMSE = 7.42; Fig 4). The model

also supported the pattern of GF species inhabiting larger corals than PF species on average

Fig 4. Mean coral size over the four survey times. Modeled mean coral diameter inhabited by pair-forming (circles, pink dotted line), group-forming

(triangles, blue dashed line) species and vacant corals (squares, green solid line). Error bars are 95% CI. Cyclone symbols show when each cyclone impacted the

research sites. Raw data of empty corals (green), pair- and group-forming species (pink and blue, respectively) are shown as jittered point clouds. Eight

observations of corals larger than 100 cm mean diameter were omitted from this figure but were included in the model.

https://doi.org/10.1371/journal.pone.0202407.g004
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(pairwise comparison ratio 0.80 (PF:GF), 95% CI (0.61, 1.06); Fig 5). Vacant corals were

smaller than corals inhabited by either PF or GF species (pairwise comparison ratio 0.63

(vacant:PF), 95% CI (0.37, 0.85); pairwise comparison ratio 0.51 (vacant:GF), 95% CI (0.37,

0.69) respectively).

To assess whether habitat saturation (an ecological constraint) was acting as a constraint on

subordinate dispersal, we looked at whether the number of vacant corals differed between

transects with or without groups (colonies with 3 or more individuals) of GF species. Corals

that were uninhabited were present on transects where at least one group of GF species was

present (S1 Data). This means that there was vacant habitat available for subordinates to dis-

perse to. However, there was no difference in the mean number of empty corals on transects

with or without a group of GF species during any survey time detected by the model (pairwise

comparison ratio 1.19 (no groups:groups present), 95% CI (0.89, 1.44). This could indicate

that some coral vacancy was due to reduced abundance of coral gobies overall, but the fact that

groups of GF species were present on transects where there were corals available to disperse to

demonstrates that either; some constraint was restricting dispersal from the group or subordi-

nate gobies were receiving a benefit from remaining within the group.

Proportion of inhabited corals and probability of occupation

PF species occupied proportionally more corals on average during each survey than GF species

(Fig 5). There was a similar proportion of corals occupied by GF species as there were vacant

corals during each survey. The proportion of corals inhabited by PF species decreased from

0.61 ± 0.04 (SE) at the beginning of the study (Feb 2014) to 0.54 ± 0.02 (SE) after cyclone Ita

Fig 5. Mean proportion of corals occupied by each social organization and remaining vacant throughout the study. Mean

proportion of corals inhabited by pair-forming species (triangles, pink dotted line), group-forming species (circles, blue dashed

line) and remaining vacant (squares, green solid line) over the four surveys. Error bars indicate standard error. Raw data are

shown as jittered point clouds for vacant (green), pair- (pink) and group-forming (blue) species.

https://doi.org/10.1371/journal.pone.0202407.g005
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(Aug 2014). This downward trend continued into the next survey (Jan 2015) where the pro-

portion of corals inhabited by PF species was 0.46 ± 0.02 (SE). However, the proportion of cor-

als inhabited by PF species increased after cyclone Nathan (Jan 2016) to 0.56 ± 0.03 (SE). The

GF species on the other hand showed relative stability in the proportion of corals they occu-

pied during the study. There was an initial increase in the proportion of corals inhabited by

GF species from 0.14 ± 0.03 (SE) at the beginning of the study to 0.22 ± 0.02 (SE) after cyclone

Ita (Aug 2014). The mean proportion of corals occupied by GF species then remained at simi-

lar levels for the remaining two surveys (Fig 5). The proportion of vacant corals was also rela-

tively unchanged throughout the study except for a small increase nine months after cyclone

Ita (Jan 2015; 0.31 ± 0.02 (SE); Fig 5).

The multinomial model of coral occupancy had a misclassification rate of 0.404 indicating

that the predictions may not be reliable. Nevertheless, the trends agree reasonably well with

our observations and we give a qualitative account of these, recognizing that probability esti-

mates may have large error. Odds ratios and associated confidence intervals for the model

coefficients are available in S3 Table, however, we urge the same caution in their interpreta-

tion. Prior to cyclone activity (February 2014), there was a low probability that the smallest

corals would remain vacant and this probability decreased rapidly for corals of increasing

mean diameter (Fig 6A). This was consistent with our observations as larger corals were rarely

vacant (Fig 4, pink and blue points). After cyclone Ita, there was a similar pattern of decreasing

probability of corals remaining vacant with increasing coral size (Fig 6A), but there was a

higher probability of the smallest corals remaining vacant. Again, this pattern was consistent

with our observations of coral size (Fig 4). The probability that a PF species would occupy a

coral increased initially with increasing coral size, but then decreased after reaching an appar-

ent optimal coral size around 15 cm (Fig 6B, solid orange line). This pattern of increasing to

an optimum size is certainly plausible if we consider that GF species typically inhabited the

larger corals (Fig 4) posing an upper restraint on occupancy by PF species. Corals in the

smaller range may have been less desirable as they may not support successful feeding, repro-

duction or protection from predators. Furthermore, the coral size model had predicted the

mean coral size for PF species within this coral size range (Fig 4). The ‘optimal’ coral size for

PF species appeared to increase to 20 cm– 30 cm in the survey times after cyclone Ita (Fig 6B).

Consistent with the concept of the PF species having lower probability of occupancy at higher

coral sizes, the probability that a GF species would occupy a coral increased as coral size

increased (Fig 6C). This relationship between coral size and probability of inhabitance by a GF

species did not change with respect to survey time (Fig 6C).

Discussion

The effects of cyclones on the social organization of coral-reef fish are poorly understood

despite clear links between social organization and factors that could affect species persistence

and recovery following environmental disturbances [1–3]. Here, we investigated the impacts

of two successive cyclones (Ita 2014 and Nathan 2015) on the social organization of coral-

gobies over three years, and at the same time shed light on the possible factors influencing the

formation of social groups.

Effects of cyclones on social organization and coral size

Both cyclones had a small, but detectable effect on the social organization of GF species. Simi-

lar impacts on social organization were not evident in the PF species. The group size of GF spe-

cies declined, while the group sizes of PF species showed little variation over time. Despite the

general decline in their group sizes, GF species exhibited some recovery eight months after
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cyclone Ita. However, there was no such recovery exhibited after cyclone Nathan. The lack of

apparent recovery after cyclone Nathan indicates that multiple impacts of this nature can have

longer lasting negative impacts on the social structure of GF species. The relative stability of

group sizes in the PF species on the other hand, suggests a level of resilience in social structure

in the face of natural disturbance. Overall, mean coral size and the presence of very large corals

(greater than 50 cm mean diameter) decreased with each cyclone. This was consistent with

damage reported in studies on these cyclones [60–63] and others [45].

Fig 6. Probability of occupation for corals of varying mean diameter. Probability that a coral of given size would remain vacant (a) or be inhabited by either a pair-

(b) or group-forming (c) species of Gobiodon. Probabilities are shown for each survey time: Feb 2014 (orange, unbroken), Aug 2014 (green, dotted), Jan 2015 (blue,

dashed), Jan 2016 (purple, dot-dash).

https://doi.org/10.1371/journal.pone.0202407.g006
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Implications for pair- and group-forming species

The overall reduction in coral sizes meant that both GF and PF species were more frequently

observed in corals of smaller sizes including some of a size that were unoccupied before the

cyclones (Feb 2014). Therefore, the recovery in group size of GF species following cyclone Ita

(Jan 2015) occurred despite the fact that the corals they inhabited were smaller on average

compared to pre-cyclone (Feb 2014). This result was unexpected, given the positive relation-

ship between coral size and group size regularly reported for social habitat-specialist reef fishes

[55, 77, 78]. This may indicate that GF species of gobies will tolerate greater coral saturation

(i.e. more subordinates in smaller corals) following a disturbance, especially if they benefit in

future reproduction or survival from doing so [79].

Despite this small recovery following cyclone Ita, group sizes of GF species remained rela-

tively lower following cyclone Nathan. This may be due to social conflict [6] and recruitment

prevention [37], demonstrated in other social fishes at high rates of habitat saturation. Smaller

group sizes suggest lower numbers of subordinates which may have a negative impact on

future reproductive efforts [79]. Smaller group sizes could also be problematic under a regime

of repeated disturbance as larger group size may provide a level of redundancy and buffer

effects of future disturbance [26, 42, 43]. However, when group sizes are reduced, so too is this

redundancy.

The proportion of corals inhabited by PF species did decrease following cyclone Ita, but

had returned to pre-cyclone levels in the period following cyclone Nathan. At all survey times,

PF species inhabited a substantially higher proportion of corals than GF species. This suggests

that PF species might be better able to colonize vacant corals than GF species, for example by

out-competing GF species for habitat [57, 80]. However, most of the GF species in our study

tended to prefer different species of coral to the PF species and we therefore consider competi-

tive effects unlikely. Instead, the greater proportion of corals inhabited by PF species could be

due to their tendency to live in intermediate sized (20–30 cm) corals as shown by our analysis

of the probability of occupation by a PF species. Corals in this size range were relatively com-

mon in the surveys following cyclone Ita (compared to the larger corals that GF species tend to

inhabit). Group-forming species on the other hand showed a relatively lower probability of

occupying corals in this intermediate size range. This ability or preference of PF species to

occupy corals in the range of sizes most commonly found after the cyclones could be advanta-

geous at the population scale, as long as these habitats were of sufficient quality to enable forag-

ing, protection from predators and successful breeding [58, 59].

Ecological constraints and benefits of philoparty

In theory, subordinates living in a group could maximize their lifetime reproductive success if

they dispersed to pursue independent breeding rather than remaining in a group as a subordi-

nate. In practice however, various ecological constraints and benefits of remaining philopatric

amongst other factors (e.g. life-history and phylogeny), alter the advantages of dispersing from

or remaining in their current group [11, 12, 20]. For example, a lack of vacant habitat to dis-

perse to in order to pursue independent breeding (an ecological constraint) would increase the

benefit of remaining in the group, even as a non-breeding subordinate, especially if the subor-

dinate stands to inherit the breeding position in the future (a benefit of philopatry). Habitat

saturation (i.e. lack of available suitable habitat) is often invoked as a key ecological constraint

leading to group formation and maintenance in a variety of taxa (e.g. birds [13]; mammals

[81]; fish [20]). Other studies on a closely related coral goby [23] and on social freshwater

fishes [22] have found the combination of habitat saturation and benefits of philopatry
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promote group-living. However, we found little evidence to support habitat saturation acting

as a constraint on dispersal in coral gobies following these disturbances.

Our analysis of vacant corals on transects with and without groups of GF species indicate

that GF groups were present even when alternative corals were available for subordinate dis-

persal. As we only included corals of a size that pairs of gobies had been observed in, these

alternative corals are assumed to be of a size capable of supporting at least a breeding pair. Our

study therefore indicates that habitat saturation alone was unlikely to explain group formation.

Instead, and consistent with the benefits of philopatry hypothesis, subordinates of GF species

stayed within the group, presumably obtaining benefits that group living provides (e.g. inheri-

tance of a breeding position in a good quality habitat).

Additionally, our analysis of the probability of occupation showed that GF species were

increasingly more likely to inhabit a coral as coral size increased. Coral size has been shown to

be related to individual growth, survival and reproductive success in some coral-associated

fishes and may therefore be considered a reasonable proxy for habitat quality [58, 59]. This

strong association between coral size (quality) and probability of occupancy by a GF species is

consistent with the benefits of philopatry model as we would expect larger group sizes (charac-

teristic of more social species) in higher-quality habitat. Conversely, under a habitat saturation

model we would expect a much weaker association between coral size and the probability of

occupancy by a GF species as subordinates would be expected to disperse to vacant habitat of

any size that could support independent breeding.

Furthermore, if habitat saturation (availability of corals) was acting as a constraint on dis-

persal following the cyclone, we would expect the proportion of inhabited corals to approach

100% as subordinates would quickly fill any vacant habitat to pursue independent breeding

[13]. Alternatively, if there were sufficient benefits of residing in a high-quality habitat, we

would expect the proportion of inhabited corals to be substantially lower than 100% after the

cyclones as individuals living in low-quality habitat would vacate and take up residence in a

higher-quality habitat as a subordinate. We found the proportion of corals inhabited by social

species was very low and relatively constant (< 25%) throughout the study, even though there

were vacant corals present (approximately 20% per transect), suggesting that benefits of philo-

patry and not habitat saturation was responsible for group formation.

Conclusion

Few studies thus far have examined the effects that extreme climatic events such as tropical

cyclones could have on social organization of social species. While two cyclones in consecutive

years may be rare, the frequency of the most intense cyclones is projected to increase as sea

surface temperatures continue to rise in the future and repeated disturbances may become

more prevalent [82]. The destructive nature of these events on coral-reef communities has

been well documented [46, 48, 83]. However, changes to social organization from such events

have been less studied. Here we demonstrated that repeated cyclones are likely to negatively

impact social organization in a genus of coral-reef fishes through flow-on effects of the

destruction of habitat, but only in GF species. Pair-forming species appear to be able to

monopolize smaller corals and maintain their social organization in response to extreme cli-

matic events. Additionally, we suggest that the most likely mechanism for the maintenance of

group sizes in GF species are benefits of philopatry, but these benefits only promote group liv-

ing when the habitat is of sufficient size. Cyclones are capable of reducing whole areas of coral

to well below what appears to be the minimum size threshold for GF coral gobies to form their

usual group structures, which may be linked to their ability to recover from such disasters. In

fact, we observed several sites that were completely devoid of corals (and hence coral gobies)
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following each cyclone. With the frequency of more intense cyclones and other stressors on

coral reefs (e.g. coral bleaching) set to increase in the near future, population declines and

localized extinctions of GF species of coral gobies through habitat loss and lowered recovery

ability due to impacts on their social organization are a real possibility. While PF species

appear to buffer these effects somewhat, they are still vulnerable to habitat destruction caused

by these catastrophic events.
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