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Abstract
Traffic emissions are a complex and variable cocktail of toxic chemicals. They are the major source of
atmospheric pollution in the parts of cities where people live, commute and work. Reducing exposure
requires information about the distribution and nature of emissions. Spatially and temporally detailed data are
required, because both the rate of production and the composition of emissions vary significantly with time of
day and with local changes in wind, traffic composition and flow. Increasing computer processing power
means that models can accept highly detailed inputs of fleet, fuels and road networks. The state of the science
models can simulate the behaviour and emissions of all the individual vehicles on a road network, with
resolution of a second and tens of metres. The chemistry of the simulated emissions is also highly resolved,
due to consideration of multiple engine processes, fuel evaporation and tyre wear. Good results can be
achieved with both commercially available and open source models. The extent of a simulation is usually
limited by processing capacity; the accuracy by the quality of traffic data. Recent studies have generated real
time, detailed emissions data by using inputs from novel traffic sensing technologies and data from intelligent
traffic systems (ITS). Increasingly, detailed pollution data is being combined with spatially resolved
demographic or epidemiological data for targeted risk analyses.
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 6 

Abstract 7 

Traffic emissions are a complex and variable cocktail of toxic chemicals. They are the major 8 

source of atmospheric pollution in the parts of cities where people live, commute and work. 9 

Reducing exposure requires information about the distribution and nature of emissions. Spatially 10 

and temporally detailed data are required, because both the rate of production and the 11 

composition of emissions vary significantly with time of day and with local changes in wind, 12 

traffic composition and flow. Increasing computer processing power means that models can 13 

accept highly detailed inputs of fleet, fuels and road networks. The state of the science models 14 

can simulate the behaviour and emissions of all the individual vehicles on a road network, with 15 

resolution of a second and tens of metres. The chemistry of the simulated emissions is also 16 

highly resolved, due to consideration of multiple engine processes, fuel evaporation and tyre 17 

wear. Good results can be achieved with both commercially available and open source models. 18 

The extent of a simulation is usually limited by processing capacity; the accuracy by the quality of 19 

traffic data. Recent studies have generated real time, detailed emissions data by using inputs from 20 

novel traffic sensing technologies and data from intelligent traffic systems (ITS). Increasingly, 21 

detailed pollution data is being combined with spatially resolved demographic or epidemiological 22 

data for targeted risk analyses. 23 

 24 
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Technology and software now exist that permit the simulation of traffic emissions at sufficient 26 

resolution to estimate the exposure of pedestrians, commuters and vulnerable populations 27 

Keywords:  28 

microsimulation; health; exposure; ITS; agent-based model; open-source 29 

 30 

1 Introduction 31 

This review was prompted by the need to better understand people’s exposure to traffic 32 

pollution on city streets. Broad-scale, background levels of pollution are usually well monitored 33 

in major cities, but it remains difficult to determine air quality data at street level in most places. 34 

Concentrations can be highly variable over short distances and intervals of time, due to fleet 35 

composition, congestion, weather (mainly wind) and the shape of street canyons. For examples 36 

of what can be achieved with sufficient resources, readers are referred to the programmes: 37 

“Dispersion of Air Pollution and its Penetration into the Local Environment” in Westminster, 38 

United Kingdom (DAPPLE 2009), the “New York City Community Air Survey” in New York, 39 

USA (NYCCAS 2018) and vehicle-based measurements in Oakland, USA (Apte, Messier et al. 40 

2017). Low cost wireless sensors show promise for the future, but currently there are only very 41 

few pollutants that can be measured well without expensive equipment. State of the science 42 

traffic emissions modelling provides estimates of a comprehensive suite of pollutants with fine 43 

spatial and temporal resolution, saving the considerable expense of monitoring equipment (Gois, 44 

Maciel et al. 2007). The data is localised to tens of metres at street level, enabling more accurate 45 

estimates of air quality for pedestrians, commuters, children and the aged. Once problems are 46 

identified, they can be mitigated with barriers, spatial buffers, improved ventilation in buildings, 47 

or alterations to the fleet (Batterman, Ganguly et al. 2015). 48 
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The review starts by describing the effects of traffic emissions on air quality and why they are 49 

difficult to quantify. Then we examine the risks to health and costs incurred by the suite of gases 50 

and aerosols that are produced on urban streets. The majority of the review focusses on the state 51 

of the science of modelling traffic emissions. We briefly describe some approaches that can give 52 

reasonable estimates of roadside air quality given limited data and resources. There are detailed 53 

reviews of each of the 4 main steps of microscopic traffic emissions modelling: trip generation, 54 

traffic simulation, emissions modelling and dispersion modelling. The first part contains a 55 

summary of the emerging new directions that combine simulation with sensors for real-time 56 

emissions mapping. The section ends with a summary table of case studies and 57 

recommendations for users.  58 

 59 

2 Understanding pedestrian exposure to traffic-related air 60 

pollutants 61 

2.1 Traffic pollution in cities 62 

Airborne pollution from traffic is a significant health hazard worldwide for the people who live 63 

in cities (UN-Habitat 2013). The amount of freight moved by light commercial vehicles has 64 

increased by 300% in recent decades, due to increases in the size of the service sector 65 

(Houghton, McRobert et al. 2003). Motor vehicles are responsible for a considerable fraction of 66 

many airborne pollutants (Table 1). As the numbers of vehicles using urban roads has increased, 67 

so has traffic congestion, exacerbating pollution, greenhouse gas emissions, delays and financial 68 

losses from wasted fuel and lost work time (Schrank, Eisele et al. 2015). The financial 69 

consequences can be considerable, even neglecting lost productivity. Each emitted tonne of 70 

particulate matter smaller than 2.5 microns (PM2.5) cost US$208,000 in Sydney, Australia and 71 

US$141,000 in Melbourne (Aust, Watkiss et al. 2013). Policy makers require good data to 72 

understand the problem and to plan for the future.  73 
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 74 

Table 1. Total annual Australian National Pollutant Inventory (NPI) emissions (kg/yr) for 75 

industry and motor vehicles (National Motor Vehicle Emissions Inventory, NMVEI) in 2010 76 

(Smit 2014)  77 

Pollutant 
NPI 
industry NMVEI 

MV 
Contribution 

Acetaldehyde 411,765 886,969 68.29% 

Acetone 691,837 301,465 30.35% 

Acrolein 11 314,000 100.00% 

Ammonia 120,860,415 6,313,888 4.96% 

Benzene 1,197,423 4,099,173 77.39% 

1,3-Butadiene 14,635 971,856 98.52% 

Cadmium 32,053 237 0.73% 

Carbon monoxide 1,388,700,000 936,869,323 40.29% 

Chromium 590,406 502 0.08% 

Copper 677,884 794 0.12% 

Cyclohexane 473,055 664,516 58.42% 

Dioxins/Furans (i-TEQ) 0.194 0.005 2.75% 

Ethylbenzene 138,330 3,116,430 95.75% 

Formaldehyde 2,922,758 2,005,013 40.69% 

Lead 687,463 17,171 2.44% 

Methylethylketone (MEK) 700,618 77,818 10.00% 

n-Hexane 1,709,621 1,322,489 43.62% 

Nickel 772,525 267 0.03% 

Oxides of Nitrogen 1,396,900,000 305,601,721 17.95% 

PAHs (BaP-equivalents) 23,709 627 2.58% 

Particulate Matter  10.0 µm 1,238,329,933 14,461,823 1.15% 

Particulate Matter  2.5 µm 56,532,376 11,684,995 17.13% 

Selenium 6,348 4 0.06% 

Styrene 393,246 470,431 54.47% 

Sulfur dioxide 2,509,400,000 1,310,884 0.05% 

Toluene 2,525,696 8,243,841 76.55% 

Total Volatile Organic Compounds 157,006,103 107,329,985 40.60% 

Xylenes 1,882,125 8,085 0.43% 

Zinc 1,597,971 47,352 2.88% 

 78 

The toxic chemicals that comprise traffic emissions are released as gases and primary particles. 79 

The two most commonly used fuels generate different mixtures of pollutants in addition to CO2: 80 

petrol vehicles are mainly responsible for emissions of carbon monoxide (CO), volatile organic 81 

compounds (VOCs), ammonia (NH3) and heavy metals. Diesel vehicles produce most of the 82 
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particles of 2.5 microns and smaller (PM2.5) and oxides of nitrogen (NOx) (Smit 2014). Diesel 83 

particulate matter (DPM) is composed of a core of elemental carbon surrounded by organic 84 

compounds including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, small amounts of 85 

sulphate, nitrate, metals and other trace elements. These particles have a large surface area, 86 

making them susceptible to adsorption to lung tissue (Wichmann 2007).  87 

The chemistry of emissions is highly variable in time and space (BTRE 2005) and the 88 

composition affects toxicity (Rückerl, Schneider et al. 2011). The composition of the mixture of 89 

gases and particles changes with time after release from the exhaust pipe. There are a number of 90 

possible chemical reactions, coagulation and condensation of gases, aerosols and particles. The 91 

transformations can be affected by local conditions such as the concentration of pollutants, 92 

temperature, turbulence (particularly wind), sunlight and humidity. For example, the 93 

concentrations of particular species, such as NOx, can determine the production of secondary 94 

pollutants such as ozone (Ryu, Baik et al. 2013). 95 

Although numbers of vehicles on roads continue to increase, emissions regulations have 96 

mandated increased efficiency of engine technologies to reduce outputs of harmful emissions. 97 

Older, carburetted cars released 10 times the HC, 4 times the CO and 3 times the NOx of newer 98 

multi-point ignition engines (Qu, Li et al. 2015). However, while newer cars release less 99 

pollution, the expected reduction in emissions from modern vehicles will only be realised if their 100 

emissions control equipment is properly maintained (Marquez and Salim 2007).  101 

 102 

2.2 Health effects of traffic pollution  103 

Although traffic emissions (Table 1) are not the major fraction of airborne pollution in cities, 104 

they are a major source of airborne pollution for people, because traffic occupies space close to 105 

walkways, residences, workplaces and schools. The traffic intensity on the nearest road to a 106 
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person’s home address was linked to mortality in a long-term study (Beelen, Hoek et al. 2008). 107 

Diesel exhaust poses the greatest risk of cancer of any air pollutant (Wichmann 2007). An 108 

extensive sampling program for volatile organic compounds (VOCs) in New York City found 109 

that proximity of roads and traffic signals explained 65% of variation in atmospheric 110 

concentrations of benzene (Kheirbek, Johnson et al. 2012). Commuters travelling by bicycle, bus, 111 

automobile, rail, walking and ferry are exposed to concentrations of ultrafine particles that can 112 

elicit acute effects in both healthy and health-compromised individuals (Knibbs, Cole-Hunter et 113 

al. 2011). For a typical urban commuting journey in Alameda County, USA, personal exposure to 114 

NOx was found to increase from 29 ppb (parts per billion, 10-9) indoors to 96 ppb outdoors (Su, 115 

Jerrett et al. 2015). In a study of different modes of travel to work, the greatest rates of exposure 116 

to ultrafine particles were found for those walking or cycling along highly trafficked routes and 117 

using buses (Spinazzè, Cattaneo et al. 2015). Some occupations are at significantly elevated risk 118 

from traffic emissions.  Exposure of traffic policemen in Beijing to polycyclic aromatic 119 

hydrocarbons (PAH) was nearly an order of magnitude greater than regulatory limits (Liu, Tao et 120 

al. 2007) (Hu, Bai et al. 2007, Liu, Tao et al. 2007). Bus drivers and mail carriers in Copenhagen, 121 

Denmark were found to have elevated concentrations of biomarkers for DNA damage (Hansen, 122 

Wallin et al. 2004).  123 

Evidence of harm from traffic pollution is abundant and mounting, it affects multiple systems of 124 

the body. For example, there are links to a range of serious damages to the heart, some fatal. 125 

Emissions of NO2 can cause a 5% enlargement of the right ventricle and 3% increase in its 126 

volume after emptying (end diastolic volume). These changes are quantitatively similar to those 127 

caused by diabetes or smoking (Holguin and McCormack 2014). Traffic emissions have also 128 

been associated with increased levels of inflammatory nasal markers, increased urinary 129 

concentrations of urea and metabolites of nitric oxide (Steerenberg, Nierkens et al. 2001). Long 130 

term exposure to traffic and PM2.5 reduced respiratory function in adults (WHO 2013, Badyda, 131 

Dabrowiecki et al. 2015, Rice, Ljungman et al. 2015) and the irritant and carcinogenic chemicals 132 
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cause a range of morbidities including asthma. Children’s rapidly growing lungs and immature 133 

immune systems make them susceptible to diseases associated with airborne pollution from 134 

traffic, such as asthma, allergy, bronchitis and deficits of lung function and growth (Chen, Salam 135 

et al. 2015, Gehring, Beelen et al. 2015).  136 

The capacity of particulate pollution to cause harm is related to its size, surface area and 137 

composition. Particulate matter (PM) is usually classified into size ranges: PM10 is less than or 138 

equal to 10 μm (micrometres, 10-6 m) in diameter, PM2.5 is less than or equal to 2.5 μm and PM0.1, 139 

or ultrafine particles, are less than or equal to 100 nm (nanometres, 10-9 m). The smaller the size 140 

of the particle, the deeper it can travel into the lungs. Ultrafine particles can reach the alveoli 141 

where 50% are retained in the lung parenchyma (Valavanidis, Fiotakis et al. 2008). Linear dose-142 

response associations have been found between particulate matter (PM) pollution and mortality 143 

in the United States (Daniels, Dominici et al. 2000), Canada (Requia, Higgins et al. 2018) and in 144 

Europe (Samoli, Analitis et al. 2005). Most of the urban PM2.5 emissions are due to traffic, 145 

particularly diesel-fuelled trucks and buses (Chan, Simpson et al. 1999, Salameh, Detournay et al. 146 

2015). A review of adverse health effects of short-term exposure to PM2.5 in China showed a 147 

0.40% increase in non-accident mortality with every 10 ng m-3 increase in concentration (Lu, Xu 148 

et al. 2015). Recent work has connected urban exposure to PM2.5 with an increased risk of low 149 

birth weight (Coker, Ghosh et al. 2015). Commonly, reports of particulate pollution have PM2.5 150 

as the smallest class, but this may not be adequate. Not only do ultrafine particles have the 151 

capacity to penetrate deep into the airways, but their greater surface area and porosity give an 152 

increased capacity to adsorb and retain toxic substances (Valavanidis, Fiotakis et al. 2008).  Some 153 

authors suggest that it is important to extend consideration to particles of 1 nm size, due to the 154 

potential for coagulation and condensation processes at the street level. New particles can form 155 

through chemical transformation processes (secondary production) over time in locations like 156 

road tunnels, with prolonged residence times and increased concentrations. For example, the 157 

mass of secondary nitrate was four times that of primary nitrate in fine aerosols at a site in 158 
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Brisbane, Australia (Chan, Simpson et al. 1999). Transformation processes include aggregation, 159 

homogeneous nucleation and changes from gas to particle.  Because of the complexity of the 160 

chemistry and of the modelling, it is particularly important to validate model results with in-situ 161 

sensor measurements (Kumar, Ketzel et al. 2011). 162 

It is common practice to reduce PM pollution by diesel fuelled vehicles with the use of particle 163 

traps. These devices can be very effective if used and maintained properly, but an undesirable by-164 

product is a substantial increase in the production of primary NO2 (Feng, Ge et al. 2014, Tang, 165 

Zhang et al. 2014, He, Li et al. 2015). The resulting effect of NO2 on premature mortality is 166 

greater than ten times that of PM2.5 in pre particle-trap concentrations (Harrison and Beddows 167 

2017). 168 

Modelling of transport in Adelaide, Australia showed the benefits in reduction of pollution and 169 

other health benefits of switching commuter travel from private vehicles to public transport. If 170 

40% of vehicle kilometres travelled were changed to alternative transport by 2030 (projected 171 

population 1.4 M), PM2.5 would decline by about 0.4 µg m-3. This was estimated to reduce 172 

adverse health effects by 13 deaths/year, and 118 disability-adjusted life years. There were many 173 

more benefits predicted due to improved physical fitness through walking or cycling (Xia, 174 

Nitschke et al. 2015). 175 

 176 

 177 

3 Traffic emissions modelling: summary of the process & most 178 

commonly used models 179 

3.1 Introduction: the need for detail 180 
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Detailed information is required to identify the locations of greatest risk to pedestrians, the “hot-181 

spots” of concentrated pollution. The data is necessary for determining the effects of long-term 182 

exposure for those living or working near busy roads. Details of concentration and composition 183 

cannot be well represented by interpolating measurements from sparsely distributed sensors. 184 

Internet of Things (IoT) sensors that measure air quality are cheap and readily available, but 185 

these are yet to be proven in the roadside setting (Forehead, Murphy et al. 2017). The spatial and 186 

temporal resolution of traffic emissions models has been increasing over time with 187 

improvements in data collection, computational power, modelling and technology. Simulations 188 

with coarse resolution, that are simpler and quicker to use, are still commonly used for regional 189 

inventories of pollutants. However, microscopic simulations with detailed inputs are required to 190 

represent details of complex, congested traffic,  (Austroads 2006). A survey of  traffic emissions 191 

modelling by the US Department of Transportation identified microscopic simulations as the 192 

state of practice and that “aggregate network performance data created by traditional static 193 

assignment models is not suitable for estimating emissions accurately” (Balaji Yelchuru, Adams 194 

et al. 2011). Readers are also referred to 2 excellent earlier reviews of microscopic emissions 195 

modelling methods: (Fallah Shorshani, André et al. 2015, Fontes, Pereira et al. 2015). These 196 

models can show pollutant hot-spots and help estimate exposure for vulnerable populations, 197 

such as those in hospitals, child care, parks, aged care facilities (Batterman, Ganguly et al. 2015). 198 

Fine-scale resolution is needed to reduce uncertainty in applications such as health impact 199 

assessments (HIA), that are increasingly a part of project planning (BTRE 2005, National 200 

Research Council Committee on Health Impact 2011). Traffic emissions models can be used for 201 

other risk assessments, such as predicting increases or decreases in emissions due to 202 

infrastructure changes, roadworks or events. They can model the exposure of pedestrians to 203 

traffic pollution with different designs of intersections (Qiu and Li 2015) and the effectiveness of 204 

mitigation strategies that separate pedestrians and traffic (El-Fadel 2002).  205 

 206 
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3.2 Simpler approaches 207 

Where detailed data are not available, a simpler macroscopic approach may be appropriate. 208 

Alternatives include the use of satellite aerosol optical depth data, in conjunction with a land use 209 

regression model, to add a temporal estimate to spatial data regarding the origins of PM2.5. 210 

Validation of this approach in Florida, USA gave coefficient of determination of 0.63, 211 

comparable with studies that use aerodynamic-meteorological models (Mao, Qiu et al. 2012). A 212 

land use regression model was used with a simple atmospheric dispersion model to estimate the 213 

daily average particle number on a freeway. Inputs were annual averaged wind speed and annual 214 

average daily traffic counts, errors averaged 6% across 98 sites (Olvera, Jimenez et al. 2014). 215 

Traffic sources of airborne pollutants can be separated from background sources using air quality 216 

measurements from a single station and meteorological data. A freely available semi-empirical 217 

(box model) pollution model and a spreadsheet-based traffic model (Vehicle emissions 218 

prediction model) were designed for Auckland, New Zealand. Results were verified in a study, 219 

using ambient records of 2 air pollution monitors. The best estimations were achieved for 220 

nitrogen oxides; PM10 was difficult to distinguish due to interference from marine aerosols 221 

(Elangasinghe, Dirks et al. 2014). In developing countries, measuring traffic flow via new 222 

technologies may be too expensive or difficult to implement. A macroscopic traffic flow model 223 

can be a good choice when little traffic data is available. The Lighthill and Whitham (1955) 224 

model represents traffic in differential equations, using theories of compressible fluids. Only 225 

6 days of data were used for estimates of density and travel times on a busy arterial road in 226 

Chennai, India. Results had mean average percentage errors ranging from 12.7% to 45.7% when 227 

checked with observations (Kumar, Vanajakshi et al. 2011). Another approach that requires little 228 

data is a seasonal Autoregressive Integrated Moving Average (SARIMA) model. A 24 hour 229 

simulation of traffic flow on an arterial roadway used only 3 days of data and errors ranged from 230 

just 4% to 10% (Kumar and Vanajakshi 2015). The publicly available Industrial Source Complex 231 
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Short Term model (ISCST3, US EPA), was used to attribute airborne PM10 pollution to different 232 

sources, including transport in Kanpur City, India. GIS was used to break up the study area into 233 

2 km x 2 km grids. Resolution could be adjusted to any time and space (Behera, Sharma et al. 234 

2011). 235 

 236 

3.3 Microscopic traffic emissions models 237 

Microscopic traffic emissions modelling typically comprises a series of sub-models, each 238 

generating the input data for the next (Fig. 1). First is trip and fleet generation, then the traffic 239 

model, traffic emissions and finally, the dispersion of emissions may be modelled. The number 240 

of steps used can vary according to the application. The fleet of vehicles can be built from 241 

databases, commonly from vehicle registration. Trip information can be derived from traffic 242 

sensors and demographic data, such as the census and journey to work surveys. A traffic model 243 

takes the trip data and generates the fleet activity on the road network. That information is fed 244 

into an emissions model together with vehicle emissions factors to generate the emissions data 245 

for the network. In some cases a dispersion model is added to predict the dispersion of 246 

emissions away from the vehicles and the roadway. 247 
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census data on population, employment and residences, freight movements, parking and 263 

transport networks including road rail, bus and ferries. There are a range of models that build 264 

trips from this data, including (in order of increasing complexity) sketch-planning models, 265 

strategic-planning models, trip-based models and activity-based models (Castiglione, Bradley et 266 

al. 2015). Generally, activity-based models are used to build trips for a day, with the expectation 267 

that no variation will occur. This is, of course, unrealistic, since unexpected changes occur, due 268 

to any number of unplanned events. Rescheduling in an activity-based model allows for 269 

unexpected changes, such as car accidents or time-table changes in public transport. The 270 

FEATHERS activity-based schedule generator simulates the behaviours of mutually independent 271 

individuals or actors. The state of a transport network can be influenced by actor behaviour and 272 

external phenomena. The actors interpret changes via perception filtering and adapt their 273 

schedules accordingly. This in turn affects the network as demand changes, giving a more 274 

realistic set of behaviours for microscopic traffic models. A limitation of the framework is that it 275 

can only change routes before they are started, once a journey has begun, it is fixed (Knapen, 276 

Bellemans et al. 2014). TRANSIMS (US EPA, Federal Highway Administration) is an open-277 

source system of models that comprises a population synthesiser, an activity generator, routing, 278 

and a microscopic traffic simulation. The system offers much, but the data requirements are 279 

large and the calibration process can be challenging (Zhang and Cai 2016). 280 

GPS sensors can substantially improve traffic monitoring. A one second sampling rate was 281 

found to be required to identify events such as vehicle stops, but aggregation to a 5 second 282 

resolution was sufficient for trip identification. Identification of stops in trips could be improved 283 

by combining map information with movement data to reduce false positives, such as pauses due 284 

to traffic congestion, or false negatives such as the missing of short stops  (Shen and Stopher 285 

2013). To give correct placement of a vehicle on a road segment in real time, GPS location was 286 

matched to speed and travel time data from cars, using an algorithm that incorporated a 287 

sequence of hidden-Markov models (Szwed and Pekala 2014). Commercial software is available 288 
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to translate GPS data into trips. However, a study that compared two products using the same 289 

input data showed a discrepancy of 12% of trips between results. Errors included incorrectly 290 

splitting single trips or failing to identify some trips (Stopher, Greaves et al. 2013). A Bayesian 291 

approach was used to integrate data from Bluetooth, loop detectors and GPS for real-time traffic 292 

prediction. The method dramatically improved the accuracy of information from loop detectors 293 

on an arterial corridor in Brisbane, Australia (Nantes, Ngoduy et al. 2015). 294 

Origin-destination (OD) data was generated from archived public transport data from smart 295 

cards, in conjunction with street maps and timetables in Žilina, the Slovak republic. It was 296 

possible to infer details such as in-vehicle travel and walking times for segments of a journey 297 

(Jánošíkova, Slavík et al. 2014). Calibration software (W-SPSA) used a weighting matrix to allow 298 

for correlations between inputs to OD matrixes (Antoniou, Lima Azevedo et al. 2015). 299 

Algorithms based upon evolutionary simulations were used to make choices regarding route 300 

choices depending on time and toll cost. The result can incorporate some amount of 301 

randomness.(Nagel, Kickhöfer et al. 2014).  302 

Technology has increased the range of options available for monitoring traffic movements. 303 

Modern traffic data collection includes technologies that range from simple inductive loop 304 

sensors to piezo-electric, magneto-resistive studs, tirtle (laser) and piezo-WIM (weight in motion) 305 

sensors. The latter instruments can give details of vehicle class, by determining the mass and 306 

number of axles of a passing vehicle. Sensors are often integrated with a traffic control system, 307 

such as the Sydney Coordinated Adaptive Traffic System (SCATS), used in 26 countries. It has a 308 

software interface, SCATSIM, to link the traffic management system to microscopic traffic 309 

models. Some authorities monitor vehicle traffic by tracking signals from Bluetooth or WiFi 310 

devices and technologies such as GPS or automatic number plate recognition (ANPR) cameras. 311 

These activities are restricted to varying degrees by privacy legislation.  312 
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ITS systems can provide cost savings, better coverage and increased accuracy over more labour-313 

intensive methods of data collection. The integration of large collections of detailed and timely 314 

trip and locational data offer the opportunity for accurate modelling of emissions that is highly 315 

temporally and spatially resolved.  (Vasantha Kumar and Vanajakshi 2014).  316 

Bluetooth and WiFi digital radio transmitters can be used to monitor vehicle movements. 317 

Transmitters are found in many mobile electronic devices, including hands-free speaker systems 318 

for mobile phones, headsets and music players. Each device broadcasts its unique Media Access 319 

Control (MAC) address. Bluetooth transmitters have ranges from 3 m (class 3 devices) to 100 m 320 

(class 1 devices). The signal can be detected at the roadside and successive readings processed to 321 

give information relating to speed and route (Bachmann, Abdulhai et al. 2013). WiFi, signals can 322 

also be used and that system has a faster discovery time (about 1 sec) than Bluetooth (almost 10 323 

sec) (Abedi, Bhaskar et al. 2013). There are a number of potential difficulties to be considered 324 

when using Bluetooth monitoring. There may be an uneven demographic distribution of 325 

Bluetooth devices in cars, a single device may be detected by multiple scans at busy locations and 326 

there are devices used outside motor vehicles by pedestrians, cyclists and on trains. The signals 327 

must be filtered to resolve these ambiguities (Abbott-Jard, Shah et al. 2013, Michau, Nantes et al. 328 

2013). Early implementations of speed detection with Bluetooth were cited as problematic, with 329 

automated number-plate recognition being more reliable at higher speeds (Abbott-Jard, Shah et 330 

al. 2013). However, Bluetooth has become widely adopted for traffic monitoring and 331 

management (Aliari and Haghani 2012, Bachmann, Roorda et al. 2013, Juster, Young et al. 2014, 332 

Smith, Hainen et al. 2014). It has been used to verify the accuracy of a large dataset of probe 333 

vehicle data (Kaushik, Sharifi et al. 2014) and to give cheap & cost-effective queue measurement 334 

(Alghamdi, Nadeem et al. 2014). The technology was used in Brisbane, Australia for modelling 335 

travel times, giving much better predictions than the historical average (Khoei, Bhaskar et al. 336 

2013) and in Lincoln, USA, increasing the accuracy of predictions over aggregated link and 337 

corridor travel times (Wu and Rilett 2014). Only limited numbers of signals from wireless devices 338 
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are needed to significantly increase the understanding of traffic flows. The South Australian 339 

Bluetooth system achieves a sample rate of about 15% of vehicles, better on arterial roads, 340 

mostly due to the presence of freight vehicles. The system is good enough that the Department 341 

of Planning, Transport and Infrastructure does not buy any external traffic data. It has been used 342 

for a number of purposes, including automated incident detection (AID) and to monitoring 343 

compliance with permits for traffic controls for roadworks. The department can see if traffic is 344 

being slowed down outside the times stipulated by a permit (Southern 2015). As far back as late 345 

2015, a number of private companies were already advertising Bluetooth systems for monitoring 346 

traffic and other purposes. 347 

Public concerns about privacy can potentially be an obstacle to the use of location technologies 348 

that scan private wireless devices. An EU project to develop collaborative transport emphasised 349 

the need to make efforts to gain the acceptance by travellers for the sharing of information 350 

required for many of the technologies (Penttinen, Diederichs et al. 2014). In an effort to avoid 351 

privacy concerns around the collection of data from privately owned wireless devices, real-time 352 

data from buses was used to estimate travel time for other vehicles on urban arterial routes 353 

(Vasantha Kumar and Vanajakshi 2014). Public concerns can also be addressed through 354 

education and the careful design of a system. The Bluetooth scanning system in South Australia 355 

automatically truncates scanned MAC addresses to make them anonymous and deletes them at 356 

the end of each day (Southern 2015).  However, local legislation may actually preclude use of the 357 

technology in some locations. For example, Bluetooth signals cannot be used to sense private 358 

vehicles in Western Australia (Maddock 2015). A recent study (Chong-White, Millar et al. 2014) 359 

examined the environmental benefits of the Sydney Coordinated Adaptive Traffic System 360 

(SCATS) system using traffic data from eTags (in-vehicle electronic wireless devices for toll 361 

system) on a stretch of Military and Spit Roads in Sydney. It was found that the system was 362 

effective in reducing travel times, but that emissions reductions were not consistent across the 363 
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network (Chong-White, Millar et al. 2013). The trial was abandoned due to privacy concerns with 364 

the eTag data.  365 

ITS can improve the reliability of data from loop detectors. The addition of information from 366 

only a few probe vehicles equipped with GPS and Bluetooth scanning can significantly improve 367 

traffic speed estimates (Bachmann, Roorda et al. 2013). The fusion of multiple mobile data 368 

sources, including sensors, probe vehicles, Bluetooth and GPS, increases the accuracy of 369 

estimates of traffic speed. With only 5% probe vehicles, the root mean square error can be 370 

reduced by up to 80%. There are a number of methods for combining data. A comparison tested 371 

five of these: distributed fusion, artificial neural networks, Kalman filters, fuzzy integrals and 372 

ordered weighting average. The methods were validated using a simulation model of a major 373 

freeway; the first three methods produced the best results (Bachmann, Abdulhai et al. 2013). 374 

Private businesses are becoming the source of ever-increasing amounts of data. INRIX Inc. is 375 

based in the USA that provides real-time traffic information in over 40 countries. The company 376 

claimed that as of January 2015, they were collecting information about roadway speeds from 377 

“over 185 million real-time anonymous mobile phones, connected cars, trucks, delivery vans and 378 

other fleet vehicles equipped with GPS locator devices.” By May 2018, this number had 379 

increased to over 300 million (INRIX 2018).  380 

 381 

3.5 Traffic simulation models 382 

Traffic models represent vehicle movements on a road network with varying levels of detail. 383 

There are many traffic models available, with updates and replacements constantly improving 384 

accuracy and versatility. A significant limitation to modelling efforts in many jurisdictions 385 

though, is the difficulty and expense in obtaining real traffic data for validation for more than a 386 

few major roads.  387 
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The level of detail used in traffic models depends upon the purpose of the modelling effort and 388 

the resources available. For example, in regional or national emissions inventories, results need 389 

to be comparable between jurisdictions, times and to be reproduced easily. These uses do not 390 

require resolution of seconds or tens of metres, so a strategy with a low to intermediate level of 391 

detail is generally used. Such macroscopic models may use analytical techniques such as fluid 392 

dynamics or simulations to model flows or platoons of traffic. Fine scale microscopic models 393 

(Table 2) deal with individual vehicles with second to second resolution or better. These are 394 

generally either cellular automaton models, where vehicles navigate according to rules with 395 

varying degrees of stochasticity, or car-following models, where vehicle to vehicle interactions 396 

are based upon differential equations. Mesoscopic simulations operate at an intermediate level of 397 

detail, lengths of road or groups of vehicles (Kokkinogenis, Sanchez Passos et al. 2011). Since 398 

the object of this review is the state of the science in modelling for cities, it focusses on 399 

microscopic modelling.  400 

Table 2. Popular microscopic traffic simulation software 401 

model name supplier model type 

Aimsun TTS Group, Singapore car following 

MAS-T2er Lab University of Porto, Portugal agent-based 

MITSIMLab MIT, USA agent-based, open source 

PARAMICS Pitney Bowes Software, UK car following, lane changing 

SUMO ITS, Germany car following, open source 

TransModeler Caliper Corp, USA car following 

TSIS-CORSIM McTrans Center, USA agent-based 

VISSIM PTV Group, Germany car-following 

TRANSIMS US EPA, USA agent-based, open source 

 402 
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In a traffic simulation, the smallest component of a road network is called a link. The number of 403 

links must be at least equal to the number of intersections. In addition, any changes in a road, 404 

such as a curve or gradient should be represented by a separate link. There is an upper limit to 405 

the resolution of a traffic simulation on a network, beyond which vehicle information can be 406 

missed. This is particularly the case for low traffic density. The length of a link must be sufficient 407 

that all vehicles can be detected over the duration of a model’s time step. The risk of a vehicle 408 

being missed is proportional to the traffic’s sparsity and speed; so the length of a link needs to be 409 

calibrated to traffic conditions and the simulation’s temporal resolution (Fontes, Pereira et al. 410 

2015). Long-run estimates of large areas can be challenging to calculate with such detailed 411 

models, because of the computational effort required (Fallah Shorshani, André et al. 2015). 412 

Microscopic traffic simulations provide detailed representations of network behaviour by 413 

modelling time-varying demand patterns and the choices and behaviours of individual drivers. 414 

Simulations represent all vehicles individually, typically with a one second resolution. Algorithms 415 

based upon evolutionary simulations can make decisions regarding route choices depending on 416 

time and toll cost. Results can be improved by including some degree of randomness in the 417 

calculations. This approach allows the fleet to respond to congestion in a realistic manner (Nagel, 418 

Kickhöfer et al. 2014, Barthélemy and Carletti 2017). Models are calibrated for local driving 419 

behaviours such as car-following and lane changing. Capturing details of instantaneous speeds 420 

and acceleration rates increases the accuracy of emissions estimates, because the quality and 421 

quantity of vehicle emissions change with deviations from a steady speed (Austroads 2006, Chen 422 

and Yu 2007). As congestion increases, so does the incidence of speed changes and the emission 423 

of CO and HC (Smit 2006). Lane changing behaviour can significantly change traffic flow, many 424 

models simplify the manoeuvre as an instantaneous transition, but it generally takes from 1 to 425 

16 s. In addition, the lane-changing behaviours of trucks and cars on arterial roads have been 426 

found to be so distinct that they needed to be modelled differently (Cao, Young et al. 2013).  427 
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Software is often used to improve the calibration process; for example W-SPSA, which includes 428 

a weighting matrix to allow for correlations between inputs, such as road sensor data (Antoniou, 429 

Lima Azevedo et al. 2015). Evolutionary algorithms can also be used for calibration. A study that 430 

used evolutionary algorithms for calibration of a county-wide simulation found that there was 431 

greater benefit to the accuracy of results by allocating effort to coding of the network and traffic 432 

demand, than to the calibration process (Smith, Sadek et al. 2008).However, other researchers 433 

found that dealing with easily identifiable errors in data markedly improved the results of a city-434 

scaled microscopic traffic model. Errors from sensors were a significant problem when using 435 

automated methods for calibrating model parameters and making estimations for OD matrixes. 436 

(Jha, Gopalan et al. 2004).  437 

There are a number of promising new approaches to traffic modelling in the literature. A 438 

Chinese study used a deep-learning-based predictive traffic model with large traffic datasets. A 439 

stacked autoencoder model learned generic traffic flow features; the method dealt with spatial 440 

and temporal correlations (Lv, Duan et al. 2015). Real-world mobile sensing data was used on an 441 

arterial road to estimate trajectories for the entire traffic population, as input to the CMEM 442 

emissions model. Adding random noise to the model’s cruise mode improved estimation results  443 

(Sun, Hao et al. 2015). 444 

To assist in selecting from the large range of models on offer, a meta-modelling technique has 445 

been used to compare and select models and to optimise parameters. Intelligent surrogate 446 

modelling tested models in univariate and multivariate frameworks (Vlahogianni 2015). 447 

Examination of emissions modelling of Brisbane traffic showed that the majority of errors 448 

occurred not in the model specification, but the input data, particularly related to congested 449 

conditions. The models performed well under free-flowing conditions, but errors increased in 450 

the transitions to congested and very congested conditions (Zhu and Ferreira 2013). 451 

 452 
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3.6 Emissions models 453 

Emissions models operate at the same range of scales as traffic models and similarly, over-454 

simplification leads to inaccurate results. The emissions from a vehicle are worst when the engine 455 

is started following an extended period of inactivity, so called “cold-starts.” The severity of 456 

pollution increases with the duration of standing or “soak” time (Gao and Johnson 2009). 457 

Formation of secondary organic aerosols (SOA) decreased by a factor of 3 to 7 times between 458 

cold-start and hot-start tests in light-duty petrol passenger vehicles. To make things worse, after 459 

three hours of oxidation in the atmosphere, the concentrations of SOA from cold-start running 460 

could measure up to six times the concentrations found in the primary emissions (Gordon, 461 

Presto et al. 2014). A study of the effects of the aggregation of inputs to models found that cold 462 

start emissions contributed 67% to total road HC emissions. The next most important factors 463 

were the season and vehicle registry data, such as vehicle types and model years (Sider, Goulet-464 

Langlois et al. 2015). Most emissions models include calculations that account for the age and 465 

structure of the fleet and meteorology.  466 

Other sources of emissions from vehicles include brakes, particles released by the shear forces 467 

between vehicle tyres and the road and the evaporation of fuel from fuel tanks and lines at raised 468 

temperatures. These sources were often neglected in early emissions models, but are increasingly 469 

included in updated versions (European Environment Agency 2007). Evaporative emissions in 470 

Europe range from less than 3% to around 16.5% of total non-methane volatile organic 471 

compounds (NMVOCs). These losses are mainly from petrol driven vehicles and have been 472 

decreasing in recent years with the use of control systems in newer models (Mellios and 473 

Ntziachristos 2012). Wet conditions should decrease tyre wear and new road surfaces increase 474 

wear (Mellios and Ntziachristos 2012). Not all of this material is airborne, so emission factors are 475 

required in models to calculate the contribution (European Environment Agency 2007).  476 
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Emissions factors are parameters used to calculate emissions for particular chemicals and 477 

particles in vehicle exhausts. Databases for vehicle emission factors are usually specific to their 478 

country or region, for example HBEFA, is a European database of emissions factors for all 479 

current vehicle categories. It incorporates factors for different driving conditions, hot/cold 480 

running and evaporative emissions. The emission factors are generated by emissions models 481 

validated with measurements in laboratories and on roads. Originally developed by agencies in 482 

Germany, Switzerland and Austria, now funded by the EU (ERMES 2015, HBEFA 2015). 483 

HBEFA has also been found to be suitable for the Chinese fleet and roads. The Chinese fleet 484 

has a similar composition to that of Europe, and the database was well suited to describe the 485 

emissions of traffic on urban infrastructure (Sun, Schmeid et al. 2014). Many measurements of 486 

vehicles are required to generate robust emissions factors, since even minor variations in testing 487 

procedures can result in different outputs from the same vehicle (Franco, Kousoulidou et al. 488 

2013). 489 

There are a small number of publicly available microscopic emissions models. MOtor Vehicle 490 

Emissions Simulator (MOVES) is the US Environmental Protection Agency (EPA) emissions 491 

model for mobile sources, designed for use at scales from national to project. The latest version 492 

(MOVES2014a) was released in November 2015 and there have been minor revisions since. It 493 

deals with on and off-road emissions and includes calculations for emissions of over 100 494 

compounds including those from fuel evaporation, brake and tyre wear. For details see 495 

(https://www.epa.gov/moves). Three simpler microscopic emission models (VT-Micro, EMIT 496 

and POLY) were ranked against CMEM, using the same input data from light-duty vehicles from 497 

four vehicle classes in two Chinese cities. Different models were found to have strengths in 498 

particular aspects, such as speed or better accuracy for certain pollutants (Ma, Lei et al. 2012). 499 

Some microscopic emissions models, such as CMEM deal with detail such as hot and cold 500 

running, but currently model only a few pollutants: NOx, total hydrocarbons, CO2, CO and do 501 

not consider emissions due to evaporation or brake and tyre wear. COPERT Street Level is a 502 
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more detailed version of the European emissions inventory software, COPERT (COmputer 503 

Programme to calculate Emissions from Road Transport, http://emisia.com/products/copert). 504 

It has similar resolution to MOVES and calculates the pollutants CO, CO2, NOx, PM and VOC. 505 

PARAMICS (PARAllel MICroscopic traffic Simulator, http://www.paramics-online.com) 506 

Monitor is an add-on for the PARAMICS traffic simulator, it models CO, CO2, total HC, NOx, 507 

PM and fuel consumption. There is also an add-on that couples the model to CMEM. The 508 

AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-Urban networks, 509 

https://www.aimsun.com) emissions model is easy to calibrate and implement, but the 510 

calibration may not apply well to conditions that differ from those of the calibration (Bover, Zhu 511 

et al. 2013). The TRANSIMS (TRansportation ANalysis and SIMulation System, 512 

https://transims-studio.soft112.com) system of models contains an emissions simulator. 513 

A preliminary study of an artificial neural network (ANN) approach to fuel and emissions 514 

modelling used 26 vehicles. (Dia and Boongrapue 2015). Results for fuel consumption had 96% 515 

to 98% accuracy; emissions data 70% to 97% accuracy; depending upon the pollutant modelled 516 

and the vehicle. To realise the potential of ANN in emissions modelling, it needs to be integrated 517 

with microscopic traffic models. 518 

The accuracy of all models is limited by the quality of the emissions factors used in their 519 

calculations. The accuracy of predictions of some regulated pollutant measurements is better 520 

than others. CO, NOx, total VOC, PM mass and CO2 are well understood as a function of 521 

driving conditions, due to the large number of measurements. Others have been less well 522 

evaluated: NO2, NH3, individual VOC, PAH, PM as a function of size and number, and heavy 523 

metals (Fallah Shorshani, André et al. 2015). The quality and quantity of the emissions of 524 

pollutants is related to the power output of a vehicle’s engine. A common method takes that data 525 

from a microscopic traffic simulation and uses it to calculate emissions using ‘vehicle specific 526 

power’ (VSP) (Fontes, Fernandes et al. 2014). For example, PΔP (engine power, and change in 527 
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engine power) software, based on drive cycles from a large database of Australian emissions 528 

tests. Validation gave average R2 values of 0.65 for NOx and 0.93 for CO2/fuel consumption 529 

(Smit 2013). However, some power-based models may not be sufficiently sensitive to the small 530 

changes in engine power that can have significant effects on emissions (Zhu 2015).  531 

Caution is required when selecting emission factors for use in models, particularly data from 532 

vehicle manufacturers. That data was suspect, even before the Volkswagen scandal (Boretti 533 

2017). Engineers at an independent European tester found that manufacturers’ tests 534 

underestimated exhaust emissions (Schmidt and Johannsen 2010). Car makers were shown to 535 

have manipulated load tests, estimates of vehicles’ rolling and wind resistance, to skew emissions 536 

tests by independent testers. Testers carried out alterations such as not charging the battery, 537 

over-inflating tyres, disabling power steering pumps and taping the edges of windows and other 538 

gaps to decrease wind and rolling resistance. When regular production vehicles were used 539 

instead, fuel economy was decreased by about 12%. The gap between advertised and actual fuel 540 

economy figures were as large as 50% (Dings 2013, Mock and German 2015). In the so called 541 

“Dieselgate” scandal, centred around Volkswagen, it was found that cars powered by diesel 542 

engines had been releasing NOx at a rate more than 4 times that allowed by European 543 

regulations. Modelling gave a median estimate of an additional 1,200 premature deaths, or 13,000 544 

life-years lost and 1.9 billion EUR in associated costs, across Europe caused by the extra 545 

emissions over the time these vehicles were being sold (2008-2015) (Guillaume, Robert et al. 546 

2017).  547 

 548 

3.6.1 Real time emissions data 549 

Real-time data is one of the major benefits promised by Intelligent Transport Systems (ITS) 550 

including connected, interacting sensors, controllers and vehicles. A service on the Google Maps 551 

platform, called “Emission Map,” used a combination of data from traffic loop sensors and 552 
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emission calculations from MOVES to give a visualisation of near real-time traffic emissions in 553 

Seattle, USA. It (Ma, Yu et al. 2012). 554 

An ever increasing range of technologies are being used in creative ways to calculate emissions. 555 

Radar speed detectors were used to reconstruct vehicle trajectories, which became the input to 556 

CMEM, to calculate the resulting emissions and fuel consumption (Chen, Yang et al. 2014). The 557 

GPS trajectories of 32,000 taxis over 2 months on a road network in Beijing were used to 558 

generate instantaneous information on fuel consumption and emission of vehicles. Where data 559 

was sparse, a Bayesian Network model, Traffic Volume Inference (TVI) was used to interpolate 560 

(Shang, Zheng et al. 2014). NOx was estimated from GPS tracks of vehicle movements via non-561 

linear optimisation (Chen, Bekhor et al. 2016). A Spanish study collected signals from on-board 562 

diagnostic systems in cars via mobile phones. The phones also collected GPS coordinates and 563 

the information was combined to give second by second trip and emissions data (Garcia-Castro 564 

and Monzon 2014). 565 

In a Belgian study, exposure of cyclists to black carbon was found to correlate with noise 566 

measurements (Dekoninck, Botteldooren et al. 2015). Another study measured personal 567 

exposure to microfine particles with personal monitoring. The measurements were made on 568 

repeated traverses (on different times of day, different days and different seasons) of a route that 569 

included well frequented urban microenvironments. It found the highest exposures from walking 570 

or biking along highly-trafficked routes and using public buses. Exposure to ultrafine particles 571 

was significantly lower in modern cars, with efficient filters and recirculated air (Spinazzè, 572 

Cattaneo et al. 2015). Personal exposure monitors are expensive, may be inaccurate or may not 573 

record locational information. To overcome these limitations, a study used smart phone tracking 574 

combined with estimates of ambient pollution concentrations to estimate personal exposure (Su, 575 

Jerrett et al. 2015).  576 

 577 
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3.7 Dispersion models 578 

Dispersion modelling is a complex science and the models can be very computationally intensive. 579 

For accurate prediction of the fate of the products of combustion, models must calculate not just 580 

dispersion, but also the complex chemical and physical transformations that occur over time. 581 

Dispersion of emissions near a source can be modelled by Gaussian models; these are of two 582 

main types, plume or puff. Plume models assume steady-state conditions; puff models simulate 583 

instantaneous releases in a changing environment and are computationally more demanding. A 584 

combination of the two approaches can give good results (Fallah Shorshani, André et al. 2015).  585 

The US EPA have a number of freely available atmospheric dispersion models, developed for a 586 

range of purposes. These include AEROMOD (continuously updated), a steady-state plume 587 

model that can deal with surface and elevated sources on all types of terrain. CALPUFF is a non-588 

steady-state puff dispersion model that includes the effects of terrain and meteorology and 589 

various transformations of emissions over time. CALINE3, a steady-state Gaussian dispersion 590 

model for highway pollution in relatively uncomplicated terrain and has calculations for traffic 591 

hot-spots and queuing; it allows for meteorological data input. CAL3QHCR is a carbon 592 

monoxide model with queuing at signalised intersections and hot spot calculations; it includes 593 

meteorological data as an input. The EPA also produces 15 alternative emission dispersion 594 

models of varying complexity. AEROMOD uses CAL3QHCR as a meteorological data pre-595 

processor and AERMAP as a terrain pre-processor. The Operational Street Pollution Model 596 

(OSPM, Aarhus University, Denmark) is a street canyon circulation model that accounts for 597 

building geometry and wind (Kakosimos, Hertel et al. 2010). Atmospheric Dispersion Modelling 598 

System - Roads (ADMS-Roads, Cambridge Environmental Research Consultants, Cambridge, 599 

UK) is an advanced dispersion model. R-LINE is a freely available research-grade dispersion 600 

model produced by the University of North Carolina and US EPA. MyAir is an EU model 601 

evaluation toolkit, it was used to compare the performance of four models in predicting the 602 
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dispersion of a tracer gas to a large array of sensors. ADMS-Roads, AEROMOD (volume 603 

source) and RLINE performed better than CALINE (Stocker, Heist et al. 2013).  604 

Recently, there has been an increasing popularity of computational fluid dynamics (CFD) models 605 

such as PHOENICS (Chen, Lu et al. 2017) and FLUIDITY (Aristodemou, Boganegra et al. 606 

2018) over the conventional Gaussian-type dispersion models. A CFD emission model was able 607 

to show detail such as eddies generated by cross-streets and increased concentrations of 608 

pollutants in the lower leeward sides of street canyons (Mumovic, Crowther et al. 2006). A study 609 

examined the dispersion and chemical interactions and of ultrafine particles (UFP) from vehicle 610 

exhaust-pipes to the near-road environment. The study used an aerosol dynamics-CFD coupled 611 

model. It was found that omitting atmospheric boundary layer conditions (wind profile and 612 

turbulence quantities) from activity-based emission models resulted in an overestimate of the 613 

dilution of emissions in the wake of vehicles. This led to a five-fold underestimate of the 614 

nucleation rate. (Huang, Gong et al. 2014). FLUIDITY is an open source simulator that 615 

incorporates an anisotropic adaptive unstructured mesh and large eddy simulations (LES). This 616 

approach improves predictions by increasing resolution where required and improving the 617 

representation of turbulence. The simulation was used to model the effects of increased building 618 

height on the distribution of traffic pollution. It was able to reproduce wind tunnel 619 

measurements well, with differences ranging from 3% to 37% (Aristodemou, Boganegra et al. 620 

2018) 621 

A microscopic dispersion model used the “Random Forest” ensemble learning method for 622 

predicting roadside concentrations of CO and NOx on four urban roads with 5 minutely 623 

resolution. This approach gave better results than an artificial neural network, which could not 624 

determine the relationship between the traffic and roadside air quality (Song, Wu et al. 2014). 625 

 In an Indian study, the US EPA’s Industrial Source Complex Short Term model (ISCST3) was 626 

used to attribute airborne PM10 pollution in Kanpur City to different sources, including 627 
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transport. GIS was used to break up the study area into 2 km x 2 km grids. Resolution could be 628 

adjusted to any time and space (Behera, Sharma et al. 2011).  629 

 630 

3.8 Summary & recommendations 631 

There are a number of microscopic models that will perform well, as long as the required input 632 

data is available. Table 3 lists shows combinations of models used in studies to estimate 633 

emissions and to evaluate methods to reduce exposure. For simulating traffic, SUMO is an open-634 

source model with excellent capabilities; it can represent car-following, lane-changing and 635 

signalised intersections. Commercial models, such as AIMSUN, VISSIM and PARAMICS also 636 

perform well and tend to have more polished user interfaces. There are fewer choices for 637 

emissions simulators; MOVES is very capable, well supported, comprehensive and widely used. 638 

Its popularity is in part due to its being required for compliance purposes in the US. There are 639 

also commercial emissions models; COPERT Street Level, PP and others built for the above 640 

commercial traffic simulators. Dispersion models are available for a range of applications from 641 

the US EPA website; for example: AEROMOD can be used for scales of up to 50 km. 642 

Commercial offerings include OSPM, to model dispersion in street canyons and there are 643 

versions of ADMS models for different scales. Promising developments include data-driven 644 

approaches to modelling emissions and CFD methods for dispersion. 645 

 646 

Table 3. List of recent studies using combinations of microscopic simulations to examine 647 

strategies to mitigate pollution 648 

topic related to 
emissions 

models used citation reduction in pollution  

effects of different driving 
behaviours 

VISSIM and CMEM (Chen and Yu 2007) 2.6 to 16.5%  
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strategies for high-occupancy 
vehicle (HOV) lanes 

PARAMICS and CMEM (Boriboonsomsin and 
Barth 2008) 

3 to 17%  

strategies for high-occupancy 
vehicle (HOV) lanes 

VISSIM and VSP (Fontes, Fernandes et 
al. 2014) 

37 to 43%  

Transit Signal Priority (TSP) 
system that prioritised buses 

PARAMICS and 
PARAMICS Monitor 
(emissions application) 

(Wijayaratna, Dixit et al. 
2013) 

-11%  

optimise signal timing on a 
large intersection 

VISSIM / SUMO and 
CMEM 

(Ma, Jin et al. 2014) 2.5 to 6.3%  

optimisation of signal timing VISSIM and CMEM (Stevanovic, Stevanovic 
et al. 2015). 

4.5%  
(fuel consumed) 

 

active speed management DRACULA* and non-
linear multiple regression 

(Int Panis, Broekx et al. 
2006). 

-1.1 to 1.2%  

active speed management SUMO and CMEM (Grumert, Ma et al. 
2015) 

3.8 to 8.0%  

use of ITS: variable message 
signs, highway advisory radio 

VISSIM, POLARIS (Auld, Karbowski et al. 
2016) 

2.5% 
(fuel consumed) 

 

different designs of 
intersections 

MOVES and 
AEROMOD 

(Qiu and Li 2015) 81.7%   

traffic pollution and 
dispersion 

PARAMICS, CMEM and 
AERMET 

(Amirjamshidi, Mostafa 
et al. 2013) 

1 to 12%  

license plate restrictions VISSUM and MOVES (Pu, Yang et al. 2015) 6.9%  
different lane configurations,
traffic management strategies  

TransModeler and 
MOVES 

(Xiong, Zhu et al. 2015) 0.22 to 0.72%  

mitigation of harm to 
vulnerable populations 

MOVES and RLINE 
(10 m spatial resolution) 

(Batterman, Ganguly et 
al. 2015) 

measures not quantified  

 649 

* Dynamic Route Assignment Combining User Learning and microsimulAtion, Institute for Transport 650 
Studies, University of Leeds, UK 651 

 652 

4 Conclusions 653 

The airborne emissions from traffic present significant, well established hazards to many of the 654 

people in cities. The current state of the science is able to model traffic emissions with very fine 655 

resolution. With the use of microsimulations, temporal resolution is typically one second and 656 

spatial resolution tens of metres. This detail is necessary because the chemistry of emissions 657 

changes rapidly over time and space. The most polluting phases of driving happen over short 658 

intervals, such as after starts and with the acceleration and deceleration of congested traffic. 659 

There are a number of software packages available for the various aspects of emissions 660 

modelling, both commercial and open source. New research is applying novel approaches, such 661 

as agent-based models, neural networks and ensemble learning to increase speed, detail and 662 
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scope. Models are used for evaluating mitigation measures, either managing the traffic to 663 

improve flow and minimise emissions, or separating people from the traffic with under or 664 

overpasses. The rate of data being produced from multiple types of road sensors is ever 665 

increasing. Vehicles are also tracked using wireless radio signals from mobile phones and other 666 

transmitting devices. Many cities integrate these multiple data streams in intelligent transport 667 

systems, reducing emissions by improving the effectiveness of road and transport networks. 668 

Information from ITS has also enabled the deployment of detailed real time traffic emissions 669 

models, offering the possibility for people to plan travel or close windows to avoid potentially 670 

harmful exposure. Spatially detailed simulations can be combined with demographic data to 671 

provide targeted information and risk analyses. Traffic emissions models have grown beyond 672 

only being tools for the planning of infrastructure, to versatile instruments that can inform many 673 

disciplines and help to improve the health of city-dwellers. 674 
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