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Abstract 

This paper extends previous approaches to meta-efficiency measures by incorporating meta-

frontiers using good-output, bad-output and by-production efficiencies to compare European 

and Asian airlines. We also examine whether the heterogeneity in environmental regulatory 

standards between these regions has emboldened Asian airlines to be less eco-friendly and/or 

more market-share seeking. We find that the environmental performance of European airlines 

improved continuously between 2007 and 2013, unlike their competitors in Asia. We argue 

that this improvement in the environmental performance of the European airlines could be an 

outcome of the European Emission Trading Scheme (ETS), which set incentives for European 

airlines to renew their fleets and optimise their operations. Our technological gap ratio 

estimates also point to some Asian airlines outperforming all other airlines on technological 

measures, indicating they operate in a more favourable business environment. Overall, our 

method contributes to the methodological enhancement of data envelopment analysis (DEA) 

and allows deeper insights into firm operations in general, and environmental efficiency 

analysis of European and Asian airlines in particular. 
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1. Introduction 

The aviation industry is a key enabler for the movement of passengers and freight around the 

world. It is a highly dynamic industry, and over the last 40 years has undergone a number of 

structural changes requiring significant adjustments to business models to ensure 

sustainability. The Asian region, led by China and India, has expanded rapidly and become 

the world’s largest aviation market with regard to international departures and international 

freight in the last decade (IATA, 2014a). In 2012, China was the second-largest domestic 

passenger air transport market after the US, with a remarkable growth rate of 9.5 per cent 

(IATA, 2013). Asian airlines also boasted the world’s highest margins and largest profits, 

despite a weakening of the freight segment since 2011 (ICAO, 2013). 

While economic growth has been immense, the ecological side of the aviation industry has 

been mainly ignored. Asian airlines have not faced the threat of serious ETSs, such as the 

existing ETS in Europe, and some countries (such as China) have even prohibited their 

airlines from participating in the EU ETS. Regions such as the EU are classified as being in 

IATA’s market evolution Phase 3: the market is large and demand is mature, with privatised 

companies operating in a deregulated market with minimal government intervention. Airlines 

in this classification are expected to be highly technically efficient, with competitive air ticket 

prices that are sensitive to changes in costs and low overall profit margins. In addition to high 

competitiveness and shrinking profit margins, EU airlines have also needed to adapt to 

increases in operating costs as they have improved their pollution efficiency to comply with 

ETSs from 2012 (IATA, 2011). IATA reports that the Asian region is in Phase 2 of its 

evolution, with rapidly increasing demand, a mixture of private and state-owned enterprises, 

and a highly regulated market with some degree of liberalisation. These factors should lead to 

decreasing prices and improvement in technical and profit-oriented efficiencies. 

We argue that the regulatory differences between Asia and the EU should result in Asian 

airlines to be less environmentally efficient and more technically efficient (to gain a larger 

market share and profit) than their European counterparts. If this is true, then the new ETSs or 

emission reduction regulations in the Asian region could negatively affect the performance of 

region’s carriers (see also Beltrán-Esteve and Picazo-Tadeo, 2015; Doganay et al., 2014). 

This is a crucial issue, because several Asian countries (such as Japan and Korea) have begun 

to include airlines in their current ETSs, or are designing new ETSs that include aviation 

emissions. For instance, Thailand’s planned 2017 ETS will put further pressure on Asian 

airlines to consider their carbon footprints. This study, therefore, compares the technical and 
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pollution-adjusted efficiencies of major Asian airlines on the cusp of ETS regulation with 

those of European airlines that have met EU ETS requirements since 2012 and are operating 

in a mature emissions trading market. 

Besides the difference in maturity and environmental consciousness, the EU and the Asian 

market share many similarities (more than other IATA-defined regions, such as North or 

South America or Africa) which further justifies a meaningful direct comparison. For 

example, their shares of the international aviation market for both freight and passengers are 

very similar: in 2013, Asia accounted for 29.3 per cent of the passenger market and 38.8 per 

cent of the freight market; while Europe accounted for 33.8 per cent and 38.8 per cent 

respectively (IATA, 2014b). Airlines from both regions face similar costs of capital, at 7.5 to 

8.3 per cent in Asia and 7.7 per cent in Europe (network/LCC in 2012).
1
 The cost of aviation 

fuel is a major expense for both regions, approximately 33 per cent of the total operating costs 

in 2013. Further, both regions have similar international passenger load factors: in 2012, 

passengers represented 78.0 per cent of international loads in Asia and 77.8 per cent in 

Europe (ICAO, 2013). These similarities allow this study to make meaningful insights into 

the technical and environmental efficiencies of these airlines relating to the life of older 

aircraft, and replacement policies or fuel substitutes such as biofuels, which will assist 

management decisions. Policy makers may also benefit from information to assist them drive 

ecological and technical improvements in the aviation sector. 

An important requirement in comparing heterogeneous decision-making units (here, Asian 

and European airlines) is the definition of an identical comparison basis. To this aim, Hayami 

and Ruttan proposed the concept of a meta-production technology to describe the ‘full range 

of alternatives … only partially available to individual producers in a particular country 

[region, in this study]’ (1970, p. 898). In other words, the meta-production function ‘can be 

regarded as the envelope of commonly conceived neoclassical production functions’ (Hayami 

and Ruttan, 1971, p. 82). It therefore provides tools for meaningful comparisons between 

different groups. The concept implies that all producers have potential access to the same 

technology. However, ‘specific circumstances such as the qualities and quantities of the 

natural endowments, the structure of relative prices of the inputs, and the basic economic 

environment’ may lead producers to operate on different local parts of the meta-technology 

(Lau and Yotopoulos, 1989, p. 242). Simply, producers do not operate on a universal (global) 

                                                 
1
 North America, in contrast, possesses 14.3 per cent of the passenger market and 21 per cent of the freight 

market. The cost of capital in this region is only 2−4 per cent which is significantly lower and different than 

those in Europe or Asia. 
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production function, but rather on restricted parts of the production function due to the 

adoption and diffusion of technology (Gunaratne and Leung, 1996). Recently, the concept of 

meta-production has been extended to stochastic frontier estimation (Battese and Rao, 2002; 

Battese et al., 2004). O’Donnell et al. (2008) also propose formulation in the case of a DEA 

framework. However, because meta-frontier estimation assumes that different existing 

technologies are combinable, some parts of the virtual global frontier can be infeasible, and 

not attainable by producers (Breustedt et al., 2007).
2
 Therefore, Breustedt et al. (2007) 

proposes the estimation of a less restrictive and non-concave meta-frontier to overcome this 

potential drawback of the classic meta-technology estimation. The inclusion of undesirable 

outputs in production technology models has been the subject of consideration discussion in 

the DEA literature (Dakpo et al., 2016). Suggested approaches include, for example, treating 

undesirable outputs as free disposable inputs (Hailu and Veeman, 2001), and considering 

them as outputs under the weak disposability assumption—WDA (Färe and Grosskopf, 2009). 

These do, however, have many limitations (Coelli et al., 2007; Murty, 2010; 2012; 2015; 

Salim et al., 2016). Murty et al.’s (2012) innovative by-production model, on the other hand, 

is grounded in solid theoretical reasoning: unlike the earlier approaches (pollution as input or 

as output under WDA) that use a single (equation) representation of a pollution-generating 

technology, the by-production approach is based on a multi-equation representation. It 

assumes one intended technology for the production of the good outputs and one unintended 

technology for the generation of pollution or undesirable outputs, so that the global 

technology lies at the intersection of the previous two technologies. This study uses the non-

parametric DEA method and proposes an extension of the by-production technology to the 

estimation of a non-concave meta-frontier in order to rank the airlines in both Asia and 

Europe.
3
 This new extension includes carbon dioxide equivalent (CO2-e) as an undesirable 

output in addition to a load measure. 

The paper is structured as follows: Section 2 provides a brief review of literature, while 

Section 3 outlines existing policies and regulations relevant to the study. Subsequently, 

methodology and data are presented in Section 4. Section 5 discusses the findings of this 

study, and concluding remarks are presented in Section 6. 

                                                 
2
 This case will be discussed later in the paper. 

3
 It is worth noting that the potential problem of DEA-based scores of efficiency to rank DMUs is that those 

scores are obtained with a different set of efficient units and different weights, which might render comparisons 

among inefficient units meaningless (Kao and Hung, 2005). However, our approach in this paper is not to 

establish a systematic ranking of airlines but to provide the magnitude of the inefficiencies in the best state of 

nature (even in the presence of ties). Besides, practically, it might be interesting to consider the projection that 

requires lesser effort for a firm to reach the production. We would like to thank the anonymous Reviewer for 

underlying this point. 
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2. Literature review 

Existing airline policy and operations literature does include comparisons between European 

and Asian airlines; however, analyses are limited, and are derived from studies that look at 

international carriers including carriers from these two regions. For example, Barbot et al. 

(2008) used DEA and the total factor productivity index for the year 2005 to analyse a sample 

of 49 airlines including eight Asian and 17 European full-service carriers (FSCs), finding that 

the north Asian and Chinese airlines were more technically efficient and effective than 

European airlines. Rey et al. (2009) decomposed the changes in productivity of 18 

international airlines including four Asian and seven European airlines over the period 1996 

to 2000. They found that Asian airlines were relatively more economically efficient than 

European and North American airlines, while the average productivity of the whole sample 

showed a general improvement over the study period. Michaelides et al. (2009) estimated the 

technical efficiency of 24 FSCs (including seven Asian, eight European and five US airlines) 

for the period 1991‒2000. They conclude that Asian airlines are the most technically efficient 

and, together with US airlines, more efficient than European airlines. Merkert and Hensher 

(2011) applied a two-stage DEA approach, with partially bootstrapped random effects and 

Tobit regressions to determine the efficiency of 58 passenger airlines (19 Asian, 18 European) 

over the two fiscal years of 2007–2008 and 2008–2009. Their findings, counter to the earlier 

studies, suggest that American and European airlines were on average more efficient than 

Asian airlines. Arjomandi and Seufert (2014) use bootstrapped DEA to assess the technical 

and environmental efficiency for 48 of the world’s major airlines (17 Asian, 16 European) for 

the period 2007‒2010. They found that Chinese and north Asian airlines were among the 

technically most efficient airlines worldwide; while in regard to environmental efficiency 

(considering CO2-e as bad output) European airlines ranked the highest. Chang et al. (2014) 

employ an extended environmental slacks-based measure DEA model with the weak 

disposability assumption for 27 international airlines (eight Asian, eight European) in the year 

2010 to identify their economic and environmental efficiency. Their findings suggest that 

Asian airlines are in general efficient, followed by European and American airlines. In their 

analysis, Chang et al. (2014) use fuel as input and CO2-e emissions as output.
4
 Cui and Li 

(2015) estimate the efficiency of 11 airlines (six Asian, three European) for the period 2008 to 

2011 using the virtual frontier benevolent DEA cross-efficiency model (VFB-DEA). Their 

findings suggest that capital efficiency had an impact on energy efficiency, and that Asian 

                                                 
4
 It is worth emphasizing that there is a direct correlation, by a factor around 3, between fuel and CO2-e 

emissions which may render difficult the environmental efficiency estimation under the assumption of fixed 

levels of inputs. 
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airlines were the most energy inefficient and the Global Financial Crisis impacted negatively 

on their environmental performance. Similar to Chang et al. (2014), the latter study uses fuel 

as an input and CO2-e emissions as an output. Wanke et al. (2015) show stagnated efficiency 

of 35 Asian airlines during the period 2006‒2012. These two studies highlight the structural 

differences and relative maturity of the European and Asian aviation market, which this study 

investigates further.  

In recent years, a new strand of the literature on airline performance has focused on the 

network DEA efficiency of companies. For instance, Mallikarjun (2015) has examined the 

efficiency of US airlines considering three different stages of production (operations, services 

and sales). This network scheme was extended to a virtual frontier network slack-based 

measure by Li et al. (2015) to evaluate energy efficiency of 22 international airlines. In terms 

of environmental impacts, Li et al. (2016a) considered the greenhouse gas emissions to 

evaluate the network efficiency of the inclusion of aviation into the EU ETS. Li et al. (2015 

and 2016a) assumed both weak and strong disposability for analysing undesirable outputs, 

revealed that European airlines have a higher average efficiency than non-European airlines. 

Cui et al. (2016a) also conducted a similar exercise using a network range-adjusted measure 

assuming both strong and weak disposability for detrimental outputs (see also Li and Cui, 

2017a). In the same vein, Cui and Li (2016) considered two stages in their network 

framework (the operations and carbon abatement stages) to examine the energy efficiency of 

22 international airlines. Consistent with the previous network studies, Cui and Li (2016) 

found higher average efficiency for European airlines compared with non-European airlines.
5
 

Also very recently, Cui and Li (2017b; 2017c) and Li and Cui (2017b) employed different 

network models to predict the impact of the Carbon Neutral Growth from 2020 (CNG2020) 

strategy on airline efficiency performance.  

A number of recent studies have also employed dynamic models to investigate the 

performance of international airlines. Li et al. (2016b) explored the energy efficiency of 

international airlines using a virtual frontier dynamic range-adjusted measure over the period 

from 2008 to 2012. Their model was based on the classic DEA models that treat capital stock 

as the dynamic factor or carryover effect. Wanke and Barros (2016) adopted the model 

introduced by Li et al. (2016b) to investigate efficiency of Latin American airlines. Cui et al. 

(2016b) use a virtual frontier dynamic slacks-based measure to estimate airline energy 

efficiency and discuss the impacts of some external factors. Cui et al. (2016c) then introduced 

                                                 
5
 See also Xu and Cui (2017) for a four-stage network analysis of 19 international airlines. 



7 

 

two dynamic environmental DEA models to analyse the effect of the emission limits on 

airline efficiency. Cui et al. (2016c) showed that the emission limits play a certain positive 

role in the sustainable growth of the large network carriers. Cui and Li (2017a) proposed a 

dynamic epsilon-based measure to evaluate efficiencies of 19 international airlines during 

2009–2014. They found Scandinavian, Emirates and Cathay Pacific as the most efficient 

airlines among others.  

Overall, the studies outlined here assume that airlines from different regions of the world 

share the same production technology and face similar environmental conditions. However, as 

mentioned previously in this paper, this may not be the case, and heterogeneous production 

technologies need to be properly taken into account. Therefore, to avoid this issue in our 

comparison of Asian and European airlines, we consider local frontiers and meta-frontiers. 

Further, this paper extends the literature treating CO2 as a negative output. In his recent 

survey of alternative methodologies and empirical analyses for airline performance, Yu stated 

that ‘environmental efficiency now becomes an important area of airline productivity and 

efficiency studies, focusing on CO2 emission as a negative or undesirable output’ (Yu, 2016: 

p.11). This paper builds upon this body of literature by offering additional insights on the 

inclusion of undesirable output in the efficiency measurement of airlines. For this aim, we 

also provide an extension of the by-production technology to the estimation of a non-concave 

meta-frontier. 

3. Methodology 

Since the seminal work of Farrell (1957) and the development of the distance function 

approach (Shephard, 1970), nonparametric DEA efficiency evaluation has required 

homogeneity in the decision-making units (DMUs) under evaluation (Charnes et al., 1978). 

However, the production units involved in a particular economic activity usually face 

different constraints and opportunities (different environmental characteristics) and hence 

adopt specific technology sets (Arjomandi et al., 2015; Salim et al., 2016; Thilakaweera et al., 

2016; Le, et al.,2017). In such cases, measuring efficiency using predominantly exogenous 

environmental factors may result in inaccurate and misleading results (Daraio and Simar, 

2007). To overcome this situation and obtain comparable technical inefficiencies, the meta-

frontier developed by Battese and Rao (2002), and extended to the DEA case by O’Donnell et 

al. (2008), is used in this study.
6
 We have extended this meta-frontier by incorporating the by-

                                                 
6
 Although the concept of meta-production can be dated to the end of the 1970s, its introduction in performance 

evaluation is recent. 
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production technology, thereby accounting for the presence of undesirable outputs. To do this, 

we estimate different production frontier technologies relative to the homogeneous groups 

and then estimate an appropriate meta-technology that will envelop all the group-specific 

frontiers. An interesting feature is that to compare DMUs, inefficiencies can be decomposed 

into two components: the technology gap ratio and the group-specific technical inefficiency. 

The former captures the role of the environment on the production technology and then refers 

to the inefficiency relative to the best available technology,
7
 and the latter is the traditional 

technical inefficiency measured in a particular group of DMUs. 

Let 𝑥 represent a vector of inputs (𝑥 ∈ ℝ+
𝑃 ) used to produce 𝑦 and 𝑏, which are respectively a 

vector of good outputs (𝑦 ∈ ℝ+
𝑆 ) and a vector of bad outputs (𝑏 ∈ ℝ+

𝑅). 𝑄 denotes the number 

of total DMUs. The DMUs can be split into 𝑁 homogeneous groups, each with 𝑄1, … , 𝑄𝑁 

DMUs. The technology of group 𝑘 of firms can be represented by: 

 𝑇𝑘 = [(𝑥, 𝑦, 𝑏)| 𝑥 can produce 𝑦 and 𝑏 in group 𝑘]  (1) . 

The meta-technology can be expressed as: 

 𝑇 = [(𝑥, 𝑦, 𝑏)| 𝑥 can produce 𝑦 and 𝑏 for all the sample]  (2) . 

and 𝑇 = 𝑇1 ∪ … ∪ 𝑇𝑁. 

As pointed out in Tiedemann et al. (2011), the common meta-technology estimated as a 

pooled of all technologies may provide erroneous results because of the presence of infeasible 

inputs–outputs bundles. This situation is depicted in Figure 1, where the meta-technology is 

estimated as if the DMUs formed a single group. 

                                                 
7
 Note that it is assumed that all the production entities have potential access to all the available technologies. 
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Figure 1: Concave meta-frontier adapted from Tiedemann et al. (2011, p. 578) 
 

The infeasible sets of inputs–outputs combinations are represented by the triangle ABC, 

where no inputs or outputs are feasible by either the technology of the Group 1 or the 

technology of the Group 2. So, a chosen DMUM is projected on the meta-frontier in point D, 

which is not accessible by any of the group specific technology. Tiedemann et al. (2011) refer 

to this situation as the concave meta-frontier; while Huang et al. (2010) propose the term 

‘pooling frontier’. Under this pooled technologies assumption, the production frontier is 

estimated for the specific group with respect to the regularity conditions. The proposed 

solution to overcome the weakness of the concave meta-frontier is to estimate a non-concave 

meta-technology, as sketched in Figure 2. 
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Figure 2: Non-concave meta-frontier, Tiedemann et al. (2011, p. 578) 

 

Empirically, the solution resolves in a two-stage procedure: in a first step, the efficiency of 

the DMU 𝑀 is estimated under its group frontier (let’s assume this is Group 1). Its output 

technical efficiency equals 𝑇𝐸1 = 𝑂𝑀
𝑂𝑀∗⁄ . Then, in a second stage, the efficiency is 

evaluated under an alternative technology (Group 2 frontier). The efficiency is computed as 

𝑇𝐸2 = 𝑂𝑀
𝑂𝑀∗∗⁄ . If 𝑇𝐸2 <  𝑇𝐸1, then the DMU 𝑀 can still improve the optimal output level 

given the vector of inputs by the adoption of the best available technology in its production 

environment (the technology of Group 2). The meta-efficiency score is obtained by 𝑇𝐸𝑀 =

𝑇𝐸2. As previously mentioned, the meta-efficiency score can be decomposed into two parts: 

the technology gap ratio (TGR) and the group specific efficiency. Then, for the DMU 𝑀 we 

have: 

 𝑇𝐸𝑀 = 𝑇𝐺𝑅 ×  𝑇𝐸1 (3) . 

The 𝑇𝐺𝑅 therefore captures the potential efficiency improvement achievable by an airline 

evolving in a better environment. The group specific efficiency is related to the improvement 

within a homogeneous group of airlines. To go further, an extension which we term here as 

the ‘mixed group efficiency’ (MGE) has been proposed by De Witte and Marques (2009) to 

complete the 𝑇𝐺𝑅 and give more insightful information. For the DMU 𝑀 we have: 
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 𝑀𝐺𝐸 =  𝑇𝐸𝑀 ×  𝑇𝐸1 (4) . 

This new ratio is a combination of a ‘between’ and a ‘within’ efficiency score (a mix of meta-

frontier and group frontier efficiencies). 𝑀𝐺𝐸 then measures an overall efficiency accounting 

for environmental or technology differences. As underlined in De Witte and Marques (2009), 

𝑀𝐺𝐸 will identify the degree of inefficiency if the group specific inefficiency is unchanged, 

and if airlines face a similar environment.  

 

We have adapted all the above developments to the by-production approach of Murty et al. 

(2012). 

The by-production meta-technology 

Frisch (1965) provided some ideas on the representation of complex production system. 

According to Frisch, multi-output complex systems cannot be represented by a single 

functional form but by many relations linked together by what he called factor bands or 

product couplings. The factor bands sketch the relationships between inputs independently of 

outputs, while the product couplings describe relations between outputs independent from 

inputs. These ideas have recently been incorporated in new approaches to representing 

pollution-generating technologies in multi-equation modelling (Førsund, 2009; 2017). Here 

we combine the by-production approach developed by Murty et al. (2012) and the ideas 

discussed above to define a global technology that lies at the intersection of two sub-

technologies: one for the production of good outputs and the other for the generation of bad 

outputs. 

 T = 𝑇𝑔 ∩ 𝑇𝑏 (5) . 

In the non-parametric framework of DEA the different sub-technologies can be represented 

under a variable returns-to-scale assumption as:
8
 

                                                 
8
 The returns-to-scale assumption is considered as many airlines do not operate at optimal scale and face 

regulations, imperfect competition and finance constraints. This assumption helps comparing operating firms of 

different sizes. 
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 𝑇𝑔 = [(𝑥, 𝑦, 𝑏) ∈ ℝ𝑃+𝑆+𝑅 |  ∑ 𝜆𝑖𝑥𝑖

𝑄

𝑖=1

≤ 𝑥 ;  ∑ 𝜆𝑖𝑦𝑖

𝑄

𝑖=1

≥ 𝑦 ;  ∑ 𝜆𝑖

𝑄

𝑖=1

= 1] (6) . 

and  

 𝑇𝑏 = [(𝑥, 𝑦, 𝑏) ∈ ℝ𝑃+𝑆+𝑅 |  ∑ 𝜇𝑖𝑥𝑖

𝑄

𝑖=1

≥ 𝑥 ; ∑ 𝜇𝑖𝑏𝑖

𝑄

𝑖=1

≤ 𝑏 ;  ∑ 𝜇𝑖

𝑄

𝑖=1

= 1] (7) . 

The technologies in (6) and (7) describe the whole sample and they can be easily written for 

each specific group of DMUs. 

Murty et al. (2012) propose to represent the global technology as follows: 

 

T = [(𝑥, 𝑦, 𝑏) ∈ ℝ𝑃+𝑆+𝑅 |  ∑ 𝜆𝑖𝑥𝑖

𝑄

𝑖=1

≤ 𝑥 ;  ∑ 𝜆𝑖𝑦𝑖

𝑄

𝑖=1

≥ 𝑦 ;  ∑ 𝜆𝑖

𝑄

𝑖=1

= 1 ; ∑ 𝜇𝑖𝑥𝑖

𝑄

𝑖=1

≥ 𝑥 ;  ∑ 𝜇𝑖𝑏𝑖

𝑄

𝑖=1

≤ 𝑏 ;  ∑ 𝜇𝑖

𝑄

𝑖=1

= 1 ] 

(8)  

In (8), the two sub-technologies are represented with two distinct intensity variables (𝜆, 𝜇). In 

the good outputs sub-technology 𝑇𝑔, classic regularity conditions such as like the free 

disposability of inputs and outputs are imposed. However, under the bad outputs sub-

technology 𝑇𝑏, the bad outputs satisfy the costly disposability assumption and the polluting 

inputs violate the free disposability assumption (Murty et al., 2012). Costly disposability 

implies that given a level of polluting inputs, there is a minimal level of pollution that can be 

generated, and the presence of technical inefficiencies can lead to the generation of higher 

levels of pollution. 

Graphically, the good output frontier is concave while the bad output one is convex (see 

Figure 3). The form of this latter frontier systematically stems from the costly disposability 

assumption.
9
 For an inefficient 𝐷𝑀𝑈𝑎, its corresponding dominating observations are 

                                                 
9
 On Figure 3, for simplicity, we have chosen to put the good output frontier above the bad output one. 
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obtained by a projection towards the north-west part of the frontier associated with the good 

outputs sub-technology (𝑇𝑔). Under the bad outputs sub-technology (𝑇𝑏), the projection is 

directed towards the south-east part of the frontier. Clearly under 𝑇𝑏 the dominating 

observations of an inefficient observation use more inputs to generate less pollution, recalling 

Sueyoshi and Goto’s (2012) ‘managerial disposability’, the ability of firms to increase inputs 

and simultaneously decrease their level of emissions. Such an outcome could only be feasible 

through managerial efforts or adaptive strategies to a political environment.
10

 Intuitively, an 

increase in inputs may result in an increase of good outputs in line with the Porter hypothesis 

(Porter and van der Linde, 1995), however, this is beyond the scope of this paper. 

 

Figure 3: The by-production representation  

 

Murty et al. (2012) suggest that an efficiency score (𝐸𝐹𝐹𝑏𝑦) can be derived as an extension of 

the Russell index proposed by Färe and Lovell (1978): 

 
𝐸𝐹𝐹𝑏𝑦(𝑥, 𝑦, 𝑏; T) =

1

2
min
𝜃,𝜔

[
∑ 𝜃𝑠𝑠

𝑆
+

∑ 𝜔𝑟𝑟

𝑅
 | (𝑥, 𝑦 ⊘ 𝜃, 𝜔 ⊗ 𝑏)

∈ T] 
(9) . 

where 𝑦 ⊘ 𝜃 = (𝑦1/𝜃1, … , 𝑦𝑆/𝜃𝑆) and 𝜔 ⊗ 𝑏 = (𝜔1𝑏1, … , 𝜔𝑅𝑏𝑅). 𝜃𝑠 is the efficiency score 

for good output 𝑠 (𝜃 ≤ 1) i.e. the ratio of the observed good output to the maximum 

                                                 
10

 Sueyoshi and Goto (2012) have also discussed the ‘natural disposability’ which corresponds to the situation 

where firms decrease their inputs in order to reduce pollution. 
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attainable good output, 𝜔𝑟 is the efficiency score for bad output 𝑟 (𝜔 ≤ 1) i.e. the ratio of the 

minimum attainable bad output to the observed bad output level, and T is the technology 

described in (8). Basically, if for instance 𝜃1 = 0.9 this means that the evaluated observation 

is at 90% of the potential production of output 1, besides if 𝜔1 = 1.15 then the evaluated firm 

generates 15% more bad output 1 yet it can offset this extra production without deteriorating 

the level of good outputs. The interpretation of 𝜃𝑠 and 𝜔𝑟 is similar for all the outputs. More 

simply equation (9) can be rewritten as follows: 

 

𝐸𝐹𝐹𝑏𝑦(𝑥, 𝑦, 𝑏; T) =
1

2
min

𝜃
[
∑ 𝜃𝑠𝑠

𝑆
 | (𝑥, 𝑦 ⊘ 𝜃, 𝑏)

∈ 𝑇𝑔] +
1

2
min

𝜔
[

∑ 𝜔𝑟𝑟

𝑅
 | (𝑥, 𝑦, 𝜔 ⊗ 𝑏) ∈ 𝑇𝑏] 

 

(10) . 

 
𝐸𝐹𝐹𝑏𝑦(𝑥, 𝑦, 𝑏; T) =

1

2
[𝐸𝐹𝐹𝑏𝑦

1 (𝑥, 𝑦, 𝑏, 𝑇𝑔) + 𝐸𝐹𝐹𝑏𝑦
2 (𝑥, 𝑦, 𝑏, 𝑇𝑏)] =

1

2
[𝛽𝑔 + 𝛽𝑏]

= 𝛽 
(11) . 

𝛽𝑔 is the average good output efficiency score while 𝛽𝑏 is the one corresponding to the 

generation of bad outputs (𝛽𝑔 =
∑ 𝜃𝑠𝑠

𝑆
∧ 𝛽𝑏 =

∑ 𝜔𝑟𝑟

𝑅
). 𝑇𝑔 and 𝑇𝑏 represent the technologies 

described in (6) and (7), respectively. 

Given the simplification of the efficiency computation as displayed in (11), where operational 

and environmental efficiencies are computed relative to their respective independent sub-

technology, our meta-frontier expansion (contribution) can be easily implemented. For each 

sub-technology, we build a non-concave ‘meta-sub-frontier’ and for the global technology, 

we evaluate the performance as the arithmetic mean of two efficiency scores (as in (11)). 

4. The data 

To analyse airline efficiency it is essential to choose the most suitable combinations of both 

inputs and outputs. Differences such as Asian airlines’ comparatively lower labour expenses 

and lower tax and fuel expenses in the Middle East can result in different input units (Greer, 

2009). Therefore, this study chose only physical measures as inputs and outputs. To ensure 
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accuracy, we triangulated the input and output data provided by RDC Aviation 

(www.rdcaviation.com) and triangulated for accuracy with annual reports and other publicly-

available resources. To further ensure homogeneity, we focus only on FSCs. Therefore, this 

sample comprises seven European FSCs (Lufthansa, British Airways, Air France, KLM Royal 

Dutch Airlines, Iberia, Virgin Atlantic Airways and Alitalia)
11

 and fourteen Asian FSCs 

(Cathay Pacific Airways, Singapore Airlines, Korean Air, Air China, Thai Airways 

International, China Southern Airlines, China Airlines, China Eastern Airlines, Japan Airlines 

International, Eva Air, Asiana Airlines, All Nippon Airways, Malaysia Airlines and Air India) 

over the period 2007‒2013. Here we include the largest full service airlines of each region; 

the meta-frontier analysis enables us to compare these companies irrespective of group size. 

With regard to the study period we choose to focus on the period 2007 to 2013 as year 2007 is 

before the mandatory inclusion of Airlines into the EU ETS in 2012 and even before the 

initial EU parliament conversation for including airlines in the ETS, in 2009. 2013 is the last 

year of the analysis, as 2014 saw the first commercial biofuel-powered flights (50 per cent 

biofuel and A1 jet fuel). This would need additional requirements on the model, while we 

were not able to access information on biofuel use of individual airlines.
12

  

Our selected inputs and outputs have a strong foundation in the existing DEA airline 

efficiency and productivity literature (Arjomandi and Seufert, 2014; Barla and Perelman, 

1989; Charnes et al., 1996; Greer, 2006; Inglada et al., 2006). This study employs labour and 

capital as major inputs and tonne kilometres available (TKA) and CO2-e emissions as outputs 

(Table 1). Labour is measured as the number of full-time equivalent flight staff, such as pilots 

and flight attendants, who represent the major business function of an airline.
13

 To measure 

capital we use Coelli et al’s, (1999, p. 262) widely-applied definition: the ‘sum of the 

maximum take-off weights of all aircraft multiplied by the number of days the planes have 

been able to operate during a year (defined as the total number of flying hours divided by 

average daily revenue hours)’. This definition of capital prevents the inclusion of performance 

biases, which could arise from aircraft maintenance and other external factors. It has been 

used in several studies (e.g. Barla and Perelman, 1989; Coelli et al., 2002; Coelli et al., 1999; 

Ray, 2008) mainly because of the high degree of complementarity between fuel consumption 

and the capital (that is more than 0.95 in our case) and also when the consistency of fuel 

                                                 
11

 Turkish Airlines, even though geographically located in Europe, is not included in this study, as it is not a 

member of the EU and therefore not subject to the EU ETS. 

12
 Also see recent study of Seufert et al. (2017) which highlights that it is meaningful to study the efficiencies of 

major international airlines during this period. 
13

 See Coelli et al. (1999) and Greer (2008) for an in-depth explanation of this input. 



16 

 

consumption data is a concern (Coelli et al., 1999). TKA, defined as the number of tonnes 

available for the carriage of revenue load (passengers, freight and mail) on each flight 

multiplied by the flight distance, is used as the good output in this study. According to Barla 

and Perelman (1989), Coelli et al. (1999) and Inglada et al. (2006), TKA is not influenced by 

the efficiency of airline marketing and is a capacity indicator; therefore, TKA can be seen as a 

reliable output measure (Greer, 2009; Seufert et al., 2017).  

Table 1. Descriptive statistics of the inputs and outputs over the period of study (2007-2013) 

Variable  Minimum Maximum Mean Stand. Dev. Relative Stand. Dev. 

ALL AIRLINES-147 observations      

The inputs       

Number of Employees  1.66  25.51 8.67 5.29 0.61 

Capital 1.95  15.40 6.99 3.50 0.50 

The outputs      
 

TKA  23.33  191.12 87.21 45.52 0.52 

CO2-e (undesirable output) 2.76  22.09 8.80 4.69 0.53 

ASIAN AIRLINES-98 observations 
 

    

The inputs      

Number of Employees  1.66 19.02 7.37 3.85 0.52 

Capital  2.17 13.69 6.10 2.65 0.43 

The outputs       

TKA  26.37 175.89 74.52 33.88 0.45 

CO2-e (undesirable output) 2.76 13.10 7.40 3.01 0.41 

EUROPEAN AIRLINES-49 observations 
 

    

The inputs       

Number of Employees 1.75 25.51 11.27 6.69 0.59 

Capital 1.95 15.40 8.77 4.28 0.49 

The outputs       

TKA  23.33 191.12 112.59 54.73 0.49 

CO2-e (undesirable output) 3.69 22.09 11.58 6.06 0.52 

Notes: Number of employees is measured as full-time equivalent staff expressed in thousands. The presented 

values of number of employees are divided by 1000. Capital is the sum of the maximum take-off weights of all 

aircraft multiplied by the number of days the planes have been able to operate during a year (defined as the total 

number of flying hours divided by average daily revenue hours) and is divided by 10
12

. TKA is the number of 

tonnes available for the carriage of revenue load (passengers, freight and mail) on each flight multiplied by the 

flight distance and is divided by 10
12

. CO2-e represents the tonnes of Carbon Dioxide equivalent emitted by each 

airline for their flight business and is divided by 10
6
. 

With regard to CO2-e, there are currently no economic viable alternatives to the combustion 

of aviation fuels. As CO2-e emissions are a direct result of flight activities, CO2-e is used here 

as a bad output in airline performance. The CO2-e data from RDC is calculated based on 

airplanes’ fuel consumption, the sectors served and the schedule of all flights from each 

airline. The modelled CO2-e figures provide significant benefits over those figures from 
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annual reports or other company-originated information: modelled data excludes exogenous 

factors such as pilots’ choices in routes, weather impacts, taxing on crowded airports and so 

on, which could affect the CO2-e emissions of a particular airline, but is out of its control. 

Also, a single data source is superior to separate data from each airline, as assumptions and 

measurements are unified and consistent. Descriptive statistics for all the inputs and outputs 

are given in Table 1. The figures in this table reveal that, based on the inputs and outputs, 

European airlines are larger businesses than Asian airlines. 

5. Empirical results 

Although the data covers a seven-year period from 2007 to 2013, the analyses have been 

conducted using a pooled frontier (that is, one frontier for the whole period). This means that 

we do not consider technological progress and all the changes that occur are attributed to 

technical efficiency alone. This stringent assumption was governed by the data size (seven 

European and 22 Asian airlines). Since DEA is a nonparametric approach, it has a very slow 

convergence rate and therefore is sensitive to the sample size and the dimension of the 

analysis (Daraio and Simar, 2007). We therefore choose to pool all the data to increase the 

discrimination power in our analysis. Our choice is also strengthen with the recent study of 

Lee et al. (2016) that also considered CO2 emissions in a productivity decomposition of many 

international airlines.
14

 They found technical change was statistically insignificant, and 

suggested that ‘because airlines face high operational costs, there is very little incentive to 

upgrade technologies’ (Lee et al., 2016, p. 14). 

While it is of common practice to compare groups of different sizes in the meta-frontier 

framework (Du et al. 2014; Oh, 2010; Oh and Lee, 2010; Mulwa and Emrouznejad, 2013), 

Zhang et al. (1998) have argued that efficiency scores tend to be higher when the number of 

units is lower (see also Staat, 2001). Accordingly, one has to be careful when comparing 

average efficiencies of samples with different sizes. We have therefore estimated bias-

corrected efficiency scores in this study which account for sampling variations (Simar and 

Wilson, 1998). For this purpose, we have adopted the sub-sampling technique discussed in 

Simar and Wilson (2011) which consists of drawing (with replacement) a sample of size 

m < Q (where Q is the total sample size) and computing the whole sample’s the efficiency 

score using the new benchmark (sample of size m). This process is conducted B = 2000 

times. Besides, several values of m are considered (from 5% to 95% of the total sample size 

                                                 
14

 Lee et al. (2016) have used the weak disposability assumption to treat undesirable outputs. 
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with a 5% step). To retain a specific value for each observation we minimized the volatility 

criteria (standard deviation) following Politis et al. (2001) and Bickel and Sakov (2008). 

Using sub-sampling may in some cases result in infeasibility in the efficiency score 

estimation as the evaluated observation may not be in the benchmark of size 𝑚 < 𝑄. Lee and 

Zhu (2012) and Lee et al. (2011) are followed in this study for correcting such infeasibilities. 

Tables 2 to 5 report the bias-corrected good-output, bad-output, and by-production 

efficiencies for major Asian and European airlines. For the sake of saving space, bias-

corrected efficiency estimates of only three individual years (2007, 2010 and 2013) for all 

airlines and mean efficiencies are presented in Tables 2 to 4 and in Table 5, respectively.
15

 

For each of the three measures, the following scores are also provided: meta-efficiencies 

(TE_M), group-specific efficiencies (TE1), efficiencies with reference to the other group 

(TE2), the technology gap ratios (TGR) and the mixed group efficiencies (MGE). In Tables 2 

to 4, airlines in each group are ordered based on their capital size. 

As mentioned earlier, the TE1 values show the relative efficiencies of individual airlines in 

comparison with their own group members. Thus, the results listed in TE1 columns of Tables 

2 to 4 give us a general idea about the best and worst performers of each specific market 

based on by-production, good-output and bad-output technologies. In Europe, Air France and 

British Airways fall into the top three-most-efficient airlines class in most of the years in 

terms of their by-production efficiencies. Lufthansa and Alitalia were found to be in the class 

of the three least (by-production) efficient European airlines in at least six years between 2007 

and 2013. In Asia, based on the similar criteria (number of years being among the top-three or 

the worst-three performers based on by-production efficiencies), Cathay Pacific Airways, 

Singapore Airlines and Air India can be seen as the most efficient airlines, and All Nippon 

Airways, Asiana Airlines and Japan Airlines International as the least efficient. 

Columns named TE2 and TGR in Tables 2 to 4 show the efficiencies of individual airlines 

with reference to the other groups’ technology and the technology gap ratios, respectively, as 

detailed in the methodology section. In the case of Asian airlines, almost all the TGRs equal 

unity (in all the years) indicating that some of the Asian airlines have technologically 

dominated the European airlines, and hence made the Asian group’s technology a major part 

of the meta-frontier technology. Such airlines have TE2 values greater than unity: their 

efficiency values show that these airlines can decrease their output but still be efficient in 

comparison with the airlines in the technology reference group (namely European airlines). 

                                                 
15

 The results of years 2008, 2009, 2011, and 2012 can be provided upon request. 
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For by-production technology, among the Asian airlines, Singapore Airlines, Eva Air, Air 

India and Asiana Airlines have TE2 efficiency scores greater than unity in most of the years 

when compared with the European airlines group’s technology. In the European region, Air 

France and Lufthansa constantly demonstrate TE2 efficiencies greater than one. The 

remaining airlines (in both regions) with unity TGR but TE2 lower than one still have the 

potential to improve their outputs based on the inputs that they are using. 

Table 5 reveals that Asian airlines outperformed European airlines on average, for good-

output TE_M in all years except 2007. However, European airlines show higher means of bad-

output TE_M and by-production TE_M between 2011 and 2013 in comparison with those of 

the Asian airlines.  

Before reaching a conclusion about the differences in the results for Asian and European 

airlines, there are two points worth noting about the reasons why the European airlines are 

technologically dominated by some of Asian airlines. First, the heterogeneity in the business 

environments and regulatory policies for these two regions, may favour Asian airlines and not 

reflect airline management. As a result of the EU ETS, European airlines are economically 

more limited to an increase in their TKA while keeping their profitability. Second, unlike 

Asian airlines, European airlines face constraints on growth and efficiency gains due to 

limited airport capacities and congested airspace in Europe. Therefore, in order to avoid such 

heterogeneity issues, we estimate MGE to measure the overall efficiency of each individual 

airline, incorporating the explicit and implicit environmental characteristics.  

The mean of the MGE results in Table 5 shows that European airlines were closer to the 

frontiers for good-output, bad-output and by-production efficiencies in all years (except 2007 

for bad-output efficiency and 2013 for good-output efficiency). Table 5 also show that the gap 

between European and Asian mean group efficiencies (mean MGEs) becomes wider over 

time for bad-output and by-production efficiencies in favour of European airlines.  

In the case of bad-output MGEs, the gaps are relatively larger than those of good-output and 

by-production MGEs, particularly in the period after 2009, indicating that European airlines 

have generally performed better than their Asian rivals in terms of minimising their CO2-

e/fuel consumption.  
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Table 2. Bias-corrected estimated by-production, good-output and bad-output efficiencies for the year 2007 

  Good-output efficiency   Bad-output efficiency   By-production efficiency 

European Airlines TE_M TE1 TE2 TGR MGE 
 

TE_M TE1 TE2 TGR MGE 
 

TE_M TE1 TE2 TGR MGE 

Lufthansa 0.942 0.942 0.955 1.000 0.888 
 

0.823 0.823 2.115 1.000 0.677 
 

0.883 0.883 1.535 1.000 0.783 

British Airways 0.967 0.967 1.018 1.000 0.934 
 

0.780 0.780 1.969 1.000 0.608 
 

0.873 0.873 1.494 1.000 0.771 

Air France 0.919 0.954 0.919 0.963 0.877 
 

0.822 0.822 1.977 1.000 0.676 
 

0.871 0.888 1.448 0.981 0.777 

KLM Royal Dutch Airlines 0.939 0.985 0.939 0.953 0.925 
 

0.744 0.828 0.744 0.899 0.616 
 

0.841 0.906 0.841 0.926 0.770 

Iberia 0.881 0.915 0.881 0.963 0.806 
 

0.662 0.740 0.662 0.896 0.490 
 

0.772 0.827 0.772 0.929 0.648 

Virgin Atlantic Airways 0.245 0.796 0.245 0.307 0.195 
 

0.570 0.876 0.570 0.651 0.499 
 

0.408 0.836 0.408 0.479 0.347 

Alitalia 0.751 0.872 0.751 0.862 0.655 
 

0.522 0.682 0.522 0.765 0.356 
 

0.637 0.777 0.637 0.814 0.505 

MEAN 0.806 0.919 0.815 0.864 0.754  0.703 0.793 1.223 0.887 0.560  0.755 0.856 1.019 0.876 0.657 

                  
Asian Airlines 

                 
Cathay Pacific Airways 0.933 0.933 0.979 1.000 0.870 

 
0.779 0.779 0.855 1.000 0.606 

 
0.856 0.856 0.917 1.000 0.738 

Singapore Airlines 0.986 0.986 1.014 1.000 0.972 
 

0.816 0.816 0.969 1.000 0.666 
 

0.901 0.901 0.992 1.000 0.819 

Korean Air 0.915 0.915 0.949 1.000 0.837 
 

0.514 0.514 0.638 1.000 0.265 
 

0.715 0.715 0.793 1.000 0.551 

Air China 0.854 0.854 0.880 1.000 0.729 
 

0.625 0.625 0.740 1.000 0.391 
 

0.740 0.740 0.810 1.000 0.560 

Thai Airways International 0.907 0.907 0.959 1.000 0.822 
 

0.614 0.614 0.714 1.000 0.377 
 

0.760 0.760 0.837 1.000 0.600 

China Southern Airlines 0.738 0.738 0.786 1.000 0.545 
 

0.882 0.882 0.977 1.000 0.778 
 

0.810 0.810 0.882 1.000 0.662 

China Airlines 0.281 0.921 0.281 0.305 0.259 
 

0.742 0.742 1.221 1.000 0.551 
 

0.512 0.832 0.751 0.653 0.405 

China Eastern Airlines 0.731 0.731 0.795 1.000 0.535 
 

0.801 0.801 0.966 1.000 0.641 
 

0.766 0.766 0.880 1.000 0.588 

Japan Airlines International 0.818 0.818 0.864 1.000 0.669 
 

0.828 0.828 0.928 1.000 0.686 
 

0.823 0.823 0.896 1.000 0.677 

Eva Air 0.995 0.995 2.339 1.000 0.990 
 

0.959 0.959 1.388 1.000 0.919 
 

0.977 0.977 1.863 1.000 0.954 

Asiana Airlines 0.513 0.513 2.509 1.000 0.263 
 

0.722 0.722 0.957 1.000 0.522 
 

0.618 0.618 1.733 1.000 0.392 

All Nippon Airways 0.703 0.703 0.768 1.000 0.494 
 

0.600 0.600 0.736 1.000 0.360 
 

0.651 0.651 0.752 1.000 0.427 

Malaysia Airlines 0.923 0.923 0.957 1.000 0.852 
 

0.926 0.926 1.281 1.000 0.857 
 

0.925 0.925 1.119 1.000 0.855 

Air India 0.221 0.221 2.056 1.000 0.049 
 

0.882 0.882 1.387 1.000 0.778 
 

0.551 0.551 1.721 1.000 0.413 

MEAN 0.751 0.797 1.152 0.950 0.635  0.764 0.764 0.983 1.000 0.600  0.757 0.780 1.068 0.975 0.617 
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Table 3. Bias-corrected estimated by-production, good-output and bad-output efficiencies for the year 2010 

  Good-output efficiency   Bad-output efficiency   By-production efficiency 

European Airlines TE_M TE1 TE2 TGR MGE 
 

TE_M TE1 TE2 TGR MGE 
 

TE_M TE1 TE2 TGR MGE 

Lufthansa 0.945 0.945 0.971 1.000 0.893 
 

0.879 0.879 2.104 1.000 0.773 
 

0.912 0.912 1.537 1.000 0.833 

British Airways 0.981 0.999 0.981 0.981 0.980 
 

0.224 0.902 0.224 0.248 0.202 
 

0.602 0.950 0.602 0.615 0.591 

Air France 0.925 0.955 0.925 0.968 0.883 
 

0.905 0.905 1.874 1.000 0.820 
 

0.915 0.930 1.399 0.984 0.852 

KLM Royal Dutch Airlines 0.943 0.988 0.943 0.955 0.931 
 

0.813 0.900 0.813 0.903 0.732 
 

0.878 0.944 0.878 0.929 0.832 

Iberia 0.909 0.939 0.909 0.968 0.853 
 

0.818 0.920 0.818 0.889 0.752 
 

0.863 0.929 0.863 0.929 0.803 

Virgin Atlantic Airways 0.316 0.522 0.316 0.604 0.165 
 

0.560 0.935 0.560 0.599 0.524 
 

0.438 0.729 0.438 0.602 0.344 

Alitalia 0.522 0.889 0.522 0.588 0.464 
 

0.915 0.915 1.112 1.000 0.838 
 

0.719 0.902 0.817 0.794 0.651 

MEAN 0.791 0.891 0.795 0.866 0.739  0.731 0.908 1.072 0.806 0.663  0.761 0.900 0.934 0.836 0.701 

                  
Asian Airlines 

                 
Cathay Pacific Airways 0.943 0.943 0.984 1.000 0.889 

 
0.809 0.809 0.882 1.000 0.655 

 
0.876 0.876 0.933 1.000 0.772 

Singapore Airlines 0.995 0.995 1.023 1.000 0.991 
 

0.861 0.861 0.989 1.000 0.741 
 

0.928 0.928 1.006 1.000 0.866 

Korean Air 0.916 0.916 0.959 1.000 0.838 
 

0.582 0.582 0.674 1.000 0.339 
 

0.749 0.749 0.817 1.000 0.589 

Air China 0.841 0.841 0.871 1.000 0.708 
 

0.616 0.616 0.662 1.000 0.380 
 

0.729 0.729 0.766 1.000 0.544 

Thai Airways International 0.926 0.926 0.955 1.000 0.858 
 

0.567 0.567 0.711 1.000 0.321 
 

0.746 0.746 0.833 1.000 0.590 

China Southern Airlines 0.756 0.756 0.793 1.000 0.572 
 

0.916 0.916 1.045 1.000 0.838 
 

0.836 0.836 0.919 1.000 0.705 

China Airlines 0.904 0.904 2.043 1.000 0.818 
 

0.729 0.729 1.117 1.000 0.532 
 

0.817 0.817 1.580 1.000 0.675 

China Eastern Airlines 0.734 0.734 0.782 1.000 0.539 
 

0.864 0.864 0.995 1.000 0.747 
 

0.799 0.799 0.888 1.000 0.643 

Japan Airlines International 0.756 0.756 0.825 1.000 0.572 
 

0.630 0.630 0.764 1.000 0.397 
 

0.693 0.693 0.794 1.000 0.484 

Eva Air 0.804 0.804 2.445 1.000 0.646 
 

0.897 0.897 1.255 1.000 0.805 
 

0.850 0.850 1.850 1.000 0.726 

Asiana Airlines 0.882 0.882 2.299 1.000 0.778 
 

0.736 0.736 0.995 1.000 0.541 
 

0.809 0.809 1.647 1.000 0.660 

All Nippon Airways 0.692 0.692 0.759 1.000 0.479 
 

0.677 0.677 0.791 1.000 0.459 
 

0.685 0.685 0.775 1.000 0.469 

Malaysia Airlines 0.862 0.862 0.941 1.000 0.744 
 

0.555 0.555 0.899 1.000 0.308 
 

0.709 0.709 0.920 1.000 0.526 

Air India 0.870 0.870 1.009 1.000 0.757 
 

0.929 0.929 1.516 1.000 0.863 
 

0.899 0.899 1.262 1.000 0.810 

MEAN 0.849 0.849 1.192 1.000 0.728 
 

0.741 0.741 0.950 1.000 0.566 
 

0.795 0.795 1.071 1.000 0.647 
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Table 4. Bias-corrected estimated by-production, good-output and bad-output efficiencies for the year 2013 

  Good-output efficiency   Bad-output efficiency   By-production efficiency 

European Airlines TE_M TE1 TE2 TGR MGE 
 

TE_M TE1 TE2 TGR MGE 
 

TE_M TE1 TE2 TGR MGE 

Lufthansa 0.969 0.969 1.024 1.000 0.939 
 

0.506 0.506 2.231 1.000 0.256 
 

0.738 0.738 1.628 1.000 0.598 

British Airways 0.944 0.944 0.978 1.000 0.891 
 

0.940 0.940 2.026 1.000 0.884 
 

0.942 0.942 1.502 1.000 0.888 

Air France 0.935 0.939 0.935 0.995 0.878 
 

0.990 0.990 2.037 1.000 0.979 
 

0.962 0.965 1.486 0.998 0.929 

KLM Royal Dutch Airlines 0.904 0.943 0.904 0.959 0.852 
 

0.827 0.907 0.827 0.912 0.751 
 

0.865 0.925 0.865 0.935 0.801 

Iberia 0.845 0.897 0.845 0.942 0.759 
 

0.695 0.922 0.695 0.753 0.641 
 

0.770 0.910 0.770 0.848 0.700 

Virgin Atlantic Airways 0.219 0.821 0.219 0.267 0.180 
 

0.608 0.950 0.608 0.641 0.578 
 

0.414 0.885 0.414 0.454 0.379 

Alitalia 0.478 0.478 2.063 1.000 0.228 
 

0.907 0.932 0.907 0.973 0.845 
 

0.692 0.705 1.485 0.987 0.536 

MEAN 0.756 0.856 0.995 0.880 0.675  0.782 0.878 1.333 0.897 0.705  0.769 0.867 1.164 0.889 0.690 

                  
Asian Airlines 

                 
Cathay Pacific Airways 0.896 0.896 0.922 1.000 0.804 

 
0.939 0.939 1.059 1.000 0.882 

 
0.918 0.918 0.990 1.000 0.843 

Singapore Airlines 0.981 0.981 0.990 1.000 0.962 
 

0.548 0.548 1.313 1.000 0.300 
 

0.764 0.764 1.152 1.000 0.631 

Korean Air 0.893 0.893 0.932 1.000 0.797 
 

0.761 0.761 0.819 1.000 0.579 
 

0.827 0.827 0.876 1.000 0.688 

Air China 0.772 0.772 0.805 1.000 0.596 
 

0.699 0.699 0.782 1.000 0.489 
 

0.736 0.736 0.793 1.000 0.542 

Thai Airways International 0.886 0.886 0.913 1.000 0.785 
 

0.658 0.658 0.738 1.000 0.433 
 

0.772 0.772 0.826 1.000 0.609 

China Southern Airlines 0.756 0.756 0.779 1.000 0.572 
 

0.464 0.464 1.022 1.000 0.216 
 

0.610 0.610 0.900 1.000 0.394 

China Airlines 0.827 0.827 0.884 1.000 0.684 
 

0.629 0.629 1.113 1.000 0.395 
 

0.728 0.728 0.999 1.000 0.540 

China Eastern Airlines 0.739 0.739 0.769 1.000 0.546 
 

0.875 0.875 0.939 1.000 0.765 
 

0.807 0.807 0.854 1.000 0.656 

Japan Airlines International 0.774 0.774 0.842 1.000 0.599 
 

0.607 0.607 0.727 1.000 0.368 
 

0.690 0.690 0.784 1.000 0.484 

Eva Air 0.872 0.872 2.081 1.000 0.761 
 

0.784 0.784 1.194 1.000 0.615 
 

0.828 0.828 1.638 1.000 0.688 

Asiana Airlines 0.780 0.780 0.798 1.000 0.608 
 

0.605 0.605 0.973 1.000 0.367 
 

0.693 0.693 0.886 1.000 0.487 

All Nippon Airways 0.793 0.793 0.841 1.000 0.628 
 

0.701 0.701 0.806 1.000 0.491 
 

0.747 0.747 0.824 1.000 0.560 

Malaysia Airlines 0.951 0.951 1.128 1.000 0.905 
 

0.494 0.494 0.772 1.000 0.244 
 

0.723 0.723 0.950 1.000 0.574 

Air India 0.789 0.789 0.868 1.000 0.623 
 

0.989 0.989 1.218 1.000 0.977 
 

0.889 0.889 1.043 1.000 0.800 

MEAN 0.836 0.836 0.968 1.000 0.705 
 

0.697 0.697 0.963 1.000 0.509 
 

0.767 0.767 0.965 1.000 0.607 
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Another finding based on the (by-production) MGE results is that the proportion of the 

European airlines among the five best performers generally increases over time (Tables 2 and 

4). In 2007, two European airlines can be found among the top five most efficient airlines, but 

this number rises to three in 2008 to 2010 and to four in the years 2011 to 2013. That is, in the 

period 2011‒2013, based on the by-production MGE estimates 80 per cent of the top five 

performers were European airlines. 

With regard to the most efficient and inefficient individual airlines, by-production mixed 

group efficiencies show that the following airlines were among the five most efficient airlines 

in at least four of the studied years (out of seven years): British Airways, Air France, Air 

India, KLM Royal Dutch Airlines, Lufthansa and Singapore Airlines. On the other hand, the 

following airlines were found to be among the five least efficient airlines in at least four 

years: All Nippon Airways, Asiana Airlines, Japan Airlines International and Virgin Atlantic 

Airways. Between 2007 and 2013, the good-output and bad-output MGE values of individual 

airlines also show European airlines outperformed Asian airlines. For instance, the bad-output 

mixed group values presented in Tables 2 to 4 show that at most one European airline can be 

seen among the five least inefficient airlines in years 2007 and 2013. This airline was in fact 

Virgin Atlantic Airways that showed the lowest efficiencies in all three measures and also the 

least MGE scores in all years.  

To provide more insights into the differences between groups’ efficiencies, we have also 

displayed density distributions (Figures 4 to 6) and presented Kolmogorov Smirnov and 

Mann-Whitney test results (Table 6). The bias-corrected efficiency scores are used in these 

tests. Table 6 shows that there is a significant difference between Asian and European airline 

efficiency distributions, and, Figures 4 to 6 reveal that European airlines have considerably 

better access to the frontiers in all the efficiency types as they show higher concentrations 

close to unity. The high-density tail of European density distributions is mainly due to the 

poor performance of Virgin Atlantic Airways. As a robustness check, we have performed the 

Li (1996) test which is adapted for DEA by Simar and Zelenyuk (2006), to test whether the 

density distributions of the two airline groups are different. For the bootstrap procedure we 

considered 𝐵 = 2000 iterations. Since the by-production is a multi-technology framework 

and following Dakpo et al. (2017), the convergence rate retained for the test is the smallest of 

all the technologies. The results of the test for the meta-technologies (Table 6) also reveal 

significant differences between Asian and European airlines.  
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Table 5. Means of bias-corrected by-production, good-output and bad-output efficiencies for Asian and European airlines, 2007‒2013  

  Good-output efficiency   Bad-output efficiency   By-production efficiency 

 TE_M TE1 TE2 TGR MGE 
 

TE_M TE1 TE2 TGR MGE 
 

TE_M TE1 TE2 TGR MGE 

European Airlines                  

2007 0.806 0.919 0.815 0.864 0.754  0.703 0.793 1.223 0.887 0.560  0.755 0.856 1.019 0.876 0.657 

2008 0.827 0.959 0.832 0.866 0.790  0.771 0.835 1.259 0.926 0.643  0.799 0.897 1.045 0.896 0.717 

2009 0.792 0.892 0.795 0.860 0.739  0.741 0.903 1.063 0.820 0.670  0.766 0.897 0.929 0.840 0.705 

2010 0.791 0.891 0.795 0.866 0.739  0.731 0.908 1.072 0.806 0.663  0.761 0.900 0.934 0.836 0.701 

2011 0.782 0.929 0.796 0.832 0.736  0.813 0.870 1.350 0.939 0.722  0.798 0.900 1.073 0.886 0.729 

2012 0.780 0.875 1.009 0.899 0.703  0.823 0.889 1.361 0.929 0.740  0.802 0.882 1.185 0.914 0.722 

2013 0.756 0.856 0.995 0.880 0.675  0.782 0.878 1.333 0.897 0.705  0.769 0.867 1.164 0.889 0.690 

 

Asian Airlines                  

2007 0.751 0.797 1.152 0.950 0.635 
 

0.764 0.764 0.983 1.000 0.600 
 

0.757 0.780 1.068 0.975 0.617 

2008 0.839 0.839 1.197 1.000 0.716  0.769 0.769 1.000 1.000 0.608  0.804 0.804 1.099 1.000 0.662 

2009 0.815 0.815 1.198 1.000 0.682  0.744 0.744 0.961 1.000 0.573  0.779 0.779 1.080 1.000 0.627 

2010 0.849 0.849 1.192 1.000 0.728  0.741 0.741 0.950 1.000 0.566  0.795 0.795 1.071 1.000 0.647 

2011 0.791 0.827 1.015 0.957 0.659  0.751 0.751 0.962 1.000 0.576  0.771 0.789 0.989 0.978 0.618 

2012 0.828 0.828 1.045 1.000 0.690  0.715 0.715 0.976 1.000 0.524  0.771 0.771 1.010 1.000 0.607 

2013 0.836 0.836 0.968 1.000 0.705   0.697 0.697 0.963 1.000 0.509   0.767 0.767 0.965 1.000 0.607 
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Figure 4: By-production meta-frontier efficiency distributions comparison between Asian and 

European airlines 

 

Figure 5: Bad-output meta-frontier efficiency distributions comparison between Asian and 

European airlines 

 
Figure 6: good-output meta-frontier efficiency distributions comparison between Asian and 

European airlines
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Table 6. Kolmogorov Smirnov, Mann-Whitney, and Li test estimates on differences between regions’ efficiencies 

  
Good-output meta-frontier efficiency 

(H0: Asia’s meta-frontier efficiency is 

stochastically larger than that of Europe) 

  
Bad-output meta-frontier efficiency 

(H0: Asia’s meta-frontier efficiency is stochastically 

larger than that of Europe) 

  
By-production meta-frontier efficiency 

(H0: Asia’s meta-frontier efficiency is stochastically 

larger than that of Europe) 

 Test stat. p-value  Test stat. p-value  Test stat. p-value 

Kolmogorov Smirnov D = 0.34694 0.0003844  D = 0.23469 0.02736  D = 0.31633 0.001448 

Mann-Whitney W = 1858 0.0129  W = 2021.5 0.05969  W = 1947 0.03119 

Li test Tn = 7.949 <2.22 e-16  Tn = 1.921 0.0255  Tn = 6.350 <2.22 e-16 

Conclusion European airlines have better access to the frontiers  European airlines have better access to the frontiers  European airlines have better access to the frontiers 

 
Good-output technology gap 

(H0: Asia’s technology gap is stochastically larger 

than that of Europe) 

 
Bad-output technology gap  

(H0: Asia’s technology gap is stochastically larger 

than that of Europe) 

 
By-production technology gap  

(H0: Asia’s technology gap is stochastically larger 

than that of Europe) 

 Test stat. p-value  Test stat. p-value  Test stat. p-value 

Kolmogorov Smirnov D = 0 1  D = 0 1  D = 0 1 

Mann-Whitney W = 3992 1  W = 3577 1  W = 4097 <1 

Conclusion Asian airlines have access to better technology   Asian airlines have access to better technology   Asian airlines have access to better technology 

 Good-output mixed group efficiency 

(H0: Asia’s MGE is stochastically larger than that 

of Europe) 

 Bad-output mixed group efficiency 

(H0: Asia’s MGE is stochastically larger than that of 

Europe) 

 By-production mixed group efficiency 

(H0: Asia’s MGE is stochastically larger than that of 

Europe) 

 Test stat. p-value  Test stat. p-value  Test stat. p-value 

Kolmogorov Smirnov D = 0.41837 1.081e-5  D = 0.32653 0.0009434  D = 0.38776 5.418e-5 

Mann-Whitney W = 1675 0.001436  W = 1651.5 0.001043  W = 1604.5 0.00536 

Li test Tn = 10.56088 <2.22 e-16  Tn = 4.556393 <2.22 e-16  Tn = 7.877276 2.22 e-16 

Conclusion European airlines are more efficient   European airlines are more efficient   European airlines are more efficient 
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6. Conclusion 

This study provides an extension of the by-production approach developed in Murty et al. 

(2012) to account for group heterogeneity. To this aim, our extension deals with the 

estimation of a non-concave meta-frontier to overcome a weakness of the classic meta-

frontier, where some parts of the global technology are not reachable by either of the group 

technologies involved (Tiedemann et al., 2011). The method has allowed us to obtain more 

detailed and sophisticated insights into the efficiency of European and Asian airlines 

compared with those of previous studies. The findings suggest that European airlines have put 

an increasing focus on environmental efficiency (and perhaps the greening) of their flight 

activities following the threat to include airlines in the EU ETS in 2009. The decomposition 

of efficiency factors provides a clear picture of EU airlines steadily improving their 

environmental efficiency, with some EU airlines leading within their own group and also in 

comparison to the group of Asian airlines. Such airlines can be seen as setting a performance 

benchmark for those that need to improve their performance by emulating peer airlines, 

though, they may be lacking a learning curve to emulate (Wanke and Barros, 2016). However, 

some Asian airlines also constituted a major part of the meta-frontier due to possible 

advantages in their aviation business environments. For instance, a number of major airports 

in Europe are already highly congested with scarcity of further time slots to land, and some 

were forced to implement night flight bans (for example, in Frankfurt Airport no flight is 

allowed to land between 11.00 pm and 5.00 am), and geographically, Europe’s airspace is 

smaller than that in Asia. Additionally, landing fees in Europe are comparatively high, which 

adds a very economic dimension to the decision to increase TKA; while in Asia (and 

especially in China) these fees are relatively lower, allowing airlines to fly more frequently 

with a lower load factor, but still allowing them to be economically viable. Our results also 

reveal that European airlines have improved not only their environmental efficiency but also 

their good output efficiency compared with Asian airlines. These results may fit a version of 

Porter’s hypothesis that environmental regulation may have a positive effect on the 

international competitiveness of European airlines. 

Although most recent airline performance benchmarking literature adopts the network 

approach, our paper focusses on a single stage of production (i.e. operations) which captures 

the technological capabilities of companies (supply capacity) without assuming any 

behavioural assumptions such as cost minimization or profit maximization. This stage is a 

crucial part of the production network system and can directly be affected by the inclusion of 
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CO2 emissions. As underlined in Mallikarjun (2015), all other stages of the airline network 

system involve some revenue generation or profit maximization activities. Nevertheless, the 

model developed here can be extended to the network framework of airline companies. 

Another extension could be the inclusion of the dynamic aspect which we have not accounted 

for in this paper due to lack of access to data on investment and capital depreciation variables. 

Depending on data availability, both network and dynamic approaches are interesting leads 

for future research. In addition, while this study provides novel insights into the efficiency of 

European and Asian airlines, a cost-efficiency analysis could also add another layer to our 

understanding of environmental efficiency and its determinants. However, such a study would 

have to deal with significant challenges of differing price levels on inputs and measurement 

issues on outputs. 
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