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Synthesis and Characterization of Dendritic Pt Nanoparticles by Using
Cationic Surfactant

Abstract

Platinum (Pt) is known as one of the most promising electrocatalysts, and nanostructured Pt materials have
enhanced its activity due to their abundant catalytically active sites derived from their high surface area.
Herein, we synthesize fascinating dendritic Pt nanoparticles (DPNs) by a softtemplating method using
hexadecyltrimethylammonium chloride (CTAC) as a pore-forming agent. The dissolved negatively charged Pt
precursor (PtCl4 2') effectively interact with the surfactant. The particle size of the obtained DPNs is around
20 nm, and the pore walls are composed of Pt nanocrystals. The obtained DPNs show good electrocatalytic
activity towards methanol oxidation reaction (MOR) compared to commercial Pt black (PtB), and its
stability is also higher than that of PtB
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Abstract

Platinum (Pt) is known as one of the most promising
electrocatalysts, and nanostructured Pt materials have enhanced
its activity due to their abundant catalytically active sites
derived from their high surface area. Herein, we synthesize
fascinating dendritic Pt nanoparticles (DPNs) by a soft-
templating method using hexadecyltrimethylammonium chlo-
ride (CTAC) as a pore-forming agent. The dissolved negatively
charged Pt precursor (PtCl,>") effectively interact with the
surfactant. The particle size of the obtained DPNs is around
20 nm, and the pore walls are composed of Pt nanocrystals. The
obtained DPNs show good electrocatalytic activity towards
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methanol oxidation reaction (MOR) compared to commercial
Pt black (PtB), and its stability is also higher than that of PtB.

Keywords: Mesoporous metals | Platinum | Surfactants

1. Introduction

Noble metals (e.g., Au, Pt, Pd) have been considered as good
catalysts due to their remarkable chemical stability and high
catalytic activity, and they have been applied to various reac-
tions such as hydrogenation, oxygen reduction reaction (ORR),
methane oxidation reaction (MOR), and organic synthesis.'™
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Among them, Pt has been especially widely used as a catalyst,
however, such noble metals are quite expensive, because the
demand for them has been increasing due to their advantages
for utilization despite there is insufficient global supply. In
order to solve this problem, new Pt nanostructures must be
prepared with enhanced activity, and considerable research
has been conducted, for instance, on Pt-alloys and core-shell
structures.>® Another way to overcome this issue is using Pt
nanoparticles supported on mesoporous materials (e.g., silica,
carbon).” !0

Dendritic/nanoporous Pt materials can be synthesized to
gain more active sites on their surfaces as well as high acces-
sibilities for guest species from outside.!! To date, a number of
syntheses of dendritic/nanoporous Pt materials with various
morphologies have been reported, including films,'>'* nano-
particles,”>"!7 and nanorods.'® There have been several strate-
gies to create such porous materials, for example, dealloying
techniques,'®?° the electrochemical micelle assembly meth-
od,'? and traditional soft- and hard-templating methods.'3!4!
Among them, aqueous solutions with low-concentrations of
surfactant have been recently applied to synthesize dendritic/
nanoporous materials due to the simplicity and flexibility of
this method. Recently, a variant of this method using polymeric
micelles has attracted especially great interest because it is
easy to remove the template, and the pore size can be sim-
ply controlled by changing the molecular weights of block
polymers or the solvent.?>?? In terms of pore-forming agents,
cationic surfactants, especially hexadecyltrimethylammonium
bromide (CTAB) and hexadecyltrimethylammonium chloride
(CTAC), are also available and have been utilized to synthesize
mesoporous Pd.?*

Herein, we describe a simple synthesis of dendritic Pt
nanoparticles (DPNs) by a soft-templating method using CTAC
as a template for the first time, and they show remarkable
advantages in electrocatalytic activity. Our DPNs were pre-
pared by reducing Pt precursor (K,PtCly) with ascorbic acid
(AA) in the presence of CTAC solution, in which the CTAC
acted as a pore-forming agent.

2. Experimental Section

Chemicals. K,PtCly, AA, methanol (99.8%), and acetone
(99.5%) were purchased from Nacalai Tesque, Inc. CTAC and
0.5M H,S0O, solution were purchased from Wako Pure Chemi-
cal Industries, Ltd. Pt counter electrode and Ag/AgCl reference
electrode were purchased from ALS Co., Ltd. Pt black (PtB)
and 0.05 wt% Nafion were purchased from Sigma-Aldrich Co.
LLC. All the chemicals were used without further purification
steps.

Preparation of Dendritic Pt Nanoparticles. CTAC (20
mg) was first dissolved in pure water (4.5mL). Next, 0.5 mL
of K,PtCl, solution (40 mM) was added into this solution. The
solution was kept in an 85°C water bath for 1 min until the
color turned clear. Then, 2mL of AA solution (0.1 M) was
added into this solution, and the color changed to black in just
a few seconds. After the reduction reaction proceeded for
2 hours in the water bath, the product was collected by centri-
fugation at 14,000 rpm for 20 min, and the residual CTAC was
removed by six consecutive washing/centrifugation cycles
with acetone and water.
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Characterization. A scanning electron microscope (SEM,
HITACHI S-4800) was used to observe the morphologies of
the DPNs at 10kV accelerating voltage. A JEOL JEM-2100F
was applied to obtain information regarding the interior struc-
tures of DPNs by collecting transmission electron micro-
scope (TEM) and high resolution TEM (HRTEM) images
at 200kV accelerating voltage. Wide-angle X-ray diffraction
(XRD) measurements on the obtained powders were conducted
on a RIGAKU Smartlab diffractometer at 2 deg. min~! scan-
ning rate with Cu Ko radiation (40kV, 30mA). Small angle
X-ray scattering (SAXS) profiles were recorded on a RIGAKU
NANO-Viewer. The instrument used Cu Ka radiation (40kV,
30mA). The Pt precursor solution and Pt precursor-CTAC
mixed solution were studied with a JASCO V-570 UV-vis-NIR
spectrometer.

Methanol Oxidation Reaction (MOR). Cyclic voltam-
metry (CV) and chronoamperometry (CA) were conducted in
order to investigate the electrochemical active surface area
(ECSA) and electrochemical catalytic activity towards the
MOR. In these electrochemical measurements, we employed a
typical three-electrode system composed of an Ag/AgCl
reference electrode (3M KCl), a Pt wire counter electrode,
and a modified glassy carbon electrode (GCE, 3 mm diameter)
as working electrode. The modified GCE was coated with
10 ug of DPNs and dried at room temperature. Its surface was
covered with 5uL Nafion solution (0.05wt%) and dried for
subsequent electrochemical measurements. Before starting the
experiments, the modified GCE was electrochemically activat-
ed by potential cycling between —0.2V and +1.5V (vs. Ag/
AgCl) in 0.5M H,SO;, until the obtained CV curves showed
the same characteristics as normal Pt electrode. After that,
MOR measurements were carried out at 0.05Vs~! scan rate in
0.5M H,SO4 solution including 0.5M methanol, and CA
measurements were performed at 0.6V constant potential for
3600s.

3. Results and Discussion

The morphologies of DPNs were observed with SEM and
TEM. According to the SEM images (Figure la, b), the
nanoparticles are highly uniform in shape and possess numer-
ous well-dispersed pores. The interior structure of nanoparticles
can be seen from the TEM image (Figure lc), and from the
differences in the contrast, it is proved that the nanoparticles
have well-dispersed pores. The average particle size is 20 42
nm, according to a calculation from 200 particles on the TEM
and SEM images (Figure 1d). The small angle X-ray scattering
(SAXS) pattern for the obtained DPNs shows a broad peak at
1.3nm™' (d = 4.8 nm), indicating the presence of periodicity of
nanoporous structure (Figure 2a). The wide-angle XRD pattern
shows five remarkable peaks of pure face-centered cubic ( fec)
Pt structure, and they can be attributed to the (111), (200),
(220), (311), and (222) reflections, respectively (JCPDS 04-
0802) (Figure 2b).

For further investigation of the atomic structures, selected-
area electron diffraction (SAED) patterns and HRTEM images
were collected (Figure 3). Figure lc is a typical TEM image
of DPNs, and it is clear that there are interconnected crystals
throughout the nanoparticles. The SAED pattern can be regard-
ed as reflecting the fec Pt structure as the X-ray diffraction

© 2018 The Chemical Society of Japan
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Figure 1. (a) Low-magnification SEM and (b) high-
magnification SEM images, (c) TEM image, and (d) histo-
gram of the particle size of DPNs.
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Figure 2. (a) SAXS profile and (b) wide-angle XRD pattern
of DPNS.
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Figure 3. (a) SAED pattern of a single DPN. (b) High
resolution TEM image of DPN on the edge.

(XRD) indicates, which is strong evidence that the pore walls
are highly crystallized (Figure 3a). Also, the lattice spacing
assessed from HRTEM shows good agreement with the fcc Pt
{111} crystal planes (Figure 3b).

To understand the formation mechanism of DPNs,
ultraviolet-visible (UV-vis) absorption measurement was car-
ried out for K,PtCly (black) and K,PtCl, + CTAC solution
(red), respectively (Figure 4). In the spectra of the K,PtCly +
CTAC solution, two remarkable peaks were exhibited at 220
and 240 nm that cannot be seen in the individual K,PtCl, spec-
trum.?® This means that anionic [PtCl;]~? species can be con-
nected with cationic [CTA]* surfactant, and [PtCly]2-[CTA]*
complex micelles are formed subsequently. Similar situation
was observed in our previous study.?* To the best of our
knowledge, utilizing this connection for the synthesis of DPNs
is novel and might lead to further syntheses of various
dendritic/nanoporous metal materials.

As a control experiment, when the Pt source was reduced in
the absence of CTAC, no specific porous structures can be
observed (Figure 5a). From this fact, it is obvious that CTAC
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— K,PtCl, + CTAC
— K,PtCl,

Absorbance (a.u.)

200 220 240 260 280 300
Wavelength (nm)

Figure 4. UV-vis spectra of K,PtCl, and K,PtCl, + CTAC
solutions.

Figure 5. (a, b) SEM images of Pt nanostructures obtained
from (a) surfactant-free solution and (b) 5mg CTAC-
containing solution. (¢, d) SEM images of Pt nano-
structures reduced by (c¢) NaBH, and (d) N,Hy.

micelles act as a pore-forming agent. Even in the presence of
surfactant, the final products do not possess pores inside them
when the amount is insufficient to induce micellization (below
the critical micelle concentration (CMC)) (Figure 5b). AA is
widely used as a common reduction agent due to its mild
reductive capability and nontoxicity. There is no doubt that
AA plays one of the most significant roles in obtaining well-
ordered structures, since the structures are far from that of
as-prepared DPNs when NaBH,; and N,H, are employed as
reduction agents (Figure 5c, d). This evident collapse in struc-
ture for both of them is caused by their strong reactivity.

We examined the electrocatalytic activity of the as-prepared
DPNs for the MOR in comparison to PtB catalyst. CV mea-
surement was conducted in 0.5M H,SO, solution for both
DPNs and PtB (not shown). Clear features of hydrogen and
oxygen adsorption/desorption on the DPN catalyst were proof
of the cleanliness of the catalyst surface. The ECSA of each
catalyst was calculated from the hydrogen desorption peak,
using the charge density for the desorption of an adsorbed
hydrogen monolayer (210puCcm~2). The calculated ECSA
values of the DPNs and PtB were 30.6m?g~! and 22.7m? g™/,
respectively, which indicates that DPNs have a higher surface
area due to its dendritic porous structure.

Typical CV curves were obtained to investigate their
electrocatalytic activity towards MOR in 0.5 M H,SO4 solution

© 2018 The Chemical Society of Japan | 1335
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Figure 6. Mass-normalized CV curves (a) for the MOR and
CA curves (b) obtained at 0.6 V for 3600s. The CV curves
were recorded in 0.5M H,SOy4 solution including 0.5M
methanol at 0.05V s™! scan rate.

including 0.5M methanol (Figure 6a). Two specific methanol
oxidation peaks are observed in the anodic and cathodic sweeps
at 0.67 V and 0.51V, respectively. The peak currents of DPNs
(320mA mg~") in the anodic sweep are higher than that of PtB
(161 mAmg~"). Even after normalizing the currents by the
ECSAs, the DPNs still show higher current density (DPNs:
1.05mAcm™2, PtB: 0.71mA cm™2). This might be because
there are abundant low-coordinated atoms such as steps and
kink sites on the DPN surface. The stability of such a prom-
ising electrocatalyst is another crucial point for industrial
applications. In this work, the CA measurements were conduct-
ed at 0.6V for 3600s to evaluate the performance of both
catalysts (Figure 6b), and the DPNs show higher stability in
comparison to that of PtB. It is revealed that the fascinating
dendritic porous structures can be retained, even after long
continuous MOR measurements.

4. Conclusions

We have succeeded in the synthesis of well-organized DPNs
by using a cationic surfactant as a novel pore-forming agent.
Because the highly crystallized frameworks have a number of
active sites, the electrocatalytic activity and stability of our
DNPs can be improved in comparison to commercial PtB cata-
lyst. We believe that this simple method can be applied for
various syntheses of dendritic/nanoporous metal materials in
the future.
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(grants 17H05393 and 17K19044), and the research fund from
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Abdulaziz University, Jeddah, under grant No. KEP-1-130-39.
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