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Abstract 

Due to an increasing demand for development of cost-effective portable microfluidics 

using textile substrates, a foundation study on the effect of fibre surface chemistry on the 

performance of textiles was undertaken to elucidate its applicability to textile-based 

microfluidics (Chapter 3). Composite fibres consisting of low-density polyethylene (LDPE) 

fibres with liquid crystalline graphene oxide (LCGO) fillers, at a range of loadings, were 

successfully prepared by a melt spinning process and then incorporated in parallel with 

commercial polyester yarns (PET), via a tubular knitting process, to produce 3D textile-based 

microfluidic structures. It was shown that the LCGO filler increased the surface polarity of 

fibres, as a result of accumulation of oxygen on the polymer surface, and the increase in O/C 

ratio amplified the surface and inter-fibre capillary fluid driving force in textile structure. 

Fluid was shown to move up to 6x faster in 3D knitted structures comprised of 5w/w% 

LCGO/LDPE fibre compared to the knitted structure without any composite fibre. It was 

demonstrated that the ion rejection and/or absorption phenomenon which occur between fluid 

ions and fibre surface functional groups played the most important role in determination of 

fluid flow rate. The flow rate achievable was found to be proportional to the LCGO loading, 

providing the potential to control flow through fibre composition. Significantly, using this 

approach fluid pumping of fluid against a gravity feed head height (anti-gravitational) was 

observed as a consequence of the LCGO filler interactions at the surface of the LDPE/LCGO 

composite fibres. 

Recently, electric fields have been used to move or separate analytes in textile-based 

microfluidics to achieve a precise control over the fluid flow. However, applying electric 

fields to move or separate solutes within fluids typically results in Joule-heating which 

adversely affects the efficiency of the separations. In this thesis, the idea of preparing 
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thermally conducting fibres and assembling them into 3D textile structures to facilitate 

dissipating the Joule-heating was investigated (Chapter 4) using LDPE/LCGO composite 

fibres, where LCGO was partially reduced to impart improved thermal conductivity. 

LCGO/LDPE composite fibres were successfully prepared and incorporated into a 3D PET 

knitted structures and their capability to dissipate the Joule-heating in electrofluidic 

experiments probed. Monitoring the temperature change during electrofluidic experiments 

showed that incorporation of reduced LCGO/LDPE fibres into 3D knitted structures resulted 

in lower temperature rise during the experiments and more importantly, final temperature 

decreased by an increase in the LCGO loading. However, loading more than 5 w/w% LCGO 

into LDPE fibres, utilising a powder coating and melt spinning approach, proved to be 

impractical due to agglomeration of LCGO within composite fibres resulting in poor 

mechanical properties and therefore limited knittability.  

To eliminate the issue of poor filler distribution, a solvent-based wet-spinning technique 

was adopted (Chapter 5). A solvent processable non cross-linked biocompatible grade 

polyurethane (PU) elastomer was filled with LCGO to produce LCGO/PU fibres. These 

fibres were successfully incorporated into 3D knitted structures in parallel to the PET yarns 

and then chemically reduced to improve thermal conductivity. The ability of the reduced 

LCGO/PU composite fibres as heat dissipators was shown to be limited by their electrical 

conductivity. Fibres were shown to become effective in Joule-heating dissipation at the point 

that they became electrically conductive resulting in potential short-circuits which should be 

avoided in high voltage electrofluidic experiments. As a consequence, boron nitride 

nanopowder (BNNP) filler was chosen to make BNNP/PU composite fibres as it was 

thermally conducting but electrically insulating (band gap of ~ 5 eV).  It was shown that 

incorporating BNNP/PU composite fibres into 3D textile structures effectively dissipated the 

heat generated by Joule-heating and kept the textile structure at low temperature during 
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electrofluidic experiments. This novel idea of utilizing thermally conducting fibres into 

textile-based microfluidics could be an advantageous for fibre based capillary electrophoresis 

studies specifically when proteins, living cells and thermosensitive analytes are being used.   

Textile substrates have been widely used to make wearable electrochemical sensors. 

Therefore, as a proof-of-concept study, two different 3D textile designs (utilizing knitting and 

braiding techniques) with integrated electrodes as potential wearable electrochemical sensors 

were investigated (Chapter 6). The electrochemical behaviour of stainless steel (SS) filament 

working electrodes were shown to be far from ideal (or reversible). These filaments were 

surface modificated by the electrodeposition of polypyrrole and gold nanoparticles to give 

improved electrode surface responses. These modified electrodes were successfully 

incorporated into 3D braided structures, whereby all electrodes were not in direct electrical 

contact, consisting of two parallel SS (counter and working) electrodes with the addition of a 

silver-coated nylon yarn as pseudo reference electrode. This braided 3 electrode system was 

shown to be a functional 3D textile platform capable of electrochemical detection in a similar 

manner as a classical 3-electrode electrochemical system. In an alternative approach, a 3D 

knitted structure with 3 separate conductive strips, i.e. two SS yarn and a silver-plated nylon 

in the middle separated by insulating yarns, was successfully created to perform 

amperometric detection under a gravity assisted electrolyte flow system. 

In summary, this thesis demonstrates the feasibility of the approaches investigated and 

their incorporation into textile structures. Significantly the approaches shown are relatively 

simple to fabricate, cheap, flexible and easily incorporated into textile systems to provide real 

time sensing and monitoring, fluid transportation and heat dissipation, all of which are critical 

for the implementation of textiles into active and functional devices.  
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1.1. Introduction; An urgent need for cost-effective 

diagnostic devices 
 

Rapid spread of serious illnesses such as cancers, immune and infectious disease around the 

world threatens the lives of millions of people specifically those who are living in remote 

and developing regions every year. Therefore, development of affordable, rapid, portable 

and accurate diagnostic devices is a World Health Organisation (WHO) prioritised global 

challenge and has attracted a great deal of attention among scientists. Early detection along 

with accurate diagnostics plays a vital role in increasing survivability rates, improving 

treatment outcomes, reducing risk factors and ultimately minimising financial and spiritual 

impacts
1–7

. Despite the outstanding advances in the field of public health and diagnostics in 

recent decades, developed and developing countries cannot benefit equally from these 

developments. Poverty, insufficient infrastructure and lack of trained personnel often 

hinder access to new diagnostic technologies for people living in developing countries and 

remote regions of the world
6,8

. To tackle this issue, development of diagnostic devices that 

are affordable, sensitive, specific, user-friendly, rapid and robust, equipment free and 

deliverable to end user called ASSURED has been planned out by World Health 

Organization
6,8–10

. The emergence of microfluidic technologies with their outstanding 

features such as ability to process microscale liquids, being rapid, simple and cost-

effective, has a great impact on diagnostics and public health. Nowadays, microfluidics’ 

contribution to rapid development of public health and diagnostic devices is undeniable, 

because of their so called characteristics
2,7,8,11

. 

1.2.  Portable cost-effective microfluidic devices 
 

There is an ever growing demand for integrated diagnostic devices, also known as lab-on-a-

chip devices. Portable and cost effective microfluidic devices have attracted a lot of 



3 
 

attention because of their ability to eliminate large expensive laboratory equipment and 

provide in-situ, at-site and ‘at-person’ results
12

. Microfluidic technology has many potential 

applications in the development of diagnostic devices and has provided key components 

essential for development of lab-on-a-chip devices comprised of micro channels, 

micromixers, micropumps, etc. Microfluidics makes it possible to integrate sensors into 

lab-on-a-chip devices offering the potential to provide real-time data on the interaction and 

exposure of the wearer to his/her environment, in addition to significant opportunities for 

personal health monitoring. Although, in recent decades, public health has been greatly 

improved due to the advances in detection techniques, many of these technologies are 

unaffordable for developing countries due to the poverty and lack of sufficient 

infrastructure 
6,8

. As a result of this increasing demand and the prioritized development of 

ASSURED diagnostic devices by WHO, new materials have been considered for 

development of healthcare and environmental monitoring microfluidic devices which are 

inexpensive yet accurate. Recently, paper and textiles (threads and fabrics) have been 

demonstrated to have potential in providing desirable characteristics to be utilised in 

development of affordable healthcare and environmental monitoring microfluidic devices. 

Consequently, those materials have been extensively used in the development of minimally 

invasive, accurate, durable, user-friendly, and low cost diagnostic platforms
13–22

.  

  

1.2.1. Paper-based microfluidic devices (µPADs) 
 

Paper has been used as a substrate in analytical chemistries since early 1800s. Recently,  it 

has been widely used in expansion of microfluidic analytical devices owing to its unique 

characteristics such as power-free fluid transport via capillary action
6,23–25

 as well as being 

highly abundant, flexible, cheap, disposable, and  ease for surface chemistry 

functionalisation
23,24,26

. µPADs can be readily patterned and surface functionalised using 
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inkjet, wax or screen printing making them affordable, equipment free and readable with 

naked eye. They are stable in many different environments as well as capability of 

analysing multiple different analytes in a single device 
6,10,24,26

. Essential to any µPAD is 

the need to define hydrophilic and hydrophobic regions on the paper substrate to create 

channels that may rely on delicate and time consuming processes
13–15,20,21

. Low mechanical 

strength when wet with solution and low efficiency of sample delivery due to leakage of 

the samples out of the defined surface channels can be considered as the other 

shortcomings of using paper as a substrate for making microfluidic devices
27,28

. Due to 

such limitations, other abundant materials, such as threads and textiles, have considered as 

a substrates in microfluidic devices.  

 

1.2.2. Textile-based microfluidic devices (µTADs) 
 

Recently, two different research groups, i.e. Li et al. and Reches et al, discovered a similar 

concept to µPAD based on threads. They found that void space between fibres in a thread 

or textile can provide capillary channels for fluid movement and as a result they have been 

investigated as an alternative to  µPADs paper substrates in diagnostic devices
13,14

. 

Although threads and papers have some features in common such as being highly abundant, 

flexible, cheap, disposable, ease for surface chemistry functionalisation, and  independence 

of external power for fluid movement (due to capillary forces), threads also benefit from 

some outstanding characteristics such as high mechanical strength when wet and 

reusability. Also, threads does not need hydrophobic barriers, unlike µPADs, and can be 

easily converted into 3D structures or be integrated into wearable materials by traditional 

techniques such as knitting, weaving or sewing. Having these unique features and 

advantages over paper, make textiles an excellent candidate for microfluidic textile 

analytical devices (µTAD)
 13, 14, 17, 27–29

. These very old yet newly discovered materials in 
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microfluidics technology have attracted a lot of attention in this field with over 60 

publications studying the effect of different yarns and fabrics to form efficient µTADs 

since the first demonstration of this approach in 2010.  

1.3. Wicking properties and surface chemistry in µTADs 
 

Capillary forces generated in the void spaces between fibres drive fluid flow and are the 

reason for wicking action in threads and textiles. Following Washburn’s equation, wetted 

distance (L) is proportional to the square root function of time (t): 

𝐿 = √
𝐷𝑡𝛾 cos 𝜃

4𝜇
           (1) 

Where D is the effective capillary diameter or pore diameter, γ is the interfacial or surface 

tension, θ is the contact angle between the liquid and the surface, and µ is the viscosity. 

However, wicking may also be affected by parameters such as evaporation, swelling, 

gravitational forces or internal pressure variations
29

. 

Due to the complexity in the internal structures of textiles and threads, along with different 

surface finishing of the materials being used contact angle measurements on fibres and 

fabrics, in formulating wicking behaviour in textile materials is complicated. Long fatty 

acid chains found on natural cotton fibres and contamination on the surface of synthetic 

threads, such as polyester and nylon, interfere with wicking in threads and lead to non-

Washburn behaviour. Removal of these waxes and contamination by surface modifications 

will enhance the wettability of yarns and increase  in wicking by capillary action
13,14,30–33

. 

Surface modification will change surface chemistry of both synthetic and natural fibres 

which can be responsible for improvement of their wicking properties. Natural fibres such 

as cotton, silk and wool are usually covered with a wax that contains fatty acid chains 

which may hinder or even stop liquid movement along threads. Two common methods that 

have been used for surface treatment surface was removal of natural fibres include plasma 
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treatment and scouring in NaOH or Na2CO3. Many researchers have reported using plasma 

treatment to enhance wicking properties of cotton fibres
13,14,33–39

 where it oxidizes the 

cotton surface and removes the wax. X-ray photoelectron spectroscopy (XPS) data shows 

an increase in concentration of oxygen, due to the generation of O-C-O, C=O, O-C=O and 

C-O, at the cotton surface, therefore, increase in surface polarity that leads to improvement 

of wicking properties in cotton fibres
14,33,38,39

. Jeon et al. have also reported the use of 

plasma treatment to increase the wettability of another natural fibre, i.e. wool fibres, by 

degumming fatty acid on its surface
40

. They found that wool’s flowrate depends on the gas 

(O2, N2 and Ar gases) that the plasma treatment was performed, enabling then flow control 

of micro-mixing devices.  

 Another widely reported method for increasing the wettability of natural fibres is boiling
15

 

or scouring in NaOH or Na2CO3
30,41–51

. These chemical are reported to attack aliphatic 

chains of the wax on the surface of cotton fibres, removing the wax and exposing the 

underlying cellulose structure which has negative charge and abundant hydroxyl (-OH) 

group functionality. Treatment with NaOH also increases O/C ratio which generally makes 

the fibre surface more hydrophilic
30,42,45,46,49

. Safavieh et al. visually demonstrated the 

effect of surface treatment upon the wicking properties of cotton, Figure 1.1A. Also, Jeon 

et al. showed the effect of different plasma treatments and/or time on the wicking 

properties of wool fibres, Figure 1.1B. 
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Figure 1.1: Improvement in wicking properties of yarns. (A) Cotton treated with plasma treatment

34
 

and (B) Wool treated with I. Oxygen and II. Argon plasma. Pristine wool fiber and fibers treated for 

0, 15, 30, 45 and 60 min, respectively from upside
40

 

Reports on using plasma surface treatment to increase surface wettability and improve 

liquid movement of thread-based microfluidic devices are not limited to natural fibres.  As 

this treatment increases surface polarity and removes surface contamination on the thread, a 

large number of research groups used the same method on µTADs made from polyester 

threads. 
13,19,32,52–54

. Furthermore, as demonstrated by Reches et al. plasma treatment 

significantly increases the wicking rate of different threads. Table 1.1 summarizes these 

findings
13

.  

Table 1.1: Increase in wicking rate after plasma treatment for different types of threads
13

   

Thread Wicking rate before treatment (cm s
-1

) Wicking rate after treatment (cm s
-1

) 

Rayon 0.29 ± 0.06 1.01 ± 0.69 

Hemp 0.02 ± 0.01 0.55 ± 0.55 

Nylon 0.03 ± 0.00 0.04 ± 0.01 

Cotton 0.23 ± 0.04 1.89 ± 0.52 

Polyester 0.13 ± 0.03 1.98 ± 0.79 

Wool Did not wick 2.20 ± 0.40 

50% Cotton, 

50% Acrylic 
Did not wick 2.11 ± 0.30 

Acrylic Did not wick 1.91 ± 0.42 

Natural silk Did not wick 0.60 ± 0.21 
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1.4. Fabricating µTADs using threads and fabrics 
 

Threads can be used to perform a variety of analytical experiments ranging from simple 

colourimetric detection to more complex procedures such as isolation and separation of 

biomolecules and bacteria cells. Different approaches have been reported to develop 

µTADs using threads. One of the simplest approaches is utilizing hydrophilic threads to 

provide predefined paths for liquid movement. Two different research groups demonstrated 

the capability of using threads to make microfluidic devices. They have shown twisting 

threads can be used for fluid mixing (Figure 1.2A)
14

. Reches et al. also demonstrated 

different designs for incorporation of hydrophilic threads into a hydrophobic substrate to 

develop µTADs, such as sewing cotton threads through a hydrophobic substrate to 

incorporate an assayable zone into a bandage (Figure 1.2B)
13

. Sewing hydrophilic threads 

into other substrates to create a 3D µTADs has been also reported
14,41

. Some research 

groups have focused on demonstration of more complex functionalities feasible using 

threads. Using different knots with different topologies to provide control over mixing and 

splitting of the fluid in µTADs have been demonstrated by Safavieh et al.
34

. In other work, 

Ballerini et al. demonstrated different mechanisms of flow control ranging from simple 

binary on/off style switches, to  micro-selectors, and micro-mixers on polyester threads as 

potential functions that can be utilized for designing complex yet low-cost µTADs
39

. 

Surface acoustic waves were employed by Ramesan and co-workers to demonstrate 

feasibility of externally driving fluid flow in a network of threads. This method was also 

utilized to perform the serial dilution in a thread network embedded in a transparent 

hydrogel that mimics in vivo  tissue microenvironment (Figure 1.2C)
55

. Threads have also 

been used as reactors for synthesising ferric hydroxide and 2,4-dichloro-N-(2-

morpholinoethyl) benzamide in addition to being used have also synthesised on thread 

reactors and as microchannel for chemical sensing
56

. 
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Recently, using integrated surface functionalized threads capable of sensing 

electrochemically into µTAD platforms to measure both physical (strain and temperature), 

and chemical (pH and glucose) properties for in vivo and in vitro studies have also reported 

by Mostafalu and co-authors
57

. Haemoglobin detection on threads with high sensitivity and 

low levels of nonspecific adsorption utilising functionalized filaments of cellulose 

nanofibrils conjugated with antihuman haemoglobin (anti-Hb) antibodies has also been 

reported
58

. Cabot et al. recently reported the use of commercial threads and novel 3D 

printed supporting platform to create low-cost µTADs. The proposed device has been 

demonstrated to be able to facilitate controlled protein delivery, electrophoresis isolation 

and separation of biomolecules and bacteria cells
59

. µTADs equipped with 

electrochemical
19,21,32,60–64

 and optical
36,51,65–69

 detection devices have also been reported.  

 

 

Figure 1.2:  Demonstration of some reported thread and cloth-based microfluidic devices. (A) Fluid 

mixing by twisting threads.  The top and the middle threads that transport cyan and yellow liquids are 

twisted and sleeved inside a heat shrink tube; the bottom thread that transports magenta liquid is not 

twisted with the other two threads and passes through the mixing zone from outside of the heat shrink 

tube
14

, (B) Colorimetric assay performed with sewn array design
13

. (C) Acoustically-driven fluid into 

a thread network embedded in transparent hydrogel
55

.   

Although threads can be used solely to develop µTADs, using hydrophilic/hydrophobic 

contrast in fabrics to provide a path for fluid movement is an alternate method for 
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fabricating µTADs. It has been demonstrated that flow in fabric is controllable by 

systematic change in the placement of hydrophilic and hydrophobic threads in a fabric 

design
70

. 

Using hydrophilic and hydrophobic types of silk threads in a fabric to make a µTAD 

(Figure 1.3A) by Bhandari et al. was one of the first to report on using fabrics for 

immunoassay
15

. Another report on using hydrophilic/hydrophobic contrast on fabric was 

using polypropylene (hydrophobic) and hydrophilic poly(ethylene terephthalate) yarns in a 

fabric to develop pH-sensitive microfluidic device reported by Vatansever et al
71

. 

Another method to a define path for liquid movement in textiles can be achieved by using 

patterning techniques to create hydrophobic zones on hydrophilic textile structure, such as 

cotton fabrics. These methods have been widely used to develop 2D and 3D µTADs to 

perform colorimetric bioassays for qualitative measurements or using in combination with 

electrochemical detections
30,42,43,45,72–74

. Liu et al. utilized wax and carbon ink screen 

printings on hydrophilic cotton fabrics to develop µTADs used to perform wireless 

electrochemiluminescence. Proposed devices combine inherent features of  µTADs with 

sensitivity and selectivity
75,76

. The photolithography technique has also been utilized with 

different research groups to define hydrophobic barriers on hydrophilic textile structures to 

develop µTADs. Baysal and co-workers used this technique to define physical barriers 

using a hydrophobic photo-resist polymer on a hydrophilic non-woven fabric as a base 

structure. They successfully developed a flexible and disposable µTADs with proposed 

applications in rapid detection of various kinds of important analytes or monitoring an 

athlete’s physical status during exercise
53,77

. In another work, the same patterning technique 

was employed to developed a µTAD capable of performing colorimetric assays of glucose 

and protein in artificial urine samples
49

. 

Curto et al. demonstrated a wearable, flexible and electronic-free µTADs for real-time 
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monitoring of sweat pH (Figure 1.3B)
78

. Development of fabric-based electrophoretic 

platforms which are aimed for protein separation have been reported utilizing metallic 

electrodes and metal-coated fibres and incorporating them into textile substrates
20

. Novel 

low-cost µTADs for monitoring biomarkers or environmental pollutants have been 

introduced by Robinson et al. These devices have been made by treating fabrics with silver 

nanoparticles (AgNPs) to develop low cost Surface-enhanced Raman scattering (SERS) 

wearable sensors
79

. Recently, a non-invasive method for determining glucose level has 

been proposed by Marcolino Junior research group. They have created an integrated  µTAD 

by combining a simple poly(toluidine blue O) - glucose oxidase(GOx) amperometric 

biosensor and low cost cotton threads
80

 (Figure 1.3C). Microflow injection analysis (μFIA) 

was then implemented on that device to measure glucose level in human tears. Phenol 

detection in tap water using electrochemical biosensors combined with threads has been 

also reported by this research group
81

.     

  

Figure 1.3: (A) A fabric chip comprising hydrophilic (white) and hydrophobic (gold) silk fibres, a 

green die was deposited and spread on one of hydrophilic parts
15

 , (B) A wearable micro-fluidic 

system for monitoring sweat pH
78

, (C) Glucose determination using µFIA on an integrated biosensor 

and µTAD
80
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1.5.  Electrophoretic separation on µTADs 
  

Although textile-based microfluidics is still in its infancy, it provides significant 

opportunities for the development of portable analytical devices that meet the WHO 

defined ASSURED criteria. To-date most research groups have explored simple fluid 

wicking in this area and the great potential of using precise controlled fluid movement in 

µTADs utilizing different methods such as controlled electrophoretic systems has been 

neglected with only a few research groups reporting on these approaches. Textiles benefit 

from power-free fluid movement because of capillary forces or simple wicking. However, 

this movement is not controllable and accurate devices have not been developed by purely 

relying upon wicking methods. Therefore, creating novel controllable devices with precise 

fluid control greatly depends on employing a driving force other than simple capillary 

action or ‘wicking’. Electric fields have shown great potential for movement, pre-

concentration and separation of solutes within fluids. Some researchers have utilized 

electrophoresis to achieve controllable fluid and solute movement on µTADs. Employing 

electrophoresis on textiles, controlled electroosmotic force and solute electroosmotic 

migration may take place within the surface layer of fluid formed on a thread or fabric.  

Over past three decades, capillary electrophoresis and specifically three common types of 

them including capillary zone electrophoresis (CZE), isotachophoresis (ITP) and capillary 

electrochromotography (CEC) have been widely employed in analytical chemistry as a 

powerful tool for separation of charged analytes which includes inorganic and organic ions 

as well as charged biomolecules of various sizes, up to and including proteins. These 

above-mentioned electrophoresis based separation techniques have been greatly popular in 

analytical chemistry due to their outstanding selectivity (compared to what is feasible using 

current standard liquid chromatographic methods) along with their very high efficiency. 

However, they also have some inherent limitations as a consequence of the small inner 
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diameters of the capillaries used which results in very limited sample loading capacity. A 

fundamental disadvantage of capillary-based separation technique is that it is impractical to 

access to the analyte within the capillary during the actual separation process.  Typically, 

detection of the limited amounts of separated analytes typically occurs as they finally elute 

from the column, resulting in difficulties in the post-capillary analytical processes using 

these techniques
82,83

. Interestingly, utilizing close environmental control, similar 

separations achievable in enclosed capillary systems may be achieved on the surface of 

threads and fabrics. Significantly, using threads or fabrics instead of conventional closed 

capillaries can eliminate most of the analyte accessibility issues as they are accessible 

everywhere on textiles with tunable loading capacity depending upon the textile structure.   

Although using textile substrates can eliminate the intrinsic issues associated with closed 

capillaries, it should be noted that volumetric Joule heating phenomenon, due to current 

passing the fluid, could be a greater challenge in textile-based microfluidics compared to 

closed capillary tubes which accommodate smaller volumes of buffer solution. µTADs 

utilising these approaches are discussed below. 

Electrochemical detection of inorganic ion samples
32

, e.g. Cl, Br and I, blood urea nitrogen 

(BUN) in whole blood
19

 and on-site detection of  BUN and glucose in serum
21

 (Figure 

1.4A) by incorporating an enzyme-doped thread into a µTAD using polyester thread has 

been reported by Lin research group. Buffer solution of 1.0 mM of MES (2-(N-

morpholino) ethanesulfonic acid) pH = 5 was used and 300-500 V cm
-1

 potential was 

applied to perform separations and detections. Narahari et al. demonstrated a scalable 

µTAD consisting of cotton fabric to hold large volumes of aqueous buffer and nylon- or 

polyester-based fabric as a separation substrate. The proposed µTAD eliminated the 

loading capacity issue in conventional capillary electrophoretic systems. Finally, as shown 

in Figure 1.4B, the separation of human albumin and human IgG using glycine−NaOH pH 
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8.58 as buffer while applying a 35 V cm
-1

 potential was demonstrated on proposed 

device
20

. Recently, Cabot et al. demonstrated the use electrophoresis applying 200 V cm
-1

 

on Nylon thread substrates pre-concentrated with and connected to reservoirs containing 

2.5 mM TRIS/CHES buffer solution of pH 8.5 to perform selective movement of proteins 

in branching structures and fluorescent dye separations
59

. They also showed the feasibility 

of physically concentrating fluorescent dyes on textiles. Different types of yarns, i.e. nylon, 

silk and cotton were linked by simple knotting and fluorescent dyes were physically 

concentrated in different locations as a result of chromatographic interaction. They 

proposed a practical potential diagnostic platform for urinary tract infection for this 

technique by trapping and detecting bacteria cells from urine by demonstrating cell survival 

after the on-fibre electrophoretic concentration (Figure 1.4C). 

 

 

Figure 1.4: Utilising electrophoresis on µTAD. (A) Enzyme-doped thread-based microfluidic system 

for electrophoretic separation and detection of blood urea nitrogen and glucose in serum 
19

. (B) 

Scalable fabric-based platform for a separation of proteins
20

. (C) Selective delivery of proteins in 

branching structures using electrophoresis, and the use of knotting to link different thread materials to 

trap bacteria for urinary tract infection
59

. 
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1.6. Reported applications for µTADs to date 
 

There are some inherent differences in using threads and fabrics as a platform for 

microfluidics. Threads can accommodate much lower solutions compare to fabrics, also, 

the flow within a thread is confined to one direction, while in woven fabric-based 

microfluidic devices is two dimensional. Finally, fabric-based platforms provide a greater 

sampling zone, allowing also higher area for detection zones. Despite these differences, a 

wide range of applications such as bacteria isolation and quantification, chemotaxis studies 

for cell culture systems, immunoassay, blood typing, chemical synthesis, bioanalysis, and 

the determination of nucleic acids, protein, glucose, drugs , small ions and metals has been 

reported on both thread- and fabric-based structures. Despite the relatively low sensitivity, 

colourimetric detection featuring simplicity and robustness has been the most popular 

technique that has been employed on µTADs. To tackle the low sensitivity issue, different 

methods such as using functionalised thread or nanoparticles, patterned electrodes, 

electrophoretic separations or other detection systems, e.g. amperometry, electrochemistry, 

conductivity, SERS, fluorescence or electrochemiluminescence, has been investigated on 

textile-based microfluidic platforms. Figure 1.5 shows some examples of colorimetric, 

amperometric, electrochemiluminescence assisted detections as well as DNA detection 

which have been demonstrated using µTADs.  
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 Figure 1.5: (A) Glucose detection in a thread-based microfluidic device, colourless iodide is 

oxidized to brown iodine on the thread in the presence of glucose
13

, (B) Colorimetric detection of 

glucose with different concentrations
49

, (C) A single-step blood grouping test 
52

, (D) µTAD device for 

detection of acetaminophen (ACT) and diclofenac (DCF) using multiple pulse amperometry (MPA)
28

 

(E) Scheme of a µTAD for doing wireless electrochemiluminescence
75

 and (F) The principle of cotton 

thread-based device for DNA detection
44

  

As discussed above, threads and textiles have been attracted a lot of attention in the field of 

microfluidics and diagnostics for development of low-cost portable devices. Different 

applications ranging from simple fluid wicking properties to complicated diagnostics have 

been reported using textile platforms. Different fibrous materials, and textile structures, 

including threads, woven and non-woven fabrics have been used to create µTADs. 

Moreover, different pre-treatment techniques have been utilised to increase hydrophilicity 

of or to add functionality to the textile structure. Reported µTAD applications to date 

organised based on material, textile structure used for the device, and pre-treatment 

employed are summarised in Table 1.2. 
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Table 1.2: Applications reported for textile-based microfluidic devices  

Material Textile structure  Pre-treatment Application 

Cotton Thread Nil Simultaneous determination of acetaminophen  and 

diclofenac by exploring of the multiple pulse 

amperometry detection modes
28

 

   Design of the thread-based devices incorporating pins as 

electrodes
61

 

   Amperometric determination of estriol
62

 

   Electrochemical detection of naproxen
64

 

   Developing a µTAD for wireless 

elechrochemiluminescese detection of TriPropylamine 

and H2O2
76

 

Tunable acoustically driving fluid in a thread network and 

a thread network embedded in hydrogel.
55

  

  Plasma treatment 

 

Introducing functionalized thread substrates as disposable, 

low-cost-per-test diagnostics, for routine SERS 

spectroscopy
36

 

   Calorimetrically detecting of 𝑁𝑂2
− to show the potential 

of producing low-cost portable diagnostics
14

 

  Air plasma treatment Constructing passive microfluidic systems
34

 

  Oxygen plasma treatment A new type of manufacturing process for the development 

of particle-like arrays for a multiplexed bioassay platform 
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using individually functionalized thread strands was 

introduced
38

 

  Oxygen plasma treatment. 

Fabrication by sequentially 

passing the core through 

multiple wells containing 

conductive inks (silver/silver 

chloride, carbon nanopowders, 

carbon nanotubes, polyaniline) 

Electrochemical sensing of physical and chemical 

markers both In vivo and In vitro
57

 

  Sodium carbonate treatment Blood plasma separation
51

 

  Nil Amperometric detection of tear glucose 
80

 

  Nil Electrochemical detection of phenol in tap water
81

  

 Non-woven fabric   Nil A wearable, electronic-free and flexible microfluidic 

system based on ionic liquid polymer gels for monitoring 

in real-time the pH of the sweat generated during an 

exercise period was presented
78

 

  Patterning using PDMS-coating. 

Hydrophilic patterning on 

hydrophobic substrate. 

Presenting patterned fabric allowed selective permeation 

of water-based reagents through the hydrophilic regions
84

 

 Non-woven fabric  

(wax patterning) 

Nil Simultaneous quantifying small concentrations of 

multiple biomarkers of disease using 2D and 3D 

microfluidic devices
72

 

  Sodium carbonate treatment Quantitatively determination of human chorionic 
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gonadotropin
42

 

  Sodium hydroxide and sodium 

carbonate treatment 

Bovine Serum Albumin detection in artificial urine
30

 

 Woven fabric 

(wax patterning) 

Nil Glucose determination in different sample resources
73

 

  Sodium carbonate treatment Determination of lactate concentration in saliva samples
43

 

  Boiling followed by Sodium 

carbonate treatment 

Quantitative colorimetric detection of glucose or bovine 

serum albumin in artificial urine
45

 

 Woven fabric  

(photolithographic 

patterning) 

Sodium hydroxide treatment Colorimetric assays of glucose and protein in artificial 

urine 
49

 

 
Woven fabric  

(wax printing) 
Nil 

Wax patterning to create a µTAD for detection of Cr(III) 

in water
74

 

   

Developing a µTAD for wireless 

elechrochemiluminescese detection of TriPropylamine 

and H2O2
75

 

 Fabric 

(Woven hydrophobic 

fabric as the 

substrate and 

hydrophilic threads 

Sodium carbonate and hand soap 

treatment 

Applicability toward facilitated and controlled biofluid 

removal, such as skin surfaces experiencing heavy 

perspiration was demonstrated
41
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as channels)  

Mercerized 

cotton 

Thread Nil Detection of protein, nitrite and ketones and glucose in 

artificial urine. And alkaline phosphatase in artificial 

blood plasma
13

 

   Visual detection of lung cancer related biomarker, i.e. 

human ferritin antigen using carbon nanotubes reporters
68

 

   
Electrochemical detection of human ferritin using gold 

nanorod reporters
63

  

  Boiling with sodium chloride 

followed by treatment in a 

solution of hydrogen peroxide 

and hydrochloric acid 

Room temperature DNA detection device
44

 

   Human ferritin detection
47

 

   A novel enhanced dry-reagent cotton thread device for 

Squamous cell carcinoma antigen detection based on two 

kinds of gold nanoparticles and a novel room temperature 

DNA detection device by using adenosine based 

molecular beacon probe were introduced
48

 

Cellulose Thread Nil Detection of different electro-active compounds
60

 

 Nanofibril Filaments Nil Highly sensitive detection of human hemoglobin
58

 

Nylon Thread Nil Controlled protein delivery, electrophoretic separation 

and isolation of analytes
59

 

   Colorimetric assessment of acetylcholinesterase activity
67
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Polyester Thread Nil blood urea nitrogen and glucose detection in human 

whole blood
21

 

  Plasma treatment ABO and Rh/D blood typing
52

 

   Blood typing
54

 

  Oxygen Plasma treatment Separation and detection of mixed ion samples and bio- 

samples 
32

 

   capillary electrophoresis electrochemical detection of 

blood urea nitrogen in whole blood
19

 

Silk Woven fabric Metal coated Silk yarns (Zari) Low cost SERS substrates
79

 

 Woven fabric  

(Hydrophilic and 

hydrophobic threads) 

Boiling Immunoassay
15

 

Wool Thread Plasma treatment Effect of different plasma treatments and treatment times 

on wettability of wool fibres. A simple microfluidic 

device was designed to do micro-mixing
40

 

Polypropylene Hollow and liquid 

core fibres 

Nil Demonstration of the potential of using hollow or liquid 

core fibres as microfluidic channels
85

.  

PVA 

(Poly(vinyl 

alcohol)) 

 

Electrospun 

nanofibres 

Nil Creating patterns on the Poly(methyl methacrylate) chip 

with gold electrodes and integrated into polymer-based 

microfluidic channels to create functionalized 

microfluidic systems
86
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Multi-material Mercerized cotton 

and silk threads 

Nylon bundle 

Nil Knotting to link different thread materials, providing the 

ability to physically concentrate solutes by 

chromatographic interaction. Application of trapping and 

detection of bacteria cells for urinary tract infection
59

 

 Mercerized Cotton  

threads 

Nylon bundle 

Air plasma treatment (for cotton) Detection of three target molecules in serum was 

performed to demonstrate a multiplexed assay as well as 

singleplex assay
35

 

 Mercerized cotton 

and artificial silk 

threads 

Nil Performing chemical synthesis and sensing and  

bovine serum albumin detection and quantification of 

glucose present a human blood plasma 
56

 

 

 Cotton and polyester 

threads 

Vacuum plasma treatment Describes a semiquantitative method for analytical 

detection by measuring the length of colour change on 

indicator treated threads using a ruler
33

 

  Plasma treatment Various mechanisms of flow control in yarns were shown 

and discussed
39

 

 Cotton and silk 

threads 

Vacuum plasma treatment The effect of the surface morphologies of silk and cotton 

fibers on the separation properties for the application of 

blood typing based on the principal of chromatographic 

elution
37

 

 Blend of cotton and 

polyester threads  

Sodium hydroxide treatment 

(with ultrasonic) 

Quantitative assays of hydrogen peroxide and glucose
46

 

 Cotton threads 

Cotton and polyester 

Sodium hydroxide and sodium 

dodecylbenzenesulfonate (SDS) 

sequential determination of Cu(II) and Zn(II)
50
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threads treatment 

 Nylon threads, paper 

for analysis sites 

Nil Colourimetric assessing of glucose in artificial urine
69

 

 Cotton thread for 

microfluidics 

Fabric of Nylon-

Lycra for detection 

zone  

Nil Real-time chemical analysis of sweat composition, in 

particular pH
65

 

 Polyester and nylon 

non-woven fabric 

(Photolithographic 

patterning) 

Nil Detecting lactate in sweat
53

  

 

An enzyme biosensor based on colorimetric detection of 

hydrogen peroxide was reported
77

 

 Polypropylene and 

poly(ethylene 

terephthalate) woven 

fabric 

Nil Making microfluidic fibre channels with switchable water 

transport
71

 

 Cotton fabric for 

reservoirs and 

polyester for 

channels 

Woven and knitted 

fabric strips 

Nil Separation of small molecule as well as macromolecule 

(protein) analytes
20

 

 Poly(ethylene 

terephthalate) 

copolyester 

Nil Flow control by systematic change in fabric design.
70

 



24 
 

(Hydrophilic part) 

Polypropylene 

(Hydrophobic part) 

Woven fabric  



25 

 

Although, a lot of research work has been done in the field of textile-based microfluidics, 

it’s still in its early stages. Most importantly, to the best of our knowledge, there is no 

report on utilizing custom-built functionalized composite fibres in textile structures to 

induce desired characteristics to µTADs. Hence, in the following sections, principles of 

textile fibre making methods and textile fabrication techniques as key elements in making 

textile structures with desired characteristics will be briefly reviewed.  

1.7. Polymeric fibre spinning 
 

The process of converting polymer liquid into continuous fibre form is called fibre 

spinning. Continuous solidification of polymer liquid is an undetectable part of any 

spinning process, regardless of the materials involved. This process can involve heat 

removal or solvent removal by using a solvent non-solvent process. Making a processable 

or spinnable form of polymer by either melting or dissolving polymer in a proper solvent is 

the first step of spinning. Depending on the thermal and chemical properties of polymers, 

different methods including melt spinning, wet spinning, dry spinning and electrospinning 

can be employed to make polymeric fibres from a spinnable state of fibres constituent 

polymer
87,88

.  

1.7.1. Melt spinning 
 

In this method of fibre making, heat is applied to the polymer to melt it then molten 

polymer passed through a spinneret via a spinning pump. Therefore, only thermoplastic 

polymers (polymers that melt) can be used for melt spinning technique. Spinning 

temperature in which viscosity of molten polymer fulfils the requirements for spinning is 

often about 30K higher than melting temperature. Consequently, polymers used in melt 

spinning method should exhibit good thermal stability under melt condition. Solidification 
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of molten polymer occurs as a result of heat transfer (cooling the molten polymer in 

cooling chamber or air). Although production speed in this system is relatively high, it has 

some disadvantages such as being able to process only thermoplastic polymers which are 

resistant to thermal oxidation and rapid solidification which sometimes results in poor 

internal micro-structure in spun fibres
89

. Figure 1.6 shows schematic of a melt spinning 

process. 

 

Figure 1.6: Schematic of melt spinning process includes polymer feeding, heating zones and 

collector.  

 

1.7.2. Wet spinning 
 

In this method of spinning, polymer first dissolved in a suitable solvent to make spinning 

solution. Then fibres are formed by injecting prepared solution into a coagulation bath 

through spinnerets and at a controlled flow rate.   The coagulation bath contains a miscible 

solvent compatible with the spinning solvent in which the polymer is dissolved but 
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importantly the coagulant should be a non-solvent to the polymer, being spun which results 

in polymer precipitation and fibre formation. Fibre morphology and cross-section shape 

greatly depends on the mass transfer rate occurring in coagulation bath. Some drawbacks of 

this process includes a relatively low fibre production rate and the need for the non-solvent 

which can make the wet spinning process costly
87,88,89

. Schematic of wet spinning process 

is shown in Figure 1.7. 

 

Figure 1.7: Scheme of wet spinning technique includes syringe pump that pumps the polymer 

solution into the coagulation bath and a collector for fibres 

 

1.7.3. Dry spinning 
 

Dry spinning and wet spinning share a number of basic principles. Similar to wet spinning 

method, polymer spinning solution is preparation by dissolving polymer into a compatible 

solvent system. Then solution is injected through a spinneret into a chamber of circulating 

warp air to form fibre gels. In this method, solidification occurs as a result of solvent 

evaporation within the chamber. In this process two simultaneous phenomena, i.e. inward 

heat transfer and outward mass transfer occurs typically results in non-circular fibre cross-

sections due to the collapse of the outer skin. This method can be used to make fibres from 
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heat-sensitive polymers. Application of this method is limited to flammable, non-hazardous 

solvents with low boiling points
87–90

. 

 

1.7.4. Electrospinning 
 

This technique is a well-known method for making fibres with sub-micron dimension that 

exhibit outstanding characteristics such as very large surface area to volume ratio, 

flexibility in surface functionalities and very good mechanical performance. This technique 

is often applied to polymer solutions, however there are some reports on electrospinning of 

molten polymer include making 3D scaffolds by melt electrowritting
91,92

. This method 

essentially comprised of three components: a high voltage supplier, a needle of small 

diameter (or a capillary tube) and a metal collector (Figure 1.8). In electrospinning, an 

electrically charged jet of polymer is created by the high voltage supplier (One electrode is 

attached to the tip of the needle which contains spinning solution/melt and the other to the 

collector). This jet is applying a very high amount of tension to the polymer that results in 

formation of sub-micron fibres. Solution or molten polymer solidifies by either solvent 

evaporation or cooling before reaching the collector and an interconnected web of very fine 

fibres is formed on the collector
93,94

.  
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Figure 1.8: Scheme of electrospinning process which includes polymer solution, high voltage DC 

power supply and a collector 

1.8. Textile fabrication techniques 
 

Textile fabric can be defined as an assembly of fibres, yarns or their combinations. Fabric 

manufacturing can be done in different ways and each of them is capable of producing 

wide variety of fabrics depending on raw materials used, equipment and machinery 

employed and setup control elements during the process. Most commonly fabric forming 

methods can be categorized in weaving, knitting, braiding, and nonwoven manufacturing
95

 

(Figure 1.9). 
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Figure 1.9: Schematic of fabrics produced by (a) Weaving, (b) knitting, (c) braiding and (d) 

nonwoven manufacturing. 

 

1.8.1. Weaving 
 

Woven fabrics are made by which two sets of yarns (i.e. warp and weft) interlaced 

perpendicular to each other 
95,96

. In the simplest two dimensional woven fabrics, threads 

run vertically along the length of the fabric are called warps and wefts are the threads are 

lay across the width of the fabric perpendicular to war threads
97,98

. Woven fabrics can be 

made in triaxial and three dimensional shapes as well
97

. 

 

1.8.2. Knitting 
 

The knitting is the second most common method of textile fabric formation and consists of 

continuous lengths of yarns which are formed into columns and rows of intermeshed loops 

using either hand or machine. This technique can be categorized into two main streams i.e. 
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Weft knitting and warp knitting techniques
96,99–102

. Weft knitting is the method being used 

in hand knitting. Weft knitted structures are made by loops formed by one continuous end 

of yarn across the width of the cloth (Figure 1. 10a). In warp knitting method, multiple 

yarn ends are formed columns of loops then warp knitted fabric is made by diagonal 

intermeshing of loops with the adjacent vertical columns (Figure 1. 10b)
97,98

. Weft knitting 

has some unique features which includes;  

 The capability of making fabrics using minimum number of yarns (even only one 

yarn),  

 Varying the size of loops,  

 Possibility of loop transfer from one needle to another,  

 Stability and extensibility of the fabric can be engineered,  

 Tunable porosity and compactness,  

 Shaping can be done during knitting process,  

 Unsuitable yarns for knitting can be knitted as in-lays,  

 Selective variation of the number of yarns to be knitted in the same fabric,  

 Possibility of variation in needle numbers for loop formation from one cycle to 

another,  

 Easy flow of yarn from one loop to another under tension and  

 Negligible wastage of yarn during yarn conversion in knitting which make it greatly 

popular.  
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Figure 1. 10. Intermeshed loops in (a) weft- and (b) warp-knitted structures
97

 

1.8.3. Braiding 
 

Braiding is probably the simplest and the first method of fabric formation used by ancient 

civilizations. Braided structures are formed by interlacing three or more sets of yarns on the 

bias over and under each other
95,102

. Braiding is the ideal technique for developing 

structures comprising of mixed materials and for rapid production. 

 

1.8.4. Non-woven 
 

Non-woven textile structures are made by bonding and/or interlocking of fibres. Bonding 

fibres can be done mechanically, chemically, thermally, or by using solvent and the 

combination of them
103

.  

Weaving and warp knitting methods are costly techniques of fabric formation because they 

require significant preparation such as warping and winding. Fabric formation using these 

methods typically requires a large amount of yarns which make them not suitable for lab 

scale productions. In this thesis, weft knitting and braiding have been selected as fabric 

formation methods for producing textiles substrates for fluidics because of ease of 

fabrication. Moreover, characteristics of knitted and braided structures can be easily 

adjusted by changing production parameters. In addition, weft knitting needs almost no 
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preparation and can be performed using only one yarn. Braiding technique benefits from 

having independent tension mechanism for each individual yarn, unlike weaving and warp 

knitting, also, this method has been designed to easily make multi-material structures. 

1.9. Common nano-fillers for composite fibres 
 

In recent decades, nanocomposite materials owing to their outstanding characteristics such 

as being strong, durable, multifunctional materials with low nanofiller content have been 

attracted a lot of attention and it have been known as ‘radical alternative to conventional 

filled polymers or polymer blends’. Such materials including nanocomposite fibres have 

been utilized to a wide range of applications
104,105

. Following a brief review of two 

common fillers, i.e. graphene and boron nitride, will be provided.    

1.9.1. Graphene 
 

In recent years, graphene sheets, one-atom thick two dimensional layers of sp
2
-bonded 

carbon, is a remarkable carbonaceous material demonstrated unusual properties such as 

extraordinary optical properties, mechanical strength, electrical and thermal conductivity. 

Such features result in an increasing attention for development of nanocomposite materials 

for different applications
104–106

. Graphene is a flat monolayer of carbon atoms arranged in a 

two dimensional honeycomb lattice, Figure 1.11. This network is the basic building block of 

other important carbon materials, i.e. 3D graphite, one-dimensional carbon nanotube and 

zero-dimensional fullerenes
107

.  
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Figure 1.11: Schematic structure of graphene sheets in which carbon atoms bonded in a honeycomb 

lattice
106

.   

 

For a long time it was believed that two-dimensional crystals were thought to be 

thermodynamically unstable at finite temperatures till Geim et al. first isolated single-layer 

samples from graphite in 2004. This great discovery was awarded a Nobel Prize in 

physics
106,107

.   

Apart from mechanical exfoliation of graphite proposed in 2004, graphene sheets are 

mainly synthesized using three main approaches: liquid-phase exfoliation of graphite
108

, 

chemical vapour deposition method
109

 and reduction of graphene oxide
110

. Graphene 

exhibits a very poor dispersibility which limited its application. In 2006, Ruoff’s group 

presented water dispersible graphene oxide (GO) sheets by chemical modification of 

graphite. They showed oxidation of graphite results in GO which is a layered material 

which is heavily oxygenated, having hydroxyl and epoxide functional groups on their basal 

planes as well as carbonyl and carboxyl groups at the sheet edges. These functional groups 

make the GO hydrophilic and therefore, dispersible in water
110

.  Due to disruption of 

graphitic network, GO is electrically insulating which limits its application for the synthesis 

of conductive nanocomposites. However, graphene oxide can be reduced chemically, 
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thermally or using ultraviolet-assisted methods to make a significant increase in its 

electrical conductivity
104,110

.   

Using graphene sheets, with their ultrahigh aspect ratio, as a filler to make composites 

results in large changes in its properties at very low percolation thresholds. Therefore, 

graphene has been widely used as a filler to develop composites for a wide range of 

applications
106

. 

1.9.2. Boron nitride 
 

Boron nitride (BN) has three different crystal structures; layered known as hexagonal boron 

nitride (hBN), cubic (cBN) and tubular structures. hBN also known as “white graphite” is 

the isoelectric analogue of graphite and naturally comprised of layered structures. In this 

structure, boron and nitrogen atoms are bound together by strong covalent bonds with an 

interlayer spacing of ∼0.33 nm forming a honeycomb lattice, while different layers are 

attached by a weak van der Waals force
111–113

. While graphene sheets adopt AB stacking to 

form 3D graphite solid, hBN layers prefer AA' stacking arrangement. However, non- AA' 

stacking in BN sheets is also possible as a result of basal plane sliding
114

. Different views 

(top, side and end views) of structural diagram of AA' stacked BN is shown in Figure 1.12. 
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Figure 1.12: (i) top view, (ii) end view, and (iii) side view  of structural diagram of AA' stacked BN 

sheet
114

  

 

In addition to high mechanical strength and thermal conductivity of hBN, similar to those 

of graphene, it also exhibits outstanding characteristics such as high temperature stability, 

high hardness and corrosion resistance, deep ultraviolet photon emission and a low 

dielectric constant. These features make it popular for a wide range of applications. 

Although hBN has a very high thermal conductivity like graphene, it has a large band gap 

(∼4-6 eV), making it an insulator (or a wide-band-gap semiconductor)
111–118

.  

First synthesis of BN from boric acid and calcium cyanide was reported by W.H. Balmain 

in 1842. BN remained as a lab-scale production until mid-1940s when improved process of 

producing BN was presented which led to more economical and higher quality BN 

production
111,118

.  This material has been used in a wide range of applications such as solid 

lubricant in rigorous environments, as an ultraviolet-light emitter, or as an insulating 

thermally conductive filler in composites for different industries  like metallization, metal 

industry, cosmetics, the automotive industry, high-temperature furnaces, thermal 

management, etc
111,112

. 
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1.10. Thesis outline  
 

As discussed above, application of textiles as a low-cost abundant substrate in the field of 

microfluidics is increasing. This thesis aims to develop functionalized composite fibres to 

be incorporated into textile structures (either 2D or 3D structures) to induce desired 

characteristics to the substrate and improve the performance of textile-based microfluidic 

device.  

Considering the fact that textile-based microfluidics is a relatively recent technology, many 

different aspects of this novel field are yet to be unravelled. For instance, a huge potential 

exists to exploit the separation potential of electrophoresis in multiple dimensions. These 

either may include applying potential upon single threads in simple mono-directional 

arrangements, or systematically designed multi-dimensional and woven fluidics comprising 

of multiple types of interconnected threads with different arrangements. Another interesting 

field that needs to be explored is the use of modified and functionalized composite fibres 

made specifically to satisfy the specific needs. For instance, ‘on-fibre’ trapping, isolation 

and derivatisation can be achieved by incorporation of functionalized composite fibres into 

textile platforms. The first step would be the understanding of the fundamental underlying 

principles of the nature and role of the fibre material in the electrophoretic separations. 

Taking into account that the electrophoresis technique, as a well-established technology, 

has the capacity to provide solutions to the analysis of small molecules to large 

biomolecules (and even whole cells), the approach taken in this thesis will be to;  

 Develop an understanding the impact of materials’ composition in the final 

performance of µTADs. 

 Investigate the preparation and incorporation of functionalized composite fibres into 

3D textile platforms to facilitate electrophoresis experiments.  



38 

 

 Investigate segmented functionalized textile platforms equipped with 

electrochemical and amperometric detection techniques to perform some diagnostic 

assays.  

Chapter 2 presents the materials used to perform experiments in this thesis, explains the 

experimental procedures including preparing composites, fibre spinning formulations for 

wet-spinning experiments, melt spinning conditions, electrophoresis tests  and 

characterisation methods used.   

Chapter 3 investigates the effect of surface chemistry and surface charge in the 

performance of a µTAD. In this chapter different 3D knitted structures comprising of 

LCGO/low-density polyethylene composite fibres are produced and the effect of their 

changing surface chemistry in the wicking properties of those structures in different 

solutions are assessed.  

Recently, electrophoresis technique as a powerful tool has been used in textile-based 

microfluidics to precisely control the flow. However, the drawback of using this method is 

Joule-heating caused as a result of applying electric field passing electrolyte to move and/or 

separate solutes. Joule-heating not only increases the fluid temperature, but also produces 

temperature gradients in cross-stream and axial directions. These temperature effects, cause 

non-uniformity in fluid properties, and more importantly affect the mass species transport 

119
. Therefore, next two chapters of this thesis have been focused on development of 

thermally conducting fibres incorporated into textile substrates to minimize the Joule-

heating effect. 

Chapter 4 presents the development of a thermally conducing fibres using low-density 

polyethylene as polymeric matrix along with liquid-crystalline graphene oxide (LCGO) as 

filler then incorporation of these fibres into 3D textile structure for dissipating the Joule-

heating  caused by electrophoresis.  
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Utilising solution-based methods to produce composite fibres using polyurethane 

polymeric matrix and two different fillers, i.e. LCGO and hBN nanopowders, their 

mechanical and thermal properties, and finally, the effect of incorporating those thermally 

conducting fibres into 3D textile structures in dissipation of Joule-heating and keeping the 

working temperature low is explained in chapter 5. 

Then final experimental chapter of this thesis dedicated to making a µTAD in which 

electroactive electrodes have been prepared and incorporated into textile structures using 

two different fabrication techniques, i.e. knitting and braiding. Then cyclic voltammetry 

and amperometric methods have been employed to perform potassium ferricyanide 

detection on textile-based microfluidic device to demonstrate the capability of using these 

devices as wearable electrochemical sensors. 
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2.1. Materials 
 

Low-density polyethylene (LDPE) pellets were kindly supplied by CSIRO and 

hydrophilic thermoplastic biocompatible polyurethane elastomers (PU) pellets were 

purchased from Advansource HydroThane
TM

 AL 25-80A. Boron nitride nanopowders 

(<150 nm average particle size (BET), 99% trace metals basis), 

Tris(hydroxymethyl)aminomethane (TRIS), N-Cyclohexyl-2-aminoethanesulfonic acid 

(CHES), 3-aminopropyltriethoxysilane, hydrochloric acid (HCl), Hypophosphorous acid 

solution (H3PO4), Gold (III) trichloride, Potassium ferricyanide and phosphate buffered 

saline (PBS) were purchased from Sigma-Aldrich and used without modification. Ethanol 

(EtOH) and perchloric acid (HClO4) was sourced from Ajax Finechem and pyrrole was 

purchased from Merck and used without further purification. Stainless steel filaments 

were purchased from Bekaert, silver-plated nylon yarns from 3L Tex Co.,Ltd  and 

polyester threads from Shijiazhuang Yunchong Trading Co., Ltd.  

Millipore (Sartorius Stedim Biotech) water was used in entire project. Liquid crystalline 

graphene oxide (LCGO) aqueous dispersions at a concentration of 8 mg mL
-1

 were 

supplied by the Materials Node of the Australian National Fabrication Facility (ANFF).  

2.2.  Experimental 
 

2.2.1. LCGO/LDPE composites 
 

LDPE pellets were ground into ca. 200 µm size powders suitable for use in a bench top 

melt extrusion system utilizing Cyro grinder machine. Polymer pellets and machine’s 

mechanical parts (rotating blades) were cooled down constantly using liquid nitrogen.  

To make LCGO/LDPE composites, first LDPE powders were mixed with LCGO aqueous 

dispersion to achieve the desired LCGO loading in final composite. Then LDPE powders 
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were coated with LCGO by evaporation of water in dispersion using BUCHI Rotovapor 

R-210 rotary evaporator machine utilising a 70ᵒC water bath temperature at 70 mbar 

vacuum.  

2.2.2. Melt spinning 
 

LDPE and LCGO/LDPE fibres were made using a Barrell twin-screw extruder 

(http://www.barrell.com.au/engineering-products/mini-laboratory-extruder/). Figure 2.1 

shows the screw setup used for making polymeric fibres. The temperature profile for the 

10 different extrusion zones and die are given in Table 2.1. 

 

 
Figure 2.1: Scheme of screw setup used for melt spinning, ten heating zones and polymer melt 

direction 

  

http://www.barrell.com.au/engineering-products/mini-laboratory-extruder/
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Table 2.1: Heat profile for making melt spun fibres 

Zone Temperature (ᵒC) 

Zone 1 70 

Zone 2 110 

Zone 3 130 

Zone 4 150 

Zone 5 160 

Zone 6 160 

Zone 7 160 

Zone 8 160 

Zone 9 150 

Zone 10 140 

Extrusion die 140 

 

Fibres were made using a Ø 700µm extrusion die. Fibres were stretched using custom 

fabricated roller stretching system before being collected onto a bobbin. The melt 

spinning setup comprising of twin-screw melt extruder, stretching unit and winding unit 

as shown in Figure 2.2. 

 

 
Figure 2.2: melt spinning setup, I: twin-screw melt extrusion, II: stretching unit and III: winding 

unit 
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2.2.3. Wet Spinning of LCGO/PU composites 

2.2.3.1.  Making PU solutions 

 

To make LCGO/PU composites, first PU polymer was dissolved in EtOH/Water (85:15 

v/v) at 70ᵒC with constant stirring to make a 100 mg mL
-1

 PU solution.   

2.2.3.2. Making LCGO dispersion in EtOH 

 

To replace water with EtOH in the LCGO dispersion, first a LCGO aqueous dispersion 

was transferred into centrifuge tubes and some EtOH was added to each tube. Then 

solutions were centrifuged (Eppendorf Centrifuge 5804) at 8000 rpm for 90 minutes. 

Supernatants were pippeted out and the remaining was washed with EtOH. This procedure 

was repeated 10 times to replace water with EtOH in LCGO dispersion.   

2.2.3.3.   Composite making  

 

LCGO/PU composites were prepared by gradual addition of PU (100 mg mL
-1

) solution to 

its equal volume of EtOH/water (85:15 v/v) solution that contained desired amount of 

LCGO in EtOH while constantly stirred on a hot plate.  

LCGO/PU films for characterisation were produced by casting the composite solution in 

glass petri dishes under fume hood.     

2.2.4. Reduction of LCGO/PU composites 
 

LCGO/PU samples were reduced in 5 wt.% hypophosphorous acid at 80 ᵒC overnight. To 

remove the excess acid, reduced samples were washed with DI water and finally vacuum 

dried at 80 ᵒC.    
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2.2.5. BN/PU composites 
 

Desired amount of BN nanopowder was weighed and a uniform dispersion in EtOH/Water 

(85:15 v/v) was prepared by 60 minutes of bath sonication (Branson B5500R-DTH). Then 

BN/PU composites were made by gradual addition of PU (100 mg mL
-1

) solution to its 

equal volume of BN dispersion in EtOH/water (85:15 v/v) while dispersion was 

constantly stirred on a hot plate.  

BN/PU films for characterisation were then prepared by casting the composite solution in 

glass petri dishes under fume hood. 

2.2.6. Wet spinning 
 

Fibres were made from different spinning formulations using horizontal wet-spinning 

setup which is shown in Figure 2.3. Spinning formulation was injected into a 50 cm 

horizontal coagulation bath filled with non-solvent composition. Injections of spinning 

formulation, transferred into a Ø 15.75 mm syringe, were performed with a controlled 

flow rate by utilizing a syringe pump. A 20 gauge needle with blunt tip was used as 

spinneret.  Solvent/non-solvent interaction between spinning formulation and non-solvent 

composition in coagulation bath resulted in formation of solid fibres. Spun fibres were 

then collected on a speed-controlled winder.  

 

Figure 2.3: Scheme of horizontal wet-spinning configuration includes syringe filled with solution, 

coagulation bath and collector. 
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2.2.7. Knitting 
 

3D knitted structure substrates for electrofluidic tests were prepared on a Harry Lucas 

(R_RR3-1S-2zoll) circular knitting machine with the head size of 1/12 in.; gauge, 28 and 

8 needles (http://www.lucas-elha.de/products/ckmsinglejersey/r_rr3-1s-2zoll.php). A 

feeding tension setting of 3.2 and pickup tension of 32 were applied to threads and knitted 

structures, respectively.  Different 3D textile structures were prepared from commercially 

available polyester (PET) threads and combination of PET with composite fibres by 

feeding PET yarns or PET yarns in parallel composite fibres into a Harry-Lucas knitting 

machine. To achieve knitted structures with similar architectures, a constant feeding 

tension of 3.2 for PET threads and pick-up tension 32 (an empirical machine specific 

setting) for the knitted structure were applied for making all structures. Schematic of 

knitting procedure is shown in Figure 2.4. 

 

Figure 2.4. scheme of making 3D knitted structures with commercial PET and a composite fibre 

http://www.lucas-elha.de/products/ckmsinglejersey/r_rr3-1s-2zoll.php
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2.2.8. Braiding 
 

3D braided structures were prepared using Trenz-Export (12/80) circular braiding 

machine (http://www.braiding-machines.net/productos.php?IDpro=12). 12 different 

spools of threads were fitted into machine and different core materials were used to make 

3D braid structures.   

2.2.9. Electrofluidic experiments 
 

3D printed reservoirs filled with buffer solutions were used to perform electrophoresis 

tests on textile structures.  DC voltages were supplied by a high voltage sequencer 

purchased from LabSmith, Inc. (HVS 448LC 3000D high voltage sequencer). Micro-clip 

terminators and 23 gauge, ca. 0.5 mm diameter, Platinum (Pt) electrodes were used to 

apply voltages to the textile structures.  HVS connections were secured in a box to avoid 

electrical shocks.   

2.3. Characterisation methods 
2.3.1. Polymers, solutions and dispersions characterisations 

2.3.1.1. LCGO sheet size measurement 

 

LCGO sheets were first deposited on pre-cleaned and silanized silicon wafer (300 nm 

SiO2 layer). Silane solution was prepared by mixing 3-aminopropyltriethoxysilane with 

water (1:9 v/v) and one drop of hydrochloric acid. Pre-cut silicon substrates were silanized 

by immersing in aqueous silane solution for 30 min followed by washing thoroughly with 

D.I. water. LCGO sheets were then deposited onto the silanized silicon substrates by 

immersing a silicon substrate into the LCGO dispersion (50 µg mL
− 1

) for a few seconds 

then immersing in D.I. water and air-drying. The as-deposited LCGO sheets were directly 

examined by scanning electron microscopy analysis. The lateral size distributions of 256 

http://www.braiding-machines.net/productos.php?IDpro=12
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isolated LCGO sheets were determined and analysed using imageJ
1
 image analysis 

software. The lateral size of LCGO sheets was defined as the diameter of an equal area 

circle. 

2.3.1.2. Zeta potential on LCGO 

 

Zeta potential of LCGO aqueous dispersions were measured by dynamic light scattering 

(DLS) technique using a zetasizer (Malvern Instruments Nano-ZS) using dip cell cuvettes. 

The zeta potential for each sample was reported as an average of 10 measurements.   

2.3.1.3. Rheological tests of PU composite spinning formulations 

 

Rheology tests on PU and PU composites (LCGO/PU and BN/PU) solutions were 

performed using a rheometer (TA Instruments AR-G2) at room temperature (25 ᵒC) using 

a flow test from 0.01 – 400 s
-1

. Cone plate geometry (cone angle 2ᵒ, diameter 40 mm and 

truncation 55µm) was used to do viscosity tests. Solutions were protected from solvent 

evaporation and/or change in decomposition by placing a protective chamber around the 

geometry. 2-minute holds at each shear rate were used to equilibrate the solutions. 

Measurements were made logarithmically at 10 points per decade of shear rates.  

2.3.1.4. Thermogravimetric Analysis (TGA) 

 

TGA analysis on polymeric samples was performed on TA instruments Q500 in under 

nitrogen flow with the flow rate of 90 mL min
-1

 using Platinum pans. To measure the 

mass loss of samples with temperature, samples were heated up to 600 ᵒC with 10 ᵒC min
-1 

heating rate and mass loss was recorded.    

 

                                                           
1
 ImageJ. https://imagej.nih.gov/ij/ 
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2.3.1.5. Differential scanning calorimetry (DSC) 

 

Differential scanning calorimetry (DSC) experiments were performed to determine the 

melting temperature of polymeric samples using a TA instrument Q100. Samples were 

sealed in standard Aluminium pans then placed in the instrument.  

 

2.3.1.6. UV-Vis spectroscopy 

 

UV-1800 Shimadzu UV spectrophotometer was used to carry out spectroscopy on 

different aqueous solutions in standard plastic cuvettes.  Absorbance of solutions were 

measured in the wave length rang of 400 to 700 nm. 

2.3.1.7. Capacitively Coupled Contactless Conductivity (C4D) measurement 

 

An output signal measured by volts for different concentrations of solutions, was obtained 

and measured using a commercial C
4
D (TraceDec), supplied by Innovative Sensor 

Technologies GmbH (Strasshof, Austria), with a capillary head- stage that specifically 

accommodates a 660 µm fused silica capillary. Solutions were injected into capillary tube 

to fill the tube. Measurement frequency and gain were adjusted for different solutions to 

maximum signal did not exceed 2.5 volts. Capillary was washed thoroughly with DI water 

before each measurement.   

2.3.2. Films and Fibres characterisation 

2.3.2.1. Mechanical test 

 

To ensure that fibres were held vertically between clamps, fibres were initially mounted 

into paper frames which were then transferred to the tensile tester machine. After 

mounting and before testing the frame sides were cut. Fibres of 3 cm in length were fixed 

vertically between two clamps and stretched at a 10 mm min
-1

 rate using a mechanical 
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testing system (Shimadzu EZ mechanical tester) equipped with a computer-based 

control/analysis system. A 10 N load cell was used in all experiments. Ultimate strength 

was determined as the maximum stress before the fibre fractured and the corresponding 

strain was determined as the elongation at break.  Young’s modulus for fibres were 

calculated using the equation  1 in the initial linear part of stress-strain curves. 

𝐸 =
𝜎

𝜀
  (1) 

Where E, σ and ε represent Young’s modulus, stress and strain, respectively. 

2.3.2.2. Scanning electron microscopy 

 

Fibre and textile cross-sections were observed using scanning electron microscope (JEOL 

JSM 7500-FA). Fibres and textiles were freeze-fractured while immersed in liquid 

nitrogen to obtain smooth surfaces. Samples were sputter coated with a layer of about 5 

nm of Pt using a sputter coater (EDWARDS Auto 306). LCGO sheets and BN 

nanoparticles deposited on silicon wafers were also coated with Pt and analysed using the 

same microscope. 

2.3.2.3. Fibre diameter and film thickness measurements 

 

An optical microscope (Leica DM6000 Optical Microscope) was used to measure the 

fibre diameters as well as film thicknesses utilising the built-in image analysis tool in the 

associated Leica software. The average value of at least 5 measurements was considered 

as the fibre diameter or film thickness. 

2.3.2.4. Raman spectroscopy 

 

Raman spectroscopy was performed on different samples including spun composite fibres, 

LCGO film and BN nanopowders utilising a Jobin Yvon Horiba HR800 confocal Raman 

microscope with a 632 nm laser and a 300-line grating under 100X objective to achieve a 
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resolution of  ± 1.25 cm
-1

. Calculations such as ID/IG were made after a common baseline 

correction was applied to all acquired spectra. 

2.3.2.5. Fourier Transform Infrared Spectroscopy (FTIR) analysis 

 

FTIR spectra were obtained using Shimadzu IRPrestige-21 infrared spectrometer.  

2.3.2.6. Specific heat capacity (CP) measurement 

 

Modulated differential scanning calorimetry (MDSC) experiments in standard aluminium 

pans using TA instrument Q100 were performed to measure specific heat capacity of 

polymeric samples. TA instrument first calibrated in MDSC mode with standard sapphire 

material with known heat capacity at desired temperature range. Around 5mg of the 

sample was sealed into a standard aluminium pan and heated from 10 to 75 °C at the 

heating rate of 5 °C min
-1

, with the oscillation amplitude of ±1 °C and oscillation period 

of 60 s. 

2.3.2.7. Thermal diffusivity measurements 

 

To perform thermal diffusivity experiments, film samples prepared by casting solutions in 

petri-dishes were first cut into Ø 12.5 mm disks using punches and then they all coated 

with graphite powder using commercial graphite powder spray. The thermal diffusivity 

was then measured using the NETZSCH laser flash apparatus LFA 457 MicroFlash®. 

Thermal diffusivity of samples at each temperature was measured three times. 

The Laser Flash (LFA) technique is a fast, non-destructive and non-contact method for 

determining thermal diffusivity and specific heat. The front surface of a plane-parallel 

sample is heated by a short energy light pulse. From the resulting temperature of the rear 

face measured with an infrared (IR) detector, thermal diffusivity is determined. Having 

thermal diffusivity, sample density and sample specific heat capacity, thermal 
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conductivity can be calculated using equation 2. 

 

λ(T) = a(T) · cρ(T) · ρ(T)  (2) 

 

Where λ represents thermal conductivity [W (m·K)
-1

], a represents thermal diffusivity 

[mm² s
-1

], Cp is specific heat capacity [J (g·K)
-1

] and ρ shows sample bulk density [g cm
-

3
].



 
 

Chapter 3: 

___________________________________ 

Tunable Flow Rate in Textile-based 

Microfluidics Utilizing Composite Fibers
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3.1. Introduction 
 

Threads and textiles have recently shown immense promise for the mass production of 

cheap microfluidic devices with outstanding characteristics 
1–3

. Threads and textiles 

possess unique features that make them suitable for production of next generation 

microfluidics. Features such as  flexibility,  high mechanical strength in wet state, 

reusability, disposability, an independence of external power for fluid movement (due to 

capillary channels between fibers), no bubbles that may plague microfluidic systems, an 

ease of chemical surface functionalization and a readily accessible analyte at the open 

surface at the textile-solvent interface
1,2,4–7

. 

Since the first introduction of thread-based microfluidics
2,1

, the nature of the textiles and 

threads deployed have attracted a lot of attention. A variety of threads have been used in 

microfluidics for applications ranging from simple fluid wicking properties to complicated 

microfluidic textile platforms for portable diagnostics such as textile-based real-time 

sweat monitoring devices
8–13

.  

Since, power-free fluid movement due to capillary action in textile-based microfluidics is 

a key element, a great deal of research work have been done to enhance the wicking rate 

of textiles  by surface modification and removal of contamination utilizing chemical or 

plasma treatments
2,1,14,5,15,16

. However, these techniques have some major drawbacks. Wet 

chemical treatments are harsh and can potentially result in loss of mechanical properties. 

The reproducibility of the degree of surface modification is also affected by different 

molecular weight, crystallinity or tacticity. Generation of hazardous chemical waste and 

irregular surface etching are also need to be noted
17–19

. Plasma-treatment is also an 

expensive methods and enhanced wicking in textiles is a temporary effect and will not last 

for long
20

.   
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In this chapter, we have utilized composite making approach a novel, easy, tunable and 

cost-effective method with long-lasting (permanent) effect that improves the mechanical 

properties of fibres to tune the surface chemistry of fibres. It has been also demonstrated 

that a tunable flow rate in 3D knitted structures comprised of liquid crystalline graphene 

oxide (LCGO) / low-density polyethylene (LDPE) composite fibres embedded into a 3D 

polyester (PET) knitted structure with an internal (hollow) channel as textile-based 

microfluidics can be achieved through modifying the surface chemistry of polymeric 

fibers utilizing the proposed approach. Herein, we show how surface chemistry within a 

3D knitted structure can deliver controlled flow rates, well in excess of that typically 

achieved using standard fibers. The proposed technique can be potentially implemented in 

a range of applications in textile-based analytical devices includes tuning the analyte’s 

movement, physical analyte concentration or entrapment and opens up new routes in 

textile-based point-of-care diagnostics. 

As fluid movement in textiles and yarns requires capillaries formed between fibres in a 

thread, a single fibre cannot make a textile-based microfluidic structure. In this thesis 

fibre-based microfluidics refers to a thread-based microfluidic structure which is made by 

threads (yarns). Fabrics are also made of yarns and filaments arranged in a specific way.  

3.2. Experimental 
3.2.1. Composite development 
 

LCGO/LDPE composite with LCGO loadings of 0.5, 1, 2 and 5 w/w% using a rotary 

evaporator at 70 ᵒC at 70 mbar vacuum were prepared as described in 2.2.1 Figure 3.1. 
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Figure 3.1: left to right: LDPE, 0.5, 1, 2 and 5 w/w% LCGO/LDPE powders 

 

3.2.2. Fibre spinning 
 

To confirm extrusion parameters of LDPE and LCGO/LDPE composites, pristine LDPE 

and LCGO/LDPE coated powders were characterized using TA Dynamic scanning 

calorimetry (DSC) and TA thermogravimetric analysis (TGA), to evaluate their melting 

and decomposition temperature, respectively. DSC results show that LDPE melts at about 

125 ᵒ C and LCGO coatings having no effect (Figure 3.2). LDPE and LCGO coated 

samples decomposed at about 400ᵒ C without noticing any effect resulting from addition 

of LCGO (Figure 3.3). 

 



64 
 

 
Figure 3.2: DSC spectra of LDPE and LCGO/LDPE composite fibres showing melting 

temperature at 125 ᵒC 

 

 
Figure 3.3: Decomposition temperature for LDPE and LCGO/LDPE powders acquired from 

TGA 
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Powders were melt extruded into fibres using a mini laboratory twin-screw melt extruder 

as described in 2.2.2.  Melt spinning setup used is shown in Figure 3.4a. A screw speed of 

20 rpm was used to extrude filament from which fibres were produced by stretching and 

collecting on a winder spool (Figure 3.4b). Circular cross-section shape LDPE and 

LCGO/LDPE composite fibres of about 100 µm in diameter were successfully produced, 

Figure 3.5. 

 

 
Figure 3.4: (a) melt spinning setup, I: twin-screw melt extrusion, II: stretching unit and III: 

winding unit, and (b) left: pure and right: LCGO-coated LDPE powder. 

 

 

Figure 3.5: SEM images for cross-sections of  (a) LDPE, (b) 0.5 w/w%, (c) 1 w/w%, (d) 2 w/w% 

and (e) 5 w/w% LCGO/LDPE fibres. 
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3.2.3. Making 3D structures 
 

Since capillary action cannot be occur on a single fibre, only yarns (threads) and fabrics 

can be used as a suitable substrate for textile-based microfluidics. In this thesis (and most 

of the literature relating to textile-based microfluidics) fibre-based microfluidics refers to 

microfluidic devices in which yarns (threads) are the substrates. Utilising knitting and 

braiding techniques in this thesis, tubular structures with a hollow core were prepared 

which are referred to as 3D knitted or 3D braided structures and are different when 

compared to two-dimensional fabrics prepared by weaving or as non-woven mats. 

Due to the good performance of polyester (PET) substrates in textile-based microfluidic 

devices,
21–23

 PET was chosen as the base material. 3D knitted structures composed of 

commercial PET and LCGO/LDPE composite fibres were prepared as described in 2.2.7 

and cross-section optical micrographs of knitted structures are shown in Figure 3.6.  
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Figure 3.6: (a)-(f) optical micrographs showing cross-sections of a knitted structures comprised 

of 2 PET yarns, PET yarns parallel with LDPE, 0.5, 1, 2 and 5 w/w% LCGO/LDPE composite 

fibres, respectively  

  

3.2.4. Characterisation 

3.2.4.1.  LCGO characterisation 

 

Zeta-potential of LCGO aqueous dispersions were measured by dynamic light scattering 

(DLS) technique using a zetasizer (Malvern Instruments Nano-ZS) to determine the 

stability of the dispersions. The Zeta-potential of LCGO dispersions were found to be -

28.7 ± 0.7 mV, a potential which is indicative of a stable dispersion. This value is close to 

the values reported in literature indicating a stable dispersion of LCGO
24

.       

3.2.4.2. Raman spectra on fibres 

 

Raman spectra of LDPE and LCGO/LDPE composite fibres, shown in Figure 3.7, clearly 

shows that the LCGO was incorporated into LDPE matrix and formed a uniform 

composite. A typical Raman spectra of LDPE polymer with peaks that are attributed to 
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different vibration modes of CH2 groups and C-C bonds was observed
25,26

. The 

characteristic D and G bands of graphene were observed at 1347 and 1586 cm
-1

, 

respectively, in Raman Spectra of LCGO
27

. These peaks were also clearly observable in 

the Raman spectra of LCGO/LDPE composite fibres indicating the integration of LCGO 

into LDPE polymeric matrix.  

 

 
Figure 3.7: Raman spectra for LCGO films, LDPE and LCGO/LDPE fibres. 

 

3.2.4.3. Fibre mechanical properties 
 

To evaluate the mechanical properties of LDPE and LCGO/LDPE composite fibres, 

initially fibres diameters were measured using inbuilt image analysis application of optical 
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Leica microscope software. Then 30 mm lengths of fibres were fixed in a paper frame to 

ensure the fibres were held in a vertical position between the clamps of tensile tester 

machine. Prior to testing the paper frame was cut and the fibres stretched at the rate of 10 

mm min
-1

 until fracture.  Figure 3.8 shows stress-strain curves for LDPE and 

LCGO/LDPE composite fibres. Ultimate strength was determined as the maximum stress 

before the fibre fractured and the corresponding strain was determined as the elongation at 

break. Young’s moduli for pure LDPE and LCGO/LDPE composite fibres were calculated 

using a MATLAB code (see appendix I). 

 

 
Figure 3.8: Stress-strain curve for LDPE and LCGO/LDPE composite fibres. 
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3.2.5. Wicking tests 

3.2.5.1.  Solutions and calibration curves  

3.2.5.1.1. Wicking experiment setup 

The wicking properties of 3D knitted structures comprising of PET threads with and 

without LDPE and LCGO/LDPE composite fibres were assessed by the amount of fluid 

transferred from one reservoir to the other across an 11 cm distance, holding both 

reservoirs at the same height as shown in Figure 3.9. Textile structures were pre-

concentrated with the transfer solution prior to mounting between the two reservoirs. One 

reservoir was filled with 1 mL of solution and the amount of fluid transferred to the other 

reservoir was measured at 5, 10, 15 and 20 minutes intervals. 

 

 
Figure 3.9: (a) top view and (b) side view of the experimental setup for wicking tests 

 

3.2.5.1.2. Calibration curves for wicking tests 

Three different solutions, i.e. deionized (D.I.) water with addition of commercial Pillar 

Box Red Food Colour to increase visibility, sodium chloride (NaCl) aqueous solution and 

tris(hydroxymethyl)aminomethane (Tris)/ N-Cyclohexyl-2-aminoethanesulfonic acid 

(CHES) ion pair as a typical electrolyte medium used in electrophoretic separation 

studies
28

, were chosen for wicking experiments. 80 µg mL
-1

(ppm) red dye, 20 mMolar 
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(mM) NaCl and 100 mM Tris/CHES aqueous solutions were used to perform wicking 

experiments.   Calibration curves for different transfer solutions were established for the 

red dye, NaCl and Tris/CHES salts in D.I. water, used in wicking experiments. For the red 

dye, UV-Vis spectra were obtained for different solutions from 0.1-40.0 g mL
-1

 and a 

linear UV-Vis absorption curve observed, Figure 3.10.  

 

 
Figure 3.10: (a) UV-Vis spectra for dyes in different concentrations and (b) linear calibration 

curve for different concentrations of red dye in D.I. water (inset)  

 

Calibration curves for NaCl and Tris/CHES solutions with different concentrations were 

obtained utilizing Capacitively Coupled Contactless Conductivity Detection (C
4
D)

29
 

technique. The C
4
D system was used due to the very small volumes on analyte being used 
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which made direct ionic conductivity tests impractical. A C
4
D signal in volts was obtained 

for different concentrations of salts in D.I. water. In both cases, voltage signal increased 

rapidly with small increase in concentration of salts; however, the rate of increase levelled 

off at higher concentrations resulting in a non-linear calibration curve
30

. Consequently, as 

shown in Figure 3.11a and Figure 3.11b, power function calibration curves were obtained 

for NaCl and Tris/CHES aqueous solutions.  

 

 
Figure 3.11: Calibration curves for (a) Signal(volts) for different concentrations of NaCl in D.I. 

water, and (b) Signal(volts) for different concentrations of Tris/CHES in D.I. water. 
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3.2.5.1.3. Flow rate measurements 

Fluid in the receiver reservoir collected at different time intervals, was diluted to a volume 

of 1 mL. Final concentration was calculated according to the corresponding calibration 

curve, i.e. UV-Vis absorption or C
4
D signal value. The total amount of fluid which was 

transferred to the reservoir was calculated using Equation 1 where m1, V1, m2 and V2 

represents initial concentration, initial volume, final concentration and final volume, 

respectively. 

𝑉1 =  
𝑚2×𝑉2

𝑚1
  (1) 

Finally, knowing the time intervals and amount of transferred fluid, flow rates were 

calculated.  

3.3. Results and discussion 

3.3.1. Mechanical test 

 

The Ultimate tensile strength (UTS), Young’s modulus (E) and elongation at break for 

different fibre samples, i.e. LDPE and LCGO/LDPE composite fibres were determined, 

Figure 3.12. An improvement in UTS and modulus were observed by addition of LCGO 

to LDPE up to 2 w/w%. This improvement may be attributed to the contribution of LCGO 

sheets in reinforcement of LDPE by aligning along the fibres axis
31

. As shown in Figure 

3.12b, addition of 0.5 w/w% LCGO into LDPE polymeric matrix led to an increase in in 

elongation at break compared to pure LDPE; while elongation at break showed a gradual 

decrease by increasing the loading of LCGO to more than 1 w/w%. 
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Figure 3.12: (a) Ultimate tensile strength, (b) Elongation at break and (c) Young’s modulus for 

LDPE and LCGO/LDPE composite fibres  

 

The observed improvements are likely to have been as a result of the strong interfacial 

interaction between the filler and the polymeric matrix. These interactions enabled the 

load to be transferred effectively from matrix to the filler at the interface at low 

concentrations of the filler, i.e. 0.5 w/w% LCGO in LDPE. However, at higher loadings 

non-uniformity in filler distribution was observed to result in agglomeration. Figure 3.13 
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illustrated the agglomeration of LCGO filler in a 5 w/w% LCGO/LDPE fibre. At these 

higher loadings weak points were produced as a result of non-uniform filler distribution 

which assisted in crack initiation that contributed to the observed drop in ultimate tensile 

strength and modulus for 5 w/w% LCGO/LDPE and a decrease in elongation at break for 

LCGO/LDPE composites containing more than 0.5 w/w% LCGO
32

.  

 

 

Figure 3.13: LCGO agglomerations formed in a 5 w/w% LCGO/LDPE composite fibre. 

 

3.3.2. Wicking behaviour in knitted textile structures 

 

The wicking behaviour of the knitted textile structures, described above, was observed 

and the flow rates (µL min
-1

) for different samples measured in D.I. water and NaCl 

aqueous solution determined, Figure 3.14a and Figure 3.14b respectively.  
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Figure 3.14: Flow rates achieved by different samples in (a) D.I. water and (b) NaCl aqueous 

solution 

  

In both electrolyte systems, a gradual decrease in wicking flow rate over the time was 

observed.  This decrease was a consequence of an increase in backpressure as fluid was 

transferred from the first reservoir to the receiving reservoir. As discussed earlier, fluid 

moves through a textile as a result of capillary  networks generated in the gaps between 

the fibres. This force, and consequently wicking properties of textile structures, is greatly 

affected by surface chemistry and functional groups at the fibres surface and can be 

influenced  by surface modifications
1,2

. As illustrated in Figure 3.14. the knitted structure 
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which comprised of 5 w/w% LCGO/LDPE composite fibre showed the highest flow rate 

while knitted structure made from 2PET threads, one with PET thread and LDPE fibres 

presented the lowest flow rate,  

Addition of LCGO/LDPE composite fibres into 3D knitted structures of PET threads, is 

presumed to have led to an increase in the surface concentration of charged hydrophilic 

surface functionalisation, owing to the hydroxyl (–OH) and carboxyl (–COOH) functional 

groups on LCGO, and consequently increased the surface polarity of structures
33,34

. 

Following the well-known Young-Laplace equation, higher polarity would consequently 

lead to a higher surface tension, creating lower capillary pressure at the second reservoir 

and therefore increase its liquid flow. Unfortunately, surface contact angle measurements 

of hot pressed films of the LDPE/LCGO films proved unenlightening, as there was a 

stronger dependence upon surface roughness. The increase in the flow rate for the 3D 

knitted samples, which comprised higher loadings of LCGO in the LDPE fibres, when 

compared to those without the LCGO composite fibres further proved the increase in 

surface polarity. Significantly the flow rate in samples containing the LCGO composite 

fibres were proportional to the LCGO content, i.e. higher the LCGO content, higher the 

flow rate, that can be attributed to the increase in surface polarity. 

Table 3.1 illustrates the differences in flow rates that were achieved by the knitted 

structures comprised of LDPE and LCGO/LDPE composite fibres. 
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Table 3.1: Comparing the amount of DI water displacement using knitted structures comprising 

LDPE and LCGO/LDPE composite fibres 

 

Time 

(sec) 
LDPE LCGO/LDPE composite 

0 

  

30 

  

60 

  

90 

  

120 

  

180 
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300 

  

In NaCl aqueous solution the observed wicking flow rates trends were similar to what was 

achieved in D.I. water. The maximum flow rate values for the 3D knitted structures 

comprised of LCGO/LDPE composite fibres (at different loadings of LCGO) was lower 

and closer to each other in the NaCl aqueous solution than for D.I. water. In the presence 

of NaCl the electrostatic interaction between ions in electrolyte fluid and negatively 

charged LCGO functional groups (–OH and –COOH groups) on the surface of composite 

fibres, which plays a crucial role in determining the driving force for fluid movement,
35–37

 

is effectively screened by the ionic environment. Similar to the trend that was observed in 

D.I. water, higher loadings of LCGO also led to higher flow rates owing to increase in the 

concentrations of surface functional groups.  However the net flow in NaCl was 

significantly lower due to ionic screening effects. The huge difference between the flow 

rate for structures comprising composite fibres and the structure with LDPE in NaCl 

solution when compared to D.I. water highlights the importance of the ionic interactions 

of the wicking fluid upon movement in the textile structure.   

Surface chemistry of knitted structures was clearly affected by the incorporation of 

LCGO/LDPE composite fibres into 3D PET textile structures led to addition of active 

functional groups to the surface resulting in an increased wicking due to capillary and 

ionic interactions. Confirming this observation, the observed flow rate in the presence of 

Tris/CHES aqueous solution followed a completely reverse trend compared to trends in 

D.I. water and NaCl aqueous solution, Figure 3.15. 
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Figure 3.15: Flow rates achieved by different samples in Tris/CHES aqueous solution 

   

The inverse behaviour can be explained by the absorption of ions in Tis/CHES solution on 

the surface of composite fibres due to interactions among carboxyl and hydroxyl 

functional groups of the LCGO and amino groups in Tris/CHES solution
38

. These 

absorptions blocked the LCGO functional groups (-OH and –COOH groups) and 

consequently, led to a declining the flow rate through the addition of LCGO/LDPE 

composite fibre into the 3D knitted structure. A subsequent increase in the amount of 

LCGO loading to the composite fibres resulted in an increase in absorption at sites on 

fibre surfaces which causes lower flow rate. 

In order  understand Tris/CHES ion surface absorption and probe the effect of Tris/CHES 

treatment on the performance of LCGO/LDPE fiber-containing 3D textiles, pure LCGO 

sheets were treated with a 100mM Tris/CHES aqueous solution and the physiochemical 

characteristics of the resulting films studied. 300 µm thick LCGO films were immersed in 

a 100 mMolar Tris/CHES solution for 2hrs then thoroughly washed with and immersed in 

D.I. water to remove non-adsorbed materials from the surface. As shown in Figure 3.16, 

colour of the LCGO sheet changed from brownish yellow in pure LCGO to deep black in 

the treated sample. The observed colour change was indicative of the chemical reduction 
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of LCGO samples upon treatment. 

 
Figure 3.16: right: pure and left: Tris/CHES treated LCGO films 

 

In addition to the observed colour change, FTIR and Raman spectroscopy were utilised to 

further prove this phenomenon.  Common characteristic peaks of GO were observed in 

FTIR spectrum of LCGO samples (Figure 3.17a) at 1045, 1227, 1618 and 1731 cm
-1

 

corresponding to C-O stretching of epoxy and phenolic groups, C=C stretching vibration 

of aromatic groups and C=O stretching vibration of carboxylic acid groups, respectively
39–

41
. The partial reduction of the LCGO, due to treatment with 100 mM Tris/CHES aqueous 

solution, was confirmed by appearance of peaks at 1221, 1561, 2856 and 2924 cm
-1

 

attributed to stretching vibration of C-N groups (in the C-NH group), bending vibration of 

N-H (in the C-NH group) and stretching vibration of  –CH2 groups due to attachment of 

TRIS molecules to  LCGO sheets (via amine mediated reduction of LCGO epoxide rings) 

38,42,43
. Partial reduction of LCGO was also confirmed utilizing Raman spectroscopy 

(Figure 3.17b). Peaks associated with D and G band of LCGO at 1328 and 1587 cm
-1

, 

respectively, were observed for both pure and Tris/CHES treated LCGO. However, the 

intensity ratio of D to G bands (ID/IG) increased from 1.20 for pure to 1.28 for treated 

LCGO indicating an increase in the number of sp
2
 domains confirming the chemical 

reduction of LCGO upon treatment with Tris/CHES
44,45

. 
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Figure 3.17: (a) FTIR and (b) Raman spectra of pure and Tris/CHES treated LCGO sheets 

 

This data confirmed chemical reduction of LCGO due to treatment with Tris/CHES 

aqueous solution, which led to elimination of LCGO functional groups and subsequently 

attenuated the wicking performance of the textile structures containing LCGO/LDPE 

composite fibres.    

From these observations it is clear that the wicking properties of textile structures strongly 

depend on the surface chemistry and surface functional groups. Significantly, the 

capability of tuning surface chemistry to alter the wicking properties (achieving different 
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flow rates) has been demonstrated.  

Due to significant differences in experimental designs (some measures in horizontal and 

the others in vertical setup) and structure volumes (yarns, fabrics and non-woven 

structures were used), unfortunately, a meaningful comparison with previously reported 

work cannot be made. 

3.3.3. Anti-Gravity pumping capabilities 
 

In the next section, pumping capability of knitted structures comprising LCGO/LDPE 

composite fibres using water as fluid is discussed. Since anti-Gravity pumping would 

dramatically lower the flow rate, the fluid which showed the highest flow rate in same 

height reservoir experiments, i.e. D.I. water, was chosen for this experiment.   

In order to demonstrate the pumping capability, wicking tests using the setup shown in 

Figure 3.18a were modified so that the receiving reservoir was 4 mm higher than the first 

reservoir were performed on different knitted structures using D.I. water. Reservoirs were 

connected with a pre-concentrated knitted structure. Then lower reservoir was filled with 

1 mL of D.I. water and flow rate of fluid transfer to the higher reservoir was measure as 

previously described. As shown in Figure 3.18b, similar trend of achieved flow rates to 

that was observed in wicking test using water was observed in this experiment which 

confirms the action of similar driving forces. Incorporation of LCGO/LDPE fibres into 

knitted structures greatly affected their wicking properties by increasing the surface 

polarity as a result of increase in the surface oxygen concentration. Increasing the surface 

polarity amplified the driving force which is capillary force in this case and was 

proportional to the amount of LCGO loadings, i.e. higher driving forces were achieved at 

higher LCGO loadings. 

Therefore, it was demonstrated that 3D knitted structure comprised of 5 w/w% 

LCGO/LDPE fibre and PET yarn can act as power-free textile-based microfluidic pump 
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and transfer water from a lower reservoir to the one 4 mm higher at the maximum flow 

rate of ca. 16 µL min
-1

 without the need for an external power supply or any chemical 

reaction.  

 
Figure 3.18: (a) experiment setup for pumping effect and (b) flow rate for different samples  

 

3.4. Conclusion 
 

Polymeric composite fibres using LDPE polymeric matrix and LCGO fillers are 

successfully fabricated and converted into 3D textile structures parallel with commercially 

available PET threads. The influence of the amount of LCGO loaded into the polymer 

matrix on fibre surface chemistry and surface polarity of the resultant 3D textile is also 

shown. The increase in surface polarity, as a result of accumulation of oxygen on the 

polymer surface and increase in O/C ratio, augments the fluid driving force in textile 

structure. It was demonstrated that, based on the ion rejection and/or absorption 

phenomenon which occur between fluid ions and functional groups on textile surface, 
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these 3D textile structures are capable of acting as a microfluidic pump with relatively 

high throughput. The presented power-free textile-based microfluidic pumps feature low-

cost production, flexibility, ease of use that make them excellent candidates for the 

production of ASSURED devices. Moreover, proposed pumps, capable of being 

integrated into garments using well-established textile manufacturing techniques such as 

weaving or sewing, may be used to tackle the intrinsic miniaturization issue of 

microfluidic pumps, which has hindered the development of POCs and other integrated 

microfluidic chips, and expand the application of textiles in development of portable 

analytical and diagnostic devices.   
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Thermally conducting LCGO-filled 

composite fibres for heat dissipation in 

textile-based microfluidic
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4.1. Introduction 
 

Although fluid can be transport in textile-based microfluidics by simple wicking, in order 

to obtain controllable devices with precise fluid control, a driving force other than simple 

capillary action may be required. Electric fields are widely used to move, pre-concentrate 

and separate solutes within fluids
1
. When this fluid is held as a surface layer upon a thread 

or fibre, both electroosmotic force and solute electroosmotic migration can take place in a 

controlled manner. More significantly, separations that are achievable in capillaries systems 

can be simulated on the surface of fibres using close environmental control. This opens a 

new area of analytical platforms and opportunities specifically ‘on-fibre’ detection. 

However, applying electric field to move and/or separate solutes within fluids causes Joule-

heating. This not only increases the fluid temperature, but also produces temperature 

gradients in cross-stream and axial directions. These temperature effects, cause non-

uniformity in fluid properties, and more importantly affect the mass species transport, 

efficiency and reproducibility of the seperations
1,2

.  

The use of heat sinks or heat spreaders, which are materials with high thermal conductivity 

as an attachment to a device for dissipation of heat from the device, is a method that has 

been widely used to tackle the heating issue of different electroosmotic devices. A range of 

materials including polymer-matrix composites have been developed to satisfy this need
3,4

.  

One of the most common methods of making thermally conducting polymeric composites 

is by adding thermally conducting fillers such as aluminium nitride, wollastonite, silicon 

carbide whisker, boron nitride, etc. into a thermally insulating polymeric matrix
5,6

. 

Polyethylene because of its simplicity (simple chemical structure) with its strain induced 

crystallinity, thereby giving it a degree of thermal conductivity tunability, has been widely 

used for thermal conductivity studies
7–9

. Thermal conductivity of 37.5 W m
-1

 K
-1 

in the 
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drawing direction has been reported for and stretched polyethylene by Choy et al.
10

. 

Thermal conductivity of polyethylene increases rapidly by increasing the drawing ratio 

with thermal conductivities of 70 W m
-1

 K
-1 

reported by Pietralla
11

 for fully aligned 

polyethylene.  Recently, high thermal conductivities with the values as high as ∼104 W m
-1

 

K
-1

 was reported for polyethylene nanofibers. It has also been theoretically estimated that 

the thermal conductivity of polyethylene nanofibers may be improved to be competitive 

with aluminium
12

.      

Carbon allotropes and their derivatives specifically one- and two-dimensional materials 

such as carbon nanotubes and graphene sheets have attracted a lot of attentions as thermally 

conductive fillers for different applications
13

. Liquid crystalline graphene oxide (LCGO) 

which is produced using a novel protocol with extremely high aspect ratio and lateral size 

of up to ca. 100 µm was chosen as filler to make composite fibres. Its unique characteristics 

such as ability to form liquid crystals in very low concentrations, very large sheet size that 

can effectively improve desired properties in a composite material in relatively low 

loadings compare to conventional graphene oxides. Extraordinary high thermal 

conductivity of ca. 1500 W m
-1

 K
-1 

was achieved using LCGO
14,15

.      

For the first time, we formulated LCGO and low density polyethylene (LDPE) composite 

fibres and introduced them into 3D polyester (PET) knitted structures, to minimize Joule-

heating effects. Different potentials, i.e. from 20 to 250 V cm
-1

, were applied to the 

structures and corresponding currents were measured. Also, temperature changes in 

samples were monitored when 250 V cm
-1

 was applied to the structures.  

4.2. Experimental 
 

LDPE powders were evapouratively surface coated as described in Chapter 3 to obtain 

LCGO/LDPE coated powers which utilised for melt spinning fibres. These fibres were 
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characterised using DSC and TGA techniques using methods described earlier in Chapter 3 

(Figure 3.1 to Figure 3.3).  

 

LDPE fibres were made with two different methods. First, undrawn LDPE fibres were 

made using a 500µm circular extrusion die and directly collected on a winder spool (Figure 

3.4a) without any additional drawing steps. In the second approach fibres were spun using a 

700µm circular extrusion die and passed through a drawing passage utilizing the stretching 

unit before being collected on a winder spool (Figure 3.4b) to obtain drawn LDPE and 

LCGO/LDPE fibres. The heat profile, screw setup and screw speed for both experiments 

were same as what was described earlier in Chapter 3 (3.2.2. Fibre Spinning section). SEM 

micrographs of cross-sections of drawn LDPE and drawn LCGO/LDPE composite fibres 

are shown in Chapter 3 (Figure 3.5). 

 
Figure 4.1: (a) melt spinning setup for making  (a) undrawn LDPE fibres, I: twin-screw melt 

extrusion, II: winding unit and (b) drawn LDPE fibres, I: twin-screw melt extrusion, II: stretching 

unit and III: winding unit 
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4.2.1. Fabricating 3D structures 
 

Similar to what was described earlier in Chapter 3 (3.2.3. Making 3D structures), 3D 

knitted structures comprised of commercial polyester (PET) threads and LDPE (or 

LCGO/LDPE) fibres were successfully prepared (see Figure 3.6).  

4.2.2. Characterisations 
 

LCGO aqueous dispersion was characterized by Zeta potential technique same as what was 

reported earlier in Chapter 3. Incorporation of LCGO in LDPE fibres and fibre mechanical 

properties were also characterized by Raman spectroscopy and tensile mechanical tester as 

previously described in Chapter 3 (Figure 3.7 and Figure 3.8).  

4.2.3. Joule-heating dissipation experiment 
 

For Joule-heating dissipation tests, 3D textile samples were held between two 3D printed 

reservoirs containing 500 µL of buffer solution.  

The distance between adjacent reservoirs were 6 cm and 1.25 mM Tris/CHES buffer 

solution with the pH of 8.5 used to pre-wet 3D textile structures and fill the two reservoirs. 

Different electric fields from 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 and 250 V cm
-1

, 

was applied using LabSmiths high voltage sequencer across the reservoirs equipped with 

platinum (Pt) electrodes. The corresponding current flow was monitored utilizing the 

supplied LabSmiths  software and the samples temperature change measured using an 

infrared thermographic camera (thermoIMAGER TIM 160, Micor-Epsilon, Germany). The 

experimental setup is shown in Figure 4.2.  
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Figure 4.2: (a) experimental setup, I: PC, II: high voltage sequencer, III: thermal camera, (b) two 

reservoirs connected with a textile structure and high voltage connectors connected to Pt electrodes 

and (c) 3D printed reservoir with Pt electrode. 

 

4.2.4. Results and discussion 

4.2.4.1. Mechanical test 

 

The mechanical properties of drawn and undrawn LDPE fibres were compared. Figure 4.3 

shows stress-strain curves for drawn and undrawn LDPE fibres. Figure 4.3 shows 956% 

elongation at break for undrawn and only 64% for drawn LDPE. Undrawn LDPE had the 
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ultimate strength of 18 MPa while this value was 113 MPa for drawn LDPE fibres. 

Undrawn LDPE showed rubber like behaviour with very low ultimate strength and very 

high elongation at break (ca. 1000% strain) indicating amorphous nature of the fibre while 

drawn LDPE demonstrated much higher modulus, ultimate strength and much lower 

elongation at break. These were observed as a result of polymer chain orientation along the 

fibre axis (stretch direction) and consequently alteration of amorphous regions into 3D 

crystalline structures
16–18

.  Thermal conductivity of LDPE has been reported to be increased 

by increasing the degree of crystallinity. This could be attributed to the fact that phonons 

are predominantly being conducted through crystalline regions
19

. Since the aim of this 

chapter is production of thermally conductive fibres to be incorporated into 3D textile 

structures for Joule-heating dissipation, only drawn LDPE and LCGO/LDPE composite 

fibres were used to make 3D textile structures.  

 

 
Figure 4.3: Stress-strain curve for drawn and undrawn LDPE fibres 
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4.2.4.2. Joule-heating dissipation experiment 

 

Current passing through pre-concentrated 3D knitted structures comprising of PET threads 

or PET threads parallel with LDPE and LCGO/LDPE composite fibres were measured 

when different potentials were applied, i.e. 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 and 

250 V cm
-1

. As shown in Figure 4.4, the current and applied electric field for all 3D knitted 

structures had a non-linear relationship which was be attributed to the Joule-heating effect
1
. 

In the absence of Joule-heating effects, the observed electric current would be a linear 

function of the applied electric field and follow Ohm’s law. With a Joule-heating effect 

present a higher electric current would be expected at every electric field proportional to 

the electric current to the power of two (P=VI=I
2
R)

20
,according to the power law, due to an 

enhanced electrolyte ionic conductivity resulting from the elevated electrolyte temperatures 

which then results in the current-electric field deviating from linearity. Joule-heating effects 

will also be higher in textile samples with lower thermal conductivities as a result the 

material being unable to dissipate heat which leads to more non-linearity in the observed 

current-electric field.   
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Figure 4.4: Current in each applied electric field for different 3D textile structures 

 

Higher applied potentials led to larger rise in temperature. This can be explained by the fact 

that higher potentials (higher power) heated the system faster while heat dissipation rate of 

the system was much lower 
2
.  Figure 4.5(a) shows the typical temperature change, 

measured by the thermal camera, on a 3D textile structure over 60 seconds when a 250 V 

cm
-1 

electric field was applied. Rathore et al
2
. measured the temperature in a capillary tube 

with the lumen size of about 37.5 µm while 310 V cm
-1 

 was applied across the tube shown 

in Figure 4.5(b).   
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Figure 4.5: temperature rise as a function of time in (a) a 3D textile structure when 250 V cm
-1

 was 

applied  and (b) a capillary tube with the lumen size of about 37.5 µm while 310 V cm
-1

  was applied 

adopted from 
2
. 

As demonstrated in Figure 4.5(b), applying a constant potential to a capillary tube causes an 

immediate rise in temperature followed by a steady state. Contrasting this, applying a 

constant potential to a 3D knitted structures did not cause an immediate temperature change 

and temperature remained relatively unchanged for a while, as shown in area 1 of Figure 

4.5(a). A temperature rise followed by a steady state was observed for textiles in an 

observation similar to results reported for capillary tubes, (areas 2 and 3 in Figure 4.5(a)). 

The difference in behaviours of 3D knitted textiles and capillary tubes can be attributed to 

the thermal lag resulting from the structural difference between textiles, which are large 

textile structures of diameters of about Ø 1.5 mm, and the smaller diameter capillary tubes. 

Capillary tubes are closed environments where generated heat cannot escape though and air 
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cannot enter while open geometry of the knitted sutures facilitates the occurrence of heat 

transfer between the fluid inside the knitted structure and its neighbouring air flow which 

leads to cooling down the fluid and plateau region at the beginning of the graph shown in 

Figure 4.5(a).  

Changes in temperature due to the Joule-heating effect were observed using the thermal 

camera for 60 seconds while 250 V cm
-1

 was applied to the samples. Temperature change 

with respect to the initial temperature was measured for different samples (Figure 4.6).  

 

 

Figure 4.6: Temperature change with respect to the initial temperature for different samples while 

250 V cm
-1

 was applied 

   

As shown in Figure 4.6, replacing one PET thread with LDPE fibre led to an increase in 

temperature change with respect to the initial temperature. This shift may be attributed to 

the fact that the knitted structure composed of two PET threads was not as stiff as the 

structures comprising of PET thread and LDPE (or LCGO/LDPE) fibres which can it 

collapsed under tension during the experiment. Collapsed structures accommodated lower 
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amount of fluid compare to the other structures.  Since Joule-heating is a volumetric 

phenomenon and its magnitude is directly affected by the volume of the channel used
21

, 

lower Joule-heating generated in those collapsed structures that resulted in lower working 

temperature.  

An increase in thermal conductivity of structures containing LCGO loaded into the LDPE 

can be explained by the in situ reduction of LCGO to Graphene during the extrusion 

process, as confirmed by Raman spectroscopy, (Figure 3.7).  The elevated thermal 

extrusion process clearly induces a partial elimination of the oxygen containing groups of 

GO and restores the pi-electron structure to some extent
22

. The observed Raman spectra of 

the fibres, D and G bands shifted compare to those of LCGO provides an indication for 

reduction of graphene oxide
23

. Similarly, the ratio of the D/G bands (ID/IG) was noted to 

increase after extrusion of samples containing LCGO (measured to be 1.11 in LCGO to 

1.44 in 0.5 w/w%, 1.12 in 1w/w%, 1.21 in 2 w/w% and 1.18 in 5 w/w% composite fibres). 

This D/G ratio change has been attributed to formation of new smaller graphitic domains 

confirming the reduction of LCGO
24–27

.  As a result of the thermal reduction of LCGO 

during the melt spinning process, an increase in thermal conductivity of LCGO and 

consequently LDPE/LCGO composite fibres can be expected
15,28

.  

In LCGO/LDPE composites with low amounts of LCGO filler content, i.e. up to 1 w/w%, 

the LCGO sheets were separated from each other by the LDPE polymer matrix which had 

much lower thermal conductivity compare to that of LCGO and reduced LCGO sheets. 

This poor degree of interconnectivity limited the composites ability to form a heat 

conduction path. This led to huge phonon scatterings at the boundaries (between polymeric 

matrix and the filler) as a result of interruption in phonon movements as well as internal 

contact thermal resistance. These effects led to negligible improvement in thermal 

conductivity of the composite and therefore, only a slight decrease were observed in 



101 
 

system’s temperature change in structures comprised of  by  0.5 w/w% and 1 w/w% 

LCGO/LDPE composite fibres compare to that contained LDPE fibre. By increasing the 

LCGO loadings between 2 and 5 w/w% an improved inter-connection of LCGO sheets 

resulted thereby providing a heat conduction pathway. This phenomenon, along with the 

ability of LCGO to fully integrate into LDPE polymeric matrix due  because of its 

extremely large aspect ratio, leads to a significant increase in composites’ thermal 

conductivity and therefore its ability to dissipate the heat generated by Joule-heating in the 

system
29–31

. Therefore, as shown in Figure 4.6, the drop in the temperature that was 

observed for knitted structures containing LCGO/LDPE fibres with loadings above 2 

w/w% was consistent with the formation of improved reduced LCGO interconnected 

pathways. Although integrating thermally conducting LCGO/LDPE fibres into PET knitted 

structure resulted in decrease in system’s temperature change, the final temperature change 

for structure with 5w/w% composite was still higher than that of the structure with pure 

PET. Unfortunately due to graphene oxide agglomeration within these fibres at 

LCGO/LDPE loadings more than 5w/w% the resultant in drop in ultimate strength and 

modulus limited the utility of the pre-mixing method. Consequently, another method for 

composite making (and fibre production) needed to be considered to resolve this issue.       

Thermal conductivity measurements by the LFA technique (described in Chapter 2 and 

Chapter 5) is a common method for characterizing the thermal diffusivity (and 

consequently thermal conductivity) of materials. Performing LFA on LCGO/LDPE 

composites proved to be impractical due to some significant limitations; firstly, hot 

pressing the composite powders (LCGO-coated LDPEs) resulted in very non-uniform 

films, and secondly, hot pressing the spun fibers was impractical because of the limited 

amount of spun materials available. More importantly, hot pressing the spun drawn LDPE 

fibres would destroys the LDPE orientation induced by drawing and consequently thermal 
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conductivity measurements would not reflect the effect of strain-induced thermal 

conductivity enhancement.    

4.3. Conclusion 
 

The wide variety of fibrous materials and composite formulations available in textiles 

opens new possibilities for exploitation of specific surface interactions providing 

opportunities to develop low-cost thread-based structures for biosensing and diagnostic 

devices. In this chapter, the novel idea of incorporating thermally conductive fibres into 3D 

textile microfluidic devices to minimize the effects of Joule-heating which is the most 

important side effect of electrophoresis technique was investigated. Thermally conducting 

graphene oxide-filled LDPE fibres with different graphene oxide loadings were 

successfully made and incorporated into 3D knitted structures in combination with PET 

threads to make novel textile-based microfluidics. Different electric fields were applied to 

3D knitted structures and resultant current and temperature change were monitored. It was 

shown that incorporating thermally conductive fibres into 3D textile structures as heat 

dissipater potentially can be used as an effective method to dissipate the heat generated by 

Joule-heating and keep the system as cool as possible. This new capability of producing 

thermally conducting textile materials opens up new opportunities for fibre based capillary 

electrophoresis studies in areas such as protein separation and detections where high 

electrical fields are required to perform separations. Although a promising trend was shown 

in temperature change with respect to the initial temperature for 3D knitted structures 

comprising of LCGO-filled thermally conducting composite fibres, loading LCGO up to 5 

w/w% was not sufficient to effectively dissipate the heat generated by Joule-heating effect. 

Making LCGO/LDPE composite fibres with more than 5 w/w% LCGO using pre-mixing 

method used in this chapter was impractical due to agglomeration of LCGO which causes 
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weakening in composite fibres. Therefore, making composite fibres with solvent-based 

methods, i.e. making a composite solution and using wet-spinning to make fibre, were 

proposed which could eliminate this issue.  
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5.1. Introduction 
 

In recent decades, a lot of work has been done in the area of incorporation of electronic 

components into textiles and garments so as to equip traditional textiles with functionality 

such as sensing, health and environment monitoring and energy storage
1–7

. Owing to  

rapid development of nanoscience and technology, it is possible to build electronic 

functions inside or on the surface of fibres and consequently  incorporate it into a garment 

using well-established textile fabrication techniques
1
. As a result of this increasing 

demand for wearable electronics, a great deal of research has been made to produce 

electrically conducting fibres for different application including strain sensing, energy 

storage, etc.
8–11

. Heat removal and heat management in microelectronics are becoming 

very important by ever growing demand for miniaturization and development of wearable 

electronics
12

.  While a significant amount of work has been performed to produce 

electrically conducting composite fibres, making these fibres thermally conducting for 

heat dissipation has been almost neglected. Thermally conducting fibres may be used as 

heat sink which is one of the necessary compartments in integrated electronics. One of the 

most commonly used methods to tackle heating issues in devices the use of heat sinks or 

heat spreaders. These are materials with high thermal conductivity which are typically 

used as an attachment to a device to facilitate heat dissipation from the device. A range of 

composite materials including polymer-matrix composites have been developed to satisfy 

this need
13,14

.  One of the most common methods of making thermally conducting 

polymeric composites is adding thermally conducting fillers such as aluminium nitride, 

wollastonite, silicon carbide whisker, boron nitride, etc. into a thermally insulating 

polymeric matrix
15,16

. 

Carbon allotropes and their derivatives, specifically one- and two-dimensional materials 
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such as carbon nanotubes and graphene sheets have attracted a lot of attention as 

thermally conductive fillers for different applications
17

. Liquid crystalline graphene oxide 

(LCGO) which is produced using a novel protocol with extremely high aspect ratio and 

lateral size of up to ca. 100 µm was chosen as one of the fillers to make composite fibres. 

Its unique characteristics such as ability to form liquid crystals in very low concentrations, 

very large sheet size that can effectively improve desired properties in a composite 

material in relatively low loadings compare to conventional graphene oxides. 

Extraordinary high thermal conductivity of ca. 1500 W m
-1

 K
-1 

was achieved using 

LCGO
18,19

.  

Boron nitride (BN), also known as white graphite, is an isoelectronic with carbon and has 

a wide range of attractive properties such as high thermal conductivity, low coefficient of 

thermal expansion, high electrical resistivity in a wide temperature range, high 

temperature stability, high mechanical strength and hardness, high corrosion resistance 

and chemically stable with respect to most molten metals and glasses, organic solvents, 

and polymers, even at high temperature. Such characteristics make it a widely used 

ceramic material for different applications
20–23

. Therefore, BN was also chosen to be used 

as another filler to make thermally conducting polymeric composite fibres.    

It has been reported that composites made using solution mixing process exhibit higher 

thermal conductivity compare to those prepared with melt mixing  method (similar to 

those made in Chapter 4) at the same filler concentration
24

. More uniform filler 

distribution was achieved by solution-mixing resulting in a lower level of aggregation. 

This resulted in the improved performance of solution-mixed thermally conducting 

composites compared to those which were melt-mixed. Therefore, solution mixing and 

wet-spinning methods have been chosen to make LCGO/PU or BN/PU composites and 

fibres, respectively. Polyurethane (PU) exhibits mechanical properties of rubber while non 
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cross-linked variants can be solvent processed or melt processed such that it has been 

described as “bridging the gap between rubber and plastics”. The combination of high 

elasticity with high abrasion resistance makes PU very popular for a wide range of 

applications
25

. Importantly, non-crosslinked PU may be  soluble in organic solvents and 

PU composite structures with different fillers can be readily made
5,8,9,26

.  HydroThane
® 

80A (AdvanSource Biomaterials) was selected for composite fibre development in this 

Chapter as it was a polyurethane that was biocompatible, thermoplastic, hydrophilic and 

soluble in organic solvents (non-crosslinked). 

The aim of this chapter is to produce and characterize processable thermally conducting 

composite fibres using polyurethane polymeric matrix and two different filler materials 

with very high thermal conductivity, i.e. liquid crystalline graphene oxide (LCGO) and 

boron nitride nanopowders (BNNP). For this purpose, initially the spinning parameters 

were optimized to produce pristine PU (AdvanSource Biomaterials HydroThane® 80A) 

and its composite fibres with LCGO or BNNP. These spun fibres were then incorporated 

into 3D polyester (PET) knitted structures and finally, the effect of incorporation of these 

fibres into 3D textile structures to minimize Joule-heating effect was investigated under 

electrophoretic conditions. Different streaming potentials, from 20 to 250 V cm
-1

, were 

applied to the fabricated 3D  textile structures and corresponding currents were measured, 

with temperature changes in the structures monitored when 250 V cm
-1

 was applied to the 

structures.  

5.2. Experiments 
5.2.1. Solvent for PU 

Solubility of PU (AdvanSource Biomaterials HydroThane® 80A) was investigated in 

DMF and different rations of EtOH and water. Loadings of up to 750 mg of PU powder in 

15 mL of solvent at 70°C of constant stirring were investigated.   
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5.2.2. Composite development 

5.2.2.1. LCGO/PU composite 

LCGO was initially redispersed in EtOH (replacing water with EtOH in LCGO 

dispersion). For this purpose, 10 mL of the aqueous LCGO was transferred into a 

centrifuge tube and about 20 mL of EtOH was added to that and mixed by vortex shaking. 

Then mixture was centrifuged at 8000 rpm for 99 minutes. After centrifugation, the 

supernatant was pipetted out and replaced with EtOH followed by vigorously mixing by 

vortex shaking. This process was repeated 4-5 times to replace the water with the EtOH
27

. 

DI water was then gradually added to LCGO depression in EtOH to make LCGO 

dispersion in EtOH/water (85:15 v/v). Finally, LCGO/PU composites were prepared via 

the gradual addition of the PU solution in EtOH/water (85:15 v/v)  to the LCGO 

dispersion under constant stirring.  

5.2.2.2. BNNP/PU composite 

BNNP was weighed and dispersed in EtOH/water (85:15 v/v) followed by 60 minutes of 

bath sonication. BNNP/PU composites were prepared by the gradual addition of the PU 

solution in EtOH/water (85:15 v/v) under constant stirring.  

5.2.3. Fibre wet spinning 

Pristine PU fibres as well as LCGO/PU and BNNP/PU composite fibres were made using 

a wet-spinning method in horizontal configuration as previously described in Chapter 2. 

Water was used as coagulant in coagulation bath with addition of about 5 % (v/v) EtOH. 

PU solutions (or PU composite solutions) were injected into the coagulation bath at flow 

rates of 2-4 mL h
-1

 and needle 20G was used to spin all fibres. PU fibres were then 

continuously collected on a circular collector and air dried before being knitted.  

5.2.4. Fabrication of knitted 3D structures 

As previously discussed in Chapter 3, polyester (PET) substrates were chosen as the base 
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material to make textile-based microfluidics. 3D knitted structures were prepared by 

parallel feeding of PET with the wet-spun fibres into the knitting machine (using knitting 

parameters the same as described in Chapter 3). Spun fibres, i.e. PU, LCGO/PU or 

BNNP/PU fibres, were fed into the knitting zone by passive feeding. Cross-section optical 

micrographs of the resulting knitted structures as shown in Figure 5.1. 
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Figure 5.1: Optical micrographs showing cross-sections of knitted structures comprised of (a) 2 PET 

yarns, (b) PET yarns parallel with PU, (c)-(f) PET yarns parallel with 0.25, 0.5, 1 and 2 w/w% 

LCGO/PU composite fibres, (g)-(j) PET yarns parallel with 0.5, 1, 2 and 5 w/w% BNNP/PU 

composite fibres respectively. 

 



112 
 

5.2.5.  Reduction of LCGO/PU 

LCGO/PU fibres were chemically reduced using 5 wt.% hypophosphorous acid at 80 ᵒC 

overnight
27,28

. Excess acid was then removed by dialysis and finally structures were 

vacuum dried at 80 ᵒC for 1 hour. 

5.2.6. Characterisation 

5.2.6.1. Zeta-potential 

The LCGO dispersion Zeta-potential was determined as discussed in Chapter 3. 

5.2.6.2. Rheology test 

The viscosity of polymer and composite solutions were measured by a rheometer (TA 

Instruments AR-G2) at 25°C. Details of the experiment were previously described in 

Chapter 2. 

5.2.6.3. Thermal diffusivity 

Thermal diffusivity of PU, LCGO/PU and BNNP/PU films were characterized at 30 °C 

using the NETZSCH laser flash apparatus LFA 457 MicroFlash® as described in Chapter 

2. Discs of 12.5 mm in diameter prepared for each sample and their thicknesses were 

measured using an inbuilt image analysis application on an optical Leica microscope 

system. 

5.2.6.4. Specific heat capacity (Cp) 

Specific heat capacity of the samples was measured using DSC as described in Chapter 2. 

The thermal conductivities of PU and its composites with BNNP and LCGO were 

calculated using equation 1. 

λ(T) = a(T) · Cρ(T) · ρ(T)  (1) 

Where λ represents thermal conductivity [W (m·K)
-1

], a represents thermal 

diffusivity [mm² s
-1

], Cp is specific heat capacity [J (g·K)
-1

] and ρ shows sample 

bulk density [g cm
- 3

]. 
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5.2.6.5. Fibre mechanical properties 
 

To evaluate the mechanical properties of pristine PU and its composite fibres with LCGO 

and BNNP, first fibres’ diameters were measured using the inbuilt image analysis 

application of optical Leica microscope software. 30 mm lengths of fibres were fixed into 

a paper frame to ensure the fibres were held in a vertical position between the clamps of 

tensile tester machine and the frames cut to leave a free mounted fibre. Then fibres were 

stretched at the rate of 10 mm min
-1

 until fracture.   

 

5.2.7. Joule-heating dissipation experiment 
 

For Joule-heating dissipation tests, the same experimental setup as described in Chapter 4 

was used. Similar to the electrofluidic experiments in Chapter 4, different potentials were 

applied to the structures and corresponding currents were measured by LabSmiths
®
 

software. Temperature changes were also measured by an infrared thermographic camera 

(thermoIMAGER TIM 160, Micor-Epsilon, Germany). 

5.3. Results and discussion 
5.3.1. Solvent for PU 

The solubility of PU in DMF and a range of EtOH/Water mixture were tested. Table 5.1 

shows the results of solubility test. It was found that PU was soluble in DMF along with 

two different ratios of EtOH/water solvent, i.e 85:15 v/v and 95:5 v/v. Figure 5.2 shows 

PU in different ratios of EtOH and water after being stirred at 70°C for 2 hours. As the 

EtOH/water mixture had a similar performance to DMF and given that it was is less toxic 

and importantly more volatile, an important for making uniform composite films via 

casting methods, this mixture was chosen as the preferred PU solvent.  
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Table 5.1: Solubility of PU in different solvents 

Solvent PU solubility 

DMF Yes 

EtOH No 

EtOH/water (95:5 v/v) Yes 

EtOH/water (85:15 v/v) Yes 

EtOH/water (50:50 v/v) No 

EtOH/water (70:30 v/v) No 

 

 

Figure 5.2: PU in different ratios of EtOH and water after being stirred at 70°C for 2 hours. 

 

5.3.2. Spinning solutions and parameters 

50 mg mL
-1

 PU solutions in EtOH/water (85:15 v/v) and EtOH/water (95:5 v/v) were 

prepared and their rheological properties, one of the most important factors in wet-

spinning process, were compared. Figure 5.3 compares the viscosities of these solutions
 
at 
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different shear rates, 0.01 to 400 s
-1

. 

 
Figure 5.3: Viscosities vs. shear rate for 50 mg mL

-1
 PU solutions in EtOH/water (85:15 v/v) and 

EtOH/water (95:5 v/v) 

 

As shown in Figure 5.3, in both solutions the viscosity decreased with an increase in the 

shear rate known as shear thinning phenomenon
29

. This phenomenon occurs as a result of 

gradual breaking of molecular entanglement with an increase in the shear rate. The degree 

of intermolecular association dominates the slope of the decreasing viscosity with 

increasing shear rate, i.e. the lower the molecular entanglement, the lower the slope
30

. The 

PU solution in EtOH/water (85:15 v/v) showed a higher viscosity with respect to shear 

force compared to a PU solution in EtOH/water (95:5 v/v) at the same concentration of 

PU. This  indicates that dissolving PU in EtOH/water (85:15 v/v) resulted in a less 

intertwined solution with less decay of viscosity by shear force
29

. Therefore, the mixture 

of EtOH/water (85:15 v/v) was chosen as the preferred solvent for making PU solution for 

all fibres including LCGO/PU and BNNP/PU composite solutions.  

Injection of the spinning solution into the coagulation bath causes shearing forces to the 

solution, therefore, rheological study of spinning solutions, i.e. PU and its composite 
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solutions, under shear was necessary.  

PU fibres were spun from 50 mg mL
-1  

PU solution in EtOH/water (85:15 v/v). Water was 

used as coagulant as previously reported for spinning of pure or PU composite fibres
5,8

. 

About 5% (v/v) EtOH was added to the coagulation to adjust the density of coagulation 

bath to make the fibre sink in coagulation bath and to adjust the mass transfer rate 

difference
8
 during the coagulation process in the spinning bath so as to form fibres that 

were more circular in cross-sectional shape. PU fibres were successfully spun using a 

horizontal wet-spinning configuration at flow rates of 2-4 mL h
-1

 using a gauge 20 needle 

as the spinneret. Figure 5.4 and Figure 5.5 show PU spun fibres collected on a collector 

and optical and SEM micrographs of PU fibres. 

 

 
Figure 5.4: PU spun fibre collected on a collector 

 

 
Figure 5.5: (a) optical micrographs of length and (b) SEM image of cross-section of PU spun 

fibre 

Beads were noted to be formed at injection flow rates lower than 2 mL h
-1

. Bead 
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formation was noted to result in spinneret blockage and fibre breakage. PU fibres were 

also not formed at injection rates higher than 4 mL h
-1

. For these reasons an injection flow 

rate of 3mL h
-1

 was chosen to produce LCGO/PU and BNNP/PU composite fibres. Figure 

5.6 and Figure 5.7 show optical micrographs of length and SEM images of cross-sections 

of LCGO/PU composite fibres, respectively.   

 
Figure 5.6: Optical micrographs of (a) 0.25 , (b) 0.5, (c) 1 and (d) 2 w/w% LCGO/PU composite 

fibres. 
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Figure 5.7: SEM images of cross-sections of (a) 0.25 , (b) 0.5, (c) 1 and (d) 2 w/w% LCGO/PU 

composite fibres. 

 

BNNP/PU composite fibres were also made using the same method. Figure 5.8 and Figure 

5.9 show optical micrographs of length and SEM images of cross-sections of BNNP/PU 

composite fibres, respectively.   
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Figure 5.8: Optical micrographs of (a) 0.5 , (b) 1, (c) 2 and (d) 5 w/w% BNNP/PU composite 

fibres. 
 



120 
 

 

Figure 5.9: SEM images of cross-sections of (a) 0.5 , (b) 1, (c) 2 and (d) 5 w/w% BNNP/PU 

composite fibres 

 

As shown in Figure 5.5, Figure 5.7 and Figure 5.9, the cross section of PU and its 

composite fibres with LCGO and BNNP were nearly circular indicating that coagulation 

solvent diffused into the injected spinning solution at almost the same rate that solvent of 

spinning solution extracted into the coagulation bath
8
. 

5.3.3. Raman spectroscopy on composites 

Raman spectra of PU and chemically reduced LCGO/PU composites, shown in Figure 

5.10, clearly indicate that LCGO was uniformly distributed into PU matrix. Typical PU 

peaks were observed in the Raman spectra
31

. Characteristics D and G peaks of the 

carbonaceous LCGO were observed at 1347 and 1586 cm
-1

, respectively were observed in 

spectrum of itself LCGO
32,33

. These peaks were also clearly observable in Raman spectra 

of LCGO/PU composites indicating the integration of LCGO into PU polymeric matrix. 
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Addition of LCGO into the PU matrix resulted in weakening of PU Raman peaks with 

these disappearing at 2 w/w% loading as a result of the PU Raman spectra signal being 

significantly weaker than the LCGO
34

. Chemical reduction of LCGO/PU composites, 

partially eliminates oxygen containing groups of GO and restores the pi-electron structure 

to some extent
35

. The observed Raman spectra of the reduced LCGO/PU structures, D and 

G bands shifted compare to those of LCGO which is an indication for reduction of 

graphene oxide
32

. Similarly, the ratio of the D/G bands (ID/IG) was noted to increase after 

reduction of samples containing LCGO (it was measured to be 1.18 in LCGO to 1.43 in 

0.25 w/w%, 1.58 in 0.5 w/w%, 1.49 in 1 w/w% and 1.28 in 2 w/w% composite fibres), 

which has also been attributed to formation of new smaller graphitic domains confirming 

the reduction of LCGO
36–39

. Considering the indications of chemical reduction of LCGO, 

the increase in thermal conductivity of the LCGO/PU composite fibres as a consequence 

of the LCGO reduction can be expected
10,19

.  
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Figure 5.10: Raman spectra of PU, LCGO and chemically reduced LCGO/PU composites  

 

Figure 5.11 shows Raman spectra of PU, BNNP and BNNP/PU composites. Boron nitride 

exhibited a dominant peak at 1366 cm
-1

. This peak is analogous to the G peak in graphene 

and is due to the E2g phonon mode
40,41

. This peak was also observable in all BNNP/PU 

composites indicating the incorporation of BNNP into PU polymeric matrix. As for the 

LCGO this BNNP peak becomes more dominant compare to PU Raman peaks as the 

BNNP loading was increased.  
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Figure 5.11: Raman spectra of PU, BNNP and BNNP/PU composites  

 

5.3.4. Mechanical test 

As spun PU and its composite fibres, i.e. BNNP/PU and LCGO/PU, exhibited similar 

uniaxial tensile behaviour to what has been reported for thermoplastic polymers, Figure 

5.12. This includes an initial modulus region, region I, followed by strain-induced 

softening which is a plateau region of almost constant stress, region II, and finally, strain 

hardening zone, region III
26,42,43

. 
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Figure 5.12: A typical stress-strain curve for PU and its composite fibres with BNNP or LCGO 

 

The effect of addition of LCGO into PU polymeric matrix on ultimate stress, elongation at 

break and Young’s modulus is shown in Figure 5.13. See Appendix II for MATLAB code 

designed to calculate Young’s modulus for LCGO/PU composite fibres.  

PU polymers are composed of two different parts, i.e. soft segments and hard segments. 

Viscous behaviour, elongation, of PU is attributed to its soft segment while stiffness and 

elastic behaviour is originated from hard segment
26,27,43

. As Figure 5.13 clearly shows, the 

addition of LCGO filler into the PU matrix led to an increase in Young’s modulus and 

ultimate tensile strength with an associated decrease in elongation at break, which is in 

agreement with previous studies
26,27,31,33,44

. Increase in ultimate stress can be attributed to 

the fact that adding filler into elastomers reinforces them in two ways.  Firstly, by 

broadening the relaxation spectrum and therefore, enhancing the capability of dissipating 
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strain energy in the presence of fillers. Secondly, fillers may decelerate or even stop the 

cracks initiated in the polymer.
43

  Strong interfacial adhesion between LCGO and PU 

matrix is likely to have formed as a result of hydrogen bonds between hydroxyl and 

carboxyl functional groups on the surface of the LCGO and PU polymer chains. 

Therefore, the applied mechanical load may be effectively transferred from the weak 

matrix to the strong LCGO filler resulting in increase in Young’s modulus
31,33

. The initial 

increase in ultimate stress and Young’s modulus while elongation at break remained 

relatively unchanged suggested that loading lower loadings of LCGO had reinforcement 

effect on PU hard segments while soft segments remained intact
26,27,31,33,43

. LCGO 

loadings higher than 0.5 w/w% starts to influence soft segments of PU. The fracture of PU 

samples is likely due to the strain hardening and strain-induced crystallization of soft 

segments, regions II and III in Figure 5.12. It can be suggested that higher loadings of 

LCGO (more than 1 w/w%) may reduce ultimate stress by increasing the rate of strain 

hardening and strain-induced crystallization of the soft segments by hydrogen bonding
33

. 

Drops in elongation at break at higher LCGO loadings further proves that LCGO fillers 

interferes with soft segment domains of PU
9
.  
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Figure 5.13: (a) Ultimate strength, (b) elongation at break and (c) Young’s modulus of PU and 

LCGO/PU composite fibres 

 

Figure 5.14 shows variations in ultimate stress, elongation at break and Young’s modulus 

as a result of the addition of BNNP filler into the PU polymeric matrix. Similar to what 

was achieved with LCGO fillers, an increase in the loading of BNNP into PU matrix 

resulted in increase in Young’s modulus and ultimate stress.  These changes may be 

attributed to increasing the ability of strain energy dissipation of polymer due to the 

interfacial adhesion of filler into PU polymeric matrix
31,33,43

. In contrast to LCGO filler, 

the addition of BNNP into PU polymer resulted in increase in elongation at break. Since 

that BNNP has different morphology and much lower aspect ratio (~1) compare to LCGO 

sheets, Figure 5.15, this phenomenon was anticipated and in agreement with previous 
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results obtained for silica nanocomposite-filled PU
45

 and low loadings of carbon black in 

PU
9
.  

 

 

Figure 5.14: (a) ultimate strength, (b) elongation at break and (c) Young’s modulus of PU and 

BNNP/PU composite fibres 
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Figure 5.15: SEM micrographs of (a) isolated LCGO sheet (scale bar: 10 μm), (b) aggregated 

BNNPs (scale bar:100 nm) and (c) isolated BNNP (scale bar:100 nm) 

 

5.3.5. Thermal conductivity 

Specific heat capacity of polyurethane in the temperature range of 20 to 60 °C and its 

composites with LCGO and BNNP show a gradual increase by temperature which agrees 

with previous reports for PU and PU nanocomposites
46,47

, Figure 5.16.  
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Figure 5.16: Temperature dependence of specific heat capacity of PU and its composites with 

LCGO and BNNP 

 

Specific heat capacities (Cp) at 30 °C and densities of pure PU, LCGO/PU and BNNP/PU 

composite samples were measured and shown in Table 5.2. While specific heat capacity 

of PU/BNNP decreased with increase in filler loadings, which agrees with previous 

reports on nanoclay- and boron nitride-filled PU
24,47

, Cp did not follow the same trend for 

LCGO fillers. Such fluctuations in CP was also already reported for graphene-filled epoxy 

composites
48

.   
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Table 5.2: Specific heat capacities at 30 °C and densities of PU, LCGO/PU and BNNP/PU samples 

Sample 

Specific heat capacity 

(J g 
-1 

°C
-1

) 

Density 

(g cm
-3

) 

PU 2.444 1.064 

0.25 w/w% LCGO/PU 2.452 1.085 

0.5 w/w% LCGO/PU 2.218 1.102 

1 w/w% LCGO/PU 2.438 1.119 

2 w/w% LCGO/PU 2.413 1.122 

0.5 w/w% BNNP/PU 2.41 1.087 

1 w/w% BNNP/PU 2.408 1.145 

2 w/w% BNNP/PU 2.386 1.165 

5 w/w% BNNP/PU 2.225 1.271 

 

Thermal diffusivities of all samples were measured by LFA method. Figure 5.17 and 

Figure 5.18 show thermal diffusivity of reduced LCGO/PU and BNNP/PU composite 

structures, respectively  
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Figure 5.17: Thermal diffusivity of PU and reduced LCGO/PU composite structures 

 

 
Figure 5.18: Thermal diffusivity of PU and BNNP/PU composite structures 
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shown in Figure 5.20.  

𝜂 =
λ − λ0

λ0
 

(1) 

Where, λ and λ 0 represent thermal conductivity of composite and unfilled polymer, PU 

matrix, respectively. Addition of thermally conducting fillers, i.e. reduced LCGO and 

BNNP, into an insulating polymeric matrix, PU, enhanced the heat transfer rate in 

polymer and consequently increased thermal conductivity.      

 
Figure 5.19: Thermal conductivity of PU and its composites with reduced LCGO and BNNP at 

different loadings 
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Figure 5.20: Thermal conductivity enhancement by addition of reduced LCGO and BNNP at 

different loadings 
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hydroxyl functional groups (unlike neutral BNNPs) interact strongly to the PU chains and 

effectively transfer phonon movements with minimal phonon energy loss, i.e. interfacial 

heat transfer was improved at the boundaries of LCGO filler and PU polymeric matrix
48

. 

In addition, LCGO sheets with their extraordinary high aspect ratio start to interact with 

each other and low filler concentrations making conducting path networks. The result of 

this a decreasing thermal contact resistance by the formation of a compact packing 

structure which results in the polymeric matrix between the adjacent filler particles 

smaller and thinner. These interactions facilitate the enhancement of thermal conductivity 

at low concentrations of filler 
49,50

. By increase in filler loadings, the thermal conductivity 

of LCGO/PU composite increased slowly. In this case many of the LCGO sheets were 

already interacting and there is no significant increase in the number of newly formed 

thermally conductive pathways. Therefore, the thermal conductivity will no longer be 

enhanced notably by increase in the concentration of fillers. In contrast, BNNP fillers with 

very fine dimensions easily aggregates at lower loadings, also, they have a very large 

surface area that causes high phonon scatterings at interfaces. Therefore, lower 

concentrations of BNNP did not effectively improve PU’s thermal conductivity. With 

respect to the almost similar density value of BNNP to LCGO (2.29 g cm
-3

 for BNNP and 

2.2 g cm
-3

 for graphene oxide
9
), at higher filler concentrations,  BNNP occupies a very 

high volume fraction in composite (compare to that of LCGO/PU composites at the same 

mass fraction) and begin to form a highly compact packing structures and consequently 

thicker heat-conductive pathways in the PU polymeric matrix and improved thermal 

conductivity of PU polymer more effectively 
24,50

.  
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5.3.6. Joule-heating dissipation experiment 
 

Current passing through a pre-concentrated 3D knitted structures comprising of 

PET threads or PET threads parallel with PU and reduced LCGO/PU composite 

fibres were measured when different potentials were applied, i.e. 20, 40, 60, 80, 

100, 120, 140, 160, 180, 200 and 250 V cm
-1

. As shown in Figure 5.21, the 

current and applied electric field for most of 3D knitted structures showed some 

non-linearity due to the Joule-heating effect
51

. The observed current increased 

more linearly with electric field in these structures compare to those of 

LCGO/LDPE composite fibres in Chapter 4. This observation may be attributed 

to the fact that Joule-heating is a volumetric phenomenon and its magnitude is 

directly affected by the volume of the channel used.
52

 In this case the reduced 

LCGO/PU knitted structures had much lower diameter when compared to 

LCGO/LDPE knitted ones. Therefore, lower Joule-heating was generated in 

these structures. In the absence of Joule-heating effects, the observed electric 

current should be a linear function of the applied electric field and follow Ohm’s 

law. With a Joule-heating effect present a higher electric current would be 

expected at every electric field proportional to the electric current to the power of 

two (P=VI=I
2
R),

53
 according to the power law, due to an enhanced electrolyte 

ionic conductivity resulting from the elevated electrolyte temperatures which 

then results in the current-electric field deviating from linearity. Joule-heating 

effects will also be higher in textile samples with lower thermal conductivities 

due to being unable to dissipate heat which leads to more non-linearity in the 

observed current-electric field.   
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Figure 5.21: current vs. electric field for 3D knitted structures composed of PET and reduced 

LCGO/PU composite fibres 

 

 

Higher applied potentials led to larger rise in temperature. This can be explained by the 

fact that higher potentials (higher power) heated the system faster while heat dissipation 

rate of the system was much lower than that
54

.  Figure 5.22 demonstrated the temperature 

change with respect to the initial temperature in 3D textile structures composed of PET 

yarn, PU fibres and/or reduced LCGO/PU composite fibres over 60 seconds when 250 V 

cm
-1 

was applied.  
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Figure 5.22: Temperature change with respect to the initial temperature as a function of time in 

3D textile structures composed of reduced LCGO/PU fibres when 250 V cm
-1

 was applied. 

 

Compared to a similar experiment that has been done on closed capillary tubes
54

, shown 

in Figure 4.7b, in which applying a constant potential causes an immediate rise in 

temperature followed by a steady state, applying a constant potential to a 3D knitted 

structures did not cause an immediate temperature change and temperature remained 

plateau for a while. Then similar to what was reported for capillary tubes, a temperature 

rise followed by a steady state was observed for textiles as well. This difference in 

behaviours of 3D knitted textiles and capillary tubes can be attributed to the structural 

difference between textiles and capillary tubes. Capillary tubes are closed environments 

where generated heat cannot escape through and air cannot enter while open geometry of 

the knitted sutures facilitates the occurrence of heat transfer between the fluid inside the 

knitted structure and its neighbouring air flow which leads to cooling down the fluid and 

plateau region at the beginning of the graph shown in Figure 5.22.  
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Changes in temperature due to the Joule-heating effect were observed for 60 seconds 

while 250 V cm
-1

 was applied to the samples. Final temperature change with respect to the 

initial temperature was measured for different samples and shown in Figure 5.23.  

 

 

Figure 5.23: Final temperature change with respect to the initial temperature for different 

samples while 250 V cm
-1

 was applied 
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heating compare to the one with PET thread and PU fibre.   

Despite the increase in thermal conductivity of reduced LCGO/PU composites compare to 

pure PU as shown in Figure 5.19 and Figure 5.20, no improvement in heat-dissipation 

ability was observed (Figure 5.23). This can be attributed to the huge difference in in-

plane and cross-plane thermal conductivity of graphene. Although in-plane thermal 

conductivity of graphene is among the highest of known materials 2000-4000 W m
-1

 K
-1

, 

its cross-plane direction thermal conductivity is as low as 6 W m
-1

 K
-1

 due to weak 

interplane van der Waals interactions
58

. Therefore, orientation of LCGO sheets in 

LCGO/PU composites with respect to the heat flow direction plays a vital role in 

determining thermal conductivity of composite polymer
59

. It can be assumed that LCGO 

sheets were randomly oriented in the composite films used to measure thermal 

conductivity values while most of LCGO sheets in LCGO/PU fibres were parallel to fibre 

axis because of shear applied to polymer solution in spinning process (schematically 

shown in Figure 5.24). Since, heat flow in thermal dissipation experiment was in radial 

direction of fibres, i.e. perpendicular to LCGO sheet plane, enhancement shown in 

reduced LCGO/PU structures with lower than 2 w/w% loading, were not capable of 

dissipating heat generated by Joule-heating effect because of polymer layers between 

LCGO sheets in one hand and low thermal conductivity of LCGO sheets in cross-planar 

direction in the other hand. Increasing the filler content to 2 w/w% assumed to make fully 

packed LCGO structures and reduce the thickness of polymeric layer between fillers in 

both longitudinal and radial fibres’ direction
49,50

 and resulted in an enhancement in Joule-

heating dissipation, shown in Figure 5.23. Although reduced LCGO concentrations more 

than 1 w/w% in PU matrix started to improve matrix’s thermal conductivity and make it 

capable of dissipating Joule-heating effect, reduced LCGO/PU composite with 2 w/w% 

LCGO became electrically conductive. These samples showed an  electrical resistivity of 
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44.9 ± 1.2 MΩ/cm which is a draw back for electrophoresis tests as the  electrical 

conductivity makes short circuits. As a result of the electrical conductivity issues, LCGO 

filler was replaced by thermally conductive and electrically insulating filler, i.e. BNNPs.  

Figure 5.25 shows current values for 3D knitted structures comprising of PET 

threads or PET threads parallel with PU and BNNP/PU composite fibres when 

different potentials were applied, i.e. 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 

and 250 V cm
-1

. Current vs. electric field in these structures show similar trend to 

what was achieved by reduced LCGO/PU composite fibres because of similarity 

in diameters which led to almost similar Joule-heating effects.   

 

 

Figure 5.24: Direction of LCGO sheets in PU films and fibres 
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Figure 5.25: current vs. electric field for 3D knitted structures composed of PET and BNNP/PU 

composite fibres 

 

The temperature changes with respect to the initial temperature in 3D textile 
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Figure 5.26: temperature change with respect to the initial temperature as a function of time in 

3D textile structures composed of BNNP/PU fibres when 250 V cm
-1

 was applied 

 

Temperature rose with a similar pattern to that of obtained by 3D knitted structures with 

reduced LCGO/PU and LCGO/LDPE fibres, i.e. a plateau region followed by increase 

and a steady state at the end. Final temperature change with respect to the initial 
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summarized in Figure 5.27. 
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Figure 5.27: Final temperature change with respect to the initial temperature for different samples 

while 250 V cm
-1

 was applied 

   

As shown in Figure 5.27, replacing one PET thread with PU fibre led to an increase in 

temperature change with respect to the initial temperature as described earlier in this 

Chapter.  A temperature decreased was noted by replacing the PU fibre with 0.5 w/w% 

BNNP/PU composite fibres. The observed temperature decrease continued with the 

increase in the BNNP filler concentration. Considering BNNP’s spherical morphology 

with very low aspect ratio (~1), Figure 5.15, an isotropic thermal conductivity in either 

flow induced oriented BNNP fillers in BNNP/PU spun fibres or randomly oriented 

BNNP/PU films
24

 could be expected. Decreasing trend in final temperature change in 

knitted structure by increase in filler concentration, Figure 5.27, is in agreement with 

increase of thermal conductivity of PU by increase in BNNP filler concentration, Figure 

5.19, and confirms that orientation of BNNP did not have a significant effect on heat 

dissipation ability of BNNP-filled composite fibres. Figure 5.26 shows that addition of 
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BNNP into PU by more than 2 w/w% led to effective heat dissipation and consequently 

kept the structure at lower working temperatures for longer times, i.e. longer plateau 

region at the beginning. This could be an advantage for electrophoresis studies that 

involves living cells or temperature sensitive analytes.   

5.4. Conclusion 

The novel idea of incorporating thermally conductive fibres into 3D textile microfluidic 

devices to minimize the effects of Joule-heating which is the most important side effect of 

electrophoresis technique was investigated. As discussed in Chapter 4,  LCGO/LDPE 

fibres prepared by pre-mixing and subsequent melt spinning that had limitations in the 

amount of filler loadings that were achievable through this approach. In this chapter, 

solution mixing and wet-spinning methods were used to produce polymeric thermally 

conducting fibres using PU polymeric matrix and two different filler materials, i.e. LCGO 

and BNNP.  Thermally conducting fibres with different filler loadings were successfully 

made and incorporated into 3D knitted structures in combination with PET threads to 

make novel textile-based microfluidics. Different electric fields were applied to 3D 

knitted structures and resultant current and temperature change were monitored. It was 

found that thermally conducting reduced LCGO-filled fibres became effective in Joule-

heating dissipation at the point that they became electrically conductive. Therefore, 

LCGO was replaced by thermally conducting and electrically insulating BNNP filler. It 

was shown that incorporating thermally conductive fibres into 3D textile structures as heat 

dissipater potentially can be used as an effective method to dissipate the heat generated by 

Joule-heating and keep the system as cool as possible for the longer time during 

electrophoresis experiment. This could be an advantageous and opens up new 

opportunities for fibre based capillary electrophoresis studies specifically when proteins, 

living cells and temperature sensitive analytes are being used.   
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Textile designs for wearable 

electrochemical (E-Chem) sensors – 

proof-of-concept studies. 
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6.1. Introduction 
 

In recent decades, tremendous effort has been made in field of chemical and bio-sensors to 

replace bulky, expensive and complex analytical instrumental systems used in the health-

care sector
1,2

. Different analytical approaches include optical, piezoelectric and 

electrochemical detection methods have been used to make devices capable of detecting 

analytes of interest. Among these, electrochemical detection has been the more common 

techniques use in diagnostics and environmental monitoring devices due to its cost-

effectiveness, simplicity and accuracy
1,3

. Increasing demand for heart rate monitors, 

pedometers and portable real-time monitoring devices for use in sports, soldier 

performance, aging-associated diseases, and remote patient monitoring has focused 

attention towards development of the new class of personalized point-of-care systems to 

provide a real-time feedback of an individual’s physiological biomarkers
4–7

. Most of these 

devices rely on blood samples with the associated need for undesirable invasive sampling. 

Therefore, in recent years, significant research investigate alternate body fluids other than  

blood
1,5,8

. Non-invasive wearable biosensor approaches include  saliva
9
, tear

10
 and sweat 

11
 sensors in addition to breath sensors

1,8,12
.  After the first introduction of thread-based 

microfluidic devices in 2010
13,14

, textile substrates owing to their unique characteristics 

such as cost-effectiveness, wicking properties, flexibility and robustness in wet state, have 

been considered as a significant  platform for the  development of wearable sensors
1,4–

6,8,11,15,16
.    

Owing to the variable methods of sample collection and handling required for body fluid, 

different sensor designs are required in each category. Although there have been some 

publications using textile substrates to perform electrochemical or 

electrochemiluminescence detections using pins an threads
17

, screen printed electrodes
9,18

, 
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coating threads with conductive inks such as carbon inks
19,20

, or separate solid electrodes 

in contact with textile substrates
10

, to our knowledge there have been no publication in 

creating 3D textile electrochemical cells reported in this chapter. Therefore, in this 

chapter, two different textile designs using two different methods of fabrication, i.e. 

knitting and braiding techniques, were proposed as platforms for development of wearable 

electrochemical sensors utilizing various electrochemical detection techniques, i.e. cyclic 

voltammetry and amperometry. Moreover, electrochemical reversibility of the system was 

shown to be improved by surface electrodeposition of polypyrrole (PPy) and gold 

nanoparticle (AuNp).          

6.2. Experiments 
6.2.1. Cyclic voltammetry test 

All electrochemical measurements were carried out in a beaker-type electrochemical cell 

with three-electrode system including surface of stainless steel (SS) filament derived 

electrodes (SS, gold nanoparticle electrodeposited SS or polypyrrole-gold nanoparticle 

electrodeposited SS) as working electrode, Pt mesh counter electrode and Ag/AgCl 

reference electrodes (3.5 M KCl) using a potentiostat (CH Instruments, 650D, USA). 

6.2.2. Stainless steel surface modification 

The surfaces of stainless steel (SS) filament working electrodes were modified by either 

electrodeposition of gold nanoparticle (AuNp) or polypyrrole (PPy) and AuNps. SS 

filaments were sonicated in EtOH for 30 minutes to clean surface impurities followed by 

washing with DI water prior to electrodepositions. 

6.2.2.1. Polypyrrole (PPy) electrodeposition 

PPy was electrodeposited on SS filament using a CH potentiostat and a standard three-

electrode system using a clean SS filament as the working electrode, a platinum mesh as 

the counter electrode and Ag/AgCl as the reference electrode (3.5 M KCl). PPy was 
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electrodeposited using a constant potential of + 0.8 V for 60 seconds in an aqueous 

solution of 0.1 M pyrrole and 0.1 M sodium p-toluenesulfonate. During the deposition 

process, the colour of SS filament changed to black due to the electro-deposition of 

pyrrole on SS filament.  

6.2.2.2. AuNP electro deposition  

AuNP electrodeposition on SS filament was performed using a CH potentiostat instrument 

using a standard three-electrode system with a clean SS filament as the working electrode, 

a platinum mesh as the counter electrode and saturated Ag/AgCl as the reference 

electrode, using an aqueous electrolyte solution of 3.4 mM HAuCl4 and 0.1 M HClO4. 

Electrodeposition was achieved by applying constant potential of -0.25 V for different 

times, i.e. 120, 300 and 600 seconds
21

. After electro-deposition the SS filament electrode 

turned to shiny yellow upon electrodeposition of gold. 

 

6.2.3. Fabrication of 3D textile structures 
 

Two different well-established textile fabrication techniques of knitting and braiding were 

utilised to assemble 3D textile structures with segmented conductive and non-conductive 

sections for used as a platform for performing electrochemical tests.  

6.2.3.1. 3D knitted structures 

3D segmented knitted structures were developed using Brothers double bed knitting 

machine with 7 gauge needle.  A cotton/polyester thread was used as the insulating 

component, a SS yarn and two parallel 70 denier silver-plated nylon were also used to 

make electrically conductive structures within the knitted device. Figure 6.1 shows the 

schematic design for segmented knitted structures.  
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Figure 6.1:  Schematic design for segmented knitted structures comprised of cotton/polyester 

insulating part as SS and silver-plated nylon conductive parts. 

 

Initially the number of machine knitting needles was optimised to establish the optimal 

diameter of the final tubular knitted structure. It was determined that when 3 needles were 

used in each side, a knitted structure with the diameter of approximately 4 mm was 

achieved. 4 courses of conductive yarn followed by 8 courses of insulating yarns were 

knitted to obtain 4 mm long conductive segments separated with an 8 mm insulating 

cotton/polyester segment. In total, 50 courses (~ 40 mm) of insulating thread were knitted 

at each end of structure. Figure 6.2 shows the final segmented 3D knitted structure. 
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Figure 6.2: Segmented 3D knitted structure platform for electrochemical detection. 

 

6.2.3.2. 3D braided structures 

It in collaborative work involving myself and others from our group that 3D braid 

structures with different number of parallel fibre electrodes can be assembled into a textile 

based super-capacitor
22

. Using a similar approach in this study, 3D braided structures with 

parallel conductive and non-conducive yarns as were assembled into a classical 3-

electrode structure using the Trenz-Export braiding machine with the resultant utilised in a 

gravity assisted self-wicking textile electrochemical detection system.  100/36 denier 

polyester threads were used as insulating components separating both SS filament 

working and counter electrodes and a 70 denier silver-plated nylon pseudo-reference 

electrode. 9 spools of polyester threads (as separators and wicking elements), 2 parallel SS 

filament and one silver-plated nylon in the middle of two SSs with a Ø 700 µm nylon 

monofilament (fishing line) as a core to was used to assemble a 3D tubular structure with 
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electrically separated electrodes as shown in Figure 6.3. 

 

 

Figure 6.3: 3D tubular braid template for E-chem detections comprised of PET insulating yarns, 

2 SS filaments and a silver-plate nylon between 2 SS filaments. 

 

To prove that electrodes in the 3D braided structure were parallel and did not short-circuit 

with each other, electrodes were separated at both end of the structure and a piece of 

copper tape was attached to each electrode, Figure 6.4. Then connectivity of each two was 

tested by a measuring electrical resistivity as shown in Figure 6.5. 

 



156 
 

 
Figure 6.4: braid structure with separated electrodes for connectivity test (a-f show ends of 

conductive yarns) 

   

 

 

Figure 6.5: connectivity test for braid structure showing that each end of an electrode in one side 

(a-c in Figure 6.4) is connected to only one end to the other side (d-f in Figure 6.4)  
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6.3. Results and discussion 
6.3.1. Stainless steel surface modification 

Since Fe
III

(CN)6
3-

/ Fe
II
(CN)6

4-
 is a known and well-behaved couple, electrochemically

23,24
, 

potassium ferricyanide was used as the electroactive material along with an NaCl aqueous 

electrolyte in this study. The redox reactions of Fe
III

(CN)6
3-

/ Fe
II
(CN)6

4-
 were observed by 

Cyclic voltammetry (CV) tests over a potential range between 0 mV and 500 mV (CV’s 

with SS electrodes  were cycled between -600 mV and 600 mV) in  1 M NaCl aqueous 

electrolyte. Different concentrations of potassium ferricyanide of 0, 0.2, 0.5, 1, 2, 5, and 

10 mM at scan rates of 20, 50, and 100 mV s
-1

 were employed. All electrolyte solutions 

were deoxygenated by Argon purging for 60 minutes prior CV tests. CVs of a range 

concentrations of potassium ferricyanide in 1 M NaCl electrolyte were obtained as a 

function of the scan rate as shown in Figure 6.6. SS filament was used as working 

electrode while Pt mesh and Ag/AgCl counter and reference electrodes were used, 

respectively.  
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Figure 6.6: Cyclic voltammetry potassium ferricyanide detection on SS filament at scan rates of 

(a) 20, (b) 50 and (c) 100 mV s
-1 

 

Using differential pulse voltammetry at the different concentrations investigated a linear 

correlation between potassium ferricyanide vs. maximum peak current was observed, 

Figure 6.7.  
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Figure 6.7: (a) Differential pulse voltammetry on different concentrations of potassium 

ferricyanide and (b) linear relation between concentration of potassium ferricyanide and 

maximum current shown in DPV  

 

Both anodic and cathodic peaks were clearly observed at 300 mV and -250 mV 

respectively, with increments of current in proportion to the concentration of potassium 

ferricyanide, Figure 6.6. However, while there was a linear increase in peak current by 

increase with concentration (Figure 6.7b), a clearly asymmetric cyclic voltammogram 

shape associated with a large redox peak separation of 550 mV was observed and was 

clearly non-ideal when compare to a standard Pt working electrode which displayed the 

ideal peak shape and separation (~ 59 mV) as shown in Figure 6.8. This indicated that 

while the SS yarns were capable of acting as an electrode in a electrochemical cell the 

electrochemical irreversibility of the system was impeded as a result of slow electron 

exchange of the redox species at the surface of working electrode
23,24

.    

In order to address the non-ideal surface of SS filaments and enhance the overall 

electrochemical performance of these yarns, the working electrode SS yarn surface was 

modified by electrodeposition of AuNps.  AuNps were selected due to their outstanding 

optical, physical and chemical characteristics which includes high electrical conductivity, 

high specific surface area, resistance to corrosion.
25,26

 AuNps have been widely used for 

surface modification of the working electrode in electrochemistry
27,28

 and are well known 
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to increase the electron exchange rate and consequently improve electrochemical 

reversibility. AuNps were electrodeposited onto SS filaments for 120, 300 and 600 

seconds, as described above. The modified SS-AuNp electrodes were than used as 

working electrodes to run CVs in 1 M NaCl aqueous electrolyte containing 10 mM 

potassium ferricyanide. Figure 6.9 shows the normalized current (current divided by 

maximum current) vs. potential for modified working electrodes.  

 
Figure 6.8: CV of 0.5 mM potassium ferricyanide in 1 M NaCl at Pt working electrode 
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Figure 6.9: CV of 1 mM potassium ferricyanide in 1 M NaCl at AuNp modified SS working 

electrodes.  

As shown in Figure 6.9, AuNp surface modified electrodes (120 s Au deposition) showed 

improved reversibility of Fe
III

(CN)6
3-

/ Fe
II
(CN)6

4-
 reaction rather than pure SS filaments 

and exhibited higher electron exchange rate, symmetric cyclic voltammograms and small 

separation of peak potentials (~ 220 mV), compare to what was shown in Figure 6.6 for 

pure SS filaments. Moreover, it was shown that increasing te electrodeposition time of 

AuNp from 120 seconds to 300 seconds greatly reduced the redox peak separation to 80 

mV, close to ideal peak separation of 59 mV. No significant improvement was observed 

by increasing the time from 300 to 600 seconds. Therefore, 300 seconds electrodeposition 

of AuNp was chosen to modify the surface of SS filament working electrodes.  Figure 

6.10 shows the SEM micrograph of Au particles on the surface of SS filaments.  

 

 
Figure 6.10: SEM micrograph of AuNp electrodeposited SS filament (scale bar= 10 µm) and 

magnified part to show AuNps morphology (scale part = 1 µm) 
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Cyclic voltammograms of potassium ferricyanide in 1 M NaCl with gold nanoparticle-

modified SS filaments (AuNp-SS) working electrode, Pt mesh as counter and Ag/AgCl as 

reference electrode is shown in Figure 6.11. 

 
Figure 6.11: CV curves for different concentrations of potassium ferricyanide at (a) 20, (b) 50 

and (c) 100 mV s
-1

 scan rates using AuNp-SS working electrode 

 

As shown in Figure 6.11, although modification of SS with AuNp increased the 

electrochemical reversibility and redox current of Fe
III

(CN)6
3-

/ Fe
II
(CN)6

4-
, CV curves 

became asymmetric and distorted at slightly high scan rate (100 mV s
-1

), indicating 

electron kinetics was not fast enough for the reaction of Fe
III

(CN)6
3-

/ Fe
II
(CN)6

4- 
even 

though AuNp/SS electrode could improve overall electrochemical performance. This 

limited performance was likely due to non-uniform AuNp distributions across the SS yarn 

as observed for the SEM images above. 
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To address these further limitations a thin polypyrrole (PPy) coating was used to increase 

the adhesion of AuNps on the working electrode. PPy was initially electrodeposited on SS 

filaments and then AuNps were electrodeposited on PPy-coated SS for 300 seconds
29,30

. 

Figure 6.12 shows SEM micrographs of PPy-SS and AuNp-PPy-SS filaments.   

 

Figure 6.12: SEM micrographs of  (a) PPy electrodeposited SS filament (scale bar= 100 nm), (b) 

AuNp electrodeposited on  PPy-SS (scale bar= 1µm) and (c) higher magnification of (b) to show 

AuNps morphology (scale part = 100 nm) 

 

Figure 6.13 shows electrochemical stability of AuNp-PPy-SS working electrode over 30 

cycles at 100 mV s
-1

 in 100 mM NaCl aqueous electrolyte containing 10 mM potassium 

ferricyanide. Although a diluted electrolyte with much lower ionic strength (compare to 

what was used for AuNp-SS) was used in this experiment, a significant enhancement was 

observed in electrochemical reversibility of the system. This suggested that PPy-AuNp 
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coating provides a porous structure with large effective surface area and high catalytic 

activity that enhance the kinetics of electron transfer and consequently stability of the 

system’s electrochemical reversibility
31,32

. 

 
Figure 6.13: 30 Cycles of CV of 10 mM potassium ferricyanide in 100 mM NaCl at 100 mV/S 

scan rate, working electrode: AuNp-PPy-SS, counter electrode: Pt mesh and reference electrode: 

Ag/AgCl 

  

Cyclic voltammograms obtained at different concentration of potassium ferricyanide in 

100 mM NaCl was shown in Figure 6.14. AuNp-PPy-SS was used as working electrode, 

Pt mesh as counter and Ag/AgCl as reference electrode.  
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Figure 6.14: CV curves of different concentrations of potassium ferricyanide in 100 mM NaCl at 

(a) 20, (b) 50 and (c) 100 mV s
-1

 scan rates 

 

As shown in Figure 6.14, CV curves remained symmetric and no change was observed in 

the separation of peak potentials value confirming that the modified SS electrode with 

PPy and AuNp (AuNp-PPy-SS electrode) not only performed well electrochemically, but 

also its performance was stable.  

In summary, it was shown that electrochemical performance of SS filaments could be 

improved by electrodeposition of PPy covered with AuNp. This modification was also 

proved to be stable. Moreover, as shown in Figure 6.15, there was a linear increase in 

cathodic peak current by increase in concentration. 
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Figure 6.15: Linear increase in peak cathodic current by increase in potassium ferricyanide 

concentration 

 

6.3.2. Electrochemical detection on 3D braided structure 

3D tubular braided structure comprised of three parallel electrodes (2 SS filaments and a 

silver-plated nylon in the middle) was produced to be used as single device with 

integrated electrodes for electrochemical detections. Separated electrodes, i.e. working, 

reference and counter electrodes, in a braided structure is shown in Figure 6.16. 
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Figure 6.16: Braid structure comprised of 2 SS filaments as counter and working electrodes and a 

silver-plated electrode (in the middle) as reference electrode which are parallel 

 

Working electrode of the braided structure was modified using the method described 

above. Figure 6.17 shows the structure with modified working electrode.  
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Figure 6.17: 3D braided structure with modified working electrode, i.e. AuNp-PPy-SS electrode.  

 

As a proof of concept, 3D braided structure with modified working electrode was 

connected to a CH electrochemical workstation, shown in Figure 6.18, and successfully 

detected 10 mM potassium ferricyanide in 100 mM NaCl utilising the CV technique at the 

scan rate of 100 mV s
-1

 (Figure 6.19). 
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Figure 6.18: CV experimental setup using integrated electrodes in a 3D braided structure 

 

 
Figure 6.19: Cyclic voltammograms of 10 mM potassium ferricyanide in 100 mM NaCl using 

integrated electrodes in a 3D braided structure (scan rate 100 mV s
-1
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6.3.3. Electrochemical detection on 3D knitted structure 

The SS filaments used to develop 3D braid structures were unsuitable for the development 

of knitted structures as they were too thick and stiff and did not produce uniform 

structures when knitted with cotton/PET yarns. As a consequence, softer SS yarns were 

purchased and used to develop 3D knitted structures. While SS yarns were soft and thin 

and could be easily integrated into 3D knitted structures, they couldn’t be used to make 

3D braids due to their “fluffiness” that causes short circuit issues in braided structures, 

Figure 6.20. In the knitted configuration, larger insulating gaps between the electrodes 

were possible thereby preventing the short circuit issues. 

 
Figure 6.20: (a) SS yarn and (b) SS filament 

 

CVs of a range concentrations of potassium ferricyanide in 1 M NaCl electrolyte were 

obtained as a function of the scan rate as shown in Figure 6.21. SS yarn was used as 

working electrode while Pt mesh and Ag/AgCl counter and reference electrodes were 

used, respectively. Similar to what was observed for SS filaments, shown in Figure 6.6, 

SS yarns exhibited a clearly asymmetric cyclic voltammogram shape associated with a 

large redox peak separation of 600 mV indicating a clearly non-ideal electrode. 
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Figure 6.21: Cyclic voltammetry potassium ferricyanide detection on SS yarn at scan rates of (a) 

20, (b) 50 and (c) 100 mV s
-1 

 

Although SS yarns without surface modifications are non-ideal electrodes for 

electrochemistry, surface modification, previously shown as an effective way to enhance 

electrochemical behaviour of the working electrode, can be avoided by utilizing a simple 

amperometric method to detect potassium ferricyanide was adopted due to the segmented 

electrode configuration in the textile system. 3D segmented knitted structure comprised of 

two SS yarn parts as counter and working electrodes and one silver-plated nylon in the 

middle as pseudo- reference electrode (Figure 6.2) was used for the amperometric 

detection of a range of concentrations of potassium ferricyanide in 1 M NaCl electrolyte. 

The 3D knitted structure was first pre-concentrated with electrolyte and then experimental 

setup shown in Figure 6.22 was used for the amperometric detection. The experiment was 

set up so that the aqueous supporting electrolyte could gravity siphon from the upper to 

the lower reservoirs. The experiment was carried out at the constant potential of -400 mV. 
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10 µL drops of potassium ferricyanide in 1M NaCl with different concentrations, i.e. 0.5, 

1, 5 and 10 mM, were applied to the structure and went through the waste container by 

gravity. Each concentration was repeated 5 times and their corresponding current is shown 

in Figure 6.23. Electrolyte level in upper petri-dish (electrolyte petri-dish shown in Figure 

6.22) kept constant during the experiment to keep the analyte flow rate at a constant rate.  

 
Figure 6.22: (a) Experimental setup for amperometric detection on segmented 3D knitted 

structure, (I) electrolyte, (II) working electrode, (III) reference electrode, (IV) counter electrode, 

(V) waste container and (b) closer look of electrode connections 
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Figure 6.23: Amperometric detection of potassium ferricyanide on segmented 3D knitted 

structure 

 
Figure 6.24: Linear decrease in integrated peak area by increase in droplet size 

 

As shown in Figure 6.23, potassium ferricyanide was successfully detected 

amperometrically on segmented 3D knitted structure and signal intensity was increased by 
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increase in the analyte’s concentration. Absolute value of integrated peak area was 

calculated and shown to be increased linearly by increase in analyte’s concentration, 

Figure 6.24. 

6.4. Conclusion 

There is an ever growing demand for wearable chemical and electrochemical sensors that 

can replace bulky analytical devices in one hand and provide real-time accurate 

measurements on the other that can be used in a wide variety of applications. Moreover, 

fabrics and textiles have shown to be promising substrates for making wearable sensors. 

In this chapter, the surfaces of stainless steel filaments are modified by electrodeposition 

of PPy and AuNps to achieve an electrochemically reversible system for potassium 

ferricyanide detection in NaCl electrolyte using CV technique. It was demonstrated that 

these modified SS working electrode can be incorporated into a 3D braided structure 

parallel with another SS filament as counter and a silver-plated nylon as reference 

electrode to make a 3D textile platform on which electrochemical detection was feasible. 

Such a platform can be easily incorporable into garments and fabrics to form a wearable 

electrochemical sensor. A knitted  3D textile design also confirmed the feasibility on this 

approach. This design is comprised of three conductive segments, two SS yarn and a 

silver-plated nylon in the middle, separated by insulating yarns. It is shown that the latter 

structure is capable of amperometrically detecting potassium ferricyanide in NaCl 

electrolyte.  

Therefore, it can be concluded that versatile textile-based electrochemical sensors can be 

designed and made using different textile techniques. Such sensors benefit from being 

cheap, flexibility and ease of incorporation into everyday garments to provide real time 

sensing and monitoring. 
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7.1. Conclusions 

Thread-based microfluidics has attracted significant attention since its emergence in 2010. 

Although a lot of research work has been done on development of different textile- thread-

based microfluidics, there is a lack of understanding fundamental principles of the nature 

and the role of fibre surface chemistry in the performance of textile-based microfluidic 

devices. Therefore, this thesis was aimed to understand the effect of fibre surface 

chemistry on fluid behaviour in textile-based microfluidic devices and consequently to 

develop functionalized composite fibres suitable for the incorporation into textile 

structures (either 2D or 3D structures) to induce the desired characteristics to the substrate 

and improve the performance of textile-based microfluidic device.  

Liquid crystalline graphene oxide (LCGO) owing to its very high aspect ratio and sheet 

size and having carboxyl and hydroxyl functional groups
1–3

 was chosen as the filler to be 

incorporated into low-density polyethylene (LDPE) polymeric matrix. Composite fibres 

with different surface functional groups and therefore surface chemistries with respect to 

the LDPE were produced and their properties were investigated.  

In Chapter 3, LCGO/LDPE composite fibres with different loadings of LCGO were 

produced by pre-coating the LDPE powder with LCGO and subsequently extruded 

utilising a conventional melt-spinning technique. These fibres (as well as pure LDPE 

fibre) were incorporated into 3D textile structures in combination with polyester (PET) 

thread to make 3D textile-based microfluidic platforms. Finally, the effect of different 

surface chemistries upon the wicking performance (power free pumping) of 3D textile 

platforms in different media, i.e. DI water, Tris(hydroxymethyl)aminomethane (TRIS) / 

N-Cyclohexyl-2-aminoethanesulfonic acid (CHES) buffer and NaCl solution, was 

investigated. It was found that ionic interaction (repulsion or absorption) between fibres 

surface and the ion in the solutions used to perform the experiment dominated the flow 
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rate. When DI water and NaCl solution were used, a maximum flow rate was achieved by 

the tubular knitted 3D textile structure comprised of a commercial PET yarn and 5 w/w% 

LCGO/LDPE composite fibre. 3D structures comprised of the unmodified PET and LDPE 

base fibres exhibited the lowest flow rate. In contrast, when Tris/CHES buffer solution 

was used, the 3D structure comprised of PET and 5 w/w% LCGO/LDPE composite fibres 

exhibited a flow trend reversal whereby the higher LCGO loadings produced the lowest 

flow rate due to Tis ion absorption at the fibres surface due to exposed LCGO functional 

groups of the composite fibre. Under these conditions a maximum flow rate was shown by 

the structure with no functional groups, i.e. 3D structure comprised of 2PET and 

PET/LDPE fibres.  

Anti-gravitational pumping of DI water using knitted structures comprised of commercial 

PET and LDPE or LCGO/LDPE composite fibres was also investigated. It was shown that 

the addition of LCGO-filled fibers into the 3D knitted structures increased the anti-

gravitational pumping flow rate. It was found that the flow rate was increased with a 

direct increase in the amount of LCGO loaded into LDPE. A maximum flow rate of up to 

16 µL min
-1 

was achieved with the knitted 3D structure consisting of a commercial PET 

yarn and 5 w/w% LCGO/LDPE composite fibre. 

Fluid movement within a textile structure is primarily driven by a capillary effect. In this 

thesis it was demonstrated that the flow rate in a textile-based microfluidic structure can 

be tuned by changing the surface chemistry of the fibres utilised within the textile 

platform. While there is a degree of tunability in these structures the flow rates are highly 

condition sensitive and will dependent upon the ionic environment and the solvent 

reservoir head height. If these textile structures are to be successfully used in electro-

fluidic driven devices then a more controllable and precise fluid control will be required in 

any textile- or thread-based microfluidics approaches. As a consequence, the need to 



180 
 

achieve controllable fluid flow in textiles based systems will require the provision of an 

external power supply to drive flow. Recently, the electrophoresis technique has been 

shown to be a powerful tool that has been widely used in textile-based microfluidics. 

However when an electric field is applied to electrolyte to move an analyte under 

electrophoretic control Joule-heating will be inevitable. Joule-heating not only increases 

the fluid temperature, but it also produces temperature gradients in cross-stream and axial 

flow directions. These temperature effects, cause non-uniformity in fluid properties, and 

more importantly affect the mass species transport 
4
. To address this problem Chapter 4 

and Chapter 5 focused upon development of thermally conducting composite fibres 

which may be incorporated into textile substrates in order to minimize the Joule-heating 

effect. 

LGCO was initially investigated as a filler owing to its solvent processability and 

outstanding thermal conductivity when reduced.
1,2

 LDPE was utilised as a filler due its 

simplicity (simple chemical structure) and due to the fact that was a thermally deductive 

due to its  strain induced crysatalinity
5–7

. LCGO/LDPE composite fibres with different 

loadings of LCGO were produced using a melt-spinning method. These composite fibres 

were incorporated into 3D PET knitted structures and their performance in dissipating 

Joule-heating was investigated. Different electric fields were applied to 3D knitted 

structures and resultant current and temperature change were monitored. LCGO addition 

up to 2 w/w% into LDPE resulted in increase in ultimate strength and Young’s modulus 

compare to pure LDPE while maintaining the elongation at break. However a drop in 

ultimate strength and Young’s modulus was observed in 5 w/w% LCGO/LDPE composite 

fibres due to agglomeration of LCGO resulting weak points in fibres limiting their utility 

at higher loadings.  

The incorporation of LCGO/LDPE composites with filler loadings of lower than 1 w/w% 



181 
 

in 3D PET knitted structures did not improve thermal dissipation ability of the structure. 

In these fibres, the LCGO sheets were separated by LDPE polymer matrix  and therefore 

had poor inter-connectivity required to form a suitable heat conduction path. This led to 

huge phonon scattering at the boundaries (between polymeric matrix and the filler) which 

resulted in the interruption in phonon movements resulting in internal contact thermal 

resistance. Incorporation of LCG/LDPE fibres with 2 and 5 w/w% loadings of LCGO 

resulted in improvement in heat dissipation ability and kept the fabricated 3D textile 

system at a lower working temperature. At these higher loadings, effective connections 

between the LCGO sheets were noted and consequently heat conduction paths were 

formed. This phenomenon along with the ability of LCGO to fully integrate and assemble 

into LDPE the extruded polymeric matrix, driven by its extremely large aspect ratio, could 

lead to a significant increase in composites’ thermal conductivity and therefore its ability 

to dissipate the heat generated by Joule-heating in the system
8–10

.  

Despite the promising increase in heat dissipation ability when under electrophoretic 

conditions through the incorporation of 2 and 5 w/w% LGCO/LDPE fibres, (confirmed by 

the decrease in the overall textile system’s operating temperature) producing 

LCGO/LDPE composite fibres with LCGO contents of more than 5w/w% was 

impractical. Unfortunately, the pre-mixing LCGO approach used to produce the fibres 

resulted in the significant formation of LCGO aggregates within the composite fibre. 

These aggregates degraded the fibre’s mechanical properties thereby limited its utility 

within the knitting machine used to produce the textile structures.  

In Chapter 5 in order to address melt spinning limitations encountered for LDPE, a 

solvent base pre-mixing mixing method was investigated to improve the uniformity of the 

thermally conducting filler within the resultant fibres. In this new approach a wet-spinning 

technique was adopted for the production of fibres. This approach also required a change 
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in the type of base polymer, to polyurethane and away from LDPE, due to LDPE’s 

insolubility in common (non-toxic) solvents in order to make thermally conducting fibres. 

It has been shown by others
11

 and consistent with these findings, that thermally 

conducting composites made by solution mixing typically performed better than melt 

mixing approaches . A medical grand non-crosslinked PU was chosen as polymeric matrix 

due to its solubility in various organic solvents and good mechanical properties which 

made it an excellent candidate for the knitting. LCGO and boron nitride
12,13

 nanopowder 

(BNNP), also a well-known thermally conductive filler,  were investigated.     

Initially the solubility of PU polymers in DMF and different ratios of EtOH/water was 

investigated to establish an optimal spinabillity. Then, the wet spinning parameters, i.e. 

injection flow rate and non-solvent (coagulation bath), were optimized to obtain 

continuous PU fibres with almost circular cross-section shape. Composite polymeric 

materials with different loadings of LCGO, i.e. 0.25, 0.5, 1 and 2 w/w%, as well as 

different loading of BNNP, i.e. 0.5, 1, 2 and 5 w/w%, were prepared by a direct solution 

mixing method and fibres spun using a wet-spinning method.  

The effect of adding fillers in Young’s modulus, elongation at break and ultimate strength 

of resultant fibres were investigated. The addition of the LGCO filler into PU matrix led 

to overall increase in Young’s modulus and ultimate tensile strength while decrease in 

elongation at break, in a behaviour that was consistent with studies by others
14–18

. The 

effects of the different loadings of LCGO on the hard and soft segments of PU and their 

interactions on the mechanical behaviour of the composite fibres were discussed. 

Similarly the addition of BNNP into PU matrix, resulted in an increase in Young’s 

modulus and ultimate stress. These may be explained by the fact that addition of BNNP 

filler into PU polymeric matrix enhanced the ability of strain energy dissipation of 

polymer due to the interfacial adhesion of filler into PU polymeric matrix
14,15,19

. Effect of 
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BNNP filler on the elongation at break of the composite fibres was similar to what was 

already reported for silica nanocomposite-filled PU
20

 and low loadings of carbon black in 

PU
21

 and resulted in increase in elongation at break. 

Both LCGO/PU and BNNP/PU composite fibres were incorporated into 3D PET textile 

structures using conventional knitting technique and the thermal dissipation ability of the 

knitted structures were assessed. Different electric fields were applied to 3D knitted 

structures and resultant current and temperature change were monitored. It was found that 

although thermal conductivity of reduced LCGO/PU composite increased with increasing 

LCGO loading, that could be attributed to the different orientation of LCGO sheets in 

films and fibres, these fibres became more effective in Joule-heating dissipation at the 

point that they also became electrically conductive (i.e. at LCGO loadings greater than 

2w/w%). As a consequence the LCGO was replaced by thermally conducting but 

electrically insulating BNNP filler. BNNP-filled thermally conducting composite fibres 

performed very well in dissipating Joule-heating.  

It was shown that incorporating thermally conductive fibres into 3D textile structures as 

heat dissipater potentially can be used as an effective method to dissipate the heat 

generated by Joule-heating and keep the system as cool as possible for the longer time 

during electrophoresis experiment. This could be an advantageous and opens up new 

opportunities for fibre based capillary electrophoresis studies specifically when proteins, 

living cells and temperature sensitive analytes are being used.   

 Finally, in Chapter 6, two different textile designs comprised of conducting/non-

conducting segments were proposed as textile substrates for wearable electrochemical 

sensors. Metallic yarns/filaments (stainless steel and silver coated nylon) were employed 

and their suitability as electrodes determined. Firstly, the effect of modification of 

working electrode’s surface by electrodeposition of polypyrrole (PPy) and gold 
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nanoparticle (AuNp) upon its electrochemical performance improvement was shown. 

Utilising braiding fabrication technique, a 3D tubular structure with three parallel 

electrodes, 2 stainless steel filaments and a silver-plated nylon (used as an internal pseudo 

reference electrode), was made as a textile platform with integrated electrodes for 

development of wearable electrochemical sensors. The working electrode of the proposed 

structure was modified with PPy and AuNp and it was shown that it can be used to detect 

analytes by a standard cyclic voltammetry technique.  

In an alternate approach, a 3D segmented knitted structure comprised of 2 stainless steel 

yarn and a silver-plated nylon conductive parts separated with cotton/polyester insulating 

parts was proposed as another design for wearable electrochemical sensors. It was shown 

that this textile structure could be successfully utilized in a simple gravity flow driven 

system using a simple electrochemical amperometric detection technique.  

In an overall summary, this thesis fundamentally reviewed the effect of fibre’s surface 

chemistry as the basal compartment of a textile structure upon the wicking properties of 

3D textile-based microfluidic devices. Then, thermally conducting fibres using different 

polymeric matrices, LDPE and PU, as well as different filler materials, LCGO and BNNP, 

were successfully made and incorporated into 3D knitted textile structures. Also, it was 

shown that the incorporation of these thermally conducting fibres into 3D textile 

substrates resulted in dissipation of detrimental Joule-heating effects in electrophoretically 

driven processes. Finally, two different textile platforms comprised of conductive/non-

conductive threads made with knitting and braiding techniques were proposed and shown 

to be capable of electrochemically detecting analytes by cyclic voltammetry or 

amperometry techniques and therefore, being used to develop wearable electrochemical 

sensors. It can be concluded that by tuning the surface chemistry of textile fibres (as 

discussed in Chapter 3)  and using proper detection methods (Chapter 6), this thesis has 
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set a solid foundation for the future development a wearable µTAD can be made which is 

capable of collecting the sample, move it to the detection zone and performing 

quantitative detection.  

7.2. Future work 

This thesis tried to cover a wide spectrum of textile–based microfluidic issues 

fundamental study to its application in the field of textile-based microfluidics – a field 

which is still in its infancy. Although different challenges in making fibres, textile 

fabrications and microfluidic applications have been tackled in this thesis, there are still 

many challenges for future study and development.  

The effect of changing the fibre’s surface chemistry on the wicking properties of the final 

3D textile-based microfluidic devices has been discussed in Chapter 3. Although, 

textiles’ wicking rate can be improved by tuning fibres’ surface chemistry, constant flow 

rate over the time cannot be achieved due to an increase in the back pressure in reservoirs 

while fluid is being transferred from one to another. Therefore, it would be useful to 

investigate if constant flow rate is achievable by applying electric potential to the structure 

to drive the fluid and therefore exploit those structures as textile-based electroosmotic 

pumps. Moreover, since the proposed microfluidic pumps cannot be switched off, using 

some photoresponsive hydrogels
22

 to make an actual pump with on/off switch could be 

also investigated.  

Regarding the wicking test and the effect of fibre’s surface chemistry explained in this 

chapter, addition of different fillers like nanoclays that have different functional groups to 

the polymer matrix is worth investigating. Considering the poor mixing of LCGO and 

LDPE in LCGO concentrations more than 5 w/w%, replacing LDPE with polymers 

soluble in organic solvents, by which higher filler loadings is achievable using solution 

mixing method, could be also explored.  
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Making thermally conducting composite fibres using melt- and wet-spinning methods 

have been discussed in Chapters 4 and 5. Melt spun fibres seems to be stronger than wet-

spun ones, but, solution mixing results in better mixture and thermally conducting fibres. 

Considering poor efficiency of melt mixing and limitations of solution mixing and wet-

spinning, combination of these two methods, i.e. solution mixing to make composites 

followed by melt-spinning, could eliminate the limitations of wet-spinning, e.g. 

dependence on viscosity, while improve the efficiency of the mixing.     

Chapter 6 proposed different textile designs with integrated electrodes for making 

wearable electrochemical sensors. Using the same concept and utilizing functionalized 

fibre segments in textile platforms to trap target molecules or detect biomarkers seems to 

be a useful tool in biological studies for diagnostics or DNA/RNA extraction and 

detection and is an area that has significant opportunities for future development. 
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Appendix I: MATLAB to calculate Young’s modulus for LCGO/LDPE 

composite fibres 

 
clear,clc; 

close all; 

commandwindow; 

TT=[]; 

aT=xlsread('LDPE_LCGO_Modulusfile.xlsx','Sheet1','A4:AD200'); 

[m n]=size(aT); 

STP=17; 

MD=cell(6,5); 

MD{1,4}='Average(MPa)'; 

MD{1,5}='STD'; 

R=2; 

C=1; 

for i=1:n/2    

    A=aT(:,(2*i-1):2*i); 

    x=A(:,1); 

    x(isnan(x))=[]; 

    y=A(:,2); 

    y(isnan(y))=[]; 

    y=smooth(y,10); 

   

    t=STP+1; 

    a=fitlm(x(STP:t),y(STP:t)); 

    Tr=a.Rsquared.Ordinary; 

    while (Tr>0.990) || (t-STP<5)  

        TT=[TT Tr]; 

        t=t+1; 

        a=fitlm(x(STP:t),y(STP:t)); 

        Tr=a.Rsquared.Ordinary; 

    end 

    no=t-1; 

    Mo=(y(no)-y(STP))/(.01*(x(no)-x(STP))); 

    MD{R,C}=Mo; 

  

    if (mod(i,3)==0) && (i<(n/2)) 

        plot(x,y); 

        plot([x(STP) x(no)],[y(STP) y(no)],'--r'); 

        figure; 

        MD{R,C+1}=mean(double([MD{R,1} MD{R,2} MD{R,3}])); 

        MD{R,C+2}=std(double([MD{R,1} MD{R,2} MD{R,3}])); 

        R=R+1; 

        C=1; 

                

    else 

        hold on 

        plot(x,y); 

        plot([x(STP) x(no)],[y(STP) y(no)],'--r'); 

        C=C+1; 

    end 

         

  

end 

MD{R,4}=mean(double([MD{R,1} MD{R,2} MD{R,3}])); 

MD{R,5}=std(double([MD{R,1} MD{R,2} MD{R,3}])); 

MD 

xlswrite('LDPE_LCGO_Modulusfile.xlsx',MD,'Sheet2','B2:F7'); 
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Appendix II: MATLAB to calculate Young’s modulus for LCGO/PU 

composite fibres 

 
clear,clc; 

close all; 

commandwindow; 

TT=[]; 

aT=xlsread('PU_LCGO_Modulusfile.xlsx','Sheet1','A4:AD4000'); 

[m n]=size(aT); 

STP=10; 

MD=cell(6,5); 

MD{1,4}='Average(MPa)'; 

MD{1,5}='STD'; 

R=2; 

C=1; 

for i=1:(n/2) 

     

    A=aT(:,(2*i-1):2*i); 

    x=A(:,1); 

    x(isnan(x))=[]; 

    y=A(:,2); 

    y(isnan(y))=[]; 

    y=smooth(y,10); 

   

    t=STP+1; 

    a=fitlm(x(STP:t),y(STP:t)); 

    Tr=a.Rsquared.Ordinary; 

    while (Tr>0.990) || (t-STP<5)  

        TT=[TT Tr]; 

        t=t+1; 

        a=fitlm(x(STP:t),y(STP:t)); 

        Tr=a.Rsquared.Ordinary; 

    end 

     

    no=t-1; 

    Mo=(y(no)-y(STP))/(.01*(x(no)-x(STP))); 

    MD{R,C}=Mo;   

     

    if (mod(i,3)==0) && (i<(n/2)) 

        plot(x,y); 

        plot([x(STP) x(no)],[y(STP) y(no)],'--r'); 

        figure; 

        MD{R,C+1}=mean(double([MD{R,1} MD{R,2} MD{R,3}])); 

        MD{R,C+2}=std(double([MD{R,1} MD{R,2} MD{R,3}])); 

        R=R+1; 

        C=1; 

                

    else 

        hold on 

        plot(x,y); 

        plot([x(1) x(no)],[y(1) y(no)],'--r'); 

        C=C+1; 

    end   

end 

MD{R,4}=mean(double([MD{R,1} MD{R,2} MD{R,3}])); 

MD{R,5}=std(double([MD{R,1} MD{R,2} MD{R,3}])); 

MD 

xlswrite('PU_LCGO_Modulusfile.xlsx',MD,'Sheet2','B2:F7'); 



191 
 

Appendix III: MATLAB to calculate Young’s modulus for BNNP/PU 

composite fibres 

 
clear,clc; 

close all; 

commandwindow; 

TT=[]; 

aT=xlsread('PU_BN_Modulusfile.xlsx','Sheet1','A4:AD4000'); 

[m n]=size(aT); 

STP=10; 

MD=cell(6,5); 

MD{1,4}='Average(MPa)'; 

MD{1,5}='STD'; 

R=2; 

C=1; 

for i=1:n/2 

    A=aT(:,(2*i-1):2*i); 

    x=A(:,1); 

    x(isnan(x))=[]; 

    y=A(:,2); 

    y(isnan(y))=[]; 

    y=smooth(y,10); 

   

    t=STP+1; 

    a=fitlm(x(STP:t),y(STP:t)); 

    Tr=a.Rsquared.Ordinary; 

    while (Tr>0.990) || (t-STP<5)  

        TT=[TT Tr]; 

        t=t+1; 

        a=fitlm(x(STP:t),y(STP:t)); 

        Tr=a.Rsquared.Ordinary; 

    end 

    no=t-1; 

    Mo=(y(no)-y(STP))/(.01*(x(no)-x(STP))); 

    MD{R,C}=Mo; 

 

    if (mod(i,3)==0) && (i<(n/2)) 

        plot(x,y); 

        plot([x(STP) x(no)],[y(STP) y(no)],'--r'); 

        figure; 

        MD{R,C+1}=mean(double([MD{R,1} MD{R,2} MD{R,3}])); 

        MD{R,C+2}=std(double([MD{R,1} MD{R,2} MD{R,3}])); 

        R=R+1; 

        C=1; 

                

    else 

        hold on 

        plot(x,y); 

        plot([x(1) x(no)],[y(1) y(no)],'--r'); 

        C=C+1; 

    end 

         

  

end 

MD{R,4}=mean(double([MD{R,1} MD{R,2} MD{R,3}])); 

MD{R,5}=std(double([MD{R,1} MD{R,2} MD{R,3}])); 

MD 

xlswrite('PU_BN_Modulusfile.xlsx',MD,'Sheet2','B2:F7'); 
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Appendix IV: Manuscripts prepared (or submitted)  

 
1. Farajikhah, S.; Cabot, J. M.; Innis, P. C.; Paull, B.; Wallace, G. G. Life-saving threads; 

advances in textile-based analytical devices. ACS Applied Materials and Interfaces (under review). 

Abstract: Novel approaches that incorporate electrofluidic and microfluidic technologies are 

reviewed to illustrate the translation of traditional enclosed structures into open and accessible 

textile based platforms.  Through the utilisation of on-fibre and on-textile separations it is possible 

to invert the enclosed capillary column or microfluidic “chip” platform, to achieve efficient 

surface accessible separations whilst maintaining a microfluidic format. The open fibre/textile 

arrangement immediately provides new possibilities to interrogate, manipulate, redirect, extract, 

characterise and quantify solutes and target species at any point in time during analyte separation. 

This approach is revolutionary in its approach, and provides many potential advantages not 

otherwise afforded by the more traditional platform. 

2. Farajikhah, S.; Talebian, S.; Sayyar, S.; Cabot, J. M.; Innis, P. C.; Paull, B.; Wallace, G. G. 

Insight into the Effect of Surface Chemistry on the Performance of Textile-Based Microfluidics; 

Route Towards Making Power-Free Textile-based Microfluidic Pump. Prepared for submission to 

Adv. Func. Mater. 

Abstract: Microfluidic pumps to obtain controlled movement of fluids are essential 

components for making all sorts of microfluidic devices such as integrated lab-on-a-chip devices, 

medical devices, etc. Difficulties encountered with miniaturization of conventional microfluidic 

pumps have raised a great deal of attention towards development of pumps, which eliminates the 

need for an external power source and problems associated with bubbles. In this work, for the first 

time a power-free knitted 3D textile-based microfluidic pump has been manufactured. This pump 

incorporates  polyester yarns and a composite low-density polyethylene (LDPE) - liquid 

crystalline graphene oxide (LCGO) fibre. The addition of LCGO increases surface polarity 

causing a decrease in the capillarity pressure and therefore higher capillary force along the 

channel of the knitted structure. Composite fibers were produced via a twin-screw melt extrusion 

approach to produce ca. 131±17 µm fibers consisting of LDPE as matrix with a LCGO filler from 

0 to 5 w/w%.  This system eliminated the need for any external power supplies. Fluid was shown 

to move up to 6x faster in 3D knitted structures comprised of composite fibre when compare to 

3D knitted structure prepared from polyester yarns only (without any composite fibre). Most 

significantly, the flow rate achievable was found to be proportional to the LCGO loading, 

providing the potential to control flow through fibre composition. 

3. Farajikhah, S.; Van Amber, R. R.; Sayyar, S.; Shafei, S.; Fay, C.; Beirne, S.; Javadi, M.; Wang 

X.; Innis, P. C.; Paull, B.; Wallace, G. G. Processable Thermally Conducting Polyurethane 

Composite Fibres. Prepared for submission to Small. 

Abstract: Increasing demand for wearable electronics and smart textiles leads to a great deal of 

attention into development of electrically conducting fibres. Although, tremendous efforts have 

been made to present electrically conducting fibres incorporable into garment, production of 

processable thermally conducting fibres is almost neglected. Owing to very rapid development of 

miniaturized wearable electronic devices, making thermally conducting fibres to be used for as 

heat sinks for heat management of such devices is inevitable. In this study, thermally conducting 

and electrically insulating boron nitride nanopowder (BNNP) fillers have been used to effectively 

enhance the thermal conductivity and mechanical properties of the polyurethane polymer fibres. 

Thermal conductivity enhancement of more than 160 % is achieved by very low loading of BNNP 



193 
 

(less than 5 wt.%). Proposed thermally conducting fibres are also incorporated into 3D textile 

structures as a proof of processability. 

4. Farajikhah, S.; Van Amber, R. R.; Sayyar, S.; Shafei, S.;Wu, L.; Wang X.; Innis, P. C.; Paull, 

B.; Wallace, G. G. Utilizing Thermally Conductive Fibers to Facilitate Joule-Heating Dissipation in 

Textile-Based Microfluidic Devices; a Comparative Study on Boron Nitride- and Graphene Oxide-

Filled Fibres. Under preparation for submission to Adv. Func. Mater. 

Abstract: For the first time fabrication of a 3D textile structure using thermally conducting 

liquid crystal graphene oxide (LCGO)-  and boron nitride nanopowder (BNNP)-filled  composite 

fibres combined with polyester threads as a useful solution to dissipate the heat and minimize 

Joule-heating effects during analytical experiments such as textile based electrophoretic 

separations is reported. A range of electric fields are applied to the knitted structures, assembled 

from these fibres and yams, and current and system’s temperature are tracked. In unmodified 

textile structures the presence of a Joule-heating effect results in increase the system’s 

temperature. The addition of the thermally conductive composite fibres into 3D PET structure 

resulted in a minimization of the Joule-heating effects resulting in the lower temperature rise 

compare to that of 3D structures without thermally conducting fibres. Moreover, spherical 

geometry of BNNP fillers along with their very high (~ 5 eV) band gap make them great 

candidates for production of thermally conducting fibres to dissipate Joule-heating in experiments 

like textile-based electrophoretic separations. 

 

5. Farajikhah, S.; Choi, J.; Esrafilzadeh, D.; Underwood,  J.; Innis, P. C.; Paull, B.; Wallace, G. G. 

3D textile structures with integrated electroactive electrodes for wearable electrochemical sensors. 

Prepared for submission to Analyst. 

Abstract: Owing to rapid changes in life style, there is an ever growing attention towards low-

cost wearable electrochemical sensors. In this paper, textile fabrication techniques as low-cost 

production methods have been proposed to make textile-based platforms with integrated 

electroactive electrodes for making low cost wearable electrochemical sensing devices. 
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