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Abstract
Platinum (Pt) is the state-of-the-art catalyst for oxygen reduction reaction (ORR), but its high cost and
scarcity limit its large-scale use. However, if the usage of Pt reduces to a sufficiently low level, this critical
barrier may be overcome. Atomically dispersed metal catalysts with high activity and high atom efficiency
have the possibility to achieve this goal. Herein, we report a locally distributed atomic Pt-Co nitrogen-carbon-
based catalyst (denoted as A-CoPt-NC) with high activity and robust durability for ORR (267 times higher
than commercial Pt/C in mass activity). The A-CoPt-NC shows a high selectivity for the 4e-pathway in ORR,
differing from the reported 2e-pathway characteristic of atomic Pt catalysts. Density functional theory
calculations suggest that this high activity originates from the synergistic effect of atomic Pt-Co located on a
defected C/N graphene surface. The mechanism is thought to arise from asymmetry in the electron
distribution around the Pt/Co metal centers, as well as the metal atoms' coordination with local environments
on the carbon surface. This coordination results from N8V4 vacancies (where N8 represents the number of
nitrogen atoms and V4 indicates the number of vacant carbon atoms) within the carbon shell, which enhances
the oxygen reduction reaction via the so-called synergistic effect.
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Abstract 

Platinum (Pt) is the state-of-the-art catalyst for oxygen reduction (ORR) and hydrogen 

evolution (HER), but its high cost and scarcity limit its large-scale use. However, if the usage 

of Pt can be reduced to a sufficiently low level (0.125mg/cm2 according to the Department of 

Energy (DOE) target), this critical barrier may be overcome. Atomically dispersed metal 

catalysts with high activity and high atom efficiency make them possible to achieve this goal. 

Herein, we report a locally distributed atomic Pt-Co nitrogen-carbon based catalyst (denoted 

as A-CoPt-NC) with high activity and robust durability for ORR (267 times higher than 

commercial Pt/C in mass activity) and HER (much superior to Pt/C). The A-CoPt-NC shows a 

high selectivity for the 4e- pathway in ORR, differing from the reported 2e- pathway 

characteristic of atomic Pt catalysts. Importantly, the A-CoPt-NC catalyst in this experiment 

only contains ~0.0005 mg/cm2 of Pt and the activity is about 20 times the DOE target at 0.9V 

in alkaline solution. Density functional theory (DFT) calculations suggest that this high activity 

originates from the synergistic effect of atomic Pt-Co located on a defected C/N graphene 

surface. The mechanism is thought to arise from asymmetry in the electron distribution around 

the Pt/Co metal centres, as well as the metal atoms coordination with local environments on 

the carbon surface. This coordination results from N8V4 vacancies (where N8 represents the 

number of nitrogen atoms, V4 indicates the number of vacant carbon atoms) within the carbon 

shell that enhances the oxygen reduction reaction via the so-called synergistic effect.  DFT 

calculations suggest the HER activity arises from atomic Pt-Co coupling species locating at 

N6V4 vacancies within the graphitic shell causing the A-CoPt-NC catalyst to show extremely 

high HER activities in both acid and alkaline solutions. 

 

  



Platinum (Pt) is the benchmark electrocatalyst for the oxygen reduction reaction (ORR)1-5 and 

hydrogen evolution reaction (HER)6, 7, exhibiting high activities. However, the high cost and 

the natural scarcity of Pt still hamper its industrial implementation. Downsizing the Pt particles 

to expose more Pt atoms on the surface (rendering higher atom efficiency) is a viable strategy 

to enable Pt based catalysts more affordable. Generally, when particle sizes are further reduced 

to the nanoscale, quantum size effects will be induced in the catalysts, which not only alter the 

surface energy due to the unsaturated coordination, but change the d state energy of metal 

atoms leading to spatial electron localization8, 9. This size-induced change of electronic 

structures at active sites will subsequently tailor the binding capability with the diverse species 

of reactants (e.g. O2 in ORR or H+ in HER), thus increases in the activities of catalysts of the 

electrocatalytic reactions are attainable.        

       Recently, the so-called single-atom catalyst (SACs) have sparked new interests in 

heterogeneous catalysis, maximizing the atom efficiency and demonstrating excellent catalytic 

performance in CO oxidation10-12, water-gas shift (WGS) reaction13, 14, and 

electrochemical/photoelectrochemical reactions15-17. However, the development of SACs in 

electrocatalysis is still in its infancy, as several issues are urgently to be addressed. Firstly, 

SACs are not really “atoms” (i.e. zero valence state), as the atomic metal species interact 

strongly with the neighbouring atoms on support and exhibit valence states. This pivotal fact 

pushes us to reconsider that the active sites in SACs are originated from the unique coordination 

structures between the single metal atoms and surround non-metallic atoms of the support. 

Secondly, optimization of the electronic structure on the active sites by modulating the 

coordination environment of the metal atoms (MAs) has become a critical route to enhance the 

reactivity of the active sites. Take the MA-N-C (MA = Fe or Co) coordination structure for an 

example, the MA-N2 moieties as active centres have been reported more efficient for ORR than 

those of the MA-N4 moieties. This is ascribed to the more suitable interaction of MA-N2 



moieties with *O2 and *OH intermediates15, 18. Thirdly, selectivity in SACs for specific 

electrochemical reactions is important. For instance, the isolated atomic Pt species (denoted as 

IA-Pt) were reported to possess a high selectivity for the production of H2O2 via a 2e- pathway 

(𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂2) rather than H2O via a 4e- pathway (𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂). 

This is because the breaking of the O-O bond is not energetically favourable on the isolated 

atomic Pt sites19-21. However, it is possible to alter the reaction to a 4e- pathway for ORR by 

putting another Pt (or different metal) atom at a certain distance. Fourthly, the research on the 

atomic interaction between metallic atoms in a certain local environment may provide 

insightful understanding of “synergetic effect”. The so-called “synergetic effect” has been 

extensively used, but it is very rare to studies on its origination, especially at the atomic level. 

Therefore, it is imperative to get an in-depth insight into the interactions between the atomic 

metal species and local environment on the support (e.g. atomic metal-nonmetal coordination), 

which may direct us to design the new generation of atomic metal catalysts with high activity 

and selectivity. Very recently, our group developed a defective graphene (DG) with a high 

density of structural defects22. Besides the defects themselves activating the electrochemical 

reactions according to the proposed defect mechanism22, defects are highly likely to provide 

unique sites for trapping metallic species23, 24. Due to the different structures and sizes of the 

defects, one or more metal atoms might be trapped into one specific defect, providing the 

possibility of studying the interaction between the single metal atom and neighboring nonmetal 

atoms, the interaction between the metal atom pairs (in this case atomic Pt-Me (Me=Co/Pt) 

coupling species) and the interaction between the metal atom pair and the neighboring 

nonmetal atoms. Additionally, compared to the metal oxide supports, defective carbon presents 

a high tolerance in electrolyte environments at a wide range of pH, which enables the catalyst 

to work in alkaline, neutral and acid electrolytes. This is particularly relevant to the HER in 

this study.  



 

Herein, we report a new class of atomic Co-Pt carbon/N based catalyst (denoted as A-

CoPt-NC) that directly utilized the induced defects in the shell of carbon capsules to form 

atomic Co-Pt-N-C coordination structures as active sites through electrochemical activation. 

According to the analysis of X-ray absorption near-edge structure (XANES), the atomic 

configurations between Co/Pt and N/C can be deduced. Direct observation from HAADF-

STEM image clearly demonstrates that the atomic metals (Co/Pt) are trapped into a vacancy 

type defect to form integrity of atomic Co-Pt-N-C coordination structures. Experimentally, the 

obtained A-CoPt-NC catalyst exhibited very high activity and robust stability for the ORR in 

alkaline solution, delivering the specific (electrochemical active surface area (ECSA) 

normalized to Pt mass) and mass activities of 85 and 267 times greater than those of the 

commercial Pt/C catalyst, respectively. Meanwhile, the activity had no obvious loss after a 240 

min electrochemical durability test. The atomic Pt shows high selectivity for the 4e- pathway 

in ORR, which is different from the counterpart reported in former literatures19-21. Furthermore, 

A-CoPt-NC exhibits extremely high activities in HER under all pH (acidic, neutral and alkaline) 

conditions. Density functional theory (DFT) calculations on model structures developed based 

on the observed and other possible Co-Pt-N-C configurations reveal that atomic Pt-Me 

(Me=Co/Pt) coupling at the carbon defects (denoted as a(Pt-Me)@NXVY where X is the 

number of nitrogens surrounding the defect and Y is the number of carbon atoms removed) can 

significantly tailor the electronic structure of the metal atoms and alter the charge distribution 

at the coordination structures, thereby enhancing the specific electrocatalytic performances 

(a(Pt-Co)@N8V4 for ORR and a(Pt-Co)@N6V4 for HER). 

Preparation and characterization of A-CoPt-NC electrocatalyst 

 



 

 

Figure 1 | Preparation and morphology characterization of A-CoPt-NC. a, 

Schematic illustration of the synthesis procedure of A-CoPt-NC. b, An optical photo of 

the Co-MOF crystal. The inset image shows Co-MOF in the DMF solution. c, TEM 

images of the Co-NC composite. The inset TEM image demonstrates the core-shell 

structure.  d, TEM images of A-CoPt-NC. The inset TEM image demonstrates the 

hollow graphitic shells. 

A-CoPt-NC was fabricated by a facile two-step synthesis strategy with the precursor of rod-

like cobalt-metal organic framework (Co-MOF) as shown in Fig. 1a. In the first step, the as-

prepared Co-MOF (Fig. 1b and inset) was carbonized at 850 ºC with simultaneous nitrogen 

doping treatment, forming the core-shell Co-NC structure (Fig. 1c and inset). We then 

electrochemically applied a cyclic-potential to the Co-NC electrode (a similar activation 

process can be referred to the literature25, 26). Thereby carbon based hollow nanostructures with 

graphitic shells were generated (Fig. 1d and inset). Although XRD patterns show that no 

obvious metallic crystal phases exist after the electrochemical activation (Supplementary 



Fig.1), the characterization of both inductively coupled plasma atomic emission spectroscopy 

(ICP-AES) and energy-dispersive X-ray spectroscopy (EDS) elemental mapping 

(Supplementary Fig.2) demonstrate trace amounts of Co and Pt in A-PtCo-NC (the content of 

Co is 1.72 wt %, compared to 21.10 wt % before activation, and the content of Pt is 0.16 wt %), 

indicating almost all of the Co cores has been removed. These results prompted us to propose 

that the atomically disperse Co and Pt co-doped in NC capsules can form during the 

electrochemical activation process, which will be verified below. 

 

Figure 2 | The structural characterizations of A-CoPt-NC. a,b, The k2-weighted 

Fourier transform spectra of the Co and Pt EXAFS for Co-NC, A-CoPt-NC, Co foil and 

Pt foil, respectively. The insets are the Co and Pt XANES spectra, respectively, for A-



CoPt-NC. c,d, The dark-field STEM images of the A-CoPt-NC. The position of the 

cobalt core dissolved in the activation, is marked with the red dashed ring. e, The 

corresponding bright-field STEM image of (d) with the inset of the schematic diagram 

of the interstice zone. f, The distribution of distances of adjacent metal atoms counted 

from 40 neighbouring metal atom pairs. g, The HAADF image of A-CoPt-NC after fast 

Fourier Transformation (FFT) filtering. The bright yellow spots are metal atoms and 

the cyan spots are carbon atoms. h, A partially zoomed-in image of the area framed 

in g. Metal atoms are marked by purple circles. The carbon atoms adjacent to #1 and 

#2 metal atoms are linked with red line. i, Model of the configuration of the 2 metal 

atoms trapped in the defect, reconstructed from the observed atomic structure in h. 

To further investigate the fine structure of Pt and Co on carbon, we performed X-ray 

absorption near-edge structure (XANES) and extended X-ray absorption fine structure 

(EXAFS) spectrometry. The intensity of Co-Co peak around 2.2 Å decays after the activation, 

revealing a change in the Co local environment (Fig. 2a)15, 27. The dissolution of Co cores 

during activation disrupts the majority of the original Co-Co coordination and the residual Co 

clusters contribute to the declined Co-Co peak (there may also exist some undissolved Co cores 

although we did not observe any in searching domain by TEM). This is further confirmed by 

the aberration-corrected scanning transmission electron microscopy (STEM) images. In Fig. 

2c, the area of the initial Co core before activation is marked with a red dashed ring. It can be 

seen that the Co core was removed and only a small Co cluster sized ~ 1 nm remained, which 

agrees with the EXAFS analysis. The high intensity of the white line of A-CoPt-NC in the 

XANES (inset of Fig.2a) indicates an oxidized electronic structure of Co, which is due to the 

Co-N and/or Co-C and/or Co-C/N coordination newly formed during the activation process15. 

It is suggested that the pre-edge peak of A-CoPt-NC at 7712 eV is the fingerprint of the Co-N4 

square planar structure28, 29 due to the dipole forbidden 1s → 3d transition with dominantly 



quadrupole coupling, which is analogous to the pre-edge peak of cobalt phthalocyanine30. This 

finding is also consistent with the previous report of atomic Co catalyst used for HER27. It is 

very difficult to distinguish the bond of the Co-N4 and Co-C4 due to the very small difference 

of the bonding energy. However, it is reasonable to suppose that the coordination is Co-C/N4 

because of the large amount of N in carbon shell.  

In the R space spectra of Pt (Fig. 2b), the scattering peak derived from Pt-Pt 

coordination at 2.6 Å is not observed, in contrast to the Pt foil, indicating atomic dispersion of 

Pt species in the N-doped carbon capsules. The predominant peak around 1.8 Å can be ascribed 

to Pt-C or Pt-N coordination20, 31. The XANES also indicates an oxidized electronic structure 

of Pt (inset of Fig.2b). Further study shows that A-CoPt-C without N doping, as a control 

experiment, exhibits a high amount of metallic Pt-Pt coordination (Supplementary Fig.3). The 

corresponding Pt particles are also observed in A-CoPt-C by the TEM images in 

Supplementary Fig.4. These findings suggest that N plays a critical role in trapping single Pt 

atoms and a Pt-N-C coordination structure is highly possible.  

Fig. 2d shows the distribution of single metal atoms. Interestingly, these single metal 

atoms do not distribute uniformly on the carbon, but predominantly locate at the interstice of 

the graphitic layers. Fig. 2e is the bright field image focussing on the same area shown in Fig. 

2d, clearly illustrating the opening of graphitic layers. Since amorphous carbon is less stable 

during the electrochemical activation and more easily oxidized32, we can deduce that those 

openings were created through the corrosion of partially existing amorphous carbon in the shell 

during the activation process, which is evidenced by increased graphitization degree of A-

CoPt-NC at 26.2° in the XRD pattern (Supplementary Fig.1). With the removal of amorphous 

carbon forming the interstices, the cross-sections of the graphitic layers were exposed and 

distorted, thereby increasing the disorder of the lattice. The acidic solution subsequently 

permeated through these openings and dissolved the cobalt cores. Simultaneously, the Co and 



Pt ions near the interstices were captured by the exposure of lattice defects in the carbon with 

the assistance of the freshly generated dangling carbon and nitrogen bonds. These contribute 

to the atomic metal species being distributed locally at the graphitic layer openings. The 

statistical distribution11 of 40 pairs of two adjacent metal atoms (denoted as Me-Me, Me = Co 

or Pt) shows that the Me-Me distances are in the range from 0.2 nm to 0.5 nm with most in the 

interval of 0.25-0.29 nm. This phenomenon provides the experimental basis for structures used 

in modelling, as discussed later. 

        Benefiting from fast Fourier Transformation (FFT) and inverse FFT, noise was filtered 

and the HAADF image of A-CoPt-NC with strong contrasts was gained from a less damaged 

region of interest (ROI). This is shown in Fig. 2g with a clear view of the local coordination 

environment of the metal atoms. In Fig. 2h, the metal atoms are marked with purple cycles and 

the adjacent carbon/nitrogen atoms are linked. As a result, the configuration of the metal atoms 

(Me-#1 and Me-#2) can be identified. The structure observed in the STEM image is simulated 

in Fig. 2i. The same arrangement of the numbered atoms in Fig. 2h are used to obtain insight 

into the structure-property correlation in A-CoPt-NC catalyst through computer simulations. 

Electrocatalytic ORR activity of A-CoPt-NC 



 

Figure 3 | Electrochemical oxygen reduction activities. a, Cyclic voltammetry (CV) 

curves after different activation cycles in 0.5 M H2SO4 electrolyte. b, The evolution of 

the ECSAPt during activation. c, ORR linear sweep voltammetry (LSV) curves of Co-

NC, A-CoPt-NC and Pt/C in 0.1 M KOH electrolyte. d, Mass activity Tafel plot for A-

CoPt-NC and Pt/C. e, Comparison of mass activity, TOF, specific activity, ECSAPt per 

unit Pt mass and stability of the A-CoPt-NC and Pt/C for ORR.  

 

The electrochemical activation was performed with CV cycles from 0.1V to 1.1V vs RHE in 

0.5 M sulphuric acid. Fig. 3a shows the evolution of the CV curves during activation. At the 

beginning of activation, no typical hydrogen adsorption or desorption peaks in the range of 

0.1V to 0.38V (signifying the presence of Pt) were observed. The hydrogen adsorption peak 

appeared after 2000 CV cycles, indicating Pt started to load onto the carbon shell. The loading 

amount of Pt increased with the additional CV cycles until 7000 cycles. From 7000 to 8000 



cycles, the CV curves nearly overlapped demonstrating the saturation of Pt loading. The 

corresponding ECSA analysis of the Pt also reveals that in the first 2000 CV cycles (zone A in 

Fig. 3b), there was little Pt loading on the shell (the ECSAPt is nearly zero) due to the rarity of 

adsorption sites in the carbon. During this stage, the amorphous carbon was oxidised and the 

graphitic shell cracked. With the continued oxidation, an increasing number of adsorption sites 

at the openings were generated and the Pt atoms were subsequently anchored (shown as zone 

B).  

Linear sweep voltammetry (LSV) curves in 0.1 M KOH electrolyte (Supplementary 

Fig.5) shows the current density increased with the rotation rate from 400 to 2500 rpm, 

indicating a defined mass transfer controlled process. The Koutecky-Levich plot shown in the 

inset implies a 4e- transfer pathway for the ORR. The rotating ring-disk electrode (RRDE) 

voltammogram of A-CoPt-NC is also performed in O2-saturated 0.1 M KOH electrolyte at a 

rotation rate of 1600 rpm to accurately determine the electron transfer number. Based on the 

ring and disk currents, the electron transfer number is calculated to be larger than 3.6 over the 

potential range from 0.4 to 1.0 V vs RHE, and the H2O2 yield remained below 17% 

(Supplementary Fig.6), indicating that 4e- transfer pathway is predominant in A-CoPt-NC for 

ORR in 0.1 M KOH electrolyte. The polarization curves in Fig. 3c show that the Co-NC 

exhibited higher half-wave potential (0.92 V vs RHE) but lower limit current density (4.8 

mA/cm2) compared to those of commercial Pt/C catalyst, due to the metal-N-C catalysis33. 

Notably, the A-CoPt-NC exhibited much better performance than those of Co-NC and Pt/C as 

well as a robust stability (as shown in Supplementary Fig.7, after 4 hours reaction, A-CoPt-NC 

still retains the 96.4% of the initial activity whereas the commercial Pt/C catalyst only preserves 

79.7%). The half-wave potential of A-CoPt-NC is 0.96 V vs RHE, 90 mV superior to that of 

Pt/C. The mass activity Tafel plot (Fig. 3d) shows that the A-CoPt-NC can deliver 20 times 

higher mass activity than the 2017 target set by the DOE (a current density of 0.44 A/mgPt at 



0.90 V, highlighted by blue dash line in Fig. 3d). The A-CoPt-NC can deliver the DOE targeted 

mass activity at 1.08 V vs RHE, thus reducing the overpotential by 0.18 V. Impressively, the 

ECSAPt per unit Pt mass (3225 m2/g) of A-CoPt-NC is the highest among the Pt contained 

ORR catalysts reported so far (Fig. 3e), which is attributed to the high atom efficiency1, 2, 4. 

With this advantage, the A-CoPt-NC also presents a much higher mass activity of 45.47 A/mg 

compared to those of Pt/C and other Pt contained catalysts (Supplementary Table 1). More 

importantly, the specific activity of A-CoPt-NC, which normalizes the performance to the 

ECSA, is 3-fold greater than that of Pt/C, indicating that the individual active site in A-CoPt-

NC is more energetically favourable for ORR than that of Pt/C (Fig. 3e). As well as in the 

alkaline media, the A-CoPt-NC presents a very good ORR performance in the acidic electrolyte 

(0.1 M HClO4), with a mass activity 5.6 times higher than that of Pt/C (Supplementary Fig.8). 

Catalytic mechanism of ORR in A-CoPt-NC 

 



Figure 4 | Mechanistic study of ORR in A-CoPt-NC. a, The ORR free energy profiles 

of a(Co-Pt)@N8V4 at the equilibrium potential (U=1.23 V), onset potential and zero 

potential. b,c, The local densities of states of a(Co-Pt)@N8V4 and a(Pt-Pt)@N8V4. 

d,e, The top view of the charge densities of a(Co-Pt)@N8V4 (d) and a(Pt-Pt)@N8V4 

(e). Pink and aqua iso-surfaces with an isosurface level of 0.0025 𝑒/𝑎0
3  represent 

electron accumulation and depletion areas respectively. f, An illustration of the ORR 

reaction pathway on a(Co-Pt)@N8V4. 

 

According to the published literature, the atomic Pt based catalysts have a low selectivity for 

the 4e- transfer pathway for ORR (preferring to produce H2O2 rather than H2O), due to the need 

of a synergistic effect from Pt sites within a desirable distance to break the O-O bond19-21. 

Therefore, we hypothesize that the synergetic effect of atomic Pt-Me (Me=Co/Pt) coupling 

species at the carbon defects (denoted as a(Pt-Me)@Defects) in A-CoPt-NC can enhance the 

selectivity of 4e- transfer pathway and the overall activity by modulating the electronic 

structure of metal atoms and altering the charge distribution at the coordination structures. To 

investigate the synergistic effect, we performed DFT calculations on five different coordination 

structures (each of them contains Pt-Pt and Co-Pt coordination as shown in Supplementary 

Fig.9), which were selected according to the analysis of the distribution of adjacent metal 

atomic interdistances (Fig. 2f) and STEM observations (Fig 2g-2i). The distances between the 

two adjacent metal atoms in these 5 models are in the range from 0.227 nm to 0.504 nm, which 

are in accord with the experimentally measured distances (Fig. 2f).  Notably, the structure 

N8V4 is directly observed from the STEM image in Fig. 2h. The binding energy of the atomic 

metals on the 5 models were calculated as shown in Supplementary Table 2. It is shown that 

atomic metals on N6V6 and N8V10 are not thermodynamically stable, thereby they are 

excluded for further calculations. Accordingly, six ORR energy profiles are obtained as shown 



in Supplementary Fig.10 and the corresponding onset potentials are summarized in 

Supplementary Table 3. The most energetically favourable configuration is a(Co-Pt)@N8V4 

with a low overpotential of  0.30 V. As shown in Fig. 4a, the first protonation step (𝑂2 → 𝑂𝑂𝐻∗) 

determined the onset potential, because the magnitude of change in free energy (0.3 eV) for 

this step is the largest at equilibrium. Meanwhile, the potential determine step for a(Pt-

Pt)@N8V4 is the same with a(Co-Pt)@N8V4 (Supplementary Fig.10), whereas requires an 

overpotential as large as 1.07 V (Supplementary Table 3). These results reveal that 

heterogeneous atomic metals (Co and Pt) on N8V4 precede the homogenous atomic metals 

(sole Pt) on N8V4, due to the stronger binding effect between a(Co-Pt)@N8V4 and O2.  

To investigate the underlying origin of the interactions between different active sites 

and the adsorbates, the density of the states of a(Co-Pt)@N8V4 and a(Pt-Pt)@N8V4 were 

simulated (Fig. 4b and 4c). Since the d orbitals of noble/transition metal atoms and the 2p 

orbitals of oxygen atoms participate in orbital coupling and form the new molecular orbitals 

during the adsorption, we concentrate on the states of d orbitals of Pt and Co. According to the 

d band centre theory proposed by Nørskov et al., the up-shifted d orbital relative to the Fermi 

level will result in a strong binding between the catalyst and the adsorbate, and vice versa34. 

Here, the energy of the Co 3d orbital in a(Co-Pt)@N8V4 is much closer to the Fermi level than 

that of the Pt 5d orbital in a(Pt-Pt)@N8V4, indicating the strong binding between the a(Co-

Pt)@N8V4 and oxygen. This difference in binding strength will further affect the ORR 

activities of these two active sites, which is supported by the energy profiles (Fig. 4a). In 

addition, the charge distribution patterns (Fig. 4d and 4e) show a strong electron accumulation 

(pink area) around the Co atom in a(Co-Pt)@N8V4, but weak electron accumulation or 

depletion around Pt in a(Pt-Pt)@N8V4, which can be attributed to the asymmetric deployment 

of Pt and Co in a(Co-Pt)@N8V4, polarizing the surface charges near the active sites. The 

electrons near Co will enable O2 to be transformed to H2O, thus enhancing the ORR 



performance. Fig. 4f shows the ORR reaction associated with the 4e- pathway on a(Co-

Pt)@N8V4, which involves four protic hydrogen and electron transfer steps: (i) the adsorbed 

O2 transfers into OOH*; (ii) desorption of H2O and formation of O*; (iii) OH* is formed and 

(iv) the OH* further associates with a protic H and an electron to generate H2O.  

It is worth noting that the elementary steps from O2 to O* can also proceed through a 

dissociative 4e- pathway, which is also energetically downhill in the energy profile 

(Supplementary Fig. 11) with an even lower overpotential of only 0.21 V. In that case, the last 

H2O desorption step is the reaction determining step. The reaction mechanism for the 

dissociative 4e- pathway separates the oxygen bond in the first protonation step producing O* 

and OH* instead of forming OOH*. Thermodynamically, this pathway is favourable, but the O-

O dissociation has a kinetic barrier with an activation energy of 0.56 eV. This is less than half 

the barrier on single Pt atoms on a simular substrate35, and could be further influenced due to 

solvent effects. Both these two pathways are different from that of IA-Pt catalysts21, 35, which 

follow a 2e- pathway and has H2O2 as an intermediate product. Since O-O dissociation is the 

key step of the 4e- pathway, it is suggested that the A-CoPt-NC exhibits a different reaction 

pathway compared to the reported IA-Pt catalysts21, 35. Here, we attribute the high 4e- pathway 

selectivity of A-CoPt-NC to the specific configuration structure of a(Co-Pt)@defect and the 

synergistic effect between the atomic Co and Pt sites, which results in the up-shifting of the d 

orbital and the charge polarization on the active site (a(Co-Pt)@N8V4). These factors 

eventually alter the dissociation energy of O-O bond and endow the 4e- ORR pathway in A-

CoPt-NC. 

Electrocatalytic HER activity of A-CoPt-NC in wide pH range 



 

Figure 5 | Electrochemical hydrogen evolution activities. a, HER LSV curves of 

Co-NC, A-CoPt-NC and Pt/C in 0.5 M H2SO4 electrolyte. b, The durability test of A-

CoPt-NC for HER. The polarization curves were recorded initially and after 4000 CV 

sweeps at a rate of 100 mV/s. The inset contains chronopotentiometry curves with a 

current density of 10 mA/cm2 and 50 mA/cm2, respectively. c, The HER free energy 

profiles of the Pt/C, 2H/a(Pt-Pt)@N6V4 and 2H/a(Co-Pt)@N6V4. Top view of the 

model a(Co-Pt)@N6V4 are inset. d, HER LSV curves of Co-NC, A-CoPt-NC and Pt/C 

in 1 M KOH electrolyte. e, The comparison of the overpotential needed to reach a 

current density of 10 mA/cm2 (up) and the current density normalized to Pt mass at an 

overpotential of 70 mV (down) of various HER catalysts in the wide pH range. The 

data were collected from ref.36-41. 

 

As demonstrated above, electron accumulation on Co will benefit for the electrocatalytic 

reduction reactions, so it is natural to consider the A-CoPt-NC as an ideal catalyst for the HER. 



Fig. 5a shows the LSV curves of Co-NC, A-CoPt-NC and Pt/C in the 0.5 M H2SO4 solution. 

The overpotentials at a current density of 10 mA/cm2 were measured to be 27 mV for A-CoPt-

NC and 59 mV for Pt/C, respectively (Supplementary Fig.12). A-CoPt-NC also exhibits a 

similar Tafel slope of 31 mV/dec to Pt/C, indicating the Volmer-Tafel pathway. Moreover, the 

durability evaluation (Fig. 5b) shows that after 4000 CV cycles, only a slight decay can be 

observed in the LSV curve and the chronopotentiometry curves retain stable for 8 hours 

reaction at the current densities of 10 mA/cm2 and 50 mA/cm2, respectively, indicating good 

stability of the A-CoPt-NC during the long-term HER reaction in an acidic environment. To 

further investigate the reaction mechanism of A-CoPt-NC for HER, we determined the energy 

profiles using DFT calculations. As shown in Fig. 5c, the two optimized configurations with 

the lowest |𝛥𝐺𝐻|  are a(Co-Pt)@N6V4 and a(Pt-Pt)@N6V4, differing from that in ORR 

process. A |𝛥𝐺𝐻| value of zero represents the ideal interacting energy between the adsorbed 

hydrogen and the catalyst. The value of |𝛥𝐺𝐻| for a(Co-Pt)@N6V4 is 0.05 eV, lower than those 

of Pt/C and a(Pt-Pt)@N6V4. The local densities of states (Supplementary Fig.13) of a(Co-

Pt)@N6V4 show an obvious higher state density than a(Pt-Pt)@N6V4 near the Fermi level, 

thereby increasing the coupling strength of the H* and catalysts. Furthermore, the charge 

distribution patterns (Supplementary Fig.14) demonstrate that the a(Co-Pt)@N6V4 possesses 

higher electron density around Co atom than that around Pt atoms in a(Pt-Pt)@N6V4, implying 

the strong bonding capability with H* at Co site. In desorption step of H*, for a(Co-Pt)@N6V4, 

the coupling is not strong enough, while for Pt/C, the interactions are stronger and thus the 

desorption of the H2 produced requires more energy than for a(Co-Pt)@N6V4.  

Considering that different HER devices in the realistic applications may be operated in 

a various range of pH, a wide pH range tolerance is significant for the HER catalyst. Moreover, 

the wide pH range tolerance also endows the catalyst to be multifunctional with OER or/and 

ORR in their specific pH ranges. Fig. 5d indicates that A-CoPt-NC outperforms Pt/C in alkaline 



media for HER. Due to the ultralow loading of Pt (0.16 wt %) in A-CoPt-NC, it can be a 

promising alternative to commercial Pt/C catalyst and other Pt contained catalysts in the wide 

pH range of HER applications. Fig. 5e and Supplementary Table 4 show η10 (the overpotential 

required to reach a current density of 10 mA/cm2) and Jm,70 (activity normalized to Pt mass at 

an overpotential of 70 mV) of various reported catalysts and A-CoPt-NC in the wide pH range 

(A-CoPt-NC is from this work and the other data were collected from ref 36-41). The A-CoPt-

NC exhibits the lowest η10 in acidic media and a competitive η10 in alkaline media for HER 

compared to other Pt based electrocatalysts. Considering the advantage of ultralow loading, the 

A-CoPt-NC achieves the highest Jm, 70 in both acidic and alkaline media, which are 224 and 45 

A/mg, respectively. Even in the neutral media, A-CoPt-NC still exhibits a comparable activity 

to Pt/C catalyst (Supplementary Fig.15), implying the A-CoPt-NC could be utilized over the 

full pH range from acid to alkaline. Supplementary Fig.16 and Supplementary Table 5 

summarized the η10 of all pH range functioned HER catalysts without Pt and the A-CoPt-NC 

in this work (the Pt content is extremely low, with a ~0.0005mg/cm2 loading). Compared to 

these reported catalysts, A-CoPt-NC presents the highest HER activities in acidic and alkaline 

media and comparable activity in neutral media.  

Conclusions 

Utilizing the strategy of the electrochemical activation, Co cores were removed from the stable 

Co/C core-shell structures producing nitrogen doped defective carbons with atomic metal 

species. The activation process enables the removal of amorphous carbons, creating channels 

in graphitic carbon shells to allow ingress of acidic solvent and the gradual removal Co cores. 

Some of the atomic Co species were captured in the carbon shell. When using a Pt electrode 

during the activation, atomic Pt species from the dissolution in electrolyte can also be co-

captured by the N-doped carbon shell. Accordingly, a carbon-based catalyst decorated by co 

Co/Pt at an atomic scale is synthesized. The resulting catalyst (denoted as A-CoPt-NC) only 



contains a small amount of Co (~1.72 wt%) and a very little Pt (~0.16 wt%), but shows 

extremely high activities for both ORR and HER. The ORR mass activity is as high as 267 

times of the commercial Pt/C and 20 times of the US DOE target at 0.90 V in alkaline. The 

catalyst also exhibits considerably high ORR activity in acid but requires further improvement, 

which is being considered in our further research.  Moreover, the HER of this catalyst is much 

superior to the commercial Pt/C both in acid and alkaline media. DFT calculations suggested 

that the excellent electrocatalytic performance may originate from the charge redistribution and 

the d orbital shift resulting from the synergetic effect of the atomic Pt and Co species in the 

specific coordination structure (a(Co-Pt)@N8V4 for ORR and a(Co-Pt)@N6V4 for HER). It 

is found that the atomic interaction of Pt-Co may be responsible for the high selectivity for 4e- 

pathway in ORR, differing from the reported 2e- pathway in isolated atomic Pt-based catalysts. 

Thus, the appropriate coordination environment of atomic metal species by defect engineering 

is of importance to tune the corresponding electronic redistribution for electrocatalysis, calling 

for a re-thinking of accepted strategies for developing efficient electrochemical catalysts. 

Methods 

Synthesis of Co-MOF. In a typical synthesis, 0.2 g Co(NO3)2·6H2O, 0.21 g trimesic acid 

(H3BTC) and 0.02 g 4,4’-bipyridine were dissolved in the 8.47 mL dimethylformamide (DMF). 

Subsequently, 1 mL water and 7.18 mL diethylene glycol were added to the solution with 2 

hours stirring to mix the components uniformly. Then the solution was kept at the temperature 

of 65 °C for 48 hours. The Co-MOF was obtained after centrifugation. 

Synthesis of A-CoPt-NC. A-CoPt-NC was prepared from Co-NC. Typically, the Co-MOF 

was mixed with dicyandiamide (mass ratio is 1:16) and annealed at 850 °C for 2 hours with a 

ramp rate of 4 °C under nitrogen atmosphere. Before calcining, the system was purged for two 

hours with nitrogen gas to ensure the removal of oxygen from the furnace. Then 4 mg of the 



Co-NC was dispersed in the 1 mL ethanol/nafion (200 µL/80 µL) solution for at least 30 min 

ultrasonication. 10 µL of the mixture was dropped onto a polished glassy carbon electrode (4 

mm in diameter).   

Characterizations. Raman spectrum was recorded on a Renishaw InVia spectrometer with a 

model 100 Ramascope optical fibre instrument. X-ray photoelectron spectrum (XPS) data was 

collected from a Kratos Axis ULTRA X-ray photoelectron spectrometer, and the binding energy 

of the C 1s peak at 284.8 eV was used as an internal reference. Co and Pt K edge X-ray 

absorption fine structure (XAFS) data were collected at Hard X-ray micro analysis beamline 

(HXMA, 06ID). Transmission electron microscopy (TEM) images were collected from 

TECNAI 12 with acceleration voltages of 120 kV. Scanning transmission electron microscopy- 

Energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping images were obtained 

from TECNAI G2 F20 with acceleration voltages of 200 kV. High angle annular dark field 

(HAADF) images and BF images are collected from probe-corrected JEOL ARM200F with 

acceleration voltages of 80 kV.  

Electrochemical measurements. All the electrochemical tests were performed in a 

conventional three-electrode system at an electrochemical station (CHI 760E), using Ag/AgCl 

(saturated KCl solution) electrode as the reference electrode, graphitic carbon rod as the 

counter electrode and glassy carbon (GC) electrode as the working electrode. All potentials 

were referred to the reversible hydrogen electrode (RHE) by following calculations: E (vs RHE) 

= E (vs Ag/AgCl) + 0.197+0.059pH. 4 mg of sample and 80 µl of 5 wt. % Nafion solution were 

dispersed in 1 ml of 4:1 v/v water/ethanol by at least 60 min sonication to form a homogeneous 

solution. Then 5 μl of the solution was loaded onto the GC electrode of 3 mm in diameter. The 

final loading for all catalysts and commercial Pt/C electrocatalysts on the GC electrodes is 

about 0.262 mg/cm2. Linear sweep voltammetry with a scan rate of 5 mV/s was conducted in 



1M KOH. Chronopotentiometry measurement (j = 5 mA/cm2 and 10 mA/cm2) was performed 

to evaluate the long-term stability. 

Calculations. All calculations were performed with the Vienna Ab initio Simulation Package 

(VASP)42 using density functional theory (DFT). The projector augmented-wave (PAW)43 

method, the revised Perdew-Burke-Ernzerhof (RPBE)44 functional and the dispersion 

correction by Grimme (DFT-D3)45 were used to describe the electronic interactions. Different 

structures were constructed to model the experimental systems to match the metal-metal 

distance. Pores were formed in a supercell of 8×8 graphene unit cells by removing carbon 

atoms.  The different structures are illustrated and labelled in Supplementary Fig.8 (V – number 

of missing carbon atoms) and some carbon atoms at the edges were exchanged with nitrogen 

(N – number of nitrogen atoms). The unit cell size was 19.74×17.09×20 Å with a 2×2×1 

gamma-centred k-point grid and a cut off energy of 450 eV.  These parameters were selected 

after carrying out preliminary tests. The free energies were calculated using a method similar 

to the approaches by Nørskov et al.46, 47 (see supplementary information) using the zero point 

energy (ZPE) and change in entropy (∆S°) for adsorption of the gases species on a zirconia 

surface48. These results were used since a complete set of data was available and the results are 

expected to be insensitive to the surface. 

 

References 

 

1. Li MF, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen 
reduction reaction. Science 354, 1414-1419 (2016). 

 
2. He DP, et al. Amorphous nickel boride membrane on a platinum-nickel alloy surface for 

enhanced oxygen reduction reaction. Nature Communications 7, 12362 (2016). 

 
3. Escudero-Escribano M, et al. Tuning the activity of Pt alloy electrocatalysts by means of the 

lanthanide contraction. Science 352, 73-76 (2016). 



 
4. Bu LZ, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. 

Science 354, 1410-1414 (2016). 

 
5. Huang XQ, et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen 

reduction reaction. Science 348, 1230-1234 (2015). 

 
6. Chen Z, Ye S, Wilson AR, Ha Y-C, Wiley BJ. Optically transparent hydrogen evolution catalysts 

made from networks of copper–platinum core–shell nanowires. Energy & Environmental 
Science 7, 1461-1467 (2014). 

 
7. Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y. Correlating hydrogen oxidation and 

evolution activity on platinum at different pH with measured hydrogen binding energy. Nature 
communications 6, 6848 (2015). 

 
8. Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews 35, 583-

592 (2006). 

 
9. Li L, et al. Investigation of catalytic finite-size-effects of platinum metal clusters. The journal 

of physical chemistry letters 4, 222-226 (2012). 

 
10. Qiao BT, et al. Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat Chem 3, 634-641 

(2011). 

 
11. Moses-DeBusk M, et al. CO Oxidation on Supported Single Pt Atoms: Experimental and ab 

Initio Density Functional Studies of CO Interaction with Pt Atom on theta-Al2O3(010) Surface. 
J Am Chem Soc 135, 12634-12645 (2013). 

 
12. Qiao B, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold 

single-atom catalysts. ACS Catal 5, 6249-6254 (2015). 

 
13. Yang M, et al. Catalytically active Au-O(OH)(x)-species stabilized by alkali ions on zeolites and 

mesoporous oxides. Science 346, 1498-1501 (2014). 

 
14. Lin J, et al. Remarkable Performance of Ir-1/FeOx Single-Atom Catalyst in Water Gas Shift 

Reaction. J Am Chem Soc 135, 15314-15317 (2013). 

 
15. Yin PQ, et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction 

Reaction Catalysts. Angew Chem Int Ed 55, 10800-10805 (2016). 

 
16. Fan LL, et al. Atomically isolated nickel species anchored on graphitized carbon for efficient 

hydrogen evolution electrocatalysis. Nat Commun 7, 10667 (2016). 

 



17. Qiu HJ, et al. Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and Stable 
Catalyst for Electrochemical Hydrogen Production. Angew Chem Int Ed 54, 14031-14035 
(2015). 

 
18. Shen H, et al. Atomically FeN 2 moieties dispersed on mesoporous carbon: A new atomic 

catalyst for efficient oxygen reduction catalysis. Nano Energy 35, 9-16 (2017). 

 
19. Yang S, Tak YJ, Kim J, Soon A, Lee H. Support Effects in Single-Atom Platinum Catalysts for 

Electrochemical Oxygen Reduction. ACS Catal 7, 1301-1307 (2016). 

 

20. Yang S, Kim J, Tak YJ, Soon A, Lee H. Single‐Atom Catalyst of Platinum Supported on Titanium 
Nitride for Selective Electrochemical Reactions. Angew Chem Int Ed 55, 2058-2062 (2016). 

 
21. Choi CH, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum 

catalyst. Nat Commun 7, 10922 (2016). 

 
22. Jia Y, et al. Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Adv 

Mater 28, 9532-9538 (2016). 

 
23. Tang C, Wang B, Wang H-F, Zhang Q. Defect Engineering toward Atomic Co–Nx–C in 

Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries. Advanced Materials, 
1703185. 

 
24. Zhang L, et al. Defects on graphene trapping atomic Ni species for hydrogen and oxygen 

evolution reactions. Chem,  (2018). 

 
25. Xiao P, Ge X, Wang H, Liu Z, Fisher A, Wang X. Novel molybdenum carbide–tungsten carbide 

composite nanowires and their electrochemical activation for efficient and stable hydrogen 
evolution. Advanced Functional Materials 25, 1520-1526 (2015). 

 
26. Das RK, et al. Extraordinary Hydrogen Evolution and Oxidation Reaction Activity from Carbon 

Nanotubes and Graphitic Carbons. Acs Nano 8, 8447-8456 (2014). 

 
27. Fei H, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 

6, 8668 (2015). 

 
28. Zitolo A, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped 

graphene materials. Nature Materials 14, 937-942 (2015). 

 
29. Liu W, et al. Single-atom dispersed Co-N-C catalyst: structure identification and performance 

for hydrogenative coupling of nitroarenes. Chemical Science 7, 5758-5764 (2016). 

 
30. Alves MCM, Dodelet JP, Guay D, Ladouceur M, Tourillon G. Origin of the electrocatalytic 

properties for oxygen reduction of some heat-treated polyacrylonitrile and phthalocyanine 



cobalt compounds adsorbed on carbon black as probed by electrochemistry and x-ray 
absorption spectroscopy. The Journal of Physical Chemistry 96, 10898-10905 (1992). 

 
31. Li XG, et al. Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H-2 Evolution. 

Advanced Materials 28, 2427-2431 (2016). 

 
32. Li L, Xing Y. Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed 

oxidations. Journal of the Electrochemical Society 153, A1823-A1828 (2006). 

 
33. Varnell JA, et al. Identification of carbon-encapsulated iron nanoparticles as active species in 

non-precious metal oxygen reduction catalysts. Nature Communications 7, 12582 (2016). 

 
34. Hammer B, Nørskov JK. Theoretical surface science and catalysis—calculations and concepts. 

Advances in catalysis 45, 71-129 (2000). 

 
35. Liu S, Huang S. Theoretical insights into the activation of O2 by Pt single atom and Pt4 

nanocluster on functionalized graphene support: Critical role of Pt positive polarized charges. 
Carbon 115, 11-17 (2017). 

 
36. Wang PT, et al. Precise tuning in platinum-nickel/ nickel sulfide interface nanowires for 

synergistic hydrogen evolution catalysis. Nature Communications 8, 14580 (2017). 

 
37. Zhu LL, et al. A rhodium/silicon co-electrocatalyst design concept to surpass platinum 

hydrogen evolution activity at high overpotentials. Nature Communications 7, 12272 (2016). 

 
38. Cheng NC, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. 

Nature Communications 7, 13638 (2016). 

 
39. Yin HJ, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high 

hydrogen evolution activity. Nature Communications 6, 6430 (2015). 

 
40. Wang PT, Jiang KZ, Wang GM, Yao JL, Huang XQ. Phase and Interface Engineering of Platinum-

Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angewandte Chemie-
International Edition 55, 12859-12863 (2016). 

 
41. Tavakkoli M, et al. Electrochemical Activation of Single-Walled Carbon Nanotubes with 

Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. ACS Catalysis 7, 3121-
3130 (2017). 

 
42. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using 

a plane-wave basis set. Physical review B 54, 11169 (1996). 

 
43. Blöchl PE. Projector augmented-wave method. Physical review B 50, 17953 (1994). 



 
44. Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional 

theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B 59, 7413 (1999). 

 
45. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of 

density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of 
chemical physics 132, 154104 (2010). 

 
46. Nørskov JK, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The 

Journal of Physical Chemistry B 108, 17886-17892 (2004). 

 
47. Nørskov JK, et al. Trends in the exchange current for hydrogen evolution. Journal of The 

Electrochemical Society 152, J23-J26 (2005). 

 
48. Wang G, et al. A first-principle study of oxygen reduction reaction on monoclinic zirconia 

(11),(01) and (110) surfaces. Catalysis Communications 69, 16-19 (2015). 

 

Acknowledgements 

The authors thank the financial support from Australia Research Council (ARC DP170103317). Y.J. also thanks 

ARC Discovery Early Career Researcher Award (ARC DE180101030), the Griffith University Postdoctoral and 

Research Fellowship and Griffith University New Research Grant. The authors would like to thank the Australian 

National Fabrication Facility (ANFF) – Materials node, University of Wollongong (UOW) Electron Microscopy 

Centre (EMC) and Shanghai Synchrotron Radiation Facility for equipment access. J.M.T.A.F. thanks the 

University of Queensland for the UQI scholarship supporting her Ph.D. We acknowledge access to the 

computational resources of the NCI National Facility at the Australian National University through the National 

Computational Merit Allocation Scheme supported by the Australian Government; and support from the 

Queensland Cyber Infrastructure Foundation (QCIF) and the University of Queensland Research Computing 

Centre. 

Author contributions 

X.Y. conceived and designed the project. X.Y. and Y.J. supervised the project. L.Z. prepared the samples and did 

the electrocatalytic performances test. L.Z., X.Y., W.X., X.W., S.F. and J.C. performed the characterizations 

including XRD, XPS, TEM, XAS and so on. J.M.T.A.F., M.H. and D.J.S. performed the DFT calculations. L.Z., 

Y.J., X.Y. and J.M.T.A.F. wrote the manuscript. L.Z. and J.M.T.A.F. contributed equally to this work. All authors 

discussed the results and commented on the manuscript. 

Additional information 

Supplementary information is available for this paper. Reprints and permissions information is available at 

www.nature.com/reprints. Correspondence and requests for materials should be addressed to Y.J. and X.Y. 



Competing interests 

The authors declare no competing financial interests. 

 


	University of Wollongong
	Research Online
	2018

	Coordination of Atomic Co-Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction
	Longzhou Zhang
	Julia Fischer
	Yi Jia
	Xuecheng Yan
	Wei Xu
	See next page for additional authors
	Publication Details

	Coordination of Atomic Co-Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction
	Abstract
	Disciplines
	Publication Details
	Authors


	OLE_LINK183
	OLE_LINK184
	OLE_LINK37
	OLE_LINK40
	OLE_LINK27
	OLE_LINK28
	OLE_LINK62
	OLE_LINK63
	OLE_LINK99
	OLE_LINK100
	OLE_LINK103
	OLE_LINK104
	OLE_LINK105
	OLE_LINK109
	OLE_LINK110
	OLE_LINK101
	OLE_LINK102
	OLE_LINK111
	OLE_LINK112
	OLE_LINK24
	OLE_LINK25
	OLE_LINK26
	OLE_LINK169
	OLE_LINK106
	OLE_LINK107
	OLE_LINK108
	OLE_LINK113
	OLE_LINK114
	OLE_LINK115
	OLE_LINK118
	OLE_LINK119
	OLE_LINK125
	OLE_LINK126
	OLE_LINK36
	OLE_LINK129
	OLE_LINK130
	OLE_LINK13
	OLE_LINK14
	OLE_LINK9
	OLE_LINK10
	OLE_LINK61
	OLE_LINK38
	OLE_LINK39
	OLE_LINK98
	OLE_LINK12
	OLE_LINK15
	OLE_LINK16
	OLE_LINK120
	OLE_LINK8
	OLE_LINK11
	OLE_LINK180
	OLE_LINK51
	OLE_LINK52
	OLE_LINK53
	OLE_LINK54
	OLE_LINK32
	OLE_LINK33
	OLE_LINK34
	OLE_LINK121
	OLE_LINK122
	OLE_LINK181
	OLE_LINK182
	OLE_LINK185
	OLE_LINK157
	OLE_LINK158
	OLE_LINK166
	OLE_LINK167
	OLE_LINK168
	OLE_LINK170
	OLE_LINK171
	OLE_LINK162
	OLE_LINK163
	OLE_LINK88
	OLE_LINK89
	OLE_LINK154
	OLE_LINK155
	OLE_LINK250
	OLE_LINK251
	OLE_LINK19
	OLE_LINK20
	OLE_LINK74
	OLE_LINK75
	OLE_LINK159
	OLE_LINK41
	OLE_LINK42
	OLE_LINK46
	OLE_LINK21
	OLE_LINK22
	OLE_LINK23
	OLE_LINK175
	OLE_LINK176
	OLE_LINK85
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK45
	OLE_LINK55
	OLE_LINK17
	OLE_LINK18
	OLE_LINK174
	OLE_LINK177
	OLE_LINK165
	OLE_LINK172
	OLE_LINK173
	OLE_LINK81
	OLE_LINK82
	OLE_LINK84
	OLE_LINK87
	OLE_LINK94
	OLE_LINK95
	OLE_LINK97
	OLE_LINK76
	OLE_LINK77
	OLE_LINK226
	OLE_LINK227
	OLE_LINK127
	OLE_LINK128
	OLE_LINK78
	OLE_LINK79
	OLE_LINK123
	OLE_LINK124
	OLE_LINK29
	OLE_LINK30
	OLE_LINK43
	OLE_LINK44
	OLE_LINK214
	OLE_LINK215
	OLE_LINK164
	OLE_LINK178
	OLE_LINK269
	OLE_LINK270
	OLE_LINK200
	OLE_LINK201
	OLE_LINK202
	OLE_LINK71
	OLE_LINK73
	OLE_LINK205
	OLE_LINK206
	OLE_LINK212
	OLE_LINK213
	OLE_LINK210
	OLE_LINK211
	OLE_LINK83
	OLE_LINK96
	OLE_LINK86
	OLE_LINK35
	OLE_LINK58
	OLE_LINK90
	OLE_LINK91
	OLE_LINK31
	OLE_LINK59
	OLE_LINK60
	OLE_LINK64
	OLE_LINK65
	OLE_LINK6
	OLE_LINK7
	OLE_LINK238
	OLE_LINK239
	OLE_LINK47
	OLE_LINK48
	OLE_LINK131
	OLE_LINK132
	OLE_LINK56
	OLE_LINK57
	OLE_LINK80
	OLE_LINK156
	OLE_LINK66
	OLE_LINK67
	OLE_LINK150
	OLE_LINK151
	OLE_LINK152
	OLE_LINK153
	OLE_LINK138
	OLE_LINK139
	OLE_LINK140
	OLE_LINK145
	OLE_LINK135
	OLE_LINK143
	OLE_LINK144
	OLE_LINK68
	OLE_LINK69
	OLE_LINK70
	OLE_LINK133
	OLE_LINK148
	OLE_LINK149
	OLE_LINK134
	OLE_LINK261
	OLE_LINK262
	OLE_LINK263
	OLE_LINK136
	OLE_LINK137
	OLE_LINK141
	OLE_LINK142
	OLE_LINK4
	OLE_LINK5
	OLE_LINK72
	OLE_LINK116
	OLE_LINK117

