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Abstract As a promising electrode candidate for sodium-ion batteries, layered molybdenum disulphide (MoS2) 

may afford excellent electrochemical performance owing to its large surface area and the accelerated electron 

transport within individual layer. However, it suffers from slow reaction kinetics and material agglomeration owing 

to low conductivity and high surface energy. In this work, a cable structure, nitrogen-doped carbon 

nanofiber@MoS2 nanosheets with S-vacancies (NC@MoS2-VS) is developed via a straightforward 

electrospining-hydrothermal and annealing process. When served as an anode material for SIBs, this material 

displays a superior capacity of 495 mAh g-1 over 100 charge/discharge cycles at a current density of 100 mA g-1 and 

the pseudocapacitive contribution is up to 74.4% in the 1mV s-1 with cyclic voltammetry (CV). And the theoretical 

calculations show that the presence of sulfur vacancies facilitates the adsorption of Na+ and enhances the 

conductivity of MoS2. This work may pave a new avenue to develop other type metal sulfides for high-performance 

SIBs. 
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1. Introduction 

In recent years, sodium-ion batteries (SIBs) have attracted widespread attention due to the low cost and 

abundance of sodium, and better safety. [1-3] However, the heavier mass of sodium ion has larger radius (0.102 nm) 

than lithium (0.069 nm), which results in the slow de-intercalation of Na+ in the electrode material, affecting the 

cycling and rate performance of SIBs.[4, 5] Meanwhile, the standard electrode potential (-2.71V vs. SHE) of 

Na+/Na is much higher than that of Li+/Li (-3.04V vs. SHE), leading to the lower energy density of SIBs than that 

of lithium-ion batteries (LIBs). [6] Therefore, it is challenging explore high-energy-density electrode materials with 

the large reversible intercalation of sodium ions.  

As a typical two-dimensional (2D) layered material, molybdenum sulfide (MoS2) has been considered as a 

promising electrode candidate for SIBs due to its structural characteristics, the large intrinsic interlayer spacing 

(0.62 nm) benefiting the intercalation of Na ions and affording the high theoretical specific capacity of 670 mAh g-1 

.[7, 8] However, MoS2 usually displays slow reaction dynamics during charge/discharge processes due to its high 

surface energy and low electronic conductivity.[9, 10] Furthermore, its layered structure is easily aggregated, 

leading to reduced active sites for Na+ interaction.[11, 12] The volume change of MoS2 in the charge/discharge 

processes can also result in severe pulverization of the electrode deteriorating the performance.[13, 14] In order to 

overcome these problems, electronically conductive carbon matrices are proposed to enhance the electrochemical 

performance of MoS2, such as MoS2/graphene composites, MoS2/CNT composites, MoS2/C nanofibers and 

MoS2/carbon spheres.[15-18] Moreover, some research groups have studied the sulfur vacancy of MoS2 materials 

to improve its electrochemical activity and adsorption energy to enhance its catalytic performance for hydrogen 

evolution reaction and electrochemical activity for Li2S deposition.[19, 20] 

In this work, we design a cable structure of nitrogen-doped carbon nanofiber@MoS2 nanosheets by 

electrospining and hydrothermal methods, followed by introducing sulphur vacancies (S vacancies) through using 

of H2 reduction annealing under Ar/H2 atmosphere (denoted as: NC@MoS2-VS). Theoretical calculations show that 

the S vacancies are new active sites which make the adsorption Na+ strongly and the conductivity of MoS2 

enhanced, which well agrees with the experimental results. When used as anode material for the SIBs, the 

NC@MoS2-VS displayed a discharging capacity of 495 mAh g-1 at the current density of 100mAg-1 for 100 cycles 

and the pseudocapacitive contribution of 74.4% at the scan rate of 1 mVs-1. The strategy is promisingly applied in 

other metal sulfides as high-performance materials for SIBs. 

 



2. Experimental Section 

2.1 Synthesis 

    All the reagents were used as received without any treatment. Nitrogen-doped carbon nanofibers and MoS2 

nanosheets were synthesized according to the previous reports.[21, 22] Briefly, nitrogen-doped carbon nanofibers 

were prepared by electrospinning a solution containing 0.6 g of polyacrylonitrile (PAN, MW=150000, 

Sigma-Aldrich Co., Ltd) in 7 g of N,N-dimethylformamide (DMF, Sinopharm Chemical Reagent Co., Ltd.) at a 

flow rate of about 0.6 ml/h. The distance between the aluminum collector and needle was around 12 cm, and the 

voltage applied was 8 kV. The collected materials were pre-oxidized at 230 °C in air for 2h, followed by a 

carbonization process at 600 °C for 2h in Ar to form nitrogen-doped carbon nanofibers. The nitrogen-doped carbon 

nanofiber@MoS2 nanoflower (NC@MoS2) were synthesized via a hydrothermal reaction as follows: 12 mmol 

thiourea was added into a solution (15 ml ultrapure water and 15ml ethanol) containing 2 mmol NaMoO4 under 

stirring for 30 min, followed by the addition of 80 mg carbon nanofibers; and the formed mixture solution was 

treated with ultrasonication for half an hour and then at 200 °C for 24 h in an oven. The NC@MoS2 samples were 

collected and ultrasonic cleaned, drying in an oven at 60 °C for a night. The NC@MoS2-VS samples were obtained 

by annealing precursor materials at 350 °C for 2h in Ar/H2 atmosphere. As comparison, the NC@MoS2 samples 

were treated at 350 °C for 2h in Ar gas and denoted as NC@MoS2-Ar. 

2.2 Characterization 

The morphology and composition of the samples were characterized using scanning electron microscope 

(SEM, Hitachi S4800), high-resolution transmission electron microscope (TEM, Titan G2 60-300 with image 

corrector, America, at voltage of 300 kV), and X-ray diffractometer (Bruker D8 Adv). The samples were analyzed 

and determined by X-ray photoelectron spectroscopy (XPS, Thermo Scientific Escalab 250Xi), Raman scattering 

(LabRAM HR Evolution, HORIBA system, at an excitation wavelength of 532 nm) and a thermo-gravimetric 

analysis (a WCT-1D instrument, BOIF).  

2.3 Electrochemical measurements 

The CR2025-type half-cells were assembled in an argon-filled glove box (O2 ≤ 0.5 ppm, H2O ≤ 0.5 ppm). The 

working electrodes slurries were made by mixing the active materials (NC@MoS2-VS, NC@MoS2-Ar and 

NC@MoS2; 80 %) with sodium carboxymethyl cellulose (CMC; 10 %) binder and acetylene black (10 %) in 

deionized water and ethanol, which was coated onto a Cu foil current collector and dried in a vacuum oven at 60 °C 

for 24 h. The working electrode and sodium foil (counter electrode and reference electrode) was separated by glass 



microfiber filter membrane (Whatman, grade GF/A) saturated with electrolyte. The electrolyte was 1 M of NaClO4 

in a mixture of an EC and diethyl carbonate (DEC) solution at a volume ratio of 1:1 with 5 % fluoroethylene 

carbonate (FEC). The electrochemical performance measurements were carried out by Neware Battery Testing 

system, and the test voltage was between 0.001 and 3.0 V versus Na+/Na. The electrochemical impedance 

spectroscopy (EIS) over a frequency range from 100 kHz to 0.01Hz and the cyclic voltammetry measurement were 

performed with the CHI 660e Electrochemical Workstation. 

2.4 Methodology for DFT Calculations 

The DFT calculations were carried out by using the Vienna Ab-initio Simulation Package (VASP)，[23, 24] 

with an exchange-correlation functional as described by the Perdew-Burke-Ernzerhof generalized gradient 

approximation (PBE-GGA) method,[25] and interaction between core electrons and valence electrons, using the 

frozen-core projector-augmented wave (PAW) method[26, 27]. Wave functions were expanded in a plane wave 

basis with a high energy cut-off of 400 eV and 3×3×1 for the numbers of k-point that can ensure the convergence 

for the total energy. The convergence criterion was set to 10-5 eV between two ionic steps for the self-consistency 

process, and 0.02eV/Å was adopted for the total energy calculations. To avoid interactions between adjacent images, 

a vacuum region of 15 Å was added along the normal direction to the monolayer. The adsorption energy (Ead) of the 

Na atom at the sites in MoS2 and MoS2-VS (MoS2 with sulphur vacancies) was calculated as follows: 

)E+(E-E=E NaVS-MoS,MoSNa+VS-MoS,MoSad 2222
 

Where adE , Na+VS-MoS,MoS 22
E , VS-MoS,MoS 22

E and NaE are the total energies for the different adsorption 

sites with one Na atom in MoS2 and MoS2-VS, for MoS2 and MoS2-VS without the adsorption of Na, and for one 

Na atom in the same slab, respectively. 

The interaction between the MoS2 or MoS2-VS and Na ion implies a substantial charge transfer. This can be 

visualized by three-dimensional charge difference which can be defined as follow: 

NaVS-MoSMoS/NaVS-MoSMoS --=
2222

 ）（）（  

Where /NaVS-MoSMoS 22 ）（  ， ）（ VS-MoSMoS 22
 Error! Reference source not found. and Error! Reference 

source not found. are the charge densities of the composite, respectively. 

 

 



3. Results and discussion  

   

Figure 1. SEM images (a, b) and TEM images (c, d) of NC@MoS2;SEM images (e, f) and TEM images (g, h) of 

NC@MoS2-Ar; SEM images (i, j) and TEM images (k, l) of NC@MoS2-VS. 

 

The morphology and crystal structure of NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS are characterized by 

SEM and TEM as shown in Figure 1. From the low-magnification SEM image of three materials (Figure 1 a, e and 

i correspond to NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS respectively), the MoS2 nanosheets uniformly 

grown on the surface of each nitrogen-doped carbon nanofiber, and these nanosheets were vertically erected with 

carbon nanofibers as skeleton support creating a 3D porous structure from the high-magnification SEM image 

(Figure 1b, f and j). This unique cable structure could prevent the agglomeration of MoS2 nanosheets and provide 

more active sites for the storage of sodium ions.[28, 29] The NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS 

displayed much similar morphology and structure, suggesting that the annealing temperature and annealing 

atmospheres did not have special effect on the surface except the diameter of material slightly slender due to the 

adsorbed of water and the sulfur evaporate during the high temperature and H2 atmosphere, which can also be 

verified by the similar low-magnification TEM image as displayed in Figure 1c, g and k. In addition, from the 

high-magnification TEM images, one can find that the crystal lattice distance of 0.66 nm for NC@MoS2 and 0.62 

nm for NC@MoS2-Ar are corresponded to the lattice plane (002) as revealed by the high-magnification TEM 



images (Figure 1d and h), probably because of the better crystallinity of MoS2 during the annealing process. And 

the broadening lattice of 0.65 nm for NC@MoS2-VS (Figure 1l) could be related with the formation of defect 

annealing in Ar/H2 and contributing to the transmission of Na+.[8, 30] 

 

Figure 2. (a) XRD patterns, (b) TGA and (c) Raman spectrum of NC@MoS2-VS, NC@MoS2-Ar and NC@MoS2; 

XPS spectra of (Mo 3d, S 2p ) for (d, g) NC@MoS2, (e, h) NC@MoS2-Ar and (f, i) NC@MoS2-VS. 

 

The XRD patterns of NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS demonstrated the dominant peaks at 

14.40, 33.45, 39.50 and 58.23o as displayed in the Figure 2a, corresponding to the lattice planes (002), (101), (103) 

and (110) of hexagonal 2H-MoS2 (PDF standard card 24-513). And these peaks of NC@MoS2 are broad indicating 

a low degree of crystallinity before annealing. Additionally, the appearance of two new peaks and the negative shift 

of (002) peak for NC@MoS2-VS may be related to the T-MoS2 generated during the annealing process,[31, 32] 

which is consistent with the broaden of lattice plane (002) in the TEM images. Moreover, the content of MoS2 is 

were analyzed in air from 30 to 700 °C by the TGA curve for the NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS 

(Figure 2b) thought calculated with the weight of MoO3 (48.05%, 61.44% and 68.00%), which is oxidized by 



MoS2, corresponding to about 54.06%, 69.12% and 76.50%, respectively. The weight loss of NC@MoS2 is 

attributed to the evaporation of adsorbed water and the decomposition of excessive sulfate ion from 250 to 400 °C, 

and the weight retention of NC@MoS2-VS is little more than that of NC@MoS2-Ar due to the asportation of some 

sulfur by Ar/H2 annealing. The Raman peaks of NC@MoS2-VS, NC@MoS2-Ar and NC@MoS2 are shown in 

Figure 2c. And the NC@MoS2 did not present any peaks at the wavelength from 250 to 450 cm-1 in the Raman 

spectrum, which might be due to the poor crystallinity of MoS2. After an annealing treatment in Ar, the formed 

NC@MoS2-Ar displayed two main peaks at 378 cm-1 and 405 cm–1 corresponding to the in-plane E1
2g and 

out-of-plane A1g vibration modes of MoS2. These two modes were also detected at 376 cm-1 and 404 cm–1 for 

NC@MoS2-VS, which is annealed in Ar/H2. The slight shift of these two peaks may be ascribed to sulfur vacancies. 

It is reported that the existence of some sulfur vacancies can result in the difference in frequency and the E2
1g and 

A1g peaks broadening.[33, 34] 

The surface valence state and chemical component of these materials at different annealing atmospheres were 

investigated using XPS. And the NC@MoS2-VS presented the peaks of elements Mo, S, N, O and C (Figure S1). 

The high resolution spectra of Mo 3d and S 2p for NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS are recorded as 

displayed in Figure 2d-i. The binding energies of Mo 3d and S 2p of NC@MoS2 are displayed in Fig. 2d and g, Mo 

3d can be divided into these binding energies, of which 236.4 eV corresponds to Mo6+ of MoO3, and 233.4, 232.2, 

229.9, 229.0 eV correspond to Mo4+ 3d in 2H-MoS2, and 226.3 eV corresponds to S 2s peak of MoS2.[35] S 2p can 

be divided into 169.2eV and 163.1, 161.8eV and corresponded to S4+ species in sulfate groups, S 2p1/2 and 2p3/2, 

respectively.[36] In addition, the Mo 3d and S 2p of NC@MoS2-Ar are shown in Fig. 2e and h. The binding 

energies of Mo 3d could be divided into 235.2eV, 232.0 and 229.0eV, 231.7 and 228.8 eV, and 225.6 eV, 

corresponding to the Mo 3d of MoO3, 2H-MoS2, 1T-MoS2 and S 2s of MoS2, respectively. The binding energies of 

162.5 and 161.4 eV of NC@MoS2-Ar are discovered, which match with the S 2p1/2 and 2p3/2, respectively. And 

the binding energies of Mo 3d for NC@MoS2-VS could be divided into 232.3 eV of 3d3/2 and 229.0 eV of 3d5/2, 

and center in 1T-MoS2 observes at 231.0 eV of 3d3/2 and 228.8 eV of 3d5/2,[37-39] other two peaks at 235.4 and 

226.0 eV correlating to Mo6+ 3d5/2 of MoO3 and S 2s of MoS2.[40] The peaks of S 2p can be resolved into two 

peaks of 162.9and 161.7 eV, corresponding to S 2p1/2 and 2p3/2, respectively.[41] The peaks of C 1s and N 1s are 

resolved into the binding energies as displayed in Figure S2. The peaks of 286.6, 285.01 and 284.2 eV are 

accorded to the binding energies of C-O-C, C-H and C-C, respectively.[42-44] Two binding energies of 395.3 and 

394.7eV are related to the Mo3p and the peak located at 398.2 eV corresponds to pyridinic-N,[45, 46] evidencing 



the presence of nitrogen in NC@MoS2-VS. The peaks of Mo6+ 3d and S for NC@MoS2-VS can be offset to a 

higher binding energy of 0.2-0.4eV than that of the NC@MoS2-Ar, which indicates that NC@MoS2-VS possess 

higher oxidation state of Mo after an annealing process in Ar/H2, suggesting the lack of sulfur.[47] In addition, the 

atomic percentages of Mo, S, O and C for NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS are shown in Table S1, 

and the atomic ratio of S to Mo 3d in NC@MoS2-VS is 1.47, much lower than that about 2.23 for NC@MoS2-Ar 

and NC@MoS2, proving the lack of sulfur.[20] All these results manifest that the sulfur vacancies do exist in 

NC@MoS2-VS.  

 

Figure 3. Cyclic voltammetry curves of (a) NC@MoS2, (b) NC@MoS2-Ar, (c) NC@MoS2-VS; Charge-discharge 

curves of (d) NC@MoS2, (e) NC@MoS2-Ar, (f) NC@MoS2-VS; (g) Cycling performances of NC@MoS2,  

NC@MoS2-Ar and NC@MoS2-VS; (h) Rate capabilities of NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS and (i) 

Nyquist plots of NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS. 

 

The electrochemical performances of NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS as anode materials of 

SIBs are displayed in Figure 3. The CV curves of the NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS electrodes 

were performed between 0.001 V to 3.0 V vs. Na+/Na at a scan rate of 0.1 mV·s-1 and shown in Figure 3a-c. These 



three curves have a very close trend, only the redox peak of NC@MoS2 is not obvious, probably because the crystal 

of MoS2 form is not well with unannealed. In the first cycle, it displayed three reduction peaks at potentials of 

0.8-1.1 V, 0.5-0.8 V and 0-0.3 V. They can be ascribed to the formation of a solid-electrolyte interface (SEI) layer, 

conversion of MoS2 into NaxMoS2 owing to the continuous insertion of Na+,[48] and conversion reaction from 

NaxMoS2 to Mo under 0.3 V,[49] respectively. The broad potentials of the oxidization peak appeared at 1.5-2.1 V, 

corresponding to vulcanizing Mo particles to MoS2.[49] In the 2nd and 3rd curves, the reduction peaks at 0.5-1.0 V 

and oxidation peaks situate at 1.5-2.1 V were nearly overlapped. The charge-discharge curves of NC@MoS2, 

NC@MoS2-Ar and NC@MoS2-VS are displayed in Figure 3d-f, the charge/discharge capacity of NC@MoS2 and 

NC@MoS2-Ar are 612/929 mAhg-1 and 432/514 mAhg-1 at the first cycle, corresponding to the Coulomb efficiency 

of 65.9% and 63.7%, respectively. And the first charge/discharge capacity and the Coulombic Efficiency of 

NC@MoS2-VS are 486/644 mAhg-1 and 75.5%. And the first Coulombic Efficiency of NC@MoS2-VS is upper to 

these of NC@MoS2 and NC@MoS2-Ar, indicating the better of storage sodium for NC@MoS2-VS. The cycling 

performances of these electrodes at a current density of 100mAg-1 are demonstrated in the Figure 3g. The 

NC@MoS2-VS shows a higher specific capacity of 495 mAh g-1 for 100 cycles, compared with that 430mAhg-1 and 

103 mAh g-1 for NC@MoS2-Ar and NC@MoS2. In addition, the NC@MoS2-VS electrode presents the better rate 

capacities (Figure 3h). It delivered a capacity of 510, 485, 460, 438, 400 and 355 mAh g-1 at the current density of 

50, 100, 300, 500, 1000 and 2000 mA g-1, respectively, much higher than that 446, 425, 375, 350, 330 and 299 

mAhg-1 afforded by the NC@MoS2-Ar electrodes. A nearly capacity of 500 mAh g-1 could be restored after the 

current density recovered to 100 mA g-1, and the NC@MoS2 electrodes exhibited the worst rate capacities. The 

comparison of rate properties with other MoS2@C composite is shown Figure S3 and the NC@MoS2-VS material 

exhibited excellent rate performance. The electrochemical impedance spectroscopy (EIS) analysis of the 

NC@MoS2-VS, NC@MoS2-Ar and NC@MoS2 were carried out, and the Nyquist plots are showed in Figure 3i. It 

is clearly found that the semicircular diameter of NC@MoS2-VS is smaller than that of the NC@MoS2-Ar and 

NC@MoS2 in the high frequency region, indicating that the NC@MoS2-VS has high conductivity because of the 

existence of sulfur vacancies.[50, 51] In the low frequency region, the straight slope of NC@MoS2-VS and 

NC@MoS2-Ar are close, and both are higher than that of the NC@MoS2. It indicates that the annealing could 

improve the conductivity of materials and contribute them to the transport of sodium ions.[4] The improved Na 

storage performance of NC@MoS2-VS could be attributed to the unique heterogeneous structure, widen lattice of 

MoS2 and the presence of sulfur vacancies. Firstly, the heterogeneous structure composed of MoS2 nanosheets 



vertically grown on the N-doped carbon nanofibers could provide a conductive network to guide the transmission 

of electronic, and accommodate the agglomeration of nanosheets during de-intercalation Na+ processes. Secondly, 

the widen lattice of the MoS2 in NC@MoS2 could accelerate the transfer of Na ions. Thirdly, the annealing of 

NC@MoS2-VS in Ar/H2 reducing atmosphere induces the formation of S-vacancies, which facilitates the 

adsorption of sodium ions and increases the conductivity of MoS2. 



Figure 4. Cyclic voltammetry curves of (a) NC@MoS2, (b) NC@MoS2-Ar, (c) NC@MoS2-VS from 0.2 to 2 mVs-1; 

(d) Capacitive contributions (pink regions) at 1.0 mVs-1 for NC@MoS2-VS; The contribution ratio of capacitive 

and diffusion (e) at different scan rates for NC@MoS2-VS and (f) at 1.0 mVs-1 for diverse materials. 

 

To explore further the sodium storage in NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS by utilizing the 

different scan rate CV curves, the capacitive effect and the diffusion-controlled Na+ intercalation effects to the total 

sodium storage according to the reference article and they can be expressed by the equation:[52, 53] 

i(V)=k1v+k2v
1/2, i(V) corresponds to the current value at the voltages, v refers to the scan rate, k1v refers to the 



contribution of the capacitive effect provided by the surface-adsorbing charge and k2v
1/2 refers to the solid diffusion 

control with intercalated/de-intercalated charges. The CV curves at scan rates from 0.2 to 2 mVs-1 of NC@MoS2, 

NC@MoS2-Ar and NC@MoS2-VS are shown in the Figure 4(a-c), and the kinetic analysis of NC@MoS2 and 

NC@MoS2-Ar are demonstrated in the Figure S4 and S5. The slope of i(V)/v 1/2 vs. v 1/2 for NC@MoS2-VS at 

various potentials in discharge and charge process as displayed in the Figure S6. Figure 4d shows the pink regions 

of capacitive current contributions with NC@MoS2-VS are matched according to different voltage corresponding 

to different current values at a scan rate of 1 mVs-1, and the contribution ratio of capacitive effect and 

diffusion-controlled in order are 62.3%, 64.8%, 70.6%, 72.8%, 74.4%, 77.7% and 37.7%, 35.2%, 29.4%, 27.2%, 

25.6%, 22.3% from 0.2 mV s-1 to 2 mV s-1 as shown in the Figure 4e. Figure 4f shows the contribution ratio of 

capacitive effect for NC@MoS2, NC@MoS2-Ar and NC@MoS2-VS corresponding to 36.3%, 53.9%, 74.4% at 1 

mV s-1, and the ratios of contribution for capacitance effect during Na+ storage at different scan rates are displayed 

in Table S2. They indicate that the capacitive effect of NC@MoS2-VS play a major role in sodium storage 

performance.  

 

Figure 5. (a) and (b) Atomic structure of pure monolayer MoS2 supercell in the simulation and adsorption site 

of a Na atom; (c) Three-dimensional difference charge density for the pure monolayer MoS2 supercell in the 

simulation and adsorption site of a Na atom with an isovalue of 0.003 e/Å3. (d) and (e) The favorite structure of 

S-vacancies decorated monolayer MoS2 and the possible adsorption position of Na atom, respectively. (f) 

Three-dimensional difference charge density for the MoS2-VS with an adsorption site of a Na atom with an 

isovalue of 0.003 e/Å3. The dash line ring represented the vacancies of Sulphur atom. Red and green isosurfaces 



represent charge accumulation and depletion in the space with respect to isolated MoS2 (MoS2-VS) and Na. 

To gain an in-depth understanding of the enhanced Na+ storage behavior in NC@MoS2-VS, the density 

functional theory (DFT) was performed to illuminate the difference of Na+ adsorption behavior on the pure MoS2 

surface and MoS2 surface decorated by S-vacancies. Figure 5a, b, d and e show the typical models of a Na atom at 

the sites in MoS2 and MoS2-VS (S-vacancies map with red dash line ring), respectively. Our theoretical results 

indicate that the S-vacancies modified MoS2 surface not only significantly increase the electronic conductivity of 

MoS2, but also effectively improve the storage/diffusion capability of Na+.[54, 55] The adsorption behavior of Na 

on both pure MoS2 and MoS2-VS are also calculated, and the results are summarized Table S1. The adsorption 

energy of the Na in MoS2-VS is -2.302 eV, which is much small than that in pure MoS2 (-0.248 eV), which 

indicates that MoS2-VS of NC@MoS2-VS is more feasible for Na storage and diffusion than pure MoS2. The 

interaction between Na ion and the slab suggests a substantial charge transfer (MoS2 and MoS2-VS) from the Na 

ion to MoS2 or MoS2-VS. The three-dimensional charge density difference could prove the different interaction for 

pure MoS2 or MoS2-VS with a Na atom. Figure 5c shows the three-dimensional charge density difference in the 

MoS2/Na composite, where the electron-rich and hole-rich regions are distributing obviously. The charge 

accumulation appears on the S atoms, which are below the Na atom. On the contrary, the charge depletion is found 

on the Na ion. We can find that the charge localize substantially on the vacancy of S atom of MoS2-VS (Figure 5f) 

than that of pure MoS2. Meanwhile, the charge depletion of Na atom is relatively large than that of Na atom in pure 

MoS2, which is indicated that the interaction between Na atom and MoS2-VS is larger than that of Na atom in the 

pure MoS2. In addition, the bader charge analysis shows that 0.842 e of the Na atom is adsorbed onto the MoS2-VS 

surface, as show in Table S3. Only 0.525 e, however, of the Na atom transfer to pure MoS2 surface (Table S3), 

which indicates a weak interaction between pure MoS2 and Na atom. Summarily, it is concluded that the presence 

of S-vacancies MoS2 increases the adsorption energy of Na atoms, and more Na atoms can be trapped on the 

MoS2-VS surface.  



 

Figure 6. (a-c) The DOSs of pure MoS2 and PDOSs of Mo and S, respectively; (d-f) The DOSs of S-vacancies 

decorated MoS2 and PDOSs of Mo and S of MoS2-VS. The Fermi level is set to zero. 

Based on the typical structure models, the partial density of states (PDOSs) of pure MoS2 and MoS2-VS have 

been performed, as shown in Figure 6. Compared to pure MoS2, the MoS2-VS has a smaller band gap (1.07 vs. 

1.82 eV, Figure 6a and d), owing to the formation of defect level in the conduction band (CB) of the electronic 

structure. We also find that the defect level is dominant by the Mo 4d and S p orbit (Figure 6e and f), which moves 

toward low energy from high energy in the CB of pure MoS2 (Figure 6b and c). The lower CB minimum (CBM) 

could enhance the transfer of electron and hole pairs, thereby leading to an enhanced electronic conductivity of 

MoS2-VS. These results indicate that the S-vacancies decorated MoS2 have a bright ability to boost the conductivity 

in monolayer MoS2. 

 

4. Conclusions 

In conclusion, the NC@MoS2-VS has been successfully synthesized, with introducing the S-vacancies by 

Ar/H2 annealing and broadening the lattice of MoS2. Meanwhile, the result of theoretical calculation confirmed that 

the S-vacancies can enhance the adsorption energy of sodium ions and improve the conductivity of the material. 

Moreover, the result of experimental data indicated that the storage sodium performance of NC@MoS2-VS is better 

than the NC@MoS2-Ar and NC@MoS2. The NC@MoS2-VS exhibited a discharge capacity of 495 mAh g-1 for 100 

cycles, and the pseudocapacitive contribution is as high as 74.4% at the 1mV/s. Moreover, the presence of sulfur 



vacancies for MoS2 material has enhanced adsorption capacity of Na+
 and improved its conductivity by the 

theoretical calculations. The excellent Na storage performance of NC@MoS2-VS could be attributed to unique 

heterogeneous structure, introducing sulfur vacancies of NC@MoS2-Ar and widen lattice of MoS2.  
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