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ABSTRACT 

The Spongtang Massif is a remnant of Neotethyan ocean crust emplaced onto the 

Indian passive margin along the Indus-Yarlung-Tsangpo Suture in the NW Himalayan region 

of Ladakh. The age, tectonic evolution and timing of ophiolite obduction are critical to our 
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understanding of the mechanisms via which entire oceans are formed, consumed and partly 

preserved before the onset of terminal continent-continent collisions.  Geochemistry of the 

gabbro and basaltic units suggest the presence of both MORB-type and primitive arc-related 

mafic rocks. Zircons extracted from the Spongtang Massif gabbros yield U-Pb (SHRIMP) 

ages of 136-133 Ma with initial εHf values of +14 to +16, indicating Early Cretaceous 

juvenile, depleted mantle sources devoid of contamination by older continental crust. 

Previously, Middle Jurassic (~177 Ma) zircon ages were obtained from gabbro and we 

suggest these represent MORB-type Neotethyan oceanic crust through which a younger intra-

oceanic island-arc (Spong arc) developed in response to subduction initiation during the 

Early Cretaceous (~136 Ma). Our zircon ages are consistent with Early Cretaceous ages 

obtained for radiolarian cherts within the Spong Arc complex. Subduction beneath the Spong 

Arc continued until its collision with the northern Indian continental margin during the early 

Eocene. We suggest that the Spongtang Massif is equivalent to the nearby Dras island arc 

terrane. Intra-oceanic subduction beneath this system was possibly initiated along NNE-SSW 

trending transform faults in the Neotethyan Ocean, along which different ages of ocean crust 

was juxtaposed, thereby development of the Early Cretaceous Spong Arc is superimposed on 

the older Jurassic Spongtang N-MORB crust. The juvenile ɛHf signature indicates the 

subduction system that spawned the Spong island arc was not related to the coeval Trans-

Himalayan (Ladakh-Gangdese) arc that developed along the southern margin of Eurasia. The 

age, composition and nature of geological relationships with the underlying Indian rocks 

indicates the Spong Arc was a juvenile, intra-oceanic terrane that first collided with India 
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before the onset of final continent-continent collision. Therefore, final late Eocene Neotethys 

closure was between the Kohistan-Ladakh (Eurasian) continental arc and the already inactive 

Indian + Spongtang margin. 
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1 Introduction 

Debates about the age and nature of the Himalayan Orogeny centre on whether the 

collision was purely a single continent-continent event involving the Eurasian active margin 

and the Indian passive margin - see discussion by Hu et al. (2016), or involved intra-oceanic 

ophiolite and island-arc terranes in multiple collisions with either India or Eurasia before the 

onset of terminal continental collision - see discussions by Aitchison et al. (2007a). Despite 

the attractive simplicity of a single continental collision model (Najman et al., 2017; Wang et 

al., 2017), there is mounting evidence that the Indus-Yarlung-Tsangpo Suture (IYTS) 

extending from Tibet in the east to Pakistan in the west contains preserved fragments of 

juvenile ophiolite and island arc complexes that developed within a Tethyan intra-oceanic 

setting far from the influence of any continental crust (Aitchison et al., 2000; Corfield et al., 

2001; Hébert et al., 2012; McDermid et al., 2002; Robertson and Degnan, 1994). The IYTS 

ophiolites typically occur as nappes thrust over the Indian margin or are disrupted into 

mélange within fault zones against the Eurasian fore-arc basin rocks. Importantly, the contact 

with Eurasian rocks is always faulted and never stratigraphically conformable (Aitchison et 

al., 2003) indicating they are allochthonous terranes. Paleomagnetic evidence indicate that 

the ophiolites formed at equatorial latitudes (Abrajevitch et al., 2005) somewhere between 

1000-2500 km south of the active southern margin of Eurasia which lay between 15-25N 

during Early Cretaceous time (Abrajevitch et al., 2005; Klootwijk et al., 1979; Yang et al., 

2015).  
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The Spongtang Massif in the Zanskar mountains of Ladakh is one of the most 

complete fragments of Neotethyan Ocean crust preserved along the IYTS of the western 

Indian Himalaya (Fuchs, 1982; Gansser, 1964; Reuber, 1986; Searle, 1986). The Spong 

island-arc complex intruded and developed on top of this ophiolite (Pedersen et al., 2001) and 

was initially regarded as equivalent to the Dras Volcanics and and sedimentary equivalent 

Nindam Formation to the north (Fuchs, 1982). Together the ophiolite and island arc represent 

an important record of intra-oceanic processes operating in the Neotethyan Ocean before 

India collided with Eurasia to form the Himalaya (Aitchison et al., 2007a; Corfield et al., 

2001). The ophiolite-arc complex collided with the northward migrating Indian continental 

margin at a north-dipping subduction zone resulting in emplacement of an ophiolite-arc thrust 

sheet onto the shallow marine, passive margin sequence – the Zanskar Supergroup (Reuber et 

al., 1992). This event is widely interpreted as having occurred before final closure of the 

Neotethyan Ocean and subsequent onset of final continent-continent collision (Aitchison et 

al., 2007a; Corfield et al., 2001; Pedersen et al., 2001; Reuber et al., 2015).  

However, uncertainties remain regarding the age, paleogeography, tectonic setting 

and timing of emplacement of the Spongtang Massif. Previous U-Pb radiometric ages are 

limited to a U-Pb zircon ages of a diorite yielding 177 ± 1 Ma, and an andesite 88 ± 5 Ma, 

where the latter is associated with the Spong arc sequence overlying the ophiolite. Pedersen 

et al. (2001) interpreted the older age to represent that of the Neotethyan ocean crust on top 

of which the Spong arc developed, while the Late Cretaceous andesite age of ~88 Ma 

represents the minimum age of subduction initiation to form the Spong island-arc complex. 
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Numerous K-Ar dates by Reuber (1989) revealed two clusters of amphibole ages of 140-125 

Ma and ~170 Ma (Figure 10) which approximately fits with the zircon ages, and again are 

consistent with a Jurassic MORB ophiolite age and a subsequent Cretaceous period of island 

arc igneous activity. Biostratigraphic investigations by Baxter et al. (2010) documented Early 

Cretaceous radiolarian faunal assemblages from red cherts amongst the Spong Arc volcanic 

complex, which correlates well with ophiolites along strike at Nidar, Xigaze and Zedong. 

Colchen et al. (1987) reported Eocene radiolarians from chert blocks in footwall mélange 

within the thrust zone below the ophiolite that appear to represent the youngest deep marine 

units of the NW Indian passive margin sequence.  

Therefore, the Spongtang Massif is a critical piece of this complex tectonic puzzle. 

Interpretations of the tectonic setting in which it might have formed include; A) slivers of the 

Neotethyan Ocean accreted beneath the fore-arc of the Ladakh Arc before it was obducted 

onto the Indian margin (Steck, 2003); B) fore-arc basement of the Dras Arc, which evolved 

into the Ladakh-Kohistan Arc before final continental collision involving only a single north-

dipping subduction zone (Fuchs, 1982); C) a supra-subduction zone ophiolite that evolved 

into the Spong Arc at the southernmost of two subduction zones between India and Asia that 

was partially subducted beneath the Sapi-Shergol accretionary complex of the Dras Arc 

before colliding with India (Groppo et al., 2016; Mahéo et al., 2006); D) oceanic basement to 

the intra-oceanic Spong Arc, which developed above the southernmost of three north-dipping 

subduction zones between India and Eurasia and collided first with India at 70 Ma, whilst the 

Dras-Kohistan Arc collided with the Trans-Himalayan Arc between 102-75 Ma before it 
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evolved into the continental Ladakh (Trans-Himalayan) Arc prior to final continental 

collision at 55 Ma (Corfield et al., 2001). We address aspects of the age and origin of the 

Spongtang Massif using an integraded program of field geology, whole-rock geochemistry 

and U-Pb and Lu/Hf analysis of zircons extracted from gabbro and leucogabbro samples, to 

assess the influence any continental crustal material had during generation of melts during 

ophiolite-arc formation.  

2 Geological Setting  

2.1 Spongtang Massif 

The Spongtang Massif crops out as an isolated klippe situated between 4000-6000 m 

elevation near the village of Photoksar about 30 km south of the Indus Suture (Figure 2). This 

ophiolite has attracted the attention of geologists for over a century (La Touche, 1888; 

Lydekker, 1880; Lydekker, 1883; MacMahon, 1901) and was the focus of several mapping 

expeditions in the 1980s, which provided detailed geological maps (Bassoullet et al., 1980; 

Colchen et al., 1987; Fuchs, 1979, 1982; Honegger et al., 1982; Kelemen and Sonnenfeld, 

1983; Reibel and Reuber, 1982; Reuber, 1986; Reuber et al., 1992; Reuber et al., 2015; 

Reuber et al., 1989).  

The Spongtang Massif displays all elements of a formerly complete “Penrose-style” 

ophiolite stratigraphy, albeit significantly disrupted by faulting. Early studies concentrated on 

the mantle peridotites and lower crustal cumulates (Reibel and Reuber, 1982) in an attempt to 

identify fabrics that might indicate stress regimes associated with a spreading ridge (Reuber, 

1986). Detailed mapping identified an upper lherzolite unit rich in pyroxene structurally 
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overlying a more depleted harzburgite unit (Reuber et al., 1992). Lower crustal cumulate 

rocks include wehrlite, pyroxenite and gabbro. They crop out along the eastern side of the 

Photang valley and west side of Marling chu valley (Figure 2), where they are intruded by 

medium-grained basaltic dykes (Corfield et al., 2001; Reuber et al., 1992; Reuber et al., 

2015). Minor gabbro cumulates occur within the lower unit on the east side of Photang 

Kangri and along the Marling Valley section (Reuber et al., 1992). Gabbro also occurs within 

the dominantly basaltic-andesite volcanic west side of Photang Kangri and along Photoksar 

Valley where our samples were collected. Corfield et al. (2001) observed two generations of 

dykes; 1) coarse-grained pegmatitic gabbroic dykes intruding the harzburgites, and 2) 

medium-grained basaltic dykes indicating at least two stages of mantle melt generation. 

Dunite bodies also intrude both peridotite units. Corfield et al. (2001) reported rare 

plagiogranites within the mantle sequence but were not successful in extracting zircons from 

these samples. We collected gabbro, leucogabbro and pegmatitic gabbro from the Photong 

Valley for zircon extraction. Two samples gave low yields of small zircons amenable to 

dating using the Sensitive High-Resolution Ion Microprobe (SHRIMP) at Hiroshima 

University. 

Partial remnants of a once extensive ophiolite thrust sheet over the northern Indian 

margin are locally preserved along the Indus-Yarlung-Tsangpo Suture Zone. The nearest 

complete ophiolite sequence to Spongtang Massif is the Nidar ophiolite (~140 Ma) about 120 

km east (Ahmad et al., 2008; Mahéo et al., 2004; Zyabrev et al., 2008). Further east, the 

Indus Suture is offset dextrally by the Karakorum Fault but correlatives are found in Tibet as 
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part of the Dazhuqu and Zedong terranes (Aitchison et al., 2000). Individually, these include 

ophiolites recorded at Jungbwa (Miller et al., 2003), Saga and Sangsang (Bédard et al., 2009), 

Xigaze (Dubois-Cote et al., 2005; Dupuis et al., 2005; Girardeau et al., 1984; Girardeau et al., 

1985a; Nicolas et al., 1981; Wang et al., 1987), Dazhuqu (Girardeau et al., 1985b; Xia et al., 

2003), Zedong (Aitchison et al., 2007b; McDermid et al., 2002) and Luobusa (Zhou et al., 

1996). Correlatives to the west in Pakistan include Bela (Sarwar, 1992; Zaigham and Mallick, 

2000), Muslim Bagh (Moores et al., 1980) and Waziristan ophiolites (Jan et al., 1985). The 

magmatic ages of these ophiolites vary from Jurassic to Cretaceous (Fig. 1). 

2.2 Indian margin – Zanskar Group 

The Permian-Eocene northern Indian passive margin platform sequence or “Zanskar 

Supergroup” over which the ophiolite klippe is thrust has been described in detail previously 

(Fuchs, 1982; Gaetani and Garzanti, 1991; Garzanti et al., 1987). Mud-matrix mélange 

directly underlies the ophiolite klippe (Reuber et al., 1992; Reuber et al., 2015). Collectively, 

the large and varied blocks within a mud-matrix mélange are associated with the Lamayaru 

Complex (Brookfield and Andrews-Speed, 1984). Robertson and Degnan (1993) interpret the 

Lamayuru Complex as outer shelf to slope deposits of the Indian margin. This margin 

experienced pulses of extension and drastic collapse of the carbonate platform edge during 

the mid-Jurassic as a convergent plate boundary approached resulting in submarine channels 

being filled with a mixture of shallow water limestone olistoliths and deep marine cherts and 

clastics. While the Lamayaru Complex was initially deposited as a passive margin 

succession, it displays scaly mud-matrix and block in matrix textures characteristic of 
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overpressuring due to tectonic crustal loading. Mud-matrix mélange is commonly associated 

with collision complexes involving obduction of an island-arc complex onto a passive 

continental margin, for example, the Lichi mélange in Taiwan (Huang et al., 2008). Such 

mélange within the Lamayaru Complex is possibly a correlative of the Yamdrok mélange in 

Tibet (Liu and Aitchison, 2002).  

The youngest marine shales deposited on the Indian passive margin are the Lower 

Eocene Chulung la Formation and Kong slates which structurally underlie the Spongtang 

Massif thrust sheet further south at Dibling (Fuchs, 1982; Fuchs and Willems, 1990). Najman 

et al. (2017) undertook detrital zircon studies of the Kong and Chulung la formations and 

reported a youngest detrital zircon age of ~53 Ma thereby establishing the maximum 

depositional age. Both formations show a strong Mesozoic to Cenozoic distribution (55-70 

Ma and 90-100 Ma) and rare Precambrian zircons. Najman et al. (2017) interpret zircon 

grains older than ~130 Ma to have been sourced from southern Eurasian margin because of 

the presence of two ~140 Ma grains of positive εHf value while older Precambrian grains are 

display mostly negative εHf values and therefore sourced from (Gondwanan) Lhasa terrane. 

Zircons less than 115 Ma display mostly positive εHf values that drop to negative values for 

the youngest grains which they suggest is consistent with a Kohistan-Ladakh-Gangdese Arc 

source. However, we suggest that the age and εHf values of the Kong and Chulung la 

formations are consistent with derivation from the structurally overlying Spong and Dras 

island arc immediately overlying and to the north of these units. The intra-oceanic Spong and 

Dras island arc would have been active until its collision with India during the early Eocene. 
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The trend towards negative εHf values in younger grains is consistent with subduction of 

continental margin sediment from India beneath the Dras Arc just prior to arc-continent 

collision along with an influx of Indian-derived older Precambrian zircons. The two ~140 Ma 

zircons with positive εHf values are consistent with zircons from the Spongtang Massif 

presented here. 

Reuber et al. (2015) suggested that the youngest sediments of the Indian passive 

margin sequence must constrain the maximum age of obduction and therefore structural 

relationships between the lower Eocene Chulung la Formation and Kong Slates that 

tectonically underlie the Spongtang Massif constrain ophiolite obduction to post- early 

Eocene. This is consistent with tectonic reconstructions that place northern India at about 

10°N (Aitchison et al., 2007a; Dewey et al., 1989; Molnar and Tapponnier, 1975) and at least 

1000 km south of Eurasia at 45 Ma when the Ladakh Arc on the southern margin of Eurasia 

was at 23°N (Klootwijk et al., 1979). However, Corfield et al. (1999) proposed that 

obduction of the Spongtang Massif must have occurred during the Late Cretaceous based on 

their interpretation that an allochthonous thrust sheet of continental slope deposits is 

truncated by uppermost Cretaceous to lower Eocene deposits and are therefore post-

collisional. They invoke a later phase of thrust faulting following collision of India with 

Eurasia to explain why the Spongtang Massif is thrust over these lower Eocene deposits. 

2.3 Dras Volcanics and Nindam Formation 

The Dras Volcanics and correlative volcaniclastic rocks of the Nindam Formation 

crop out extensively to the east of Kargil and represent a poorly understood package of 
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island-arc volcanic rocks and immature volcaniclastic rocks faulted between Eurasian margin 

derived sediments (Tar and Indus groups) to the north and the Indian margin (Zanskar Group) 

to the south (Clift et al., 2000; Fuchs, 1982; Reuber, 1989; Robertson and Degnan, 1994). 

They were originally described and referred to as the Zanskar flysch by Sterne (1979), which 

is overlain by the Chilling Formation (Fuchs, 1986). Some interpret the Nindam Formation as 

a continuation of the Indus Molasse sequence (Tar Group) suggesting that together they 

formed in a fore-arc basin that flanked the Ladakh Arc to the north (Garzanti and Van Haver, 

1988; Henderson et al., 2010; Henderson et al., 2011). However, contacts between the two 

units are faulted and locally marked by extensive mélange development, such as the Mongyu 

mélange located between Khaltse and Mongyu villages (Fuchs, 1982). Detailed petrographic 

and lithofacies analysis of the Dras-Nindam units by Robertson and Degnan (1994) indicates 

that the Nindam Formation differs markedly from the Andean-type fore-arc succession of the 

Trans-Himalaya (Ladakh Block) or Tar Group immediately to the north of the Mongyu 

mélange (Figure 2). Sandstones from the Albian-Aptian Khalsi limestone (Tar Group) north 

of the Mongyu mélange are dominated by metamorphic quartz and minerals such as 

hornblende that are rare or absent in the coeval Nindam Formation. The Paleocene Trans-

Himalaya fore-arc basin succession overlying the Khalsi Limestone contains thick, 

channelized conglomerate units containing abundant granite/rhyolite clasts while coeval 

sections of the Nindam Formation formed in deep marine, hemipelagic environments and are 

dominated by immature volcaniclastic sedimentary and pyroclastic rocks. On the basis of 

these fundamental differences, Robertson and Degnan (1994) interpret the Dras Volcanics 
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and Nindam Formation to have formed in an intra-oceanic island-arc setting, most likely in a 

fore-arc basin setting assuming northward subduction. Differences between the Dras and 

Ladakh arcs are further highlighted by distinct geochemical differences of volcanic rocks of 

the island arc Dras Volcanics and continental arc Khardung Volcanics respectively as 

reported by Clift et al. (2002a). 

2.4 Chilling Formation 

The Chilling Formation was first described and named by Sterne (1979) as a sequence 

of red-purple-green siltstones and mass-flow volcaniclastic conglomerates (Skiu 

conglomerate) that overlie the Dras-Nindam unit (Zanskar flysch). Clasts within 

conglomerates of the Chilling Formation consists of ophiolite-derived peridotite, gabbro, 

basalt, chert and volcaniclastic rocks similar to lithologies within the adjacent Dras ophiolitic 

mélange. They also include nummulitic limestone and quartzite clasts derived from the 

Indian Zanskar Group and Lamayaru Complex. Sterne (1979) considered the Chilling 

Formation to be an outlier equivalent to the Spongtang Massif but Fuchs (1986) renamed it 

the “Chilling Molasse” and interpreted it as the youngest portion of the Dras unit. Brookfield 

and Andrews-Speed (1984) were unable to correlate this unit and regarded it as unassigned 

molasse. Searle et al. (1990b) regarded this unit as equivalent to both the Chogdo and 

Nindam formations, while others assigned it to the Chogdo and Khalsi formations (Clift et 

al., 2001, 2002). Henderson et al. (2011) disagreed with previous correlations between the 

Chilling and Chogdo formations based on the radically different geochemical and detrital 

zircon signatures of these units. More recently, Baxter et al. (2016) presented chrome spinel 
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evidence from the Chilling Formation and concluded that the ultramafic clasts present were 

derived from the Spongtang Massif. The Chilling Formation consists entirely of ophiolite and 

Indian-derived detritus and this is reflected in detrital zircon populations which show little or 

no Eurasian source. The youngest reported zircon population is ~159 Ma which Henderson et 

al. (2011) suggest is derived from the Indus ophiolites such as Spongtang. In contrast, the 

Chogdo Formation is dominated by 40-85 Ma zircons derived from the Ladakh Arc. Chilling 

Formation shales have high Cr and Ni concentrations approaching values within the ophiolite 

source rocks while Chogdo Formation has low concentrations of Cr and Ni and is dominated 

by felsic volcanic and intrusive clasts. Finally, the red conglomerates and shales typical of the 

Chilling Formation are not present in the Chogdo Formation and on the weight of this 

evidence Henderson et al. (2011) preferred not to correlate the two formations. 

In Tibet, obduction of the ophiolite-arc complexes with the Indian margin is marked 

by the presence of a distinct conglomerate unit – the Luiqu conglomerate (Davis et al., 2004) 

which is probably equivalent to the Chilling Formation in Ladakh (Baxter et al., 2016). 

Deposition of this distinct ophiolite + Indian continent derived conglomerate marks the onset 

of arc-continent collision at ~55 Ma. The final continent-continent collision is marked by the 

deposition of the Lower Miocene (~34 Ma) Gangrinboche conglomerates in Tibet (Aitchison 

et al., 2002) and the Indus Group (molasse)  in Ladakh (Henderson et al., 2010). 

2.5 Ladakh Batholith (Trans-Himalayan Batholith) 

The Ladakh Batholith occurs as a WNW–ESE trending linear belt, spanning an area 

approximately 600 km long and 30–80 km wide (Singh et al., 2007) and is bound by the 
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Indus Suture Zone to the south and the Shyok Suture Zone along its northern margin (Frank 

et al., 1977). The Ladakh Arc is composed of  a calc-alkaline intrusive suite, ranging in 

composition from gabbroic to granitic (Honegger et al., 1982; Singh et al., 2007), and a 

carapace of andesitic to rhyolitic eruptive rocks assigned to the Khardung Volcanics (Dunlap 

and Wysoczanski, 2002). Leucogranite intrusions (Reichardt et al., 2010) and andesitic dykes 

(Heri et al., 2015) are also reported. Locally, the Ladakh Batholith intrudes the Jurassic?-

Cretaceous Shyok Volcanics (Borneman et al., 2015) along its northern margin, evident by 

the numerous basaltic xenoliths within granitoids (Kumar et al., 2016) and minor Jurassic 

sedimentary rocks of the Tsoltak Formation (Ehiro et al., 2007; Reuber, 1990). Vadlamani 

and Guha (2002) reported Miocene (~24 Ma) ultrapotassic dykes that intruded the Ladakh 

Arc and correlated these with post-collisional intrusions in Tibet (Miller et al., 1999; 

Ravikant, 2006). 

The Ladakh Batholith, together with the Kohistan Batholith to the north-west and the 

Gangdese Batholith to the east, collectively forms the Trans-Himalaya Batholith, which has 

yielded diachronous magmatic crystallization ages between 103 Ma to 41 Ma, younging to 

the east (Ravikant et al., 2009; Reichardt et al., 2010; Shellnutt et al., 2014; Weinberg and 

Dunlap, 2000). The Gangdese Batholith displays discrete pulses of magmatism at ~205–152, 

~109–80, ~65–41 Ma (Ji et al., 2009) while the Ladakh Batholith displays distinct magmatic 

pulses between 66-41 and 85-75 Ma (White et al., 2011) and a smaller 90-110 Ma peak 

recorded in detrital zircon studies of the Indus Group (Henderson et al., 2010) but no 

evidence of older pulses. Alternatively, Bouilhol et al. (2013) suggest that the Ladakh-
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Kohistan Batholith is not part of the Trans-Himalayan Batholith but a separate intraoceanic 

island arc (Bouilhol et al., 2014 and others) generated on a separate subduction system to the 

continuous Gangdese-Karakoram continental arc developing on the southern margin of 

Eurasia. They include the Spongtang Massif and Dras Arc as different sections of a single arc 

that includes the Kohistan-Ladakh batholith. While the Kohistan-Ladakh batholiths do 

display island arc characteristics it is difficult to reconcile the need to separate them from the 

Gandese Batholith which has the same age range and juvenile εHf values and is continuous 

along strike when displacement across the Karakoram Fault (~150 km) is taken into 

consideration. The Karakoram Batholith displays more similarities in age and composition 

(Rex et al., 1988; Searle et al., 1990a; Searle and Tirrul, 1991; Searle et al., 1998) with 

Mesozoic granites along the Bangong-Nujiang Suture between Qiangtang and Lhasa blocks 

in Tibet (Liu et al., 2014). Rolland (2002) suggested that the relationship between the 

Kohistan, Ladakh and Gangdese batholiths might be transitional from purely island arc in the 

west to continental arc in the east and we suspect it was similar to the modern day Aleutian 

Arc. In Tibet, the youngest age of the equivalent Gangdese Batholith is ~41  Ma (Ji et al., 

2009) but detrital zircon studies indicate that magmatic activity may be as young as 37 Ma 

(Aitchison et al., 2011), suggesting that northward subduction beneath the southern margin of 

Eurasia (Lhasa Block) continued until late Eocene time and continent-continent collision may 

not have started until at least after ~37 Ma.  
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2.6 Tar Group – Ladakh Fore-arc Basin 

The oldest units within the Indus Basin are the Albian-lower Eocene predominantly 

marine sequence commonly referred to as the Tar Group (Henderson et al., 2010; Searle et 

al., 1990b; Sinclair and Jaffey, 2001) or Indus Flysch (Fuchs, 1979, 1981). The Tar Group 

consists of deep marine limestones and turbidites (Khalsi limestone), overlain by Late 

Cretaceous to Paleocene marine marls, mass flow deposits and shales of the Jurutze 

Formation. The Tar Group is interpreted as the marine fore-arc basin to the Ladakh Arc, 

which developed slightly outboard of southern Eurasia prior to the onset of continental 

collision (Clift et al., 2002b; Garzanti and Van Haver, 1988; Sinclair and Jaffey, 2001; Steck 

et al., 1993). In Tibet, this fore-arc sequence is well recognized as the Xigaze Group 

(Aitchison et al., 2011; Dürr, 1996; Einsele et al., 1994; Wang et al., 1999). Henderson et al. 

(2010) collectively refer to the Tar Group and the conformably overlying, post-early Eocene 

Indus Group as Indus Basin sedimentary rocks.  

The basal contact of the Tar Group has been interpreted differently by different 

authors. Searle et al. (1990b) considered the oldest units of the Tar Group as disconformable 

cover to the Cretaceous Nindam Formation. However, our geological mapping indicates that 

the oldest unit in the Tar Group, the Khaltsi Limestone, is always in fault contact with the 

Dras-Nindam unit to the south with the contact marked by distinctive serpentinite-matrix 

mélange (Mongyu mélange). This melange includes blocks of peridotite, gabbro, basalt and 

volcaniclastic rocks. Clift et al., (2000) assigned the lowermost parts of the Indus Group to 

the Chogdo Formation and interpreted this unit as a correlative of the Chilling Formation, 
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which they considered, unconformably overlies the Nindam Formation, Lamayaru Complex 

and Tar Group and contains ophiolitic clasts. This led Clift et al. (2002b) to infer that the age 

of the Chogdo Formation might constrain the maximum age of collision. Based on this 

reasoning, they suggested that the well-established Early Eocene (Ypresian) age of the 

Nummulitic limestone, which overlies the Chogdo Formation, indicates continent-continent 

collision must have occurred prior to 49 Ma. However, more detailed stratigraphic and 

provenance studies by Henderson et al. (2011) exclude any possibility that the Chogdo and 

Chilling formations might be correlatives thus they cannot be used to constrain the timing of 

collision. The Chogdo Formation is dominated by felsic igneous clasts derived from the 

Ladakh Arc whereas the Chilling Formation is dominated by ophiolitic and quartzite-

limestone clasts of Indian and ophiolite provenance but no Eurasian influence. The Chilling 

Formation formed on the Indian Plate as Indus ophiolites were being obducted, whereas the 

Chogdo Formation accumulated in a fore-arc basin associated with the Ladakh Arc on the 

southern Eurasian margin.  

2.7 Post-collisional Indus Group (molasse) 

Fore-arc basin sedimentary rocks of the Tar Group are succeeded by post-early 

Eocene to Miocene molasse of the Indus Group (Baud et al., 1982; Henderson et al., 2010; 

Searle et al., 1990b; Sinclair and Jaffey, 2001; Tewari, 1964). These high-energy, fluvial 

conglomerates and sandstones mark the onset of the India-Eurasia continental collision and 

intra-montane basin development. In places, the Indus Group is deposited unconformably on 

granites of the Ladakh Batholith (Garzanti and Van Haver, 1988; Searle et al., 1997) 
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indicating considerable uplift and erosion of the Ladakh Arc prior to deposition. Detrital 

zircon studies of the Indus Group by Henderson et al. (2011) reveals that the youngest detrital 

zircon population is 41 Ma within sandstones of the upper Nimu Formation suggesting that 

calc-alkaline magmatism within the Ladakh Arc continued until at least 41 Ma. This is 

significant because the age of the youngest arc-related, calc-alkaline magmatic rocks possibly 

constrains the timing of terminal continental collision (Searle et al., 1988). In Tibet, detrital, 

arc-derived zircons as young as 37 Ma from the upper Oligocene post-collisional 

Gangrinboche conglomerates (Aitchison et al., 2011) indicate that subduction-related 

convergent margin magmatism continued along the southern margin of Eurasia until at least 

the Late Eocene before final collision of India and Eurasia. The Indus Group sedimentary 

rocks have experienced substantial NE-SW directed compression resulting in km-scale folds 

and some refolded folds (Henderson et al., 2010; Searle et al., 1990b). This intense 

deformation and faulting complicates resolution of stratigraphic relations in Ladakh.  

 

3 3. Analytical methods 

Standard methods were employed for whole-rock geochemistry including X-ray 

fluorescence (XRF) for major and trace elements at University of Wollongong (Table 1) and 

inductively coupled plasma mass spectrometry (ICP-MS) for rare-earth elements (REE) at 

Australian Laboratory Services in Brisbane (Table 1). Methods are described in detail in 

Appendix 1. U-Pb zircon geochronology (Table 2) was undertaken using the SHRIMP at 

Hiroshima University and detailed methodology is given in Appendix 2. Zircon Lu-Hf 
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isotope analysis (Table 3) was undertaken using LA-ICP-MS at the Australian National 

University (ANU) (Appendix 3). Method description along with the complete data for the 6 

reference zircons (FC-1 Plesovic, QGNG, Monastery, Mud Tank and R-33) analysed 

throughout the analytical session are provided in Appendix 3). 

 

4 Results 

4.1 Field relations and petrography 

4.1.1 Gabbro 

Gabbros collected from Photang valley range in composition and texture from layered 

olivine-hornblende gabbro (SBST19 – Figure 3 and 4) to isotropic hornblende gabbro, 

leucogabbro and pegmatitic hornblende gabbro dykes (Figure 4). The amphibole-rich gabbro-

diorite dykes intrude both the mantle (ultramafic) and mafic volcanic sequences. Leucocratic 

gabbros are also incorporated as blocks in the basal serpentinite mélange. Leucogabbro 

sample SBST05 was collected from an outcrop near the base of the klippe along Photoksar 

valley. The leucogabbro intrudes a larger serpentinised peridotite block and is incorporated 

into the highly disrupted, basal serpentinite-matrix mélange (Figure 3). Other samples for this 

study were collected from the upper reaches of the Photang valley (Figure 2). Thin (1-3 m) 

dykes and sills of pegmatitic, amphibole-rich gabbro intrude the massive gabbro and 

peridotites (Figure 3). The abundance of amphibole as part of the igneous assemblage in 

these rocks indicates a hydrous magma. 
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Thin-section petrography of gabbro samples shows that unaltered, euhedral 

hornblende phenocrysts are the dominant mineral phase in most samples including the more 

mafic olivine-hornblende gabbro (SBST19 - Figure 4A). Igneous hornblende occurs as large 

euhedral phenocrysts aligned with cumulate layering and displays strong green to light brown 

pleochroism typical of magmatic hornblende. Isotropic gabbros contain randomly orientated 

hornblende, pyroxene and plagioclase phenocrysts. Some leucogabbro samples contain 

kaersutite amphibole identified by its deep yellow/orange to brown pleochroism. The 

occurrence of rare poikilitic olivine within clinopyroxene phenocrysts is interpreted to 

demonstrate an early stage of anhydrous, tholeiitic crystallization prior to water saturation 

(Figure 4A). Clinopyroxene is present in the more mafic gabbros but is always subordinate to 

hornblende and commonly rimmed by hornblende. Early stage, subhedral plagioclase 

phenocrysts are present in most samples but are ubiquitously altered to a semi-opaque, 

yellow-brown mixture of fine-grained albite-sericite-epidote-calcite-quartz (Figure 4A-H). 

Accessory igneous minerals include late stage magnetite rimming hornblende, rutile, quartz, 

ilmenite, zircon, and apatite. Some of the more felsic leucogabbros contain needles of 

metamorphic actinolite (Figure 4F) rimming the igneous hornblende. Selective alteration of 

plagioclase is pronounced such that Carlsbad twinning is rarely observed and distinctly 

contrasts with neighbouring, unaltered hornblende and clinopyroxene (Figure 4D). This 

suggests that crystallization initially followed a typical anhydrous path of olivine-anorthite-

clinopyroxene before water saturation of the magma resulted in hornblende crystallization 

and pervasive alteration of earlier crystallized anorthite. Alternatively, the original anhydrous 
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gabbro may have undergone re-melting at a later stage to generate a hydrous hornblende 

gabbro. Small lenses and veins of fresh, interlocking quartz, albite and microcline occur in 

leucogabbro sample SBST16 (Figure 4D-F) and in the pegmatitic gabbro sample SBST20 

(Figure 4G-H). These do not appear to be a result of high temperature alteration or 

metamorphism but the partial resorption of the highly altered, early plagioclase may represent 

small patches of felsic partial melt extracted from the surrounding gabbros.  

 

4.2 Whole-rock geochemistry 

Gabbros have a narrow SiO2 range between 46-54% (Table 1, Figure 5). The most 

mafic layered cumulate sample (SBST19) has relatively high MgO (11%), Mg# (67), CaO 

(13.8%), Cr (960 ppm) and Ni (193 ppm), which is reflected by the presence of normative 

olivine and clinopyroxene as well as abundant hornblende. This sample is geochemically 

distinct from the other more evolved gabbro and leucogabbro samples, which have lower 

MgO values (4.38-8.36%), Mg# (31-43), CaO (6.7-9.9%), Cr (50-390 ppm) and Ni (20-136 

ppm). Most of the gabbros are characterized by low K2O (0.18-0.84%) and moderate TiO2 

(0.35-1.25%), Fe2O3 (6-12%), P2O5 (0.05-0.15% but generally <0.08), Zr (18-83ppm), Nb 

(0.2-3ppm), Y (6.5-25 ppm). Spongtang Massif gabbros initially follow a trend showing early 

iron enrichment (Figure 5C) due to early olivine and pyroxene crystallization until about 52% 

SiO2 (MgO 12-5%) followed by rapid drop in iron content as hornblende dominates the 

crystallization process along with accessory magnetite. Both Sr (resident in plagioclase) and 

Al2O3 display flat trends when plotted against MgO indicating that plagioclase was not being 
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crystallized following its early crystallization with olivine and clinopyroxene. This matches 

petrographic descriptions, which show highly altered plagioclase enveloped in fresh 

hornblende in most samples (Figure 4A-E). Fractionation trends involving iron enrichment 

are typical of ophiolites unrelated to subduction in which anhydrous crystallization of water 

undersaturated magmas is the norm (Dilek and Furnes, 2011; Miyashiro, 1975). However, the 

hornblende-rich gabbros from the Spongtang Massif suggest that early crystallization of 

unsaturated tholeiitic magma shifted to crystallization of water saturated, hydrous melts and 

is more consistent with the combination of calc-alkaline and tholeiitic magmas found in 

island arc environments (Miyashiro, 1973; Pearce and Robinson, 2010).  

Chondrite normalized REE patterns for the Spongtang gabbro are generally flat with a 

slight depletion in the light rare earth elements (LREE) compared to the flat, and slightly 

more elevated patterns of the basalts (Figure 6A). An exception is a pronounced positive Ce 

anomaly for a gabbro (SBST17) and one basalt sample (SBST08). While negative Ce 

anomalies reflect the subduction of pelagic sediments and seawater alteration (Hole et al., 

1984), positive Ce anomalies are more likely to be associated with the highly oxidizing, 

fluid-rich nature of the gabbroic melts that formed in a supra-subduction zone setting and had 

fractionated past silica-saturation and started crystallizing zircon, which unlike most minerals 

strongly partitions Ce4+ but not Ce3+ (Ballard et al., 2002). Eu anomalies do not occur in any 

samples indicating that plagioclase was not fractionated during magmatic crystallization 

(Pallister and Knight, 1981). Middle to heavy REE patterns are flat for gabbros and basalts 

reflecting early olivine, plagioclase and pyroxene crystallization while the slight, relative 
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depletion in LREE is consistent with a depleted mantle source and/or late stage crystallization 

of hornblende, which does not retain LREE (Kocak et al., 2005). High-field strength (HFS) 

element (Hf, Zr, Ti, Nb and Ta) concentrations are low to moderate, reflecting a slight 

depletion associated with subduction related magmas (Pearce, 1975). Both gabbro and basalt 

samples display negative Nb-Ta anomalies (Figure 6F) due to the compatible and immobile 

nature of these elements in oxidizing supra-subduction zone conditions (Pearce, 2008). 

However, there is a distinct enrichment of mobile and incompatible large ion lithophile (LIL) 

elements (Figure 6F) typical of subduction-related magmas (Pearce and Robinson, 2010).  

Tectonic discrimination plots (Pearce, 1982; Pearce, 2008; Pearce and Cann, 1973; 

Shervais, 1982) show basalts of the Spongtang Massif generally plot in the N-MORB field. 

However, basaltic andesites of the Spong Arc plot in the island arc field (Figure 6A-D). Most 

Photang Valley gabbro samples plot in the island arc field with a few exceptions plotting in 

the N-MORB field. The Th/Yb-Nb/Yb plot of Pearce (2008) clearly demonstrates the N-

MORB affinities of the Spongtang Massif basalts and the departure to the island arc field for 

the younger Spong Arc samples (Figure 6C). The gabbros collected in this study show a 

gradual but clear displacement from the basalts falling on the MORB-OIB array towards the 

island arc field (Figure 6C). Increasing Th/Yb ratio reflects the gradual increase of subducted 

sediments shed off the evolving island arc and recycled back into the gabbro melt while the 

slight decrease in Nb/Yb ratio reflects the conservative, immobile and compatible nature of 

Nb in highly oxidized environments such as subduction zones (Pearce, 2008). The 

discrimination plots of V/Ti*1000 (Shervais, 1982), Ti/Zr (Pearce and Cann, 1973) and Th-
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Ti-Zr/117 (Wood, 1980) all show a clear discrimination of the N-MORB basalts from the 

island arc gabbros (Figure 6A-D). This supports field observations in which gabbro dykes 

and sills intruded the volcanic rocks and mantle peridotites, and suggests there was a second 

stage of magmatism associated with island arc development that was superimposed on pre-

existing N-MORB type crust or MORB-like fore-arc crust associated with the earliest phase 

of subduction, for example, Izu-Bonin-Marianas arc basement (Ishizuka et al., 2018).  

 

4.3 SHRIMP U-Pb zircon results  

Approximately 1-2 kg of both gabbro samples SBST05 and -12 gave zircon yields of 

~50 (50-100 µm) and ~100 (100-250 µm) grains respectively. Sample SBST05 zircons are 

cloudy yellow, prismatic grains and fragments, in which oscillatory zoning is widely 

disrupted by recrystallisation (Figure 7). SBST12 zircons are translucent to pale yellow, 

euhedral, oscillatory zoned and of equant to stubby prismatic habit (Figure 7). The small size 

of zircon grains in sample SBST05 considerably reduced the choice of sites for analysis. 

Zircons from sample SBST12 are markedly larger, which afforded a greater choice of sites 

for analysis. 

For gabbro sample SBST12, 12 analyses were undertaken on 12 grains. Sites from CL 

images indicating recrystallisation were avoided (Figure 7, Table 2). The chosen sites have U 

content of 188-583 p.p.m., with elevated Th/U of 0.55-1.55. These elevated Th/U values are 

typical of zircons crystallised from intermediate to gabbroic magmas (e.g., Paces and Miller 

1993). Uncorrected for minor amounts of common Pb, all sites yield close to concordant U-
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Pb ages, with all having indistinguishable 238U/206Pb, but with small dispersion in 207Pb/206Pb 

(Figure 8). Those with the highest 207Pb/206Pb show marginally higher amounts of common 

Pb (Table 2). After correction for common Pb by the ‘207’ method (Compston et al., 1984), 

all analyses yield a weighted mean 206Pb/238U age of 135.9±1.2 Ma (95% confidence, 

MSWD=1.05). 

For gabbro sample SBST05, only four analyses were completed due to the small and 

partially metamict state of the grains (Table 2). Other analyses were attempted but aborted, 

due to the small size of grains and much higher levels of common Pb being present (judged 

from high 204Pb count rates in the first peak-hop cycle). The SBST05 zircons have 

considerably higher U content (846-1488 ppm), with very high Th/U (2.39-7.09). These 

grains are interpreted to be magmatic in origin, formed from U-enriched melt at the last stage 

of crystallization of the intermediate-gabbroic magma. The completed analyses have higher 

common Pb content than those in sample SBST12, and uncorrected for common Pb form a 

slightly discordant population with real dispersion in 238U/206Pb and 207Pb/206Pb (Figure 8). 

Analysis 4.1 with high U and high common Pb gives an apparently younger 206Pb/238U age 

than the other sites and might have lost some radiogenic Pb in a recent event. After correction 

for common Pb by the ‘207’ method, analyses 1.1, 2.1 and 3.1 give a weighted mean 

206Pb/238U age 133.3±9.1 Ma (95% confidence, MSWD=4.1). Within its larger error (due to 

the lesser number of analyses), this is indistinguishable from the age of the SBST12 zircons. 

These ages indicate magmatic crystallization of samples SBST05 and SBST12 at 136-133 

Ma (Early Cretaceous; Hauterivian-Valanginian). 
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4.4 LA-ICP-MS Lu-Hf results  

Due to the small size of the SBST05 zircons, LA-MC-ICP-MS analyses were not 

attempted, and only SBST12 grains were analyzed (Table 3). Eleven analyses were 

undertaken over SHRIMP U-Pb analysis sites, together with an additional seven analyses on 

sites free of evidence of recrystallization from CL images, but without prior U-Pb analysis. 

Present day εHf ranges from +12.1 to +14.9 (all εHf  values are calculated using a present day 

CHUR composition of 176Hf/177Hf= 0.282785  and   176Lu/177Hf = 0.0336; Bouvier et al., 2008) 

with minor spread beyond analytical error, whereas εHf at 136 Ma – the time of igneous 

crystallisation of the zircons, ranges from +14.3 to +18.9 with a weighted mean value of 

16.0±0.5 (95% confidence). These values are equal to estimates for depleted MORB source 

mantle at that time. Hence, there is no evidence of any crustal contamination in the mantle 

source from subducted older crustal materials or through mixing in the arc roots with older 

crust, as is seen in most arc suites (as summarized by Jones et al., 2015). 

 

5 DISCUSSION 

5.1 Geochronology and Hf isotope signatures 

Heitz (1986) first reported a whole-rock K-Ar age of 140 ± 15 Ma for Spongtang 

Massif basalts. Reuber et al. (1989) obtained several K-Ar ages from basic dykes collected 

from the Spongtang Massif. They yielded two clusters of amphibole ages - the first between 

140-125 Ma which they interpreted as the age of dyke intrusions and the second at about 170 
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Ma which they interpreted as the minimum age of formation of the ophiolite. It should be 

noted that most of the Spongtang Massif rocks have been metamorphosed to sub-greenschist 

facies and consequently K-Ar dates are unlikely to be reliable given the mobility of K and Ar 

during metamorphism. Mahéo et al. (2004) undertook 40Ar-39Ar dating on amphiboles of the 

Spongtang Massif, which  yielded ages between 130-110 Ma. Pedersen et al. (2001) reported 

a TIMS single zircon age of a diorite from Spongtang Massif at 177 ± 1 Ma, which they 

interpreted to be the age of the ophiolite basement before development of the Spong Arc. 

Whether this Jurassic age represents the original MORB ocean crust or an early phase of 

supra-subduction zone ophiolite-arc development is difficult to determine. This Jurassic age 

is similar to the Zedong terrane in Tibet (McDermid et al., 2002) but older than most other 

ophiolite fragments along the IYTS, such as Xigaze at ~126 Ma (Aitchison et al., 2003; 

Malpas et al., 2003). Pedersen et al. (2001) also reported that zircons from andesitic rocks of 

the overlying Spong Arc volcaniclastic sequence yielded an age of 88 ± 5 Ma, which they 

interpreted to constrain the minimum age of subduction initiation beneath the Spongtang 

Massif. Our samples are of gabbros with arc-like whole rock geochemistry that yielded 

magmatic zircons of 136 Ma and 133 Ma. The Cretaceous (~136 Ma) gabbros, which intrude 

both the mantle and volcanic ophiolite sections have a distinct supra-subduction geochemical 

signature (Figure 6) and possibly signify intra-oceanic subduction initiation and fore-arc 

spreading in ~177 Ma oceanic crust, which led to the development of the Spong island-arc 

during the Cretaceous. The Hf isotopic data obtained from SBST12 with initial εHf  of +14.3 

to +18.9 show that this sample formed in a setting free of detectable contamination by older 
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continental crust (Figure 9). This shows there was neither distally or locally derived 

continental trench sediment nor extended older continental crust in the roots of the arc.  

The Cretaceous U-Pb zircon age of ~136 Ma we report here differs from previous 

Jurassic U-Pb age of ~177 Ma of Pedersen et al. (2001) but is similar to the Ar-Ar ages 

provided by Mahéo et al. (2004). We suggest this older Jurassic ages relates to fragments of 

Neotethyan, MORB-like, oceanic crust of the Spongtang ophiolite, on top of which the 

Spong Arc developed following Early Cretaceous subduction initiation.  

Lower Cretaceous (mid-Valanginian–mid-Aptian range) radiolarian faunal 

assemblages reported by Baxter et al. (2010) provide robust biostratigraphic ages for the 

ophiolite-arc complex. This Lower Cretaceous assignment correlates with the younger 

population of K-Ar dates obtained by Reuber (1989) and our U-Pb zircon crystallization age. 

The similarity between ages for the early Spong Arc igneous rocks and cherts suggests that 

the cherts are a part of the lower section of the Spong Arc stratigraphy rather than being 

derived from older Jurassic ophiolite basement or older accreted fragments of the Neotethyan 

ocean crust scraped off the descending slab beneath the Spong Arc.  

 Gabbro from the Nidar ophiolite to the east has been dated at 130-110 Ma by the 

amphibole 40Ar-39Ar method (Mahéo et al., 2004) and 140  32 Ma using a nine point 

mineral–whole rock Sm–Nd isochron with an initial 143Nd/144Nd of 0.513835±0.000053 (ENd 

t=+7.4) (Ahmad et al., 2008). Cherts within the overlying volcano-sedimentary unit yield 

Lower Cretaceous (132-127 Ma) radiolarians (Kojima et al., 2001) consistent with Spongtang 

cherts. This ophiolite structurally overlies the Tso Morari metamorphic complex to the south, 
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which contains subducted portions of the Indian continent including ~55 Ma coesite-bearing 

ultra-high pressure eclogites (de Sigoyer et al., 2000; Donaldson et al., 2013; Leech et al., 

2007; St-Onge et al., 2013). de Sigoyer et al. (2004) interpret these eclogites to represent 

subducted portions of Indian crust beneath Eurasia and therefore the age of continent-

continent collision (Leech et al., 2005). However, like Spongtang, the Nidar ophiolite is intra-

oceanic in origin (Ahmad et al., 2008; Zyabrev et al., 2008). It is thrust over eclogite-bearing 

Indian crustal rocks at Tso Morari, indicating it was the first element to collide with India and 

this event may predate the final continental collision. It is becoming increasingly evident that 

ophiolites along the Indus-Yarlung-Tsangpo Suture represent an intra-oceanic supra-

subduction zone ophiolite/island arc complex that was obducted onto the Indian margin as 

part of a north-dipping subduction zone that was distinct and separate from the Ladakh-

Kohistan Arc that was also active but nearer the southern Eurasian margin (Aitchison et al., 

2007a). A second, continental “Andean-type” convergent margin on the southern margin of 

Eurasia is supported by detrital zircon studies which indicate the Trans-Himalayan Arc was 

active until at least ~41 Ma in the Ladakh Batholith (Henderson et al., 2011) and ~37 Ma in 

the Gandese Batholith (Aitchison et al., 2011), well after collision of the ophiolite-arc 

complexes with India at ~55 Ma. The existence of two north-dipping subduction zones and 

two separate collisions is supported by the geological evidence. Nowhere along the entire 

Indus-Yarlung-Tsangpo suture do any of the Trans-Himalayan Arc igneous rocks intrude into 

the ophiolite-arc complexes as one would expect if they were the basement to a single 

subduction zone. The contact between the Ladakh Arc and ophiolitic complexes is always 
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faulted and this relationship is the same in Tibet. Indeed, the double subduction zone model is 

testable and falsifiable by the presence of an intrusive relationship between the Ladakh Arc 

and ophiolite complexes. This relationship would disprove the double subduction-collision 

model but it hasn’t been recorded anywhere along the entire suture. 

 

5.2 Intra-oceanic geodynamic setting of the Spong Arc 

The transfer of juvenile, intra-oceanic ophiolitic and island-arc crust onto continental 

margins is an important mechanism for continental growth and the ages of ophiolites and the 

timing of emplacement onto continental margins are critical to accurate tectonic 

reconstructions of collision zones. This process is recorded in modern arc-continent collision 

systems, for example, Oman (Searle and Cox, 1999), New Caledonia (Aitchison et al., 1995), 

Taiwan (Huang et al., 2000) and Papua New Guinea (Holm et al., 2015) and is the key 

mechanism for the on-land preservation of dense, oceanic crust that would otherwise be 

recycled at subduction zones back into the mantle. Arc-continent collisions are responsible 

for widespread deformation events within ancient accretionary orogens such as eastern 

Australia (Aitchison and Buckman, 2012) and Central Asia (Buckman and Aitchison, 2004). 

Notably, these can be very short-lived events as documented by Dewey (2005). Lawsonite-

bearing blueschists within the Shergol melange indicate cold subduction took place in an 

intra-oceanic setting beneath the Dras Arc (Groppo et al., 2016) at about 100 Ma (Honegger 

et al., 1989) and continued until the collision and partial subduction of the northern Indian 

continental margin to form the Tso Morari eclogites at ~55 Ma (de Sigoyer et al., 2000). 
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Further west in Pakistan, Kakar et al. (2012) extracted zircons from the Muslim Bagh 

ophiolite which yielded U-Pb crystallisation ages of ~80 Ma while geological relations 

constrain the emplacement age to between 68-48 Ma. They correlate the Muslim Bagh 

ophiolite with the Spong Arc as an intra-oceanic ophiolite-arc complex that first collided with 

India before the final India-Eurasia continental collision.  

The isotopically juvenile nature of the ~136 Ma Spong Arc gabbros suggests that they 

developed far from the influence of any continental derived material and therefore, are 

unlikely to represent the fore-arc portion of the Trans-Himalayan Arc which grew at the 

southern Eurasian margin and shows clear isotopic evidence of continental influence within 

the Gangdese and Ladakh batholiths (Najman et al., 2017). This fits with existing 

paleomagnetic results indicating that the Ladakh Arc and southern margin of the Lhasa 

terrane were situated between 15-25N throughout the Cretaceous, whereas the Indus-

Yarlung-Tsangpo Suture ophiolites (Dazhuqu terrane) formed at equatorial settings some 

1000-2500 km further south (Abrajevitch et al., 2005). Thus, the two subduction systems 

were unrelated.  

5.3 Spong and Dras island arcs 

The flat-lying Spongtang Massif is situated only 19 km south of the Dras-Nindam unit 

(Figure 10), being separated by a pop-up structure consisting of the Zanskar Supergroup that 

was thrust up and through the Dras-Nindam unit after final continental collision. The close 

proximity, similar ages and compositions of these rocks suggest that the Spong Arc may be 

equivalent to the Dras Arc (Figure 10) and this is consistent with the early cross-section 
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interpretations of Fuchs (1982) who previously classified the Spong Arc volcaniclastic rocks 

as “Dras Arc”. The intra-oceanic island arc affinities of both units hints at their being part of 

the same subduction system rather than belonging to a separate systems as was suggested by 

Corfield (2001).  

The Spongtang Massif is unlikely to be part of the fore-arc region of the Kohistan-

Ladakh-Gangdese Arc on the southern Eurasian margin (Fuchs, 1982; Steck, 2003) as it is 

more evolved and has a stronger continental influence as evident by the lower initial εHf 

values (Bouilhol et al., 2011, 2013; Najman et al., 2017). Many tectonic models for the Indus 

Suture are heavily influenced by early interpretations that correlate the Kohistan, Ladakh and 

Dras arc systems as part of the same entity that evolved on the southern margin of Eurasia 

(Coward et al., 1987; Honegger et al., 1982; Khan et al., 1993; Searle et al., 1999). Granites 

of the Kohistan and Ladakh batholiths are of the same composition and age range as the 

Gandese Batholith in Tibet and therefore, are most likely to be part of the same Trans-

Himalayan continental margin magmatic belt (Honegger et al., 1982; White et al., 2011). 

However, inconsistencies arise when forcing correlations with the Dras Arc and 

interpretations that it formed either the fore-arc basement of the Kohistan-Ladakh Arc or was 

an island arc that collided with Eurasia before evolving into the Kohistan-Ladakh- Arc 

(Fuchs, 1982; Honegger et al., 1982; Najman et al., 2017; Robertson and Degnan, 1994). This 

interpretation is based on the observation that the Dras volcanics are intruded by the ~103 Ma 

Kargil intrusive rocks (gabbro-norites to granodiorites), which are interpreted by Honegger et 

al. (1982) as equivalents of the Kohistan-Ladakh Arc and therefore, the Dras Arc had to have 
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collided with Eurasia during the Late Cretaceous prior to intrusion of the Kargil granodiorites 

and final collision with India.  

Corfield et al. (2001) suggested that the Spong and Dras island arcs developed above 

two separate island-arc subduction systems unrelated to the Ladakh Arc on the southern 

margin of Eurasia. They suggest that these island-arc terranes only came together during final 

continental collision. However, zircon studies by Singh et al. (2007), Ravikant et al. (2009) 

and White et al. (2011) found no evidence for a ~100 Ma magmatic phase within the Ladakh 

Arc that might match the Kargil intrusive rocks. Instead, extensive granite magmatism 

occurred within the Ladakh Arc between 66-46 Ma with minor 85-75 Ma inheritance. This is 

reflected in detrital zircon studies of Indus Group sedimentary rocks, which show a distinct 

magmatic peak at 40-60 Ma and a smaller peak at 80-90 Ma but very few older zircons 

(Henderson et al., 2011). We suggest that correlation of the ~103 Ma Kargil intrusive rocks 

with 66-46 Ma granites of the Ladakh Batholith is not justified and that the Kargil intrusive 

rocks may represent the plutonic core of the intra-oceanic Dras island arc, which is unrelated 

to the Ladakh Arc that developed off the southern margin of Eurasia. Without the inferred 

correlation between Kargil intrusive rocks and Ladakh Batholith, there is no reason to 

support the interpretation of the Dras Arc first colliding with Eurasia and no reason to 

separate the Dras and Spong arcs as different island-arcs. Instead, we suggest that the Spong 

and Dras arcs are part of the same island arc complex that first collided with India during the 

early Eocene.  
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5.4 Timing of ophiolite-arc collision with India and closure of the Neotethys 

The timing of collision of the Spongtang Massif with India is highly disputed as 

outlined in discussions between Garzanti and Searle (Garzanti et al., 2005). Corfield et al. 

(2001) argue for a Late Cretaceous collision between Spongtang Massif and India while 

Reuber et al. (1992) and Garzanti et al. (2005) argue for a collision later in the Eocene. The 

presence of Lower Eocene units (Chulung la Formation and Kong Slate) of the Zanskar 

Supergroup (India) beneath the Spongtang Massif thrust sheet was used as evidence that the 

ophiolite was not emplaced onto the Indian margin until post-Early Eocene (Colchen et al., 

1987; Fuchs, 1982; Reuber, 1986; Reuber et al., 1992; Reuber et al., 2015). Several tectonic 

reconstructions place northern India at about 10°N (Aitchison et al., 2007a; Dewey et al., 

1989; Molnar and Tapponnier, 1975) and at least 1000 km south of Eurasia at 45 Ma when 

the Ladakh Arc on the southern margin of Eurasia was at 23°N (Klootwijk et al., 1979). 

However, Corfield et al., (2001) contend that ophiolite obduction occurred much earlier in 

the Late Cretaceous and that the thrusting of the ophiolite over restricted Eocene marine 

basins that developed prior to and adjacent to the obducted ophiolite is related to later 

continent-continent collision. Corfield et al. (2001) interpret the closure of the Neotethys as a 

three-stage collision process starting with the obduction of the intra-oceanic Spongtang 

Massif onto India at about the same time that the intra-oceanic Dras-Kohistan Arc collided 

with the Trans-Himalayan Batholith to the north. This was followed by closure of the 

remaining Neotethys along southern Asia and final continent-continent collision of India with 

Eurasia during the Late Cretaceous (~70 Ma). In their model, the Spongtang Massif does not 
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represent the fore-arc basement of the continental margin of Eurasia (Ladakh Batholith) and 

is a separate subduction system to the intra-oceanic Dras-Kohistan Arc to the north, which 

first collides with the Trans-Himalayan continental arc of southern Eurasia before final 

continental collision of India and Eurasia. The Late Cretaceous (~70 Ma) timing of obduction 

of the Spongtang Massif onto India is proposed largely to fit with the long-held consensus 

that the India-Asia continental collision began at 55 Ma (de Sigoyer et al., 2000; Hu et al., 

2016) and therefore, Eocene marine sediments (<55 Ma) could not have initially been 

overthrust by the ophiolite because they post-date the collision age. This model was disputed 

by Garzanti et al. (2005) on the basis of a lack of evidence for late thrusting. Also, the report 

of possible Late Eocene cherts within the mélange of the Lamayaru Complex immediately 

below the ophiolite by Colchen et al. (1987) is difficult to reconcile with the development of 

a small, shallow marine basins evolving adjacent to an ophiolite that was obducted onto India 

during the Late Cretaceous. We prefer the simplest explanation that the lower Eocene cherts 

within the mélange at the base of the Spongtang Massif and the lower Eocene Kong slate and 

Chulung la Formation below the ophiolite thrust sheet indicate post-early Eocene ophiolite 

obduction onto the Indian margin.  

5.5 Paleogeography and subduction initiation within Neotethys 

There is mounting evidence that all of the ophiolites along the IYTS formed within 

the Neotethyan Ocean before being obducted onto the Indian margin prior to final continental 

collision (Aitchison et al., 2007a). Thus, the position of the Lhasa terrane relative to India, 

Eurasia and the active arcs including the Kohistan-Ladakh-Gangdese and the Karakorum 
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batholiths is important when interpreting where intra-oceanic terranes were situated before 

being accreted onto either India or Asia (Figure 10). Recent paleomagnetic data indicate that 

the Lhasa terrane originated as a rifted portion of northern Gondwana (India or Australia) and 

was situated at about 16.5° south throughout the Triassic (Zhou et al., 2016). It drifted 

northwards to 3.7° south of the equator at 180 Ma (Li et al., 2016) and docked with the 

southern margin of Eurasia at about 25°N during the Late Cretaceous as constrained by the 

youngest (Lower Cretaceous) cherts within the Bangong-Nujiang Suture (Baxter et al., 2009). 

At 45-49 Ma the Ladakh Arc in the western Neotethyan ocean was at 23°N (Klootwijk et al., 

1979), which marks the position of the southern margin of Eurasia. In contrast, the northern 

margin of India was only at ~10°N around 50 Ma, - see Acton (1999) and discussions by 

Aitchison et al. (2007a), indicating about 1500 km of ocean separated the northern passive 

margin of India and the southern convergent margin of Eurasia. This is consistent with the 

collision and obduction of the intra-oceanic Spongtang Massif with India at about 55 Ma in a 

separate event prior to final continental collision with Eurasia. 

We follow the suggestion of Aitchison et al. (2012) that subduction may have 

initiated along major NNE-SSW trending transform faults that developed as the Lhasa terrane 

rifted away from Gondwana from Triassic to Jurassic (Figure 10). The orientation of major 

transform faults in the Neotethys can be constrained by the relative movement (rifting) of 

Lhasa terrane from Gondwana starting in the Early Permian, that is, they must be parallel to 

relative plate movement and perpendicular to the rift, as shown in tectonic reconstructions by 

Stampfli and Borel (2002), Heine et al. (2004), (Zahirovic et al., 2012) and Gibbons et al. 
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(2015). The juxtaposition of old and new ocean crust at transform faults has the potential of 

initiating spontaneous subduction via the process of transform collapse (Stern, 2004). Similar 

rotations of subduction systems are documented in the Izu-Bonin-Marianas system (Hall, 

2002) which originates down near Papua New Guinea then rotates more than 90 degrees to its 

present positon. The “subduction initiation rule” proposed by Whattam and Stern (2011) 

predicts that supra-subduction zone (fore-arc) ophiolites display a sequence of igneous rocks 

that transition from fertile mantle-derived decompressional melts to increasingly 

metasomatised depleted mantle melts of boninitic composition to typical calc-alkaline arc 

magmas. The transition from Jurassic N-MORB Spongtang ophiolite to the Early Cretaceous 

calc-alkaline Spong Arc displays characteristics similar to the “subduction initiation rule”. 

Thus, the Spongtang Massif has the potential to answer key questions including, A) the time 

it takes to initiate subduction, B) how initial fore-arc magmatism transitions to arc-like 

magmatism, C) how long arc magmatism persists and D) how intra-oceanic terranes are 

emplaced and preserved onto continental margins. Initiation of the Spong arc appears to 

involve an abrupt pulse of mafic magmatism at ~136 Ma, which is about 10 m.y. older than 

most ophiolites along the Yarlung-Tsangpo suture in Tibet, suggesting that subduction may 

have initiated in the west and migrated eastward along the length of the transform fault. 

Supra-subduction zone volcanism occurred sporadically between 136 Ma and 88 Ma 

(Pedersen et al., 2001). However, in order to accommodate plate convergence, subduction 

and arc volcanism may have continued until final collision with India at ~55 Ma. The 

youngest detrital zircon population in Kong Slate and Chulung la Formation is ~53 Ma 
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(Najman et al., 2017) suggesting that the youngest sedimentary units on the Indian passive 

margin may have been receiving zircons from the active Spong Arc right up until final 

collision. This suggests that the Spong Arc was active for some 80 million years as an intra-

oceanic island arc within the Neotethys before collision with India, which is consistent with 

the timescales of oceanic island arc development in the Izu-Bonin-Marianas system as 

outlined by Ishizuka et al. (2011). 

The Semail Ophiolite in Oman shows a similar geochemical evolution from N-MORB 

to supra-subduction (fore-arc, boninitic) magmas but it did not evolve into a well-developed 

calc-alkaline island arc. This is probably due to the short period of time between formation at 

~95 Ma and obduction onto the Arabian continental margin at 85 Ma (Searle et al., 2003). To 

the NW, along the Iraqi segment of the Zagros Suture Zone, ophiolites such as Hasanbag 

ophiolite complex have an almost identical age to the Semail ophiolite (92 Ma; Ali et al. 

(2012)), while intra-oceanic terranes such as Walash-Naopurdan island arc are as young as 24 

Ma (Ali et al., 2013) indicating continental collision started less than 24 million years ago in 

this region. The Semail and other ophiolites along the Zagros Suture Zone cannot be direct 

correlatives of the IYTS ophiolites because they were initiated along different subduction 

zones at different times and they formed either side of the Owen Fracture Zone (Gaina et al., 

2015), which separated the rapidly northward moving Indian Plate from the slow-moving 

Arabian plate (Figure 10). However, they do represent the last Neotethyan ophiolites to be 

obducted onto the leading edge of a passive continental margin in events before and separate 

to terminal continental collision. At Oman, terminal continental collision has yet to occur 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

40 

with a small amount of ocean floor yet to subduct beneath the active continental Makran Arc 

along the southern margin of Iran. Oman is a good example of an intra-oceanic ophiolite-arc 

complex colliding and obducting onto a continental margin long before final continental 

collision and is analogous to the collision of the Spongtang Massif with India well before 

terminal continental collision.  

6 Conclusions 

1) Zircons extracted from gabbro and leucogabbro from the Spongtang Massif both 

yield U-Pb SHRIMP ages of ~136 and 133 Ma (Early Cretaceous). This is 

younger than previous 177 Ma zircon (TIMS) ages reported by Pedersen et al. 

(2001).  

2) Petrology and geochronology of the gabbro and basalts indicates two distinct 

mafic magmas are present – 1) N-MORB type volcanic rocks and minor gabbros 

of ~177 Ma age, 2) island-arc basalts, dolerite dykes and gabbros intruded through 

and onto the N-MORB volcanic pile. The older Jurassic crust represents the 

original Neotethys MORB-like crust while the Early Cretaceous gabbros and 

basalts represent renewed spreading associated with subduction initiation giving 

rise to the Spong Arc.  

3) The depleted mantle-like, highly positive initial εHf values indicate a purely intra-

oceanic setting remote from continental crustal influence. The original Neotethyan 

Spongtang ophiolitic substrate is ~177 Ma and our acquired ~136 Ma zircon ages 

of leucogabbro represent intra-oceanic subduction initiation responsible for 
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development of the Spong Arc before its emplacement onto the Indian passive 

margin as the Spongtang Massif.  

4) The timing of collision is constrained by the age of the youngest Indian 

sedimentary units over which the ophiolite has been obducted. These are the 

Eocene Kong Slates and Chulung la Formation, which contain detrital zircons as 

young as 53 Ma (Najman et al., 2017) and are likely to be derived from the final 

pulses of igneous activity within the Spong Arc before arc-continent collision 

extinguished any further igneous activity on the leading edge of India. 
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Table captions 

Table 1 – whole rock geochemistry 

Table 2 - U-Pb SHRIMP data  

Table 3 - Hf data  

 

 

Figure captions 

Figure 1 Regional tectonic setting of the Himalaya showing Tethyan ophiolite occurrences and their age of 
formation (blue). Basemap sourced from GeoMapApp software (Ryan et al., 2009). 

Figure 2 Geology of Spongtang ophiolite, Ladakh Himalaya. Adapted from (Corfield and Searle, 2000; Reuber et 
al., 2015; Steck, 2003) 

Figure 3 Field relations of the Spongtang ophiolite. A) View of the Spongtang ophiolite looking south-east from 
Sir Sir la pass showing the ophiolite klippe thrust over the Zanskar Supergroup (Indian passive margin) and approximate 
position of dated samples. B) View looking SE of the outcrop from which the leucogabbro sample SBST12 was collected 
within the mélange at the base of the klippe along the Photang Valley; C) View of the Photong Thrust sheet which 
consists of Permian limestone and ocean island basalts (OIB) which have been thrust between the overlying Spongtang 
Ophiolite and underlying Lamayaru Complex. Includes the outcrop of the mélange containing the dated leucogabbro 
SBST12; D) Outcrop picture of the homogenous gabbro SBST05; E) View of the pegmatitic gabbro dykes and veins 
intruding massive gabbro sheets and peridotite in the upper Photang Valley. 

Figure 4 Petrography of gabbro samples. A) Sample SBST19 olivine-hornblende gabbro containing highly 
altered plagioclase. B) SBST05 leucogabbro sample from which zircons were extracted showing heavily altered 
plagioclase, hornblende and free quartz. C) SBST17 leucogabbro (plane polarized) containing kaersutite. D) SBST16 
gabbro (plane polarized light) containing several thin lenses of felsic melt. E) SBST16 gabbro (plane polarized light) 
containing thin lenses of felsic melt. F) SBST16 gabbro (cross polars) showing plagioclase and quartz crystallised in the 
stringers of melt with actinolite needles growing from the surrounding hornblende into the melt patch. G) SBST20 
pegmatitic gabbro containing resorbed plagioclase, hornblende, kaersutite H) SBST20 pegmatitic gabbro (cross polars) 
showing the cross-hatch twinning of microcline that has crystallised with quartz in the melt veins. 

Figure 5 Geochemical classification of gabbro and volcanic samples from Spongtang and the Dras Arc using 
data collated from this study and from Corfield et al. (2001). A) Immobile element rock classification diagram 
(Winchester and Floyd, 1977). B) IUGS gabbro classification.  C) The tholeiitic-calc-alkaline classification (Irvine and 
Baragar, 1971) 

Figure 6 Geochemical discrimination plots of basalts and gabbros collected from Spongtang ophiolite in this 
study and compiled with results of Corfield et al. (2001) which include Dras arc volcanics. A) V/Ti/1000 diagram of 
Shervais (1982); B) Ti/Zr plot of Pearce and Cann (1973); C) Th/Yb / Nb/Yb MORB array plot of Pearce (2008); D) Zr-Th-
Nb ternary discrimination diagram of (Wood, 1980); E) Chondrite normalized and F) NMORB normalised rare-earth plot 
of Sun and McDonough (1989). 

Figure 7 Cathodoluminescence (CL) image of representative zircons from samples SBST05 and -12, with the 
analytical sites indicated. * indicates site where loss of radiogenic Pb is detected. 
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Figure 8 TW. 238U/206Pb – 207Pb/206Pb plot, uncorrected for common Pb. Analytical errors are depicted at the 2 
sigma level. 

Figure 9 Hf. εHf – time plot for the SBST12 zircon data. ‘Linear DM’ (depleted mantle) is a chord between a 
modern εHf = +17 and εHf = 0 at 4560 Ma. CHUR is the Chondritic Uniform Reservoir reference. The field ‘juvenile arc 
rocks’ is bounded by linear DM and the evolution line of (Dhuime et al., 2011) for island arcs – a chord from modern εHf = 
+13 and εHf = 0 at 4560 Ma. A typical ±2σ error bar for the data is shown. 

Figure 10 Time-space diagram showing all published ages for the Spongtang ophiolite and Dras-Nindam arc. K-Ar 
dates are from Reuber et al., 1989 and U/Pb dates from Pederson et al., 2001. Plate reconstructions are modified from the 
GPlates model of Seton et al. (2012). Modifications of the model are based on new paleomagnetic data for the Lhasa terrane 
(LT) by Zhou et al., 2016 and Li et al., 2015 who have the Lhasa terrane much further south from the Triassic to Cretaceous 
than in the model of Seton et al. (2012). Likewise paleomagnetic data from Klootwijk et al., 1979 has the Ladakh Arc positioned 
further south at 23°N. In this reconstruction the Spongtang ophiolite and Dras Arc evolve as an intra-oceanic island arc system 
that developed as a result of spontaneous subduction at ~136 Ma along a NNE-SSW transform fault in the Neotethys Ocean. 
This ophiolite-arc complex collided with India at ~55 Ma at roughly equatorial latitude while the Ladakh Arc (Trans-Himalayan 
Arc) developed closer to the southern margin of Eurasia before final collision at ~35 Ma. 
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7 Appendices 

7.1 XRF Analytical Methods 

Nine basalt and eight gabbro samples were collected from the Spongtang ophiolite 

within the Photang Valley. Samples were crushed using a TEMA chromium ring mill. Fused 

buttons were made for X-ray fluorescence (XRF) major element analysis. Depending on 

elemental concentrations estimated in trace element analysis, different types of flux were 

used. Pure metaborate was used for high silica samples, 57% tetraborate to 43% metaborate 

was used for ultramafic samples, and 12% tetraborate to 22% metaborate was used for mafic 

samples. 400mg of sample was added to each flux (300 mg for puremetaborate). Samples 

JP22, JP35 and JP44were oxidised before being fused in the furnace by adding 5 ml of 

lithium nitrate solution and left at 60 °C overnight. Pressed pellets for trace element analysis 

were created by mixing ~5 g of sample with a polyvinyl acetate (PVA) binder and pressed 

into an aluminium cup using a hydraulic hand press. Trace element pressed pellets were then 

oven dried at 60 °C for 12 hours. Whole rock geochemical analysis was conducted using a 

SPECTRO XEPOS energy dispersive polarisation X-ray fluorescence spectrometer at the 

University of Wollongong. Additional trace elements and the rare-earth element analyses 

were undertaken at Australian Laboratory Services (ALS) at Brisbane, Australia using 

inductively coupled plasma–mass spectroscopy (ICP-MS).  
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7.2 SHRIMP U-Pb analytical method and data appraisal  

Heavy minerals were concentrated using heavy liquid and isodynamic separation 

techniques at the mineral separation laboratory of the Research School of Earth Sciences, the 

Australian National University (ANU). Using a binocular microscope, the concentrates were 

hand-picked, and the chosen grains were cast into an epoxy resin disc along with reference 

Temora zircons (Black et al., 2003). After the epoxy cured, the mount was ground to a mid-

section level through the grains and then polished. Cathodoluminescence (CL) imaging was 

used to document the grains. 

U-Th-Pb analyses of the zircons were undertaken on the Hiroshima University 

SHRIMP 2 instrument (now moved to Nagoya University) following analytical protocols of 

Williams (1998), with the raw data being reduced using ANU software ‘PRAWN’ and 

‘Lead’. Measurements of 206Pb/238U in unknown zircons were calibrated using the Temora 

standard (U-Pb ages concordant at 417 Ma; (Black et al., 2003)). The reference zircon SL13 

(U=238 ppm) located in a set-up mount was used to calibrate U and Th abundance in the 

unknown zircons. The ISOPLOT program (Ludwig, 2003) was used to assess and plot the 

reduced and calibrated data. The results are plotted in a Tera-Wasserburg Concordia diagram 

prior to correction for common Pb. The reason for plotting them without correction for 

common Pb is to demonstrate that given the small amount of common Pb in these zircons, the 

data already have close to concordant U-Pb ages, prior to correction. Weighted mean 

206Pb/238U ages were calculated following the ‘207’ method of Compston et al. (1984) and 

using the Cumming and Richards (1975) Pb composition for the likely age of the zircons.  
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7.3 LA-MC-ICP-MS zircon Lu-Hf isotopes 

Zircon hafnium isotopic compositions were determined over a single analytical session 5-6 

May 2016, using the RSES ThermoFinnigan Neptune multi-collector ICPMS coupled to a Lambda 

Physik ArF, 193 nm excimer laser system with a ‘HelEx’ sample cell, following methods described 

by Hiess et al. (2009). Hf isotope analytical sites coincided with the U-Pb age determination sites 

where available. NIST 612 glass and a large zircon crystal from the Monastery kimberlite were used 

to initially tune the mass spectrometer to optimum sensitivity, adjust peak shape and ensure good 

collector positioning for all isotopes to be measured including those of Lu and Yb in addition to Hf.  

Analyses were made with a 47 μm diameter circular spot firing at 5 Hz with an energy density at the 

sample surface of ~10 J/cm2. For small zircons the spot overlapped onto the epoxy, but there was no 

detectable blank contribution.   171Yb, 173Yb, 174Hf, 175Lu, 176Hf, 177Hf, 178Hf, 179Hf and 181Ta isotopes 

were simultaneously measured in static-collection mode on 9 Faraday cups with 1011 Ω resistors. 

Analysis of a gas blank and a suite of 6 secondary reference zircons with a range of 176Hf/177Hf, 

176Lu/177Hf ratios 176Yb/177Hf (Monastery, Mud Tank, Plesovice, QGNG,, R33 and FC1) were 

performed systematically after every 10-12 sample spot analyses throughout the session. 

Data were acquired in 1 s integrations over 60 s or until the grain burned through. Time slices 

were later cropped to periods maintaining steady 176Hf/177Hf signals during data reduction on a custom 

Excel™ spreadsheet. Total Hf signal intensity typically fell from >10 to ~6 volts during a single 

analysis. The measured 176Lu/177Hf, 176Hf/177Hf, 178Hf/177Hf and 174Hf/177Hf ratios for all standard and 

sample analyses are presented in Supplementary Table 3. Mass bias was corrected using an 
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exponential law (Chu et al., 2002; Russell et al., 1978; Woodhead et al., 2004) and a composition for 

179Hf/177Hf of 0.732500 (Patchett et al., 1982). Yb and Lu mass bias factors were assumed to be 

identical and normalised using an exponential correction referenced to a 173Yb/171Yb ratio of 1.129197 

(Vervoort et al., 2004). The intensity of the 176Hf peak was determined accurately by removing 

isobaric interferences from 176Lu and 176Yb. Interference-free 175Lu and 173Yb were measured and the 

interference peaks subtracted according to reported 176Lu/175Lu and 176Yb/173Yb isotopic abundances 

of Vervoort et al. (2004). As a quality check of this procedure, 178Hf/177Hf and 174Hf/177Hf ratios for 

all zircon reference materials and samples were monitored. In particular the 174Hf/177Hf ratio is a 

sensitive monitor of the efficacy of Yb corrections owing to the relatively large 174Yb isotopic 

interference (31.83% abundance) that must be removed from the small 174Hf isotope (0.16% 

abundance). The mean 178Hf/177Hf and 174Hf/177Hf ratios for all standards and samples lie within 

uncertainty of the values published by Thirlwall and Anczkiewicz (2004) and Vervoort et al, (2004); 

Supplementary Table 3, regardless of zircon REE content demonstrating the accuracy of Yb 

corrections. Furthermore, no correlation exists between 176Hf/177Hf and 178Hf/177Hf, 174Hf/177Hf, 

176Lu/177Hf ratios for any zircon reference materials, including higher Lu/Hf standards FC1 and R33.  

Based on results from the six reference zircons, which were all within error of accepted solution 

values reported by Woodhead et al. (2004), no additional external corrections to the measured 

176Hf/177Hf were required. 

Zircon 176Lu/177Hf ratios must be accurately determined by LA-MC-ICPMS, to enable 

corrections for in-growth of radiogenic 176Hf. Average measured 176Lu/177Hf ratios within reference 

zircons with a range of reported compositions based on solution analyses are in good agreement with 
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the measured laser analyses The mean 176Hf/177Hf ratios for the six reference zircons deviate from 

published solution values by +0.0 (Plesovice); +0.30 (Mud Tank), +0.33 (QGNG), +0.15 (FC-1), -

0.24 (TEM-2), -0.16 (R33) and -0.08 (Monastery) εHf units (Supplementary Table 3).  

The segmental processing of the laser ablation data means that any down-hole variation in 

Lu/Hf and 176Hf/177Hf ratio can be detected and tracked. In all sample spot analyses Lu/Hf and 

176Hf/177Hf ratios were uniform throughout data acquisition. 

 

REFERENCES CITED 

 

Abrajevitch, A.V., Ali, J.R., Aitchison, J.C., Badengzhu, Davis, A.M., Liu, J.B., Ziabrev, 
S.V., 2005. Neotethys and the India-Asia collision: Insights from a palaeomagnetic study of 
the Dazhuqu ophiolite, southern Tibet. Earth Planet. Sci. Lett. 233, 87-102. 
Acton, G.D., 1999. Apparent polar wander of India since the Cretaceous with implications 
for regional tectonics and true polar wander, In: Radhakrishna, T., Piper, J.D.A. (Eds.), The 
Indian Subcontinent and Gondwana: A Palaeomagnetic and Rock Magnetic Perspective. 
Geological Society of India, Bangalore, pp. 129-175. 
Ahmad, T., Tanaka, T., Sachan, H.K., Asahara, Y., Islam, R., Khanna, P.P., 2008. 
Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, 
Ladakh, India: Implications for the Neo-Tethyan subduction along the Indus suture zone. 
Tectonophysics 451, 206-224. 
Aitchison, J., Gibbons, A., Müller, R., Whittaker, J., 2012. Birth of a Neotethyan intra-
oceanic arc, AGU Fall Meeting Abstracts. 
Aitchison, J.C., Ali, J.R., Davis, A.M., 2007a. When and where did India and Asia collide? 
Journal of Geophysical Research 112. 
Aitchison, J.C., Badengzhu, Davis, A.M., Liu, J.B., Luo, H., Malpas, J.G., McDermid, I.R.C., 
Wu, H.Y., Ziabrev, S.V., Zhou, M.F., 2000. Remnants of a Cretaceous intra-oceanic 
subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet. Sci. Lett. 
183, 231-244. 
Aitchison, J.C., Buckman, S., 2012. Accordion vs. quantum tectonics: Insights into 
continental growth processes from the Paleozoic of eastern Gondwana. Gondwana Research 
22, 674-680. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

49 

Aitchison, J.C., Clarke, G.L., Meffre, S., Cluzel, D., 1995. Eocene Arc-Continent Collision in 
New-Caledonia and Implications for Regional Southwest Pacific Tectonic Evolution. 
Geology 23, 161-164. 
Aitchison, J.C., Davis, A.M., Abrajevitch, A.V., Ali, J.R., Badengzhu, Liu, J., Luo, H., 
McDermid, I.R.C., Zyabrev, S.V., 2003. Stratigraphic and sedimentological constraints on 
the age and tectonic evolution of the Neotethyan ophiolites along the Yarlung Tsangpo suture 
zone, Tibet, In: Dilek, Y., Robinson, P.T. (Eds.), Ophiolites in Earth History, pp. 147-164. 
Aitchison, J.C., Davis, A.M., Badengzhu, B., Luo, H., 2002. New constraints on the India-
Asia collision: the Lower Miocene Gangrinboche conglomerates, Yarlung Tsangpo suture 
zone, SE Tibet. J. Asian Earth Sci. 21, 251-263. 
Aitchison, J.C., McDermid, I.R.C., Ali, J.R., Davis, A.M., Zyabrev, S.V., 2007b. Shoshonites 
in Southern Tibet Record Late Jurassic Rifting of a Tethyan Intraoceanic Island Arc. The 
Journal of Geology 115, 197-213. 
Aitchison, J.C., Xia, X.P., Baxter, A.T., Ali, J.R., 2011. Detrital zircon U-Pb ages along the 
Yarlung-Tsangpo suture zone, Tibet: Implications for oblique convergence and collision 
between India and Asia. Gondwana Research 20, 691-709. 
Ali, S.A., Buckman, S., Aswad, K.J., Jones, B.G., Ismail, S.A., Nutman, A.P., 2012. 
Recognition of Late Cretaceous Hasanbag ophiolite-arc rocks in the Kurdistan Region of the 
Iraqi Zagros suture zone: A missing link in the paleogeography of the closing Neotethys 
Ocean. Lithosphere 4, 395-410. 
Ali, S.A., Buckman, S., Aswad, K.J., Jones, B.G., Ismail, S.A., Nutman, A.P., 2013. The 
tectonic evolution of a Neo-Tethyan (Eocene-Oligocene) island-arc (Walash and Naopurdan 
groups) in the Kurdistan region of the Northeast Iraqi Zagros Suture Zone. Isl. Arc. 22, 104-
125. 
Ballard, J.R., Palin, J.M., Campbell, I.H., 2002. Relative oxidation states of magmas inferred 
from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. 
Contrib Mineral Petr 144, 347-364. 
Bassoullet, J.P., Colchen, M., Juteau, T., Marcoux, J., Mascle, G., 1980. Structure of the 
Zanskar Nappes, Ladakh, Himalaya. Comptes Rendus Hebdomadaires Des Seances De L 
Academie Des Sciences Serie D 290, 389-392. 
Baud, A., Arn, R., Bugnon, P., Crisinel, A., Dolivo, E., Escher, A., Hammerschlag, J., 
Marthaler, M., Masson, H., Steck, A., 1982. Le contact Gondwana-péri-Gondwana dans le 
Zanskar oriental (Ladakh, Himalaya). B Soc Geol Fr 24, 341-361. 
Baxter, A.T., Aitchison, J.C., Ali, J.R., Chan, J.S.L., Chan, G.H.N., 2016. Detrital chrome 
spinel evidence for a Neotethyan intra-oceanic island arc collision with India in the 
Paleocene. J. Asian Earth Sci. 128, 90-104. 
Baxter, A.T., Aitchison, J.C., Ali, J.R., Zyabrev, S.V., 2010. Early Cretaceous radiolarians 
from the Spongtang massif, Ladakh, NW India: implications for Neo-Tethyan evolution. J 
Geol Soc London 167, 511-517. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

50 

Baxter, A.T., Aitchison, J.C., Zyabrev, S.V., 2009. Radiolarian age constraints on 
Mesotethyan ocean evolution, and their implications for development of the Bangong-
Nujiang suture, Tibet. J Geol Soc London 166, 689-694. 
Bédard, É., Hébert, R., Guilmette, C., Lesage, G., Wang, C.S., Dostal, J., 2009. Petrology and 
geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, 
Southern Tibet: Evidence for an arc–back-arc origin. Lithos 113, 48-67. 
Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, 
C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. 
Geol. 200, 155-170. 
Borneman, N.L., Hodges, K.V., van Soest, M.C., Bohon, W., Wartho, J.-A., Cronk, S.S., 
Ahmad, T., 2015. Age and structure of the shyok suture in the ladakh region of northwestern 
India: Implications for slip on the karakoram fault system. Tectonics, n/a-n/a. 
Bouilhol, P., Jagoutz, O., Hanchar, J.M., Dudas, F.O., 2013. Dating the India-Eurasia 
collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163-175. 
Bouilhol, P., Schaltegger, U., Chiaradia, M., Ovtcharova, M., Stracke, A., Burg, J.P., 
Dawood, H., 2011. Timing of juvenile arc crust formation and evolution in the Sapat 
Complex (Kohistan-Pakistan). Chem. Geol. 280, 243-256. 
Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition 
of CHUR: Constraints from unequilibrated chondrites and implications for the bulk 
composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48-57. 
Brookfield, M.E., Andrews-Speed, C.P., 1984. Sedimentology, Petrography and Tectonic 
Significance of the Shelf, Flysch and Molasse Clastic Deposits across the Indus Suture Zone, 
Ladakh, Nw India. Sedimentary Geology 40, 249-286. 
Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, 
C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively 
coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal 
of Analytical Atomic Spectrometry 17, 1567-1574. 
Clift, P., Hannigan, R., Blusztajn, J., Draut, A.E., 2002a. Geochemical evolution of the Dras-
Kohistan Arc during collision with Eurasia: Evidence from the Ladakh Himalaya, India. The 
Island Arc 11, 255-273. 
Clift, P.D., Carter, A., Krol, M., Kirby, E., 2002b. Constraints on India-Eurasia collision in 
the Arabian Sea region taken from the Indus Group, Ladakh Himalaya, India. Tectonic and 
Climatic Evolution of the Arabian Sea Region 195, 97-116. 
Clift, P.D., Degnan, P.J., Hannigan, R., Blusztajn, J., 2000. Sedimentary and geochemical 
evolution of the Dras forearc basin, Indus suture, Ladakh Himalaya, India. Geol. Soc. Am. 
Bull. 112, 450-466. 
Clift, P.D., Shimizu, N., Layne, G.D., Blusztajn, J., 2001. Tracing patterns of erosion and 
drainage in the Paleogene Himalaya through ion probe Pb isotope analysis of detrital K-
feldspars in the Indus Molasse, India. Earth Planet. Sci. Lett. 188, 475-491. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

51 

Colchen, M., Reuber, I., Bassoullet, J.P., Bellier, J.-P., Blondeau, A., Lys, M., De Wever, P., 
1987. Donnees biostratigraphiques sur les melanges ophiolitiques du Zanskar, Himalaya du 
Ladakh. 
(Biostratigraphic data on the Zanskar ophiolitic melanges, Ladakh- Himalaya ( India)). 
Comptes Rendus - Academie des Sciences, Serie II 305, 403-406. 
Compston, W., Williams, I., Meyer, C., 1984. U‐Pb geochronology of zircons from lunar 
breccia 73217 using a sensitive high mass‐resolution ion microprobe. Journal of Geophysical 
Research: Solid Earth 89. 
Corfield, R.I., Searle, M.P., 2000. Crustal shortening estimates across the north Indian 
continental margin, Ladakh, NW India. Tectonics of the Nanga Parbat Syntaxis and the 
Western Himalaya 170, 395-410. 
Corfield, R.I., Searle, M.P., Green, O.R., 1999. Photang thrust sheet: an accretionary complex 
structurally below the Spontang ophiolite constraining timing and tectonic environment of 
ophiolite obduction, Ladakh Himalaya, NW India. J Geol Soc London 156, 1031-1044. 
Corfield, R.I., Searle, M.P., Pedersen, R.B., 2001. Tectonic setting, origin, and obduction 
history of the spontang ophiolite, Ladakh Himalaya, NW India. Journal of Geology 109, 715-
736. 
Coward, M.P., Butler, R.W.H., Khan, M.A., Knipe, R.J., 1987. The Tectonic History of 
Kohistan and Its Implications for Himalayan Structure. J Geol Soc London 144, 377-391. 
Cumming, G.L., Richards, J.R., 1975. Ore Lead Isotope Ratios in a Continuously Changing 
Earth. Earth Planet. Sci. Lett. 28, 155-171. 
Davis, A.M., Aitchison, J.C., Hui, L., 2004. Conglomerates record the tectonic evolution of 
the Yarlung-Tsangpo suture zone in southern Tibet. Geol Soc Spec Publ 226, 235-246. 
de Sigoyer, J., Chavagnac, V., Blichert-Toft, J., Villa, I.M., Luais, B., Guillot, S., Cosca, M., 
Mascle, G., 2000. Dating the Indian continental subduction and collisional thickening in the 
northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology 28, 487. 
de Sigoyer, J., Guillot, S., Dick, P., 2004. Exhumation of the ultrahigh-pressure Tso Morari 
unit in eastern Ladakh (NW Himalaya): A case study. Tectonics 23, n/a-n/a. 
Dewey, J.F., 2005. Orogeny can be very short. Proc Natl Acad Sci U S A 102, 15286-15293. 
Dewey, J.F., Cande, S., Pitman, W.C., 1989. Tectonic Evolution of the India Eurasia 
Collision Zone. Eclogae Geol. Helv. 82, 717-734. 
Dhuime, B., Hawkesworth, C., Cawood, P., 2011. Geochemistry. When continents formed. 
Science 331, 154-155. 
Dilek, Y., Furnes, H., 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic 
fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 123, 387-411. 
Donaldson, D.G., Webb, A.A.G., Menold, C.A., Kylander-Clark, A.R.C., Hacker, B.R., 
2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology 41, 835-838. 
Dubois-Cote, V., Hebert, R., Dupuis, C., Wang, C.S., Li, Y.L., Dostal, J., 2005. Petrological 
and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. 
Chem. Geol. 214, 265-286. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

52 

Dunlap, W.J., Wysoczanski, R., 2002. Thermal evidence for early Cretaceous metamorphism 
in the Shyok suture zone and age of the Khardung volcanic rocks, Ladakh, India. J. Asian 
Earth Sci. 20, 481-490. 
Dupuis, C., Hebert, R., Dubois-Cote, V., Guilmette, C., Wang, C.S., Li, Y.L., Li, Z.J., 2005. 
The Yarlung Zangbo Suture Zone ophiolitic melange (southern Tibet): new insights from 
geochemistry of ultramafic rocks. J. Asian Earth Sci. 25, 937-960. 
Dürr, S.B., 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, South 
Tibet). Geol. Soc. Am. Bull. 108, 669-684. 
Ehiro, M., Kojima, S., Sato, T., Ahmad, T., Ohtani, T., 2007. Discovery of Jurassic 
ammonoids from the Shyok suture zone to the northeast of Chang La Pass, Ladakh, 
northwest India and its tectonic significance. Isl. Arc. 16, 124-132. 
Einsele, G., Liu B, Dürr, S., Frisch, W., Liu G, Luterbacher, H.P., Ratschbacher, L., Ricken, 
W., Wendt, J., Wetzel, A., Yu, G., Zheng, H., 1994. The Xigaze forearc basin: evolution and 
facies architecture (Cretaceous, Tibet). Sedimentary Geology 90, 1-32. 
Fuchs, G., 1979. On the Geology of Western Ladakh. Jahrbuch der Geologischen 
Bundesanstalt A 122, 513-540. 
Fuchs, G., 1981. Outline of the Geology of the Himalaya. Mitt. Österr. Geol. Ges. 74/75, 
101-127. 
Fuchs, G., 1982. The Geology of Western Zanskar. The Geology of Western Zanskar 125, 1-
50. 
Fuchs, G., 1986. Geology of the Markha-Khurnak Region in Ladakh (India). Jahrbuch der 
Geologischen Bundesanstalt A 128, 403-437. 
Fuchs, G., Willems, H., 1990. The Final Stages of Sedimentation in the Tethyan Zone of 
Zanskar and their Geodynamic Significance (Ladakh-Himalaya). Jahrbuch der Geologischen 
Bundesanstalt 133, 259-273. 
Gaetani, M., Garzanti, E., 1991. Multicyclic History of the Northern India Continental-
Margin (Northwestern Himalaya). Aapg Bulletin-American Association of Petroleum 
Geologists 75, 1427-1446. 
Gaina, C., van Hinsbergen, D.J.J., Spakman, W., 2015. Tectonic interactions between India 
and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and 
seismic tomography. Tectonics 34, 875-906. 
Gansser, A., 1964. The Geology of the Himalayas. Wiley-Interscience, New York. 289 pp. 
Garzanti, E., Baud, A., Mascle, G., 1987. Sedimentary Record of the Northward Flight of 
India and Its Collision with Eurasia (Ladakh Himalaya, India). Geodin Acta 1, 297-312. 
Garzanti, E., Sciunnach, D., Gaetani, M., Corfield, R.I., Watts, A.B., Searle, M.P., 2005. 
Discussion on subsidence history of the north Indian continental margin, Zanskar-Ladakh 
Himalaya, NW India. J Geol Soc London 162, 889-892. 
Garzanti, E., Van Haver, T., 1988. The indus clastics: forearc basin sedimentation in the 
Ladakh Himalaya (India). Sedimentary Geology 59, 237-249. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

53 

Gibbons, A.D., Zahirovic, S., Muller, R.D., Whittaker, J.M., Yatheesh, V., 2015. A tectonic 
model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of 
the central-eastern Tethys. Gondwana Research 28, 451-492. 
Girardeau, J., Marcoux, J., Yougong, Z., 1984. Lithologic and Tectonic Environment of the 
Xigaze Ophiolite (Yarlung Zangbo Suture Zone, Southern Tibet, China), and Kinematics of 
Its Emplacement. Eclogae Geol. Helv. 77, 153-170. 
Girardeau, J., Mercier, J.C.C., Yougong, Z., 1985a. Origin of the Xigaze Ophiolite, Yarlung 
Zangbo Suture Zone, Southern Tibet. Tectonophysics 119, 407-433. 
Girardeau, J., Mercier, J.C.C., Zao, Y.O., 1985b. Structure of the Xigaze Ophiolite, Yarlung 
Zangbo Suture Zone, Southern Tibet, China - Genetic-Implications. Tectonics 4, 267-&. 
Groppo, C., Rolfo, F., Sachan, H.K., Rai, S.K., 2016. Petrology of blueschist from the 
Western Himalaya (Ladakh, NW India): exploring the complex behavior of a lawsonite-
bearing system in a paleo-accretionary setting. Lithos 252, 41-56. 
Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW 
Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353-
431. 
Hébert, R., Bezard, R., Guilmette, C., Dostal, J., Wang, C.S., Liu, Z.F., 2012. The Indus–
Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: 
First synthesis of petrology, geochemistry, and geochronology with incidences on 
geodynamic reconstructions of Neo-Tethys. Gondwana Research 22, 377-397. 
Heine, C., Muller, R.D., Gaina, C., 2004. Reconstructing the Lost Eastern Tethys Ocean 
Basin: Convergence history of the SE Asian margin and marine gateways. Geoph Monog 
Series 149, 37-54. 
Heitz, A., 1986. Datations par méthode K/Ar sur filons du massif ophiolitique de Spongtang, 
rapport Strasbourg, p. 28. 
Henderson, A.L., Najman, Y., Parrish, R., BouDagher-Fadel, M., Barford, D., Garzanti, E., 
Ando, S., 2010. Geology of the Cenozoic Indus Basin sedimentary rocks: 
Paleoenvironmental interpretation of sedimentation from the western Himalaya during the 
early phases of India-Eurasia collision. Tectonics 29. 
Henderson, A.L., Najman, Y., Parrish, R., Mark, D.F., Foster, G.L., 2011. Constraints to the 
timing of India-Eurasia collision; a re-evaluation of evidence from the Indus Basin 
sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India. Earth-Science Reviews 
106, 265-292. 
Heri, A.R., Aitchison, J.C., King, J.A., Villa, I.M., 2015. Geochronology and isotope 
geochemistry of Eocene dykes intruding the Ladakh Batholith. Lithos 212-215, 111-121. 
Hiess, J., Bennett, V.C., Nutman, A.P., Williams, I.S., 2009. In situ U-Pb, O and Hf isotopic 
compositions of zircon and olivine from Eoarchaean rocks, West Greenland: New insights to 
making old crust. Geochim Cosmochim Ac 73, 4489-4516. 
Hole, M.J., Saunders, A.D., Marriner, G.F., Tarney, J., 1984. Subduction of pelagic 
sediments: Implications for the origins of Ce-anomolous basalts from the Marianas islands. 
Journal of the Geological Society, London 141, 453-472. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

54 

Holm, R.J., Spandler, C., Richards, S.W., 2015. Continental collision, orogenesis and arc 
magmatism of the Miocene Maramuni arc, Papua New Guinea. Gondwana Research 28, 
1117-1136. 
Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thoni, M., Trommsdorff, V., 1982. 
Magmatism and Metamorphism in the Ladakh Himalayas (the Indus-Tsangpo Suture Zone). 
Earth Planet. Sci. Lett. 60, 253-292. 
Honegger, K., Le Fort, P., Mascle, G., Zimmermann, J.L., 1989. The blueschists along the 
Indus suture zone in Ladakh, NW Himalaya. Journal of Metamorphic Geology 7, 57-73. 
Hu, X.M., Garzanti, E., Wang, J.G., Huang, W.T., An, W., Webb, A., 2016. The timing of 
India-Asia collision onset - Facts, theories, controversies. Earth-Science Reviews 160, 264-
299. 
Huang, C.Y., Yuan, P.B., Lin, C.W., Wang, T.K., Chang, C.P., 2000. Geodynamic processes 
of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, 
Urals and Corsica. Tectonophysics 325, 1-21. 
Iizuka, T., Komiya, T., Rino, S., Maruyama, S., Hirata, T., 2010. Detrital zircon evidence for 
Hf isotopic evolution of granitoid crust and continental growth. Geochim Cosmochim Ac 74, 
2450-2472. 
Irvine, T.N., Baragar, W.R.A., 1971. A Guide to the Chemical Classification of the Common 
Volcanic Rocks. Can J Earth Sci 8, 523-548. 
Ishizuka, O., Hickey-Vargas, R., Arculus, R.J., Yogodzinski, G.M., Savov, I.P., Kusano, Y., 
McCarthy, A., Brandl, P.A., Sudo, M., 2018. Age of Izu–Bonin–Mariana arc basement. Earth 
Planet. Sci. Lett. 481, 80-90. 
Ishizuka, O., Tani, K., Reagan, M.K., Kanayama, K., Umino, S., Harigane, Y., Sakamoto, I., 
Miyajima, Y., Yuasa, M., Dunkley, D.J., 2011. The timescales of subduction initiation and 
subsequent evolution of an oceanic island arc. Earth Planet. Sci. Lett. 306, 229-240. 
Jan, M.Q., Windley, B.F., Khan, A., 1985. The Waziristan Ophiolite, Pakistan - General 
Geology and Chemistry of Chromite and Associated Phases. Econ Geol 80, 294-306. 
Ji, W.Q., Wu, F.Y., Chung, S.L., Li, J.X., Liu, C.Z., 2009. Zircon U-Pb geochronology and 
Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. 
Geol. 262, 229-245. 
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Dhuime, B., Elliott, T., Litvak, V.D., Alonso, 
R., Hinton, R., Facility, E.I.M., 2015. Geodynamic controls on the contamination of 
Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic 
composition of zircon. Geochim Cosmochim Ac 164, 386-402. 
Kakar, M.I., Collins, A.S., Mahmood, K., Foden, J.D., Khan, M., 2012. U-Pb zircon 
crystallization age of the Muslim Bagh ophiolite: Enigmatic remains of an extensive pre-
Himalayan arc. Geology 40, 1099-1102. 
Kelemen, P.B., Sonnenfeld, M.D., 1983. Stratigraphy, structure, petrology and local 
tectonics, central Ladakh, NW Himalaya. Schweiz. Mineral. Petrog. Mitt. 63, 267-287. 
Khan, M.A., Jan, M.Q., Weaver, B.L., 1993. Evolution of the lower arc crust in Kohistan, N. 
Pakistan; temporal arc magmatism through early, mature and intra-arc rift stages, In: Treloar, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

55 

P.J., Searle, M.P. (Eds.), Himalayan tectonics. Geological Society of London, London, 
United Kingdom, pp. 123-138. 
Klootwijk, C., Sharma, M.L., Gergan, J., Tirkey, B., Shah, S.K., Agarwal, V., 1979. The 
extent of Greater India, II. Palaeomagnetic data from the Ladakh Intrusives at Kargil, 
northwestern Himalayas. Earth Planet. Sci. Lett. 44, 47-64. 
Kocak, K., Isik, F., Arslan, M., Zedef, V., 2005. Petrological and source region 
characteristics of ophiolitic hornblende gabbros from the Aksaray and Kayseri regions, 
central Anatolian crystalline complex, Turkey. J. Asian Earth Sci. 25, 883-891. 
La Touche, D., 1888. Rediscovery of Nummulites in Zanskar. Rec. Geol. Surv. India 21, 160-
162. 
Leech, M.L., Singh, S., Jain, A.K., 2007. Continuous metamorphic zircon growth and 
interpretation of U-Pb SHRIMP dating: An example from the western Himalaya. Int Geol 
Rev 49, 313-328. 
Leech, M.L., Singh, S., Jain, A.K., Klemperer, S.L., Manickavasagam, R.M., 2005. The onset 
of India-Asia continental collision: Early, steep subduction required by the timing of UHP 
metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 234, 83-97. 
Li, Z.Y., Ding, L., Lippert, P.C., Song, P.P., Yue, Y.H., van Hinsbergen, D.J.J., 2016. 
Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana 
to Eurasia. Geology 44, 727-730. 
Liu, D., Huang, Q., Fan, S., Zhang, L., Shi, R., Ding, L., 2014. Subduction of the Bangong-
Nujiang Ocean: constraints from granites in the Bangong Co area, Tibet. Geol J 49, 188-206. 
Liu, J.B., Aitchison, J.C., 2002. Upper Paleocene radiolarians from the Yamdrok melange, 
south Xizang (Tibet), China. Micropaleontology 48, 145-154. 
Ludwig, K.R., 2003. Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. . 
Berkeley Geochronology Center, vol. 4, Berkeley, California. 70 pp. 
Lydekker, R., 1880. Geology of Ladakh and neighbouring Districts. Record Geological 
Survey India 13, 26-59. 
Lydekker, R., 1883. The geology of the Kashmir and Chamba territories and the districts of 
Khagan. Mem. Geol. Sur. Ind 22, 211-224. 
MacMahon, C., 1901. Petrological notes on some peridotites, serpentines, gabbros, and 
associated rocks, from Ladakh, north-western Himalaya. Mere. Geol. Soc. India 31, 303-329. 
Mahéo, G., Bertrand, H., Guillot, S., Villa, I.M., Keller, F., Capiez, P., 2004. The South 
Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with 
implication for the closure of the Neo-Tethys. Chem. Geol. 203, 273-303. 
Mahéo, G., Fayoux, X., Guillot, S., Garzanti, E., Capiez, P., Mascle, G., 2006. Relicts of an 
intra-oceanic arc in the Sapi-Shergol mélange zone (Ladakh, NW Himalaya, India): 
implications for the closure of the Neo-Tethys Ocean. J. Asian Earth Sci. 26, 695-707. 
Malpas, J., Zhou, M.-F., Robinson, P.T., Reynolds, P.H., 2003. Geochemical and 
geochronological constraints on the origin and emplacement of the Yarlung Zangbo 
ophiolites, Southern Tibet. Geological Society, London, Special Publications 218, 191-206. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

56 

McDermid, I.R.C., Aitchison, J.C., Davis, A.M., Harrison, T.M., Grove, M., 2002. The 
Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo 
suture zone, southeastern Tibet. Chem. Geol. 187, 267-277. 
Miller, C., Schuster, R., Klotzli, U., Frank, W., Purtscheller, F., 1999. Post-collisional 
potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic 
constraints for mantle source characteristics and petrogenesis. J Petrol 40, 1399-1424. 
Miller, C., Thoni, M., Frank, W., Schuster, R., Melcher, F., Meisel, T., Zanetti, A., 2003. 
Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos 66, 
155-172. 
Miyashiro, A., 1973. The Troodos ophiolitic complex was probably formed in an island arc. 
Earth Planet. Sci. Lett. 19, 218-224. 
Miyashiro, A., 1975. Classification, Characteristics, and Origin of Ophiolites. Journal of 
Geology 83, 249-281. 
Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental 
Collision: Features of recent continental tectonics in Asia can be interpreted as results of the 
India-Eurasia collision. Science 189, 419-426. 
Moores, E.M., Roeder, D.H., Abbas, S.G., Ahmad, Z., 1980. Geology and emplacement of 
the Muslim Bagh ophiolite complex, In: Panayiotou, A. (Ed.), Ophiolites; Proceedings, 
International ophiolite symposium. Cyprus Minist. Agric. Nat. Resour. Geol. Surv. Dep., 
Nicosia, Cyprus, pp. 424-429. 
Najman, Y., Jenks, D., Godin, L., Boudagher-Fadel, M., Millar, I., Garzanti, E., Horstwood, 
M., Bracciali, L., 2017. The Tethyan Himalayan detrital record shows that India-Asia 
terminal collision occurred by 54 Ma in the Western Himalaya. Earth Planet. Sci. Lett. 459, 
301-310. 
Nicolas, A., Girardeau, J., Marcoux, J., Dupre, B., Wang, X.B., Cao, Y.G., Zheng, H.X., 
Xiao, X.C., 1981. The Xigaze Ophiolite (Tibet) - a Peculiar Oceanic Lithosphere. Nature 
294, 414-417. 
Paces, J.B., Miller, J.D., 1993. Precise U‐Pb ages of Duluth complex and related mafic 
intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, 
paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift 
system. Journal of Geophysical Research: Solid Earth 98, 13997-14013. 
Pallister, J.S., Knight, R.J., 1981. Rare-earth element geochemistry of the Samail ophiolite 
near Ibra, Oman, In: Coleman Robert, G., Hopson Clifford, A. (Eds.), Oman ophiolite. 
American Geophysical Union, Washington, DC, United States, pp. 2673-2697. 
Patchett, P.J., Kouvo, O., Hedge, C.E., Tatsumoto, M., 1982. Evolution of continental crust 
and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petr 78, 279-297. 
Pearce, J.A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on 
Cyprus. Tectonophysics 25, 41-67. 
Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries, 
In: Thorpe, R.S. (Ed.), Orogenic andesites and related rocks. John Wiley and Sons, 
Chichester, England, pp. 528-548. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

57 

Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to 
ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14-48. 
Pearce, J.A., Cann, J.R., 1973. Tectonic Setting of Basic Volcanic-Rocks Determined Using 
Trace-Element Analyses. Earth Planet. Sci. Lett. 19, 290-300. 
Pearce, J.A., Robinson, P.T., 2010. The Troodos ophiolitic complex probably formed in a 
subduction initiation, slab edge setting. Gondwana Research 18, 60-81. 
Pedersen, R.B., Searle, M.P., Corfield, R.I., 2001. U-Pb zircon ages from the Spontang 
Ophiolite, Ladakh Himalaya. J Geol Soc London 158, 513-520. 
Ravikant, V., 2006. Utility of Rb-Sr geochronology in constraining Miocene and Cretaceous 
events in the eastern Karakoram, Ladakh, India. J. Asian Earth Sci. 27, 534-543. 
Ravikant, V., Wu, F.Y., Ji, W.Q., 2009. Zircon U-Pb and Hf isotopic constraints on 
petrogenesis of the Cretaceous-Tertiary granites in eastern Karakoram and Ladakh, India. 
Lithos 110, 153-166. 
Reibel, G., Reuber, I., 1982. The Peculiar Spongtang-Photaksar Ophiolitic Nappe (Ladakh, 
Himalaya). Cr Acad Sci Ii 294, 557-&. 
Reichardt, H., Weinberg, R.F., Andersson, U.B., Fanning, C.M., 2010. Hybridization of 
granitic magmas in the source: The origin of the Karakoram Batholith, Ladakh, NW India. 
Lithos 116, 249-272. 
Reuber, I., 1986. Geometry of Accretion and Oceanic Thrusting of the Spongtang Ophiolite, 
Ladakh-Himalaya. Nature 321, 592-596. 
Reuber, I., 1989. The Dras Arc - 2 Successive Volcanic Events on Eroded Oceanic-Crust. 
Tectonophysics 161, 93-106. 
Reuber, I., 1990. The Shyok ophiolite in Ladakh-Himalaya: relics of the Tethyan oceanic 
crust overlain by volcanosedimentary arc series of mid-Cretaceous age. Comptes Rendus, 
Academie des Sciences, Serie II 310, 1255-1262. 
Reuber, I., Colchen, M., Mevel, C., 1992. The Spongtang ophiolite and ophiolitic melanges 
of the Zanskar, NW Himalaya, tracing the evolution of the closing Tethys in the Upper 
Cretaceous to the early Tertiary, In: Sinha, A.K. (Ed.), Himalayan orogen and global 
tectonics. Balkema; International Lithosphere Programme, Publication 197, pp. 235-266. 
Reuber, I., Colchen, M., Mevel, C., 2015. The geodynamic evolution of the South-Tethyan, 
margin in Zanskar, NW-Himalaya, as revealed by the Spongtang ophiolitic melanges. Geodin 
Acta 1, 283-296. 
Reuber, I., Montigny, R., Thuizat, R., Heitz, A., 1989. K-Ar Ages of Ophiolites and Arc 
Volcanics of the Indus Suture Zone - Clues on the Early Evolution of the Neo-Tethys. 
Eclogae Geol. Helv. 82, 699-715. 
Rex, A.J., Searle, M.P., Tirrul, R., Crawford, M.B., Prior, D.J., Rex, D.C., Barnicoat, A.C., 
1988. The geochemical and tectonic evolution of the central Karakoram, North Pakistan, In: 
Shackleton, R.M., Dewey, J.F., Windley, B.F. (Eds.), Tectonic evolution of the Himalayas 
and Tibet. Royal Society of London, London, United Kingdom, pp. 229-255. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

58 

Robertson, A., Degnan, P., 1994. The Dras Arc Complex - Lithofacies and Reconstruction of 
a Late Cretaceous Oceanic Volcanic Arc in the Indus Suture Zone, Ladakh-Himalaya. 
Sedimentary Geology 92, 117-145. 
Robertson, A.H.F., Degnan, P.J., 1993. Sedimentology and Tectonic Implications of the 
Lamayuru Complex - Deep-Water Facies of the Indian Passive Margin, Indus Suture Zone, 
Ladakh Himalaya. Himalayan Tectonics 74, 299-321. 
Rolland, Y., 2002. From intra-oceanic convergence to post-collisional evolution: example of 
the India-Asia convergence in NW Himalaya, from Cretaceous to present, In: Rosenbaum, 
G., Lister, G.S. (Eds.), Journal of the Virtual Explorer, pp. 185-208. 
Russell, W., Papanastassiou, D., Tombrello, T., 1978. Ca isotope fractionation on the Earth 
and other solar system materials. Geochim Cosmochim Ac 42, 1075-1090. 
Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O'Hara, S., Melkonian, A., Arko, R., Weissel, 
R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., Zemsky, R., 2009. Global 
Multi-Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems 10, n/a-n/a. 
Sarwar, G., 1992. Tectonic Setting of the Bela Ophiolites, Southern Pakistan. Tectonophysics 
207, 359-381. 
Searle, M., Corfield, R.I., Stephenson, B., McCarron, J., 1997. Structure of the North Indian 
continental margin in the Ladakh-Zanskar Himalayas: Implications for the timing of 
obduction of the Spontang ophiolite, India-Asia collision and deformation events in the 
Himalaya. Geological Magazine 134, 297-316. 
Searle, M., Cox, J., 1999. Tectonic setting, origin, and obduction of the Oman ophiolite. 
Geol. Soc. Am. Bull. 111, 104-122. 
Searle, M., Khan, M.A., Fraser, J., Gough, S., Jan, M.Q., 1999. The tectonic evolution of the 
Kohistan‐Karakoram collision belt along the Karakoram Highway transect, north Pakistan. 
Tectonics 18, 929-949. 
Searle, M.P., 1986. Structural Evolution and Sequence of Thrusting in the High Himalayan, 
Tibetan-Tethys and Indus Suture Zones of Zanskar and Ladakh, Western Himalaya. Journal 
of Structural Geology 8, 923-+. 
Searle, M.P., Cooper, D.J.W., Rex, A.J., 1988. Collision Tectonics of the Ladakh Zanskar 
Himalaya. Philosophical Transactions of the Royal Society a-Mathematical Physical and 
Engineering Sciences 326, 117-+. 
Searle, M.P., Parrish, R.R., Tirrul, R., Rex, D.C., 1990a. Age of crystallization and cooling of 
the K2 gneiss in the Baltoro Karakoram. Journal of the Geological Society, London 147, 603-
606. 
Searle, M.P., Pickering, K.T., Cooper, D.J.W., 1990b. Restoration and evolution of the 
intermontane Indus molasse basin, Ladakh Himalaya, India. Tectonophysics 174, 301-314. 
Searle, M.P., Tirrul, R., 1991. Structural and thermal evolution of the Karakoram crust. 
Journal of the Geological Society, London 148, 65-82. 
Searle, M.P., Warren, C.J., Waters, D.J., Parrish, R.R., 2003. Subduction zone polarity in the 
Oman Mountains: Implications for ophiolite emplacement. Ophiolites in Earth History 218, 
467-480. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

59 

Searle, M.P., Weinberg, R.F., Dunlap, W.J., 1998. Transpressional tectonics along the 
Karakoram fault zone, northern Ladakh: constraints on Tibetan extrusion, In: Holdsworth, 
R.E., Strachan, R.E., Dewey John, F. (Eds.), Continental Transpressional and Transtensional 
Tectonics. Geological Society, London, pp. 307–326. 
Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., 
Gurnis, M., Turner, M., Maus, S., Chandler, M., 2012. Global continental and ocean basin 
reconstructions since 200 Ma. Earth-Science Reviews 113, 212-270. 
Shellnutt, J.G., Lee, T.Y., Brookfield, M.E., Chung, S.L., 2014. Correlation between 
magmatism of the Ladakh Batholith and plate convergence rates during the India-Eurasia 
collision. Gondwana Research 26, 1051-1059. 
Shervais, J.W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth 
Planet. Sci. Lett. 59, 101-118. 
Sinclair, H.D., Jaffey, N., 2001. Sedimentology of the Indus Group, Ladakh, northern India: 
implications for the timing of initiation of the palaeo-Indus River. J Geol Soc London 158, 
151-162. 
Singh, S., Kumar, R., Barley, M.E., Jain, A.K., 2007. SHRIMP U-Pb ages and depth of 
emplacement of Ladakh Batholith, Eastern Ladakh, India. J. Asian Earth Sci. 30, 490-503. 
St-Onge, M.R., Rayner, N., Palin, R.M., Searle, M.P., Waters, D.J., 2013. Integrated 
pressure-temperature-time constraints for the Tso Morari dome (Northwest India): 
implications for the burial and exhumation path of UHP units in the western Himalaya. 
Journal of Metamorphic Geology 31, 469-504. 
Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic 
constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth 
Planet. Sci. Lett. 196, 17-33. 
Steck, A., 2003. Geology of the NW Indian Himalaya. Eclogae Geol. Helv. 96, 147-U113. 
Steck, A., Spring, L., Vannay, J.C., Masson, H., Bucher, H., Stutz, E., Marchant, R., Tieche, 
J.C., 1993. The tectonic evolution of the northwestern Himalaya in eastern Ladakh and 
Lahul, India, In: Treloar, J ; Searle (Eds.), Himalayan tectonics. Geological Society of 
London, London, United Kingdom, pp. 265-276. 
Stern, R.J., 2004. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett. 
226, 275-292. 
Sterne, E.J., 1979. Report on geological traverses across the Indus-Tsangpo suture zone in 
Ladakh, northern India. Harvard University. 
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: 
implications for mantle composition and processes. Geological Society, London, Special 
Publications 42, 313-345. 
Tewari, A., 1964. On the Upper Tertiary deposits of Ladakh Himalayas and correlation of 
various geotectonic units of Ladakh with those of the Kumaon-Tibet Region. Geol. Congr. 
New Delhi, Sect. ll, 37-58. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

60 

Thirlwall, M.F., Anczkiewicz, R., 2004. Multidynamic isotope ratio analysis using MC-ICP-
MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. International Journal of 
Mass Spectrometry 235, 59-81. 
Vadlamani, R., Guha, D., 2002. Ultrapotassic post-collisional dyke from the Ladakh 
batholith, Northwest Himalaya. J Geol Soc India 59, 473-476. 
Vervoort, J.D., Patchett, P.J., Söderlund, U., Baker, M., 2004. Isotopic composition of Yb 
and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC‐
ICPMS. Geochemistry, Geophysics, Geosystems 5. 
Wang, C.S., Liu, Z.F., others, 1999. Xigaze forearc basin and Yarlung Zangbo suture zone, 
Tibet. Geological Publishing House, Beijing. 
Wang, J.G., Hu, X.M., Garzanti, E., An, W., Liu, X.C., 2017. The birth of the Xigaze forearc 
basin in southern Tibet. Earth Planet. Sci. Lett. 465, 38-47. 
Wang, X.B., Bao, P.S., Xiao, X.C., 1987. Ophiolites of the Yarlung Zangbo (Tsangbo) River, 
Xizang (Tibet). Publishing House of Surveying and Mapping. 118 pp. plus foldout 
Geological Map of the Ophioilte Zone along the Middle Yarlung Zangbo (Tsangbo) River, 
Xizang (Tibet), Beijing. 
Weinberg, R.F., Dunlap, W.J., 2000. Growth and Deformation of the Ladakh Batholith, 
Northwest Himalayas: Implications for Timing of Continental Collision and Origin of Calc-
Alkaline Batholiths. J Geol 108, 303-320. 
Whattam, S.A., Stern, R.J., 2011. The 'subduction initiation rule': a key for linking ophiolites, 
intra-oceanic forearcs, and subduction initiation. Contrib Mineral Petr 162, 1031-1045. 
White, L.T., Ahmad, T., Ireland, T.R., Lister, G.S., Forster, M.A., 2011. Deconvolving 
episodic age spectra from zircons of the Ladakh Batholith, northwest Indian Himalaya. 
Chem. Geol. 289, 179-196. 
Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. Reviews in Economic 
Geology 7, 1-35. 
Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series 
and their differentiation products using immobile elements. Chem. Geol. 20, 325-343. 
Wood, D.A., 1980. The application of a ThHfTa diagram to problems of tectonomagmatic 
classification and to establishing the nature of crustal contamination of basaltic lavas of the 
British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 50, 11-30. 
Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope analysis 
with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age 
estimation. Chem. Geol. 209, 121-135. 
Xia, B., Yu, H.X., Chen, G.W., Qi, L., Zhao, T.P., Zhou, M.F., 2003. Geochemistry and 
tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet. 
Geochem J 37, 311-324. 
Yang, T.S., Ma, Y.M., Zhang, S.H., Bian, W.W., Yang, Z.Y., Wu, H.C., Li, H.Y., Chen, 
W.W., Ding, J.K., 2015. New insights into the India-Asia collision process from Cretaceous 
paleomagnetic and geochronologic results in the Lhasa terrane. Gondwana Research 28, 625-
641. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

61 

Zahirovic, S., Muller, R.D., Seton, M., Flament, N., Gurnis, M., Whittaker, J., 2012. Insights 
on the kinematics of the India-Eurasia collision from global geodynamic models. Geochem 
Geophy Geosy 13. 
Zaigham, N.A., Mallick, K.A., 2000. Bela ophiolite zone of southern Pakistan: Tectonic 
setting and associated mineral deposits. Geol. Soc. Am. Bull. 112, 478-489. 
Zhou, M.F., Robinson, P.T., Malpas, J., Li, Z.J., 1996. Podiform chromitites in the Luobusa 
ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in 
the upper mantle. J Petrol 37, 3-21. 
Zhou, Y.N., Cheng, X., Yu, L., Yang, X.F., Su, H.L., Peng, X.M., Xue, Y.K., Li, Y.Y., Ye, 
Y.K., Zhang, J., Li, Y.Y., Wu, H.N., 2016. Paleomagnetic study on the Triassic rocks from 
the Lhasa Terrane, Tibet, and its paleogeographic implications. J. Asian Earth Sci. 121, 108-
119. 
Zyabrev, S.V., Kojima, S., Ahmad, T., 2008. Radiolarian biostratigraphic constraints on the 
generation of the Nidar ophiolite and the onset of Dras arc volcanism: Tracing the evolution 
of the closing Tethys along the Indus – Yarlung-Tsangpo suture. Stratigraphy 5, 99-112. 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

62 

Biographies 

 

Solomon Buckman is a Senior Lecturer in economic and field geology at the School of Earth 

and Environmental Sciences at the University of Wollongong in Australia. Prior to that he 

was a geology lecturer at the University of South Australia. He undertook a post-doc position 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

63 

at James Cook University investigating the Cannington Ag-Pb-Zn deposit after completing 

his PhD at the University of Hong Kong in 2000, which was a study of the tectonic evolution 

of West Junggar within the Central Asian Orogenic Belt of NW China. Solomon worked as 

an exploration geologist across Australia for two years after completing his B.Sc. (Hons) at 

the University of Sydney in 1993. He is a field geologist with interests and expertise in the 

tectonic evolution of ophiolites and island arcs in eastern Australia (New England and 

Lachlan orogens), the Himalayas, China and South America. His interests are in convergent 

margin tectonics and in particular, mechanisms of continental growth involving the addition 

of juvenile, oceanic terranes to continental margins. 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

64 

 
 

Jonathan C. Aitchison is Professor and Head of the School of Earth and 

Environmental Sciences at The University of Queensland, Australia. Prior to that he was at 

The University of Sydney and the University of Hong Kong. He received his PhD from the 

University of New England, NSW Australia in 1989 and studied for his BSc (Hons) and MSc 

at the University of Otago in New Zealand and studied in Japan at Niigata and Kochi 

universities. His research interests include the evolution of convergent plate margins and 

collisional orogens especially arc-continent collisions worldwide. In particular, he has 

concentrated on the SW Pacific, Japan, eastern Australia, New Caledonia and the Philippines. 

His primary interest is the India-Asia collision particularly in Tibet, where he has worked for 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

65 

two decades. As an additional research theme, he also works on radiolarians to provide the 

biostratigraphic age constraints necessary for unravelling wicked tectonic problems. 

 

 

 

 

Allen Nutman is a professor and current head of school at the University of 

Wollongong. He works mostly on early Precambrian basement rocks of Greenland, Australia, 

China, Brazil and Russia with occasional excursions into the Phanerozoic orogens of eastern 

Australia. He integrates his own mapping and field observations with U-Pb zircon 

geochronology. He has 25 years of experience working on SHRIMP ion microprobe U-Pb 

geochronology on 8 different instruments (I, IIs and RG) in Australia, China, Japan and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

66 

Korea. His research interests include evolution of the Eoarchaean Earth and the appearance 

of earliest life. 

 

 

 

 

Vickie C. Bennett is a professor and associate director at the Research School of Earth 

Sciences, the Australian National University, Canberra, Australia and head of the SPIDE2R 

isotope laboratory. Her research focuses on the development and application of radiogenic 

isotopic methods to understanding the origin and evolution of Earth's continental crust and 

mantle reservoirs, early planetary differentiation, and geosphere–biosphere interactions in 

deep time. She is co-editor of the 1st  (2007) and 2ed (2018) editions of the major reference 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

67 

book “Earth’s Oldest Rocks”.  Bennett is a Geochemical Fellow and a Fellow of the 

Geological Society of America and is currently Vice-President (President-elect) of the 

Geochemical Society.  

 

 

Wanchese M. Saktura is a PhD candidate at University of Wollongong, Australia. He 

obtained B.Sc. (Adv) Honours 1st Class for his research on tectonic evolution of the Beishan 

Orogen, China. His current research is focused on the Himalayan Orogeny, more precisely, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

68 

tectonic accretionary processes and paleogeography along Tethyan oceans prior to the final 

continent-continent collision. Additional interests include application of thermochronology in 

orogenic settings, especially, use of optically stimulated luminescence (OSL) technique in 

geology to understand most recent neotectonic processes and evolution of mountainous relief. 

 

 
 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

69 

Jessica M. J. Walsh completed a Bachelor of Science (Honours) at the University of 

Wollongong (UOW), Australia in 2015, which focused on multiple magmatic related Mo-Cu 

systems in the Qinling Orogenic Belt, Central China. She is currently completing her PhD at 

the same institute, with her research focusing on the geotectonic evolution of the Himalaya, 

with specific reference to arc-continent collision prior to final continent-continent collision of 

India and Eurasia. Broadly, her research interests include tectonic evolution of orogenic belts 

and continental growth processes. 

 

 

Sarah Kachovich is a PhD candidate at The University of Queensland. She specialises 

in radiolarian biostratigraphy, with her research focusing on linking microfossils to tectonic 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

70 

problems, such as the Himalayan collision and the tectonic evolution of the New England 

Orogen, eastern Australia. 

 

Prof. Hiroshi Hidaka is a foundation researcher of the Hiroshima SHRIMP group – the first 

SHRIMP large ionmicroprobe instrument to be sold outside of Australia and which was 

installed in 1997. He is an isotope geochemist with a wide range of interests, both from the 

perspective of geology and also nuclear science. Concerning the latter, he has worked 

extensively on the natural (Palaeoproterozoic) nuclear reactor from Oklo in West Africa. In 

this, his studies involve both the use of conventional IDTIMS methods and the use of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

71 

SHRIMP to document the distribution of fission products on the mineral-grain scale. From 

the geological perspective he has undertaken extensive U-Pb zircon dating using SHRIMP, 

both on Japanese projects and in collaboration with overseas researchers. One overseas link 

has been with co-author on this paper Allen Nutman, mostly investigating early crustal 

evolution via ancient rocks in Greenland. Prof Hidaka is currently a faculty member at 

Nagoya University. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

72 

Table 4– whole rock geochemistry 

 

S

ampl

e 

S

BST

08 

S

BST

09 

S

BST

01 

S

BST

04 

S

BST

07 

S

BST

02 

S

BST

03 

S

BST

15 

S

BST

22 

S

BST

19 

S

BST

11 

S

BST

16 

S

BST

17 

S

BST

06 

S

BST

18 

S

BST

05 

S

BST2

0 

R

ockty

pe 

B

asal

t 

B

asal

t 

B

asal

t 

B

asal

t 

B

asal

t 

B

asal

t 

B

asal

t 

B

asal

t 

dyk

e 

B

asal

t  

G

abb

ro 

G

abb

ro 

G

abb

ro 

G

abb

ro 

G

abb

ro 

G

abb

ro 

G

abb

ro 

G

abbr

o  

p

egm

atite 

L

atitu

de 

(N)  

3

4.056

75 

3

4.056

75 

3

4.051

733 

3

4.051

733 

3

4.056

75 

3

4.051

733 

3

4.051

733 

3

4.059

97 

3

4.065

13 

3

4.059

97 

3

4.062

14 

3

4.059

97 

3

4.059

97 

3

4.054

65 

3

4.059

97 

3

4.052

77 

3

4.059

97 

L

ongit

ude 

(E)  

7

6.777

18 

7

6.777

18 

7

6.771

300 

7

6.771

300 

7

6.777

18 

7

6.771

300 

7

6.771

300 

7

6.775

34 

7

6.779

39 

7

6.775

34 

7

6.781

97 

7

6.775

34 

7

6.775

34 

7

6.773

79 

7

6.775

34 

7

6.772

40 

7

6.775

34 

Majors (%) 

S

iO2  

4

6.6

0 

4

6.8

4 

4

6.86 

4

7.02 

4

7.0

4 

4

8.65 

4

8.99 

5

2.6

9 

5

2.1

6 

4

6.6

3 

4

6.9

4 

5

0.5

2 

5

1.1

8 

5

2.3

7 

5

3.1

1 

5

4.2

9 

4

5.67 

T

iO2  

1

.59 

1

.96 

1

.94 

1

.49 

1

.33 

1

.69 

1

.71 

0

.97 

0

.74 

0

.35 

1

.25 

0

.73 

1

.01 

0

.60 

0

.80 

0

.87 

0

.15 

A

l2O3  

1

5.1

3 

1

4.1

8 

1

5.96 

1

5.03 

1

5.5

8 

1

5.77 

1

7.35 

1

4.6

9 

1

9.3

7 

1

5.8

8 

1

6.0

2 

1

4.6

6 

1

4.5

3 

1

5.0

9 

1

4.9

7 

1

5.7

6 

2

7.86 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

73 

F

e2O3  

1

1.8

3 

1

1.3

4 

1

1.55 

9

.47 

9

.77 

9

.20 

1

2.62 

1

2.1

8 

4

.60 

6

.08 

8

.55 

1

1.2

4 

1

3.8

1 

1

0.6

9 

1

0.1

1 

1

0.6

3 

1

.29 

M

nO  

0

.18 

0

.19 

0

.24 

0

.14 

0

.15 

0

.14 

0

.15 

0

.18 

0

.13 

0

.12 

0

.14 

0

.18 

0

.19 

0

.18 

0

.15 

0

.16 

0

.02 

M

gO  

6

.59 

8

.12 

7

.10 

7

.07 

8

.02 

7

.10 

4

.71 

3

.26 

1

.84 

1

1.1

3 

5

.92 

8

.36 

5

.38 

4

.46 

5

.47 

4

.38 

1

.85 

C

aO  

1

1.0

0 

8

.56 

8

.45 

1

0.68 

1

0.2

7 

1

0.16 

4

.19 

9

.05 

3

.89 

1

3.8

3 

9

.89 

7

.27 

6

.47 

1

0.0

3 

8

.15 

6

.74 

1

3.87 

N

a2O  

3

.34 

3

.97 

3

.38 

3

.48 

3

.50 

3

.79 

5

.99 

5

.52 

6

.32 

1

.96 

4

.93 

3

.52 

4

.88 

3

.91 

5

.49 

5

.24 

4

.84 

K

2O  

0

.20 

0

.12 

0

.83 

0

.13 

0

.10 

0

.28 

0

.41 

0

.62 

4

.96 

0

.65 

0

.25 

0

.32 

0

.31 

0

.84 

0

.18 

0

.23 

0

.42 

P

2O5  

0

.17 

0

.25 

0

.26 

0

.15 

0

.17 

0

.18 

0

.19 

0

.09 

0

.25 

0

.05 

0

.15 

0

.06 

0

.07 

0

.07 

0

.08 

0

.08 

0

.01 

S

O3  

0

.22 

1

.23 

0

.00 

0

.02 

0

.04 

0

.02 

< 

0.01 

0

.01 

0

.04 

0

.01 

0

.01 

0

.00 

0

.01 

0

.00 

< 

0.0

1 

< 

0.0

1 

< 

0.01 

L

OI  

3

.21 

3

.44 

3

.43 

5

.54 

3

.44 

3

.36 

3

.01 

0

.85 

5

.11 

3

.2 

6

.32 

3

.16 

2

.53 

2

.08 

1

.56 

1

.1 

3

.29 

T

otal 

1

00.

06 

1

00.

06 

1

00.0

0 

1

00.2

2 

9

9.4

3 

1

00.3

4 

9

9.32 

1

00.

10 

9

9.4

3 

9

9.4

3 

1

00.

36 

1

00.

01 

1

00.

37 

1

00.

32 

1

00.

06 

9

9.4

7 

9

9.47 

Trace elements (ppm) 

B

a 

2

9.4 

1

7.8 

5

6.1 

1

1 

1

4.8 

1

7 

1

6.4 

5

8 

5

00 

2

5.5 

2

7 

2

3.8 

4

6.3 

2

27 

1

5.7 

1

8.2 

1

2.6 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

74 

C

e 

1

03 

1

9.9 

1

7.9 

1

0.6 

1

0.3 

1

2.1 

1

1.7 

6

.9 

4

99 

6

.2 

1

3.9 

5

.7 

1

43 

4

.3 

5

.7 

6

.5 

1

.2 

C

r 

3

50 

3

10 

3

20 

3

50 

4

20 

3

60 

3

90 

6

0 

4

0 

9

60 

3

90 

1

00 

5

0 

6

0 

1

50 

5

0 

8

0 

C

s 

0

.24 

0

.29 

0

.6 

0

.09 

0

.15 

0

.17 

0

.29 

0

.08 

1

5.0

5 

0

.24 

0

.13 

0

.13 

0

.29 

0

.56 

0

.06 

0

.06 

0

.11 

D

y 

5

.34 

6

.23 

5

.85 

5

.03 

4

.42 

5

.27 

6

.47 

3

.43 

3

.15 

2

.47 

3

.92 

2

.89 

2

.94 

2

.87 

3

.39 

3

.42 

0

.87 

E

r 

3

.61 

3

.89 

3

.73 

3

.4 

2

.88 

3

.37 

4

.06 

2

.26 

1

.59 

1

.69 

2

.53 

2

.06 

2

.03 

2

.07 

2

.24 

2

.4 

0

.76 

E

u 

1

.26 

1

.57 

1

.6 

1

.27 

1

.22 

1

.26 

1

.47 

0

.85 

1

.74 

0

.55 

0

.99 

0

.64 

0

.76 

0

.55 

0

.73 

0

.76 

0

.2 

G

a 

1

7.1 

1

7 

1

7.4 

1

5.9 

1

6.9 

1

5.4 

1

5.3 

1

6.5 

3

8.1 

1

2.9 

1

4.1 

1

4.9 

1

8 

1

4 

1

5.4 

1

6.3 

2

0.9 

G

d 

4

.76 

5

.62 

5

.22 

4

.53 

4

.08 

4

.62 

5

.7 

2

.95 

4

.13 

2

.05 

3

.63 

2

.52 

2

.28 

2

.26 

2

.66 

2

.9 

0

.59 

H

f 

2

.8 

3

.4 

3

.1 

2

.5 

2

.2 

2

.8 

2

.6 

1

.7 

2

9.2 

0

.5 

1

.9 

1

.4 

1

.8 

1

.1 

1

.6 

1

.6 

0

.2 

H

o 

1

.19 

1

.35 

1

.29 

1

.13 

0

.99 

1

.16 

1

.4 

0

.82 

0

.59 

0

.56 

0

.9 

0

.68 

0

.66 

0

.64 

0

.77 

0

.77 

0

.22 

L

a 

3

.3 

5

.3 

6

.7 

3

.3 

3

.5 

3

.9 

5

.8 

2

.3 

4

7.1 

2

.4 

3

.6 

1

.9 

1

.6 

1

.5 

1

.9 

2

.3 

0

.7 

L

u 

0

.49 

0

.56 

0

.56 

0

.48 

0

.4 

0

.5 

0

.55 

0

.38 

0

.25 

0

.24 

0

.35 

0

.3 

0

.33 

0

.33 

0

.36 

0

.37 

0

.11 

N

b 

1

.8 

3

.1 

6

.3 

2

.2 

2

.1 

2

.6 

2

.5 

1

.3 

5

29 

1

.4 

3 1 0

.9 

0

.8 

1 1

.2 

0

.2 

N

d 

8

.9 

1

3.1 

1

3.1 

9

.5 

8

.3 

1

0.1 

1

1.4 

5

.5 

3

0.4 

3

.9 

7

.6 

4

.6 

3

.8 

3

.9 

5

.1 

5

.5 

0

.7 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

75 

P

r 

1

.69 

2

.66 

2

.61 

1

.78 

1

.63 

1

.95 

2

.23 

1 8

.69 

0

.82 

1

.48 

0

.85 

0

.71 

0

.67 

0

.95 

1

.03 

0

.12 

R

b 

5

.6 

1

.3 

1

8.3 

2

.4 

1

.6 

5 6

.1 

6

.2 

1

25 

8

.2 

4 3 7

.6 

8

.3 

1

.9 

3

.5 

1

1.3 

S

m 

3

.03 

4

.31 

4

.04 

3

.16 

2

.83 

3

.52 

3

.74 

1

.99 

5

.06 

1

.27 

2

.74 

1

.57 

1

.41 

1

.49 

1

.81 

1

.94 

0

.24 

S

n 

1

82 

8 2 2 2 2 2 1 7

86 

2 1

0 

1 2

66 

2 2 2 1 

S

r 

1

16.

5 

1

63.

5 

2

21 

9

2.7 

1

49.

5 

7

9.9 

6

7.3 

2

78 

3

21 

1

66 

1

37.

5 

8

7.5 

1

35.

5 

6

5.9 

1

59 

1

00.

5 

8

9.9 

T

a 

0

.1 

0

.2 

0

.5 

0

.2 

0

.2 

0

.3 

0

.2 

0

.1 

4

3.4 

0

.1 

0

.2 

0

.1 

0

.1 

0

.1 

0

.1 

0

.1 

<

0.1 

T

b 

0

.86 

1

.03 

0

.96 

0

.85 

0

.73 

0

.89 

1

.04 

0

.53 

0

.64 

0

.37 

0

.66 

0

.46 

0

.44 

0

.42 

0

.52 

0

.54 

0

.12 

T

h 

0

.15 

0

.23 

0

.57 

0

.16 

0

.17 

0

.17 

0

.2 

0

.15 

3

6.2 

0

.2 

0

.2 

0

.12 

0

.19 

0

.15 

0

.13 

0

.14 

<

0.05 

T

m 

0

.52 

0

.59 

0

.58 

0

.52 

0

.44 

0

.52 

0

.6 

0

.37 

0

.25 

0

.26 

0

.38 

0

.3 

0

.33 

0

.33 

0

.34 

0

.34 

0

.13 

U 0

.09 

0

.1 

0

.19 

0

.07 

0

.08 

0

.08 

0

.17 

0

.09 

4

.57 

0

.05 

0

.11 

0

.08 

0

.11 

0

.1 

0

.09 

0

.08 

<

0.05 

V 2

93 

2

98 

3

29 

2

78 

2

77 

3

03 

2

90 

3

75 

7

1 

2

01 

2

22 

3

10 

5

30 

2

45 

3

12 

2

96 

1

41 

W <

1 

1 <

1 

<

1 

1 1 <

1 

2 <

1 

3 <

1 

2 3 1 2 <

1 

1 

Y 3

3.7 

3

9.1 

3

6.2 

3

1.7 

2

8.7 

3

3.1 

4

2.4 

2

1.7 

1

3.7 

1

5.9 

2

4.8 

1

9.3 

1

8.7 

1

9.2 

2

1.8 

2

2.4 

6

.5 

Y

b 

3

.24 

3

.61 

3

.47 

3

.04 

2

.75 

3

.18 

3

.71 

2

.36 

1

.61 

1

.42 

2

.3 

1

.92 

2

.02 

1

.93 

2

.27 

2

.31 

0

.71 
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1
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8
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1
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1

01 
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2
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1
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Table 5– U-Pb SHRIMP data 

L

abels 

s

ite 

U

/ppm 

T

h/ppm 

T

h/U 

%

f206 

 

238U/206Pb(

meas) 

 

207Pb/206Pb(

meas) 

age 

206Pb/238U(corr) 

S

BST-

12 

              
1

.1 

m

,osc,eq 

3

75 

4

24 

1

.13 

0

.85 

4

6.33 ± 

1

.27 

0

.0556 ± 

0

.0017 

1

36.5 ± 

2

.7 

2

.1 

m

,osc/h,fr 

1

88 

1

75 

0

.93 

2

.29 

4

7.23 ± 

1

.10 

0

.0619 ± 

0

.0022 

1

32.0 ± 

4

.0 

3

.1 

m

,osc/h,e

q 

3

48 

3

37 

0

.97 

1

.10 

4

6.38 ± 

0

.80 

0

.0556 ± 

0

.0015 

1

36.0 ± 

2

.0 

4

.1 

m

,osc,eq 

5

83 

3

39 

0

.58 

0

.43 

4

6.36 ± 

0

.59 

0

.0520 ± 

0

.0009 

1

37.0 ± 

1

.4 

5

.1 

m

,osc,eq,f

r 

3

13 

3

28 

1

.05 

0

.95 

4

5.74 ± 

1

.03 

0

.0564 ± 

0

.0015 

1

38.1 ± 

2

.5 

6

.1 

e

,osc,p,fr 

5

92 

3

76 

0

.64 

0

.43 

4

7.80 ± 

0

.85 

0

.0523 ± 

0

.0012 

1

32.9 ± 

1

.9 

7

.1 

m

,osc/h,e

q,fr 

4

09 

7

27 

1

.78 

0

.30 

4

7.18 ± 

1

.45 

0

.0511 ± 

0

.0013 

1

34.8 ± 

3

.4 

8

.1 

e

,osc,p,fr 

3

42 

5

29 

1

.55 

0

.73 

4

6.56 ± 

1

.76 

0

.0544 ± 

0

.0017 

1

36.0 ± 

3

.7 

9

.1 

e

,osc,p,fr 

2

17 

2

01 

0

.93 

1

.78 

4

6.00 ± 

0

.94 

0

.0626 ± 

0

.0021 

1

36.2 ± 

3

.1 
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1

0.1 

e

,osc/h,p 

5

66 

8

74 

1

.54 

0

.42 

4

7.06 ± 

0

.73 

0

.0523 ± 

0

.0011 

1

35.0 ± 

1

.6 

1

1.1 

e

,h,p 

4

96 

4

38 

0

.88 

0

.33 

4

7.82 ± 

0

.94 

0

.0510 ± 

0

.0013 

1

33.0 ± 

2

.2 

1

2.1 

e

,h,p 

3

61 

3

56 

0

.99 

0

.41 

4

5.46 ± 

0

.78 

0

.0521 ± 

0

.0011 

1

39.7 ± 

1

.8 

               
S

BST-

05 

              

1

.1 

t

iny,h/os

c 

8

46 

2

026 

2

.39 

1

.26 

4

7.36 ± 

0

.96 

0

.0585 ± 

0

.0035 

1

33.0 ± 

3

.5 

2

.1 

t

iny,h/os

c 

1

105 

2

807 

2

.54 

0

.83 

4

7.94 ± 

1

.11 

0

.0550 ± 

0

.0016 

1

32.0 ± 

2

.2 

3

.1 

t

iny,h/os

c 

1

383 

9

802 

7

.09 

0

.21 

4

4.81 ± 

2

.48 

0

.0530 ± 

0

.0014 

1

42.0 ± 

5

.5 

4

.1 

t

iny,h/os

c 

1

488 

6

853 

4

.60 

1

.11 

5

7.46 ± 

2

.22 

0

.0568 ± 

0

.0014 

1

10.0 ± 

3

.0 

 
isotopic ratios uncorrected for common Pb 

Spot: x.y = grain followed by analysis number  

Site: m = middle, e = end, p = prismatic grain, eq=equant grain, osc = oscillatory zoned, h = homogeneous, fr = fragment 

%f206: percentage of 206Pb that is non-radiogenic (common) 

ages corrected for common Pb by the '207' method (modelled as concordant) 

all analytical errors are 1 sigma 
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Table 6 Hf data 

 
176Lu/17

7Hf 

Measured 

εHf(

0) 

U

-Pb 

age 

(Ma) 

i

nitial 

   
A

nalysis 176Hf/177Hf 

in 

run errors only 

1

76Hf/177Hf 

ε

Hf(t) 

 

2

SE 

1

.1 

0

.00328 ± 

0

.000

03 

0

.28313 ± 

0

.0000

1 

1

2.1

1 ± 

0

.4

0 

1

36.5 
0

.28312 

1

4.9 ± 

0

.8 

2

.1 

0

.00639 ± 

0

.000

01 

0

.28319 ± 

0

.0000

2 

1

4.3

7 ± 

0

.6

0 

1

32 
0

.28318 

1

6.8 ± 

1

.20 

3

.1 

0

.00595 ± 

0

.000

11 

0

.28317 ± 

0

.0000

1 

1

3.6

1 ± 

0

.4

9 

1

36 
0

.28315 

1

6.1 ± 

1

.0 

4

.1 

0

.00544 ± 

0

.000

09 

0

.28315 ± 

0

.0000

1 

1

3.0

9 ± 

0

.5

1 

1

37 
0

.28314 

1

5.6 ± 

1

.0 

5

.1 

0

.00571 ± 

0

.000

01 

0

.28320 ± 

0

.0000

1 

1

4.9

1 ± 

0

.4

4 

1

38.1 
0

.28319 

1

7.5 ± 

0

.9 

6

.1 

0

.00585 ± 

0

.000

06 

0

.28313 ± 

0

.0000

1 

1

2.1

4 ± 

0

.4

8 

1

32.9 
0

.28311 

1

4.6 ± 

1

.0 

8

.1 

0

.00402 ± 

0

.000

01 

0

.28320 ± 

0

.0000

1 

1

4.6

6 ± 

0

.4

5 

1

34.8 
0

.28319 

1

7.3 ± 

1

.0 

9

.1 

0

.00285 ± 

0

.000

06 

0

.28315 ± 

0

.0000

1 

1

2.9

7 ± 

0

.3

9 

1

36 
0

.28314 

1

5.7 ± 

0

.8 
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1

0.1 

0

.00738 ± 

0

.000

01 

0

.28320 ± 

0

.0000

2 

1

4.7

0 ± 

0

.5

9 

1

36.2 
0

.28318 

1

7.1 ± 

1

.2 

1

1.1 

0

.00668 ± 

0

.000

02 

0

.28315 ± 

0

.0000

1 

1

2.9

8 ± 

0

.5

2 

1

35 
0

.28314 

1

5.4 ± 

1

.0 

1

2.1 

0

.00369 ± 

0

.000

06 

0

.28315 ± 

0

.0000

1 

1

2.9

1 ± 

0

.4

2 

1

33 
0

.28314 

1

5.5 ± 

0

.8 

A 

0

.01245 ± 

0

.000

39 

0

.28313 ± 

0

.0000

2 

1

2.3

6 ± 

0

.7

0 

1

37 

0

.28310 

1

4.3 ± 

1

.4 

B 

0

.00675 ± 

0

.000

07 

0

.28325 ± 

0

.0000

3 

1

6.4

5 ± 

0

.9

3 

1

37 

0

.28323 

1

8.9 ± 

1

.8 

C 

0

.00344 ± 

0

.000

07 

0

.28319 ± 

0

.0000

2 

1

4.3

7 ± 

0

.6

9 

1

37 

0

.28318 

1

7.1 ± 

1

.4 

D 

0

.00517 ± 

0

.000

07 

0

.28319 ± 

0

.0000

1 

1

4.3

6 ± 

0

.4

8 

1

37 

0

.28318 

1

6.9 ± 

1

.0 

E 

0

.00551 ± 

0

.000

04 

0

.28314 ± 

0

.0000

1 

1

2.7

3 ± 

0

.4

3 

1

37 

0

.28313 

1

5.3 ± 

0

.9 

F 

0

.00355 ± 

0

.000

06 

0

.28315 ± 

0

.0000

1 

1

2.8

1 ± 

0

.3

9 

1

37 

0

.28314 

1

5.5 ± 

0

.8 
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G 

0

.00648 ± 

0

.000

04 

0

.28318 ± 

0

.0000

1 

1

4.0

7 ± 

0

.4

7 

1

37 

0

.28317 

1

6.5 ± 

1

.0 

 
1 Initial ratios are calculated at either the SHRIMP U-Pb age (Table 2) or at the average age of 137 Ma. 

Uncertainty in initial ratios are given as 2 SE. 

2 Hf values are calculated using CHUR parameters given in Bouvier et al, 2008. 

 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

 

 

 

 

82 

Highlights for Spongtang manuscript 

 

 New U-Pb zircon (SHRIMP) age of gabbros from Spongtang ophiolite yield age of 
~136 Ma which contrasts with previous age of ~177 Ma reported by Pedersen et al., 
2001. 

 Initial εHf zircon values of +14 to +16, indicate Early Cretaceous juvenile, depleted 
mantle sources devoid of contamination by older continental crust 

 Petrology and geochronology both indicate development of the Early Cretaceous 
Spong Arc is superimposed on older Jurassic N-MORB crust 

 The age, composition and nature of geological relationships with the underlying 
Indian rocks indicates the Spong Arc was a juvenile, intra-oceanic terrane that first 
collided with India before the onset of final continent-continent collision 

ACCEPTED MANUSCRIPT



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8



Figure 9



Figure 10



Figure 11


	The Spongtang Massif in Ladakh, NW Himalaya: An Early Cretaceous record of spontaneous, intra-oceanic subduction initiation in the Neotethys
	Publication Details Citation

	The Spongtang Massif in Ladakh, NW Himalaya: An Early Cretaceous record of spontaneous, intra-oceanic subduction initiation in the Neotethys
	Abstract
	Publication Details
	Authors

	The Spongtang Massif in Ladakh, NW Himalaya: An early cretaceous record of spontaneous, intra-oceanic subduction initiation in the Neotethys

