
University of Wollongong University of Wollongong 

Research Online Research Online 

University of Wollongong Thesis Collection 
2017+ University of Wollongong Thesis Collections 

2018 

Fabrication and Properties of Cu-SiC-GNP composites Fabrication and Properties of Cu-SiC-GNP composites 

Peijie Jia 
University of Wollongong 

Follow this and additional works at: https://ro.uow.edu.au/theses1 

University of Wollongong University of Wollongong 

Copyright Warning Copyright Warning 

You may print or download ONE copy of this document for the purpose of your own research or study. The University 

does not authorise you to copy, communicate or otherwise make available electronically to any other person any 

copyright material contained on this site. 

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, 

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe 

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court 

may impose penalties and award damages in relation to offences and infringements relating to copyright material. 

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the 

conversion of material into digital or electronic form. 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily 

represent the views of the University of Wollongong. represent the views of the University of Wollongong. 

Recommended Citation Recommended Citation 
Jia, Peijie, Fabrication and Properties of Cu-SiC-GNP composites, Master of Research thesis, School of 
Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, 2018. 
https://ro.uow.edu.au/theses1/325 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F325&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

  

 

 

 

 

Fabrication and Properties of Cu-SiC-GNP composites  

 

 

 

 

Peijie Jia 

 

 

 

Supervisors: 

Prof. Zhengyi Jiang and Dr. Haibo Xie 

 

 

 

 

This thesis is presented as part of the requirement for the conferral of the degree: 

Master of Research 

 

 

 

 

 

 

 

 

 

 

University of Wollongong 

School of Mechanical, Materials, Mechatronic and Biomedical Engineering 

 

 

 

 

June 2018 



 

 

Certification 

 

I, Peijie Jia, declare that this thesis submitted in fulfillment of the requirements for the 

conferral of the degree Master of Research, from the University of Wollongong, is 

wholly my own work unless otherwise referenced or acknowledged. This document has 

not been submitted for qualifications at any other academic institution. 

 

 

                         

Peijie Jia 

1st June 2018 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



I 

 

Table of contents 

 

Table of contentsList of figures ..................................................................................... I 

List of figures ............................................................................................................... IV 

List of tables ............................................................................................................... VII 

List of abbreviation and symbol ............................................................................... VIII 

Abstract ......................................................................................................................... X 

Acknowledgement ..................................................................................................... XII 

Chapter 1 Introduction ................................................................................................... 1 

1.1 Background ............................................................................................................................. 1 

1.2 Scope and objectives ............................................................................................................... 2 

1.3 Structure of chapters ............................................................................................................... 2 

Chapter 2 Literature review ........................................................................................... 4 

2.1 Metal matrix composites (MMCs) .......................................................................................... 4 

2.2 MMC reinforced with nanoparticles ....................................................................................... 5 

2.3 Metal matrix composites reinforced with ceramic nanoparticles ............................................ 7 

2.4 Metal matrix composites reinforced with graphene sheets ................................................... 12 

2.5 Graphene/nanoparticles interaction: a road map to manufacture composites with exceptional 

properties..................................................................................................................................... 19 

2.6 Manufacturing processes of metal matrix nanocomposites .................................................. 21 

2.6.1 Liquid processes ............................................................................................................. 22 

2.6.2 Solid processes ............................................................................................................... 24 

2.6.3 Semisolid processes ....................................................................................................... 26 

2.7 Strengthening mechanisms of MMnCs ................................................................................. 29 

2.7.1 Load transfer effect ........................................................................................................ 29 

2.7.2 Hall-Petch strengthening ................................................................................................ 30 

2.7.3 Orowan strengthening .................................................................................................... 31 

2.7.4 CTE and EM mismatch .................................................................................................. 31 

2.7.5 Sum of contributions ...................................................................................................... 32 

2.8 Summary ............................................................................................................................... 33 

Chapter 3 Experimental methodology ......................................................................... 35 

3.1 Sample preparation ............................................................................................................... 35 



II 

 

3.1.1 Ball milling .................................................................................................................... 35 

3.1.2 Cold pressing and sintering ............................................................................................ 36 

3.2 Experiment and analysis ....................................................................................................... 38 

3.2.1 Hot mounting, grinding and polishing ........................................................................... 38 

3.2.2 KEYENCE laser microscope (3D & profile measurement) and density measuring 

instrument ............................................................................................................................... 40 

3.2.3 X-ray diffraction............................................................................................................. 41 

3.2.4 Microhardness testing .................................................................................................... 42 

3.2.5 Field emission scanning electron microscopy ................................................................ 43 

3.2.6 Compression test ............................................................................................................ 44 

Chapter 4 Effect of sintering temperature .................................................................... 45 

4.1 Introduction ........................................................................................................................... 45 

4.2 Experimental procedure ........................................................................................................ 45 

4.3 Results and discussion .......................................................................................................... 45 

4.3.1 Pure copper .................................................................................................................... 45 

4.3.1.1 Optical images ......................................................................................................... 45 

4.3.1.2 Density measurement .............................................................................................. 47 

4.3.1.3 Microhardness testing ............................................................................................. 48 

4.3.2 Cu-SiC-GNP .................................................................................................................. 49 

4.3.2.1 Optical images ......................................................................................................... 49 

4.3.2.2 Density measurement .............................................................................................. 50 

4.3.2.3 Microhardness testing ............................................................................................. 51 

4.4 Summary ............................................................................................................................... 52 

Chapter 5 Effect of milling time .................................................................................. 53 

5.1 Introduction ........................................................................................................................... 53 

5.2 Experimental procedure ........................................................................................................ 53 

5.3 Results and discussion .......................................................................................................... 53 

5.3.1 Powder analysis .............................................................................................................. 53 

5.3.1.1 SEM ........................................................................................................................ 53 

5.3.1.2 XRD analysis .......................................................................................................... 57 

5.3.2 Analysis of sintered composites ..................................................................................... 63 

5.3.2.1 Optical images ......................................................................................................... 63 

5.3.2.2 Density measurement .............................................................................................. 67 

5.3.2.3 Microhardness testing ............................................................................................. 70 



III 

 

5.3.2.4 Compressive testing ................................................................................................ 73 

5.4 Summary ............................................................................................................................... 76 

Chapter 6 Conclusion and future work ........................................................................ 79 

6.1 Conclusions ........................................................................................................................... 79 

6.2 Future work ........................................................................................................................... 81 

References .................................................................................................................... 83 



IV 

 

List of figures 

 

Figure 2-1 Optical images of Cu-SiC composites. ........................................................ 9 

Figure 2-2 Apparent density vs. milling time. ............................................................. 10 

Figure 2-3 Volume loss vs. sliding distance. ................................................................ 11 

Figure 2-4 Bright-field TEM image showing graphene agglomerations. .................... 14 

Figure 2-5 Fractures microphotography: (a) Cu-5% graphite, (b) Cu-5% CNFs and (c) 

Cu-3% graphene........................................................................................................... 15 

Figure 2-6 Tensile stress-strain curves of Cu and GNS-Ni/Cu. ................................... 18 

Figure 2-7 Schematic of Cu-graphene deposited on Cu substrate. .............................. 18 

Figure 2-8 Processes of MMCs.................................................................................... 21 

Figure 2-9 Phase stability diagram for Si-C-O at 1680 K & the equilibrium constant vs. 

temperature (K). ........................................................................................................... 23 

Figure 2-10 Equipment of electroforming. .................................................................. 24 

Figure 2-11 SEM images of fracture surfaces: (a) Al6061-1.0 wt.% with milling time 

of 90 min, and (b) unalloyed Al6061 with a milling time of 90 min. .......................... 27 

Figure 2-12 The average thermal conductivity with volume fraction of of Al2O3. .... 27 

Figure 2-13 Tensile strength at different temperature. ................................................. 28 

Figure 2-14 (a) Morphology of mixed powder, and (b) high magnification image of (a). ........ 28 

Figure 2-15 FE-SEM images of TiC/Ti nanocomposites............................................. 29 

Figure 3-1 Fritsch pulverisette 6 planetary mono mill................................................. 35 

Figure 3-2 Schematic of dies. ...................................................................................... 37 

Figure 3-3 Heating curve of sintering. ......................................................................... 38 

Figure 3-4 (a) 10 Tonne hydraulic press and (b) KTL 1400 tube furnace. .................. 38 

Figure 3-5 Struers citopress 20 hot mounting. ............................................................. 39 

Figure 3-6 Struers TegralPol-21 automatic grinding/polishing machine. .................... 39 

Figure 3-7 (a) KEYENCE laser microscope and (b) automatic density measuring 

instrument. ................................................................................................................... 40 

Figure 3-8 GBC MMA XRD. ...................................................................................... 41 

Figure 3-9 Schematic of the indenter and indentation of vickers hardness. ................ 42 

Figure 3-10 TIME TH7 15 microhardness tester. ........................................................ 43 

Figure 3-11 JEOL JSM-7500FA field emission scanning electron microscope (FESEM). ....... 44 



V 

 

Figure 3-12 500 KN Instron universal testing machine. .............................................. 44 

Figure 4-1 Optical micrographs of pure copper samples sintered at (a) 700 ºC, (b) 750 

ºC, (c) 800 ºC, (d) 850 ºC and (e) 900 ºC. ................................................................ 46 

Figure 4-2 Density of as-received copper powder compacted in 850 MPa vs. sintering 

temperature. ................................................................................................................. 47 

Figure 4-3 Vickers micro-hardness of as-received copper powder compacted in 850 

MPa vs. sintering temperature. .................................................................................... 48 

Figure 4-4 Optical micrographs of Cu-SiC-GNP composite (milled for 2 h) sintered at 

(a) 700 ºC, (b) 750 ºC, (c) 800 ºC, (d) 850 ºC and (e) 900 ºC................................... 50 

Figure 4-5 Density Cu-SiC-GNP (milled for 2 h and compacted in 850 MPa) vs. 

sintering temperature. .................................................................................................. 51 

Figure 4-6 Vickers microhardness of Cu-SiC-GNP composite (milled for 2 h and 

compacted for 850 MPa) vs. sintering temperature. .................................................... 52 

Figure 5-1 SEM micrographs of (a) as-received pure Cu powders and (b) 2 h, (c) 4 h, 

(d) 6 h and (e) 8 h pure Cu powders milled. ................................................................ 54 

Figure 5-2 SEM micrographs of and (a) 2 h, (b) 4 h, (c) 6 h, (d) 8 h and (e) 20 h Cu-

SiC powders milled. ..................................................................................................... 56 

Figure 5-3 SEM micrographs of (a) 2 h, (b) 4 h, (c) 6 h and (d) 8 h Cu-SiC-GNP powders 

milled. .......................................................................................................................... 57 

Figure 5-4 XRD patterns of Cu milled for 0, 2, 4, 6 and 8 h. ...................................... 58 

Figure 5-5 W-H plots for Cu powder milled for 2 h. ................................................... 58 

Figure 5-6 Grain size vs. milling time for copper powder. .......................................... 59 

Figure 5-7 XRD patterns of the as-received pure copper powder and Cu-SiC powder 

milled for 2, 4, 6, 8, 12, 16 and 20 h. ........................................................................... 60 

Figure 5-8 Grain size vs. milling time for Cu-SiC powder. ......................................... 61 

Figure 5-9 XRD patterns of the as-received pure copper powder and Cu-SiC-GNP 

milled for 2, 4, 6 and 8 h. ............................................................................................. 62 

Figure 5-10 Grain size vs. milling time for Cu-SiC-GNP powder. .............................. 63 

Figure 5-11 Optical micrographs of Cu milled for (a) 2 h, (b) 4 h, (c) 6 h and (d) 8 h. ............. 64 

Figure 5-12 Optical micrographs of Cu-SiC milled for (a) 2 h, (b) 4 h, (c) 6 h and (d) 8 h. ....... 65 

Figure 5-13 Optical micrographs of Cu-SiC-GNP milled for (a) 2 h, (b) 4 h, (c) 6 h and 

(d) 8 h. .......................................................................................................................... 66 

Figure 5-14 Density of milled copper vs. milling time of 2, 4, 6 and 8 h.................... 68 

Figure 5-15 Density Cu-SiC composite vs. milling time of 2, 4, 6 and 8 h................. 69 

Figure 5-16 Density of Cu-SiC-GNP vs. milling time of 2, 4, 6 and 8 h. ................... 70 



VI 

 

Figure 5-17 Hardness of copper vs. milling time of 2, 4, 6 and 8 h. ........................... 71 

Figure 5-18 Hardness of Cu-SiC vs. milling time of 2, 4, 6 and 8 h. .......................... 72 

Figure 5-19 Hardness of Cu-SiC-GNP vs. milling time of 2, 4, 6 and 8 h. ................. 73 

Figure 5-20 Compressive strain-stress curves of Cu milled for 0, 2, 4, 6 and 8 h. ...... 74 

Figure 5-21 Compressive strain-stress curves of Cu-SiC milled for 2, 4, 6 and 8 h. .. 75 

Figure 5-22 Compressive strain-stress curves of Cu-SiC-GNP milled for 2, 4, 6 and 8 h. ........ 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



VII 

 

List of tables 

 

Table 2-1 Fabrication methods for MMnCs. ................................................................ 26 

Table 3-1 Chemical composites of as-received copper powder. .................................. 36 

Table 3-2 Parameters of ball milling. ........................................................................... 36 

Table 4-1 Density of samples made of the as-received copper powder. ...................... 47 

Table 4-2 Hardness of samples made of the as-received copper powder. ................... 48 

Table 4-3 Density of samples made of the Cu-SiC-GNP powder. ............................... 50 

Table 4-4 Hardness of samples made of the Cu-SiC-GNP powder. ............................ 51 

Table 5-1 Density of samples made of the milled copper powder. .............................. 67 

Table 5-2 Density of samples made of the Cu-SiC powder. ........................................ 68 

Table 5-3 Density of samples made of the Cu-SiC-GNP powder. ............................... 69 

Table 5-4 Results of compression testing of Cu. ......................................................... 74 

Table 5-5 Results of compression testing of Cu-SiC. .................................................. 75 

Table 5-6 Results of compression testing of Cu-SiC-GNP. ......................................... 76 

 

 

 

  



VIII 

 

List of abbreviation and symbol 

 

1. Abbreviation 

AR  as-received 

BPR  ball to powder weight ratio 

CMC ceramic matrix composites 

CNF  carbon nanofibers 

CTE  coefficient of thermal expansion 

CVD chemical vapor deposition 

DC  direct current 

EDS  energy-disperse X-ray spectroscopy   

EM  elastic modulus 

FESEM field emission scanning electron microscopy 

FSP  friction stir processing  

GNDs geometrically necessary dislocations 

GNF graphene nanoflakes  

GNP graphene nanoplate 

GNSs graphene nanosheets 

GO  graphene oxide 

Gr  graphite 

HIP  hot isostatic pressing 

L/D  length-to-diameter ratio 

MA  mechanical alloying 

MLG multi-layer graphene 

MM  mechanical milling 

MMC metal matrix composites 

OM  optical microscopy 

PC  pulse current 

PCA  process control agent 



IX 

 

PM  powder metallurgy 

PTFE Polytetrafluoroethylene  

rGO  reduced graphene oxide 

RPM revolutions per minute 

SEM scanning electron microscopy 

TEM transmission electron microscope 

UTS  ultimate tensile strength 

W-H  William-Hall 

XPS  X-ray photoelectron spectroscopy  

XRD X-ray diffraction 

YS  yield strength 

2. Symbol 

A  amp 

Å  angstrom 

ºC  Celsius degree 

h  hour  

HV  unit of vickers hardness 

min  minute 

MPa  Mega Pascal 

°  degree 

s  second 

µm  micrometer 

v  volt 

vol% volume percent 

wt%  weight percent 

  



X 

 

Abstract 

 

Based on the unique structure and excellent properties of graphene, the graphene 

nanoplates (GNP) were added to the traditional Cu-SiC composites. In this study, 

planetary ball milling, cold pressing and sintering were utilised to fabricate the Cu-SiC-

GNP composites, which might be a route of the efficient industrial manufacturing of 

Cu-SiC-GNP composites.  

 

As for a new material, processing parameters of Cu-SiC-GNP needed to be investigated 

first. At the beginning of study, the as-received copper and Cu-SiC-GNP milled for 2 h 

were used to find an appropriate sintering temperature. Morphology, density and 

hardness were all employed and analysed. The connection of grains for Cu and Cu-SiC-

GNP tended to increase while the ratio of pore and void inclined to decrease. 

Considering both curves of density vs. sintering temperature and curves of 

microhardness vs. sintering temperature, the best sintering temperature for these two 

kinds of materials was 800 C. Furthermore, it was found that sintering of Cu-SiC-GNP 

composites was harder because of the addition of SiC and GNP with higher melting 

points. 

 

In the analysis of ball milling time, pure Cu and Cu-SiC were used as a comparison to 

Cu-SiC-GNP. Both the powders and bulk samples were analysed through the XRD, 

FSEM, optical microscope, automatic density measuring machine, Vickers 

microhardness testing machine and universal testing machine. The X-ray diffraction 

(XRD) result showed that there was no undesirable or just a slight volume of 

unexpected reaction happened within 8 h ball milling. The morphology of Cu, Cu-SiC 

and Cu-SiC-GNP showed the similar trend after 8 h ball milling in which most laminar 

(flake) particles were formed, attributing the cold welding and fracturing. In addition, 

densities of these three materials declined with the increase of ball milling time due to 

the work hardening and irregular shapes of particles. In term of hardness, the hardness 
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of all the three materials inclined to increase generally with the increase of ball milling 

time, attributed to the work hardening and the refinement of particles. Whereas there 

was enhancement in compressive properties of Cu and Cu-SiC, the maximum of 

compressive stress of Cu-SiC-GNP had a tendency to decrease with the prolonged ball 

milling time. In addition, the yield point of Cu-SiC-GNP changed irregularly with the 

increase of ball milling time, which could be attributed to irregular morphology of Cu-

SiC-GNP particles and the ball milling time that was not long enough to disperse both 

the SiC nanoparticles and graphene nanoplates homogeneously in the Cu matrix. 

 

In ball milling of Cu-SiC-GNP, the deformation and work hardening could be the main 

mechanism that strengthened the hardness and decreased the density with the increase 

of ball milling time. Furthermore, locally high internal strain was caused by the 

resistance to further deformation that brought about the increase of dislocation densities 

and grain refinement, and it increased the hardnesss. The strengthening mechanism for 

the compressive strength for Cu-SiC-GNP could be ascribed to: (i) grain refinement, 

(ii) load transferring from the matrix to the SiC nanoparticles and GNP, and (iii) 

increase in dislocation caused by the mismatch between the matrix and reinforcements. 

 

This study is a fundamental investigation of Cu-SiC-GNP composites to find out the 

appropriate processing parameters, the evolution of powders during milling and basic 

mechanical properties of the new material. In near future, a longer ball milling time of 

Cu-SiC-GNP will be studied to observe the variations of the powder material and bulk 

material. Additionally, other identification methods like etching will be used to obtain 

a clear distribution of porosity. Furthermore, tensile test and tribological measurement 

will be conducted to reveal the wear resistance of Cu-SiC-GNP composites. 

 

Keywords: sintering temperature, ball milling time, morphology, density, hardness, 

compressive property. 
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Chapter 1 Introduction 

 

1.1 Background 

 

It has been widely studied in Cu-SiC composites for their excellent thermal and 

electrical conductivities, superior wear resistance, frictional properties and hardness. 

These composited have been applied to the electrical contacts and welding electrodes 

[1-4]. For the composite materials reinforced with particles, it is required to distribute 

homogeneously for the reinforcing phases in the matrix to bring a superior performance 

[5]. 

 

Particle agglomeration could be brought for differences in geometries, densities, flow 

of electrical charges, especially in the nanoparticles [6]. Lots of manufacturing routes 

have been employed to solve the problem through powder metallurgy, stir casting, flake 

powder metallurgy, semi-solid powder processing and ultrasonic-assisted casting [7-

15]. In the powder metallurgy route, the mixing of the matrix and reinforcement is 

crucial for reinforcement to distribute in the matrix homogeneously [16, 17]. Among 

all the methods, mechanical milling is one that is capable to enhance the particle 

distribution, which incorporates the reinforcement particles into the matrix within a 

close range [18-20]. It is found that the repeated fracturing and cold welding of particles 

is the major mechanism during the structuring microstructures, attributed to the 

collisions between the powders and the milling balls [21]. However, disadvantages are 

brought like the decrease in the compressibility of powders caused by the cold worked 

structure and the contamination of powders due to the gas during sintering [22-24]. 

 

In addition, single reinforcements like SiC might bring about deterioration in physical 

properties. Moreover, there are just a few of reports about adding new material to 

improve the properties of traditional Cu-SiC composites. Hence, this study conducts a 

research that adds graphene nanoplates (GNP) into the traditional SiC nanoparticles 
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reinforced Cu matrix composites, changing the microstructure of composites and 

conferring improvements in the mechanical properties compared to the traditional Cu-

SiC composites. The material has never been studied before. Therefore, this research 

focuses on finding out the appropriate experimental parameters such as sintering 

temperatures and ball milling time for the new material. At the same time, morphology, 

XRD patterns of powders will be investigated and analysed. Furthermore, morphology, 

density, hardness and compressive properties of sintered samples will be studied. 

 

1.2 Scope and objectives 

 

The objective of this study is mainly to investigate the effects of added GNP on the 

microstructure and mechanical properties of copper matrix composites reinforced with 

SiC nanoparticles. The aim is to study effects of sintering temperatures and ball milling 

time on the morphology and fundamental properties of samples after GNP is added. 

 

In this study, the crystallite size is calculated by the William-Hall (W-H) method based 

on the XRD patterns, and chemical components are analysed through XRD patterns as 

well. Additionally, the morphology and properties of powder samples are investigated 

by the FSEM. Strengthening mechanisms are discussed to explain the nanostructural 

evolutions and the shift in relevant properties as well. 

 

Pure copper and Cu-SiC composites are fabricated as a comparison to the Cu -SiC-GNP 

nanoparticles. 

 

1.3 Structure of chapters 

 

This chapter represents the background of Cu matrix composites in this study. In 

addition, the aims and scope of the research are given in the chapter as well. The 

structure of all the chapters is discussed below. 
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Chapter 2 is about the literature review introducing the metal matrix composites, then 

the copper matrix composites reinforced with nanoparticles. In addition, graphene 

reinforced ceramic composites and copper matrix composites are introduced and 

concluded as well. Furthermore, the processing routes and strengthening mechanism of 

MMnCs are presented. At the same time, relevant researches are put forward. 

 

Chapter 3 includes the processing of fabrication and the relevant devices applied to this 

study, involving the materials information, the parameters and basic principles of this 

study and devices.  

 

Chapter 4 is about the fabrication and results of pure copper samples and Cu-SiC-GNP 

milled for 2 h, which is to investigate an appropriate sintering temperature. Density, 

hardness and morphology are measured to analyse the variation with the increase of 

sintering temperatures.  

 

Chapter 5 shows the fabrication and results of Cu, Cu-SiC composites and Cu-SiC-

GNP composites milled for different time. Both the powders and bulk samples are 

analysed through the XRD, FSEM, optical microscope, automatic density measuring 

machine, Vickers microhardness testing machine and universal testing machine. 

 

Chapter 6 summarises the current results obtained in this study. Additionally, more 

studies and experiments are put forward as well to investigate physical and mechanical 

properties of the Cu matrix composites achieved in this study. Moreover, more 

processing parameters like different ratio of SiC and GNP should be investigated to 

obtain different composites, which could be utilised to fabricate various components 

such as welding electrodes and electrical contacts. 
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Chapter 2 Literature review 

 

2.1 Metal matrix composites (MMCs) 

 

The definition for MMCs is not simple or clear for the complexity of its components. 

MMCs first appeared in the military systems as a unique technology. It has been applied 

widely to structural enforcement, thermal management, precision devices, wear 

resistance and so on. By far most commercial composites matrices are Al, Cu, Mg, Ni, 

Ag, Be, Fe, Ti and Co [25].  

 

Production methods have been developed into like casting, wet chemistry and powder 

metallurgy methods. There have been new reinforcements such as platelets and fibers 

[26]. Furthermore, new metal composites emerge such as hybrid material using the kerf 

loss waste and flush waste [27]. The research showed the increase of  reinforcing 

particles are applied, which contain metal borides (TaB2, TiB2, WB, ZrB2) and metal 

carbides (SiC, TaC, B4C, WC), metal oxides and metal nitrides [26]. 

 

Dated back to the late 1960s, MMCs were applicated for the first time because of the 

exploitation of a steel-wire reinforced copper alloy [28]. Now, copper matrix 

composites are widely employed in production as electrical-contact materials in 

contactors, switches, because there are lots of excellent mechanical and physical 

properties about copper, like high electrical and thermal conductivity, excellent 

corrosion and wear resistance high tensile strength and Young’s modulus as well as 

lower coefficient of thermal expansion (CTE) than that of aluminum [29, 30]. 

 

As a result, they are thought to be utilised in the scope like heat sinks, electronic 

packages and fuel cell electrodes. However, drawbacks like high density and low 

hardness are so obvious that they must be overcame through adding reinforced phases 

[31, 32]. 
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Currently, copper matrix composites have three main forms: microscope copper alloy, 

particle reinforced copper matrix composites and fiber reinforced copper matrix 

composites. Primary processing methods includes powder metallurgy, cold pressing 

then by forging or extrusion and heat treatment if necessary [26]. 

 

There are different kinds of reinforcing ceramic particles employed in copper matrix 

composites in which SiC and Al2O3 are most common [33, 34]. It is found that SiC 

reinforced copper matrix composite contact material there is no other phase apart from 

Cu and SiC, which is through sintering process. Although the hardness of composite is 

raised because of dispersion of SiC particles improving the strength by impeding the 

dislocation, but weight loss and oxidation occur during the contact-count experiments 

[29]. 

 

2.2 MMC reinforced with nanoparticles 

 

Conventional ceramic-reinforcing MMCs show high elastic modulus and strength, 

near- isotropic and high-temperature creep resistant properties, but the particulates sizes 

are large, ranging from a few to several hundred micrometers. During mechanical 

loading, the large-size particles are prone to cracking, producing low ductility and 

premature failure of composites [35]. 

 

In 2004, nanotechnology was explained as “The creation, processing, and 

characterization of materials, devices, and systems with dimension on the order of 0.1-

100 nm, exhibiting novel and significantly enhanced physical, chemical, and biological 

properties, functions, phenomena, and processes due to their nanoscale size”. Different 

component materials will cause their difference in mechanical, thermal, 

electrochemical, catalytic, electrical and optical properties. Furthermore, certain size of 

particles govern properties of materials [36]. 
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Nanoparticles reinforced MMCs can be regarded as promising alternative, which could 

overcome the restriction of MMCs reinforced with micron-sized particles [37]. 

However, there is a challenge in the manufacturing metal matrix composites reinforced 

with nanoparticles, on account of difficulty in achieving a uniform distribution for the 

nanoparticles within metal matrix [35]. Most used nanoparticles are SiC, TiC, TaC, 

Al2O3, and AlN. Additionally, the most common techniques employed in processing 

metal matrix nanocomposites are rapid solidification, vapor techniques, liquid metal 

infiltration, electrodeposition and chemical methods. 

 

Apart from nanoparticles, discontinuous nanofiller like nano-fibers, nano-wires and 

nanoplatelets have been taken as reinforcements alternative, which is a development 

trend [36].  

 

The fracture mode is inter-granular fracture with respect to monolithic metal, while it 

changes to trans-granular fracture mode for nanocomposites, causing enhanced tensile 

properties, super high-temperature stability of structure, increased fracture toughness, 

enhanced creep, wear resistance and thermal shock. 

 

It is approved that mechanical, thermal, catalytic, electrical and electrochemical 

properties of nanocomposites could be significantly enhanced below a threshold size. 

It is still a debate among researches about strenghthening mechanism by which 

nanoparticles augment properties of composites [36]. 

 

Compared to the production by using micron-sized particles, it has shown that the way 

nanoparticles incorporated within the metallic matrices could cause the increase in 

mechanical properties, which is strengthened because of dispersion of particles under 

different load content. For example, it has been found that the yield strength and elastic 

modulus can be augmented through decreasing the reinforcement size to the nanometric 
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scale [38]. 

 

The nature of boding between the matrix and nano-reinforcement could be the principal 

factor affecting mechanical properties of composites. Furthermore, it has been widely 

acknowledged that reducing the size of reinforcement and grains could enhance 

mechanical properties like hardness and strength, attributed to the increased effective 

barriers that inhibit the dislocation moving through the matrix [39]. Nonetheless, there 

are drawbacks in the strategy, which decreases the ductility and increases high creep 

rate along with reducing the grain size. It is approved that mechanical properties of 

nanocrystalline materials are not extremely authentic, ascribed to the augment of the 

porosity content of materials owing to insertion of microvoids related to the 

incorporation of nanoparticles within the matrix [40]  

 

It is demonstrated by a lot of studies that uniform distribution of nanoparticles, volume 

fraction of nanoparticles within the matrix and properties of nano-level powders are 

significantly associated with mechanical characteristics of nanocomposites [41]. 

 

Nevertheless, it is such a challenge for nanoparticles to distribute uniformly within 

metallic matrices in liquid and solid processing routes, attributed to the high propensity 

of agglomeration of particles and other interactive phenomena like electro-repulsion, 

especially at huge volume fractions, which diminishes mechanical properties including 

the elastic modulus and fracture toughness [38, 42]. 

 

2.3 Metal matrix composites reinforced with ceramic nanoparticles 

 

Copper offers a lot of excellent properties like good formability, thermal conductivity, 

excellent electrical conductivity and low cost, which makes copper an appropriate 

candidate to fabricate copper matrix composites for functional and structural 

applications [43, 44]. However, poor properties like low hardness, tensile and creep 
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strength make it restricted at ambient and high temperatures [45]. 

 

It is documented that reinforcement particulates reinforced copper matrix composites 

can be significantly improved in the wear resistance and high-temperature mechanical 

properties without severe deterioration of electrical and thermal conductivities of the 

copper [46].  

 

The common reinforcement particles such as alumina, silicon carbide, titanium carbide 

or a combination of these materials have presented more superior advantages than 

copper alloys [47]. 

 

Al2O3, SiO2, SiC and MgO nanoparticles reinforced copper matrix composites are 

fabricated by powder metallurgy [48]. It is found that the coefficient of thermal 

expansion (CTE) is reduced through introducing dispersed nanoparticles in the copper 

matrix. By contrast, CTE and the interfacial pressure could be raised by increase of the 

temperature, and calculated pressure values are consistent with variations observed. 

 

Shehata et al. [49] utilised two different routes to synthesise the Cu-Al2O3 nano-sized 

powders, which add Cu to aqueous solution of aluminum and solution of ammonium 

hydroxide and aluminum nitrate separately, and it is found that finer alumina particles 

were achieved by the second route, meanwhile, copper aluminate structure formed at 

copper-alumina interface.  

 

Among particles reinforced copper matrix composites, SiC particles (SiCp) reinforced 

copper matrix composites receive wide attention, due to high thermal conductivity, high 

melting point, good mechanical properties like high anti-wear stiffness, high hardness 

and low costs of production [50]. These composites could be employed widely as 

electrical contact materials such as contactors, circuit breaks, electronic packaging and 

relays that require fine electrical and thermal conductivity as well as brazing and 
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welding properties [51]. 

 

Efe et al. [52] investigated the sintering temperatures of Cu-SiC composites fabricated 

by PM. As displayed in Figure 2-1, it was found that reinforced SiC particles obtained 

a uniform distribution in the matrix. Furthermore, the hardness and electrical 

conductivity increased with the increase of sintering temperature, attributing to a more 

homogeneous microstructure at 900 ºC. The optimal sintering temperature was 900 ºC. 

Nevertheless, the density decreased when the temperature rose to 900 ºC. At the same 

time, a peak of Cu2O was found in the XRD pattern, which meant oxidation might 

happen during sintering under the open atmosphere.  

 

    Figure 2-1 Optical images of Cu-SiC composites. 

Rahimian et al. [53] investigated the sintering temperature of Al-Al2O3 made by powder 

metallurgy (PM) as well. It was mentioned that porosity variations with the size of 

alumina particles, ascribed to a better compressibility of bigger particles. For instance, 

it was pointed that porosity could be decreased with the elevated sintering temperatures 

[54]. Additionally, it was found that prolonged sintering time might cause the hardness 

to decline. In addition, higher elongations were achieved with extended sintering times 

and finer alumina. 

 

Cabeza et al. [55] synthesised the AA 6005A reinforced with TiC particles by ball 
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milling. It was found that finer size of matrix particles and homogeneous distribution 

of TiC particles could be attained by increasing the ratio of reinforcement particles. No 

contamination was identified after ball milling. Furthermore, hardness increased with 

the rising ball milling time due to work hardening. 

 

Fogagnolo [56] produced aluminium alloy matrix composites with AlN and Si3N4 

powders by low-energy ball milling. As shown in Figure 2-2, the apparent density 

decreased at first and then recuperated, followed by the stabilisation.  

 

               

Figure 2-2 Apparent density vs. milling time. 

Gan & Gu [57] investigated the compressibility of Cu/SiCp , which was made by milling 

and compaction. It was found that both work hardening and the morphology of powders 

had major influence on the compressibility of powders, which was in accordance with 

Filho & Panelli [58]. 

 

Akbarpour & Alipour [47] produced copper and copper matrix composites reinforced 

with carbide nanoparticles by high energy ball milling and spark plasma sintering. It 

was found that the coefficient of friction and wear track depth were reduced through 

addition of 4 vol% SiC to copper matrix.  

 

Fabrication of Cu and SiC nanoparticles was conducted via high energy mechanical 

milling and hot pressing in which effects of nanoparticle content were analysed [59]. It 
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was indicated that the main strengthening mechanism is Hall-Petch mechanism. 

Furthermore, Clyne approach was consistent with experimental data for predicting the 

strength of nano-size metal matrix composites. 

 

Fathy et al. [60] fabricated Cu-Al2O3 composites by thermos-chemical technique, 

followed by cold pressing and sintering. It was found that compressive strength was 

increased by the increase of strain rate under room temperature. It was shown that Al2O3 

nanoparticles could enhance the strength. There might be several relevant strengthening 

mechanisms: grain refinement, intermetallics phases, dislocation strengthening, 

Orowan strengthening and load transfer. Furthermore, cracks happened to the tested 

composite specimens before a compression of 50% in height. 

 

AL-Mosawin et al. [61] synthesised the aluminium matrix composites reinforced by 

Al2O3 particles by uniball magneto-milling and uniaxial hot pressing. It was found that 

composite with more volume of Al2O3 particles (up to 10 vol.%) achieved higher 

compressive strength. 

The tribological behavior of Cu/SiC composites was studied by Tjong & Lau [45], 

which was fabricated by hot isostatic pressing. It was found that the composite with up-

to-20 vol.% could enhance the abrasive wear resistance, as seen in Figure 2-3. The 

improvement in wear resistance was attributed to SiC particles that reduced the degree 

of strain localization in the subsurface. 

Figure 2-3 Volume loss vs. sliding distance. 



12 

 

 

The wear mechanism of copper matrix composite was also investigated by Safari et al. 

[62]. They used mechanical milling, cold pressing and spark plasma sintering to 

fabricate the composite. It was found that the delamination and abrasive wear were the 

dominant mechanisms in the wear test. The wear resistance rose up with the increase 

of reinforcement content to 5 wt%. 

 

Moreover, microstructural development during fabrication and mechanical properties 

were investigated by Akbarpour et al. [63], which exhibited a compose in which non-

random misorientation distribution and equiaxed nanograins with bimodal are mixed. 

It was shown that the grain structure of the copper matrix was refined while the fraction 

of low angle grain boundaries decreased. It revealed that high angle grain boundaries 

took a significant part in strengthening mechanism as well. 

 

EI-Kady et al. [64] studied the thermal and electrical conductivity of A356/Al2O3 

nanocomposites, made by squeeze casting and rheocasting. It was indicated that the 

thermal conductivity was reduced after the ceramic nanoparticles were added, reported 

in another research as well by Chu et al. [65]. Furthermore, the decrement happened to 

the electrical conductivity when the size was bigger that might be caused by the 

clustering of nanoparticles. 

 

2.4 Metal matrix composites reinforced with graphene sheets 

 

Nowadays, metal-matrix composites are widely employed in automobile aerospace 

applications. Among the promising reinforcements for MMCs, graphene, a recently 

discovered material, with two-dimensional platelet structure, consisting of carbon 

atoms, has attracted abundant attention from scientific communities. 

 

Its unique physical and mechanical properties turn it into a promising nanofiller to 
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enhance mechanical, thermal and electrical properties of composites. Recent 

experiments exhibit that few-layered graphene nanoplatelets (GNPs) could be produced 

in large scale, indicating that large-quantities production cost is much lower [66, 67]. 

 

However, researches conducted on GNP are limited, attributed to a series of problems 

which are hard to distribute homogeneously for GNP and to obtain a full densification 

with metal powders as well as interfacial problems. Even so, early available results 

showed the matrix mechanical properties could been dramatically improved by 

introducing GNPs into Mg or Al matrix [68-70]. To date, there are a few researches 

about bulk graphene reinforced copper matrix composites [71-76]. Jagannadham [77, 

78] deposited Gu/GNP films on Cu or other substrates. Zhang [79] deposited solution 

drops containing reduced Cu/GO (graphene oxide) on Cu films. 

 

Guan et al. [80] added Cu-graphene powder to the melted Al, followed by stirring and 

cooling. A severe agglomeration of graphene was found, which could weaken the 

strengthening effect. Comparing to the hardness of pure Al, the hardness of the 

composite was increased by 40 %. 

 

Bastwros et al. [81] fabricated the graphene reinforced Al 6061 composites by ball 

milling and hot compaction (in the semi-solid state). Compared to the Al 6061, the 

flexural strengths of the composites milled for 60 and 90 minutes were enhanced to 760 

and 800 MPa respectively. It was reported that the carbide might form in the process, 

andthe dispersion of the graphene had effects on the strengthening effect. 

 

Li et al. [82] used electrostatic interaction to combine the graphene oxide and aluminum 

powder to fabricate the graphene/aluminum composites. A homogenous distribution of 

reduced graphene oxide in the matrix was obtained through the method. Furthermore, 

the adsorption mechanism offered a way to get a 6 wt.% GO without agglomeration. 

Comparing to the unreinforced Al, hardness and elastic modulus were increased by 17 
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and 18%, respectively. The fabrication method provided a potential for a large-scale 

production of graphene/Al composites. 

 

Yan et al. [83] combined ball milling and powder metallurgy to synthesise aluminum 

matrix nanocomposites reinforced with graphene. It was found that an effective 

distribution of graphene nanoflakes was obtained. Furthermore, the average yield 

strength and tensile strength were increased by 58 and 25 % respectively, compared to 

the aluminum alloy. 

 

Li et al. [84] utilised cryomilling and hot extrusion to prepare the Al/Gr composites 

reinforced with different volumes of graphene nanoflakes (GNF). The ductility and 

strength were both increased over the monolithic aluminum. As shown in Figure 2-4 , 

agglomeration of graphene occurred when the content of GNFs was above 1.0 wt.%, 

which might be attributed to the big specific surface area and large aspect ratio of GNFs. 

Furthermore, the content of GNFs should not exceed than 4.0 wt.% through theoretical 

calculation. 

                

 

Figure 2-4 Bright-field TEM image showing graphene agglomerations. 

Koltsova et al. [85] employed chemical vapor deposition to synthesise the new copper 

composite. As seen in Figure 2-5, the graphite/Cu composite was the most fragile, and 
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the fracture of the carbon nanofibers (CNF) /Cu composites became more viscous. The 

fracture of the graphene/Cu composites owned both fragile and viscous characteristics. 

Furthermore, the CNFs were thought to be the most appropriate material to enhance 

mechanical properties of Cu in the study, which had smaller grain size.  

 

            (a)               (b)               (c) 

Figure 2-5 Fractures microphotography: (a) Cu-5% graphite, (b) Cu-5% CNFs and (c) 

Cu-3% graphene. 

Kim et al. [86] utilised chemical vapor deposition (CVD) method to grow the graphene 

layers, and transferred the graphene layers to a substrate repeatedly. Copper-graphene 

composites obtained ultra-high strengths of 1.5 and 4.0 GPa for 70 and 100 nm repeat 

layer spacing respectively, which embodied the effective blocking effect of graphene 

on the metal-graphene interface.  

 

Pavithra et al. [87] synthesised Cu-Gr composite foils through pulse reverse 

electrodeposition for the first time. It was reported that the graphene dispersed 

uniformly in the copper matrix, attributed to the optimized current density and pulse 

parameters. The strength was increased by about 96 % than that of pure Cu, and the 

elastic modulus (EM) was increased as well. Annealing was conducted as well after the 

fabrication of composites, indicating the graphene could inhibit the grain growth except 

the reinforcing effect.  

 

Xie et al. [88] used the direct (one-step) electrochemical method to synthesise 

Cu/reduced graphene oxide composite films. It was found that the composite films had 
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a lower electrical resistivity than the polished Cu foil, which was probably ascribed to 

the rGO with higher conductivity. In general, the way afforded a new potential for the 

electrical contact materials. 

 

Zhao & Wang [89] employed electroless plating process to prepare Cu/GNP composites, 

followed by consolidation and sintering. A homogeneous distribution of GNPs in the 

copper matrix was obtained, which was ascribed to the effect of precoating of Cu 

nanoparticles on GNPs. Moreover, there were 21 and 107 % increase in YM and TS 

respectively. 

 

Bartolucci et al. [68] utilised ball milling, hot isostatic pressing (HIP) and extrusion to 

fabricate the graphene-aluminum nanocomposites. It was proved that multiwalled 

carbon nanotubes have enhanced the tensile strength of aluminium. However, it was 

indicated that the tensile strength and hardness of aluminium were lower due to the 

forming of aluminium carbide, which might be cause by the thermal exfoliation 

processing of graphite oxide.  

 

Wang et al. [69] used the flake powder metallurgy to synthesise the aluminium matrix 

composites reinforced with graphene nanosheets. It was testified that 0.3 wt.% GNSs 

brought about 62 % increment of tensile strength compared to the Al matix, which was 

249 MPa. Three strengthening mechanism were analysed to discuss the phenomenon, 

which were dislocation strengthening, grain refinement and stress transferring. 

 

Lee & Han [72] investigated the multi-layer graphene (MLG) reinforced copper matrix 

composites, fabricated ball milling and rolling (HRDSR). There was enhancement in 

strength compared to the unreinforced copper matrix. The Orowan mechanism was the 

main strengthening mechanism. 

 

It is found that measured density is no less than 98% of theoretical density [71, 72]. 
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Nevertheless, when GNPs take a higher volume fraction, GNPs would tend to 

agglomerate, leading to a decrease of relative density of compacts [71]. Moreover, after 

ball milling, GNP defects have been indicated by Raman spectra. Surfaces and edges 

of graphene are damaged by repeated deformation, cold welding and fracture in the 

period of ball milling [71, 73, 90], and the grain of the Cu matrix is refined during ball 

milling, which is indicated by peak broadening in the XRD patterns [71]. There is no 

detectable oxide/carbide observed [71-73]. 

 

Hardness, yield strength (YS), ultimate tensile strength (UTS) and Young’s modulus (E) 

of Cu-Graphene nanoplatelets could be improved when contents of GNP are no less 

than 8 vol.-% GNP [71-73, 76]. Nevertheless, decreased properties have been found 

because of inadequate dispersal of GNPs in the Cu matrix, which is fabricated through 

ultrasonication followed by sintering. So the authors decorate GNP with Ni, which has 

an improvement in bonding with the matrix and hinder agglomeration consequently 

[73]. 

 

Yue et al. [74] combined ball milling and hot pressing sintering to fabricate the graphene 

nanosheets (GNSs) reinforced copper matrix composites. It was indicated that the 

structure of GNSs could be broke if it has been milled for a long time. At the same time, 

the content of GNSs was a key index for the distribution for itself, which had influences 

on properties. When the content was lower than 0.5 wt.%, UTS could be improved. 

However, UTS began to decrease with an increase of the content of GNSs. 

 

Tang et al. [75] decorated the graphene nanosheets with GNS-Ni hybrids by in situ 

chemical reduction method. Then the sonication was employed to mix copper powder 

and GNS-Ni hybrids, followed by hot pressing. It was found that the defects in the 

structure of graphene were elimated. Additionally, yield strength and Young’s modulus 

were improved a lot by 1.0 vol% GNSs in this way, as displayed in Figure 2-6. The 

mechanical increase could be attributed to the high strength of intrinsic stiffness of GNS, 



18 

 

which could prevent shearing and rupture of composites. 

Figure 2-6 Tensile stress-strain curves of Cu and GNS-Ni/Cu. 

Jagannadham [77, 78] employed tests of thermal conductivity on copper-graphene 

composites by vapor deposition. As shown in Figure 2-7, the cross plane and plane were 

investigated. As a result, the thermal conductivity of cross plane was reduced due to a 

lower thermal conductivity of graphene. However, the thermal conductivity in plane 

was not cut down by the thermal resistance of the interface. It turned out that random 

orientation was better to obtain bigger isotropic thermal conductivity. The same author 

also used different fractions of graphene in copper-graphene composites. It found that 

both the electrical conductivity and thermal conductivity were improved by a little 

volume fraction of GNP, which provided a new choice in the electro-friction materials 

and heat spreaders. 

 

 Figure 2-7 Schematic of Cu-graphene deposited on Cu substrate. 

Jagannadham [91] employed the electrochemical deposition to synthesise the Cu-gr 

film as well. The rule of mixtures and effective mean field analysis were used to analyse 

the temperature coefficient of resistance and the electrical conductivity. It was found 
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that the resistivity of electrolytic Cu was decreased by 10-20 % when the volume of 

graphene was from 8-11 %. 

 

2.5 Graphene/nanoparticles interaction: a road map to manufacture 

composites with exceptional properties  

 

It has been found that manufacturing nanocomposites could bring about enhanced 

mechanical properties [92, 93]. Considering characteristics of graphenes, it could bring 

about new frontiers for the exploiting of nanoparticles, which could come true through 

synthesising nanoparticles and graphene. 

 

Some researches, which is to decorate different nanoparticles of metal, metal oxides 

and semiconducting materials with two-dimension graphene, have been done and 

exhibit superior properties in the new composites [94, 95]. 

 

In view of molecular bonds are not required to connect graphene and nanoparticles, 

nanoparticles could be directly deposited on graphene sheets, which could lead to 

diminished detrimental effect of particles on the graphene substrate. Therefore, the way 

could provide a suitable room for nanoparticles to deposit on the graphene sheets, 

leading to novel functionalities for both graphene sheets and deposited nanoparticles. 

These properties could be applied in fields like catalytic, photo catalytic, 

optoeclectronics and energy storage [96, 97]. 

 

Lightcap et al. [97] utilised reduced graphene oxide and TiO2 to produce a material that 

could be used as a catalyst nanomat, which certified the availability to fabricate 

composites with synergic properties including nanoparticles and graphene sheets. 

 

Boostani et al. [98-102] employed ball milling and semi-solid processing to fabricate a 

new kind of aluminium matrix composites. SiC nanoparticles were dispersed properly 
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within the aluminium matrix capsulated by graphene sheets. During solidification, 

semi-solid stirring, ultrasonic treatment as well as pressure application were utilised. 

 

Agglomeration of nano-size SiC particles was inclined to happen at grain boundaries 

rather than that at grain interior due to particle pushing mechanism through TEM 

investigations. There were two types of graphene sheets in which one was onion-like 

shells that encapsulate SiC particles and the other disk-shaped graphene nanosheets, 

attributed to the Orowan strengthening mechanism and the fiber pull-out mechanism 

respectively, due to the change of solidification mechanism. At the same time, the 

tensile strength and ductility had been improved by 45% and 83% respectively than that 

of the AR-SiC samples [99]. 

 

The processing route brought about large enhancement in properties of materials, which 

included 40% increase in thermal conductivity than pure SiC particle, decrease of 

repelling forces of SiC nanoparticles, 350% augment in yield strength and 258% 

enhancement in tensile ductility compared to the pure aluminum alloy, respectively, 

attributed to solidification alters from particle pushing to particle engulfment [98]. 

 

The same authors [102] investigated how the Hall-Petch, thermal enhanced dislocation, 

shear lag and Orowan mechanisms related to the composites as well. It was found that 

SiC nanoparticles were dispersed uniformly. Moreover, the analytical model 

demonstrated that the important roles of thermally dislocation and shear lag in 

strengthening the composite, ascribed to graphene sheets with an unusual negative 

thermal expansion coefficient. Furthermore, fractographic observations have shown 

that the transgranular fracture mode activated because of nao-void coalescence 

mechanism of the composites with graphene sheets related to prolonged ductility. The 

study also provided a possibility to enhance both ductility and tensile strength through 

the graphene encapsulating process [100]. 
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2.6 Manufacturing processes of metal matrix nanocomposites  

 

The production methods and properties of metal matrix composite materials reinforced 

with dispersion particles, platelets, noncontinuous (short) and continuous (long) [103]. 

As indicated in Figure 2-8, methods for fabricating MMCs are divided into three main 

categories. As for the liquid-state processing, casting and infiltration are the processes 

to obtain a high relative density. With respect to the solid-state processing, pressing and 

sintering is the common way to fabricate the composites. In order to avoid reactions in 

the well-bonded particle/fiber-matrix interface, the vapor-state processing is a good 

choice. On the other hand, high investment and low efficiency may be a big issue when 

the craft is considered. 

Figure 2-8 Processes of MMCs. 

Nano-particles reinforced metal matrix composites, also called MMnCs, have been 

investigated for a couple of years, attributed to their promising properties for functional 
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and structural materials. In particular, mechanical properties, damping properties and 

mechanical strength could be improved. Nanocomposites are composites including at 

least one of the phased are in nano-size dimensions [36]. 

 

A main problem in producing MMcCs is the low wettability between the molten matrix 

and nano-particles. Currently, the alternative processes could be divided into two 

categories: in situ and ex situ. Usually ceramic nano-compounds could be generated 

during the in situ processes due to reaction, for instance the use of reactive gases. As 

for ex situ processes, a lot of techniques have been employed like powder metallurgy. 

Furthermore, ultrasound casting plays an assistant role in production.  

 

There are some common ceramic compounds like SiC, Al2O3, ZnO [33] used for 

reinforcement of Al, Cu, Mg, and other materials [104] by which microhardness, 

electrical conductivity and wear resistance could be enhanced. 

 

For a large-scale production of MMnCs, the main concern is the low wettability for 

nano-particles. In order to solve the low wettability, many processes have been studies 

and used. Basically, they could be classified into three kinds: liquid processes, semisolid 

processes and solid processes. 

 

2.6.1 Liquid processes 

 

Allahkaram et al. [33] utilised the direct current and pulse current plating to accomplish 

the composite coating. It was found that a finer grain size was achieved in the Al2O3 

reinforced copper matrix composite. Comparing to direct current (DC) composite 

coatings, pulse current (PC) ones were more coherent. The minimum thickness of PC 

samples was more than ones of DC. 

 

It was demonstrated that Al2O3 nano-particles were distributed uniformly in the Mg 

matrix by a stir-casting method [93]. The grain structure was refined, and the CTE 
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decreased. Furthermore, there were obvious enhancement in both tensile properties and 

hardness. For the strength mechanism, CTE mismatch was found most effective among 

all the mechanisms. 

 

Kang & Kang [105] utilised the plasma-sprayed method to make a mixed SiC/Cu matrix 

composite. After ball milling and sieving, the mixed powder was plasma-sprayed onto 

a graphite substrate in air. It was detected that a lot of cuprous oxides occurred in the 

compositions through XRD analysis, which was indicated in Figure 2-9. Furthermore, 

most pores were detected near the SiC and it was discovered micropores on the surface 

of SiC, attributed to the thermal expansion and the decomposition of SiC. 

 

Figure 2-9 Phase stability diagram for Si-C-O at 1680 K & the equilibrium constant 

vs. temperature (K). 

Lan et al. [106] fabricated the AZ91D magnesium composites reinforced with SiC 

nanoparticles by ultrasonic method. It was found that SiC nanoparticles were almost 

distributed uniformly in the matrix. Additionally, microhardness of the composites was 

enhanced with the increase of percentage of SiC. At the same time, partly oxidisation 

and SiO2 were found through energy-disperse X-ray spectroscopy (EDS) and X-ray 

photoelectron spectroscopy (XPS). 

 

As displayed in Figure 2-10, Zhu et al. [107] utilised a electroforming to fabricate 

Cu/SiCp composites. It was found that the hardness and bend strength of Cu/SiCp 
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composites rose with the increase of SiCp. Compared to these properties, the 

conductivity factor and CTE showed an opposite trend as SiCp content increased. In 

addition, it was detected that smaller SiCp had a bigger content than that of larger ones. 

 

Figure 2-10 Equipment of electroforming. 

 

2.6.2 Solid processes 

 

Among the solid processed, PM techniques were the most employed method, which 

used ball milling, sintering and other crafts. Moreover, a lot of powder metallurgical 

experiments have been applied to fabrication and improvement of new materials. PM 

involves three main parts of the deformation of particle, which are fracturing, welding 

and repeated deformation. 

 

Kollo et al. [108] utilised aluminium and SiC to fabricate the SiCp/Al nanocomposites 

through ball milling and hot pressing. In the process of ball milling, stearic acid was 

usually added as a process control agent (PCA), which had a huge effect on the 

morphological evolution of composites. In addition, it was indicated that heptane could 

enhance the effects of welding of powders. The energy transferring reduced with an 

increase of balls at low filling levels, and smaller diameters of balls introduced the 

biggest input energies. 

 

Tavoosi et al. [109] ball-milled the aluminium and ZnO powders to fabricate the Al-
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Zn/α-Al2O3 nanocomposite and then annealed the composites. It was found that the 

increased microhardness of the composites might be caused by the decrease of 

crystallize size, formation of Al-Zn and Al2O3. 

 

Barmouz et al. [110] employed the friction stir processing (FSP) to fabricate copper 

matrix composites reinforced with nano-sized and micro-sized SiC particles. It was 

found that grain of nano-sized nanoparticles was finer than that of the micro-sized ones. 

Furthermore, the percent elongation and the tensile strength were lower than the ones 

without powder. On the other side, the yield strength was increased. The effect of nano-

sized particles was more obvious than that of micro-sized particles. Additionally, there 

was an enhancement in the wear resistance with the increase of volume fraction for 

both the two kinds of particles. 

 

It was proved by Efe et al. [111] that the SiC particle size had effects on the Cu-SiC 

composites. PM and hot pressing sintering were utilised in the research. Especially, 

there were twice pressing before the sintering and after that, making the samples take 

shape and become more compacted. Through the verification of XRD, EDS, a high 

density was achieved through the method at a lower sintering temperature. In addition, 

hardness, relative density and electrical conductivity were enhanced with the increasing 

sizes of SiC particles, making the material a promising alternative in the electrical 

components. 

 

Güler & Evin [112] employed a different way to fabricate the copper composites, 

combined of mechanical alloying (MA), cold pressing, sintering and forging. Four 

kinds of oxides were used as reinforcements at different ratios. It was displayed that 4 

wt.% oxides exhibited the most superior electrical conductivity relatively. Furthermore, 

less weight loss was concluded for the composite reinforced by a 4 wt.% ZnO from 

which the best electrical conductivity was achieved as well. 
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As displayed in Table 2-1, advantages of disadvantages of most common techniques of 

fabricating MMnCs are shown [36]. 

 

Table 2-1 Fabrication methods for MMnCs. 

 

 

2.6.3 Semisolid processes 

 

Bastwros et al. [9] utilised the ball milling technique to synthesise Al6061 composite 

reinforced by 1.0 wt.% graphene. The graphene exfoliated from graphite and Al6061 

were milled and then consolidated at room temperature and semi-solid regime twice. 

There was an increasement for strength according different milling times. Furthermore, 

graphene was dispersed uniformly and the stacked layers were reduced with further 

milling, as displayed in the scanning electron microscopy (SEM) images (Figure 2-11) 

of fracture surfaces.  
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Figure 2-11 SEM images of fracture surfaces: (a) Al6061-1.0 wt.% with milling time 

of 90 min, and (b) unalloyed Al6061 with a milling time of 90 min. 

EI-Kady et al. [64] combined the rheocasting and squeeze casting techniques to 

fabricate A356/Al2O3 nanocomposites. The A356 alloy was cooled down to a semisolid 

temperature and then stirred. After preheated Al2O3 nanoparticles were added into the 

molten alloy, the mixed materials were poured into a preheated tool steel mould and 

then squeezed by a hydraulic press. As shown in Figure 2-12, the thermal conductivity 

began to decrease due to the clustering of reinforced nanoparticles.  

Figure 2-12 The average thermal conductivity with volume fraction of of Al2O3. 

Nie et al. [113] synthesised SiCp reinforced AZ91 composites by semisolid stirring 

assisted with ultrasonic vibration. It was found that the ultimate tensile strength and 

yield strength were improved with the increase of extrusion temperature, as indicated 

in Figure 2-13. It showed a same trend with the decrease of the stirring time. 
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Furthermore, grain of matrix was refined when the temperature increased. What’s more, 

the SiC bands were decreased with the increase of extrusion temperature. 

Figure 2-13 Tensile strength at different temperature. 

 

Boostani et al. [98, 99] employed the semisolid casting to fabricate aluminium matrix 

composites reinforced by graphene encapsulated silicon carbide nanoparticles, assisted 

with ball milling and non-contact ultrasonic vibration. The innovative method made use 

of the promising properties of graphene like high thermal conductivity. The method 

changed the solidification mechanism from the pushing mechanism to engulfment 

mechanism. As displayed in Figure 2-14 (a), the particles were less than 1 µm after ball 

milling, which was good to obtain better dissolution. Additionally, a homogeneous 

distribution was achieved, as indicated in Figure 2-14 (b). Accordingly, there was an 

augment in the tensile properties and tensile ductility.  

Figure 2-14 (a) Morphology of mixed powder, and (b) high magnification image of 

(a). 
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Selective laser melting was utilised to fabricate the Ti matrix nanocomposites 

reinforced with TiC nanocrystalline [114]. The TiC reinforcement was quite different 

form the particulate morphology at beginning, as shown in Figure 2-15. The elastic 

modulus and dynamic hardness increased respectively than those for the unreinforced 

Ti sample. 

Figure 2-15 FE-SEM images of TiC/Ti nanocomposites. 

 

2.7 Strengthening mechanisms of MMnCs  

 

There are four strengthening mechanism contributing to the superior mechanical 

properties of metal matrix composites reinforced with nanoparticles, including load 

transfer effect, Hall-Petch strengthening, Orowan strengthening, and CTE (coefficient 

of thermal expansion and EM (elastic modulus). These methods will be clarified below 

separately. 

 

2.7.1 Load transfer effect 

 

The load transfer means that load transfers from the soft and compliant matrix to the 

stiff and hard particles under an applied external load, contributing to the strengthening 

of the base material. A modified Shear Lag model (Equation (2-1)) put forward by 

Nardone & Prewo [115] is commonly employed to predict the contribution in 

strengthening attributed to load transfer of particulate-reinforced composites [116-118]: 



30 

 

∆𝜎𝐿𝑇 = 𝑣𝑃𝜎𝑚 [
(𝑙+𝑡)𝐴

4𝑙
]                      (2-1) 

 

where 𝑣𝑃  is the volume fraction of the particles, 𝜎𝑚  is the yield strength of the 

unreinforced matrix, l and t are the size of the particulate parallel and perpendicular to 

the loading direction, respectively. With respect to equiaxed particles as reinforcements, 

Equation (2-1) is modified to Equation (2-2): 

 

∆𝜎𝐿𝑇 =
1

2
𝑣𝑃𝜎𝑚                           (2-2) 

 

2.7.2 Hall-Petch strengthening 

 

Considering dislocation movement could be hindered by the grain boundaries, the grain 

size affected the metal strength strongly. It is attributed to the large lattice disorder 

characteristic and the different orientation for adjacent grains in these regions, which 

prevent the moving of dislocations in a continuous slip plane. The Hall-Petch equation 

(Equation (2-3)) involves the average grain size and the strength [119]: 

 

∆𝜎𝐻−𝑃 =
𝑘𝑦

√𝑑
                             (2-3) 

 

where 𝑘𝑦 means the strengthening coefficient (which is the characteristic constant of 

each material). 

 

As for the final grain size of metal matrix composites, particles play an essential part 

due to their interaction with grain boundaries, serving as pinning pointing to prevent 

their growth. As indicated in the Zener equation (Equation (2-4)) [118], a finer structure 

could be caused by the decrease of 𝑑𝑃 and the increase of 𝑣𝑃: 

 

𝑑𝑚 =
4𝛼𝑑𝑃

3𝑣𝑃
                               (2-4) 
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where 𝑑𝑃 stands for particle diameter, 𝑣𝑃 stands for volume fraction and α stands for 

a proportional constant. 

 

2.7.3 Orowan strengthening 

 

The Orowan mechanism refers to the interaction of dislocations and nanoparticles [119]. 

To be specific, under the external load, the non-shearable ceramic nanoparticles as 

reinforcement would fix the crossing dislocations and facilite the bowing of 

dislocations around the particles, which is called Orowan loops. The expression 

(Equation (2-5)) for the Orowan strengthening is below: 

 

∆𝜎𝑂𝑅 =
0.13𝑏𝐺

𝑑𝑃( √
1

2
𝑣𝑃

3
−1)

ln(
𝑑𝑃

2𝑏
)                    (2-5) 

 

where 𝐺 stands for the matrix shear modulus and 𝑏 stands for the Burger’s vector. 

 

2.7.4 CTE and EM mismatch 

 

The mismatches between reinforcement particles and the metal matrix in CTE 

(coefficient of thermal expansion) and EM (elastic modulus) is accommodated through 

material cooling and straining by GNDs (the formation of geometrically necessary 

dislocations). 

 

The following expressions can be used to estimate the GND densities caused by CTE 

(Equation (2-6)) and EM (Equation (2-7)) [118]: 

 

𝜌𝐶𝑇𝐸 =
𝐴∆𝛼∆𝑇𝑣𝑃

𝑏𝑑𝑃(1−𝑣𝑃)
                          (2-6) 
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   𝜌𝐸𝑀 =
6𝑣𝑃

𝜋𝑑𝑃
3 𝜀                             (2-7) 

 

where 𝐴  stands for the geometric constant, ∆𝑇  stands for the difference between 

temperatures of processing (or heat treatment temperatures) and the test. In addition, 

the combined strengthening owing to the mismatch of CTE and the mismatch of EM 

can be calculated through the Taylor equation (Equation (2-8)) [120]: 

 

∆𝜎𝐶𝑇𝐸+𝐸𝑀 = √3𝛽𝐺𝑏(√𝜌𝐶𝑇𝐸 + √𝜌𝐸𝑀)            (2-8) 

 

where 𝛽 is a constant. 

 

2.7.5 Sum of contributions 

 

One expression (Equation (2-9)) to evaluate the strength of composites, 𝜎𝑐, is to add 

the initial yield strength of the unreinforced matrix, 𝜎𝑚 , with the contributions 

correlated with all the different strengthening effects, ∆𝜎𝑖, as: 

 

 𝜎𝑐 = 𝜎𝑚 + ∑ ∆𝜎𝑖𝑖                               (2-9) 

 

There are some alternative ways proposed in some studies to evaluate 𝜎𝑐, taking into 

account the superposition of all the effects [117, 121]. It is suggested that 𝜎𝑐 (Equation 

(2-10)) could be calculated through making the root of sum of squares including all the 

strengthening effects: 

 

𝜎𝑐 = 𝜎𝑚 + √∑ ∆𝜎𝑖
2

𝑖                        (2-10) 

 

Chen & Zhang [116, 117] proposed one method (Equation (2-11)) to evaluate the 

strength, considering the CTE mismatch (Equation (2-12)), Orowan strengthening 

(Equation (2-13)) mechanism and load-bearing effect, as: 
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𝜎𝑐 = (1 + 0.5𝑣𝑃) (𝜎𝑚 + 𝐴 + 𝐵 +
𝐴𝐵

𝜎𝑚
)              (2-11) 

 

𝐴 = 1.25𝐺𝑚𝑏√
12∆𝛼∆𝑇𝑣𝑃

𝑏𝑑𝑃(1−𝑣𝑃)
                      (2-12) 

 

𝐵 =
0.13𝐺𝑚𝑏

𝑑𝑃[(
1

2𝑣𝑃
)

1
3−1]

ln
𝑑𝑃

2𝑏
                         (2-13) 

 

where 𝐴 stands for CTE mismatch and B is related to Orowan effect. 

 

2.8 Summary 

 

Among all the metal matrix composites, copper matrix composite is unique for its 

application in contactor, heat sink, electronic package and so on, attributed to its high 

electrical and thermal conductivity, wear resistance, and other superior properties. In 

addition, SiC, Al2O3 and some other kinds of ceramic particles as reinforcement could 

enhance the hardness of composites. 

 

As for reinforced particles, large-size particles may cause a few problems like cracking 

and low ductility. On the other side, nanoparticles exhibit novel and superior properties 

due to their nanoscale size. However, there is still difficulty in distributing nanoparticles 

in the matrix uniformly. 

 

Considering the fabrication process, powder metallurgy has been utilised to fabricate 

nanoparticles reinforced copper matrix composites, which could reduce CTE of 

composites. Furthermore, SiCP reinforced copper matrix composites have receive wide 

attention for their good mechanical properties, high thermal conductivity, high melting 

point and low costs, as an ideal electrical contact material. 
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In term of graphene, it has attracted a lot of attention due to its unique two-dimensional 

platelet structure and unusual physical and mechanical properties. To date, there are 

some researches around Cu-Graphene, reveals that graphene can improve hardness, YS, 

UTS and so forth.  

 

On its combination with ceramic matrix composites, graphene can hinder ceramic grain 

from growing. Furthermore, fracture toughness, flexural strength and other properties 

have been enhanced by adding graphene into the ceramic matrix [31]. Moreover, 

decorating nanoparticles with graphene has shown a promising application in fields like 

catalytic and photo catalytic. Some studies have indicated that aluminium graphene 

sheets encapsulating SiC nanoparticles exhibits an improvement in tensile ductility [98, 

99]. 

 

Therefore, graphene could be applied to copper matrix composites reinforced with 

nanoparticles, solving the agglomeration of nanoparticles and enhancing properties of 

traditional copper matrix composites. 
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Chapter 3 Experimental methodology 

 

3.1 Sample preparation  

 

3.1.1 Ball milling   

 

The planetary mono mill used in the experiment is made by Fritsch GmbH in Germany, 

as shown in Figure 3-1. The movement of its vial is planetary, which is the reason it 

owes the name. In addition, the vial rotates around its own axis. The position of the 

supporting disk must be adjusted to achieve the balance between the vial with different 

quantities of material and itself. Furthermore, the centrifugal forces induced by the vial 

and the supporting disk both have effects on the vial contents [122]. 

Figure 3-1 Fritsch pulverisette 6 planetary mono mill. 

In this study, commercially atomized Cu powder (spherical, 99.9 wt% purity; average 

particle size 30 µm, HTNANO), SiC powder (average particle size 50 nm; purity 99.9%, 

NANOINGLOBAL) and graphene nanoplates (diameter: 5-10 µm and thickness: 3-10 

nm, XFNANO) were used in experiments. The chemical composites of copper powder 

are displayed in Table 3-1: 
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Table 3-1 Chemical composites of as-received copper powder. 

Element Cu Al Ca Mg Fe Mn Na Co 

wt. % 99.9 0.002 0.01 0.001 0.001 0.001 0.001 0.001 

Element Si Ni Pb K N C S O 

wt% 0.001 0.001 0.001 0.001 0.001 0.01 0.001 0.08 

 

There are four kinds of materials: pure as-received copper, pure milled copper, copper 

with 4 vol% SiC and copper with 4 vol% SiC and 1 vol% GNP. Mechanical milling 

was performed in a planetary ball mill under an argon atmosphere at room temperatures 

for different ball milling times. The ball-to-powder ratio was 8.5:1, and 1 wt.% stearic 

acid was used as a process control agent. The longest ball milling time was 20 h to 

investigate the change of microstructure and morphology. Moreover, the specific setting 

of processing parameters is displayed in Table 3-2. 

 

Table 3-2 Parameters of ball milling. 

Processing parameters setting 

Filling quantity and material of grinding 

bowl 

80ml, stainless steel 

Diameter and material of grinding balls 5mm, stainless steel 

PCA Stearic acid 

Atmosphere Argon 

Milling modes Forward and reverse 

Rotational speed  200 revolutions per minute (rpm) 

Time of running and pause per cycle 5min, and 15min respectively 

 

3.1.2 Cold pressing and sintering 

 

Prior to sintering, the mixed powder was cold pressed at room temperature in a uniaxial 

steel die by the 10 tonne hydraulic press with an inner diameter 10 mm below, at 850 
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MPa on both sides for 5 min respectively, as shown in Figure 3-2 (a). Then green pellets 

had dimensions with 10 mm in diameter and 3-5 mm thickness. The principle of cold 

welding was to weld materials together in a solid state without heating or fusion. Before 

the pressing, the die was sprayed with dry Polytetrafluoroethylene (PTFE) as a lubricant 

for reducing friction between the stamp and die. Furthermore, one graphite sheet was 

put under powder on one side to prevent the leaking of powder, and it could also make 

the removal of samples easier. The schematic diagram of die is displayed in Figure 3-

2. 

                      

Figure 3-2 Schematic of dies.  

After pressing, the samples were put into a ceramic and then pushed into the middle of 

the tube furnace, which was displayed in Figure 3-4 (b). As displayed in Figure 3-3, at 

the first stage, the consolidated nanocomposites were degassed at 400 ºC for 1 h under 

argon atmosphere and atmospheric pressure (the melting point of stearic acid is 400 ºC). 

It was suggested that a degassing procedure could improve the sintering [23]. Then, the 

sintering was conducted at 700, 750, 800 ,850, and 900 ºC for 2 h, and the heating rate 

was 10 ºC/min. The air cooling was used right after heating. 
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Figure 3-3 Heating curve of sintering.  

                      (a)                   (b) 

Figure 3-4 (a) 10 Tonne hydraulic press and (b) KTL 1400 tube furnace. 

3.2 Experiment and analysis 

 

3.2.1 Hot mounting, grinding and polishing 

 

As shown in Figure 3-5, specimens were hot mounted to a dimension with a diameter 

of 30 mm, which suit the holder of the polishing machine. In this case, a 22.5 ml multi-

fast powder was used for mounting. The mounting temperature was 180 ºC, and the 

water cooling was conducted. 
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Figure 3-5 Struers citopress 20 hot mounting. 

Struers TegralPol-21 automatic grinding/polishing machine was used in the polishing, 

as displayed in Figure 3-6. Considering the hardness and materials of samples, an 

appropriate procedure for grinding and polishing was chosen from the database of the 

console. First, samples were grinded by #800 SiC foil and then by a 9-µm MD-largo 

surface, followed by the 3- µm and 1- µm MOL surfaces. Finally, the MD-Chem surface 

was utilised. In addition, an optical microscope was used to examine the result of 

polishing. 

Figure 3-6 Struers TegralPol-21 automatic grinding/polishing machine. 
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3.2.2 KEYENCE laser microscope (3D & profile measurement) and density 

measuring instrument 

 

The morphology of sintered samples was initially observed by the laser microscope as 

displayed in Figure 3-7 (a). Unlike the common optical microscope, the laser 

microscope could be used to analyse and characterize the 3D surface of specimens. 

Specimens were scanned in XYZ directions to collect the detailed height information. 

As a result, a large depth of field, high-resolution, color image could be obtained.  

 

(a)                   (b) 

Figure 3-7 (a) KEYENCE laser microscope and (b) automatic density measuring 

instrument. 

As indicated in Figure 3-7 (b), the density of sintered preforms was calculated by 

measuring the weight of samples in air and the other one in water, on basis of 

Archimedes principle. First, the weight of samples in air was measured. Then it was put   

on the inner platform to measure full of stilled water for the second measurement. Then 

the actual density could be calculated by the instrument. The error of data in the 

measurement was kept within 1%. Every group of samples were measured three times 

and the average value was taken as the density.  
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3.2.3 X-ray diffraction 

 

As displayed in Figure 3-8, all powders were characterised by the GBC MMA XRD, 

with the Cu Kα radiation (Kα =1.5405 Å) and a current of 28.4 mA and an accelerating 

voltage 35 kV. The scanning rate was 2 °/min and the step size was 0.02 °. Scanning 

angle ranged from 20° to 100°. Then the data was processed by Jade and TRACES 

softwares. 

 

Figure 3-8 GBC MMA XRD. 

Furthermore, the lattice strain and average crystallite size could be calculated thorough 

the line profile analysis of XRD peaks [123]. During ball milling of different time, XRD 

peak broadening would occur. There are three main methods to calculate crystallite size 

including Scherer’s formula, Williamson-Hall formula and Warren-Averbach formula. 

In this study, Williamson-Hall method was utilised to calculate the crystallite size 

because it is simple and suitable. Therefore, it can be expected from the following W-

H equation: 

 

𝛽ℎ𝑘𝑙 cos 𝜃ℎ𝑘𝑙 = (
𝐾𝜆

𝑡
) + 4𝜀 sin 𝜃ℎ𝑘𝑙                 (3-1) 

 

where 𝛽ℎ𝑘𝑙  stands for FWHM (the full width at half-maximum), 𝜃ℎ𝑘𝑙  means the 

Bragg angle (°), K stands for the shape factor of 0.9, λ is the X-ray wavelength (1.5406 

Å), t means the effective crystallite size (nm), ε is the lattice strain. Then a liner plot of 

𝛽ℎ𝑘𝑙 cos 𝜃ℎ𝑘𝑙  against 4 sin 𝜃ℎ𝑘𝑙  should be made to determine the lattice strain and 
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crystallite size. The crystallite size and strain could be calculated from the intercept and 

slope respectively. 

 

3.2.4 Microhardness testing  

 

The microhardness is related to the elastic stiffness, strength, plasticity, ductility and 

toughness. In this study, indentation was adopted to test the Vickers hardness, which 

was to estimate the resistance of material deformation. The standard indentation is 

displayed in Figure 3-9, based on two dimensions of an indentation. The hardness is 

calculated by the indentation area and the load, which could be converted into pascals. 

The hardness value is calculated based on the formula below: 

 

𝐻𝑉 =
𝐹

𝐴
≈

1.8544𝐹

𝑑2                         (3-2) 

 

The unit of the force of indentation (F) is the kilogram, and d is the indented diameter 

for the area. The surface area A could be converted below: 

 

  𝐴 =
𝑑2

2𝑠𝑖𝑛68°                              (3-3) 

 

                      

 

      Figure 3-9 Schematic of the indenter and indentation of vickers hardness. 
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After grinding and polishing, the microhardness of samples was measured by the TIME 

TH7 15 microhardness tester, with a load of 0.98 N and a dwelling time of 10 s, as 

shown in Figure 3-10. On accountant of accuracy, 15 effective places of the polished 

surface were indented and measured through which Vickers hardness was acquired 

directly. The relative error between the two dimensions was kept within 5%. The criteria 

is as follows: 

 

|𝐷1−𝐷2|

𝐷1
< 5%                           (3-4) 

 

Figure 3-10 TIME TH7 15 microhardness tester. 

 

3.2.5 Field emission scanning electron microscopy 

 

As displayed in Figure 3-11, the morphological of powders and the morphological 

evaluation of powder samples were analysed through the JEOL JSM-7500FA field 

emission scanning electron microscope (FESEM) using at 9.5 mA and 5 kV. The 

FESEM is equipped with a 30 kV in-lens cold field emission gun possessing 1.4-

nanometer spatial resolution. Because the FESEM may access superior image quality 

at 0.1kV, charging effects on materials could be reduced. Thus it is suitable for scanning 

thin foils and nanosized materials embedded on the thin support film. In this study, 

powder must be coated with thin layer to make it conductive for current since the 
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FESEM works with electron. Furthermore, a high vacuum must be sustained.                   

 Figure 3-11 JEOL JSM-7500FA field emission scanning electron microscope 

(FESEM).               

3.2.6 Compression test 

 

As indicated in Figure 3-12, the compression tests of sintered samples were performed 

by the 500 KN Instron universal testing machine. The maximum displacement was kept 

close to 50% of the specimen height. The load rate was 0.004 mm/s. The dimension of 

samples were (2 ± 0.05) mm in diameter and (5 ± 0.05) mm in length (L/D = 2.5), which 

was based on standard requirements [124, 125]. Moreover, three samples were prepared 

for the same compression test to keep the accuracy of results. The compressive yield 

strength was calculated by the 0.2% offset principle [126].  

 Figure 3-12 500 KN Instron universal testing machine.  
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Chapter 4 Effect of sintering temperature  

 

4.1 Introduction 

 

In this study, pure copper and Cu-SiC-GNP (milled for 2 h) are utilised to analyse the 

influence of sintering temperature. Microstructure, morphology, density and 

microhardness are investigated to find out the correlation between the performance and 

sintering temperatures. 

 

4.2 Experimental procedure 

 

Commercially atomized Cu powder (spherical, 99.9 wt% purity; average particle size 

30 µm, HTNANO), SiC powder (average particle size 50 nm; purity 99.9%, 

NANOINGLOBAL were used in experiments. As for Cu-SiC-GNP composites, SiC 

and GNP take up 4 vol % and 1 vol % respectively. pure copper and Cu-SiC-GNP 

(milled for 2 h) were compacted with 850 MPa in a steel mold of 10 mm in the inner 

diameter. Three specimens were used in every single fabrication and test of materials 

in consideration of accuracy. Then the sintering was conducted under the argon 

atmosphere in a tube furnace at a range from 700 to 900 ºC for 2h with the heating rate 

of 10 ºC/min, followed by air-cooling. Afterwards, microhardness, relative densities 

were measured, and microstructure was observed.  

 

 

4.3 Results and discussion 

 

4.3.1 Pure copper  

 

4.3.1.1 Optical images 

 

Optical microstructures of pure copper samples sintered at 700, 750, 800, 850 and 900 

ºC are displayed in Figure 4-1. Light areas were copper matrix and dark areas were 
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porosity. It could be found that grains of samples sintering at 700 and 750 ºC are 

distributed independently and grain boundary could be observed clearly. When 

temperature rose to 800 ºC, grains became bigger and connected with other grains so 

that grain boundary was hard to distinguish. At the same time, the proportion of pore 

turned bigger and a few of big voids began to occur, especially at 900 ºC. 

 

 

Figure 4-1 Optical micrographs of pure copper samples sintered at (a) 700 ºC, (b) 750 

ºC, (c) 800 ºC, (d) 850 ºC and (e) 900 ºC. 
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4.3.1.2 Density measurement 

 

It was illustrated that density of specimen changed when sintering temperature went up 

in Table 4-1 and Figure 4-2. There was a tiny decrease when temperature increased to 

750 ºC. At 800 ºC, density ascended to the maximum, which might be attributed to the 

enhanced connectivity of grains. It could be seen that grains became bigger and grain 

boundaries could not be seen clear, and the porosity level was reduced to the minimum. 

After the sintering temperature increased to 850 ºC, the density decreased. It decreased 

to the minimum at 900 ºC due to the increase of pore and void. The error of density 

showed that counting statistics at 700 and 850 ºC were slightly poorer than that in other 

temperatures in the density measurement [127]. 

 Table 4-1 Density of samples made of the as-received copper powder. 

 

Figure 4-2 Density of as-received copper powder compacted in 850 MPa vs. sintering 

temperature. 

  

Temperature (ºC) Theoretical density 

(g/cm3) 

Relative density 

(%) 

Porosity (%) 

700 8.44 94.1% 5.9% 

750 8.41 93.9% 6.1% 

800 8.53 95.2% 4.8% 

850 8.45 94.35% 5.65% 

900 8.18 91.3% 8.7% 



48 

 

4.3.1.3 Microhardness testing 

 

As shown in Table 4-2 and Figure 4-3, the hardness was the biggest at 700 ºC and then 

decreased at 750 ºC and 800 ºC. The decrease in microhardness was attributed to the 

change of microstructure that grain size became bigger [52]. However, there was an 

increase of hardness when the sintering temperature increased to 850 ºC, which could 

be attributed to the enhancement of connection among grains having more effects than 

the increasement of pore and void. Nevertheless, the density decreased to the minimum 

at 900 ºC. It could be found that the hardness of copper decreased as a whole with the 

increase of sintering temperature when the grain size and percentage of void and 

porosity increased that made the deformation easier. In addition, the error bar showed 

there were good counting statistics in 750 ºC, meaning the homogeneous microstructure 

of the sintered samples of as-received copper obtained.  

 

Table 4-2 Hardness of samples made of the as-received copper powder. 

 Temperature (ºC) Vickers hardness (HV) 

700 61.92 

750 54.2 

800 53.02 

850 56.89 

900 52.85 

 

 

Figure 4-3 Vickers micro-hardness of as-received copper powder compacted in 850 
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MPa vs. sintering temperature. 

4.3.2 Cu-SiC-GNP 

 

4.3.2.1 Optical images 

 

As displayed in Figure 4-4, the grain sizes of specimens were irregular. The light area 

was copper and the dark areas were Cu particles with dispersed SiC nanoparticles and 

GNP. It was displayed in Figures 4-4 (a) and 4-4 (b) that most particles were scattered 

on the surface of samples, which means that the sintering process had not finished 

completely. When the sintering temperature increased to 800 ºC, the aforementioned 

phenomenon almost disappeared and inhomogeneous grains were found due to an 

inadequate ball milling time. At the same time, it could be found in Figure 4-4 (c), 4-4 

(d) and 4-4 (e) that more bigger-size grains were taking up a larger proportion. 

Furthermore, the ratio of grain boundary decreased with more grains joining together. 
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Figure 4-4 Optical micrographs of Cu-SiC-GNP composite sintered at (a) 700 ºC, (b) 

750 ºC, (c) 800 ºC, (d) 850 ºC and (e) 900 ºC. 

 

4.3.2.2 Density measurement 

 

It was indicated in Table 4-3 and Figure 4-5 that the density of specimens increased to 

its maximum when the sintering temperature rose from 700 to 750 ºC, attributed to the 

enhanced connectivity of grains and less porosity. Then it began to decrease when the 

sintering temperature increased to 900 ºC due to the increase of large pore and void. 

The error of density showed that counting statistics at 850 and 900 ºC were a little 

poorer than that in other temperatures in the density measurement, meaning an 

inhomogeneous microstructure [127].  

 

Table 4-3 Density of samples made of the Cu-SiC-GNP powder. 

Sintering temperatures 

(ºC) 

density (g/cm3) Relative density 

(%) 

Porosity (%) 

700 7.82 90.3% 9.7% 

750 7.85 90.6% 9.4% 

800 7.84 90.6% 9.4% 

850 7.69 89.0% 11% 

900 7.51 85.4% 14.6% 
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Figure 4-5 Density Cu-SiC-GNP (compacted in 850 MPa) vs. sintering temperature. 

 

4.3.2.3 Microhardness testing 

 

It was illustrated in Table 4-4 and Figure 4-6 that there was a slight increase for the 

hardness of specimens when the sintering temperature increased from 700 to 750 ºC. 

However, the decrease trend occurred when the sintering temperature increased from 

750 to 900 ºC. It could be found that the hardness of Cu-SiC-GNP decreased as a whole 

with the increase of sintering temperature when the size and percentage of void and 

porosity increased that made the deformation easier. Furthermore, the small error 

showed there were good counting statistics, meaning the homogeneous microstructure 

of the sintered samples of Cu-SiC-GNP milled for 2 h obtained. 

  

Table 4-4 Hardness of samples made of the Cu-SiC-GNP powder. 

Sintering temperatures (ºC) Vickers hardness (HV) 

700 39.41 

750 39.51 

800 36.66 

850 35.94 

900 33.30 
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Figure 4-6 Vickers microhardness of Cu-SiC-GNP composite (compacted for 850 

MPa) vs. sintering temperature. 

 

4.4 Summary 

 

1. For the pure copper, there were more grains joining together and more larger voids 

with the increase of sintering temperature. On the other hand, the sintering of Cu-SiC-

GNP was not completed for 2 h at 700 and 750 ºC. 

 

2. The highest relative density of pure copper was 95.2 % calculated from samples 

sintered at 800 ºC. For specimens made of Cu-SiC-GNP, the biggest relative density 

was 90.6% at 750 and 800 ºC. 

 

3. The trend for hardness (against sintering temperature) of pure copper was curved and 

the biggest hardness of pure copper was 61.92 HV measured form specimens sintered 

at 700 ºC. In the term of Cu-SiC-GNP, the highest hardness was 39.51 HV observed 

from samples sintered at 750 ºC. 
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 Chapter 5 Effect of milling time 

 

5.1 Introduction 

 

In this study, pure copper and Cu-SiC composites are fabricated as a contrast to Cu-

SiC-GNP composite. Both powders and sintered specimens are investigated from the 

XRD patterns, SEM images, optical images, density, hardness and compressive tests. 

5.2 Experimental procedure 

 

The composites fabricated in this chapter were Cu, Cu-4vol.% SiC and Cu-4vol.% SiC-

1vol.% GNP sintered at 800 ºC.  Additionally, the variations with the increase of ball 

milling time were investigated, which focused on the morphology and chemical 

composites of powder samples as well as the morphology, density, microhardness and 

compressive strength of sintered samples. The ball milling time was mainly chosen 

from 0 to 8 h. Furthermore, three samples were made for each group to keep the 

accuracy.  

 

5.3 Results and discussion 

 

5.3.1 Powder analysis 

 

5.3.1.1 SEM 

 

1. Cu 

As shown in Figures 5-1 (a) - 5-1 (e), the powder morphology of pure copper was 

observed at different ball milling times. Figure 5-1 (a) shows the as-received copper 

powder was spherical. After a 2 h ball milling, most particles were flattened due to the 

forces exerted from milling balls. At the same time, a slight portion of copper particles 

were still near-spherical, attributed to the inadequate ball milling. It could be seen that 

a small fraction of bigger flakes occurred due to cold welding. Therefore, the plastic 
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deformation took the domination during ball milling from 0 to 2 h. With a further ball 

milling up to 4 h, a larger proportion of flakes were formed due to cold welding. 

Meanwhile, a certain fraction of fragment occurred because of the increased effect of 

fracturing, as seen in Figure 5-1 (c). The cold welding continued to be dominant until 

the ball milling of 6 h, and lot of bigger flakes could be seen. However, fracturing turned 

predominant again with an increase of ball milling to 8 h, which was attributed to the 

brittleness caused by the work hardening. Therefore, a lot of flakes were broken, which 

were observed in Figure 5-1 (e). 

Figure 5-1 SEM micrographs of (a) as-received pure Cu powders and (b) 2 h, (c) 4 h, 
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(d) 6 h and (e) 8 h pure Cu powders milled. 

 

2. Cu-SiC 

 

As displayed in Figures 5-2 (a) - 5-2 (e), the powder morphology of Cu-SiC was 

observed at different ball milling times. Figure 5-2 (a) shows that most particles were 

flattened due to the forces exerted from milling balls after a 2 h milling. At the same 

time, a slight portion of particles were still near-spherical, attributed to the inadequate 

ball milling. It could be seen that a small fraction of bigger flakes took shape due to 

cold welding. Therefore, the plastic deformation took the domination during ball 

milling from 0 to 2 h. With the increase of time to 4 h, a bigger fraction of larger flakes 

took shape due to cold welding, as seen in Figure 5-2 (b). When the ball milling was 

prolonged to 6 h (Figure 5-2 (c)), the flakes became oval and the size of flakes was 

uniform due to fracturing and work hardening. The size of flakes became more uniform 

with the increase of ball milling to 8 h (Figure 5-2 (d)). Furthermore, the size of flakes 

became a bit smaller and homogenous as well until the ball milling of 20 h (Figure 5-2 

(e)). Therefore, it might be predictable that the fracturing would take a significant role 

in the next ball milling until an equilibrium between the fracturing and the cold welding 

[128, 129]. 
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Figure 5-2 SEM micrographs of and (a) 2 h, (b) 4 h, (c) 6 h, (d) 8 h and (e) 20 h Cu-

SiC powders milled. 

 

3. Cu-SiC-GNP 

 

As indicated in Figures 5-3 (a) - 5-3 (d), the powder morphology of Cu-SiC-GNP was 

observed at different ball milling time. Figure 5-3 (a) shows that most particles were 

milled into fragments due to the forces exerted from milling balls after a 2 h ball milling. 

At the same time, a little portion of particles were still near-spherical, attributed to the 

inadequate ball milling. It could be seen that a small fraction of bigger flakes took shape 

due to cold welding. Therefore, the fracturing took the domination during ball milling 

from 0 to 2 h. With a further ball milling to 4 h, lots of flakes in inhomogeneous size 

were produced attributed to cold welding (Figure 5-3 (b)). With the increase of ball 

milling, flakes became larger and more homogeneous and near-equiaxed because of the 

continuing cold welding. Similarly, the size and distribution of flakes were almost the 

same. Therefore, it is predicted that the ball milling will come to a stabilised situation 
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with further ball milling [129]. 

 

 

 

  

Figure 5-3 SEM micrographs of (a) 2 h, (b) 4 h, (c) 6 h and (d) 8 h Cu-SiC-GNP 

powders milled. 

 

5.3.1.2 XRD analysis 

 

1. Cu 

 

The XRD patterns of Cu milled for different times are shown in Figure 5-4. It could be 

found that indices of crystal faces, which were for different XRD patterns of Cu 

powders milled for 2, 4, 6 and 8 h, were the same as the as-received copper powder. 

Furthermore, there were not changes in the geometry or other diffraction peaks, 

meaning no undesirable reactions like oxidation or a slight volume of unexpected 

reaction production in the ball milling process [62]. At the same time, peaks at (2 0 0) 

increased bigger relatively in the ball milling. The peak width and intensities changed 
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irregularly. 

 

 

         Figure 5-4 XRD patterns of Cu milled for 0, 2, 4, 6 and 8 h. 

As mentioned before, the crystallite size could be estimated from the following W-H 

equation (Equation (5-1)) according to the linear fit of 4sin 𝜃ℎ𝑘𝑙 and cos 𝜃ℎ𝑘𝑙  by the 

software Origin. In the construction of the liner plot (Figure 5-5), the five peaks (1 1 1), 

(2 0 0), (2 2 0), (3 1 1) and (2 2 2) were used. 𝛽ℎ𝑘𝑙 and 𝜃ℎ𝑘𝑙 could be found from the 

XRD after the processing of the software Jade. 

            𝛽ℎ𝑘𝑙 cos 𝜃ℎ𝑘𝑙 = (
𝐾𝜆

𝑡
) + 4𝜀 sin 𝜃ℎ𝑘𝑙                 (5-1) 

 

 

  Figure 5-5 W-H plots for Cu powder milled for 2 h. 
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The trend of the grain size of the milled Cu powder for different ball milling times is 

displayed in Figure 5-6. It could be seen that after the 2 h ball milling, the grain size 

rose to around 1.1 nm, attributed to the cold welding. Then it decreased to the minimum 

value around 0.5 nm in the next 4 h ball milling. Nevertheless, it increased to 0.7 nm 

when the ball milling time reached 8 h. Therefore, the trend corresponds with the 

irregular change of XRD patterns. 

 

 

 Figure 5-6 Grain size vs. milling time for copper powder. 

 

2. Cu-SiC  

 

The XRD patterns of Cu-4 vol% SiC milled for different times are indicated in Figure 

5-7. It could be found that indices of crystal faces, which were for different XRD 

patterns of Cu powders milled for 2, 4, 6 and 8 h, were the same as the as-received 

copper powder. Furthermore, there were not changes in the geometry or other 

diffraction peaks, meaning no undesirable reactions like oxidation or undeted volume 

of unexpected reaction production in the ball milling process [62]. At the same time, 

peaks at (2 0 0) increased bigger relatively in the ball milling. The peak width and peak 

intensities changed irregularly. 
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Figure 5-7 XRD patterns of the as-received pure copper powder and Cu-SiC powder 

milled for 2, 4, 6, 8, 12, 16 and 20 h. 

As shown in Figure 5-8, the trend of changes for the grain size of the milled Cu-SiC 

powder for different ball milling times was curved. It could be seen that after the 2 h 

ball milling, the grain size was around 0.93 nm. Then it slightly decreased to 0.92 nm 

after 4 h ball milling, and then it declined sharply to the minimum 0.65 nm until the 

powders were milled for 6 h, and then it increased to 0.95 nm when the ball milling 

time was prolonged to 8 h, followed by a decrease again until it was milled for 20 h. It 

reduced to 0.77 nm quickly from 10 to 12 h. In the next ball milling, it decreased slowly 

to 0.65 nm where the ball milling came to a steady-state equilibrium, where the cold 

welding and fracturing of powders were in balance [130]. Compared to the pure Cu 

powder, Cu-SiC is expected to become smaller, attributed to the latter undergoing 

severer plastic deformation in the presence of SiC nanoparticles and enhanced 

dislocation density. 
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Figure 5-8 Grain size vs. milling time for Cu-SiC powder. 

 

3. Cu-SiC-GNP 

 

The XRD patterns of Cu-4 vol% SiC-1 vol% GNP milled for different times are 

indicated in Figure 5-9. It could be found that indices of crystal faces, which were for 

different XRD patterns of Cu powders milled for 2, 4, 6 and 8 h, were same as the as-

received copper powder, attributed to the low ratio of SiC and GNP in the mixed 

powders. Furthermore, there were not changes in the geometry or other diffraction 

peaks, meaning no undesirable reactions like oxidation or undetected volume of 

unexpected reaction production in the ball milling process [62]. At the same time, peaks 

at (2 0 0) increased bigger relatively in the ball milling, and the peak width and 

intensities changed irregularly. 
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Figure 5-9 XRD patterns of the as-received pure copper powder and Cu-SiC-GNP 

milled for 2, 4, 6 and 8 h. 

As displayed in Figure 5-10, the trend of changes for the grain size of the milled Cu-

SiC-GNP powder for different ball milling times was curved. It could be seen that after 

2 h ball milling, the grain size was around 1.05 nm. Then it reduced sharply to 0.72 nm 

when the ball milling was prolonged to 4 h, and then it increased a bit to 0.85 nm after 

6 h ball milling. However, it decreased to 0.62 nm again after another 2 h ball milling. 

Therefore the trend corresponds with the irregular change of XRD patterns. Compared 

to the pure Cu powder, Cu-SiC is expected to become smaller, attributed to the latter 

undergoing severer plastic deformation in the presence of SiC nanoparticles and 

enhanced dislocation density. 
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   Figure 5-10 Grain size vs. milling time for Cu-SiC-GNP powder. 

 

5.3.2 Analysis of sintered composites  

 

5.3.2.1 Optical images 

 

1. Cu 

 

The optical micrographs of sintered samples for pure copper are shown in Figure 5-11. 

The morphology of Cu is consistent with the optical microscopy (OM) images of 

Cabeza et al. [55]. As mentioned in the analysis of powder, with the increase of ball 

milling time, a bigger ratio of flake particles occurs from 2 to 8 h. The size and shapes 

of flakes have a tendency to be uniform. The dark area is CuO due to a slight volume 

of oxidation during sintering. 

 

As displayed in Figure 5-11 (a), particles of irregular round shapes and different sizes 

were observed together after sintering, consistent with the powder morphology of Cu 

milled for 2 h. After a ball milling of 4 h, a little ratio of flattened particles that stacked 

together and particles with bigger surface could be found in Figure 5-11 (b). The 

distribution of particles in the cross section could be attributed to the cold pressing. 

Under the forces from the die, particles are pushed mutually. As a consequence, 

flattened particles would form vertically under the pushing from other particles in 
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vicinity. Therefore, an increasing percentage of flakes particles stacking together 

appeared when the ball milling was prolonged to 6 and 8 h, as observed in Figures 5-

11 (c) and 5-11 (d). 

 

  

  

Figure 5-11 Optical micrographs of Cu milled for (a) 2 h, (b) 4 h, (c) 6 h and (d) 8 h. 

 

2. Cu-SiC 

 

The optical micrographs of bulk samples for Cu-SiC composites are displayed in Figure 

5-12, corresponding with the aforementioned analysis of Cu-SiC powders. As indicated 

in Figure 5-12, the morphology for Cu-SiC had a similar tendency to change with the 

increase of ball milling time. The morphology of Cu-SiC is consistent with the OM 

images of Cabeza et al. [55]. The dark areas are the Cu particles with dispersed SiC 

nanoparticles. 

 

As shown in Figure 5-12(a), particles of irregular round shapes and different sizes were 
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observed together after sintering, consistent with the powder morphology of Cu-SiC 

milled for 2 h. After a ball milling of 4 h, flattened particles that stacked together and 

particles with bigger surface could be found in Figure 5-12 (b). The distribution of 

particles in the cross section could be attributed to the cold pressing. Under the forces 

from the walls of punches, particles are pushed mutually. As a consequence, flattened 

particles would form vertically under the pushing from other particles in vicinity. 

Therefore, an increasing percentage of flakes particles stacking together appeared when 

the ball milling was prolonged to 6 and 8 h, as observed in Figures 5-12 (c) and 5-12 

(d). 

 

  

  

Figure 5-12 Optical micrographs of Cu-SiC milled for (a) 2 h, (b) 4 h, (c) 6 h and (d) 

8 h. 

 

3. Cu-SiC-GNP 

 

The optical micrographs of bulk samples for Cu-SiC-GNP composites are displayed in 

Figure 5-13, corresponding with the aforementioned analysis of Cu-SiC-GNP powders. 
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As displayed in Figure 5-13, the morphology for Cu-SiC-GNP had a similar tendency 

to change with the increase of ball milling time. The morphology of Cu-SiC-GNP is 

consistent with the OM images of Cabeza et al. [55]. The dark areas are Cu particles 

with dispersed SiC nanoparticles and GNP. 

 

As shown in Figure 5-13 (a), particles of irregular round shapes and different sizes were 

observed together after sintering, consistent with the powder morphology of Cu-SiC-

GNP milled for 2 h. After a ball milling of 4 h, a slight ratio of flattened particles that 

stacked together and particles with bigger surface could be found in Figure 5-13 (b). 

The distribution of particles in the cross section could be attributed to the cold pressing. 

Under the forces from the walls of punches, particles are pushed mutually. As a 

consequence, flattened particles would form vertically under the pushing from other 

particles in vicinity. Therefore, an increasing percentage of flakes particles stacking 

together appeared when the ball milling was prolonged to 6 h and 8 h, as observed in 

Figures 5-13 (c) and 5-13 (d). 

  

  

Figure 5-13 Optical micrographs of Cu-SiC-GNP milled for (a) 2 h, (b) 4 h, (c) 6 h 
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and (d) 8 h. 

5.3.2.2 Density measurement 

 

1. Cu 

 

As indicated in Table 5-1 and Figure 5-14, the density decreased from 8.1 g/cm3 at 2 h 

to 7.94 g/cm3 at 6 h. Nevertheless, it increased to 8.02 g/cm3 when the ball milling was 

prolonged to 8 h. It could be seen in Table 5-1 that the biggest relative density was 

90.4 %, where the porosity reached the minimum 9.6 %. Therefore the density intended 

to decline in general with the increase of ball milling time within 8 h. The trend is 

consistent with the research of Fogagnolo et al. [56]. Furthermore, the error bar of 

density showed a good counting statistics in the density measurement [127]. 

 

To explain the result, the hardening effect could be taken into account on the one hand. 

According the investigation of Gan & Gu [57], the green density of compacts declines 

due to the work hardening, which increased its hardness of the sintering. On the other 

hand, the morphology of particles may have its influence on the density. In this case, 

the laminar morphology is taking an increasing proportion with the ball milling time. 

In the process of compacting, the irregular morphology might cause the shear 

deformation that brings about the cold welding under the compressive stress, making it 

hard for the compacting and the sintering afterwards. 

 

Table 5-1 Density of samples made of the milled copper powder. 

Ball milling time (h) Theoretical density 

(g/cm3) 

Relative density 

(%) 

Porosity (%) 

2 8.1 90.4 9.6 

4 8.05 89.84 10.16 

6 7.94 88.62 11.28 

8 8.02 89.61 10.39 
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Figure 5-14 Density of milled copper vs. milling time of 2, 4, 6 and 8 h. 

 

2. Cu-SiC 

 

As shown in Table 5-2 and Figure 5-15, the density of Cu-SiC continued to decreased 

from 7.65 g/cm3 at 2 h to 7.02 g/cm3 at 8 h. The biggest relative density in Table 5-2 for 

Cu-SiC was 87.63 %, with the smallest porosity of 12.37 %. The decreasing trend is in 

consistence with the research of Fogagnolo et al. [56]. As mentioned before, the work 

hardening and the morphology of particles might contributed to the decrease of density 

with the increase of ball milling [56, 57]. Additionally, the error bar of density showed 

good counting statistics in the density measurement [127]. 

 

Table 5-2 Density of samples made of the Cu-SiC powder. 

Ball milling time (h) Theoretical 

density (g/cm3) 

Relative density 

(%) 

Porosity 

(%) 

2 7.65 87.63 12.37 

4 7.56 86.6 13.4 

6 7.28 83.4 16.6 

8 7.02 80.42 19.58 
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Figure 5-15 Density Cu-SiC composite vs. milling time of 2, 4, 6 and 8 h. 

 

3. Cu-SiC-GNP 

 

As displayed in Table 5-3 and Figure 5-16, the density of Cu-SiC-GNP continued to 

decrease from 7.84 g/cm3 at 2 h to 7.38 g/cm3 at 4 h. However, there was a bit of increase 

in density at 6 h. It decreased to 7.09 g/cm3 at 8 h. The biggest relative density in Table 

5-3 for Cu-SiC-GNP was 90.51 %, with the smallest porosity of 9.49 %. Generally, the 

trend was in decrease, consistent with the research of Fogagnolo et al. [22]. As 

mentioned before, the work hardening and the morphology of particles might contribute 

to the decrease of density with the increase of ball milling time [56, 57]. In addition, 

the error bar of density showed good counting statistics in the density measurement 

[127]. 

 

Table 5-3 Density of samples made of the Cu-SiC-GNP powder. 

Ball milling time (h) Theoretical density 

(g/cm3) 

Relative density 

(%) 

Porosity (%) 

2 7.84 90.51 9.49 

4 7.38 85.19 14.81 

6 7.43 85.77 14.23 

8 7.09 81.85 18.15 
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Figure 5-16 Density of Cu-SiC-GNP vs. milling time of 2, 4, 6 and 8 h. 

 

5.3.2.3 Microhardness testing 

 

1. Cu 

 

The trend for the hardness of Cu with the ball milling time is displayed in Figure 5-17. 

The hardness started from 41.39 HV at 2 h to 40 HV at 4 h at first. Then it increased to 

43.65 HV that was the maximum of the hardness at 6 h. Then there was another decrease 

after 6 h, where the hardness was 43.04 HV at 8 h. In general, the hardness was 

improved by ball milling. The behavior could be attributed to the changes of 

microstructure and morphology under the ball milling, which caused the work 

hardening of powders [131]. Moreover, the small error bar showed there were good 

counting statistics, meaning the homogeneous microstructure of the sintered samples 

of milled copper. 
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Figure 5-17 Hardness of copper vs. milling time of 2, 4, 6 and 8 h. 

 

2. Cu-SiC 

 

The trend for the hardness of Cu-SiC with the ball milling time is displayed in Figure 

5-18. The hardness started from 41.06 HV at 2 h to 39.08 HV at 4 h at first. Then it 

increased to 51.01 HV that was the maximum of the hardness at 6 h. Then there was 

another decrease after 6 h, where the hardness was 48.42 HV at 8 h. In general, the 

hardness was improved by ball milling. 

 

The increase in hardness of Cu-SiC with the ball milling time might ascribed to the 

work hardening and the refinement of particles [55, 131]. As mentioned before, the 

work hardening was attributed to the changes of microstructure and morphology under 

the milling device during ball milling. Furthermore, the locally internal strain caused 

by the deformation would increase the density of dislocation and grain refinement, 

which enhance the hardness [132, 133]. In addition, the uniform dispersion of SiC 

nanoparticles in the Cu matrix could inhibit the grain growth, enhancing the grain 

refinement [134]. Furthermore, the small error bar showed there were good counting 

statistics, meaning the homogeneous microstructure of the sintered samples of Cu-SiC 

obtained. 
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Figure 5-18 Hardness of Cu-SiC vs. milling time of 2, 4, 6 and 8 h. 

 

3. Cu-SiC-GNP 

 

The trend for the hardness of Cu-SiC-GNP with the ball milling time is displayed in 

Figure 5-19. The hardness started from 36.66 HV at 2 h to 32.63 HV at 4 h at first. Then 

it increased to 49.32 HV that was the maximum of the hardness at 6 h. Then there was 

another decrease at 6 h, where the hardness was 45.45 HV. In general, the hardness was 

improved by the ball milling. Moreover, the small error bar showed there were good 

counting statistics, meaning the homogeneous microstructure of the sintered samples 

of Cu-SiC-GNP. As mentioned in Cu-SiC, the increase in hardness of Cu-SiC-GNP 

with the ball milling time might ascribed to the work hardening and the refinement of 

particles [55, 131].  
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Figure 5-19 Hardness of Cu-SiC-GNP vs. milling time of 2, 4, 6 and 8 h. 

 

5.3.2.4 Compressive testing 

 

1. Cu 

 

The strain-stress curve and results of compressive testing of Cu are shown in Figure 5-

20 and Table 5-4. Pre-loading data produced during the non-intimate contact was 

eliminated [61]. It could be found that the yield strength increased with the increase of 

ball milling time from 0 to 8 h, and there was almost no enhancement in the maximum 

of compressive stress within the engineering strain of 0.4. The enhancement in the yield 

strength was attributed to the increments of dislocation density and particle grain 

refinements. Additionally, it could be observed that both the maximum of compressive 

stress and yield strength of Cu milled from 2 to 8 h were lower than that of the as-

received Cu, ascribed to the contrast between the irregular morphology of milled copper 

and the homogeneously spherical morphology of as-received copper. 
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Figure 5-20 Compressive strain-stress curves of Cu milled for 0, 2, 4, 6 and 8 h. 

Table 5-4 Results of compression testing of Cu. 

Ball milling time (h) Max.compressive stress 

(MPa) 

Compressive yield point 

(MPa) 

0 469 159.57 

2 429 80.21 

4 448 87.85 

6 434 96.61 

8 434 109.4 

 

 

2. Cu-SiC 

 

 

The strain-stress curve and results of compressive testing of Cu-SiC are displayed in 

Figure 5-21 and Table 5-5. It could be found that both the maximum of compressive 

stress and yield strength of Cu-SiC had a tendency to increase with the increase of ball 

milling time. The obvious increase could be ascribed to: grain refinement, the increase 

of dislocation density caused by mismatch of CTE, load transferring from the matrix to 

reinforcements and Orowan strengthening mechanisms as mentioned before.  
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Figure 5-21 Compressive strain-stress curves of Cu-SiC milled for 2, 4, 6 and 8 h. 

Table 5-5 Results of compression testing of Cu-SiC. 

Ball milling time (h) Max.compressive stress 

(MPa) 

Compressive yield point 

(MPa) 

2 335 138.31 

4 433 114.28 

6 479 218.28 

8 522 275.38 

 

 

3. Cu-SiC-GNP 

 

The strain-stress curve and results of compressive testing of Cu-SiC-GNP are shown in 

Figure 5-22 and Table 5-6. It could be observed that the maximum of compressive stress 

of Cu-SiC-GNP had a tendency to decrease with the prolonged ball milling time, but 

the yield point of Cu-SiC-GNP changed irregularly with the increase of ball milling 

time. The variation of compressive properties could be attributed to irregular 

morphology of Cu-SiC-GNP particles and the ball milling time that was not long 

enough to disperse both the SiC nanoparticles and graphene nanoplates homogeneously 

in the Cu matrix. 
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Figure 5-22 Compressive strain-stress curves of Cu-SiC-GNP milled for 2, 4, 6 and 8 

h. 

Table 5-6 Results of compression testing of Cu-SiC-GNP. 

Ball milling time (h) Max.compressive stress 

(MPa) 

Compressive yield point 

(MPa) 

2 384 118.82 

4 370 149.72 

6 377 114.65 

8 347 126.59 

 

 

5.4 Summary 

 

In this study, the powder and sintered samples of pure copper, Cu-SiC composites and 

Cu-SiC-GNP are investigated through XRD, SEM, optical microscope, automatic 

density measuring machine and hardness testing machine. The variation in different 

properties of samples is summarised as follows: 

(1) The evolution in morphology of Cu, Cu-SiC and Cu-SiC-GNP was similar from 

0 h to 8 h. At first, most particles were flattened during plastic deformation and 

cold welding. Then the powders turned into flakes with similar size due to the 

balance between cold welding and fracturing at 8 h. 

 

(2) There were any other diffraction peaks in the XRD patterns of Cu, Cu-SiC and 
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Cu-SiC-GNP except for the peaks of Cu, meaning no undesirable reactions or 

just a little volume of unexpected reaction happened in the ball milling process 

of 8 h. The trend of grain size of these three different materials was not linear 

during the ball milling of 8 h. However, the grain size of Cu-SiC decreased 

continuously when it was prolonged from 8 to 12 h. 

 

(3) The evolution in morphology of sintered Cu, Cu-SiC and Cu-SiC-GNP was 

similar from 0 to 8 h. With the increase of ball milling time, the phenomenon of 

stacking among vertical flakes particles became more obvious due to the effect 

of cold pressing. 

 

(4) The theoretical density against the ball milling time of Cu, Cu-SiC and Cu-SiC-

GNP had different trends. The relative density of Cu reached the maximum of 

90.4 % at 2 h and 88.62 % at 6 h. The relative density of Cu-SiC attained the 

maximum of 87.63 % at 2 h and 80.42 % at 8 h. The relative density of Cu-SiC-

GNP attained the maximum of 90.51% at 2 h and 81.85 % at 8 h. In general, the 

density intended to decrease with the increase of ball milling time due to the 

work hardening and the laminar (or flake) shape of particles. Densities of Cu-

SiC and Cu-SiC-GNP were lower than that of Cu because of lower densities of 

SiC and GNP. 

 

(5) The hardness of sintered samples for Cu, Cu-SiC and Cu-SiC-GNP showed a 

similar trend with the increase of ball milling time. The hardness of Cu reached 

the maximum of 43.65 HV at 6 h and the minimum of 40.00 HV at 4 h. The 

hardness of Cu-SiC composite attained the maximum of 51.01 HV at 6 h and 

the minimum of 39.08 HV at 4 h. The hardness of Cu-SiC-GNP composite 

reached the maximum of 49.32 HV at 6 h and the minimum of 32.63 HV at 4 h. 

In general, the hardness of Cu, Cu-SiC and Cu-SiC-GNP intended to increase 

with the increase of ball milling time due to the work hardening and the 

refinement of particles. It could be seen that the biggest densites of Cu-SiC and 
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Cu-SiC-GNP were bigger than that of Cu. Additionally, the biggest density of 

Cu-SiC was bigger than that of Cu-SiC-GNP. 

 

(6) The compressive properties of Cu, Cu-SiC and Cu-SiC-GNP had different 

trends with the increase of ball milling time. The yield point of Cu increased 

with the prolonged ball milling time and reached to 109.4 MPa at 8 h due to the 

increments of dislocation density and particle grain refinements. As for Cu-SiC, 

both the yield point and maximum of compressive stress had a tendency to 

increase from 2 to 8 h, and they reached the maximum of 275.38 MPa and 522 

MPa respectively. The compressive yield point of Cu-SiC-GNP obtained the 

maximum of 149.72 MPa, and the compressive stress of Cu-SiC-GNP obtained 

the maximum of 384 MPa at 2 h. 
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 Chapter 6 Conclusion and future work 

 

6.1 Conclusions 

 

In this study, a combination of the graphene with the traditional metal matrix 

composites was put forward, which was to exert the advantage of graphene and 

fabricate a new material that is available for some applications. In this study, planetary 

ball milling, cold pressing and sintering were used to fabricate the Cu-4 vol % SiC-1 

vol % GNP, which provided a route for the industrial manufacturing of Cu-SiC-GNP. 

Basic parameters like milling balls and compaction molds worked properly in the 

experiment. The route functioned well in the fabrication, which was very efficient. 

 

Different parameters were utilised to find the appropriate condition to achieve the 

samples with superior properties. Firstly, sintering temperature was taken as a factor to 

observe the change of morphology of bulk samples. The as-received Cu powder and 

the Cu-SiC-GNP powders milled for 2 h were fabricated. It was observed that the grains 

of as-received copper grew bigger and had a fine connection with each other with the 

increase of sintering temperatures. However, the ratio and size of pore and void were 

getting larger with the rising temperatures too. For the Cu-SiC-GNP composites, there 

was a similar trend in the morphology with the increase of temperatures. Nevertheless, 

the sintering temperatures turned out to be higher for a thorough sintering because of 

the high melting points of SiC and GNP. 

 

As for the density, the density of sintered samples for Cu-SiC-GNP tended to increase 

from 700 to 750 ºC, but it decreased from 750 to 900 ºC. The density of pure copper 

showed a similar trend. Concerning the hardness, the hardness of Cu-SiC-GNP 

decreased from 750 to 900 ºC. The hardness decreased generally with the temperatures, 

but there was a little increase at 850 ºC because of the bigger effects of improvement in 

connection of grains. Overall the hardness of Cu-SiC-GNP decreased with the increase 
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of time from 700 to 900 ºC, ascribed to the rising void and porosity. 

 

On the other hand, SEM was used to analyse the variation in morphology of powder 

samples of Cu, Cu-4 vol % SiC and Cu-4 vol % SiC-1 vol % GNP, with the increase of 

ball milling time. It was observed that these three materials shared a similar trend in 

morphology. Particles were flattened at first due to forces exerted from the milling balls. 

After 8 h ball milling, most particles turned into flakes with the same size, ascribed to 

the equilibrium between fracturing and cold welding.  

 

XRD analysis was utilised to identify the chemical composition of the powder samples. 

There were only five peaks in powders milled from 2 to 8 h, meaning there was no 

undesirable reaction or a undetected volume of unexpected reaction existed after ball 

milling. At the same time, W-H method was to analyse the change of grain size with 

the prolonged ball milling time. The trends for different Cu, Cu-SiC and Cu-SiC-GNP 

were similar. First the grain size decreased to the minimum from 2 to 6 h and then 

increased again at 8 h, attributed to fracturing and cold welding. In addition, the grain 

size of Cu-SiC decreased continually from 8 to 20 h, ascribed to the equilibrium 

between fracturing and cold welding. 

 

In the investigation of the morphology of sintered composites of Cu, Cu-SiC and Cu-

SiC-GNP, the increasing ratio of flake particles corresponded to the distribution of 

powder morphology. A clearer phenomenon of flake particles stacking vertically was 

found as the ball milling time increased, which could be attributed to the compaction 

force of the mold set. 

 

The density of Cu, Cu -SiC and Cu-SiC-GNP had different trends, but they tended to 

decrease with the ball milling time generally due to the work hardening and irregular 

shapes of particles. The densities of Cu-SiC and Cu-SiC-GNP were lower than that of 

Cu because of the addition of the low-density SiC and graphene. Furthermore, Cu, Cu 
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-SiC and Cu-SiC-GNP shared the same trend in hardness with the ball milling time in 

general. The hardness inclined to increase with the prolonged ball milling time, which 

could be explained by the work hardening and refinement of particles.  

 

The compressive properties of Cu, Cu-SiC and Cu-SiC-GNP had different trends with 

the increase of ball milling time. There was enhancement in Cu and Cu-SiC with the 

increase of ball milling time. Nevertheless, the maximum of compressive stress of Cu-

SiC-GNP had a tendency to decrease with the prolonged ball milling time, and the 

variation of compressive properties could be attributed to irregular morphology of Cu-

SiC-GNP particles and the ball milling times that were not long enough to disperse both 

the SiC nanoparticles and graphene nanoplates homogeneously in the Cu matrix. 

 

In this study, the advantage was that the theoretical density of Cu-SiC-GNP was smaller 

than that of Cu-SiC, and the compacting ability of Cu-SiC-GNP was better. Besides, 

the hardness of Cu-SiC-GNP was a little smaller than that of Cu-SiC, which could 

reduce the tool wear. Furthermore, the lubricant property of GNP could enhance the 

surface finish. It is expected that more advantages of Cu-SiC-GNP could be found in 

the further work. 

 

6.2 Future work 

 

As shown in the conclusion, the morphology of Cu-SiC powder milled for 20 h were 

flakes like Cu-SiC powders milled for 12 h. In addition, the grain size tended to 

decrease continually from 8 to 12 h. Therefore, Cu-SiC-GNP powders should be milled 

and fabricated from 8 to 20 h to see the further change in morphology and other relevant 

properties. 

 

Since there is not obvious phenomenon to identify different chemical compositions by 

FSEM, complementary work (such as TEM) is advised to investigate the distribution 

and combination of GNP and SiC nanoparticles in the Cu matrix. At the same time, 
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etching might be a good choice to see the porosity distribution in the copper matrix. If 

the situation is not ideal, then methods like decorating SiC nanoparticles with GNP 

could be utilised to find out an appropriate route to make good use of GNP.  

 

Tests of the electric conductivity will be conducted to investigate the superior properties 

of graphene in thermal and electrical conductivity. Based on the current research, tensile 

tests should be conducted to find the effect of GNP on the mechanical properties like 

ductility, since the graphene has a large surface area with two dimensional structures. 

As far as concerned of the tribological property, the wear measurements should be 

utilised to investigate the effect of GNP on the tribological behavior involving its fine 

lubrication. Furthermore, different percentages of SiC and GNP could be mixed to meet 

different requirements such as superior wear resistance and good electric conductivity.  

  



83 

 

 References 

 

[1] J. Zhu, L. Liu, H. Zhao, B. Shen, and W. Hu, "Microstructure and performance of 

electroformed Cu/nano-SiC composite," Materials and Design, Article vol. 28, no. 6, pp. 

1958-1962, 2007. 

[2] N. B. Dhokey and R. K. Paretkar, "Study of wear mechanisms in copper-based SiCp (20% 

by volume) reinforced composite," Wear, vol. 265, no. 1, pp. 117-133, 2008/06/25/ 2008. 

[3] S. G. Sapate, A. Uttarwar, R. C. Rathod, and R. K. Paretkar, "Analyzing dry sliding wear 

behaviour of copper matrix composites reinforced with pre-coated SiCp particles," 

Materials & Design, vol. 30, no. 2, pp. 376-386, 2009/02/01/ 2009. 

[4] P. Buchner, D. LÜTzenkirchen-Hecht, H.-H. Strehblow, and J. Uhlenbusch, "Production 

and characterization of nanosized Cu/O/SiC composite particles in a thermal r.f. plasma 

reactor," Journal of Materials Science, journal article vol. 34, no. 5, pp. 925-931, March 01 

1999. 

[5] J. Boselli, P. D. Pitcher, P. J. Gregson, and I. Sinclair, "Numerical modelling of particle 

distribution effects on fatigue in Al–SiCp composites," Materials Science and Engineering: 

A, vol. 300, no. 1, pp. 113-124, 2001/02/28/ 2001. 

[6] V. V. Bhanuprasad, R. B. Bhat, A. K. Kuruvilla, K. S. Prasad, A. B. Pandey, and Y. R. Mahajan, 

"P/M processing of Al-SiC composites," International journal of powder metallurgy, vol. 

27, no. 3, pp. 227-235, 1991. 

[7] B. S. Ünlü, "Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al 

composites manufactured by casting or P/M method," Materials & Design, vol. 29, no. 10, 

pp. 2002-2008, 12// 2008. 

[8] H. Su, W. Gao, Z. Feng, and Z. Lu, "Processing, microstructure and tensile properties of 

nano-sized Al2O3 particle reinforced aluminum matrix composites," Materials & Design, 

vol. 36, no. 0, pp. 590-596, 4// 2012. 

[9] M. Bastwros et al., "Effect of ball milling on graphene reinforced Al6061 composite 

fabricated by semi-solid sintering," Composites Part B: Engineering, vol. 60, no. 

Supplement C, pp. 111-118, 2014/04/01/ 2014. 

[10] I. El-Mahallawi, H. Abdelkader, L. Yousef, A. Amer, J. Mayer, and A. Schwedt, "Influence of 

Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and 

T6 heat-treated Al Si hypoeutectic Alloys," Materials Science and Engineering: A, vol. 556, 

pp. 76-87, 2012. 

[11] S. Tahamtan, A. Halvaee, M. Emamy, Z. Jiang, and A. F. Boostani, "Exploiting superior 

tensile properties of a novel network-structure AlA206 matrix composite by hybridizing 

micron-sized Al3Ti with Al2O3 nano particulates," Materials Science and Engineering: A, vol. 

619, pp. 190-198, 2014. 

[12] S. Tahamtan, A. Halvaee, M. Emamy, and M. Zabihi, "Fabrication of Al/A206–Al2O3 

nano/micro composite by combining ball milling and stir casting technology," Materials 

& Design, vol. 49, pp. 347-359, 2013. 

[13] Y. Wu and G.-Y. Kim, "Carbon nanotube reinforced aluminum composite fabricated by 

semi-solid powder processing," Journal of Materials Processing Technology, vol. 211, no. 



84 

 

8, pp. 1341-1347, 2011. 

[14] V. Dao, S. Zhao, W. Lin, and C. Zhang, "Effect of process parameters on microstructure 

and mechanical properties in AlSi9Mg connecting-rod fabricated by semi-solid squeeze 

casting," Materials Science and Engineering: A, vol. 558, pp. 95-102, 2012. 

[15] I. El-Mahallawi et al., "Influence of nanodispersions on strength–ductility properties of 

semisolid cast A356 Al alloy," Materials Science and Technology, vol. 26, no. 10, pp. 1226-

1231, 2010. 

[16] K. Hanada, Y. Murakoshi, H. Negishi, and T. Sano, "Microstructures and mechanical 

properties of Al-Li/SiCp composite produced by extrusion processing," Journal of 

Materials Processing Technology, vol. 63, no. 1, pp. 405-410, 1997/01/01/ 1997. 

[17] M. J. Tan and X. Zhang, "Powder metal matrix composites: selection and processing," 

Materials Science and Engineering: A, vol. 244, no. 1, pp. 80-85, 1998/03/31/ 1998. 

[18] Y. B. Liu, J. K. M. Kwok, S. C. Lim, L. Lu, and M. O. Lai, "Fabrication of Al-4.5Cu/15SiCp 

composites: I. Processing using mechanical alloying," Journal of Materials Processing 

Technology, vol. 37, no. 1, pp. 441-451, 1993/02/01/ 1993. 

[19] L. Lu, M. O. Lai, and C. W. Ng, "Enhanced mechanical properties of an Al based metal 

matrix composite prepared using mechanical alloying," Materials Science and Engineering: 

A, vol. 252, no. 2, pp. 203-211, 1998/09/15/ 1998. 

[20] R. Sankar and P. Singh, "Synthesis of 7075 Al/SiC particulate composite powders by 

mechanical alloying," Materials Letters, vol. 36, no. 1, pp. 201-205, 1998/07/01/ 1998. 

[21] Z. ASLANOGLU, Y. KARAKAS, and M. L. ÖVECOGLU, "Switching performance of W-Ag 

electrical contacts fabricated by mechanical alloying," International journal of powder 

metallurgy, vol. 36, no. 8, pp. 35-43, 2000. 

[22] J. B. Fogagnolo, E. M. Ruiz-Navas, M. H. Robert, and J. M. Torralba, "The effects of 

mechanical alloying on the compressibility of aluminium matrix composite powder," 

Materials Science and Engineering: A, vol. 355, no. 1, pp. 50-55, 2003/08/25/ 2003. 

[23] N. Zhao, P. Nash, and X. Yang, "The effect of mechanical alloying on SiC distribution and 

the properties of 6061 aluminum composite," Journal of Materials Processing Technology, 

vol. 170, no. 3, pp. 586-592, 2005. 

[24] Z. Razavi Hesabi, H. R. Hafizpour, and A. Simchi, "An investigation on the compressibility 

of aluminum/nano-alumina composite powder prepared by blending and mechanical 

milling," Materials Science and Engineering: A, vol. 454-455, no. Supplement C, pp. 89-

98, 2007/04/25/ 2007. 

[25] D. B. Miracle, "Metal matrix composites - From science to technological significance," 

Composites Science and Technology, Article vol. 65, no. 15-16 SPEC. ISS., pp. 2526-2540, 

2005. 

[26] J. W. Kaczmar, K. Pietrzak, and W. Włosiński, "The production and application of metal 

matrix composite materials," Journal of Materials Processing Technology, vol. 106, no. 1, 

pp. 58-67, 2000/10/31/ 2000. 

[27] R. Q. Guo, P. K. Rohatgi, and D. Nath, "Preparation of aluminium-fly ash particulate 

composite by powder metallurgy technique," Journal of Materials Science, Article vol. 32, 

no. 15, pp. 3971-3974, 1997. 

[28] S. Rawal, "Metal-matrix composites for space applications," JOM, Article vol. 53, no. 4, pp. 

14-17, 2001. 



85 

 

[29] G. F. C. Efe, M. Ipek, S. Zeytin, and C. Bindal, "Fabrication and properties of sic reinforced 

copper-matrix-composite contact material," Materiali in Tehnologije, Article vol. 50, no. 

4, pp. 585-590, 2016. 

[30] J. R. Davis and A. S. M. I. H. Committee, Copper and Copper Alloys. ASM International, 

2001. 

[31] A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, "Graphene reinforced metal and 

ceramic matrix composites: a review," International Materials Reviews, Review vol. 62, no. 

5, pp. 241-302, 2017. 

[32] Y. Cui, L. Wang, B. Li, G. Cao, and W. Fei, "Effect of ball milling on the defeat of few-layer 

graphene and properties of copper matrix composites," Acta Metallurgica Sinica (English 

Letters), Article vol. 27, no. 5, pp. 937-943, 2014. 

[33] S. R. Allahkaram, S. Golroh, and M. Mohammadalipour, "Properties of Al2O3 nano-particle 

reinforced copper matrix composite coatings prepared by pulse and direct current 

electroplating," Materials and Design, Article vol. 32, no. 8-9, pp. 4478-4484, 2011. 

[34] X. Niansuo and W. Jin, "Study on preparation of copper matrix composites reinforced by 

SiC and Graphite particles," in 2012 2nd International Conference on Consumer 

Electronics, Communications and Networks, CECNet 2012 - Proceedings, 2012, pp. 1333-

1336. 

[35] S. C. Tjong, "Novel nanoparticle-reinforced metal matrix composites with enhanced 

mechanical properties," Advanced Engineering Materials, Review vol. 9, no. 8, pp. 639-

652, 2007. 

[36] P. H. C. Camargo, K. G. Satyanarayana, and F. Wypych, "Nanocomposites: Synthesis, 

structure, properties and new application opportunities," Materials Research, Review vol. 

12, no. 1, pp. 1-39, 2009. 

[37] Y. C. Kang and S. L. I. Chan, "Tensile properties of nanometric Al2O3 particulate-reinforced 

aluminum matrix composites," Materials Chemistry and Physics, Article vol. 85, no. 2-3, 

pp. 438-443, 2004. 

[38] T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites (Cambridge 

Solid State Science Series). Cambridge: Cambridge University Press, 1993. 

[39] E. Arzt, G. Dehm, P. Gumbsch, O. Kraft, and D. Weiss, "Interface controlled plasticity in 

metals: Dispersion hardening and thin film deformation," Progress in Materials Science, 

Article vol. 46, no. 3-4, pp. 283-307, 2001. 

[40] M. Dao, L. Lu, R. J. Asaro, J. T. M. De Hosson, and E. Ma, "Toward a quantitative 

understanding of mechanical behavior of nanocrystalline metals," Acta Materialia, Article 

vol. 55, no. 12, pp. 4041-4065, 2007. 

[41] K. U. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive and 

Aerospace Engineering (Metal Matrix Composites: Custom-made Materials for 

Automotive and Aerospace Engineering). 2006, pp. 1-314. 

[42] Y. Sahin and M. Acilar, "Production and properties of SiCp-reinforced aluminium alloy 

composites," Composites Part A: Applied Science and Manufacturing, Article vol. 34, no. 

8, pp. 709-718, 2003. 

[43] F. Chi, M. Schmerling, Z. Eliezer, H. L. Marcus, and M. E. Fine, "Preparation of Cu-TiN alloy 

by external nitridation in combination with mechanical alloying," Materials Science and 

Engineering: A, vol. 190, no. 1, pp. 181-186, 1995/01/01/ 1995. 



86 

 

[44] J. B. Correia, H. A. Davies, and C. M. Sellars, "Strengthening in rapidly solidified age 

hardened Cu-Cr and Cu-Cr-Zr alloys," Acta Materialia, vol. 45, no. 1, pp. 177-190, 

1997/01/01/ 1997. 

[45] S. C. Tjong and K. C. Lau, "Tribological behaviour of SiC particle-reinforced copper matrix 

composites," Materials Letters, Article vol. 43, no. 5, pp. 274-280, 2000. 

[46] Y. Zhan, G. Zhang, and Y. Zhuang, "Wear transitions in particulate reinforced copper 

matrix composites," Materials Transactions, Conference Paper vol. 45, no. 7, pp. 2332-

2338, 2004. 

[47] M. R. Akbarpour and S. Alipour, "Wear and friction properties of spark plasma sintered 

SiC/Cu nanocomposites," Ceramics International, Article vol. 43, no. 16, pp. 13364-13370, 

2017. 

[48] K. Song, X. Guo, S. Liang, P. Zhao, and Y. Zhang, "Relationship between interfacial stress 

and thermal expansion coefficient of copper-matrix composites with different reinforced 

phases," Materials Science and Technology (United Kingdom), Article vol. 30, no. 2, pp. 

171-175, 2014. 

[49] F. Shehata, "Preparation and properties of Al2O3 nanoparticle reinforced copper matrix 

composites by in situ processing," Materials in engineering, vol. 30, no. 7, pp. 2756-2762, 

2009. 

[50] T. Schubert et al., "Interfacial design of Cu/SiC composites prepared by powder metallurgy 

for heat sink applications," Composites Part A: Applied Science and Manufacturing, Article 

vol. 38, no. 12, pp. 2398-2403, 2007. 

[51] W. Zein Eddine, P. Matteazzi, and J. P. Celis, "Mechanical and tribological behavior of 

nanostructured copper-alumina cermets obtained by Pulsed Electric Current Sintering," 

Wear, Article vol. 297, no. 1-2, pp. 762-773, 2013. 

[52] G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, and C. Bindal, "The effect of sintering 

temperature on some properties of Cu–SiC composite," Journal of Alloys and Compounds, 

vol. 509, no. 20, pp. 6036-6042, 2011/05/19/ 2011. 

[53] M. Rahimian, N. Ehsani, N. Parvin, and H. r. Baharvandi, "The effect of particle size, 

sintering temperature and sintering time on the properties of Al–Al2O3 composites, made 

by powder metallurgy," Journal of Materials Processing Technology, vol. 209, no. 14, pp. 

5387-5393, 2009/07/19/ 2009. 

[54] R. M. German, "Powder metallurgy of iron and steel," John! Wiley & Sons, Inc, 605 Third 

Ave, New York, NY 10016, USA, 1998. 496, 1998. 

[55] M. Cabeza et al., "Effect of high energy ball milling on the morphology, microstructure 

and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix 

composite," Powder Technology, vol. 321, pp. 31-43, 2017/11/01/ 2017. 

[56] J. B. Fogagnolo, F. Velasco, M. H. Robert, and J. M. Torralba, "Effect of mechanical alloying 

on the morphology, microstructure and properties of aluminium matrix composite 

powders," Materials Science and Engineering: A, vol. 342, no. 1, pp. 131-143, 2003/02/15/ 

2003. 

[57] K. Gan and M. Gu, "The compressibility of Cu/SiCp powder prepared by high-energy ball 

milling," Journal of Materials Processing Technology, vol. 199, no. 1, pp. 173-177, 

2008/04/01/ 2008. 

[58] R. Panelli and F. Ambrozio Filho, "Compaction equation and its use to describe powder 



87 

 

consolidation behavior," Powder metallurgy, vol. 41, no. 2, pp. 131-133, 1998. 

[59] M. R. Akbarpour, E. Salahi, F. Alikhani Hesari, H. S. Kim, and A. Simchi, "Effect of 

nanoparticle content on the microstructural and mechanical properties of nano-SiC 

dispersed bulk ultrafine-grained Cu matrix composites," Materials and Design, Article vol. 

52, pp. 881-887, 2013. 

[60] A. Fathy, F. Shehata, M. Abdelhameed, and M. Elmahdy, "Compressive and wear resistance 

of nanometric alumina reinforced copper matrix composites," Materials & Design (1980-

2015), vol. 36, pp. 100-107, 2012. 

[61] B. T. Al-Mosawi, D. Wexler, and A. Calka, "Characterization and mechanical properties of 

α- Al2O3 particle reinforced aluminium matrix composites, synthesized via uniball 

magneto-milling and uniaxial hot pressing," Advanced Powder Technology, vol. 28, no. 3, 

pp. 1054-1064, 2017/03/01/ 2017. 

[62] F. Safari, R. Azari Khosroshahi, and A. Zolriasatein, "Wear behavior of copper matrix 

composites reinforced by γ-Cu5Zn8 nanoparticles," Powder Technology, Article vol. 318, 

pp. 549-557, 2017. 

[63] M. R. Akbarpour, E. Salahi, F. A. Hesari, E. Y. Yoon, H. S. Kim, and A. Simchi, "Microstructural 

development and mechanical properties of nanostructured copper reinforced with SiC 

nanoparticles," Materials Science and Engineering A, Article vol. 568, pp. 33-39, 2013. 

[64] T. S. M. EI-Sayed Youssef EI-Kady, Ali Abdel-Aziz Ali, " On the electrical and thermal 

conductivities of cast A356/Al2O3 metal matrix nanocomposites," Materials Science and 

Applicatins, pp. 1180-1187, 2011, 2 2011. 

[65] K. Chu et al., "Fabrication and effective thermal conductivity of multi-walled carbon 

nanotubes reinforced Cu matrix composites for heat sink applications," Composites 

Science and Technology, vol. 70, no. 2, pp. 298-304, 2010/02/01/ 2010. 

[66] K. S. Novoselov et al., "Electric field in atomically thin carbon films," Science, Article vol. 

306, no. 5696, pp. 666-669, 2004. 

[67] S. Stankovich et al., "Synthesis of graphene-based nanosheets via chemical reduction of 

exfoliated graphite oxide," Carbon, vol. 45, no. 7, pp. 1558-1565, 2007/06/01/ 2007. 

[68] S. F. Bartolucci et al., "Graphene–aluminum nanocomposites," Materials Science and 

Engineering: A, vol. 528, no. 27, pp. 7933-7937, 2011/10/15/ 2011. 

[69] J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, "Reinforcement with graphene 

nanosheets in aluminum matrix composites," Scripta Materialia, vol. 66, no. 8, pp. 594-

597, 2012/04/01/ 2012. 

[70] L.-Y. Chen et al., "Novel nanoprocessing route for bulk graphene nanoplatelets reinforced 

metal matrix nanocomposites," Scripta Materialia, vol. 67, no. 1, pp. 29-32, 2012/07/01/ 

2012. 

[71] K. Chu and C. Jia, "Enhanced strength in bulk graphene-copper composites," Physica 

Status Solidi (A) Applications and Materials Science, Article vol. 211, no. 1, pp. 184-190, 

2014. 

[72] W. J. Kim, T. J. Lee, and S. H. Han, "Multi-layer graphene/copper composites: Preparation 

using high-ratio differential speed rolling, microstructure and mechanical properties," 

Carbon, Article vol. 69, pp. 55-65, 2014. 

[73] M. Li, H. Che, X. Liu, S. Liang, and H. Xie, "Highly enhanced mechanical properties in Cu 

matrix composites reinforced with graphene decorated metallic nanoparticles," Journal of 



88 

 

Materials Science, Article vol. 49, no. 10, pp. 3725-3731, 2014. 

[74] H. Yue et al., "Effect of ball-milling and graphene contents on the mechanical properties 

and fracture mechanisms of graphene nanosheets reinforced copper matrix composites," 

Journal of Alloys and Compounds, Article vol. 691, pp. 755-762, 2017. 

[75] Y. Tang, X. Yang, R. Wang, and M. Li, "Enhancement of the mechanical properties of 

graphene-copper composites with graphene-nickel hybrids," Materials Science and 

Engineering A, Article vol. 599, pp. 247-254, 2014. 

[76] J. Hwang et al., "Enhanced mechanical properties of graphene/copper nanocomposites 

using a molecular-level mixing process," Advanced Materials, Article vol. 25, no. 46, pp. 

6724-6729, 2013. 

[77] K. Jagannadham, "Orientation dependence of thermal conductivity in copper-graphene 

composites," Journal of Applied Physics, Article vol. 110, no. 7, 2011, Art. no. 074901. 

[78] K. Jagannadham, "Volume fraction of graphene platelets in copper-graphene 

composites," Metallurgical and Materials Transactions A: Physical Metallurgy and 

Materials Science, Article vol. 44, no. 1, pp. 552-559, 2013. 

[79] K. Zhang, "Fabrication of copper nanoparticles/graphene oxide composites for surface-

enhanced Raman scattering," Applied Surface Science, Article vol. 258, no. 19, pp. 7327-

7329, 2012. 

[80] G. Renguo, L. Chao, Z. Zhanyong, C. Runze, and L. Chunming, "Study on preparation of 

graphene and Al-graphene Composite," Rare Metal Materials and Engineering S, vol. 2, 

2012. 

[81] M. Bastwros, G.-Y. Kim, K. Zhang, and S. Wang, "Fabrication of graphene reinforced 

aluminum composite by semi-solid processing," in ASME 2013 International Mechanical 

Engineering Congress and Exposition, 2013, pp. V02BT02A030-V02BT02A030: American 

Society of Mechanical Engineers. 

[82] Z. Li et al., "Uniform dispersion of graphene oxide in aluminum powder by direct 

electrostatic adsorption for fabrication of graphene/aluminum composites," 

Nanotechnology, vol. 25, no. 32, p. 325601, 2014. 

[83] C. YANG, "Research of graphene-reinforced aluminum matrix nanocomposites," Journal 

of Materials Engineering, vol. 1, no. 4, pp. 1-6, 2011. 

[84] J. Li et al., "Microstructure and tensile properties of bulk nanostructured 

aluminum/graphene composites prepared via cryomilling," Materials Science and 

Engineering: A, vol. 626, pp. 400-405, 2015. 

[85] T. S. Koltsova et al., "New hybrid copper composite materials based on carbon 

nanostructures," Journal of Materials Science and Engineering B, vol. 2, no. 4, pp. 240-

246, 2012. 

[86] Y. Kim et al., "Strengthening effect of single-atomic-layer graphene in metal–graphene 

nanolayered composites," Nature communications, vol. 4, p. ncomms3114, 2013. 

[87] C. L. Pavithra, B. V. Sarada, K. V. Rajulapati, T. N. Rao, and G. Sundararajan, "A new 

electrochemical approach for the synthesis of copper-graphene nanocomposite foils with 

high hardness," Scientific reports, vol. 4, p. 4049, 2014. 

[88] G. Xie, M. Forslund, and J. Pan, "Direct electrochemical synthesis of reduced graphene 

oxide (rGO)/copper composite films and their electrical/electroactive properties," ACS 

applied materials & interfaces, vol. 6, no. 10, pp. 7444-7455, 2014. 



89 

 

[89] C. Zhao and J. Wang, "Fabrication and tensile properties of graphene/copper composites 

prepared by electroless plating for structrual applications," physica status solidi (a), vol. 

211, no. 12, pp. 2878-2885, 2014. 

[90] J. Dutkiewicz et al., "Microstructure and properties of bulk copper matrix composites 

strengthened with various kinds of graphene nanoplatelets," Materials Science and 

Engineering A, Article vol. 628, pp. 124-134, 2015. 

[91] K. Jagannadham, "Electrical conductivity of copper–graphene composite films synthesized 

by electrochemical deposition with exfoliated graphene platelets," Journal of Vacuum 

Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, 

Measurement, and Phenomena, vol. 30, no. 3, p. 03D109, 2012. 

[92] S. F. Hassan and M. Gupta, "Effect of different types of nano-size oxide participates on 

microstructural and mechanical properties of elemental Mg," Journal of Materials Science, 

Article vol. 41, no. 8, pp. 2229-2236, 2006. 

[93] M. Habibnejad-Korayem, R. Mahmudi, and W. J. Poole, "Enhanced properties of Mg-

based nano-composites reinforced with Al2O3 nano-particles," Materials Science and 

Engineering A, Article vol. 519, no. 1-2, pp. 198-203, 2009. 

[94] S.-M. Paek, E. Yoo, and I. Honma, "Enhanced Cyclic Performance and Lithium Storage 

Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally 

Delaminated Flexible Structure," Nano Letters, vol. 9, no. 1, pp. 72-75, 2009/01/14 2009. 

[95] L. S. Zhang et al., "Mono dispersed SnO2 nanoparticles on both sides of single layer 

graphene sheets as anode materials in Li-ion batteries," Journal of Materials Chemistry, 

Article vol. 20, no. 26, pp. 5462-5467, 2010. 

[96] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, "Graphene based materials: 

Past, present and future," Progress in Materials Science, vol. 56, no. 8, pp. 1178-1271, 

2011/10/01/ 2011. 

[97] I. V. Lightcap, T. H. Kosel, and P. V. Kamat, "Anchoring semiconductor and metal 

nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with 

reduced graphene oxide," Nano Letters, Article vol. 10, no. 2, pp. 577-583, 2010. 

[98] A. F. Boostani et al., "Graphene sheets encapsulating SiC nanoparticles: A roadmap 

towards enhancing tensile ductility of metal matrix composites," Materials Science and 

Engineering: A, vol. 648, no. Supplement C, pp. 92-103, 2015/11/11/ 2015. 

[99] A. Fadavi Boostani et al., "Enhanced tensile properties of aluminium matrix composites 

reinforced with graphene encapsulated SiC nanoparticles," Composites Part A: Applied 

Science and Manufacturing, vol. 68, no. Supplement C, pp. 155-163, 2015/01/01/ 2015. 

[100] A. Fadavi Boostani et al., "Graphene tweaking Hamaker constant of SiC nanoparticles: A 

new horizon to solve the conflict between strengthening and toughening," Scripta 

Materialia, vol. 118, no. Supplement C, pp. 65-69, 2016/06/01/ 2016. 

[101] A. Fadavi Boostani et al., "Solvothermal-assisted graphene encapsulation of SiC 

nanoparticles: A new horizon toward toughening aluminium matrix nanocomposites," 

Materials Science and Engineering: A, vol. 653, no. Supplement C, pp. 99-107, 

2016/01/20/ 2016. 

[102] A. Fadavi Boostani et al., "Strengthening mechanisms of graphene sheets in aluminium 

matrix nanocomposites," Materials & Design, vol. 88, no. Supplement C, pp. 983-989, 

2015/12/25/ 2015. 



90 

 

[103] J. W. Kaczmar, K. Pietrzak, and W. Wlosiński, "Production and application of metal matrix 

composite materials," Journal of Materials Processing Technology, Article vol. 106, no. 1-

3, pp. 58-67, 2000. 

[104] R. Casati and M. Vedani, "Metal Matrix Composites Reinforced by Nano-Particles—A 

Review," Metals, vol. 4, no. 1, 2014. 

[105] H. K. Kang and S. B. Kang, "Thermal decomposition of silicon carbide in a plasma-sprayed 

Cu/SiC composite deposit," Materials Science and Engineering A, Article vol. 428, no. 1-

2, pp. 336-345, 2006. 

[106] J. Lan, Y. Yang, and X. Li, "Microstructure and microhardness of SiC nanoparticles 

reinforced magnesium composites fabricated by ultrasonic method," Materials Science 

and Engineering A, Article vol. 386, no. 1-2, pp. 284-290, 2004. 

[107] J. Zhu, L. Liu, G. Hu, B. Shen, W. Hu, and W. Ding, "Study on composite electroforming of 

Cu/SiCp composites," Materials Letters, Article vol. 58, no. 10, pp. 1634-1637, 2004. 

[108] L. Kollo, M. Leparoux, C. R. Bradbury, C. Jäggi, E. Carreño-Morelli, and M. Rodríguez-

Arbaizar, "Investigation of planetary milling for nano-silicon carbide reinforced aluminium 

metal matrix composites," Journal of Alloys and Compounds, vol. 489, no. 2, pp. 394-400, 

2010/01/21/ 2010. 

[109] M. Tavoosi, F. Karimzadeh, and M. H. Enayati, "Fabrication of Al–Zn/α-Al2O3 

nanocomposite by mechanical alloying," Materials Letters, vol. 62, no. 2, pp. 282-285, 

2008/01/31/ 2008. 

[110] M. Barmouz, P. Asadi, M. K. Besharati Givi, and M. Taherishargh, "Investigation of 

mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles' size 

and volume fraction," Materials Science and Engineering A, Article vol. 528, no. 3, pp. 

1740-1749, 2011. 

[111] G. Celebi Efe, M. Ipek, S. Zeytin, and C. Bindal, "An investigation of the effect of SiC particle 

size on Cu-SiC composites," Composites Part B: Engineering, Article vol. 43, no. 4, pp. 

1813-1822, 2012. 

[112] O. Güler and E. Evin, "The investigation of contact performance of oxide reinforced copper 

composite via mechanical alloying," Journal of Materials Processing Technology, Article 

vol. 209, no. 3, pp. 1286-1290, 2009. 

[113] K. B. Nie, X. J. Wang, L. Xu, K. Wu, X. S. Hu, and M. Y. Zheng, "Influence of extrusion 

temperature and process parameter on microstructures and tensile properties of a 

particulate reinforced magnesium matrix nanocomposite," Materials & Design (1980-

2015), vol. 36, no. Supplement C, pp. 199-205, 2012/04/01/ 2012. 

[114] D. Gu, Y.-C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, "Nanocrystalline TiC 

reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): 

Densification, growth mechanism and wear behavior," Composites Science and 

Technology, vol. 71, no. 13, pp. 1612-1620, 2011/09/09/ 2011. 

[115] V. C. Nardone and K. M. Prewo, "On the strength of discontinuous silicon carbide 

reinforced aluminum composites," Scripta Metallurgica, vol. 20, no. 1, pp. 43-48, 

1986/01/01/ 1986. 

[116] Z. Zhang and D. L. Chen, "Contribution of Orowan strengthening effect in particulate-

reinforced metal matrix nanocomposites," Materials Science and Engineering: A, vol. 483-

484, no. Supplement C, pp. 148-152, 2008/06/15/ 2008. 



91 

 

[117] Z. Zhang and D. L. Chen, "Consideration of Orowan strengthening effect in particulate-

reinforced metal matrix nanocomposites: A model for predicting their yield strength," 

Scripta Materialia, vol. 54, no. 7, pp. 1321-1326, 2006/04/01/ 2006. 

[118] A. Sanaty-Zadeh, "Comparison between current models for the strength of particulate-

reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch 

effect," Materials Science and Engineering: A, vol. 531, no. Supplement C, pp. 112-118, 

2012/01/01/ 2012. 

[119] D. Hull and D. J. Bacon, Introduction to dislocations. Butterworth-Heinemann, 2001. 

[120] R. E. Smallman and A. Ngan, Physical metallurgy and advanced materials. Butterworth-

Heinemann, 2011. 

[121] D. Hull and T. Clyne, An introduction to composite materials. Cambridge university press, 

1996. 

[122] C. Suryanarayana, "Mechanical alloying and milling," Progress in Materials Science, vol. 46, 

no. 1, pp. 1-184, 2001/01/01/ 2001. 

[123] P. Scardi, M. Leoni, and R. Delhez, "Line broadening analysis using integral breadth 

methods: a critical review," Journal of Applied Crystallography, vol. 37, no. 3, pp. 381-390, 

2004. 

[124] H. Kuhn and D. Medlin, "ASM Handbook. Volume 8: Mechanical Testing and Evaluation," 

ASM International, Member/Customer Service Center, Materials Park, OH 44073-0002, 

USA, 2000. 998, 2000. 

[125] P. Katiyar, "Processing, microstructural and mechanical characterization of mechanically 

alloyed Al-Al2O3 nanocomposites," 2004. 

[126] T. W. Gustafson, P. C. Panda, G. Song, and R. Raj, "Influence of microstructural scale on 

plastic flow behavior of metal matrix composites," Acta Materialia, vol. 45, no. 4, pp. 1633-

1643, 1997/04/01/ 1997. 

[127] J. Bartolomé, G. Bruno, and A. DeAza, "Neutron diffraction residual stress analysis of 

zirconia toughened alumina (ZTA) composites," Journal of the European Ceramic Society, 

vol. 28, no. 9, pp. 1809-1814, 2008. 

[128] M. R. Akbarpour, E. Salahi, F. Alikhani Hesari, A. Simchi, and H. S. Kim, "Microstructure and 

compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by 

high energy mechanical milling," Ceramics International, Article vol. 40, no. 1 PART A, pp. 

951-960, 2014. 

[129] B. Prabhu, C. Suryanarayana, L. An, and R. Vaidyanathan, "Synthesis and characterization 

of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling," 

Materials Science and Engineering: A, vol. 425, no. 1, pp. 192-200, 2006/06/15/ 2006. 

[130] C. Suryanarayana, "Does a disordered γ-TiAl phase exist in mechanically alloyed TiAl 

powders?," Intermetallics, vol. 3, no. 2, pp. 153-160, 1995/01/01/ 1995. 

[131] N. Abu-Warda, M. V. Utrilla, M. D. Escalera, E. Otero, and M. D. López, "The effect of TiB2 

content on the properties of AA6005/TiB2 nanocomposites fabricated by mechanical 

alloying method," Powder Technology, vol. 328, pp. 235-244, 2018/04/01/ 2018. 

[132] A. Wagih and A. Fathy, "Experimental investigation and FE simulation of nano-indentation 

on Al–Al2O3 nanocomposites," Advanced Powder Technology, vol. 27, no. 2, pp. 403-410, 

2016/03/01/ 2016. 

[133] A. Wagih and A. Fathy, "Experimental investigation and FE simulation of spherical 



92 

 

indentation on nano-alumina reinforced copper-matrix composite produced by three 

different techniques," Advanced Powder Technology, vol. 28, no. 8, pp. 1954-1965, 

2017/08/01/ 2017. 

[134] C.-L. Chen and C.-H. Lin, "Effect of Y2O3 and TiC Reinforcement Particles on Intermetallic 

Formation and Hardness of Al6061 Composites via Mechanical Alloying and Sintering," 

Metallurgical and Materials Transactions A, journal article vol. 46, no. 8, pp. 3687-3695, 

August 01 2015. 

 

 

 


	Fabrication and Properties of Cu-SiC-GNP composites
	Recommended Citation

	thesis

