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Abstract 

In the gas phase, arylperoxyl forming reactions play a significant role in low 

temperature combustion and atmospheric processing of volatile organic compounds. We 

have previously demonstrated the application of charge-tagged phenyl radicals to explore 

the outcomes of these reactions using ion trap mass spectrometry. Here we present a side-

by-side comparison of rates and product distributions from the reaction of positively- and 

negatively-charge tagged phenyl radicals with dioxygen. The negatively charged distonic 

radical ions are found to react with significantly greater efficiency than their positively charged 

analogues. The product distribution of the anion reactions favor products of phenylperoxyl 

radical decomposition (e.g., phenoxyl radicals and cyclopentadienone) while the comparable 

fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure 

calculations rationalize these differences as arising from the influence of the charged moiety 

on the energetics of rate-determining transition states and reaction intermediates within the 

phenylperoxyl reaction manifold and predict that this influence could extend to intra-

molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions 

of the novel  4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the 

charge on both rate and product distribution can be modulated by increasing the rigidly 

imposed separation between charge and radical sites. These findings provide a 

generalizable framework for predicting the influence of charged groups on polarizable 

radicals in gas phase distonic radical ions. 
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Introduction 

Organic peroxyl radicals (ROO●) are an important class of reaction intermediate in the 

mechanisms of low-temperature combustion as well as in the oxidative processing of volatile 

organic compounds in the Earth’s lower atmosphere [1, 2]. Despite the importance of organic 

peroxyl radicals in these chemistries the direct observation of peroxyl formation and 

decomposition reactions has remained a significant challenge for conventional experimental 

techniques. This is because, in the gas phase, peroxyl radicals are typically generated in 

very low concentrations and have a high propensity for subsequent reaction – including 

decomposition and self-reactions – resulting in relatively short lifetimes. Building on the 

pioneering work by Kenttämaa and co-workers [3-6], a number of groups – including our own 

– have exploited the distonic radical ion approach for studying the chemistry of organic 

peroxyl radicals in the gas phase using ion cyclotron resonance and ion-trap mass 

spectrometries [7-16]. 

Distonic ions have radical centers that are spatially separated from the charge site [17, 

18]. This class of radicals ions have been much-less studied than conventional radical ions 

(where charge and radical are co-localized) since the latter are more commonly produced by 

traditional ionization techniques; namely, electron and photo-ionization [19]. Despite 

requiring greater regiochemical control in their synthesis, distonic ions can represent the 

global minimum on the radical ion surface and, moreover, provide an attractive model for 

studying radical reactivity by mass spectrometry. The benefits in deploying this strategy lie 

in the ability to generate high concentrations of reactive species without complicating self- or 

cross-reactions (owing to Coulombic repulsion of like-charges), combined with the power to 

cleanly isolate and identify reaction products through changes in mass-to-charge ratio (m/z) 

[6, 20]. The role of the charge itself in modulating the reactivity of the remote radicals 

however, has been the subject of recent interest with computational studies indicating that 

polarizable peroxyl and nitroxyl radicals may be stabilized significantly by the presence of a 

negative charge in a distonic radical anion [21, 22]. Stabilization of the radical anion by up to 
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5 kcal mol-1 relative to neutral radical analogues has been reported; with smaller, but still 

significant effects, computed over intra-molecular distances >10 Å. These findings suggest 

that radical reactivity may be modulated by the presence of a remote charged moiety with 

both the charge polarity and charge-radical separation being key determinants of reaction 

outcomes. 

We have previously reported the application of the distonic ion approach to the 

examination of the reactivity of phenyl radicals with dioxygen [15]. These investigations 

uncovered a unique route to the generation and isolation of elusive phenylperoxyl radicals 

that were then subjected to interrogation by photodissociation action spectroscopy [23]. A 

key observation by Kirk et al. was that reaction efficiencies and product distributions of the 

aryl radicals were affected by the polarity of the charged moiety [15]. For example, reaction 

of the p-(N,N,N-trimethylammonium)phenyl radical cation with dioxygen afforded the 

corresponding [M+O2]•+ phenylperoxyl radical cation as the major product with an overall 

efficiency of 4.9% (of the collision rate). In contrast, the p-carboxylatophenyl radical anion 

was observed to react with an efficiency of 9.2% producing an array of products, including 

[M+O2-O]•− and [M+O2-CHO]•−, arising from decomposition of a phenylperoxyl radical 

intermediate [15]. To rationalise these observations, we describe here a systematic 

experimental and theoretical investigation of the effect of (i) charge-tag polarity and (ii) 

charge-radical separation on the phenylperoxyl-forming reactions of distonic radical ions. 

Seven charge-tagged phenyl radicals (1 – 7, Chart 1) were selected for this study in order to 

provide: good overlap with previously described distonic ion systems (1, 2, 5 and 6) [6, 15]; 

non-delocalizable negative charge carriers through the use of hypervalent trifluoroborate 

anion moieties (3 and 4) and; increased separation between charge and phenyl radical sites 

in the scaffold of the 4-(1-carboxylatoadamantyl)phenyl radical anion (7). The reaction 

efficiencies and product distributions of these radical ions are presented along with electronic 

structure calculations that extend the exploration of charge-radical effects beyond the 

experimental test set. 
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Chart 1. Structures of the 7 distonic radical ions explored in this study. 
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Methods 

Materials  

3-iodo-N,N,N-trimethylanilinium iodide and 4-iodo-N,N,N-trimethylanilinium iodide 

were previously synthesized according to literature methods [15, 24, 25]. 3-(4-iodophenyl) 

adamantane-1-carboxylic acid was obtained from VBR Molecules (Hyderabad, India). 

Potassium 3-iodophenyltrifluoroborate (≥97%) and potassium 4-iodophenyltrifluoroborate 

(≥97%) were purchased from Advanced Molecular Technologies (Scoresby, Australia). 3-

iodobenzoic acid (98%), 4-iodobenzoic acid (98%) and dimethyl disulfide (98%) were 

purchased from Sigma-Aldrich (St. Louis, MO). Methanol (Optima LC/MS grade) was 

purchased from Thermo Fisher Scientific (Scoresby, Australia). Compressed helium 

(ultrahigh purity, 99.999%) was obtained from Coregas (Sydney, Australia). All commercial 

compounds were used as received without further purification. 

 

Instrumentation 

Gas-phase ion-molecule experiments were performed on a modified [25, 26] linear 

quadrupole ion trap mass spectrometer (LTQ XL, Thermo Fisher Scientific, San Jose, CA) 

operating Xcalibur version 3.0 software and equipped with a heated electrospray ionization 

(HESI) source.  The HESI source was connected to both the instrument syringe pump and 

an HPLC system (Dionex UltiMate 3000 RSLC, Thermo Fisher Scientific, San Jose CA) via 

a tee union. Methanol or acetonitrile solutions containing 5 – 10 μM of individual radical 

precursors were tee-infused at a rate of 5 – 10 μL min-1 into an HPLC flow of 100% methanol 

or acetonitrile (50 – 100 μL min-1) that eluted into the source. Typical source conditions for 

negative ion mode were: capillary temperature: 250 °C, source heater temperature: 250 °C, 

sheath gas flow rate: 25 – 30 arbitrary units, auxiliary and sweep gas flow rates: 0 – 5 arbitrary 

units, spray voltage: -3.5 – 4 kV, capillary voltage: -35 – 40 V, tube lens: -45 – 50 V. Typical 

source conditions for positive ion mode were: capillary temperature: 250 °C, source heater 

temperature: 50 °C, sheath gas flow rate: 25 – 30 arbitrary units, auxiliary and sweep gas 
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flow rates: 0 – 5 arbitrary units, spray voltage: 4 – 4.5 kV, capillary voltage: 10 – 20 V, tube 

lens: 35 – 45 V. For collision-induced dissociation experiments, ions were mass-selected 

with an isolation width of 1.5 – 2.0 Th, using an activation q-parameter of 0.250.  The 

normalized collision energy applied was typically 25 – 30 arbitrary units with an excitation 

time of 30 ms (unless otherwise specified).  

Previous work by ourselves and others has indicated that synthesis of distonic radical 

ions by photodissociation can give greater regioselectivity than collision-induced dissociation 

[5, 27]. To facilitate photodissociation of trapped ions instrument modifications that allow 

laser irradiation of ions confined within the linear ion trap are similar to those reported by Ly 

and Julian and have been described in detail elsewhere [12, 28]. Briefly, the posterior plate 

of the mass spectrometer was modified with a quartz window to transmit the fourth-harmonic 

(266 nm) of a Nd:YAG laser (Continuum, Santa Clara, CA). The window was positioned on 

the backplate to direct laser access to the ions within the ion trap through the 2 mm aperture 

centered on the back lens. Laser pulses were aligned through the aperture in the back lens 

by two right-angle steering prisms, adjusted to optimize beam overlap with the ion cloud (see 

Figure S-1, Supporting Information). Laser pulses were synchronized to the beginning of an 

MS2 ion activation step with a TTL trigger signal generated by the mass spectrometer to the 

laser via a digital delay generator [29]. In these photodissociation experiments, the 

normalized collision energy was set to 0 (arbitrary units) such that all product ions arise from 

excitation by the laser pulse. Only a single laser pulse irradiates the target ions in each MS 

cycle. 

Instrument modifications that allow for neutral reagent molecules to be seeded into 

the ion trap region of the instrument are similar to those previously described [15, 25]. Briefly, 

the native helium splitter was bypassed in order to directly connect an external reagent 

mixing manifold to the ion trap (see Figure S-1, Supporting Information). Helium flow to the 

ion trap was controlled by a variable leak valve (Granville-Phillips Model 203, Boulder, CO) 

providing a pressure reading of 0.8 x 10-5 Torr on the instrument ion gauge. Neutral reagents, 
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such as dimethyldisulfide, were introduced by placing a droplet of liquid into the end-cap of 

a stainless steel Swagelok cap and placing under vacuum before opening the line to the 

manifold. The flow of reagent was controlled by a PEEKsil restriction (100 mm length, internal 

diameter 25 µm). For observing reactions with dioxygen, no reagent was added and 

adventitious background air within the instrument provided a concentration of dioxygen that 

was sufficient for the experiments. 

 

Ion-molecule kinetics 

Pseudo first-order rate constants, k1 (s-1), were obtained by recording a series of mass 

spectra as a function of storage time for the reaction between the radical ion and neutral 

reagent. Each spectrum recorded was an average of at least 60 individual spectra. The 

reaction time was defined as the interval between the isolation of the selected radical ion and 

ejection of all ions from the trap for detection. Reaction times of 50 – 6000 ms were set using 

the activation time parameter within the instrument control software. A plot of the mean 

radical ion abundance against reaction time yielded a single exponential relationship. Fitting 

the data to Equation 1 gave the pseudo-first order rate constant for the reaction, k1 (s-1). 

Second-order rate constants, k2 (cm3 molecule-1 s-1), were obtained from k1 and the 

concentration of dioxygen ([O2]) present in the ion trap region of the mass spectrometer 

(Equation 2) [30] where [O2] was determined from the calibration reaction of 3-

carboxylatoadamantyl radical anion with dioxygen under the same instrumental conditions 

[25]. Reaction efficiencies, Φ, (i.e., the percentage of ion-molecule collisions that resulted in 

product formation) were determined according to Equation 3, where the collision rate 

constant, kcoll, is determined by average dipole orientation (ADO) theory at 307 K [31]. The 

temperature of ions stored within a linear quadrupole ion trap has been estimated at 318 ± 

23 K [32], consistent with an earlier estimate of 307 ± 1 K [25], which can be taken as the 

effective temperature for ion-molecule reactions observed herein [33, 34]. While the accuracy 
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of the rate constant measurements is estimated to be ± 50%, the precision of the 

measurements is better than ±10%. 

 

[𝑅•]% = [𝑅•]'𝑒)*+%             (Eqn. 1) 

𝑘- =
)*+
[./]

             (Eqn. 2) 

𝛷 = */
*1233

∗ 100              (Eqn. 3) 

 

Computational methods 

The Gaussian 09 suite of programs was used for all computations [35]. Electronic 

energies and thermally corrected (298 K) enthalpies for all ground-state species were 

computed using the hybrid meta-GAA M06-2X functional [36, 37] and the 6-311++G(d,p) 

basis set. DFT calculations for doublet states employed an unrestricted formalism. This 

computational strategy has previously been shown to be effective in modelling the 

thermochemical and spectroscopic properties of gas phase arylperoxyl radicals [23]. All 

stationary points on the potential energy surface were verified to be either local minima (no 

imaginary frequencies) or transition states (one imaginary frequency) by computation of 

analytic vibrational frequencies. Transition states were connected to minima by calculation 

of the intrinsic reaction coordinate (IRC). Outputs from all calculations discussed in this study 

are summarized in the Supporting Information. 
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Results and Discussion 

Formation of charge-tagged phenyl radicals in the gas phase 

Aryl iodide precursor ions were generated by electrospray ionization (in either positive 

or negative ion mode), mass selected and subsequently irradiated at 266 nm within the ion 

trap mass spectrometer to liberate the distonic radical ions 1 – 7 (Chart 1). Photodissociation 

of aryl iodides has been demonstrated as an effective means of generating aryl radicals with 

high regiospecificity and the approach has been deployed to great effect by Julian and co-

workers for molecular structure elucidation via radical-directed dissociation [28, 38]. In this 

study, the putative structure of the radical ions was confirmed for each instance by observing 

the gas phase reaction with dimethyl disulphide [11, 25, 39-41]. For all radical ions 1 – 7 the 

reaction resulted in thiomethyl abstraction consistent with the distonic radical ion structures 

shown in Chart 1 (see example spectrum in Figure S-2, Supporting Information). 

 

Charge polarity effect on products of phenyl radical reactions 

Both para- and meta-(N,N,N-trimethylammonium)phenyl radical cations (1 and 2) 

were prepared by 266 nm photodissociation of mass-selected 4- and 3-iodo-N,N,N-

trimethylanilinium cations, respectively. Mass-selection and isolation of m/z 135 within the 

ion trap allowed for observation of the reactions of the radical cations 1 and 2 with 

background oxygen at timescales ranging from 100 – 10,000 ms. These observations 

revealed that reaction of 1 and 2 with O2 predominantly resulted in the formation of 

phenylperoxyl radical cations (m/z 167) 1-OO and 2-OO, respectively (Figure 1). Two trace 

product ions of m/z 151 and m/z 138 were also observed arising from the peroxyl radicals 

(see 50x magnification in Figure 1). Decomposition of 1-OO and 2-OO by cleavage of the O–

O bond results in the loss of an O (3P) atom, ultimately forming p- and m-(N,N,N-

trimethylammonium)phenoxyl radical cations of m/z 151. The product ion of m/z 138 

corresponds to the loss of a formyl radical (-HCO, -27 Da) from the peroxyl radical 

intermediate to form a charge-labeled cyclopentadienone. These observations are consistent 
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with our previous exploration of the reaction of positively charged arylperoxyl radicals with 

dioxygen [15]. 

 

Figure 1. (a) Mass spectrum arising following the reaction of 4-(N,N,N-trimethylammonium)phenyl radical 
cation, m/z 135 (1), with O2 for 6 s. (b) Mass spectrum arising following the reaction of 3-(N,N,N,-
trimethylammonium)phenyl radical cation, m/z 135 (2), with O2 for 6 s . Trace amounts of hydrogen atom 
abstraction by 1 and 2 from a small amount of contaminant present in the mixing manifold was also observed. 
 

The reactivity of the p- and m-trifluoroboratophenyl radical anions, 3 and 4 

respectively, toward O2 are reported here for the first time. The spectra shown in Figure 2 

reveal that the reaction produces only trace amounts of the peroxyl radical adduct with ions 

corresponding to 3-OO and 4-OO (m/z 176) observable only at 50x magnification (Figure 2). 

Numerous product ions consistent with the facile decomposition of these [M+O2]•− adduct 

ions are observed, pointing to the fleeting lifetime of the arylperoxyl radicals formed in both 

cases. Scheme 1 presents the possible rearrangement and decomposition pathways 

available to the peroxyl radical 4-OO and is based upon a previous computational 

investigation of the potential energy surface for the analogous 4-carboxylatophenyl peroxyl 

radical anion, 5-OO [15]. The major product ions in the spectra in Figure 2 are observed at 

m/z 147 corresponding to [M+O2-CHO]− arising from ejection of a formyl radical from the 

peroxyl radical intermediate (Scheme 1 for 4-OO, for analogous 3-OO see Scheme S-1 

Supporting Information). The spectra also reveal a minor product ion at m/z 175 that could 
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be rationalized as a charge-tagged benzoquinone anion arising from the loss of atomic 

hydrogen. o-Benzoquinones are known to eject carbon monoxide to yield 

cyclopentadienones [42, 43], hence prompt loss of CO from the m/z 175 anion population 

may also contribute to the abundant product ion signal observed at m/z 147 (Scheme 1). 

Other major phenylperoxyl radical decomposition products observed arise from cleavage of 

the oxygen-oxygen bond in the peroxyl radical to form a phenoxyl radical anion (m/z 160), 

as well as ejection of the BF3 charge tag to form [M+O2-BF3]•− ions at m/z 108. The abundant 

loss of BF3 from 3-OO and 4-OO (m/z 108) is rather surprising. Calculations predict that direct 

ejection of BF3 from 3-OO to form a peroxyl phenide radical anion is 26.2 kcal mol-1 above 

the entrance channel (data not shown). Hence, the loss of BF3 most likely arises from 

isomerization followed by migration of an oxygen atom around the aromatic ring of 3-OO and 

4-OO to form p- and m-benzoquinone radical anions (Scheme 1). Lastly, minor 

decomposition product ions of m/z 119 were also observed presumably arising from 

decarbonylation of cyclopentadienone intermediates (m/z 147) to form charge-tagged 

cyclopentadienone or vinylacetylene anions (Scheme 1). These observations are consistent 

with recent temperature-dependent studies examining the pyrolysis of cyclopentadienone 

that have found that vinylacetylene production dominates at lower temperatures (1000 – 

1400 K) [44]. Reactivity of the p- and m-carboxylatophenyl radical anions (5 and 6 

respectively), toward O2 was also examined and the corresponding spectra are shown in 

Figure S-3 (Supporting Information). The observed reaction products are consistent with 

previous reports and are analogous to the channels observed for the trifluoroborates, 3 and 

4. 
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Figure 2. (a) Mass spectrum arising from the reaction of 4-(trifluoroboronato)phenyl radical anion, m/z 144 (3), 
with O2 for 6 s. (b) Mass spectrum arising from the reaction of 3-(trifluoroboronato)phenyl radical anion, m/z 
144 (4), with O2 for 6 s. Trace amounts of hydrogen atom abstraction by 3 and 4 from a small amount of 
contaminant present in the mixing manifold was also observed. 
 

 

Scheme 1 

 

Charge polarity effect on the reaction potential energy surface 

The stark difference between the oxidation product distributions of positive and 

negative charge-tagged phenyl radicals suggests significant modulation of the potential 

energy surface between the two systems. To assist in rationalizing these experimental 
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observations and to enable comparison to the neutral phenyl radical archetype, the reaction 

enthalpies (ΔrxnH298) of selected intermediates and transition states for the neutral and 

charge-tagged phenyl radical plus dioxygen systems were calculated at the (U)M06-2X/6-

311++G(d,p) level of theory (Figure 3). A substantial body of theoretical investigations on the 

phenylperoxyl radical potential energy surface have concluded that isomerization by addition 

of the peroxyl radical oxygen back onto the ipso-carbon of the aromatic ring to form a 

dioxiranyl intermediate is the lowest energy isomerization pathway (N4, Figure 3) [15, 16, 45-

51]. This dioxiranyl radical, along with the phenoxyl radical arising from oxygen-oxygen bond 

homolysis, thus represent the key reaction intermediates leading to the formation of all 

product ions (see above) and hence the influence of the charged moieties on these reaction 

steps have been examined computationally. 

 

 

Figure 3. Potential energy surface of the positive (red, X = NMe3+) and negative (blue, X = BF3−) charge-
tagged and neutral (black, X = H) Ph• + O2 reactions for comparison of the formation of phenoxyl radical and 
phenyldioxiranyl radical intermediates leading to further phenylperoxyl radical decomposition. Calculated at 
the (U)M06-2X/6-311++G(d,p) level. Energies for the meta-substituted analogues are shown in parentheses. 
 



 15 

The computational results, summarised in Figure 3, illustrate that addition of O2 to the 

neutral phenyl radical produces the phenylperoxyl radical (N2) with an exothermicity of 46.6 

kcal mol-1. Homolytic cleavage of the O–O bond in N2 yields the phenoxyl radical plus atomic 

oxygen (3P) (N3) that is 7.9 kcal mol-1 below N1. Alternatively, the oxygen-centered radical 

of the peroxyl moiety in N2 can undergo addition to the ipso-carbon of the aromatic ring 

forming the dioxiranyl intermediate (N4) that is 26.3 kcal mol-1 below the entrance channel 

on the neutral surface. This isomerization occurs through the transition state TS N2 → N4 

that represents a barrier of 31.3 kcal mol-1 with respect to the phenylperoxyl radical (N2) but 

is still some 15.3 kcal mol-1 below N1.  

In the presence of the positively charged trimethylammonium moiety at the para-

position, the addition of dioxygen to the phenyl radical cation (C2) is exothermic by 42.8 kcal 

mol-1 (Figure 3 red lines). Interestingly on the cation surface, the minimum for the 

phenylperoxyl radical C2 lies in a well that is 3.8 kcal mol-1 shallower than the comparable 

neutral peroxyl radical (N2). The p-(N,N,N-trimethylammonium)phenoxyl radical (C3) formed 

upon homolysis of the O–O bond in C2 is 7.1 kcal mol-1 higher in energy than the neutral 

phenoxyl radical and lies just 0.8 kcal mol-1 below the entrance channel (C1). Similarly, the 

transition state TS C2 → C4 is predicted to lie 12.0 kcal mol-1 below C1 which is 3.8 kcal 

mol−1 above the comparable barrier on the neutral surface (TS N2 → N4). Furthermore, the 

dioxiranyl intermediate C4 is also predicted to be 6.2 kcal mol−1 higher in energy than the 

neutral archetype N4; lying 20.1 kcal mol−1 below C1. Interestingly, when the fixed positive 

charge-tag is substituted at the meta-position with respect to the radical site, the destabilizing 

effect of the charge-tag does not vary significantly from the para-substituted isomer (cf. 

values in parentheses in Figure 3). This finding indicates that the difference between the 

positively-charged and neutral phenyl radical potential energy surfaces is not strongly 

influenced by formal charge or radical delocalisation around the aromatic ring. 

Considering the negatively charged analogue, addition of dioxygen to the p-

trifluoroboratophenyl radical anion forms the p-trifluoroboratophenylperoxyl radical anion 
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(A2) which resides in a minimum some 51.3 kcal mol-1 below the entrance channel (A1, 

Figure 3). When normalised to the energy of the entrance channel, the negatively-charged 

peroxyl radical is 4.7 kcal mol-1 below its neutral counterpart N2. Comparison to the 

corresponding cation C2 reveals that the stabilization of the peroxyl radical by the proximate 

negative charge is larger in magnitude than the destabilisation in the cation (cf. 3.8 kcal mol-

1). The p-trifluoroboratophenoxyl radical anion (A3) formed upon cleavage of the O–O bond 

in A2 is predicted to be 9.6 kcal mol-1 lower in energy than N3, lying 17.5 kcal mol-1 below 

A1. The barrier to isomerization of A2 to form the dioxiranyl intermediate A4 is predicted to 

be 24.7 kcal mol-1 (TS A2 → A4) and is thus 4.7 kcal mol-1 lower in energy than the equivalent 

neutral transition state TS N2 → N4. A4 is computed to be 8.8 kcal mol-1 lower in energy 

than N4, lying 35.1 kcal mol-1 below the entrance channel. The net lowering of the potential 

energy surface relative to the entrance channel is also observed when the fixed negative 

charge-tag is in the meta-position with respect to the radical site (values in parentheses in 

Figure 3), indicating that resonance effects are only minor contributors to the overall 

stabilization afforded by the anion moiety. 

The normalized reaction coordinate diagrams of the positively and negatively charge-

tagged phenyl radicals in Figure 3 give some insight into the differences in experimentally 

observed reaction products for the two polarities (vide supra). For example, in the positively 

charge-tagged system the barriers to direct decomposition or rearrangement of the 

intermediate peroxyl radicals 1-OO and 2-OO lie much closer to the entrance channel (cf. 

red lines in Figure 3). These findings suggest that the rate of decomposition will be 

significantly slower than for the corresponding anions or neutrals and affording a greater 

contribution from stabilization of the peroxyl adduct. This is consistent with the observation 

of phenylperoxyl radical formation (i.e., 1-OO and 2-OO) as the predominant reaction product 

with only trace amounts of the [M+O2-O]•+ and [M+O2-CHO]•+  decomposition products (see 

Figure 1). Conversely, for the negative ions the transition states and intermediates in the 

decomposition pathways are lowered substantially relative to both the cation and neutral 
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analogues (cf. blue lines in Figure 3). These calculations are thus consistent with higher rates 

for unimolecular transformation of the intermediate peroxyl radicals 3-OO and 4-OO to 

decomposition products. Such rapid transformations could outcompete stabilisation of the 

adduct ions and explain why only trace amounts of the 3-OO and 4-OO anions are observed 

experimentally (Figure 2). The computational results illustrated in Figure 3 suggest that the 

distonic ion reactivity observed in this study is likely to bracket that of the neutral phenyl 

radicals. It would be interesting therefore, to assess whether increasing the distance between 

charged and radical moieties might allow convergence (from above and below) on the 

energetics of the neutral phenyl radical archetype. 

 

Charge-radical distance effects on the reaction potential energy surface 

The effect of the intramolecular separation of charged and radical moieties was 

investigated computationally for the phenyl radical plus dioxygen reaction. The approach 

used in this study follows the strategy devised by Grob et al. [52] that has been recently been 

deployed in probing energetic and spectroscopic shifts associated with charge-radical 

separation in distonic ions [16, 21, 23]. Here, the reaction enthalpies for selected stationary 

points on the Ph• + O2 potential energy surface were computed for a series of para-

substituted phenyl radicals of the form X-(CH2)n-Ph• (where X = −BF3 or (CH3)3N+ and n = 1 

- 7). Comparing the enthalpy of each stationary point - relative to the entrance channel - with 

the analogous ΔrxnH values derived from neutrals of the form X-(CH2)n-Ph• (where X  = H) 

gives a stabilization or destabilization enthalpy (ΔΔrxnH) resulting from the charge at a 

distance defined by the number of methylene groups (n) separating the charge carrier from 

the phenyl ring. In these calculations, the extended hydrocarbon chain was deliberately 

constrained to an all gauche conformation so as to extend, as far as possible, the distance 

between the charge and radical sites for a given number of methylene units. Figure 4 plots 

the ΔΔrxnH values computed (relative to the corresponding neutral radical, indicated as a 

dashed horizontal line) for (a) the phenylperoxyl radical intermediate (X-(CH2)n-PhOO•) (b) 
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the phenoxyl radical exit channel (X-(CH2)n-PhO•) and (c) the dioxiranyl intermediate. The 

enthalpy differences are plotted against the reciprocal distance (1/r) between the boron or 

nitrogen (for X = −BF3 or (CH3)3N+, respectively) and the radical centre which is taken as the 

terminal oxygen atom of the peroxyl radical (Figure 4a) or the para-carbon of the phenyl ring 

for the phenoxyl and dioxiranyl structures as illustrated in Figures 4(b) and (c), respectively. 

 

Figure 4. Stationary point enthalpies relative to the entrance channel for the X-(CH2)n-Ph• + O2 potential energy 
surfaces (where X = −BF3 (blue circles) or (CH3)3N+ (red circles) and n = 1 – 7) are plotted as a difference in 
enthalpy to the corresponding stationary points on the neutral potential energy surface for the H-(CH2)n-Ph• + 
O2 reaction. Enthalpy differences (at 298 K) were computed at the (U)M06-2X/6-311++G(d,p) level of theory 
and are plotted (in kcal mol-1) against reciprocal distance between the charge an radical moieties as indicated 
by the green lines on the representative structures shown. Enthalpy differences are shown for (a) the 
phenylperoxyl radical (where y[(CH3)3N+] = 37.777x - 1.6043, R² = 0.99814 and y[−BF3] = -59.089x + 3.1586, 
R² = 0.97784); (b) the phenoxyl radical (where y[(CH3)3N+] = 20.592x - 0.1393, R² = 0.98642 and y[−BF3] = -
30.923x + 1.0263, R² = 0.99886) and (c) the dioxiranyl intermediate (where y[(CH3)3N+] = 16.28x - 0.3357, R² 
= 0.96722 and y[−BF3] = -27.167x + 0.8888, R² = 0.99902). Representative structures for all three reaction 
intermediates and products are provided. 
 

(a) 

(b) 

(c) 
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 The stabilization of the phenylperoxyl radical computed for a remote, fixed negative 

charge and the destabilization of the phenylperoxyl radical afforded by a remote, fixed 

positive charge were both found to decay linearly with 1/r (Figure 4a).  The same was found 

to be true for the phenoxyl radical and dioxiranyl radical intermediates (Figures 5b and c). 

Interestingly, the enthalpy perturbations arising from a remote, fixed-charge moiety on the 

reaction intermediates in the Ph• + O2 reaction manifold are persistent over long intra-

molecular distances. For example, a (de)stabilization of the phenylperoxyl radical by ~1 kcal 

mol-1 is calculated even when the charge-radical separation is 14.5 Å (Figure 4a) and a 

similar (de)stabilization the phenoxyl radicals and dioxiranyl radical intermediates by ~2 kcal 

mol-1 over distances of 10.2 Å (Figures 5b and c). The linear fits of these data predict that 

convergence of the positively and negatively charged distonic radical ions could be expected 

at charge-radical distances of up to 19 Å. Testing this prediction experimentally however, 

presents a challenge in identifying a suitable molecular scaffold capable of maintaining a rigid 

separation over such distances between a well-defined charged group and an unpaired 

electron. Nonetheless the calculations presented in Figure 4 also suggest that a modest 

increase in charge-radical separation of just 2.4 Å (n = 3) could reduce the stabilizing effect 

of the negative charge by a factor of 2, and reduce the destabilizing effect of the positive 

charge by a factor of 1.5. This might suggest, for example, that a rigidly imposed charge-

radical separation of 9 - 10 Å in a negatively charge-tagged phenyl radical may be enough 

to slow the decomposition and rearrangement reactions of the peroxyl radical intermediate 

and thus measurably alter the product distribution of the Ph• + O2 reaction. 

To experimentally test the effect of charge-radical separation on the products of 

arylperoxyl forming reactions, the reaction of the 4-(1-carboxylatoadamantyl)phenyl radical 

anion (7) with dioxygen was investigated in the ion trap mass spectrometer and compared 

side-by-side with the reactions of the 4-carboxylatophenyl radical (5). Molecular orbital 

calculations estimate the distance between the radical site and the charged moiety in 7 is 9.1 

Å, representing an increase in separation of 5.3 Å compared with 5 (data not shown). Figure 
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5(a) and (b) show the mass spectra obtained after isolation of the radical anions 5 and 7, 

respectively, in the presence of dioxygen for 5 s. The spectrum obtained from 4-

carboxylatophenyl radical anion (m/z 120) is dominated by the phenoxyl radical product ion 

at m/z 136 with the corresponding phenylperoxyl radical (5-OO) at m/z 152 only present at 

very low abundance (see 40x magnification in Figure 5a). In contrast, analogous reaction of 

the 4-(1-carboxylatoadamantyl)phenyl radical anion (m/z 254) with O2 yields an abundant 7-

OO product ion at m/z 286 (Figure 5b) with the phenoxyl radical plus atomic oxygen product 

channel (m/z 270) making a significantly diminished contribution (see 40x magnification in 

Figure 5a). These observations are consistent with the computational predictions (vide supra) 

that increasing the charge-radical separation raises the barriers toward decomposition and 

isomerization of the phenylperoxyl radical, thus providing a greater opportunity for 

stabilization of adduct ion. 

 
Figure 5. Mass spectra resulting from the reaction of (a) the 4-carboxylatophenyl radical anion, m/z 120 (5), 
and (b) the 4-(1-carboxylatoadamantyl)phenyl radical anion, m/z 254 (7), with dioxygen for 5 s. 
 

Charge polarity and charge-radical distance effects on the rate of phenyl radical reactions 

The second-order rate constants for the reaction of charge-tagged phenyl radicals 1 - 

4 with dioxygen were derived from measured pseudo-first order rate constants and are 
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reported in Table 1. These rate constants range from k2 = 3.6 – 6.7 x 10-11 cm3 molecule-1 s-

1 and are 3 – 5 times greater than the comparable rates measured for the neutral phenyl 

radical previously reported (Table 1) [53-55]. In order to normalize for the effect of charge on 

collision dynamics, the reaction efficiencies were determined through estimation of the 

collision rate for the different reactions (Table 1). Using an estimated hard sphere collision 

rate of 3.2 x 10-10 cm3 molecule-1 s-1, the reaction efficiency for the neutral phenyl radical with 

dioxygen was estimated to range between 4 – 6%. In comparison, efficiencies for the 

reactions of 1 – 4 ranged from 6 – 12%.  Contrasting the two polarities, the presence of the 

negative charge leads to a significantly higher reaction efficiency (Φ = 10 and 12%, for 3 and 

4, respectively) compared with the positively charged analogues that are much closer to the 

neutral archetype (Φ = 6 and 7%, for 1 and 2, respectively). Noting that the relative 

uncertainty in the efficiency determinations is considerably smaller than the absolute 

uncertainty listed in Table 1, radicals 2 and 4 react slightly faster than their para-substituted 

isomers 1 and 3, respectively.  As well as the position of the charged moiety on the benzene 

ring, the effect on reaction efficiency of intramolecular charge-radical separation was also 

explored. The reaction efficiencies of the 4-carboxylatophenyl radical anion (5) and the 4-(1-

carboxylatoadamantyl)phenyl radical anion (7) were measured to be 8 (±1) % and 6 (±1) %, 

respectively. This result suggests that removing the negatively charged moiety further from 

the phenyl radical center retards the reaction efficiency bringing it closer to the reactivity of 

the cations 1 and 2 and current estimates of the neutral phenyl radical. 
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Table 1. Comparison of 2nd order rate constant and reaction efficiencies for the ion-molecule reactions of 
distonic radical ions 1 – 4 with O2. We estimate the absolute uncertainty in the rate constants to be 50%. 

Radical 
 

    
Rate constant  

k2 
(cm3 molecule-1 s-1) 

1.8 ± 0.1 x 10-11 a 

3.6 ± 0.6 x 10-11 3.9 ± 0.4 x 10-11 5.6 ± 0.7 x 10-11 6.7 ± 1.2 x 10-11 1.4 ± 0.4 x 10-11 b 

1.2 ± 0.1 x 10-11 c 

Collision rate kcoll 

(cm3 molecule-1 s-1) 

3.2 x 10-10 d 5.79 x 10-10 5.79 x 10-10 5.76 x 10-10 5.76 x 10-10 

Reaction 
Efficiency 

(k2/ kcoll × 100%)  

6 % 
6 ± 1 % 7 ± 1 % 10 ± 1 % 12 ± 1 % 4 % 

4 % 
a Value from Reference [53]. b Value from Reference [54]. c Value from Reference [55]. d Hard sphere collision 

rate estimated using 𝑘78 = 𝜋𝜎;<- =>*?@
AB

C
D
-E , where 𝜎;<- = (𝑅; + 𝑅<)-. 

 

The reaction efficiency results summarised in Table 1 are interesting to juxtapose 

against the potential energy surfaces summarised in Figure 3. The computational results in 

Figure 3 suggest that all Ph• + O2 reactions should proceed by the barrierless recombination 

of the phenyl radical with dioxygen. Such a barrierless and highly exothermic reaction (ΔrxnH 

= -42.4 – -51.9 kcal mol-1) might be expected to have an efficiency near unity (i.e.,100%). In 

contrast, the experimental findings resented here indicate reaction efficiencies of <12 % in 

all instances and, moreover, that the efficiencies are modulated by the polarity, location and 

distance between the radical and charged moieties. These findings perhaps point to a more 

nuanced potential energy surface with both a shallow pre-reactive complex and reef-type 

barrier just below the entrance channel that represent the rate-determining step in the 

recombination reaction. Investigation of this extremely flat portion of the potential energy 

surface using electronic structure calculations is challenging and beyond the scope of the 

current study. Computational studies of related gas phase ion-molecule reactions however, 

have served to highlighted the importance of the potential energy landscape surrounding the 

entrance channel in modulating the reaction kinetics [56, 57]. As indicated in the hypothetical 

surface in Figure 6, we can conclude based on the experimental findings that - relative to the 
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entrance channel - the barrier to reaction will be lowered in the presence of an anion while 

the cations have much less impact on the barrier height. Future experiments and high-level 

calculations will provide insights into the nature of this barrier and its role in dictating reaction 

rate in arylperoxyl forming reactions. 

 
 
Figure 6. Hypothetical potential energy surface for the formation of a pre-reactive complex upon radical 
combination of Ph● and O2 giving rise to a small barrier to phenylperoxyl radical formation.  
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Conclusions 

Through a combined experimental and computational examination, we have 

demonstrated that the polarity of the charge-tag significantly perturbs the potential energy 

surface of the Ph● + O2 reaction system; altering both the reaction kinetics as well as the 

reaction products observed. The presence of a fixed-positive charge was found to destabilize 

influential stationary points on the Ph● + O2 potential energy surface relative to the entrance 

channel. In contrast, a fixed-negative charge was found to lower the energy of the same 

stationary points on the corresponding anionic potential energy surface. The opposite but 

unequal perturbation arising from these charge-tags can account for the different product 

distributions of the Ph● + O2 reaction and also the measured differences in reaction efficiency. 

Computational exploration of these effects with increasing intra-molecular separation of 

charge and radical sites suggests that, in the gas phase, the charge can influence the 

energetics associated with the formation and fate of peroxyl radicals over surprisingly long 

distances (e.g., up to 14.5 Å). These predictions were supported by experimental 

examination of the reactivity of the 4-(1-carboxylatoadamantyl)phenyl radical anion (7), 

where the molecular structure imposes a charge-radical separation of 9.1 Å. Increasing the 

charge-radical separation in this system was shown to retard the reaction efficiency and 

significantly alter the product distribution in favour of the phenylperoxyl radicals. The 

demonstrated influence of remote charges in modulating peroxyl-forming reactions may have 

broader implications [21, 22]. In a biological context for example, the presence of remote 

charged moieties may afford switching of peroxyl radical reactivity in enzymatic or free 

radical-induced oxidation chemistries. While the effective range of influence of charge-radical 

polarization would be diminished in polar solvents, in low polarity regimes such as 

hydrophobic pockets of proteins or membrane bilayers the effect could be comparable to that 

observed in the gas phase.  
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