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Abstract  

Current trends in battery research are promoting the development of feasible methods to prepare 

electrode materials with new architectures that can meet the requirements of high energy density 

associated with sodium ion batteries (SIB). It is logical to use solid-state processing techniques 

to fabricate SIB electrode materials due to its ease of handling and capability for large-scale 

production. From the SIB standpoint, the sulfate based polyanionic system is well known for its 

high operating voltage. The present study utilizes a hitherto-unknown solid-state process with an 

entirely new composition to develop an electrode comprising earth abundant carbon, sodium, 

sulfur, fluorine, and iron materials. This new NaFeSO4F-CNT system, where CNT is carbon 

nanotube, obtained by the solid-state technique, exhibits a highly stable Fe2+/Fe3+ redox couple 
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and achieves a capacity of ~ 110 mAg-1 at 0.1C with capacity retention of > 91% after 200 cycles 

(1 C).  This is the best-ever reversible, high potential sulfate based cathode for sodium ion 

batteries reported to date. This study also provides an in-depth understanding of the outstanding 

electrochemical performance of this novel electrode. These findings can make it possible to 

achieve maximum performance from potential electrodes, when the operating temperature is 

limited to 350oC or below.   

 

Keywords: Sodium iron Fluoro Sulfate; carbon nanotubes; Fe2+/Fe3+ redox couple; sodium-ion 
batteries; cycling. 

 

1. Introduction  

Increasing energy demands have directed the focus of researchers towards rechargeable energy 

devices with a good balance of capacity, power, cost, durability, and abundance of the necessary 

raw materials. Among them, lithium-ion batteries (LIBs) have become essential in everyday 

technology, with applications ranging from portable electronic devices to electric vehicles [1-3]. 

LiFePO4 material with the Fe3+/Fe2+ redox couple is considered to be the best commercialized 

material when considering its electrochemical performance in different applications. 

Nevertheless, these power sources are not suitable for grid-scale energy storage due to the high 

cost and low availability of lithium resources. For years, scientists have considered the sodium-

ion battery (SIB) as a safer and lower cost replacement for LIBs in large-scale energy storage 

applications [4, 5]. The sodium chemistry per se has always been an exciting field of research, as 

it represents a perfect candidate to satisfy the most important requirements, such as abundance 

(with sodium the fifth most abundant element on Earth), accessibility, and worldwide 

distribution (and thus low cost) [6-9]. Thus, to benchmark against LiFePO4, researchers have 
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broadened their range of exploration to search for new sodium based cathodes with a good mix 

of electrochemical properties and safety parameters. The natural tendency of the researchers was 

to replace the Li in the LiFePO4 by Na. The operating voltage and associated energy density of 

its Na counterpart are inferior to those of lithium, however. Replacing the (PO4)3- polyanion with 

the more electronegative (SO4)2- can effectively utilize the improved operating voltage, and thus 

can solve the low energy density problem associated with the existing SIBs [10]. This approach 

was explored for a cathode material, Na2Fe2(SO4)3, which has a high Fe redox potential (~3.8 V) 

versus Na [2]. The study indicated that, in addition to possessing high redox potentials and 

promising Na+ transport, these polyanion frameworks can exhibit good electrochemical stability, 

which makes them particularly suitable in applications where safety and longevity are important. 

Further, many similar studies have been conducted and have shown over 3 V operating potential 

and promising electrochemical properties (Table S1). Recently, fluorinated polyanion moieties 

(tavorite-type structured alkali metal fluoro-sulphate) have also received much attention [11-13]. 

The addition of fluoride promotes a charge difference and modification of the dimensionality of 

the lattice along with an altered redox potential. This framework possesses linear chains of 

corner-sharing FeO4F2 octahedra which propagate along the c axis and are bridged by corner-

sharing SO4 tetrahedra along the a and b axes to create a cavernous network, with two large 

intersecting tunnels for ion migration, which can house larger ions such as Na+ and offer 

multidimensional pathways for ion transport [14, 15]. This ensures that good electrochemical 

performances can even be achieved with submicron particles, which provides significant 

advantages for material processing, and the opportunity for even faster ion transportation with 

lower path length. It seems, however, that the corresponding electrochemical performance cannot 

be improved as one would expect by ionic conductivity enhancement. For instance, these pristine 
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fluoro-sulphate polyanion compounds have the disadvantage of poor rate performance due to 

their low electronic conductivity. This problem is aggravated even more because of the sulfate 

compound in this material. The lower decomposition temperature of this sulfate limits the in-situ 

processing (using precursors) of conducting materials such as graphene, carbon nanotubes 

(CNTs), other conducting carbons, and/or cationic doping. Our experiences have shown that this 

is a major bottleneck in the processing of novel conducting fluoro-sulphate polyanion 

compounds for electrode applications. This could be one of the reasons why this class of 

materials has not been widely explored for battery electrodes.  

The present study looks at this problem from two aspects: a) the development of a feasible and 

facile technique to prepare sodium-based fluoro-sulphate polyanion structures with optimal 

electrochemical properties and b) the improvement of its conductivity by employing carbon 

nanotubes (CNT) during the synthesis along with the precursor (to ensure intact and effective 

contact with the CNTs). The resultant structure is a new class of sodium iron fluro-sulphate 

(hereby referred as SISF) lined by CNTs (SISF-CNT). As expected, the CNT lining over and 

around the SISF improved the conductivity of the sample, and it showed a specific capacity of 

~110 mAh g-1 at 0.1 C. This functionally graded electrode benchmarks the highest-ever number 

of cycles (200 cycles) for the sulfate based Fe2+/Fe3+ redox system at 1 C with > 91 % capacity 

retention.  

 

2. Results and discussion 

2.1. Phase characterizations of SISF and SISF-CNTs: 

Even though SISF can exhibit a higher Fe2+/Fe3+ redox potential than alternatives ( Fig. S1 in the 

Supporting Information), the adoption of these cathodes in SIBs has been limited due to their 
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poor electronic conductivity and low processing temperatures. SISF undergoes a phase 

transformation above 350 oC because of sulphate decomposition (Fig. 1a). This prevents the 

utilization of different carbon sources, such as oleic acid, glucose, and citric acid, to grow in situ 

in conducting carbon (Fig. S2) on SISF. Incomplete decomposition of these carbon sources 

results in low coulombic efficiencies and poor capacities of SISF (Fig. S2a-b). The present study 

employs a simple annealing technique wherein CNT is lined onto the SISF (detailed method 

provided in the Supporting Information). The amount of CNTs in the SISF matrix was optimized 

to 2.3 wt % (see Supporting Information method section and Fig. S3), and the sample with this 

percentage hence would be referred as SISF-CNT. Fig. 1b shows the X-ray diffraction (XRD) 

pattern of the pristine SISF and SISF-CNT samples. The patterns can be indexed to the 

monoclinic structure with space group of C2/c [12]. The crystal structure was refined using 

Rietveld refinement analysis. The refined XRD patterns and the corresponding crystal structure 

are shown in Fig. S4a-b. The lattice parameters and the reliability factors are reported in Table 

S2. The XRD pattern of CNT is presented in Fig. S5a. The 2 peaks observed in this pattern can 

be indexed to the (002) and (110) planes. The FTIR spectra (Fig. 1c) of SISF and SISF-CNT 

show the predominant overlapping vibration modes of (SO4)2- in the range from 1400 to 700 cm-

1. The broad and prominent band around 1200−1050 cm−1 is assigned to the asymmetrical 

stretching of the tetrahedral SO4
2-, while the peak located at 1004 cm−1 reflects the stretching 

vibration of SO4
2-. The band at 3000-3600 cm-1 represents the vibration of OH groups [16, 17]. 

The Fourier transform infrared (FTIR) spectrum of CNT is shown in Fig. S5b. The identified 

peaks at 1116, 1637, 2919, and 3434 cm-1 represents different vibrations of C-O, C=C, C-H, and 

O=H bonds. The presence of additional peaks at 1510 cm-1 for SISF-CNT (Fig. 1d) as compared 

to pristine SISF (Fig. 1c) and in CNT (Fig. S4b) could be attributed to the C=C bonds in CNTs, 
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resulting from the linking of the oxygenated functional groups in the SISF [18]. The broadening 

of the sulfate bands in SISF-CNT corresponds to the slightly different bonding of individual 

sulfur molecules to the oxygen, resulting in infrared (IR) absorptions for each of these bonds at 

various frequencies, which possibly occurred due to the lattice strain arising from the coefficient 

of thermal expansion mismatch between the SISF and the CNT during the synthesis. Fig. 1d 

shows the Raman spectra of SISF, CNT, and SISF-CNT samples. The absence of radial 

breathing mode (RBM) bands indicates that the CNTs are multi-walled in nature [19]. There are 

two characteristics bands, i.e. the G band (1578 cm-1), representing the in-plane vibration of C–C 

bonds along with a small shoulder band around 1605 cm-1. The disorder induced D band also 

appears at 1340 cm-1. A harmonic of the D band is seen at 2680 cm–1, called the GI band [20]. 

The peaks below 1200 cm-1 represent different Raman vibration modes of SISF. X-ray 

photoelectron spectroscopy (XPS) analysis (Fig. 1e) was carried out to understand the 

conducting nature of the carbon and the purity of the SISF system. The peaks at 

binding energies of 710 and 724 eV indicate the presence of Fe 2p3/2 and Fe 2p1/2 orbitals, 

demonstrating the iron oxidation state in the SISF systems.  The intense peak at 531 eV indicates 

the presence of O 1s in the SO4
2- group. The presence of Na could be observed by analyzing the 

peaks at 1070, 62, and 30 eV. The S in the SO4 can be observed through the peaks at 168 and 

232 eV. At 684 eV, a sharp peak of F can also be observed. The C 1s peak at 284 eV was 

deconvoluted to investigate the conducting nature of the carbon phase in the SISF-CNT system 

(Fig. 1f). The 4 distinct deconvoluted peaks at 284.6, 285.8, 287.2, and 288.6 eV, represent the 

C−C, C−O, C=O, and O−C=O bonds, respectively. The higher intensity of the C−C bonds as 

compared to other bonds indicates the conducting nature of the carbon in the SISF-CNT system 

through the delocalized π electrons. Compared to the pure CNT, blue shifts in the G, D, and GI 
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bands in SISF-CNT were observed (Fig. 2a). Such shifts were absent in the case of the SISF 

bands (Fig. 2b), however. This could be accredited to the compressive strains experienced by the 

multi-walled CNTs from the SISF matrix [21]. In addition, a small increase in the peak intensity 

ratio (ID/IG) values for the SISF-CNT system (ID/IG = 1.069) was observed as compared to the 

pure CNT samples (ID/IG = 1.021). This larger value indicates the presence of disordered carbon 

atoms and/or the reduction of the crystallite size in the graphite domains of the CNT walls [22, 

23]. The reason for this could be the damage induced on the CNT walls by the SISF matrix 

during the ball milling and/or during the thermal treatment. The Brunauer–Emmett–Teller (BET) 

analysis showed that the surface area of SISF-CNTs was more than 2 times greater (8 m2g-1) as 

compared to the pure SISF (3.5 m2 g-1). Also, the hysteresis observed between the adsorption and 

desorption curves in the BET isotherm of SISF-CNT indicates the presence of mesoporous 

structure in the material, while such hysteresis is absent in the pristine SISF system (Fig. S5c). 

Further, the isotherm of pure CNTs with a surface area of 113 m2g-1 is provided in the inset of 

Fig. S5c. 

 

2.2.Morphology analysis of SISF and SISF-CNTs: 

Scanning electron microscope (SEM) images of SISF and SISF-CNT are shown in Fig. 3(a-c). 

The morphology of SISF shows a wide particle size distribution from the sub-micron to the 

micron scale (Fig. 3(a)). The morphology of SISF-CNT is shown in Fig. 3(b, c), where the active 

material particles with a size of 100-200 nm are effectively surrounded by CNTs, which not only 

acts as the bridges for continuous conductivity, but also act as barriers to prevent particle 

aggregation. An SEM image of the pure CNTs is provided in Fig. S6. In order to understand the 

arrangement of CNTs in the SISF-CNT sample, transmission electron microscopy (TEM) and 
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high resolution TEM (HRTEM) were carried out (Fig. 3d-h). Fig. 3d-e demonstrates the 

morphology of pure CNTs. The inner diameters of the CNTs are observed to range from 1.8 to 

7.1 nm, while the wall thickness ranges from 1.7 to 5.9 nm. The selected area electron diffraction 

(SAED) pattern in the inset of Fig. 3d and the fast Fourier transform (FFT) pattern in the inset of 

Fig. 3e present bright electron diffraction spots in the Debye ring corresponding to the d spacing 

of 0.338 nm for the (002) lattice planes. Fig. 3 f-h presents TEM and HRTEM images of SISF-

CNT. The inset of Fig. 3f shows the SAED pattern of the SISF-CNT system, where the electron 

diffraction pattern features bright spots for the SISF system along with the (002) plane Debye 

ring of CNT. The CNT network over the SISF particles can be observed in Fig. 3 g, h. To 

understand the interface between CNT and SISF better, 3 regions were selected, marked as 1, 2, 

and 3 in Fig. 3 h. Region 1 represents the CNT phase, while 2 and 3 cover different regions of 

the CNT lined SISF system. Further, the lattice fringes can be observed in the walls of these 

CNTs. The HRTEM images of these CNTs (shown in Fig. 4a) demonstrate clear lattice fringes 

with a d-spacing of ~0.338 nm, representing (002) planes. The corresponding FFT pattern (inset 

of Fig. 4a) shows bright diffraction spots in the Debye ring. The HRTEM image and the 

corresponding FFT pattern of the pristine SISF are shown in Fig. 4b and the inset of Fig. 4b, 

respectively. The corresponding FFT patterns are provided in Fig. 4c-e. The FFT pattern of 

region 1 in Fig. 3h (Fig. 4c) shows the d-spacing of 0.34, corresponding to the (002) planes of 

CNTs. The region 2 (in Fig. 3h) FFT pattern (Fig. 4d) features bright spots representing the SISF 

and the diffraction patterns of CNTs. The FFT pattern (Fig. 4e) of region 3 in Fig. 3h clearly 

shows CNT (002) planes along with the bright diffraction pattern of the SISF system. These FFT 

patterns, along with the HRTEM image, indicate that the CNTs are intact and well lined over the 

SISF, which could ensure faster Na migration and effective electron transportation.  
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2.3. Electrochemical performance evaluation of SISF and SISF-CNTs: 

Fig. 5 shows the initial 5 cycles of charging-discharging (CD) at a rate of 0.1 C and the cyclic 

voltammetry (CV) curves for the first 5 cycles at the scan rate of 0.1 mV s-1 between 1.5–4.3 V 

(versus Na/Na+) for the SISF and SISF-CNTs samples. Compared to SISF (Fig. 5 a, b), the SISF-

CNT (Fig. 5 c, d) system showed distinct CD plateaus and CV redox peaks. The SISF-CNT 

sample showed an initial charge plateau at 3.7-3.9 V and a discharge plateau at 3.8-3.4 V. In the 

following cycles, the position of the charging plateau shifted towards lower voltage (3.6-3.8 V), 

while the discharging plateau remained the same (Fig. 5 c). This indicates the presence of some 

irreversible structural transformation during the first de-intercalation process. Thus, in the 

subsequent cycles, the voltage polarization appears to be smaller as compared to the first cycle, 

which, we believe, could provide better reversibility and electrochemical stability. In the case of 

the SISF sample, however, the phenomenon seems to be reversed (Fig. 5 a). In the CV curves, 

the shift in the redox peaks after the 1st cycle is not very evident, although the redox peaks are 

very prominent and in good agreement with the CD curves. For the SISF-CNT, apart from the 

main redox peaks, the CV analysis showed additional broad oxidation and reduction peaks at 3 

and 2.8 V, respectively (Fig. 5d), but these redox peaks were absent in the pristine SISF system 

(Fig. 5b). Thus, the redox reaction associated with the Fe2+/Fe3+ couple seems to occur in 

multiple stages. Also, in the CD curves, t2 voltage plateaus were observed in the SISF-CNT over 

the entire range, suggesting that 2 phase reaction mechanisms with different volume changes are 

associated with the reversible transformation of Fe2+ ↔ Fe3+. The initial efficiency of SISF-CNT 

seems to be much better as compared to its pristine counterpart. The SISF-CNT showed an initial 

discharge capacity of ~110  mAhg-1 at 0.1 C, while SISF displayed only ~31 mAh g-1 at the same 

C rate.  
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Fig. 6a-b shows the electrochemical impedance spectroscopy (EIS) spectra of SISF and SISF-

CNTs. The EIS analysis showed a significant reduction in the charge transfer resistance (Rct) 

(Fig. 6a) and a minor reduction in the solution resistance (Rs) (Fig. 6b) for the SISF-CNTs as 

compared to the SISF. The Rs and Rct values of the SISF and SISF-CNT samples are provided in 

Table S3. The inset of Fig. 6b shows the equivalent circuit of the SISF and SISF-CNT systems 

(where CPE is the constant phase element and W is the Warburg impedance). The reduction in 

the Rs and Rct values of SISF-CNTs as compared to pristine SISF demonstrate its better 

ionic/electronic conductivity. To determine the effect of the CNT network on the diffusion, the 

diffusion coefficient has been calculated using the following equations.  

2/1−++= σωcts
I RRZ          (1) 

22442

22

2 σCFnA
TRD =           (2) 

      

where Rs is the solution resistance, Rct is the charge transfer resistance, ω is the angular 

frequency at the low-frequency region, Z′ is the real part of the impedance, and σ is the 

Warburg factor which is associated with Z′ and ω. R is the gas constant, T is the absolute 

temperature, A is the surface area of the electrode, n is the number of the electrons per 

molecule during oxidization, F is the Faraday constant, and C is the concentration of 

sodium ion in the bulk.   

To obtain the Warburg factor σ, the Z′ vs ω-1/2 curve in the low frequency region is 

plotted, as is shown in Fig. S7. According to formulas (1) and (2), the calculated Na ion 

diffusion coefficients are presented in Table S3. The diffusion coefficient obtained for 

SIS-CNT is found to be one order of magnitude higher than for its pristine counterpart 

(Table S3). Based on the above analysis, rate capability studies of these two samples as 
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SIB cathodes, were also conducted in the potential window of 1.5-4.3 V (vs. Na+/Na) to 

determine their practical electrochemical performance (Fig. 6c). A discharge capacity of 

~110 mAhg-1 was obtained at a C rate of 0.1 C for the SISF-CNT electrode, and it could 

maintain a capacity over 85 mAhg-1 at 1 C. At 10 C, SISF-CNT electrodes could maintain 

a capacity of 30 mAhg-1 (which is equal to the capacity of pure the SISF system at 0.1 C) 

and recovered their initial capacity value after CD at different rates. Coulombic efficiency 

of more than 95% (Fig.6d) was consistently maintained at different C-rates. With a 

sudden change in the C rate, an unexpected decrease/increase in efficiency was observed, 

which could be attributed to the change in the participation of the active sites during the 

discharge process. The role of the CNTs in the SISF-CNT electrode is pivotal, as they 

could provide faster ion diffusion and a smoother path for the electrons during the CD 

processes. Here, the electrons can spread over the entire surface of SISF particles due to 

the presence of CNTs, leading to improved rate capability and reversibility of the sodium 

insertion/extraction cycles, as observed in the rate performance. The prime electron 

transport mechanism in CNTs depends on the network formed by the sp2 bonded carbon 

atoms, which form long intact graphitic domains. The delocalized π-electrons are the 

principal reason for the better electronic conductivity of this form of carbon (as seen 

through the XPS analysis). The defect sites in the CNTs may hinder long-range electronic 

conductivity to some extent, but the sp2 hybridized carbon domains form interacting 

pathways and provide smooth electron transportation, resulting in better electronic 

conductivity and a reduction in the net resistance, as observed in the EIS studies. Fig. 6e 

presents a cycling stability study of the SISF-CNT system at 1 C. The initial specific 

discharge capacity was found to be ~89 mAhg-1. While the pristine SISF system showed 
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an initial specific capacity of ~13 mAh g-1 and it could only retain ~58% of its initial 

capacity at the end of 200 cycles (Fig. S8). Hence, it is worth noting that more than 91% 

of the capacity was retained for SISF-CNT system, even at the end of 200 cycles. The 

coulombic efficiency was observed to be more than 95% throughout the cycling process. 

This remarkable cycling stability could be attributed to the excellent structural stability of 

the SISF-CNT systems, even after the prolonged cycling. The CNT network could also 

minimize the stresses and loss in the electrode’s structural integrity that are associated 

with the volume changes in the electrode during sodium intercalation/de-intercalation. In 

addition to this, the SISF structure, which is interconnected through CNTs, could be 

beneficial for the proper infiltration of the electrolyte. This would increase the liquid-

phase sodium diffusion and eventually reduce the concentration polarization, resulting in 

better rate capability and capacity. The presence of CNTs in the SISF matrix can be 

advantageous for the following reasons: (a) the smaller un-agglomerated SISF particles 

can shorten the Na ion transportation length, as well as facilitating the reaction kinetics, 

(b) the CNTs lined over and around the SISF particles promote interfacial electrical 

conductivity and Na ion transfer, and (c) the CNT framework provides interconnected 

electron channels and helps the SISF structure to have a better accommodate volume 

changes.  

Comparing the electrochemical performance of the present study with reports on different 

sodium iron sulphate materials (Table S1) [2, 24-29] shows that the present SISF-CNT 

system exhibits the best electrochemical performance to date, in terms of both capacity 

and stability. Nevertheless, there is further scope to improve the rate capability and 

energy density (Table S4) by devising new nanostructured architectures for SISF systems 
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or finding more suitable secondary phases. Also, it is very important to find out the 

percolation threshold limit and carryout a detailed conductivity study using a four-probe 

technique of the present system to explore the maximum electrochemical performance out 

of this system. 

 

Conclusion 

The present study opens up a new strategy for the development of high performance battery 

electrodes by means of a simple solid state technique, where the primary material can withstand 

only low processing temperatures. Based on this strategy, a novel CNT lined NaFeSO4F (SISF-

CNT) system was fabricated and investigated for its electrochemical performance as a SIB 

cathode. The presence of the CNT network around SISF particles significantly improved the 

electrochemical performance as compared to pristine SISF. The microscopic and spectroscopic 

analysis revealed intimate contact between the SISF and the CNTs. The SISF-CNT cathode 

exhibited a discharge specific capacity of ~110 mAh g-1 with superior operating potential of ~3.6 

V and promising cycling stability, with > 91% capacity retention after 200 cycles. Nevertheless, 

an appropriate active component for the counter electrode also needs detailed investigation in 

order to gain a deeper understanding of electrochemical performance of a full working cell. 

Furthermore, the high operating potential of  ~3.6 V makes this system more attractive from a 

full cell standpoint.  
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Figures Captions 

Fig.1. a) XRD patterns of SISF annealed at different temperature, b) XRD patterns of SISF and 

SISF-CNTs, c) FTIR spectra of SISF and SISF-CNTs, d) Raman spectra of SISF, CNT, and 

SISF-CNTs, e) XPS spectra of SISF and SISF-CNTs, and f) deconvoluted C 1s spectrum of 

SISF-CNTs.  

Fig. 2. Raman spectra showing the peak shifts of a) SISF-CNT and CNT, and b) SISF-CNT and 

SISF systems.  

Fig.3. SEM images of a) SISF, b, c) SISF-CNT at different magnifications, d, e) TEM (inset: 

SAED pattern) and HRTEM (inset: FFT pattern) images of CNTs, f-h) TEM (inset: SAED 

pattern) and HRTEM images of SISF-CNTs.  

Fig. 4. HRTEM images of a) CNTs and b) SISF system (insets: FFT patterns); FFT patterns of c) 

CNTs in region 1, d) CNT lined SISF in region 2, and e) CNT lined SISF in region 3 of Fig. 3h.  

Fig. 5. a) charge-discharge curves, and b) CV curves of SISF; c) charge-discharge curves and d) 

CV curves of SISF-CNTs for the first 5 cycles.  

Fig. 6. a, b) EIS spectra (inset of Fig. 4b: equivalent circuit); c) rate performance and d) 

coulombic efficiency curves of SISF and SISF-CNTs; and e) cycling stability and coulombic 

efficiency curves of the SISF-CNT system at 1 C.  
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Supporting Methods  

Synthesis of NaFeSO4F (SISF) and CNT lined SISF (SISF-CNT):  

In a typical experiment, NaF and FeSO4 in a stoichiometric ratio of 1:1 were mixed using a ball 

mill for 30 min. The resultant powder was kept for annealing at different temperatures, ranging 

from 150-450 ⁰C for 12 h to obtain the SISF. To improve the conductivity of the sample, 

different amounts of CNTs were added as the carbon source prior to the ball milling and 

annealing. The optimized SISF sample covered in CNTs was designated as SISF-CNT, in which 

the weight percent of the carbon was found to be ~2.3 wt%. The optimization was conducted 

based on the charging-discharging performance of the electrodes at 0.1 C, and the carbon wt% 

was detected using the Carbon Hydrogen Nitrogen Sulphur analysis (CHNS) method (Figure 

S3). 



2 
 

 

Morphology and phase analyses of SISF and SISF-CNT:  

The morphology of the SISF and SISF-CNT samples was observed using field emission 

scanning electron microscopy (SEM, SU3500 HITACHI) and high-resolution transmission 

electron microscopy (HRTEM) with energy dispersive spectroscopy (EDS) and selected area 

electron diffraction (SAED) (HR-TEM, ARM-200F, JEOL). Powder X-ray diffraction (XRD, 

XRD, D/max-rB, Rigaku, Japan, Cu Kα radiation), X-ray photoelectron spectroscopy (Kratos 

AXIS Ultra DVD, Kratos Analytical Lrd), Raman spectroscopy (Bio-Rad FTS6000, 532 nm blue 

laser beam), and Fourier transform infrared spectroscopy (FTIR; Bruker R200-L 

spectrophotometer) were used to determine the phases of the SISF and SISF-CNT samples. 

Rietveld refinement analysis was done with PDXL software. The carbon contents in the different 

SISF-CNT samples were examined using the CHNS (Carbon Sulphur Degerminator, CS-902C, 

Wanlianda Xinke) analysis. The specific surface area was obtained by using Brunauer-Emmett-

Teller (BET, QDS-30) analysis.  

 

Electrochemical characterization of SISF and SISF-CNT: 

 In the half-cell preparation, the cathode was prepared with slurry consisting of 70 wt% active 

material, 20 wt% carbon black, and 10 wt% polyvinylidene fluoride (PVDF) binder dissolved in 

N-methyl pyrrolidone (NMP), which was then coated on Al foil and dried at 120 ⁰C for 12 h. 

The coin cells (CR 2032) were assembled with pure Na foil as the counter and reference 

electrode. Glass fiber (GF/D, Whatman) and 1 M NaClO4/propylene carbonate (PC) and 

ethylene carbonate (EC) (1/1, v/v) with 2% fluoroethylene carbonate (FEC) were used as 

separator and electrolyte, respectively. The cell assembly process was carried out in an Ar-filled 
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glove box, in which H2O and O2 were maintained at < 0.1 ppm. The assembled cells were 

galvanostatically analyzed using a multi-channel battery tester (Neware BTS-610) in the 

potential range of 1.5-4.3 V (vs. Na/Na+) to obtain the capacity, rate performance, and cycling 

stability. Cyclic voltammetry (CV) studies at 0.1 mVs-1 scan rate were obtained using a  LK9805 

workstation, China. The electrochemical impedance spectroscopy (EIS) measurements in the 

frequency range from 1 MHz to 1 mHz were performed using a Zahner Z1.29 electrochemical 

workstation, with an applied amplitude of 5 mV. 
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Supporting Information Tables  

Table S1: Electrochemical performance comparison of present system with different reported 
iron sulfate based polyanionic systems.  

Electrode  
Material 

Processing  
Technique 

Carbon  
Form 

C-
rate 

Capacity  
(mAh g-1) 

No. of  
Cycles 

Capacity  
Retention 
(%) 

Voltage  
(V) 

Reference  
No.  

Na2Fe(SO4)2·2H2O Dissolution/ 
precipitation 

Acetylene 
black 

0.05 70 20 ~80* 3.25 S1 

Na2Fe(SO4)2·2H2O Low-
temperature 
synthetic 
approach 

Graphene 0.05 72 20 ~94* 3.234 S2 

Na2- xFe2(SO4)3 Ball mill/ 
solid state 
technique 

Ketjen 
Black 

0.05 102 5 ~98* 3.8 S3 

Na2+xFe2-x(SO4)3 Ball 
mill/solid 
state 
technique 

    - 0.05 100 - 70 3.05 S4 

Fe2(SO4)3 Ball mill 
technique 

Super P - 65 400 80 3.05 S5 

NaFe(SO4)2 Solution 
route 

Carbon 
black 

0.05 ~85* 80 ~91* 3 S6 

Na2.5(Fe1−yMny)1.75(SO4
)3 

Intermediate 
ball mill/ 
annealing 

Acetylene 
black 

0.05 ~90* - - 3.8 S7 

NaFeSO4F Ball 
mill/solid 
state 
technique 

Super P 
/CNT 

0.1 110 200 >91 3.6 Present 
study 

*The values have been obtained from the graph.  

Table S2: Crystallographic data of NaFeSO4F after the refinement of the crystal structure against 
the X-ray powder diffraction data at room temperature using the PDXL software. 

Space group  C2/c 
a (Å) 6.681(3) 
b (Å) 8.714(4) 
c (Å) 7.193(3) 
α (deg.) 90.000 
β (deg.) 113.54(2) 
γ (deg.) 90.000 
V (Å3) 383.9(3) 
Rwp (%) 5.18 
Rp (%) 4.11 
Re (%) 4.29 
S 1.2071 
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Х2 1.4570 
Maximum Shift/e.s.d 0.084 
 

 

Table S3: Solution (Rs) and charge transfer (Rct) resistances, and diffusion coefficient from the 
EIS curves.  

 Rs 
(Ω) 

Rct 
(Ω) 

Diffusion Coefficient: 
D (cm2/s) 

SISF 8.02 1272 2.65×10-17 
SISF-CNT 4.13 224 2.55×10-16 
 

Table S4: The theoretical and practical parameters of the SISF systems. 

SISF Capacity 
(mAh g-1) 

Energy Density 
(Wh Kg-1) 

Voltage 
(V) 

Voltage 
polarization 

(mV) 
Theoretical ~138 >520 >3.8 ~0.03 
Practically 
Achieved 

110 ~396 ~3.6 ~0.45 

 

 

Supporting Information Figures 

 

 

Fig. S1. Energy diagram showing the band positions of different polyanionic systems.  
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Fig. S2. a) Charge discharge curves of different carbon coated SISF samples (O: Oleic acid, G: 
Glucose, C: Citric acid derived carbon), and b) Specific capacity for SISF samples with different 

carbon coatings.  

 

Fig. S3. Capacity vs. Carbon content plot.  
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Fig. S4. a) Refined pattern using PDXL software, and b) corresponding crystal structure.  

 

 

 

Fig. S5. a) XRD pattern, b) FTIR spectrum of CNT and c) BET isotherms of SISF, SISF-CNT 
(inset CNTs).  
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Fig. S6 SEM image of CNTs.  

 

Fig.S7. Impedance vs frequency curve.  
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Fig.S7. Cycling stability curve of pristine SISF sample.  
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