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ABSTRACT 
 
Fluorodeoxyglucose Positron Emission Tomography – 
Computed Tomography (FDG PET-CT) is the preferred 
imaging modality for staging the lymphomas. Sites of 
disease usually appear as foci of increased FDG uptake. 
Thresholding is the most common method used to identify 
these regions. The thresholding method, however, is not 
able to separate sites of FDG excretion and physiological 
FDG uptake (sFEPU) from sites of disease. sFEPU can 
make image interpretation problematic and so the ability to 
identify / label sFEPU will improve image interpretation and 
the assessment of the total disease burden and will be 
beneficial for any computer aided diagnosis software. 
Existing classification methods, however, are sub-optimal as 
there is a tendency for over-fitting and increased 
computational burden because they are unable to identify 
optimal features that can be used for classification. In this 
study, we propose a new method to delineate sFEPU from 
thresholded PET images. We propose a feature selection 
method, which differs from existing approaches, in that it 
focuses on selecting optimal features from individual 
structures, rather than from the entire image. Our 
classification results on 9222 coronal slices derived from 40 
clinical lymphoma patient studies produced higher 
classification accuracy when compared to existing feature 
selection based methods. 
 

Index Terms— Feature Selection, Classification, PET-
CT. 
 

1. INTRODUCTION 
 

Positron emission tomography-computed tomography, using 
18F-Fluorodeoxyglucose (FDG PET-CT), is arguably the 
best and most accurate imaging modality to stage, assess 
treatment response and also to detect disease relapse in the 
lymphomas. Sites of disease are indicated by varying levels 
of FDG uptake in PET images in lymph nodes, which may 
or may not be enlarged on the anatomical data provided by 

the co-registered CT images, the spleen, soft tissues and the 
bone marrow [1].  

The standardized uptake value (SUV), which is a semi-
quantitative measure of FDG uptake, is widely used in the 
evaluation of malignant conditions [2]. Thresholding is the 
most common method that is used to identify sites of 
abnormal FDG uptake in lymphoma patients [2,3] and a 
SUV>2.5 and a value that is of 50% of the SUVmax are 
commonly applied. FDG uptake that is not due to disease 
and is related to normal FDG excretion from the kidneys 
and pooling in the bladder and physiological uptake in the 
brown fat, the brain, the heart and active muscles is 
routinely seen in clinical FDG PET-CT scans. We refer to 
such regions as sites of FDG excretion and physiologic 
uptake (sFEPU). sFEPU can make image interpretation 
problematic (see Fig. 1), obscure disease in adjacent 
structures and limit the ability to measure the entire disease 
burden. Further, it is important to accurately identify sFEPU 
for computer aided diagnosis.  

The correct identification and labeling of sFEPU will 
improve the evaluation of malignant disease generally, 
image interpretation and visualization. In our previous work, 
sFEPU were separated and labelled by using PET or CT 
features [4] or contextual features via region grouping [5]. 
Texture features, as well as descriptive features or spatially-
focused features have been widely used for their ability to 
characterize different tumors and structures in PET data [4-
6]. However, many of these features may be irrelevant or 
redundant which may degrade classification performance 
with over-fitting and increased computational burden [6,7].  

In recent work, feature selection has been reported as a 
means to address this issue of selecting optimal features. By 
introducing manual annotations, Lartizien et al [6] proposed 
a computer aided staging framework to separate malignant 
regions in lymphoma with PET-CT images. The optimal 
textual based image features were extracted by a filter based 
feature selection method, and followed by support vector 
machine (SVM) in evaluation. However, the required 
manual delineation of regions as input, which is operator-
dependent and time-consuming, may limit its application in 
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the clinical environment and is not suitable for automated 
computer aided diagnosis.  

Thus, in this study, we propose a new automatic 
approach to label sFEPU based on selecting an optimal 
subset of image features from individual structures. Initially, 
PET images were used to extract 51 descriptive and texture 
features for their proven ability to discriminate tumors [8]. 
Then the structure-based feature selection method embedded 
with a maximum relevance – minimum redundancy 
(MRMR) algorithm was used to select an optimal subset of 
features. These features were then used in classification and 
labelling. When compared to previous work, our approach 
differs as follows: (1) our method is fully automated and it 
does not require any manual delineation; and (2) we 
introduce the novel concept of selecting optimal features 
based on structures that enable greater discrimination 
features and better classification performance. 
 

2. METHODS 
 
2.1. Materials and Ground Truth Construction 
Our dataset consisted of 47 whole-body PET-CT studies 
from 11 lymphoma patients acquired from the Department 
of PET and Nuclear Medicine at Royal Prince Alfred 
Hospital (Camperdown, NSW, Australia). Seven scans with 
extensive lymphoma were excluded since all the 
thresholding regions from different sFEPU groups were 
connected to each other. Hence, a total of 40 PET-CT 
studies were used in this work (1 patient with 6 scans, 6 
patients with 4 scans, 2 patients with 3 scans, 2 patients with 
2 scans). All studies were acquired on a Biograph TruePoint 
64-slice PET-CT scanner (Siemens Medical Solutions, 
Hoffman Estates, IL, USA).  
      The bed and linen were automatically removed from the 
co-registered CT images by an adaptive thresholding and 
image subtraction method with a given bed template [9]. 
Training and ground truth data were constructed according 
to the PET Response Criteria in Solid Tumors (PERCIST) 
threholding method [3]. PERCIST is a robust method for 
deriving SUV threshold [2,10,11] and we have adopted the 
automated PERCIST calculation in our previous work [12].  

To exclude normal uptake in the bone, we segmented 
the bony skeleton from CT (threshold of >150 Hounsfield 
Units [5]) and then removed these structures from the 
PERCIST thresholded PET images via image subtraction. A 
morphological filter was then applied on the resulting binary 
mask to remove noise (exemplified in Fig. 1b). The 
remaining sites were considered to be sFEPU and we 
manually labelled them as belonging to the brain (BR), 
bladder (BL), heart (HE), left kidney (LK), right kidney 
(RK) or other (OT) structures (please see Fig. 1c). The 
“other” class contained potential abnormalities (based on 
patients’ clinical report), regions of physiological uptake, 
brown fat and lymph node inflammation. A total of 467 
thresholded regions were manually labeled as the ground 

truth. To provide more data for evaluation we separated 
each region into slices (in the coronal plane).  

Regions smaller than 4×4 pixels were not considered in 
this work since features measurement might not be 
meaningful in small regions [8]. A total of 9222 slices were 
used in this study, including 3191 BR, 1205 BL, 1224 HE, 
1012 LK, 1285 RK and 1305 OT region slices. 

 

  
Figure 1. An example of sFEPU. (a) coronal PET image; (b) thresholding 
result after removing bony skeleton uptake seen in brain, kidneys, bladder 
and also in the disease in lymph nodes in the left axilla and left supra-
clavicular fossa; and (c) manually labeled ground truth, where brown, grey, 
green, blue and purple represent BR, BL, LK, RK and OT sFEPU. 
 
2.2. PET Features Extraction 
All the PET images were processed with SUV according to 
the injected dose of FDG and patient body weight. The 
descriptive and texture features were then extracted from 
PET SUV images according to the work reported by Orlhac 
et al [8]. In this work, we extracted these features from PET 
slices mentioned in section 2.1. Fifty one features were 
calculated including spatial and statistical descriptive (SSD) 
features, gray-level co-occurrence matrix (GLCM), gray-
level run length matrix (GLRLM), neighborhood gray-level 
different matrix (NGLDM) and gray-level zone length 
matrix (GLZLM) features. There were 6 GLCM, 11 
GLRLM, 5 NGLDM and 11 GLZLM features. The SSD 
features include average locations in transverse, coronal, 
saggital planes, SUVmax, SUVmean, SUV standard deviation 
(SUVstd), SUVskewness, SUVkurtosis, SUVmedian, SUVmin, 
SUVsum, maximum lengths in two directions, perimeter, 
circularity, area, area ratio to bounding box and roundness.  
 
2.3. Maximum Relevance – Minimum Redundancy 
(MRMR) Features Ranking 
The filter based feature selection method is robust on PET 
images [6] and the maximum relevance – minimum 
redundancy (MRMR) algorithm is an established filter 
based feature selection method developed by Peng et al [13]. 
The aim of the MRMR algorithm is to select the optimal 
subset that has high relevance to the labels and low 
redundancy to the selected features based on the use of 
mutual information. In this work, we used this concept to 
measure the importance of the features. 



Given two random variables 푥  and 푦 , their mutual 
information is defined in terms of their probabilistic density 
functions 푝(푥) , 푝(푦)  and 푝(푥, 푦) , which was defined as 
follows:  

퐼(푥, 푦) = ∬푝(푥, 푦)log ( , )
( ) ( )

푑푥푑푦              (1) 
Suppose we have set 퐒  containing all the selected 

features and set 퐑 containing remaining features. 퐅  is the 
whole feature sets and {퐒 ∪ 퐑} = 퐅 . Then the relevance 
function 퐷 can be defined as: 

퐷 = 퐼(푓, 푙)                                    (2) 
where 푓 is a feature we are testing (푓 ∈ 퐑) and 푙 is the class 
label. Further, the redundancy function 퐶 can be calculated 
between the testing feature 푓 and all the selected features:  

퐶 = |퐒|
∑ 퐼(푓, 푓 )∈퐒                            (3) 

where |퐒| is the number of features in a selected features set. 
After combining equation (2) and (3), feature 푓  (푓 ∈ 	퐑) 
that maximizes the relevancy while minimizing redundancy 
was calculated as: 

max ∈	퐑 퐼(푓 , 푙) − |퐒|
∑ 퐼(푓 , 푓 )∈퐒 	 .             (4) 

MRMR starts from an empty set and iteratively ranks all 
N features. 

 
2.4. Structure Based Feature Selection and Classification 
Fig. 2 presents our structure-based feature selection 
workflow to classify sFEPU. Initially, the training dataset 
consisting of all sFEPU labels were copied and changed into 
multiple binary training datasets which only keeping one 
sFEPU label and the rest of labels. These training datasets 
were then used to extract optimal features based on the 
MRMR algorithm. Before these features were placed into 
the binary SVM, we trained these features with a radial 
basis function (RBF) kernel to non-linearly map the data 
into a higher dimension space [14]. This helps to make the 
training data more identifiable in a computationally efficient 
way, where a linear kernel usually has poor performance in 
a non-linear classification task while a polynomial kernel is 
computationally expensive [4]. The RBF kernel parameters 
were optimized with a default grid search analysis method, 
which is available in the LIBSVM [14]. The testing datasets 
use the same extracted feature indices and parameters as the 
training datasets for classification. However, to label the 
new region only based on the maximum probability from 
each of binary SVM output, this may lose prediction 
accuracy, since the confident scale and classification 
difficulty could be different for each binary SVM group. To 
maximize the difference between each binary SVM group, 
we summed each binary SVM outputs with a multi-class 
SVM output, described at the bottom of Fig. 2. The final 
labelling of region 푟 is based on the maximum probability 
score calculated as: 

푎푟푔max ∈퐋{퐏 (푟) + 훒 (푟)}                     (5) 
where 퐏 and 훒 are the probability matrixes, calculated from 
multi-class SVM and binary SVM respectively ( 퐋 =
{퐵푅, 퐵퐿, 퐻퐸, 퐿퐾,푅퐾,푂푇}). 

 
Figure 2: The structure-based feature selection and classification process: 
initially, multi-class training dataset was transformed into multiple binary 
datasets to only keep one class versus the rest of classes. Then, features 
were extracted from each binary datasets and trained from a RBF kernel. 
Finally, the output of the binary SVM was summed with the multi-class 
SVM output to maximize the probability score and to label each of regions.  
 

3. RESULTS AND DISCUSSION 
 

3.1 Experiments Setup 
We considered a region to be classified correctly if it 

was labelled as the same as the ground truth. We randomly 
partitioned the data into two sets and we ensured that there 
were no patient studies that appeared in both datasets. The 
first set was used to construct the training set and the second 
set was used for evaluation. Then we reversed the roles of 
the two sets. Here, we split the data into two sets to speed up 
the optimization process. This also ensured that the selected 
features were not over-fitted compared to splitting the data 
into many datasets. We compared our proposed Structure-
based feature selection (StrFS) with the classification results 
from using multi-class SVM without feature selection 
(denoted as NoFS), with conventional feature selection 
method MRMR and using multiple binary SVMs with 
MRMR (BSVMs+MRMR). Further, we compared our 
method with common feature selection methods including 
the conditional informative feature extraction (CIFE) [15] 
and F-score based feature selection methods (F-select) [16]. 
MRMR and CIFE are commonly used as filter based feature 
selection methods while F-select is a wrapper-based feature 
selection approach. The same SVM classifier were used for 
all methods and the optimized RBF parameters were 
retrieved for each method as mentioned in Section 2.4. Top 
	푁 features were defined beforehand for MRMR, CIFE and 
StrFS; we ran 푁 ranging from 1 to full features with the best 
performing results selected for each of the methods. For 
BSVMs+MRMR and StrFS, we used the same 푁  as 
MRMR. 

 
3.2 Results and Discussion 

The summary of the classification results for all the 
feature selection methods are shown in Table 1. Due to the 
space limitations, the three representative methods - NoFS, 
best conventional feature selection method (MRMR) and the 
proposed method - are detailed in the confusion matrix in 
Table 2. When compared to the other methods, the StrFS 
produced the best results for all measurements. We 
attributed this improvement to the use of the MRMR 
algorithm and the structured based feature selection 
approach, where the MRMR algorithm effectively identified 



the most relevant features and the structured based feature 
selection approach was able to emphasize the most relevant 
features with a higher probability score. Further, both StrFS 
and MRMR were able to produce their respective best 
performance when N=10, whereas CIFE needed N=25, 
resulting in higher efficiency in computation.  

 
Table 1: Overall accuracy (Accu), average precision (Prec), sensitivity 
(Sens) and specificity (Spec) of proposed method and other methods 
 

Method (%) Accu Prec Sens Spec 
NoFS 86.99 86.83 84.00 97.33 

BSVMs+MRMR 85.72 84.50 82.17 97.17 
MRMR 93.60 92.50 92.50 98.50 
CIFE 89.76 88.50 87.50 97.83 

F-select 81.34 83.17 81.33 96.33 
StrFS 95.21 94.33 94.17 98.83 

 
Table 2: Classification results with our StrFS method compared to NoFS 
and MRMR. (Note Ground Truth is denoted as G.T.) 
 

Method 
(Overall) G.T. Prediction (%) 

OT BR BL HE LK RK 

NoFS 
(86.99%) 

OT 64.90 13.64 9.04 4.90 1.84 5.67 
BR 0.38 99.62 - - - - 
BL 7.47 - 92.53 - - - 
HE 27.94 - - 71.57 0.49 - 
LK 14.13 - 0.89 1.98 83.00 - 
RK 9.03 - 0.31 - - 90.66 

MRMR 
(93.60%) 

OT 82.61 3.07 4.52 3.98 1.00 4.83 
BR 1.32 98.68 - - - - 
BL 7.14 - 92.86 - - - 
HE 5.72 - - 91.50 2.78 - 
LK 4.25 - - 1.38 94.37 - 
RK 5.76 - - - - 94.24 

StrFS 
(95.21%) 

OT 82.15 3.37 4.75 4.06 1.07 4.60 
BR 0.16 99.84 - - - - 
BL 5.56 - 94.44 - - - 
HE 1.55 - - 95.67 2.78 - 
LK 3.16 - - 1.09 95.75 - 
RK 3.19 - - - - 96.81 

 
In Table 2, the high classification accuracy for all methods 
when classifying the brain was expected as the brain has 
unique feature characteristics compared with other 
structures. The relatively low classification accuracy for all 
methods when classifying the “other” class was likely due to 
the unstable features, the inclusion of many different 
structures and potential abnormalities in various locations 
e.g., ureters and brown fat. When compared to the NoFS, 
the MRMR approach greatly improved the classification 
accuracy, which underlines the importance of feature 
selection processes in classification. When compared to the 
MRMR approach, the StrFS further improved the 
classification performance, especially in classifying the 
bladder, heart, left and right kidney. This is likely to be 
although the MRMR approach could identify most relevant 
features, these features were selected on a global level 
which could be sub-optimal for individual structures. The 
structured based feature selection approach, meanwhile, 

could select optimal features more robustly, on local and 
global levels thus demonstrating the discriminative ability to 
partition the structures into individual sFEPU. 

 
4. CONCLUSION AND FUTURE WORK 

 
In this work, we propose a new classification method to 
classify and label the sFEPU automatically, based on 
deriving optimal structure-based features. Our experiments 
with 9222 coronal slices derived from 40 clinical PET-CT 
lymphoma studies resulted in higher classification accuracy 
when compared to other conventional feature selection 
approaches. For future studies, we will evaluate our method 
on greater number of clinical studies and disease types. 
 

REFERENCES 
 
[1] Freudenberg, L., et al. "FDG-PET/CT in restaging of patients 

with lymphoma. Eur. J. Nucl. Med. Mol. I., 31(3), 2004. 
[2] Hirata, K., et al., "A Semi-Automated Technique Determining 

the Liver Standardized Uptake Value Reference for Tumor 
Delineation in FDG PET-CT. " PloS one, 2014. 

[3] Wahl, RL., et al. "From RECIST to PERCIST: evolving 
considerations for PET response criteria in solid tumors." J. 
Nucl. Med., 122S-50S, 2009. 

[4] Bi, L., et al. "Multi-stage Thresholded Region Classification 
for Whole-Body PET-CT Lymphoma Studies," MICCAI, 
pp569-76, 2014. 

[5] Bi, L., et al. "Classification of Thresholded Regions based on 
Selective Use of PET, CT and PET-CT Image Features," 
EMBC, pp1913-16, 2014. 

[6] Lartizien, C., et al. "Computer aided staging of lymphoma 
patients with FDG PET/CT imaging based on textural 
information," ISBI, pp.118,121, 2012. 

[7] Brown, G., et al. "Conditional likelihood maximisation: a 
unifying framework for information theoretic feature 
selection." J. Mach. Learn. Res., 13(1): 27-66, 2012. 

[8] Orlhac, F., et al. "Tumor Texture Analysis in 18F-FDG PET: 
Relationships Between Texture Parameters, Histogram 
Indices, Standardized Uptake Values, Metabolic Volumes, 
and Total Lesion Glycolysis." J. Nucl. Med., 2014. 

[9] Kim, J., et al., "A fully automatic bed/linen segmentation for 
fused PET/CT MIP rendering," J. Nucl. Med., 387P, 2008. 

[10] Bi, L., et al. "Cellular Automata and Anisotropic Diffusion 
Filter based Interactive Tumor Segmentation for Positron 
Emission Tomography," EMBC, 2013. 

[11] Niyazi, M., et al., "Automated biological target volume 
delineation for radiotherapy treatment planning using FDG-
PET/CT." Radiat. Oncol., 180, 2013. 

[12] Bi, L., et al. "Automated and robust PERCIST-based 
thresholding framework for whole body PET-CT studies," 
EMBC, 2012. 

[13] Peng, H., et al. "Feature selection based on mutual 
information criteria of max-dependency, max-relevance, and 
min-redundancy." IEEE. T. Pattern. Anal., 2005. 

[14] Chang, C C., et al. "LIBSVM : a library for support vector 
machines," ACM TIST, 2(3), 27, 2011. 

[15] Lin, D., et al. "Conditional infomax learning: an integrated 
framework for feature extraction and fusion." ECCV, 2006. 

[16] Chen, Y W., et al. "Combining SVMs with various feature 
selection strategies." Feature extraction, pp315-24, 2006. 


