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Abstract—Combined positron emission tomography and com-
puted tomography (PET-CT) produces functional data (from
PET) in relation to anatomical context (from CT) and it has
made a major contribution to improved cancer diagnosis, tumour
localisation, and staging. The ability to retrieve PET-CT images
from large archives has potential applications in diagnosis,
education, and research. PET-CT image retrieval requires the
consideration of modality-specific 3D image features and spatial
contextual relationships between features in both modalities.
Graph-based retrieval methods have recently been applied to rep-
resent contextual relationships during PET-CT image retrieval.
However, accurate methods are computationally complex, often
requiring offline processing, and are unable to retrieve images at
interactive rates. In this paper, we propose a method for PET-
CT image retrieval using a vector space embedding of graph
descriptors. Our method defines the vector space in terms of the
distance between a graph representing a PET-CT image and a set
of fixed-sized prototype graphs; each vector component measures
the dissimilarity of the graph and a prototype. Our evaluation
shows that our method is significantly faster (≈800× speedup,
p < 0.05) than retrieval using the graph-edit distance while
maintaining comparable precision (5% difference, p > 0.05).

I. INTRODUCTION

Combined positron emission tomography and computed
tomography (PET-CT) [1] has introduced new clinical ca-
pabilities by enabling access to functional data (from PET)
in terms of anatomical context (from CT). PET-CT images,
for oncology, offer better diagnosis, tumour localisation, and
staging when compared to PET or CT alone [2]. PET-CT
images, for example, can visualise the anatomical location and
the aggressiveness of tumours; these image attributes play an
important diagnostic and prognostic role in cancer staging [3].
PET-CT image datasets are large and the ability to search
these imaging archives, as they expand with increasing use
of PET-CT, has potential for clinical applications, education,
and research [4].

Two key factors must be considered in the retrieval of
PET-CT images: unique image features from each modality
and modelling the contextual spatial relationships between
elements in different modalities. Graphs are a standard way
of representing structural or relational information [5]. In our
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prior work [6], we proposed a graph-based retrieval method
for PET-CT images. The vertices of our graph descriptor
represented regions of interest (ROIs) from both modalities
while the edges represented the spatial relationships between
the ROIs. Each vertex had a feature set that was tuned to the
modality of the ROI that it represented. We calculated image
similarity using the graph edit distance, which is the conven-
tional technique for comparing graphs (see Section II-A). Our
method achieved a higher precision when compared to non-
graph retrieval approaches, e.g., bag-of-words using the Scale
Invariant Feature Transform (SIFT) [7], [8], which were unable
to account for the spatial contextual information in the PET-
CT images. A limitation of our approach was that our graph
descriptors could not be used with state-of-the-art algorithmic
tools for pattern recognition that were designed for feature
vectors, e.g., support vector machines (SVMs). In addition,
the computational complexity of the graph edit distance scaled
exponentially with the size of the graphs [9] thereby limiting
its use to small graphs or applications where time was not a
critical factor.

The graph embedding process reported by Riesen and
Bunke [10] transformed graph descriptors into feature vectors
and enabled the use of vector space techniques on graph-based
data. In a preliminary study [11], we verified that embedded
graphs had a similar accuracy to standard graph descriptors
for PET-CT image retrieval. However, the computation of the
vector space embedding was based upon the graph edit dis-
tance (see Section II-B) applied to a set of graphs (potentially
of any size). The embedding procedure had to be performed
offline due to the inefficiency of the graph edit distance, thus
severely limiting the ability for interactive retrieval.

In this paper, we propose an efficient PET-CT image re-
trieval technique that uses graphs embedded into a vector
space. The novelty of our method is in our definition of the
vector space in terms of fixed-size subgraphs that we term
‘fragments’. Our hypothesis is that using fragments as the
basis for the vector space will enable real-time embedding
of the query, lead to faster retrieval times but maintain a
comparable precision when compared to existing methods. We
evaluate the precision and efficiency of our method through the
retrieval of PET-CT images.

II. THEORETICAL BACKGROUND

A. Graph Edit Distance

The graph edit distance defines the dissimilarity of two
graphs by the cost to transform one into the other. This
transformation is achieved through a series of edit operations
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(usually the insertion, deletion, and substitution of vertices
or edges). There are many different sequences of operations
that can be applied to transform one graph into another. Thus
computing the graph edit distance is an optimisation problem
that attempts to find the sequence with the minimum cost.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with
vertex sets V1 and V2 and edge sets E1 and E2. Let Ω be
the set of all sequences of edit operations that transform G1

into G2. The graph edit distance between G1 and G2 can be
defined as:

Dg (G1, G2) = min
(o1,o2,...,on)∈Ω

n∑
i

c (oi) (1)

where c (oi) is a function for calculating the cost for the edit
operation oi = 〈X,Y 〉. Here X is a vertex from V1 (or an
edge from E1) and Y is a vertex from V2 (or an edge from
E2). It is possible for either X or Y to be ∅ in the case of
insertion or deletion. It is important to note that the size of Ω
is dependent upon the number of vertices and edges in G1 and
G2. Thus the brute force computation of Ω requires extensive
computation time as the number of vertices increase.

B. Vector Space Embedding of Graphs

The aim of vector space embedding of graphs is to represent
complex graph structures in the form of a numerical vector [9].
The transformation from a graph representation to a vector
representation enables the indirect application of vector space
algorithms to the domain of graphs. A common approach
for an embedding that preserves structural information is to
calculate the graph edit distance between a graph and a set
of prototype graphs that are chosen from the dataset; each
element of the vector is the distance from a prototype [10].
Let P = {P1, P2, . . . , Pk} be the set of prototype graphs. The
vector embedding of a graph G given P is defined as:

[Dg (G,P1) , Dg (G,P2) , . . . , Dg (G,Pk)] (2)

where Dg is the graph edit distance (Equation 1).
Under this formulation an embedded graph is described

in terms of the difference from multiple different prototypes.
An analogous way to envision this would be to consider the
prototype graphs as the axes of a k-dimensional space and an
embedded graph as a point in this space, i.e., the embedding
process converts G to a point in Rk.

III. METHODS

A. Dataset

We used 50 PET-CT studies of lung cancer patients that
were acquired on a Siemens Biograph mCT scanner with a
PET resolution of 200×200 pixels at 4.07mm2, a CT resolu-
tion of 512×512 pixels at 0.98mm2, and a slice thickness of
3mm. The PET and CT volumes were rescaled to the same
resolution prior to graph construction. Each study contained
between 1 to 7 tumours (inclusive). The diagnostic reports,
which were written by an experienced specialist clinician, were
included with the dataset. All data were de-identified.
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Fig. 1. ROIs in PET-CT images used to constructing a graph descriptor.

We extracted the left and right lungs using a well-established
CT segmentation algorithm [12]. Tumours were extracted from
the PET scan using connected thresholding based on the
radiotracer uptake; we used a threshold of 40% of the peak
standard uptake value (SUV) [13]. We included major anatom-
ical structures above the diaphragm by coarsely segmenting the
brain and mediastinal tissues using connected thresholding.

B. Graph Descriptor

Let G = (VP , VC , ES) be the graph descriptor for a PET-CT
image, where VP is the set of graph vertices representing PET
(tumour) ROIs, VC is the set of graph vertices representing
CT (anatomy) ROIs, and ES is the set of edges. Each edge
represented the spatial relationships between the two vertices
that were connected to it.

We restricted ES only to edges that emphasised spatial
anatomical variation or the location of tumours. Anatomical
variation was represented using edges between all pairs of
anatomical vertices (VC). The spatial location of a tumour was
modelled using edges between a tumour vertex and the vertex
of the spatially nearest organs. As an example, if vc ∈ VC

and vp ∈ VP then an edge between vc and vp occurred if and
only if vc represented the organ spatially nearest to the tumour
represented by vp.

Figure 1 shows PET-CT images and the corresponding
graph representation. We extracted 3D features from the ROI
and indexed these on the graph vertices. The volume, surface
area, and length of ROIs were applicable to both modalities
and were thus indexed on all vertices. The CT features
(indexed only on elements of VC) included Haralick texture
features [14] (entropy, contrast, correlation, energy, homogene-
ity) and voxel sets. Thirteen gray-level co-occurrence matrices
(one for each unique direction) were used to calculate the
Haralick features for 3D images. The PET features (indexed
only on elements of VP ) included the sphericity of the tu-
mour ROI and several measures of the tumour SUV: tumour
homogeneity, maximum SUV, mean SUV, and SUV variation.
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Fig. 2. Decomposing a graph into fragments with two vertices and one edge
(n = 2 and m = 1).

Relationships between ROIs were indexed as features of
the edges in ES . These features included: distance, relative
orientation, relative volume, and minimum distance.

C. PET-CT Graph Comparison

We compared graphs representing PET-CT images using the
graph edit distance (Equation 1) with the cost function for an
edit operation o = 〈X,Y 〉 given by:

c (o) =



∞ if mdt (X) 6= mdt (Y )[
N∑
i

(yi)
p

] 1
p

if Y = ∅[
N∑
i

(xi)
p

] 1
p

if X = ∅[
N∑
i

(xi − yi)
p

] 1
p

otherwise

(3)

where X and Y are both vertices or both edges, xi and yi are
the i-th features indexed on X and Y , p is the order of the
equation, and mdt (·) is a function that returns the modality of
a graph element. When X and Y are vertices from different
modalities a cost of ∞ is assigned to prevent substitutions
between tumour and organ vertices. A value of ∅ for X or Y
meant that the operation was an insertion or deletion of graph
elements. In our experiments, we used a value of p = 2 (to
make the final case the Euclidean distance).

D. Vector Space Embedding using Graph Fragments

We define a n-m-fragment of a graph G as a subgraph of
G with n vertices and m edges. We began our embedding
procedure by first decomposing every graph G into its frag-
ments. Enumerating all fragments for all possible values of n
and m is computationally complex. We therefore set n = 2
and m = 1. Under this formulation, the number of fragments
for any graph was linear to the number of edges in the graph
and in the worst case (where G was a complete graph) could
be generated in O(N2) time, where N was the number of
vertices in G. Figure 2 shows an example of a graph being
decomposed into fragments with n = 2 and m = 1.

We then applied Targetsphere Prototype Selection
(TPS) [10] to generate the prototypes from the combined
fragment sets of all the graphs. TPS chose the center-most
graph (determined from Equation 1 and calculated in a
pairwise manner over all fragments) as the first prototype
and then iteratively added as new prototypes the graphs
that had the maximal distance from all of the currently

selected prototypes. This allowed us to generate a prototype
set P = {P1, P2, . . . , Pk} such that P1, . . . , Pk were all
fragments of the same size. These fragments were evenly
distributed across the dataset and were maximally distinct
from one another (represented different ROI features and
contextual relationships).

E. Image Comparison using Vector Space Embeddings

Let Q and S be two graphs of PET-CT images. Without
loss of generality we can assume that Q is the query graph
and S is the graph of any image in the dataset. Since the
embedded vectors could be thought of as points in a multi-
dimensional space, we compared images by calculating the
distance between these points. Similar images lay closer
together in this space (lower distance value) while dissimilar
images were separated (high distance value). We calculated
this distance using a modified Euclidean distance function:

d (Q,S) =
1√
k

√√√√ k∑
i=1

[Dg (Q,Pi)−Dg (S, Pi)]
2 (4)

where k is the number of prototypes in P . The scaling by
1/
√
k ensures that d (Q,S) is bounded by the graph edit

distance Dg (Q,S) (as explained by Bunke and Riesen [9]).

IV. EVALUATION

A. Experimental Procedure

We implemented our method using MATLAB 7.11. The
experiments were run on a PC with an Intel i5 processor at
2.67 GHz with 4 GB of RAM, and running Windows 7 64-
bit. We used a leave-one-out cross validation approach. We
calculated the precision (the proportion of retrieved images
that were relevant), the recall (the proportion of all relevant
images in the database that were actually retrieved), the mean
retrieval time, and the speedup (improvement in retrieval time)
of our method and compared these parameters to the vector
space embedding of (non-fragment) graphs [11] and to the
graph edit distance.

The ground truth for our experiments was derived from the
image diagnostic reports in the dataset (see Section III-A). The
tumour locations and nodal involvement that were included in
the reports were used as image labels.

We repeated our experiments for several different values
of k (the number of prototype fragments). We determined
empirically that k = 20 gave the best retrieval outcomes.

B. Results

Figure 3 shows the precision and recall of our method
compared to the baseline methods. Our method achieved
similar levels of precision to the baseline methods at all
levels of recall. Table I summarises the precision and Table II
summaries the speed of our approach compared to the baseline
methods. Both Tables show the significance of our results (p
value) calculated using the Student’s t-test.



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

recall %

p
re

c
is

io
n

 %

Average Precision vs. Recall

 

 

graph edit distance

non−fragment embedding

our method

Fig. 3. Precision and recall averaged over all queries.

TABLE I
PEAK AVERAGE PRECISION (PAP) AND MEAN AVERAGE PRECISION

(MAP)

Method PAP (%) MAP (%) p

graph edit distance 70.00 52.43 —
TPS embedding 68.00 51.50 0.8157

our method 61.00 47.41 0.2058

TABLE II
MEAN RETRIEVAL TIME (MRT) AND SPEEDUP

Method MRT (s) Speedup p

graph edit distance 22724.77 — —
TPS embedding 502.43 45 0.0440

our method 28.01 811 0.0397

C. Discussion

Our results show that our method achieved comparable
precision to the baseline methods but with a significantly
superior retrieval speed (p < 0.05). Our method was executed
in less than 30 seconds compared to the graph edit distance,
which had an average execution time of several hours. Our
method was also faster than TPS embeddings of non-fragment
graphs, which was executed in ≈9 minutes on average. This
speedup means that our method performs in near real-time
without a large reduction in accuracy.

The explanation for the vastly faster retrieval time relates
to using fragments as the prototypes. Fragment prototypes
of a fixed small size mean that computing Dg(Q,Pi) for
a query graph Q and any Pi ∈ P takes much less time
compared to using any arbitrary graph as the prototype. A
small fragment graph means that the size of Ω is reduced
during the computation of the graph edit distance (Equation 1).
In our method the only determinant of the size of Ω was the
number of vertices in Q. It can be shown that given our fixed
fragment size Dg(Q,Pi) can be computed in O

(
N2
)

time for
any Pi ∈ P , where N is the number of vertices in Q.

Our method maintained comparable precision to the base-
line methods (p > 0.05); the lower precision value is expected
since methods that approximate the graph edit distance intro-

duce a tradeoff between speed and accuracy. Our comparable
precision is due to TPS selecting uniformly distributed pro-
totypes. As such, each prototype represented a subgraph with
unique properties (vertex and edge features). This ensured that
each component of the vector was a unique descriptor for the
properties of the graph that it was embedding. Furthermore,
defining our vector space embedding in terms of the graph
edit distance from a set of prototypes ensured that the vector
descriptor considered the unique features of each modality
and the spatial contextual relationships between the ROIs (as
encoded by the structure of the graphs).

V. CONCLUSION AND FUTURE WORK

We have proposed a graph-based method for PET-CT image
retrieval that embeds graph descriptors into a vector space
defined by fixed-size subgraphs (fragments). Our experiments
showed significantly better retrieval speed (p < 0.05) with
comparable levels of precision. Fragments, when used as the
basis of the vector space, enabled a more efficient embedding
process and resulted in faster image retrieval. For future work
we will investigate ways of boosting the accuracy using vector
space techniques for feature selection and optimisation.
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