
  

  

 

Abstract 

Purpose Accurate lung tumor segmentation is a prerequisite 

for effective radiation therapy and surgical planning. 

However, tumor delineation is challenging when the tumor 

boundaries are indistinct on PET or CT. To address this 

problem we developed a segmentation method to improve 

the delineation of primary lung tumors from PET-CT 

images.  

Methods We formulated the segmentation problem as a label 

information propagation process in an iterative manner. Our 

model incorporates spatial-topological information from 

PET and local intensity changes from CT. The topological 

information of the regions was extracted based on the 

metabolic activity of different tissues. The spatial-

topological information moderates the amount of label 

information that a pixel receives: the label information 

attenuates as the spatial distance increases and when 

crossing different topological regions. Thus the spatial-

topological constraint assists accurate tumor delineation and 

separation. The label information propagation and transition 

model are solved under a random walk framework.  

Results Our method achieved an average DSC of 0.848 ± 

0.036 and HD (mm) of 8.652 ± 4.532 on 40 patients with 

lung cancer. The t-test showed a significant improvement (p-

value < 0.05) in segmentation accuracy when compared to 8 

other methods. Our method was better able to delineate 
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tumors that had heterogeneous FDG uptake and which 

abutted adjacent structures that had similar densities. 

Conclusions Our method, using a spatial-topological 

constraint, provided better lung tumor delineation, in 

particular, when the tumor involved or abutted the chest wall 

and the mediastinum. 
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Introduction 

Positron emission tomography (PET) allows definition of a 

variety of tumors according to their metabolic profiles and 

characteristics, and so has been widely used in diagnosis, 

radiation therapy planning and treatment of diverse types of 

cancers [1]. For instance, 18F-Fluorodeoxyglucose PET 

(FDG-PET) is commonly used in the evaluation of non-

small cell lung cancer (NSCLC), for staging and to assess 

treatment response, because NSCLC has increased FDG 

uptake relative to surrounding normal lung. NSCLC is the 

most common type of lung cancer [2]. Accurate 

segmentation and delineation of lung tumors required for 

radiation therapy and surgical planning. For radiation 

therapy the aim is to deliver, with high-precision, the 

appropriate dose to the most metabolically active region of 

the tumor volume [3] while minimizing the radiation dose to 

surrounding tissue.  

The manual delineation of tumor margins is operator 

dependent, time-consuming and relies on the expertise and 

experience of the operator. Whilst manual delineation of the 

tumor margin is the ‘gold standard’ a number of computer-

assisted tumor segmentation methods have been investigated 

to automate the task and improve the efficiency of the 

process. A fixed threshold of the standard uptake value 

(SUV) which reflects FDG uptake [4], is widely used for 

automated tumor delineation from PET images. A 40% or 

50% maximum SUV (SUVmax), or adaptive threshold based 

methods, are used to define the tumor margins [5]. However, 

there is no widely accepted SUV threshold for definition of 

the different tumor types [5]. Other PET segmentation 

methods, which have been used extensively include 

watershed and fuzzy c-means and they may fail to accurately 

delineate the tumor boundary because of the limited spatial 

resolution. Hatt and his team conducted systematic research 

on tumor delineation from PET and Fuzzy Locally Adaptive 

Bayesian (FLAB) [6, 7]. FLAB, however, requires a large 

number of seeds for reliable label estimation within a user 

pre-defined region of interest (ROI) (8).  Further, the 
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capability for complex shape delineation in more difficult 

cases has to be further improved [8]. Foster et al suggested a 

novel method, using intensity affinity metric within the 

affinity propagation framework, to quantify and delineate 

the distributed lung inflammation in small animals [9]. 

The combination of PET and CT data improves 

segmentation algorithms [10]. An advantage of considering 

both modalities is that the co-segmentation results are more 

reliable [10]. Segmentation methods in PET-CT include our 

previous method under a Bayesian framework [11], an 

approach utilizing Markov random field (MRF) [12] and 

more recent methods using fuzzy connectedness frameworks 

[13]. Graph theory including graph cut (GC) [14] and the 

random walks algorithm (RW) [15] have also been the focus 

of extensive research in this area [16, 17] [8]. Among the 

graph based methods, the RW algorithm [15] is more 

attractive because it can capture the local affinity and solve 

the weak boundary problems found with various organs and 

imaging modalities [15, 18, 19]. Bagci et al. [8] proposed a 

co-segmentation method on the basis of RW and used the 

intensity information from PET and CT. Our approach, 

however, incorporates the abstract and compact 

representation of metabolic uptake regions in a PET image 

and it is a new area of research.  

In this work, we extracted topological information of 

regions based on the metabolic activity of different tissues 

from PET. Then we incorporated the spatial and topological 

information in an iterative label information propagation 

process to adjust the probability map that was derived from 

the CT. Thus the spatial-topological constraint assists 

accurate tumor delineation and separation, in particular 

when the tumor is in close proximity to adjacent tissue with 

similar intensities.  

Methods 

Related work: Random Walk (RW) 

In the RW [15], an input image 1{ ,..., ,..., }i NI x x x=  is 

represented as an undirected graph G . In the graph 

(V,E)G = , a node  corresponds to an image pixel  

and an edge ije E V V    connecting two neighboring 

nodes 
iv  and jv  is assigned a weight (as defined in Eq.1) to 

indicate the affinity of the two nodes.  

 
2

exp( )ij i jw g g= − −   (1) 

where ig  is the pixel intensity value at node iv , and   is a 

weighting parameter. The greater the intensity differences, 

the lower the edge weight and the smaller ease with which 

the walker travels along the edge. The transition probability 

from node iv  to jv  is defined as  

 ij ij ikk
p w w=                                                             (2) 

Given predefined labels for the objects to be segmented, 

RW solves the segmentation by calculating the steady state 

probabilities that a random walker starting from a label and 

reaching the unlabeled nodes by iterating Eq.3 until 

convergence.  

 (t 1) (t)F PF+ =                                                          (3) 

where (t)F  is the status at time t  and [ ]ij N NP p =  is the 

transition matrix.  

Proposed method 

In RW, only the local neighboring intensity changes are 

considered during the transition process (by Eq.2). However, 

intensity information is not sufficient for an accurate 

segmentation, especially when the tumor boundary are 

indistinct or indiscernible on CT or when the tumor has 

heterogeneous FDG uptake on PET. Our hypothesis is that 

incorporating the spatial distance and topological relation of 

regions into the transition model will improve tumor 

delineation.  

We use all the information from the PET-CT for lung 

tumor delineation. CT provides the important anatomical 

information and relatively high resolution intensities hence 

CT captures the local intensity changes. PET images, 

meanwhile, reflect tissue and tumor and so we extract the 

metabolically active regions to derive topological relations 

for the regions.  

 

Iterative Label Information Propagation for Segmentation 

 

We formulated the segmentation problem as a label 

information propagation process in an iterative manner. 

Given pre-defined labels { | 1,..., }kL k K=  for K  objects to 

be segmented, the label information propagation from time  

to 1t +  is modeled as Eq.4  

 (t 1) (t) (1 ) (0)F PF F + = + −   (4) 

where the transition matrix P  is calculated by Eq. (3) 

and(2) with CT intensities; the initial status (0)F  is a 

N K  matrix with 
(0) 1ikF =

 if ix
 is initialized a label k  

and 0 otherwise; ( )F t  is the status matrix where 

1[ ,..., ,..., ]T

i NF F F F=  with 1 1[ ,..., ..., ]i i ik iK KF F F F =  

indicating the probability of a node 
ix  belonging to labels 

{ | 1,..., }kL k K= ;   is a new spatial-topological factor 

defined from PET to describe the relation between node ix  

and the labels. The detailed description and calculation of   

are discussed in the following section. Physically, the 

probabilities vector Fi can be seen as the amount of 

information that a node receives during the iteration, and   

adjusts the amount of information that the node receives in 

each step.   

By iterating Eq.4 until global stable state is achieved, the 

final segmentation is achieved by solving Eq.5  

 
1(I )F P Y−= −                                                          (5) 

where ( )diag  = . Based on the probability matrix F, 

iv V ix

t



  

each of the unlabeled nodes is assigned a label with the 

largest probability. 

 

Spatial-topological information  

 

For the K  objects to be segmented, we have  sets of 

labeled nodes
 1 k

K

L L
k

V V
=

=  . The spatial and topological factor 

  between an unlabeled node and a set of labeled nodes 
kLV  

is defined with joint spatial distance term  and topological 

term   as Eq.5:  

1( , ) ( , ) ( , )
ki k i L i kv L d v V v L −=    (6) 

Spatial distance term ( , )
ki Ld v V  is the normalized shortest 

Euclidean distance between 
iv  and a labeled nodes set 

kLV , 

as defined as Eq.7: 

 ( , ) min
k

j Lk

i L i j
v V

d v V v v


= −                                                (7) 

Topological term   denotes the topological inclusion or 

exclusion relation of regions extracted from contour tree 

[20] [21] on PET image. The topological relations are 

extracted  based on our previous work [22] that focused on 

the region of interest (ROI) to reduce the redundant 

information, by the following algorithm:  

Algorithm: topological relations extraction 

Input: ROI in PET image 

Output: topological regions { }xr  and topological 

relations of the regions  

Step1: topological region extraction 

          local extrema and saddle points detection; 

          a topological region (Fig. 1(d)) is defined as a set 

of iso-contours (Fig. 1 (b)) between a local extreme 

and a saddle point (Fig. 1(c)) 

Step2: relation extraction 

          exclusion: if two regions ,x yr r  split at a saddle 

point; 

          inclusion: the region with local extrema is 

included in the region with saddle point   

 

 

Fig. 1 The iso-contours and topology regions of a given PET 

image. (a) is a cropped PET image and local extreme; (b) is an 

illustration of the iso-contours; (c) is the enlarged region within 

the white box in (b) to see the iso-contours with iso-values. The 

orange iso-contours split from a saddle point. (d) the definition 

of topology regions.  
 

With the topological relations, we assign values to the 

nodes in each topological region to reflect the relation with a 

topological region with labels. For a node 
iv  in 

xr , the 

topological term ( , )i kv L  with respect to a region 
kLr  with 

label 
kL  is defined as:  

 

inclusion

( , ) ( , ),     exclusion

( , ),                

( , )

1,                           if =

k

k

k

x y y L

x L

i x k

x L

r r r r

r r

v r L

r r

 



 




 = 



        (8) 

where the value of   between two topology regions ,x yr r  is 

calculated as ( , ) min(g ,g ) max(g ,g )
x y x yx y r r r rr r =  where 

g
xr
 is the average SUV of region 

xr .  

The spatial and topological information represented by  

adjusts the amount of label information that a node receives 

during iterations as defined in Eq.4. If the two nodes belong 

to two topologically exclusive regions, the label information 

decreases when crossing these exclusive regions; thus it 

would assist accurate separation of the regions. In addition, 

the label information attenuates as spatial distance increases.  

The algorithm is summarized in Fig. 2.  
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Fig. 2 Our proposed method is outlined graphically indicating the stepwise progression of the segmentation. 

 

Patient studies 

We used 40 PET-CT studies from patients with NSCLC. 

The scans were carried out on a Biograph TrueV 64 slice 

PET-CT scanner (Siemens Medical Solutions, Hoffman 

Estates, IL, USA). PET data were reconstructed into 168 × 

168 matrices with pixel size of 4.07 mm × 4.07 mm. The CT 

data were reconstructed using a matrix of 512 × 512 pixels 

with pixel size of 0.98 mm × 0.98 mm. The slice thickness in 

PET-CT was 2 mm (20 studies) and 3 mm (20 studies). To 

obtain a spatial correspondence between the volumes in a 

common resolution space, PET volumes were registered to 

the corresponding CT volumes using the Insight 

Segmentation and Registration Toolkit (ITK) that is based 

on the affine transformation. Mutual information (MI) was 

used as the similarity metric and the average MI for the 40 

patient studies was -0.595 ± 0.0517. Pre-processing and de-

noising were not done and there was not a correction for 

partial volume effects.  

In the 40 NSCLC studies, in 20 studies the tumors were 

located in the lung parenchyma, at a distance from adjacent 

structures such as the chest wall, mediastinum and 

pericardium. In the other 20 studies, the tumor boundaries 

were not easily ‘discernible’ that is where the tumor abutted 

and/or involved adjacent structures and/or had 

heterogeneous FDG uptake. In these latter 20 studies, in 16 

the tumors abutted and / or involved the pleura and chest 

wall and in 4 the tumor was adjacent to or extended into the 

mediastinum. Manual delineation was performed by a senior 

clinical expert (who has read in excess of 15000 lung PET-

CT studies), using PET and CT information, and the tumor 

boundaries were drawn on CT images. The manual 

delineation results was used as the “ground truth” (GT). The 

manual delineation results from another radiologist (referred 

as GT-2) were used for the inter-observer investigations.  

Phantom studies 

Twenty lung PET-CT phantom datasets were collected from 

the public RIDER collections [23] at the Cancer Imaging 

Archive. The target/background ratio was 4:1. The diameters 

of the 6 spheres were 10 mm, 13 mm, 17 mm, 22 mm, 28 

mm and 37 mm. The PET data were reconstructed using a 

matrix of 128 × 128 with voxel size 2.73 × 2.73 × 3.27mm. 

The CT data were constructed using a matrix of 512 × 512 

with voxels size 0.68 × 0.68 × 2.5 mm.  

Comparison methods 

To evaluate the performance of approach we compared it to 

other methods for PET only, CT only and PET-CT co-

segmentation algorithms. PET only methods included: 1) a 

threshold of 40% SUVmax on PET (referred to as RG40), 2) 

a threshold of 50% SUVmax (referred to as RG50), 3) an 

adaptive threshold method (referred to as RGa) [24], 4) 

Fuzzy c means (referred to as FCM) and (5) the tumor-

customized downhill method (referred to as TCD) [25]. 

These methods were compared to validate the contribution 

of CT for tumor delineation. We also compared our method 

to CT only methods including RW [15] and RWR [26] to 

evaluate the contribution of spatial-topological information 

defined from PET. PET-CT co-segmentation methods 

included a tumor-background likelihood model [11] 

(referred as TBLM), the graph-based co-segmentation model 

using max flow optimization (referred as GC-co) [17], and 

the model under the RW framework  (referred as RW-co) 



  

[8]. 

Validation methods 

To assess the accuracy of the proposed method, we 

calculated the spatial overlap and shape dissimilarity 

between the segmentation results and GT by Dice’s 

Similarity Coefficient (DSC) and Hausdorff Distance (HD). 

DSC was defined as  

 1 2

1 2

1 2

2
( , ) 

U U
DSC U U

U U


=

+
  (9) 

where 
1U  is the segmented volume, and 

2U  is the GT 

volume. The DSC value is 1 for a perfect segmentation.  

HD was defined as  

2 1
1 2

1 2( , ) max{sup inf ( ),supinf ( )}
j S i Si S j S

HD U U d i, j d i, j
  

=   (10) 

where 
1S  and 

2S  denote the boundary of the segmented 

volume and the GT volume, and sup  represents the least 

subset element and inf  the greatest subset element; d  is the 

Euclidean distance between point i  and j . A low HD value 

indicates high segmentation accuracy. 

Implementation, initialization and parameter settings 

Our algorithm was implemented with MATLAB R2013a on 

a PC with 3.50GHz Intel(R) Core(TM) i7-4770K CPU and 

16.0GB memory, running a 64-bit Windows operating 

system. The method was implemented on 2D slices. The 

Graph Analysis Toolbox [27] was used to build the weighted 

image graph and solve the linear equations for RW, RW-co 

and our method. The fixed and adaptive thresholding 

methods and FCM were implemented using the functions in 

ITK. RWR were based on the public code found on the 

authors’ personal websites [28]. TCD and TBLM were our 

previous work. GC co-segmentation was implemented using 

the max flow library [14].  

We set K=2 to indicate the tumor/foreground and 

background. A user-input seed was manually provided to 

indicate the targeted tumor for segmentation. And the 

foreground and background seeds were obtained as: firstly 

the local maximum SUV (
max

localSUV ) was obtained 

automatically by comparing the user indication with its 

neighbouring voxels. The RG40. RG50, RGa, FCM and 

TCD methods were implemented starting from the 
max

localSUV . 

For our method and the graph-based methods, RWR and 

RW, the pixel set with foreground labels was obtained by 

performing region growing from max

localSUV  and stopped at 

max95% localSUV . And the pixels with background labels were 

defined as the contour of a background region. The 

background region was obtained by continuing region 

growing from the detected foreground labels and stopped at 

max40% localSUV  and further enlarged with a band whose width 

is equal to the radius of the foreground region.  

For the comparison methods under RW framework - RW, 

RWR, RW-co and our method - the parameter   in the 

weighting function (6) was set to be 60, the same as RW 

[15], RWR [29] and RW-co [17]. The parameters for GC-co 

were according to the values in the original paper [8]. 

Results 

Sensitivity studies 

To evaluate the initialization sensitivity, we compared the 

segmentation results when the foreground and background 

criterion was set as: (0.95, 0.4), (0.9, 0.4), (0.95, 0.3) and 

(0.9, 0.3). The results with respect to DSC are shown in Fig. 

3 and identifies that our method was not sensitive to the 

seeds criterion. 

 

 
Fig. 3. Seeds sensitivity investigation in regard to the average 

DSC over the 40 patient studies 

 

Evaluation of clinical cases 

The segmentation results of one patient study with a small 

parenchymal tumor are shown in Fig. 4. The tumor volume 

(measured according to GT) was about 2.73 ml. The contrast 

between tumor and surrounding tissues was relatively low 

on PET. FCM failed to segment the tumor and resulted in 

leakage, and the other three methods on PET, RG40, RG50 

and TCD resulted in smaller delineations. Our method 

achieved a DSC of 0.843 and the second best was RW with 

the DSC of 0.841.  

The segmentation results of two cases where the tumors 

involved the chest wall are shown in Figures 5 and 6. In the 

first case our method achieved the best result with a DSC of 

0.918 while the second best was TBLM with the DSC of 

0.887; for the second case our method achieved the best 

DSC of 0.823 while second best was TBLM with a DSC of 

0.811. RG50 resulted in smaller tumor definition and the 

RW and RWR on CT resulted in leakage into the chest wall.  

The tumor in Fig. 7 was much larger with a volume of 

about 264.28 ml and it had heterogeneous FDG uptake. SUV 

based methods excluded the parts of the tumor that had low 

SUVs (areas of necrosis or cystic change) and failed to 

delineate the whole tumor. TBLM and our method achieved 

better results with the DSCs of 0.879 and 0.892 respectively.

 



  

 
Fig. 4 Cropped tumor delineation results of a study with small tumor on CT (first row) and PET (second row) in the transaxial plane; 

segmentation results are shown in green and GT in red. 
 

 

 
Fig. 5 Cropped tumor delineation results of one case with the tumor involving the chest wall on CT (first row) and PET (second row) in 

transaxial plane; segmentation results are shown in green and GT in red.  

 

 
Fig. 6 Cropped tumor delineation results of one case with the tumor involving the chest wall on CT (first row) and PET (second row) in 

transaxial plane; segmentation results are shown in green and GT in red.  

 

 

 
Fig. 7 Cropped tumor delineation results for one case where the tumor boundaries on CT are difficult to discern and the tumor has non-

uniform (heterogeneous) FDG uptakes; segmentation results are shown in green and GT in red. 
 



  

Among the 40 studies there were 16 cases where the 

tumor abutted or involved the pleura / chest wall and 4 had 

tumor adjacent to or extending into the mediastinum. The 

results of spatial overlap measurement (DSC) of these chest 

wall and mediastinum studies are shown statistically with 

box-plots in Figures 8 and 9. These plots show that our 

method achieved consistently better segmentation for all the 

studies that had indistinct or indiscernable boundaries.  

 

 

 

  
Fig. 8 Spatial overlap comparison by DSC of 4 cases which had 

tumors adjacent to or extending into the mediastinum 
Fig. 9 Spatial overlap comparison by DSC of 16 cases with the 

tumors abutting the pleura/chest wall 

 

Overall, our method had the best results over the 40 

studies based on the DSC and HD (see Table 1). TBLM and 

RW were ranked the second and the third. The methods 

based on solely PET achieved lower accuracy than the other 

CT and PET-CT based methods. We performed Students 

paired t-Test with a two-tailed distribution and our method 

had a significant statistical improvement (p-value < 0.05) 

when compared to the other methods (see Table 2).  

 
Table 1 Mean DSC and HD over all 40 cases with respect to 

GT 

Methods DSC (mean ± 

SD) 

HD (mm) (mean ± 

SD) 

RG40 0.671 ± 0.120 16.562 ± 15.093 

RG50 0.603 ± 0.098 15.131 ± 12.140 

RGa 0.574 ± 0.193 22.139 ± 21.647 

FCM 0.608 ± 0.209 28.083 ± 24.778 

TCD 0.723 ± 0.086 11.692 ± 7.943 

RW  0.806 ± 0.082 12.601 ± 5.009 

RWR 0.781 ± 0.078 18.451 ± 8.865 

TBLM 0.813 ± 0.069 10.220 ±7.586 

Our Method 0.848 ± 0.036 8.652 ± 4.532 

 

Table 2 T-Test (alpha =0.05) of eight methods with proposed 

method over the 40 cases with respect to GT 

Methods p-values 

(DSC) 

p-values (HD) 

RG40 3.729E-09 1.500× 10-3 

RG50 7.413E-15 6.580× 10-4 

RGa 7.310E-09 4.390× 10-4 

FCM 3.161E-07 4.771E-05 

TCD 1.881E-10 1.032× 10-3 
RW  3.380 × 10-4 8.372E-07 

RWR 8.869E-10 5.232E-07 

TBLM 1.847 × 10-3 2.6528×10-2 
 

To illustrate the contribution of the defined spatial-

topological factor in our method when compared to RW, 

segmentation results and the foreground and background 

probability maps of one study is shown in Fig. 10. For this 

case, the tumor boundary was readily discernible on CT. RW 

failed in the accurate tumor boundary delineation and our 

method achieved more concentrated foreground and 

background probability maps. This is also seen from the 

probability maps of RW, RWR and our method as shown in 

Fig. 11.  

The running time of the algorithm was 1.99 seconds and 

the average running time for the 40 studies from the 

beginning to end was 28.618 seconds. 



  

 
Fig. 10 One study evaluated by RW and the proposed method, 

with the iniltilization, the foreground/background maps and the 

delieation results.  
 

 
Fig. 11 Zoomed foreground and background probability maps of 

the RW-based methods for the study in Fig. 7 

Inter-observer agreement and validation 

To further evaluate the proposed method, the manual 

delineation results GT-2 were also used for validation. The 

inter-observer agreement between GT-2 and GT was 

measured by DSC, and the average DSC was 0.85 ± 0.059 

over 40 datasets. The segmentation results by DSC with 

respect to GT and GT-2 were illustrated in Fig. 12.  

 

 
Fig. 12 Inter-observer validation over the 40 clinical studies.  

 

Comparison with other graph based co-segmentation 

methods 

We also compared our method to two other graph-based co-

segmentation methods, RW-co and GC-co that were 

segmented by GT and GT-2. As shown in Fig. 13, our 

method consistently achieved higher accuracy in terms of 

DSC and HD. And the t-test between our method and RW-

co demonstrated that the improvement was statistically 

significant (p=0.0289).  

 



  

  

Fig. 13 DSC and HD comparison with two other graph based co-segmentation emthods with respect to the GT and GT-2. 

 

 

Phantom evaluation 

For the 20 phantom datasets, each with 6 simulated tumors 

of different sizes, our method achieved DSC (mean ± SD) of 

0.850 ± 0.072 and outperformed the second best method 

RW-co that had 0.825 ± 0.078. As shown in Fig. 14, RW-co 

failed to delineate the entire tumor. 

 

 
Fig. 14 The phantom results shown on PET and CT. (a) 

is our results and (b) is the result of RW-co. 

 

Discussion  

Our main finding is that our proposed label information 

propagation model, with the incorporation of intensity 

information from CT and spatial-topological information 

from PET, can delineate the entire tumor when the tumor 

was in close proximity to adjacent tissue with similar 

intensities.  

The main contribution of the proposed method is the 

incorporation of the spatial-topology constraint (STC). The 

STC played critical role when the tumor involved / abutted 

the chest wall or was adjacent to or involving mediastinum. 

In such instances, solely depending on CT intensity leads to 

leakage to the tissue surrounding the tumor. Our spatial-

topological information moderated the amount of label 

information that a pixel receives: the label information 

attenuates as the spatial distance increases and when 

crossing different topological regions. And thus, the spatial-

topological information helped to appropriately define the 

tumor boundary. For instance in Fig. 7, the tumor abutted to 

the chest wall and both shared similar intensities. As shown 

in Fig. 11, probability map of RW partially included the 

chest wall. In contrast, in our method the STC attenuated the 

label information when crossing different metabolic regions 

and thus our method produced a more concentrated map than 

RW and RWR (see Fig. 11).  

The sharp local CT intensity changes at the discernable 

boundary were the major factor for delineating the tumor 

boundary. Compared with the tumor boundary delineations 

by PET only methods, our method was able to better 

maintain the tumor shape reflected on CT. For instance the 

case in Fig. 4 where the tumor was located in the lung 

parenchyma, the CT intensity contributed to the shape 

delineation.  

When using both PET and CT information, the co-

segmentation methods may produce a smoothed 

segmentation result. Our spatial-topological factor 

attenuated the CT definition and may have smoothed the 

segmentation (see Fig. 10). As suggested by Bagci et al. [8], 

this “smoothness” was due to the anatomical and functional 

regions not always having identical lesion contours for 

instance, the disparity between the anatomical lesion size 

and the extent of FDG uptake.  Segmentation accuracy 

might be reduced in our method if the topological 

information is not properly extracted from PET, for 

example, when PET images have low signal-to-noise ratios 

and the tumor-background contrast also decreases if the 

tumor is smaller than 20 to 30 mm [30] [31]. In such studies, 

the topology from current methods would contain many 

small “noisy” regions and therefore may lead to incorrect 

definition of regional relations [32].  

In the future work, we would like to validate the proposed 

model on other tumor types and we plan to extend the model 

to segment multiple objects such as the left and right 

ventricular cavity, myocardium and papillary muscles on 



  

cardiac images.  

Conclusions 

We propose a new label information propagation model for 

tumor segmentation, which correlates CT intensity and the 

spatial-topological from PET. We evaluated our method on 

40 NSCLC patient studies. The results show that the 

incorporation of the spatial-topological information with the 

intensity then contributed to better tumor delineation, 

especially where the tumor is involves the chest wall or 

mediastinum and when the boundaries between tumor and 

adjacent tissues are indistinct. 
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