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Abstract. The classification of benign versus malignant lung nodules using chest 

CT plays a pivotal role in the early detection of lung cancer and this early detec-

tion has the best chance of cure. Although deep learning is now the most success-

ful solution for image classification problems, it requires a myriad number of 

training data, which are not usually readily available for most routine medical 

imaging applications. In this paper, we propose the transferable multi-model en-

semble (TMME) algorithm to separate malignant from benign lung nodules using 

limited chest CT data. This algorithm transfers the image representation abilities 

of three ResNet-50 models, which were pre-trained on the ImageNet database, to 

characterize the overall appearance, heterogeneity of voxel values and heteroge-

neity of shape of lung nodules, respectively, and jointly utilizes them to classify 

lung nodules with an adaptive weighting scheme learned during the error back 

propagation. Experimental results on the benchmark LIDC-IDRI dataset show 

that our proposed TMME algorithm achieves a lung nodule classification accu-

racy of 93.40%, which is markedly higher than the accuracy of seven state-of-

the-art approaches. 

Keywords: Lung nodule classification, deep learning, ensemble learning, com-

puted tomography (CT) 

1 Introduction 

The 2015 global cancer statistics show that lung cancer accounts for approximately 

13% of 14.1 million new cancer cases and 19.5% of cancer-related deaths each year 

[1] . The 5-year survival for patients with an early diagnosis is approximately 54 %, as 

compared to 4 % if the diagnosis is made late when the patient has the stage IV disease 

[2]. Hence, early diagnosis and treatment are the most effective means to improve lung 

cancer survival. The National Lung Screening Trial [3] showed that screening with CT 
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will result in a 20% reduction in lung cancer deaths. On chest CT scans, a “spot” on the 

lung, less than 3 cm in diameter, is defined as a lung nodule, which can be benign or 

malignant [4]. Malignant nodules may be primary lung tumors or metastases and so the 

classification of lung nodules is critical for best patient care. 

Radiologists typically read chest CT scans on a slice-by-slice basis, which is time-

consuming, expensive and prone to operator bias and requires a high degree of skill and 

concentration. Computer-aided lung nodule classification avoids many of these issues 

and has attracted a lot of research attention. Most solutions in the literature are based 

on using hand-crafted image features to train a classifier, such as the support vector 

machine (SVM), artificial neural network and so on. For instance, Han et al. [5] ex-

tracted Haralick and Gabor features and local binary patterns to train a SVM for lung 

nodule classification. Dhara et al. [6], meanwhile, used computed shape-based, margin-

based and texture-based features for the same purpose. 

More recently, deep learning, particularly the deep convolutional neural network 

(DCNN), has become the most successful image classification technique and it provides 

a unified framework for joint feature extraction and classification[7]. Hua et al. applied 

the DCNN and deep belief network (DBN) to separate benign from malignant lung 

nodules. Shen et al. [8] proposed a multi-crop convolutional neural network (MC-CNN) 

for lung nodule classification. Despite improved accuracy, these deep models have not 

achieved the same performance on routine lung nodule classification as they have in 

the famous ImageNet Challenge. The suboptimal performance is attributed mainly to 

the overfitting of deep models due to inadequate training data, as there is usually a small 

dataset in medical image analysis and this relates to the work required in acquiring the 

image data and then in image annotation. Hu et al. [9] proposed a deep transfer metric 

learning method to transfer discriminative knowledge from a labeled source domain to 

an unlabeled target domain to overcome this limitation. 

A major difference between traditional and deep learning methods is that traditional 

methods rely more on the domain knowledge, such as there is a high correspondence 

between nodule malignancy and heterogeneity in voxel values (HVV) and heterogene-

ity in shapes (HS) [10], and deep learning relies on access to massive datasets. Ideally, 

the advantages of both should be employed. Chen et al. [11] fused heterogeneous 

Haralick features, histogram of oriented gradient (HOG) and features derived from the 

deep stacked denoising autoencoder and DCNN at the decision level to predict nine 

semantic labels of lung nodules. In our previous work [12], we used a texture descriptor 

and a shape descriptor to explore the heterogeneity of nodules in voxel values and 

shape, respectively, and combined both descriptors with the features learned by a nine-

layer DCNN for nodule classification. Although improved accuracy was reported, this 

method still uses hand-crafted features to characterize the heterogeneity of nodules, 

which are less effective. Recently, Hu et al. [9] reported that the image representation 

ability of DCNNs, which was learned from large-scale datasets, could be transferred to 

solving generic small-data visual recognition problems. Hence, we suggest transferring 

the DCNN’s image representation ability to characterize the overall appearance of lung 

nodule images and also the nodule heterogeneity in terms of voxel values and shape.  

In this paper, we propose a transferable multi-model ensemble (TMME) algorithm 

for benign-malignant lung nodule classification on chest CT. The main uniqueness of 



this algorithm include (1) three types of image patches are designed to fine-tune three 

pre-trained ResNet-50 models, aiming to characterize the overall appearance (OA), 

HVV and HS of each nodule slice, respectively; and (2) these three ResNet-50 models 

are used jointly to classify nodules with an adaptive weighting scheme learned during 

the error back propagation, which enables our model to be trained in an 'end to end' 

manner. We compared our algorithm to seven state-of-the-art lung nodule classification 

approaches on the benchmark LIDC-IDRI dataset. Our results suggest that the proposed 

algorithm provides substantial performance improvement. 

2 Data and Materials 

The benchmark LIDC-IDRC database [13] were used for this study, in which the nod-

ules were evaluated over five levels, from benign to malignant, by up to four experi-

enced thoracic radiologists. The mode of levels given by radiologists was defined as 

the composite level of malignancy. Same to [5-8, 14, 15], we only considered nodules 

≥ 3 mm in diameter and treated 873 nodules with composite level of 1 or 2 as benign 

and 484 nodules with composite level of 4 or 5 as malignant. 

3 Algorithm 

We have summarized our proposed TMME algorithm in Fi. 1. The algorithm has three 

steps: (1) extracting the region of interest (ROI) for preprocessing and data augmenta-

tion, (2) building a TMME model for slice-based nodule classification, and (3) classi-

fying each nodule based on the labels of its slices. 
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Fig. 1. Framework of our proposed TMME algorithm 

3.1 Preprocessing and Data Augmentation 

A lung nodule is presented in multiple slices. On each slice, a square ROI encapsulating 

the nodule is identified using the tool developed by [16] to represent the nodule’s OA. 

To characterize the nodule’s HVV, non-nodule voxels outside the ROI are set to 0 and, 



if the ROI is larger than 16×16, a 16×16 patch that contains the maximum nodule voxels 

is extracted. To describe the nodule’s HS, nodule voxels inside the ROI are set to 255. 

Then, the OA patch, HVV patch and HS patch are resized to 200×200, using the bicubic 

interpolation. Four augmented copies of each training sample are generated by using 

rotation, shear, horizontal or vertical flip and translation with random parameters to 

enlarge the size of the training set and are put in the enlarged training set. 

3.2 TMME for Nodule Slice Classification 

The ResNet-50 model [17] that has been pre-trained on the ImageNet dataset, is 

adopted. Two neurons in the last fully connected layer are randomly selected and other 

neurons, together with the weights attached to them, are removed. Three copies of this 

ResNet-50 are fine-tuned using all OA, HVV and HS patches in the enlarged training 

set, respectively, to adapt them to characterizing nodule slices. Denoting the prediction 

vector produced by each ResNet-50 by 𝑿𝑖 = (𝑥𝑖1, 𝑥𝑖2) (𝑖 = 1,2,3), the ultimate predic-

tion vector of the ensemble model can be calculated as 

 𝑃𝑘 =  ∑ ∑ 𝜔𝑖𝑗𝑘𝑥𝑖𝑗
2
𝑗=1

3
𝑖=1 , 𝑘 = 1,2 (1) 

where 𝑃𝑘 is the predicted likelihood of the input belonging to category 𝑘, and 𝜔𝑖𝑗𝑘 is 

the weight which connects the 𝑥𝑖𝑗 and 𝑃𝑘. Thus, the integrated loss of this ensemble 

model can be formulated as 

 𝐿(𝑦, 𝑷) = ln(∑ 𝑒𝑃𝑗2
𝑗=1 )  − 𝑃𝑦, (2) 

where 𝑦 ∈ {1,2} is the input’s true label, and 𝑷 = (𝑃1, 𝑃2). The change of weight 𝜔𝑖𝑗𝑘 

in the ensemble model is in proportion to descend along the gradient, shown as follows 

 ∆𝜔𝑖𝑗𝑘 =  −𝜂
𝜕𝐿(𝑦,𝑷)

𝜕𝜔𝑖𝑗𝑘
 =−𝜂𝑥𝑖𝑗(

𝑒𝑃𝑘

∑ 𝑒𝑃𝑚2
𝑚=1 

− 𝛿𝑘𝑦), (3) 

where 𝜂 represents the learning rate, and, if 𝑘 = 𝑦, 𝛿𝑘𝑦 = 1, otherwise, 𝛿𝑘𝑦 = 0. 

Since our training data set is small, the learning rate is set to 0.00001 and the sto-

chastic gradient descent with a batch size of 100 is adopted. Moreover, 10% of the 

training patches are chosen to form a validation set, and the training is terminated even 

before reaching the maximum iteration number of 50, if the error on the other 90% of 

training images continues to decline but the error on the validation set stops decreasing. 

3.3 Nodule Classification 

Let a lung nodule 𝜳 be contained in 𝑆 slices, denoted by 𝜳 = {𝛹1, 𝛹2, … , 𝛹𝑆}. Input 

the 𝑖-th slice 𝛹𝑖 into the TMME model, and we obtain a two-dimensional prediction 

vector 𝑯(𝛹𝑖). The class label of nodule 𝜳 is assigned based on the sum of the predic-

tion made on each slice, shown as follows 

 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑘

∑ 𝐻𝑘(𝛹𝑖)
𝑆
𝑖=1 , 𝑘 ∈ {′𝑏𝑒𝑛𝑖𝑔𝑛′, ′𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡′}  (4) 



4 Results 

The proposed TMME algorithm was applied to the LIDC-IDRC dataset 10 times inde-

pendently, with 10-fold cross validation. The mean and standard deviation of obtained 

accuracy, sensitivity, specificity and area under the receiver operator curve (AUC), to-

gether with the performance of seven state-of-the-art methods on this dataset, were 

given in Table 1. It shows that our algorithm not only outperformed hand-crafted fea-

ture-based traditional methods but also substantially improved upon Xie et al.’s method 

[12]. Our results indicate that the pre-trained and fine-tuned ResNet-50 model can ef-

fectively transfer the image representation ability learned on the ImageNet dataset to 

characterizing the OA, HVV and HS of lung nodules, and an adaptive ensemble of these 

three models has superior ability to differentiate malignant from benign lung nodules. 

Table 1. Performance of eight lung nodule classification methods on the LIDC-IDRC dataset 

Algorithms Accuracy (%) Sensitivity (%) Specificity (%) AUC 

Shen et al., 2017 [8] 87.14 77.00 93.00 0.9300 

Dhara et al., 2016 [6] - 89.73 86.36 0.9505 

Han et al., 2015 [5] - 89.35 86.02 0.9405 

Anand, 2010 [15] 86.3 89.6 86.7 - 

Hua et al., 2015 [7] - 73.4 82.2 - 

Han et al., 2013 [14] - - - 0.9441 

Xie et al., 2016 [12] 86.79 60.26 95.42 - 

Proposed (mean ± 

standard deviation) 
93.40±0.01 91.43±0.02 94.09±0.02 0.9778±0.0001 

5 Discussion 

5.1 Data Argumentation 

The number of training samples generated by data augmentation plays an important 

role in applying a deep model to small-sample learning problems. On one hand, training 

a deep model requires as many data as possible; on the other hand, more data always 

lead to higher time cost. We re-performed the experiment using different numbers of 

augmented images and listed the obtained performance in Table 2.  

Table 2. Performance of the proposed algorithm with different number of augmentatioin data. 

Augmented 

Data per Image 
Accuracy (%) Sensitivity (%) Specificity (%) AUC 

Time for 

Training 

0 89.84 83.85 93.43 0.9451 3 hours 

2 92.24 88.74 93.99 0.9724 7 hours 

4 93.40 91.43 94.09 0.9778 12 hours 

6 93.66 91.65 94.90 0.9788 17.5 hours 

8 93.73 91.90 94.90 0.9794 24 hours 



It reveals that using four augmented images for each training sample achieved a 

trade-off between accuracy and time cost, since further increasing the number of aug-

mented images only improved the accuracy slightly but cost much more time for train-

ing. Meanwhile, it should be noted that our algorithm, without using data augmentation, 

achieved an accuracy of 89.84%, which is still superior to the accuracy of those meth-

ods given in Table 1. 

5.2 Ensemble Learning 

To demonstrate the performance improvement that results from the adaptive ensemble 

of three ResNet-50 models, we compared the performance of our algorithm to that of 

three component models, which characterize lung nodules from the perspective of OA, 

HVV and HS, respectively. As shown in Table 3, although each ResNet-50 model 

achieves a relatively good performance, an adaptive ensemble of them brings a further 

performance gain.  

Table 3. Performance of each component ResNet-50 model and the proposed ensemble model 

Models Accuracy (%) Sensitivity (%) Specificity (%) AUC 

ResNet-50 for HS 91.65 88.35 93.34 0.9685 

ResNet-50 for HVV 91.66 88.89 93.32 0.9736 

ResNet-50 for OA 91.73 89.07 93.28 0.9740 

Proposed TMME 93.40 91.43 94.09 0.9778 

5.3 Other Pre-trained DCNN Models 

Besides ResNet-50, GoogLeNet [18] and VGGNet [19] are two of the most successful 

DCNN models. Using each of those three models to characterize lung nodules from 

each of three perspectives, i.e. OA, HVV and HS, we have 27 different configurations. 

To evaluate the performance of using other DCNN models, we tested all 27 configura-

tions and gave the accuracy and AUC of the top five configurations in Table 4. It shows 

that ResNet-50 is very powerful and using three ResNet-50 results in the highest accu-

racy and AUC. Nevertheless, it also suggests that GoogLeNet and VGGNet are good 

choices as well and using them to replace ResNet-50 may produce very similar accu-

racy in some configurations. 

Table 4. Performance of the top five out of 27 ensemble models 

DCNN for HS DCNN for VVH DCNN for OA Accuracy (%) AUC 

ResNet-50 ResNet-50 ResNet-50 93.40 0.9778 

ResNet-50 GoogLeNet ResNet-50 93.30 0.9760 

VGGNet ResNet-50 ResNet-50 93.28 0.9767 

GoogLeNet ResNet-50 ResNet-50 93.21 0.9759 

ResNet-50 ResNet-50 GoogLeNet 93.14 0.9765 



5.4 Hybrid Ensemble of 27 TMME Models 

Using all possible combination of VGGNet, GoogLeNet and ResNet-50 to characterize 

the OA, HVV and HS of lung nodules, we can have totally 27 proposed TMME models, 

which can be further combined by using an adaptive weighting scheme learned in the 

same way. Table 5 shows that the ensemble of 27 TMME models can only slightly 

improve the classification accuracy, but with a major increase in the computational 

complexity of training the model. 

Table 5. Performance of TMME and the ensemble of 27 TMME mdels 

Models Accuracy (%) Sensitivity (%) Specificity (%) AUC Runtime 

TMME 93.40 91.43 94.09 0.9778 12 hours 

27 TMME 94.04 92.04 94.92 0.9793 5 days 

5.5 Computational Complexity 

In our experiments, it took about 12 hours to train the proposed model and less than 0.5 

second to classify each lung nodule (Intel Xeon E5-2678 V3 2.50 GHz ×2, NVIDIA 

Tesla K40c GPU ×2, 128 GB RAM, 120 GB SSD and Matlab 2016). It suggests that 

the proposed algorithm, though computation very complex during the training process 

that can be performed offline, is very efficient for online testing and could be used in a 

routine clinical workflow. 

6 Conclusion 

We propose the TMME algorithm for benign-malignant lung nodule classification on 

chest CT. We used three pre-trained and fine-tuned ResNet-50 models to characterize 

the OA, HVV and HS of lung nodules, and combined these models using an adaptive 

weighting scheme learned during the back-propagation process. Our results on the 

benchmark LIDC-IDRC dataset suggest that our algorithm produces more accurate re-

sults than seven state-of-the-art approaches. 
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