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ABSTRACT 

Alzheimer’s disease (AD) is the most common type of dementia and will be an increasing health problem in 

society as the population ages. Mild cognitive impairment (MCI) is considered to be a prodromal stage of AD. The 

ability to identify subjects with MCI will be increasingly important as disease modifying therapies for AD are 

developed. We propose a semi-supervised learning method based on robust optimization for the identification of 

MCI from [18F]Fluorodeoxyglucose PET scans. We extracted three groups of spatial features from the cortical and 

subcortical regions of each FDG-PET image volume. We measured the statistical uncertainty related to these spatial 

features via transformation using an incomplete random forest and formulated the MCI identification problem under 

a robust optimization framework. We compared our approach to other state-of-the-art methods in different learning 

schemas. Our method outperformed the other techniques in the ability to separate MCI from normal controls. 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative brain disorder that is characterized by progressive memory loss, 

cognitive impairment and the inability to perform usual daily activities [1]. It is the most common type of dementia, 

accounting for about 65% of all dementia cases globally and the number of patients is increasing every year as people 

live longer [2]. Mild cognitive impairment (MCI) is considered as the prodromal phase of AD [3]. Individuals with 

MCI show greater cognitive impairment than expected for their age, but they do not meet the criteria for dementia [4]. 

The conversion rate of MCI to AD is estimated to be between 10% - 25% per year [5]. Although there are no current 

disease modifying agents to halt the progression of AD there are a number of clinical trials underway in patients with 

pre-symptomatic disease [6]. Thus as effective therapies become available the early identification of patients with 

MCI will be of tremendous benefit to patients and their families.  

The pathology of AD includes cortical and subcortical atrophy together with the deposition of β-amyloid. Two 

widely used AD biomarkers are structural imaging with magnetic resonance (MR) imaging [7] and functional 

imaging with  [
18
F]Fluorodeoxyglucose positron emission tomography (FDG-PET) [2]. The advantage of FDG-PET 

over MR imaging is that PET can detect reduced cerebral glucose metabolism before structural change is evident on 

MR imaging. The separation of patients with MCI from normal controls (NCs) by the visual analysis of FDG-PET 

images, however, is difficult. Visual interpretation of these studies is also operator-dependent and related to the skill 

and experience of the reader. A reliable and robust computer-aided method could improve this situation. 

Machine learning theory has been applied to the dementias and Davatzikos et al. used a voxel-based nonlinear 

multivariate analysis to separate AD from Frontotemporal dementia (FTD) with MR imaging [8]. In their subsequent 

study [9], they applied a similar method to combinations of features extracted from MR images and cerebrospinal 

fluid (CSF) to predict progression from MCI to AD. Although there are a number of pathological studies of MCI 

with PET [2, 10], the use of computerized classification methods based on PET data is not prominent in the literature. 

In a previous study [11], we implemented a method that combined multi-kernel learning (MKL) and a genetic 

algorithm (GA) to differentiate between AD, FTD and NC with FDG-PET images. We used GA to obtain the optimal 

kernel weights for combining different kernel matrices and then trained a MKL machine to classify the three classes 

at the same time. In a subsequent study [12], we used an automated classification method for dealing with AD and 

NC using infinite kernel learning (IKL). We exploited the importance of cerebral features in the AD/NC 
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classification task using this method. We investigated the early identification of different dementia sub-types using 

FDG-PET and reported superior classification accuracy and efficiency, but we did not address the problem of 

separating MCI and NCs. Zhang et al. in [13] combined a number of biomarkers (MR, PET and CSF) together and 

used MKL to classify AD, MCI and NC. They reported good differentiation of AD from NC but they had a lower 

accuracy (76.4%) for separating MCI from NCs. In addition, in the clinical setting it is difficult to obtain all three 

biomarkers due to costs and the reluctance for subjects to undertake a lumbar puncture. Recently, Gray et al. [14] 

proposed a multi-modality classification process based on the embedding of feature similarities among MR, FDG-

PET, CSF, and genetic information via random forest (RF). They reported 75% classification accuracy between MCI 

and NCs which was poorer than the 89% accuracy in separating AD from NCs.  

In this work our aim was the early identification of patients with MCI using FDG-PET imaging. We used an 

incomplete random forest - robust support vector machine (IRF-RSVM) approach to address the problem where 

subjects with MCI have similar imaging to NCs and the spatial resolution of FDG-PET is poorer than structural 

imaging. The idea was to build an incomplete random forest using FDG-PET image features and model the outputs 

of the random forest as a noise corrupted feature dataset, and then minimize a loss function in terms of these noisy 

data within a robust programming framework.  

 

2. BACKGROUND 

2.1 Random Forest (RF) 

Random forest is an ensemble learning method, which builds a number of decision trees [15, 16] with random 

factors. Basically, RF injects randomness into its learning process in two forms: random sampling and random 

parameterization. Random sampling arbitrarily selects training examples to train each decision tree. Random 

parameterization chooses training parameters during the training of each decision tree in an unplanned fashion. Both 

or either of these two forms of randomness can be used in the training process. The introduced randomness prompts 

variation and diversity among the decision trees that are built. Each decision tree in the forest is a binary tree on 

which each non-leaf node, a so-called weak learner, is trained by solving an optimization problem to determine the 

best data feature to use to split the dataset. For features with a numerical value, we simply threshold the data set at 

the current node so that examples, where the value of the feature used for splitting is less than the threshold, go to the 
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left branch of this node and other examples go to the right branch. The process continues on subsequent nodes until a 

stopping criterion is met. 

 

2.2 Support Vector Machine 

In general, the goal of machine learning is to learn distinguishable patterns from training data belonging to 

different classes, and then use these patterns to classify new (unseen) data (test data) to some extent. Kernel based 

maximum margin learning methods have been very widely used in machine learning research during the last decade 

[17-19]. Basically, kernel based method constructs kernels in reproducing kernel Hilbert space (RKHS) based on data, 

and finds a separating hyperplane that separates data belonging to different classes with maximum margins by 

minimizing a structural empirical risk functional [17, 19]. Within this family of methods, support vector machine 

(SVM) is the most well-known method and has been used in many scientific and industrial applications [17]. 

SVM finds the optimal separating hyperplane by solving a linearly constrained quadratic optimization problem 

(QP), which can be written as: 

minimize𝒘,𝑏,𝜉
1

2
 𝒘 2

2 + 𝐶  𝜉𝑘
𝑝
𝑘=1  (1) 

𝑠. 𝑡.    𝑦𝑘 𝒘
𝑇𝒙𝑘 + 𝑏 ≥ 1 − 𝜉𝑘 ,   𝜉𝑘 ≥ 0,   ∀𝑘 = 1,… , 𝑝 

where 𝒙 is the training data vector with label 𝑦 ∈  −1,1 , 𝑝 is the number of training data, 𝜉 is slack variable which 

allows some data to be misclassified, the weight vector 𝒘 and bias 𝑏 are optimization variables that define the 

hyperplane. Solving the optimization problem (1) results in a separating hyperplane that separates training data, and 

at the same time, maximizes the margins between training data on both sides of the hyperplane [17]. After solving (1), 

the prediction of testing data label is made by evaluating the function below for each testing data 𝒙′ : 

𝑓 𝒙′ ; 𝒘∗, 𝑏∗ = 𝑠𝑔𝑛 𝒘∗𝑇𝒙′ + 𝑏∗  (2) 

where 𝒘∗ and 𝑏∗ are the optimal solutions of (1), 𝑠𝑔𝑛(∙) gives the sign of the operator and the sign indicates the class 

membership of testing data 𝒙′ . 

 

2.3 Inductive Learning and Transductive Learning 

Theoretically, there are two types of machine learning schemas, inductive and transductive learning. In the 
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inductive learning setting, a learner is trained using a set of observed data called training data and is then tested on a 

set of previously unseen data called test data. This setting is extremely common in machine learning research. 

Transductive learning differs from inductive learning in that, during the training phase a participant has visibility of 

training data and test data and a participant can potentially make use of the information, exposed by the test data, 

such as the probability distribution information [19, 20]. Hence, transductive learning is ideal when the size of the 

experimental data is small. In this work we tested the proposed method in the inductive and transductive learning 

settings. 

 

3. DATA AND MATERIALS 

The FDG-PET image data we used were from the Alzheimer’s Disease Neurodegenerative Initiative (ADNI) 

cohort (http://adni.loni.usc.edu). ADNI is a multi-center program funded by a public-private partnership and non-

profit organizations to provide standardized longitudinal medical image data to global researchers for 

neurodegenerative disease research. There were 140 FDG-PET studies; 70 MCI subjects and 70 NCs. All images 

came from ADNI, ADNI GO and ADNI 2 baseline/initial scans; these data had been through a pre-processing 

pipeline that included: co-registration, averaging, voxel normalization, and isotropic Gaussian smoothing [21]. This 

pre-processing work is done by the ADNI participants and it makes any subsequent analysis simpler as the data from 

different PET scanners are then uniform. The demographic information of all 140 subjects and the Mini-Mental State 

Examination (MMSE) scores are shown in Table I. 

 

 

TABLE I 

Demographics data with mean±std 

 

Subjects 

MCI NC 

Number of subjects 70 70 

Age (years) 75.5±7.4 74.5±5.7 

http://adni.loni.usc.edu/
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Weight (kg) 77.9±14.8 75.5±15.2 

Gender (M/F) 45/25 42/28 

MMSE 26.8±1.6 28.92±1.3 

 
 

4. METHODS 

4.1 Feature Extraction 

Our aim was to extract spatial features from voxel volumes representing cerebral cortical and subcortical regions 

on each PET image. To ensure good spatial localization we registered each PET image to a brain atlas. We used the 

automated anatomical labeling (AAL) cortical parcellation map [22] to identify the anatomical volumes of interest 

(VOIs) where spatial features were to be extracted. Hanning et al. [10] reported on the important role that the AAL 

map plays in computer-based functional brain image analysis for identifying dementia. The AAL image template 

contains 116 manually drawn and accurately reconstructed anatomical VOIs, and it has dimension of 91 × 109 × 91 

with voxel size of 2 × 2 × 2 mm
3
. To achieve the best image registration result, before registration to AAL template 

we spatially normalized each of the study images to the PET image template provided by statistical parametric 

mapping (SPM) software. This PET template has the same dimension and voxel size as the AAL template. As a 

result, the normalized images are in the same coordinate space as the AAL template. 

Following spatial normalization, we extracted three groups of spatial features. They were: mean voxel values from 

116 anatomical VOIs, standard deviations of voxel values from 116 anatomical VOIs, and mean voxel value 

differences between 54 pairs of anatomical VOIs on left and right brain hemispheres. We then concatenated these 

three feature groups together to form a feature vector of dimension 286 for each image. 

Let 𝑿 ∈ ℝ140×286  denote the column matrix containing all spatial features, and let 𝒙𝑖 =  𝒙𝑖,1 , 𝒙𝑖,2 , … , 𝒙𝑖,286 
𝑇

, 𝑖 =

1,… ,140 be the feature vector for the 𝑖th image, where 𝑇 is matrix transpose. Finally, let 𝒀 =  −1,1 , 𝒀 ∈ ℝ140  

denote the label vector (MCI: −1, NC: 1) for the images. Note that 𝑿 is mean centered and standardized. 

 

4.2 Feature Transformation 

In our method we do not use the feature matrix 𝑿 directly. Instead, we used a transformed version of 𝑿, because 
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we wanted to better model the classification problem with noise corrupted images in the robust optimization 

framework. We attempted to model image noise caused by perturbation to the data 𝑿 as a perturbation to the 

statistical distribution of 𝑿. Therefore, we use 𝑿  to denote the transformed data matrix, and 𝒀  the transformed label 

vector. 

The data transformation process took the form of incomplete random forest, whose main difference compared to 

the classic random forest is that the decision trees in the incomplete random forest are never fully grown. That is to 

say, the training cycle of each decision tree is terminated before it reaches the state when each leaf tree node contains 

only data examples from single class. Let ℱ be the incomplete random forest we build and denote the decision tree as 

𝑇𝑚 , 𝑚 = 1,2,… ,𝑁𝑇  where 𝑁𝑇  is the total number of trees in ℱ. 𝑇𝑚  is only allowed to grow up to 𝑑 level where 𝑑 is a 

predefined parameter. 

To construct ℱ , we iteratively built each decision tree 𝑇𝑚  using 𝑿 by branching 𝑿 at each non-leaf tree node 

following top-down order. Starting from the root node of 𝑇𝑚 , at each non-leaf node of the tree we randomly selected 

a number of different features 𝑘 = 1,… , 𝑛𝑘  (where 𝑛𝑘  is a predefined parameter) from the 286 spatial features and 

calculate the branching threshold 𝜃𝑘  using 

𝜃𝑘 =  max 𝒙:,𝑘 − min 𝒙:,𝑘  /2  (3) 

where 𝑚𝑎𝑥 and 𝑚𝑖𝑛 indicate the maximum and minimum values in a vector, respectively. 𝒙:,𝑘 ∈ ℝ140  is the column 

vector of 𝑘 th feature values in 𝒙𝑖 , 𝑖 = 1,… ,140 . We then selected the best branching threshold 𝜃∗  from the 

candidates 𝜃1, … , 𝜃𝑛𝑘
 by solving the optimization problem below 

𝜃∗ = argmin𝜃𝑘
𝐼       𝑘 = 1,… , 𝑛𝑘  (4) 

where 𝐼 is the unsupervised information gain [15] defined by 

𝐼 = 𝑙𝑜𝑔  𝛬 𝑆𝑕   −   𝑆𝑕
𝑏 𝑙𝑜𝑔  𝛬 𝑆𝑕

𝑏    𝑆𝑕   𝑏= 𝐿,𝑅  (5) 

where 𝑕 is the current non-leaf node being branched, 𝑆𝑕 ⊂ 𝑿 is the dataset at node 𝑕 before branching, 𝑏 is the 

branching direction which can only be either 𝐿 - left branch of node 𝑕 or 𝑅 - right branch of node 𝑕, 𝑆𝑕
𝑏 ⊂ 𝑆𝑕  is thus 

the dataset assigned to the respective branch (left or right) of node 𝑕 , Λ is covariance operator and  ∙  is set 

cardinality. Note that the calculated unsupervised information gain 𝐼 may not be a real number due to the presence of 
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the covariance operator, in which case the candidate 𝜃𝑘  is discarded and a new 𝜃 is randomly selected to replace it. 

This branching/optimization process is carried on until the predefined tree depth 𝑑 is reached. 

Once every 𝑇𝑚  in ℱ is built following the procedure outlined above, the transformed feature data and labels are 

collected from leaf nodes of each tree 𝑇𝑚 . Each leaf node of 𝑇𝑚  is treated as a subspace containing two clusters, one 

for each of the two data classes (MCI, NC). It is straightforward to calculate the mean 𝜇 and covariance Σ from each 

cluster. For 𝑇𝑚  we obtain 𝝁𝑚 =  𝜇+
1 , … , 𝜇+

𝑙 , 𝜇−
1 , … , 𝜇−

𝑙  
𝑇

, 𝜮𝑚 =  𝛴+
1 , … , 𝛴 +

𝑙 , 𝛴 −
1 , … , 𝛴−

𝑙  
𝑇

, and 

𝒚𝑚 =  1,… ,1, −1,… ,−1 𝑇 ,  𝒚𝑚  =  𝝁𝑚  =  𝜮𝑚   where 𝑙 is the number of leaf nodes, + is MCI class, − is NC class, 

𝒚 is the corresponding label vector. To this end, the transformed data is 

𝑿 =  𝑺𝜇 , 𝑺𝛴 = { 𝝁1 , … , 𝝁𝑚  ,  𝜮1, … , 𝜮𝑚  } 

and the transformed label vector is 

𝒀 =  𝒚1, … , 𝒚𝑚   

 

4.3 Classification 

In the classification stage, we train a classifier within the robust optimization (RO) framework [23] using 

transformed data  𝑺𝜇 , 𝑺𝛴 , 𝒀  . Assuming that  𝑺𝜇 , 𝑺𝛴 , 𝒀   are noise corrupted, which is appropriate as it is accepted that 

FDG-PET images usually have a low signal-to-noise ratio due to the limited resolution of PET scanners [24], to 

model the uncertainty associated with these noisy data, we consider the modified version of the inequality constraint 

in the original SVM problem 

𝑃𝑟 𝑦𝑘 𝒘
𝑇𝒙𝑘 + 𝑏 ≥ 1 − 𝜉𝑘 ≥ 𝛿𝑘  (6) 

where 𝛿 ∈  0,1)  is a user defined parameter. The probabilistic constraint simply requires each feature vector 𝒙𝑘  to lie 

on the correct side of the optimal hyperplane with a certain confidence value 𝛿.  Solving SVM problem with this 

constraint is extremely difficult. Therefore, we transformed it into a deterministic constraint with the assumption that 

the feature data is drawn from a multimodal Gaussian distribution characterized by mean and covariance [25]. Our 

transformed datasets  𝑺𝜇 , 𝑺𝛴 , 𝒀   naturally fit into this new deterministic constraint, which is written as 

𝒀  𝑺𝜇𝒘 + 𝑏 ≥ 1 − 𝝃 + 𝜸 𝑺𝛴
1/2𝒘 

2
 (7) 
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where we introduce a new parameter vector 𝜸,  𝜸 =  𝒀  . 𝜸 is computed from the leaf nodes of decision trees in a 

way similar to [26]. For 𝑖 = 1,… , 𝑙𝑚, where 𝑙 is the number of the number of leaf nodes, 𝑚 is the number of trees in 

forest ℱ 

𝛾𝑖 =  
𝑛𝑖 𝑛𝑀𝐶𝐼 ,   𝑦𝑖 = 1

𝑛𝑖 𝑛𝑁𝐶 ,   𝑦𝑖 = −1
  (8) 

where 𝑛𝑖  is the number of feature vectors dwelled at leaf node 𝑖, 𝑛𝑀𝐶𝐼  and 𝑛𝑁𝐶  are the total number of MCI cases and 

NC cases in the whole dataset, respectively. Finally, the robust SVM problem is formulated as 

minimize𝒘,𝑏,𝝃
1

2
 𝒘 2

2 + 𝐶𝝃 (9) 

𝑠. 𝑡.  𝒀  𝑺𝜇𝒘 + 𝑏 ≥ 1 − 𝝃 + 𝜸 𝑺𝛴
1/2𝒘 

2
,   𝝃 ≥ 0 

Evidently, (9) is a convex problem. In our study, we solve this problem using CVX Matlab toolbox [27]. In order 

to efficiently solve this problem with CVX, we reformulate (9) into an equivalent second-order cone programming 

(SOCP) problem 

minimize𝒘,𝑏,𝝃 𝑡 + 𝐶𝝃 (10) 

𝑠. 𝑡.   𝒘 2 ≤ 𝑡 

𝒀  𝑺𝜇𝒘 + 𝑏 ≥ 1 − 𝝃 + 𝜸 𝑺𝛴
1/2𝒘 

2
,   𝝃 ≥ 0 

Once the optimal solution  𝒘∗, 𝑏  is found by solving (10), predictions of feature vectors extracted from new PET 

image are made by evaluating function (2). 

 

5. EXPERIMENTS 

5.1 Benchmark Methods 

We compare the proposed RF-RSVM method to three baseline methods: 

1. Supervised SVM [17]: We applied the soft margin SVM as described in the section on background. 

2. Laplacian SVM (LapSVM) [28, 29]: LapSVM regularizes the standard SVM cost function with a data 

dependent penalty term with the assumption that the intrinsic structure of the data is embedded within a low 

dimensional manifold. It approximates this new penalty term by modeling the structure of the data using graph 
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Laplacian. 

3. Method proposed by Huang et al. [26]: Huang et al conducted clustering based on a dataset using the k-nearest 

neighbour algorithm, and then merged similar clusters, followed by solving the SOCP problem (10). The 

method showed good performance on non-medical imaging datasets. 

Only the soft margin SVM is supervised learning method while the other two methods are both semi-supervised. 

 

5.2 Experimental Settings 

To ensure that our method had good generalizability, we applied 3-fold cross validation for our method and the 

three benchmark methods. We first divided the whole dataset evenly into 3 subsets (the residual is randomly assigned 

to one of the subsets), each contained 20% labeled data examples and the rest of data were treated as unlabeled. 

Within the labeled and unlabeled groups of data in each subset, we further restricted that 50% of data in this group 

were MCI subjects and 50% were NCs. We used the inductive learning schema in our first experiment, and trained 

the target classifier using any 2 out of the 3 subsets, then tested the target classifier on the leftover subset. Initially, 

𝑑 = 3, 𝑁𝑇 = 25 were used to construct the unsupervised random forest in RF-RSVM. Hyperparameters required in 

the benchmark methods were set empirically or selected by an inner 3-fold cross-validation using the training data. 

 

5.3 Results and Discussion 

We applied the proposed method (RF-RSVM) and the baseline methods to classify MCI and NC. The performance 

of these methods measured by classification accuracy, sensitivity and specificity averaged over the 3 fold cross-

validation steps are shown in Table II. The plain supervised SVM failed to generate meaningful results possibly due 

to the high non-linearity and high similarity of the feature patterns in our dataset. The RF-RSVM outperformed the 

other two semi-supervised learning methods in terms of accuracy, sensitivity and specificity. The less impressive 

performance of LapSVM may be related to that the intrinsic structure of our data, which to some extent, violates the 

smooth manifold assumption that is crucial for LapSVM to perform well. The receiver operating characteristic (ROC) 

curve for these three semi-supervised learning methods are shown in Figure 1 and complement the findings in Table 

II. 
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TABLE II 

Classification performance of the proposed method and the baseline methods 

Method Accuracy Sensitivity Specificity 

RF-RSVM 92.18% 90.31% 94.30% 

LapSVM 75.54% 83.32% 69.70% 

kNN-SVM 86.41% 89.53% 84.20% 

Supervised SVM 47.83% 0% 47.83% 

 

 

 

Figure 1.  ROC curves for methods, excluding supervised SVM compared in Table I. 

 

The inductive learning scheme used in the first experiment validates the generalizability of classifier built using 

training data. Transductive learning, on the other hand, carries out training and testing on the same dataset. It is very 

useful when the size of the dataset (training + testing) is small. Since the dataset used in dementia related studies 

usually does not contain tens of thousands images, the proposed method could be tested under the transductive 

learning setting. For each of the 3 subsets created before, we trained our method, LapSVM, and kNN-SVM in a way 

that both labeled and unlabeled data within each subset were used for training while only unlabeled data within each 

subset was used for testing. The same performance metrics as those shown in Table II were used and they were 

averaged over the 3-fold cross validation. Table III shows the final performance of the three methods. 

 

TABLE III 

Classification performance of the proposed method and the baseline methods under transductive learning setting  
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Method Accuracy Sensitivity Specificity 

RF-RSVM 86.90% 92.86% 80.95% 

LapSVM 77.50% 77.58% 76.67% 

kNN-SVM 79.49% 82.35% 77.27% 

 

 

When dealing with random forest an obvious question is what is the impact that the hyperparameters such as tree 

depth 𝑑 and the number trees 𝑁𝑇  have on the performance of the proposed method. We carried out experiments to 

apply RF-RSVM with varying 𝑑 and 𝑁𝑇  to measure the impact. We fixed 𝑑 as 2 and 3, and then increased the 

number of trees in the random forest from 10 to 50 with increments of 5. The metrics used were identical to the first 

experiment and the performance charts for these two scenarios are shown in Figure 2.  

 

(2a) 

 

 

(2b) 

 

Figure 2.  Accuracy, sensitivity, and specificity changes as the number of trees increases with the tree depth fixed as 2 (2a) and 3 (2b). 

 

It is noticeable that our method is not sensitive to the number of trees 𝑁𝑇  as the slopes of curves on both charts are 

relatively stable: on the chart (2a) the performance fluctuates between 0.8 and 0.9, and between 0.85 and 0.95 on the 

chart (2b). However, increasing 𝑑 improved the overall performance of the proposed method; and this has been 

reported for other experiments by Criminisi et al. [15] and Verikas et al. [30]. Criminisi et al. regarded the maximum 
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allowed tree depth as one of the most influential factor for a random forest, and Verikas et al. let trees in their random 

forest grow to maximum depth in order to get low bias and low correlation which are essential for accuracy. 

In machine learning, when the whole training dataset is labeled (e.g. each PET image contained in the dataset is 

given a class: MCI or NC), the learning process is called supervised learning, whereas it is called semi-supervised 

learning if large part of the training dataset are unlabeled. So if we denote the total number of data examples 

contained in a dataset as 𝑁. Let 𝑁𝐿  and 𝑁𝑈  be the number of labeled data and unlabeled data. 𝑁 = 𝑁𝐿 + 𝑁𝑈 , and 

usually, 𝑁𝐿 ≪ 𝑁𝑈 . Therefore, semi-supervised learning can play an important role in solving practical problems 

when most of data labels are unavailable due to the high cost of manual data labeling or when full data labeling is not 

possible. Our method is essentially a semi-supervised learning method, which is appropriate, since in the clinical 

setting brain images labeled as dementia are usually not available given the difficulty in making an accurate 

diagnosis without a post-mortem. The number of unlabeled brain images, or brain images which are suspected to 

reflect dementia, are abundant. 

One of the most important components/processes in our method is feature transformation via incomplete random 

forest. This transformation is the key to modeling the MCI/NC classification under RO framework. This 

transformation also introduces some problems. For example, after a decision tree is constructed it is not guaranteed 

that each leaf node will always contain some feature vectors belonging to MCI and some belonging to NC. Some leaf 

nodes may only contain feature vectors belonging to a single class – we call those leaf nodes degenerative leaf nodes. 

We discard all degenerative leaf nodes to avoid numerical difficulties. The main problem with the feature 

transformation process is a long training time. This issue can be seen from the first constraint in the optimization 

problem (10). Recall that 𝑑 is the depth of each decision tree in forest ℱ. Since the decision tree is a binary tree, the 

number of leaf nodes each decision tree can have is 2𝑑 − 2𝑑−1, thus the total number of leaf nodes in forest ℱ is 

𝑁𝑇(2𝑑 − 2𝑑−1). Each leaf node contains two clusters (one for MCI, one for NC), as a result, the upper bound of the 

number of constraints is 2𝑁𝑇(2𝑑 − 2𝑑−1) (this is an upper bound since some leaf nodes may be degenerative). It is 

easy to have tens of thousands of constraints even with a moderate number of decision trees and tree depth. This 

greatly decreases the efficiency of our method. A simple strategy to alleviate this effect would be to combine 𝝁 and 𝜮 

for each data category (MCI and NC) within each tree by calculating their arithmetic means and we applied this 

strategy to all our experiments. 
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6. CONCLUSION 

We implemented a novel computer-aided method for the early identification of baseline MCI subjects among NCs 

using FDG-PET image data obtained from the ADNI cohort. We formulated the problem within a robust 

optimization framework with feature data transformed via incomplete random forest to enable semi-supervised 

learning. Our results show that our method outperforms two other semi-supervised learning methods. In future work 

we will test the performance of our method on a much larger dataset to determine if the current results are sustained 

over a larger dataset. 
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