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ABSTRACT
Current medical content-based retrieval (MCBR) systems
for neuroimaging data mainly focus on retrieving the cross-
sectional neuroimaging data with similar regional or global
measurements. The longitudinal pathological changes along
different time-points are usually neglected in such MCBR
systems. We propose the cross-registration based retrieval for
longitudinal MR data to retrieve patients with similar struc-
tural changes as an extension to the existing MCBR systems.
The diffeomorphic demons registration is used to extract the
tissue deformation between two adjacent MR volumes. An
asymmetric square dissimilarity matrix is designed for index-
ing the patient changes within a specific interval. A visual
demonstration is given to show the registration displacement
fields of the query as compared to the simulated results. The
experimental performance with the mean average precision
(mAP) and the average top-K accuracy (aACC) are reported
for evaluation.

Index Terms— Content-Based Retrieval, Longitudinal
Neuroimaging Analysis, MRI, ADNI

1. INTRODUCTION

Medical content-based retrieval (MCBR) has a wide range of
applications in large-scale data management, clinical decision
making and training [1, 2, 3]. As a computer aided diagnosis
tool, MCBR uses the representative information extracted
from medical data as the query index to find similar cases
available in the repository. Along with the retrieved images,
the cascaded patient meta-data can also be useful for decision
support or knowledge discovery. Many MCBR frameworks
have been proposed in neuroimaging studies [4, 5]. The
existing frameworks retrieve neuroimaging subjects as in-
dependent entries. The distances between the neuroimaging
regional feature vectors are often used as the similarity metric.
The capability of the existing neuroimaging CMBR systems
may be limited by only considering the cross-sectional sim-
ilarity, especially when they are used for understanding the
pathological progression patterns. It is assumed that some
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neurodegenerative diseases, such as Alzheimer’s disease
(AD), usually progress with a specific pattern [6]. Without
sequential observations of the same subject, the comparison
between the subjects with only single neuroimaging scans
may be highly biased because of the cross-sectional variance.
The intra-subject longitudinal changes within a unit interval
may provide informative insights for the severity of the dis-
ease progression. To measure the intra-subject pathological
progression, global volumetric features are widely used [7, 8]
because the atlas segmentation errors may pose a bottleneck
on the extraction of subtle regional changes. Meanwhile,
though the global atrophy measurements reduce the brain
atlas segmentation errors, they may oversimplify the dis-
ease progression by disregarding the sequence of the disease
events demonstrated by regional changes [9, 10].

In this paper, we propose a cross-registration based re-
trieval (CRBR) framework to retrieve the longitudinal brain
atrophy changes obtained from serial magnetic resonance
(MR) database. The brain tissue atrophy is measured with a
global non-rigid spatial transform [11]. To extract the subtle
longitudinal changes, the demons registration with the dif-
feomorphic force is used [12]. The changes represented by
the registration displacement fields are visually interpretable
and comparable. Following the registration algorithms, the
distance between transforms is computed by the mean dis-
tance of the position-matched voxel intensities between the
resampled MR volume and the real follow-up MR volume.
An asymmetric square dissimilarity matrix is computed for
fast image retrieval and cascading the associated meta-data of
the retrieved patients for further analysis.

2. METHODS

2.1. Longitudinal Tissue Deformation Tracking

To accurately extract the local tissue motions, it is important
to correct the spatial distortion and the histogram mismatch.
Skull stripping is automatically applied on each MR volume
with brain extraction tool (BET) [13]. The skull stripped MR
volumes are then affine registered referencing the MNI 152
template using FLIRT [14]. The template image is resampled
to the target image space with initial histogram matching.



Non-rigid registration is used for obtaining the longitudi-
nal tissue motions between two adjacent MR volumes of the
same patients. For the longitudinal registration, we choose the
diffeomorphic demons registration [12], which is an efficient
non-parametric extension of Thirion’s demons algorithm. Let
P(i) = [I1, I2, ...In] be a set of MR volumes scanned on the
i-th patient in the database with sequential acquisition time-
points. All the time-points are assumed to have similar inter-
vals, such as 6 months or 1 year. The registration is performed
to obtain a transformation s(.) which minimises the global en-
ergy E(Ii, Ii−1 ◦ s) as an intensity-based registration:
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where ||s − c|| is the spatial uncertainty; || ▽ s|| is the regu-
larisation term; c is the non-parametric spatial transformation
which realises s. The registration is optimised with composi-
tive demons iterations by updating a dense displacement field
u using diffeomorphic force c ← s ◦ exp(u). A windowed
sinc filter is used for the interpolation of output voxels. The
final spatial transformation c(i) is stored to track the tissue
deformation in a unit time interval of patient P(i).

(a) Screening MR (b) 1 year MR

(c) Grid-View of Registration (d) Registered Screening MR

Fig. 1: An example of the longitudinal registered sequence
and the velocity fields used to obtain the tissue motions.

2.2. Cross-Registration Based Retrieval (CRBR)

After all the demons transforms ci ∈ C are computed, a
square matrix D is generated to index the dissimilarity of the
collected longitudinal tissue changes. For each pair of longi-
tudinal deformations, ci ∈ C and cj ∈ C, four images I(a)i ,
I
(b)
i , I(a)j , I(b)j are associated. I(a)i is resampled with cj refer-

encing its follow-up volume I
(b)
i to obtain the output volume

φ(I
(a)
i , I

(b)
i , cj). The dissimilarity Dij is computed as the

mean squared error between the resampled volume and the
real follow-up image, ||φ(I(a)i , I

(b)
i , cj)− I

(b)
i ||2. Dij can be

interpreted as the distance between the real follow-up volume
and the volume simulated with the change cj . Thus, Dij and
Dji are computed independently that makes the dissimilarity
matrix D asymmetric. The diagonal elements {Dij | i = j}
denote the transformation error of ci. To minimise the bias
introduced by the image distortion and resampling errors, for
i ∈ [1, n], the dissimilarity matrix is normalised by the maxi-
mum dissimilarity maxj Dij in the i-th row as

D̄ij =
1

maxj Dij
(Dij − diagi(D)) (2)

where diagi(D) is the diagonal element in the i-th row of
D. The normalised matrix D̄ is used as a dissimilarity in-
dex of the longitudinal neuroimaging database which is capa-
ble of retrieving similar tissue deformations within a specific
time interval. To insert a new sequential MR volume pair, a
new row and a column of D̄ are calculated pairwisely with
the deformation changes indexed in the CRBR database. The
querying, updating and deleting are also based on the similar
manipulation of D̄.

To query with MR volumes out of the CRBR database,
I⋆(a) and I⋆(b) with a transform c⋆, a temporary column
and a temporary row of D̄ will be calculated as D̄col⋆i =

||φ(I(a)i , I
(b)
i , c⋆)−I(b)i ||2 and D̄row⋆

i = ||φ(I⋆(a), I⋆(b), ci)−
I⋆(b)||2. The rank of an arbitrary subject in the database will
be determined by a weighted sum of the sorted rank from
D̄col⋆i and D̄row⋆

i as
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where R(.) is the rank of the i-th element in the sorted dis-
similarity vector. The retrieved entries will be used as sec-
ondary indices for cascading clinical records, such as cogni-
tive measurements, medical history, familial disease condi-
tion, genetic information, etc.

3. EXPERIMENTS AND RESULTS

To evaluate the proposed proof-of-concept framework with
measurable performance, we sampled a subset of patients
from ADNI 2 repository (http://adni.loni.usc.edu/) [15]. This
subset contains 150 patients who have T1 weighted N3 cor-
rected MR volumes available from one initial screening and
a 1-year follow-up scanning. The 1-year diagnosis changes
in this subset are shown in Table 1. One sequence of the
stable normal control (Stable: NL) was eliminated due to the
registration failure.

The framework used for the evaluation was implemented
as an extension module of 3D Slicer 4.4 [16] named ADNI
Regival. The module utilises the implementation of demons



(a) Query

Header Value
Age 70.8
Gender Female
Sequence Type Stable: MCI
Baseline MMSE 30
year 1 MMSE 27
APOE4 0
Baseline FDG 6.42

(b) Example Query Meta-Data

(c) Rank 1

Header Value
Age 69.3
Gender Female
Sequence Type Stable: MCI
Baseline MMSE 25
year 1 MMSE 25
APOE4 1
Baseline FDG 5.19

(d) Example Rank 1 Meta-Data

(e) Rank 2

Header Value
Age 79.3
Gender Male
Sequence Type Stable: AD
Baseline MMSE 22
year 1 MMSE 22
APOE4 1
Baseline FDG 5.57

(f) Example Rank 2 Meta-Data

Fig. 2: An example visual check for the query with the two
top ranked records in the sampled dataset from ADNI 2. The
left column is the transforms overlaid on their original MR
scans; the right column is some example low dimensional
biomarkers of the patients.

Change 1 year All
Conversion: MCI to AD 11 19
Conversion: NL to MCI 4 5
Reversion: MCI to NL 1 5
Stable: AD 13 13
Stable: MCI 68 57
Stable: NL 52 50

Table 1: The occurrence of AD progression changes observed
within 1 year and all the available visits in the sampled subset
of ADNI 2.
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Fig. 3: The designed relevance criteria used in the experi-
ments. The graph is equivalent to a 6× 6 square matrix.

registration from the Slicer BRAINS tools [17]. To construct
the evaluation dissimilarity matrix, 5 pyramid voxel sampling
levels were used for each registration. A visual demonstra-
tion of the queried transforms overlaid on their original MR
is displayed in Fig. 2. For this specific query, an early MCI
patient with Mini-Mental State Examination (MMSE) score
of 30 was used. The top 2 subjects retrieved by this patient
were a late MCI patient and an AD patient with low MMSE
scores (25 and 22). The retrieved records are constant with a
sharp decrease in the MMSE score of the query patient and
may indicate the severity of the progression within this year.

To evaluate the relevance of the retrieval results, both the
mean average precision (mAP) and the top-K average accu-
racy (aACC) were calculated. Though, for retrieval tasks it is
reasonable to have different progression labels mixed in the
retrieved list, to further evaluate the framework settings, the
leave-one-out cross-validation was conducted with two sets
of sequence labels as shown in Table 1. The performance
was quantitatively measured by the mean average precision
(mAP) [18] as

mAP = (

Q∑
q=1

(

n(q)∑
i=1

i/R(i)))/Q (4)

where q is the index of the query within Q queries, i is the
index of the case within the n(Iq) cases with the same stage
to the query; R(i) is the position of Ii in the ranking results.
We also calculated the average accuracy (aACC) given the
first K retrieved results for each query, as:

aACC = (

Q∑
q=1

(
K∑
r=1

relIq (Ir))/K)/Q (5)

where r is the index of the retrieved item within the K re-
sults, relIq (Ir) is the relevance of Ir given the query Iq as
defined in Fig. 3. mAP was used to evaluate ranking of the
retrieval results; aACC was used to evaluate with the rele-
vance criteria across different AD progression stages. The
mAP and aACC values are plotted along the axis of λ de-
fined in Fig.4(a) and Fig.4(b). The results with eliminating
9 subjects, which had negative values in D̄, are also pro-
vided for fair comparison, because such subjects may have
poor imaging quality. For both sets of sequence labels (Ta-
ble 1), the peaks of mAP and aACC were observed when
λ ∈ (0, 0.5). It is reasonable to assume that the columns of D̄
were more prone to the imaging distortions because they were
obtained by transforming different images from the database.
When negative values removed, better ordering was observed
in Fig 4(a), especially for long-term analysis with larger un-
certainties (Fig 4(a)-All).

4. CONCLUSION

In this paper, we proposed a cross-registration based retrieval
(CRBR) framework to extend the existing content-based re-
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Fig. 4: The changes of the mean average precision (mAP) and the average top-K accuracy from the leave-one-out validation
for this framework according to λ. When λ = 0, the queries only use the horizontal ordering and vice versa. The random pick
performance is also presented in each figure.

trieval systems. The proposed framework focused on retriev-
ing similar pathological changes within a specific interval.
Though the medical retrieval systems are not supposed to
retrieve patients always with the same diagnosis labels, our
evaluation with mAP and average top-K accuracy demon-
strated that the proposed CRBR yields informative retrieved
results with the MR data recruited from ADNI 2.
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