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ABSTRACT: 
Recent developments in the area of network science has 

encouraged researchers to adopt a topological perspective in 

modelling Supply Chain Networks (SCNs). While topological 

models can provide macro level insights into the properties of 

SCN systems, the lack of specificity due to high level of 

abstraction in these models limit their real-world applicability, 

especially in relation to assessing the impact on SCNs arising 

due to individual firm or supply channel level disruptions. In 

particular, beyond the topological structure, a more 

comprehensive method should also incorporate the 

heterogeneity of various components (i.e. firms and inter-firm 

links) which together form the SCN. To fill the above gap, this 

work proposes using the idea of absorbing Markov chains to 

model disruption impacts on SCNs. Since this method does not 

require path enumeration to identify the number of supply chains 

which form the SCN, it is deemed more efficient compared to 

the other traditional methods.  
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I. INTRODUCTION 

In today’s highly interconnected world, global supply 
chain networks (SCNs) play a vital role in fuelling 
international trade and economic growth. Due to this 
interconnectedness of global businesses, which are no longer 
isolated by industry or geography, any disruptions to SCNs, 
such as natural disasters, acts of war and terrorism, and even 
labour disputes are becoming increasingly complex in nature 
and global in consequences [1]. These disruptions can ripple 
through global supply chains, magnifying their original 
damage. Even relatively minor disturbances, such as labour 
disputes, ground congestion or air traffic delays can result in 
disproportionately severe disruptions to local and international 
trade. Therefore, this ‘fragility of interdependence’ creates 
unprecedented risks to global and local economies [2]. 
Therefore, the design of supply chains that can maintain their 
function in the face of perturbations is a key goal of today’s 
supply chain management. In particular, new methodologies 
are required to model the existing SCNs in order to analyse the 
impact of local disruptions on the overall system.  

Traditionally linear supply chains have, in recent years, 
evolved towards highly complex systems; mainly due to 
globalization and product specialization (see Figure 1). 
Therefore, modern supply chains can be viewed as networked 
populations of autonomous firms. Given the sheer complexity 
and the large number of variables involved, these SCNs are 
best viewed holistically through a macroscopic or a 
topological modelling approach. Such modelling efforts can 
reveal important insights into the relationship between the 
topological structure and various functions of SCNs [3, 4, 5].  

Due to the difficulty in obtaining large scale datasets on 
SCNs (supplier-customer relationships), which are often 
proprietary and confidential, early studies have relied on 
computer simulations to generate network topologies (through 
various growth mechanisms) supposedly representative of real 
world SCNs [3]. Recently however, a number of data driven 
studies have appeared in literature, which used Bloomberg 
database to obtain SCN data for publicly listed firms [5, 6, 7]. 
These network-based models of complex supply chain systems 
have shown the existence of non–trivial and universal 
topological footprints, from which valuable system level 
insights can be obtained [6, 7, 8]. For instance, studies have 
found that the SCNs tend to be scale free in nature (with 
distinct hub firms), where the distribution of the number of 
firm level connections in the SCN (i.e. the degree distribution) 
follows power-law with the power law exponent between 2 
and 3 [6].  

There exists a large body of literature investigating the 
robustness of SCNs where the links represent the undirected 
relationships between firms. These studies have gained 
insights into SCN robustness based on either or both of the 
following avenues [3]:  

1. Analytically determining the topological metrics of
the networks, such as the degree distribution, average path 

Fig. 1: Evolution of linear supply chains towards complex SCNs 

length, clustering coefficient, nestedness and assortativity. 
These metrics reveal the structural features of the SCN which 
have direct or indirect robustness implications [6, 7, 8, 10, 11, 
12]. 

2. Using generic network science based simulation
techniques, which involve sequential removal of nodes 
(randomly or targeted by degree or some other topological 
attribute) and recording at each step, the size of the largest 
connected component and/or the average/maximum shortest 
path length in the largest connected component. By creating 
profiles of these metrics across the percentage of nodes 
removed, one can compare the robustness character for 
various SCN topologies [13, 14, 15]. 

While the above methods provide general insights into the 
topological robustness of SCNs, the lack of specificity due to 
high level of abstraction limits their real world applicability. 
Additionally, consideration of the topological structure 
without incorporating the heterogeneity of the singular 
components (i.e. the nodes and the links) that form the SCN, 
can only account for a part of the full picture. Therefore, there 
exists a need for a more specific method for assessing the 
robustness of SCNs. In particular, this method should consider 
the topological structure of the SCN while at the same time 
capturing the heterogeneity of each component. 

In addition, the above methodologies do not consider link 
weights - some SCN exchange relationships may be more 
important compared to the others, and therefore it is important 
to represent these links as weighted connections, so that the 
heterogeneity in capacity and intensity in various connections 
are captured accurately in the model (weighting of links can 
be a function of volume, frequency and criticality of flows in a 
given period [4]). Finally, the approaches observed in the 
contemporary literature do not account for partial functionality 
of the nodes – since only full node removals are simulated.  

In light of the above, this work seeks to develop a SCN 
robustness assessment method which is capable of accounting 
for both the topology of the SCN and the heterogeneity of 
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components. Accordingly, the proposed methodology enables 
determining the network wide impact of a disruption at a 
single node and/or a link. A key advantage of the proposed 
method is that it does not require a-priori path enumeration 
(which can be computationally expensive) to establish the 
number of paths within the SCN, since this calculation is 
implicitly carried out through the proposed matrix operations.  

II. BACKGROUND 

A. Absorbing Markov Chains 

A Markov process is any stochastic process that satisfies 
the Markov property. A process is said to satisfy the Markov 
property if predictions can be made of its future states based 
solely on its current state, independent of its full history. 
Since, the future of the process is determined conditional to its 
present state, its future and past states are independent. As a 
result, the Markov property is also referred to as 
memorylessness. This assumption enables one to easily 
calculate the conditional probabilities for a given system and 
therefore this concept can be used to model a wide range of 
real world scenarios [16]. 

A Markov chain is a type of Markov process, which is 
often characterised by a transition matrix. The transition 
matrix defines the probability of an entity moving from one 
state to another, within the system being modelled. A regular 
(as opposed to an ‘absorbing’) Markov chain is characterised 
by a primitive transition matrix, P. Primitivity requires 
P(i,i)<1 for every state i – which implies that in a regular 
Markov chain, it is impossible for an entity to get “stuck” or 
“absorbed” in a particular state. In contrast, a Markov chain is 
said to be absorbing, if it has at least one absorbing state (i.e. a 
state i with P(i,i) = 1) and if it is possible to transition from 
each non-absorbing state to at least one absorbing state (not 
necessarily in one step), within the system being modelled. In 
an absorbing Markov chain, non-absorbing states are referred 
to as transient states [17]. 

If an absorbing Markov chain has r absorbing states and t 
transient states, the transition matrix P will have following 
canonical form; 

 
 

Where Q is a square (t x t) submatrix which describes the 

probability of transitioning from each transient state to other 

transient states, R is a nonzero, rectangular (t x r) 

submatrix which describes the probability of transitioning 

from transient to absorbing states, 0 is a rectangular (r x t) 

matrix of zeros, and I is an identity matrix. The entry   of 

the transition matrix (which, after n steps, is written as P(n)) is 

the probability of being in the state sj after n steps, when the 

chain started from state si. Therefore, computations can be 

carried out to investigate the probabilistic future of this chain 

process [18].  

B. Properties of absorbing Markov chains 

1) Fundamental matrix 

In an absorbing Markov chain, the probability that the 

process will be absorbed is 1. This implies that as the number 

of steps, n goes to infinity, the probabilities of transitioning 

from some transient state to another, as recorded in Q matrix, 

goes to zero. 

 

 

 

Where the matrix  

is called the fundamental matrix for the absorbing chain with 

the transition matrix P. Each entry, nij of N shows the 

expected number of times the process being modelled will be 

in the transient state sj if it started from the transient state si. 

 

2) Absorption probabilities and time to absorption 

Let ti be the expected number of steps before the Markov 

chain process being modelled is absorbed, given that the 

process starts in state si. Then the column vector t, whose ith 

entry is ti, is calculated as [16]; 

 

t = Nc                                             (1) 

 

Where c is a column vector with all entries equal to 1.  

 

Furthermore, let B be a rectangular (t x r) matrix with 

entries bij, each of which indicate the probability that an 

absorbing Markov chain will be absorbed in the absorbing 

state sj if it starts in the transient state si. Then, the matrix B 

can be calculated as follows [16]; 

 

B = NR                                            (2) 

 

Where N is the fundamental matrix and R a nonzero 

rectangular (t x r) matrix. 

C. Canonical example of an absorbing Markov chain 

The Drunkard’s walk is a classic example used to illustrate 

absorbing Markov chains (see Figure 2). The Drunkard’s walk 

example describes a situation where a man walks along a four 

segment stretch of a road which connects his home (at 0) with 

a bar (at 4). If he is at junctions 1, 2 or 3, then he walks to the 

left or right with equal probability. Once he reaches a corner, 

i.e. either his home (0) or the bar (4), he stays there. 

 

For the Drunkard’s walk example presented in Figure 2, the 

transition matrix can be written as follows; 

 

 

 

P   = 
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The fundamental matrix, N can then be calculated as; 

 

 

 

 

 

 

 
 

Fig. 2: Illustration of Drunkard’s walk example 

 

The entries in the above matrix indicate the number 

of times the Drunkard will be at each junction (column-wise) 

if he started from a particular junction (row-wise). 

 

The expected number of steps before absorption is 

then established as [16]; 

 

 

 

 

 

The entries in the above column vector shows the 

number of steps the Drunkard is expected to take prior to 

entering his home or the bar, given the junction he started 

from (row-wise). 

 

Finally, the absorption probabilities can be calculated as [16]; 

The entries in the above matrix indicate the 

probability of the Drunkard ending up at either his home (0) or 

the bar (4), given he starts his journey at a particular junction 

(row-wise).  

III. METHODOLOGY 

The following section outlines the methodology proposed 
to evaluate the impact of localised disruptions on SCNs, along 
with a worked example. 

Figure 3 illustrates a sample four- tier SCN which is 
structurally similar to that of a directed material flow SCN – 
as discussed in [6]. The top tier (nodes 1 and 2) represent the 
suppliers, the second tier (nodes 3 and 4) represent the 
manufacturers, the third tier (nodes 5 and 6) represents the 
distributors and the fourth tier (node 7) represents a single 

retailer in this case. The pseudo origins are shown in Yellow 
squares (with the value added by each firm 1 to 6, to the final 
product delivered to the consumers by the SCN shown within 
brackets in Red colour) adjacent to each value adding node 
(note that the retailer is not considered in this case to add any 
value to the SCN). Node 14 is a pseudo node used for 
illustration purposes to indicate the absorption point of the 
Markov process (which is the consumers in the case of a 
SCN). The weights shown beside each SCN link indicate the 
proportion of the value transferred to the downstream firms by 
each upstream firm (at each level these weights add up to 1). 
The values added by each firm and the link weights have been 
randomly allocated in this example for illustration purposes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3: Sample SCN considered for application of the method 

 

For this example SCN, one could conveniently develop the 
transition matrix P and then the fundamental matrix N. These 
two matrices (P and N) are shown at the top and the bottom of 
figure 4, respectively. Note that the Q matrix is highlighted in 
Grey colour, within the P matrix shown in figure 4. 

The fundamental matrix N, which is equal to (I-Q)-1, can 

be further subdivided by origin nodes and transition nodes, as 

follows; 
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The matrices Q1 and Q2 are shown in the N matrix (bottom 

of figure 4) in light Grey and light Blue highlights, 

respectively.  

 

Given the origin value flows as a row vector g, which in 

this case is, g = [4  8  3  5  7  2], the number of visits for each 

transition node v, can be calculated as follows; 

 

 
 

The v matrix result for the example SCN considered here is 

shown in figure 5. Each number in this row vector corresponds 

to the value transferred through each transition node from 1 to 

7 in the SCN. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The transition (P)matrix (top) and the fundamental (N) matrix (bottom) 

for the example SCN 

 Now, in order to model the disruptions, one could 

manipulate the entries of the transition matrix P as desired (the 

disrupted case transition matrix is denoted as P/). For instance 

a disruption of a link can be modeled by updating the records 

of the Q matrix (disrupted case denoted as Q/) as shown 

below; 

 
 

With the above manipulation, one could re-calculate 

the fundamental matrix (denoted as N/ for the disrupted 

scenario) and the v matrix (denoted as v/ for the disrupted 

scenario) as below; 

 

 
 

 

 Note that in the row vector g, which includes the origin 

flow values, should remain constant during both pre and post 

disruption analyses.  

 Table I illustrates the results obtained for the sample 

SCN considered here – i.e. the value transferred through each 

SCN node as links are independently removed. Figure 6 

illustrates this result graphically. From these results, it is clear 

that the values transferred through nodes 1 and 2 are 

unaffected by removal of any link, as these two nodes are at 

the top tier of (i.e. they are raw material suppliers) and are the 

starting points of the SCN. 

 

Fig. 5: Value trasnferred through each transition node from 1 to 7 in the SCN 

TABLE I.  IMPACT ON VALUE TRANSFER WITHIN THE SCN DUE TO LINK 

LEVEL DISRUPTIONS 

TABLE II.   

 

 

 

 

 

 

 

 

 

 

From table I and figure 6, it is evident that the largest 

impact to the SCN arises when link 5-7 is disrupted. This 

result is intuitive since the criticality of links increases as they 

get closer to the consumer level (due to cumulative values 

carried on from upstream firms). In particular, when this link 

is disrupted, approximately 76.6% of the SCN value will not 

be able to reach the consumers. However, in contrast, when 

link 6-7, which is at the same level as link 5-7 is disrupted, 

only 23.4% of the SCN will be lost by the consumer base. 

  

Figure 7 presents the link criticality rankings 

obtained from the analysis. It is interesting to note that for the 

considered SCN, link 4-5 is deemed more critical than the link 

6-7 (which is located further downstream). Indeed, the level of 

value delivered through various SCN paths are a function of 

the link weights, which have been randomly allocated in the 

example scenario considered here. 

 

Finally, it is noted that this methodology is also able 

to model the disruptions to nodes. In the case of nodes, a 

disrupted node will be reflected as zeros along its respective 

rows and columns in the Q/ matrix (i.e. all links to and from 

this node are removed). Furthermore, this analysis can 

14 8 9 10 11 12 13 1 2 3 4 5 6 7

14 1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0.4 0.6 0 0 0

2 0 0 0 0 0 0 0 0 0 0.3 0.7 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0

4 0 0 0 0 0 0 0 0 0 0 0 0.9 0.1 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 9 10 11 12 13 1 2 3 4 5 6 7

8 1 0 0 0 0 0 1 0 0.4 0.6 0.74 0.26 1

9 0 1 0 0 0 0 0 1 0.3 0.7 0.78 0.22 1

10 0 0 1 0 0 0 0 0 1 0 0.5 0.5 1

11 0 0 0 1 0 0 0 0 0 1 0.9 0.1 1

12 0 0 0 0 1 0 0 0 0 0 1 0 1

13 0 0 0 0 0 1 0 0 0 0 0 1 1

1 0 0 0 0 0 0 1 0 0.4 0.6 0.74 0.26 1

2 0 0 0 0 0 0 0 1 0.3 0.7 0.78 0.22 1

3 0 0 0 0 0 0 0 0 1 0 0.5 0.5 1

4 0 0 0 0 0 0 0 0 0 1 0.9 0.1 1

5 0 0 0 0 0 0 0 0 0 0 1 0 1

6 0 0 0 0 0 0 0 0 0 0 0 1 1

7 0 0 0 0 0 0 0 0 0 0 0 0 1  

Scenario 1 2 3 4 5 6 7

Initial (fully 

functional 

SCN) 

scenario

4 8 7 13 22.2 6.8 29 29

1-3 4 8 5.4 13 21.4 6 27.4 27.4

1-4 4 8 7 10.6 20.04 6.56 26.6 26.6

2-3 4 8 4.6 13 21 5.6 26.6 26.6

2-4 4 8 7 7.4 17.16 6.24 23.4 23.4

3-5 4 8 7 13 18.7 6.8 25.5 25.5

3-6 4 8 7 13 22.2 3.3 25.5 25.5

4-5 4 8 7 13 10.5 6.8 17.3 17.3

4-6 4 8 7 13 22.2 5.5 27.7 27.7

5-7 4 8 7 13 22.2 6.8 6.8 6.8

6-7 4 8 7 13 22.2 6.8 22.2 22.2

Value transferred across each supply node Value transferred to the 

consumer (node 14)

Disrupted link

 

Node ID 1 2 3 4 5 6 7

Value delivered 4 8 7 13 22.2 6.8 29  
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consider partial functionality of nodes and/or links within the 

SCN. In order to model such situations, one would update the 

reductions in respective weights in the Q/ matrix.  

 

Fig. 6: Value transferred through each SCN node as links are independently 

removed 

 

Fig. 7: Link criticality ranks obtained from the analysis 

IV. DISCUSSION 

Reference [19] defines the function of a supply chain as 

to ‘transfer information, products and finance amongst 

suppliers of raw materials, manufacturers, distributors, 

retailers, and consumers’. Therefore, an efficient supply chain 

permits the goods to be produced and delivered in the right 

amounts, at the right time, to the right locations efficiently and 

reliably [20]. In line with the above, a robust supply chain 

should respond quickly and effectively to a given perturbation 

such as the failure of an individual component within the 

overall system due to an unforeseen circumstance.  

 

Robustness of SCNs have been modeled in literature 

using network science metrics or simulations which 

sequentially remove nodes (randomly or targeted by degree or 

some other topological attribute) and record at each time step, 

the size of the largest connected component and/or the average 

shortest path length in the largest connected component [3]. 

Such topology based methods assume homogeneity in SCN 

components, in terms of importance. Additionally, the high 

levels of abstraction in these models limit their real world 

applicability.  

 

This work has presented a novel methodology to 

quantify (by ranking the links based on their criticality) the 

robustness of material flow SCNs. The advantage of the 

proposed absorbing Markov chain approach is that it does not 

require computationally expensive path enumeration to be 

carried out for a given SCN. Rather, it relies on matrix 

operations for calculation of the value flow along the links of 

the given SCN.  

In summary, while the traditional network science 

methods can only model the full node and/or link removal 

scenarios, the proposed method can also account for partial 

functionality of disrupted components within the SCN – which 

is likely to be encountered in real world scenarios.  

V. CONCLUSIONS 

This work has applied the concept of absorbing Markov chains 

to model the disruption impacts on SCNs. The proposed 

method is computationally efficient compared to other 

traditional methods available in the area of network science. 

The proposed model incorporates information beyond the 

topology of the SCN as is a useful tool for decision making. In 

particular, practitioners could use this model to rank the links 

in their SCNs based on their criticality – which is determined 

on the basis of the value lost by the consumers of the SCN if 

the subject link is not fully functional. Determination of 

criticality of the links can provide practitioners with valuable 

insights on allocating resources to various components of the 

SCN. Future work on this topic should investigate the 

generalisability of the proposed model based on a collection of 

network topologies.  
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