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ABSTRACT 

The formation of bilayer-based lyotropic liquid crystals and vesicle dispersions by phospholipids in a 

range of protic ionic liquids has been investigated by polarizing optical microscopy using isothermal 

penetration scans, differential scanning calorimetry, and small angle X-ray and neutron scattering. The 

stability and structure of both lamellar phases and vesicle dispersions is found to depend primarily on 

the underlying amphiphilic nanostructure of the ionic liquid itself. This finding has significant implica-

tions for the use of ionic liquids in soft and biological materials and for biopreservation, and demon-

strates how vesicle structure and properties can be controlled through selection of cation and anion. For 

a given ionic liquid, systematic trends in bilayer thickness, chain-melting temperature and enthalpy in-

crease with phospholipid acyl chain length, paralleling behaviour in aqueous systems. 
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Introduction 

Ionic liquids (ILs) are salts that melt below 100°C, with many forming liquids at or below room temper-

ature. They are of great interest as potential replacements for organic solvents in a range of chemical 

processes, due to their low vapour pressures,1, 2 as well as their ability to dissolve a wide variety and 

combination of solutes. Strikingly, many ILs have been shown to exhibit a solvophobic effect (analo-

gous to the hydrophobic effect in water) by supporting surfactant aggregation into micelles, lyotropic 

liquid crystals and microemulsions,3-5 and by stabilizing protein folding6 and maintaining enzyme struc-

ture and activity for biocatalysis.7 Understanding the factors that control structure in such soft and bio-

logical materials is critical to realizing diverse applications of ILs from their use as biopreservatives to 

the development of designer nanoreactors.8, 9  

Protic ILs (PILs) in particular have been studied in this regard,10 precipitated by studies showing that the 

archetype ethylammonium nitrate (EAN) can form a dense, three-dimensional H-bond network.11 Being 

both cheaper and more easily synthesised than their aprotic analogues, they have greater potential for 

use at scale. Many PILs are also distillable due to proton exchange between cation or anion and their 

conjugate base or acid, facilitating recycling. 

Like synthetic surfactants, phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine 

(DPPC) self-assemble in water and some other polar solvents due to solvophobic interactions between 

the solvent and the hydrocarbon chains.8, 12-14 The two acyl tails of lipids favour planar packing geome-

tries, which predisposes them to form lamellar phases, and leads to biphasic vesicle dispersions upon 

dilution.12, 15-18 Vesicles are formed when a bilayer membrane encapsulates solvent, thus separating it 

from the external environment.19 

Phospholipids are a major component of the membranes of living cells, which makes vesicles excellent 

models for examining prebiotic compartmentalization.20 Lipid bilayer integrity is key to maintaining 
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cell function, so understanding how ILs affect bilayer stability will determine their viability as bio-

preservatives, and also inform how biological processes may operate in extreme, even non-aqueous, en-

vironments. 

Most previous studies of self-assembly in ionic liquids have focused on micelle formation by conven-

tional, water-soluble synthetic surfactants.21-25 Few have examined self-assembly of water-insoluble 

amphiphiles such as didodecyldimethylammonium bromide in ethylammonium nitrate (EAN)23 or lipids 

like DPPC in various aprotic ILs.8 

Unlike water, many ILs are themselves amphiphilically nanostructured.26 This nanostructure arises from 

the strong coulomb forces between charged centres which, together with an H-bond network, leads to 

charged domains that solvophobically expel non-polar moieties (typically cation alkyl chains) into seg-

regated domains. The extent and nature of this nanostructure depends on cation and anion type, and can 

strongly impact the solubility of various solutes. This is clearly seen, for example, in surfactant critical 

micelle concentrations, which are much higher in nanostructured ILs than in water. Similarly, longer 

alkyl chains are found necessary for lyotropic phase formation by surfactants in nanostructured ILs than 

in water.4, 27  

Here we investigate the equilibrium phase behavior and vesicle formation by phospholipids of varying 

alkyl tail lengths in a selected set of protic ILs in order to understand how changes in ion structure and 

hence IL nanostructure influences lamellar phase and vesicle formation, structure and stability. 

Figure 1 shows the structure of the PILs examined. Of the primary ammonium salts, propylammonium 

nitrate (PAN) exhibits the strongest amphiphilic nanostructure,28 consisting of interpenetrating bicontin-

uous networks of polar and nonpolar domains, with polar domains consisting of ammonium and nitrate 

charge centres associated in an extended, three-dimensional H-bond network. This bicontinuous struc-

ture is still present but less pronounced in ethylammonium nitrate (EAN), and is further diminished 
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when nitrate is replaced with formate (EAF). Ethanolammonium formate (EtAF) is only weakly 

nanostructured, as polar-apolar sequestration is interrupted by the terminal hydroxyl group participating 

in the H-bond network.29, 30 The liquid structure of dimethylethylammonium formate (DMEAF) has 

been less well-studied: DMEAF cannot form an extended H-bond network, so the driving force for its 

liquid nanostructure is entirely electrostatic. Indirect evidence comparing IL interfacial structure sug-

gests that DMEAF will also only be weakly structured in bulk.31, 32 

The phase behavior of various phospholipids in these PILS was characterized by isothermal penetration 

scans33 using polarizing optical microscopy complemented by small-angle X-ray scattering. This was 

contrasted with vesicles prepared by the ethanol injection method,34 with their structure and properties 

determined using a combination of polarizing microscopy, differential scanning calorimetry (DSC) and 

small-angle neutron scattering (SANS). 

 

 

Figure 1. Structures of the ILs and lipids used in this work, where R = C13H27 (DMPC); C15H31 

(DPPC); C17H35 (DSPC); or a mixture (egg PC). 
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Materials and Methods 

Ionic liquids were prepared by reacting equimolar amounts of  nitric (Ajax Finechem, 70%) or formic 

(Sigma-Aldrich, 98%) acid with the bases ethylamine (Sigma-Aldrich, 70%), ethanolamine (Merck, 

98%), propylamine (Sigma-Aldrich, 70%) or dimethylethylamine (Sigma-Aldrich, 99%) to produce 

aqueous solutions of ionic liquids as previously described.25 Excess water was removed by rotary evap-

oration followed by freeze-drying. Additional drying with phosphorous pentoxide was used as required. 

Using this method the following protic ionic liquids were generated; ethylammonium nitrate (EAN), 

propylammonium nitrate (PAN), ethylammonium formate (EAF), ethanolammonium formate (EtAF), 

and dimethylethylammonium formate (DMEAF) (see Figure 1). 

Deuterated ionic liquids for SANS were made by repeated exchange with D2O in order to deuterate the 

ammonium ions. 

Karl Fischer titration was used to ensure water removal to below 0.01 %w/w and nuclear magnetic res-

onance was used to confirm correct ionic liquid formation for both hydrogenous and deuterated prod-

ucts. 

Four different phosphatidylcholine (PC) lipids were used as shown in Figure 1. Three contained saturat-

ed alkyl chains of differing lengths; 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 

while the fourth, egg PC, is a mixture containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) as its majority constituent. All lipids were purchased from Sigma-Aldrich with ≥99% purity and 

used as received. 

Isothermal penetration experiments were performed as previously described4, 33 to examine lyotropic 

phase formation over a range of concentrations. Briefly, a small amount of lipid, approximately 40µm 

thick, was placed between a microscope slide and a coverslip. A drop of IL was placed on the outer edge 
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of the coverslip and was drawn in by capillary action. This creates a concentration gradient from pure IL 

to pure lipid. Polarising optical microscopy was used to identify phases across the concentration gradi-

ent based on optical signatures.35 The microscope stage was heated from room temperature to 353 K to 

examine phase changes with temperature. 

Selected samples at fixed compositions were also examined by SAXS using an Anton Paar SAXSess 

and 1mm path length quartz capillary cells. The samples consisted of 12wt% DMPC or 18wt% DPPC in 

EAN, both of which were analysed at a range of temperatures, and scattering collected for 10mins. 

Dilute vesicle dispersions were generated using the ethanol injection method.34 The lipids were dis-

solved in ethanol and then injected into the relevant solvent. Ethanol was removed using rotary evapora-

tion. The final concentration of lipid after ethanol evaporation was 1 wt% for DSC and 0.6 wt% for 

SANS. Dynamic light scattering (Malvern Zetasizer Nano ZS) was routinely used as a preliminary con-

firmation of the presence of dispersed particles, yielding diameters consistent with the SANS results. 

Differential scanning calorimetry of lipid dispersions was carried out on a Mettler Toledo DSC823 using 

standard procedures. Samples prepared using the ethanol injection method to a final concentration of 1 

wt% lipid, were placed into sealed aluminium pans and heated at 5°C /min under nitrogen to a maxi-

mum of 70°C. All heating ranges included the chain melting temperature of the respective lipid. 

Small-angle neutron scattering was performed on 0.6 wt% phospholipid dispersions at temperatures 

from 25°C to 65°C as previously described on the QUOKKA36 beamline at ANSTO.21 Detector distanc-

es of 1.35m (with 20cm detector offset), 8m and 20m (with and without lenses) were used with 5 Å neu-

trons (8.1 Å with lenses) for a combined q range of 0.001-0.7Å-1. Data reduction was performed with 

Igor Pro using the modified reduction macros from the NCNR.37 SANS data was analysed using 

SASview to determine the best fit parameters to a range of candidate structural models for each data set. 
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Results 

Isothermal Penetration Studies. All phospholipid mixtures in all ILs examined exhibited the charac-

teristic optical texture of a lyotropic lamellar phase under crossed polarisers,33, 38 except for DMPC and 

DPPC in EAN and PAN. 

At (and even below) room temperature, egg PC formed myelinic figures over time, indicating a swollen 

and dispersible (Lα) lamellar phase. Maltese cross textures subsequently appeared, which are diagnostic 

for vesicle formation.38-41 While egg PC spontaneously generated vesicles at room temperature in water 

and in all of the ionic liquids, the saturated-chain phospholipids (DPPC, DMPC and DSPC) only formed 

vesicles above a minimum swelling temperature (Ts), as shown in Table 1. Figure 2 shows representa-

tive polarising optical micrographs of the optical textures of a non-swelling lamellar phase of DMPC in 

EtAF at 30 °C, and the formation of myelinic figures and vesicles at 36 °C. In water, the measured Ts 

was consistent with previous reports,15 and showed a clear increase with alkyl chain length. The same 

pattern was observed for phospholipids in the formate ILs and for DSPC in EAN and PAN, but in each 

case Ts was several degrees higher than in water. Neither DMPC nor DPPC formed obvious swellable 

lamellar phases in EAN or PAN. DPPC instead formed a hexagonal phase in both ILs whilst the DMPC 

phase could not be identified. The temperatures of these transitions, to either a hexagonal phase in the 

case of DPPC or to an unidentified phase in the case of DMPC, are also listed in Table 1. DSPC in EAN 

and PAN formed vesicles at temperatures higher than the other solvents. 
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Table 1. Minimum swelling temperatures (Ts) for lamellar phases compared with lipid chain melting temper-
atures (Tm) and associated chain melting enthalpy and entropy for 1 wt% DMPC, DPPC and DSPC vesicles in 
water and several protic ionic liquids. Square brackets indicate an observed transition that was not lamellar. 

  Ts  
(K) 

Tm  
(K) 

∆H° t  
(kJ mol-1) 

∆S° t  
(J mol-1 K-1) 

D
M

PC
 

H2O 296 (296)15 297.5 (294)42 13.5 (15)42 45 (52.3)42 

EAN [322] -  - - 

PAN [318] - - - 

EAF 303 299 8 20 

EtAF 309 296 12 40 

DMEAF 296 296 9 31 

D
PP

C
 

H2O 314 (314)15 314 (310.5)42 26 (25)42 85 (82)42 

EAN [323] 316 14 45 

PAN [323] 312 19 60 

EAF 323 317 21 65 

EtAF 324 313 29 93 

DMEAF 314 313 26 84 

D
SP

C
 

H2O 329 (327)15 328 (324)42 38 (37)42 114 (115)42 

EAN 339 329 (330)43  23 69 

PAN 339 325 23 69 

EAF 333 - - - 

EtAF 337 - - - 

DMEAF 324 - - - 
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Figure 2. Polarising optical micrographs of DMPC in EtAF isothermal penetration scan showing (A) 

lamellar texture at 30°C; (B) myelinic figures growing into the ionic liquid at 36°C, and (C) subsequent 

appearance of Maltese cross textures (vesicles) at 36°C. 

 

Vesicle Dispersions. The properties of the phospholipid assemblies formed by isothermal swelling were 

compared with vesicle dispersions prepared by ethanol injection and evaporation. Differential scanning 

calorimetry (DSC) was used to determine the chain melting temperature, Tm, of lipids in dilute (1 wt%) 

vesicle dispersions. These are listed in Table 1. 

In water, Tm of saturated chain lipids agreed with previous reports, as did the corresponding chain melt-

ing enthalpies and entropies.42 No transition temperature could be measured for egg PC, because it is a 

mixture of lipids. 

As observed in water, the chain melting temperatures of saturated chain lipids in all ionic liquids meas-

ured were found to increase with alkyl tail length (see Table 1). We were unable to reliably measure Tm 

of DSPC in any of the formate ILs due to a broad endotherm observed at high temperatures, which ob-
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scures any chain melting transition peak. This endotherm is attributed to evaporation of the formate ion-

ic liquids.44 45 

There was close agreement between Tm and Ts in water and DMEAF, but in EAF and EtAF Ts system-

atically exceeds Tm by a few degrees. This is probably a consequence of the high viscosity of these ILs 

slowing the swelling process during warming of the bulk microscopy samples. In EAN and PAN chain 

melting transition temperatures were observed for DPPC and DSPC but, as with the other ILs, were 

lower than Ts seen with microscopy, again suggesting a viscosity effect. Evans et al. reported a Tm of 

330 K for DSPC in EAN, consistent with the results presented here.43  

The chain melting enthalpies of DMPC and DPPC are comparable in EtAF and in water, but significant-

ly smaller in EAF, EAN, and PAN. DPPC in DMEAF is also water-like in this respect. This suggests 

that the amphiphilic nanostructure of the IL plays a role in phospholipid vesicle stability.  

Despite numerous scans, no Tm could be detected for DMPC in either nitrate IL. This is probably due to 

their transition enthalpies being too small to be detected, based on extrapolation of the values for DPPC 

and DSPC. 

SANS measurements on 0.6 wt% phospholipid dispersions prepared by ethanol injection in water (D2O) 

and various partially-deuterated ILs confirmed the presence of micron-sized aggregates. Figure 3 shows 

SANS patterns of egg PC dispersions, which form unilamellar vesicles (ULVs) in all solvents examined 

except PAN at 25 °C. As a general analysis protocol, each scattering pattern was analysed using a range 

of models of increasing complexity, beginning with homogeneous spheres,46 multilamellar vesicles 

(MLV),47 and unilamellar vesicles as both free bilayers46 and using a separated form factor model,48 

which accounts for the effect of solvent penetration between polar groups and into the bilayer on the 

scattering length density.48 Solvent penetration was modelled as both a constant and as a linear gradient 

in scattering length density. A full data set for all lipids in all solvents at all temperatures examined is 
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provided in the Supplementary Information, together with lines of best-fit and fitting parameters, and 

further discussion of the models used. 

 

 

Figure 3. SANS patterns and model fits for 0.6wt% egg PC in D2O and partially deuterated ILs at 

298K, prepared by the ethanol injection method. Arbitrary offset on the y-axis for clarity. Solid lines 

show best fits (see text). 

 

The best-fit structures for each lipid in the various solvents are summarised in Table 2. As expected, all 

lipids examined formed unilamellar vesicles in D2O both above and below Tm. Best–fit values for the 

overall bilayer thicknesses of ULVs are listed in Table 3, The range shown reflects the different models 

for polar-group hydration chosen,46, 48 but for water are in good agreement with previous SAXS and 

SANS studies.17, 48-63  
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Table 2. Summary aggregate morphologies – uni- or multi-lamellar vesicles, ULV and MLV, or homo-

geneous spheres - found by fitting SANS data for lipids in D2O and ionic liquids above Tm. Morpholo-

gy below Tm shown in parentheses if different. 

 

 Egg PC DMPC DPPC DSPC 

D2O ULV  ULV  ULV  ULV  

EAN ULV MLV MLV MLV 

PAN Sphere/MLV Sphere MLV MLV 

EAF ULV  MLV MLV ULV 
(MLV) 

EtAF ULV  MLV ULV 
(MLV) 

ULV 

DMEAF - - ULV 
(MLV) 

ULV 
(MLV) 

 

 

The formation of ULVs by egg PC at 298K in all ILs examined except PAN, is consistent with our ob-

servations of isothermal penetration microscopy. SANS clearly shows (Figure 3) that egg PC assembled 

into similarly-sized aggregates in PAN as in the other solvents, but the scattering pattern could not be fit 

to unilamellar vesicles with physically plausible bilayer dimensions. Modeling as polydisperse, homo-

geneous spheres or as weakly ordered multilamellar vesicles yielded an adequate description of the 

SANS pattern, but we could not discriminate between the two structures. Optical microscopy of these 

systems suggests MLVs. 

All saturated alkyl chain phospholipid dispersions behaved very differently in ILs than in water. All dis-

persions in all solvents were prepared below Tm at 296 K, but in ILs this resulted in SANS patterns con-

sistent with the formation of multilamellar vesicles rather than ULVs, in every case except DSPC in 
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EtAN (see Supplementary Information Figures S2-S8). MLVs were easily identified as they exhibited a 

diffraction peak in the vicinity of q = 0.1 Å-1 (see inset to Figure 4), corresponding to the repeat spacing 

of the bilayers, or ‘onions.’ Upon heating above Tm, DSPC in EAF and DMEAF and DPPC in EtAF and 

DMEAF transformed into ULVs (Table 2) but MLVs were retained and the scattering spectra were vir-

tually unchanged in all other systems. While the position of the diffraction peak was reproducible, its 

intensity and sharpness depended on sample history, especially heating and cooling. This indicates that 

the number and order of bilayer stacking is not necessarily equilibrated in these systems. This is con-

sistent with previous DSC results showing similar thermal history effects for phospholipid lamellar 

phases in EAN.64 

Figure 4 shows an example of the MLV  ULV transition in the SANS patterns of DSPC in d3-EAF at 

298K and 338K, together with respective model fits.  

Figure 4. SANS data and fits for DSPC in d3-EAF at 298K (MLV fit) and 338K (ULV fit), details of fitting 
parameters in Supplementary Information. Inset: zoomed image showing multi-lamellar peak. 

 

The fitted bilayer thickness (Table 3) of unilamellar vesicles in ionic liquids suggest thicker bilayers, but 

also shows greater variation in best fit values. This is primarily due to difficulty in uniquely fitting the 
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solvated lipid polar groups, which is in part a consequence of the limited resolution at high q due to high 

incoherent scattering from partially deuterated ionic liquids. It is noteworthy, however, that the most wa-

ter-like bilayer thicknesses are found in the least-nanostructured ILs, EtAF and DMEAF. 

The repeat spacings between bilayers in MLVs (D*) derived from the diffraction peak are also listed in 

Table 3 alongside fitted ULV bilayer thicknesses. These provide an independent measure of the upper 

bound of lipid bilayer thickness, including any solvent swelling, between adjacent bilayers. For DSPC 

in EAN the repeat spacing matches that found by Evans et al. 43 

D* depends only weakly on temperature (relative to Tm). Where there was a measurable temperature 

dependence, a range is given. In all cases D* is only slightly greater than the fitted thickness, and is 

smaller than the loose upper bounds obtained by fitting ULVs. This is consistent with there being little 

swelling and little solvent penetration between adjacent bilayers in MLVs. 

Like egg PC, DMPC in PAN behaved differently to all other ILs. Its scattering pattern at all tempera-

tures was best described by polydisperse but homogeneous spheres, consistent with microscopy results 

that showed no lamellar phase formation.  

 

  



15 

 

Table 3. Total lipid bilayer thickness of unilamellar vesicles from best fit to separated form factor mod-

el, together with bilayer repeat spacings of multilamellar vesicles. 

 

 ULV Bilayer thickness and MLV repeat spacing (Å) 

 Egg PC DMPC DPPC DSPC 

D2O 20- 40 

(37-40)62, 63 

35-45 

(34-50)17, 49, 52-55 

35-50 

(36-50)17, 48, 56, 57 

40-50 

(49-52)17, 65 

EAN 40-80 D* = 52 D* = 57 D* = 62-65 

PAN - - D* = 57-59 D* = 59 

EAF 45-90 

- 

- 

D* = 54 

- 

D* = 57-65 

55-95 

D* = 65 

EtAF 46-70 

- 

- 

D* = 57 

50-60 

D* = 65 

36-60 

- 

DMEAF - 

- 

- 

- 

45-55 

D* = 44 

28-60 

D* = 47 

 

 

Discussion 

Both isothermal penetration studies and dilute vesicle dispersions reveal that, while all the ILs examined 

support phospholipid self-assembly, many features depend strongly on the underlying nanostructure of 

the PIL. Phospholipids behave differently in amphiphilically nanostructured ILs (PAN, EAN and EAF) 

than they do in EtAF and DMEAF, which have little nanostructure. 

Based on phospholipid behavior, EtAF and DMEAF are the most water-like of the ILs examined. This is 

surprising for DMEAF, as it lacks an H-bond network like water. This shows that the presence or ab-
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sence of IL nanostructure is of greater consequence for phospholipid self-assembly than a hydrogen 

bond network.  

Phospholipids most readily form ULVs with well-defined bilayers, and their chain melting enthalpies 

and entropies are very similar to aqueous systems. This suggests that the chain melting transition is rela-

tively insensitive to head group solvation and ionic strength, whether in an IL or in aqueous solution. 

Some differences do emerge for shorter phospholipid acyl chains (DMPC), but these are consistent with 

expectations based on higher solubility and a weaker solvophobic driving force in these ILs than the hy-

drophobic effect in water. 

The structures formed and phase transitions of these phospholipids in EAN are qualitatively different in 

PAN, which differs from EAN by a single methylene, and in EAF, which differs only in its counterion. 

PAN is thus less polar on average than EAN, which leads to higher solubilities of nonpolar moieties 

with nonspecific intermolecular interactions including alkanes and alkanols10, 66 and also surfactant alkyl 

chains.67, 68 However, by this measure it should also be less polar on average than DMEAF.21, 67  

Previous work has shown that the extent and strength of the amphiphilic nanostructure in these ILs in-

creases in the order EAF < EAN < PAN.30 Nanostructure has two elements that affect phospholipid as-

sembly. First is the strength of the coulombic and H-bond network of the polar domains, and second is 

the size of the solvophobically-segregated non-polar domains. Both have been shown to affect the solu-

bility and association of aliphatic alkanols dissolved in these ILs.66, 69 

PAN forms larger non-polar domains than either EAF or EAN, and these can accommodate longer alkyl 

chains, raising solubility and reducing the driving force towards the formation of micelles, microemul-

sions and lyotropic phases.21, 67 This explains the lack of order seen in DMPC and egg PC dispersions in 

PAN. 
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Chain melting enthalpies are also uniformly lower in amphiphilic ILs because the cation alkyl chains 

can act as cosurfactants to stabilize the liquid-like acyl chains in the Lα phase. IL nanostructure reduces 

the energy cost associated with increasing the polar/nonpolar interfacial area that typically accompanies 

chain melting. 

Both the optical microscopy (flooding) experiments and SANS patterns show that the nitrate ILs are less 

effective at swelling a lamellar phase and enabling lipid vesicle formation than are formate ILs, includ-

ing EAF. For the phospholipids examined, all formate ILs readily produce a swellable lamellar phase, 

and can be used to prepare unilamellar vesicle dispersions above Tm.  

This can be explained by noting that the bulk liquid nanostructure in EAF is similar to but less pro-

nounced than in EAN.26 We have recently shown that in PAN-octanol mixtures, the alkyl chains readily 

reorganize to accommodate non-polar alkyl chains, but that the network of polar domains comprised of 

H-bonded –NH3+ and NO3- ions remain intact, driving association of the alkyl groups.69 

A similar situation arises in these phospholipids where the quaternary ammonium cannot H-bond, so the 

alkylammonium cation of the IL is responsible for H-bond solvation of the phosphate and carboxyl ox-

ygens (see Figure 1). It should be more favourable to transfer an H-bond from a less-dense EAF net-

work than from EAN or PAN. Thus the strength of the IL nanostructure provides a measure of the ease 

of lipid polar group solvation. It is therefore expected that different lipid polar groups will exhibit dif-

ferent sensitivities to cation and anion type. 

IL nanostructure also influences the transition from MLV  ULV. Multilamellar to unilamellar vesicle 

transformation in these systems is clearly favoured by longer lipid alkyl chains, which indicates stronger 

segregation of the lipid bilayer from the solvent. For a given lipid, the MLV  ULV transition is fa-

voured in less amphiphilic solvents, water, EtAF and (based on chain melting enthalpies) DMEAF. The 

formation of unilamellar vesicles in EAF by DSPC also fits this pattern.  
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The results obtained are generally consistent with previous studies of equilibrium phase behavior of 

DPPC, DMPC and DSPC, as well as other phospholipids in EAN.27, 43, 64, 70 Tamura-Lis et al. report a 

(history-dependent) lamellar to hexagonal phase transition for 20 wt%  DPPC in EAN at 329 K, slightly 

higher than our swelling or chain-melting temperatures, and an amorphous high-temperature structure 

for 20 wt% DMPC in EAN.64  O’Leary and Levin have proposed that DPPC forms a micellar phase at 

50 wt% in EAN at high temperatures based on Raman spectra showing disordered alkyl chains.27 These 

results are consistent with our SAXS studies showing the presence of amorphous structures at high tem-

peratures in both of these systems. 

 

Conclusions 

Phospholipids readily form bilayer-based assemblies in a range of protic ILs. As in water, increasing 

acyl chain length increases chain melting temperature and bilayer thickness, which are both almost in-

sensitive to solvent.  

However, the enthalpies of chain melting, as well as the swelling of lamellar phases and stability of 

ULVs compared with MLVs (or amorphous aggregates) depends strongly on the extent of underlying 

amphiphilic nanostructure in the ILs. This can be controlled by choice of cationic and anionic compo-

nents of the ionic liquid. This conclusion can also be extended to understand lipid self-assembly in other 

exotic environments; the deep eutectic solvent choline chloride-urea does not exhibit amphiphilic 

nanostructure,71 and it too supports vesicle self-assembly by phospholipids.72 

Control over the formation of phospholipid ULVs and MLVs in ionic liquids presents new possibilities 

for nanoencapsulation and nanoreactors in these versatile solvents, while their stability suggests the use 

of protic ILs in biopreservation. The prospect of stable phospholipid membranes also provokes ques-

tions about the range of extreme environments in which life could potentially arise.73 
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