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 “The migraine headache represents a collapse of a way of dealing with life 

situations which are stressful to the individual.” 

 

Harold Wolff (1898-1962) 
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Abstract 

 

Whether migraine pathophysiology stems from vascular or centrally-driven origins has been 

debated for decades. However, facilitated by the development of modern neural imaging 

techniques and scientific technology, the last century has seen the largest advance in our 

understanding of migraine. It is now well accepted that sensitization of the trigeminovascular 

pathway plays a crucial role in the initiation and expression of a migraine. This is supported by 

experimental human studies that revealed abnormal activity of the trigeminovascular system. This 

abnormal activity was found particularly in areas of the brainstem, midbrain and hypothalamus 

during a migraine attack itself and during the interictal period, that is at least 72 hours following 

and not within 24 hours before a migraine. Research into the premonitory period, the critical 24-

hour pain-free period preceding a migraine, is scarce and as a result, there is a gap in our 

understanding of how and why sensitization occurs. It may be that altered brain function, 

particularly in brainstem sites, may either trigger a migraine itself or facilitate a peripheral trigger 

that activates certain pain-processing brain regions, resulting in head pain. As it is impossible to 

predict when a migraine is imminent, few studies have investigated the premonitory period. 

Understanding the underlying mechanisms of the migraine cycle has potential to transform the 

way migraine disorder is treated. The aim of this thesis was to identify functional brain differences 

throughout the migraine cycle, in particular in the critical 24-hour pain-free period preceding a 

migraine.  

 

The first investigation (Chapter 2) aimed to identify if neural activity within the brainstem and 

hypothalamus would alter over the migraine cycle. I employed high-resolution functional magnetic 

imaging (fMRI) to measure ongoing activity patterns reflected through infra-slow oscillations 
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(ISOs) and functional connectivity in the interictal, postdrome and premonitory periods of 

migraine compared with controls. A comparison between all groups provided evidence of unique 

activity in the 24-hour period immediately preceding a migraine. Increased ISO activity occurred 

exclusively in this period in areas of the trigeminovascular system including the spinal trigeminal 

nucleus (SpV), midbrain periaqueductal gray (PAG), dorsal pons, thalamus and hypothalamus. 

Remarkably, midbrain and hypothalamic sites were found to display increased functional 

connectivity and regional homogeneity immediately preceding a migraine suggesting a role for the 

PAG-hypothalamic interaction in migraine expression. Importantly, interictal and postdrome 

groups displayed similar activity as control groups, highlighting the unique nature of the 

premonitory period. It is possible that these increases in ISO power and regional homogeneity 

result from enhanced amplitude and synchrony of oscillatory gliotransmitter release immediately 

before a migraine attack, thus supporting the role of astrocytes and gliotransmission in migraine 

initiation and/or expression. These findings have never been reported in the premonitory period of 

migraine and reflect altered brainstem and hypothalamic function immediately preceding a 

migraine. 

 

Along with the central nervous system, cerebral vasculature changes have been strongly implicated 

as critical for migraine initiation. The second investigation (Chapter 3) aimed to build on my 

previous study by determining whether changes in absolute activity levels, reflected through 

abnormal cerebral blood flow (CBF), could be identified throughout the migraine cycle. I used 

pseudocontinuous arterial spin labelling (pcASL) to measure CBF in the interictal, postdrome and 

premonitory periods of migraine compared with controls. In line with the findings of my first 

investigation, this analysis revealed distinctive activity in the 24-hour period immediately 

preceding a migraine with decreased CBF in the hypothalamus, PAG and SpV. In addition, 
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decreased CBF was revealed in higher brain structures such as the visual cortex, orbitofrontal 

cortex (OFC) and retrosplenial cortex. These findings also reflected alterations in the interictal 

group with decreases in CBF detected in higher brain structures including the nucleus accumbens, 

putamen, OFC and ventrolateral prefrontal cortex. Remarkably, decreased CBF in brainstem 

regions was found only in the period immediately preceding a migraine and these decreases 

occurred suddenly, as opposed to the decreased CBF found in the higher brain regions which 

tended to occur gradually throughout the interictal period as the migraine approached. The 

specialized activity of the brainstem in the period immediately preceding a migraine further 

emphasizes that brainstem abnormalities are involved in the initiation and/or expression of a 

migraine. Though many studies have explored CBF during other periods of migraine, this is the 

first study to measure resting CBF during the 24-hour period immediately preceding a migraine 

using ASL, and furthermore, to couple ongoing activity patterns (Chapter 2) with absolute brain 

activity.  

 

The first two cross-sectional investigations (Chapters 2 and 3) revealed unique abnormal activity 

in the 24-hour period immediately preceding a migraine in areas of the brainstem, midbrain and 

hypothalamus. However, it remains unknown whether similar patterns would be revealed in a 

longitudinal study when comparing periods throughout an individual’s migraine cycle. To 

complete this thesis, the third investigation (Chapter 4) aimed to follow the migraine cycle of three 

migraineurs by imaging them five days a week over four weeks. Due to the cyclic nature of 

migraine, I expected that when comparing the activity in the 24-hour period immediately preceding 

a migraine with other periods of migraine within these individuals, the findings would reflect 

similar patterns as our cross-sectional studies. Indeed, using fMRI I explored resting brainstem 

activity patterns and found that although resting activity variability was similar in controls and 
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migraineurs on most days, during the period immediately preceding a migraine, brainstem 

variability increased dramatically. These increases in resting variability were restricted to specific 

areas of the pain processing pathway including the SpV and dorsal pons. Remarkably, these 

changes were located in the same brainstem regions which have been shown to be activated during 

a migraine itself, but again they occurred whilst the individual was not in pain. These increases in 

brainstem variability were characterised by increased power at ISOs between 0.03-0.06 Hz and 

they were coupled to increases in resting regional homogeneity directly prior to a migraine. These 

oscillatory and regional homogeneity changes are consistent with the idea that changes in astrocyte 

function may precede a migraine and be responsible for its initiation and/or maintenance. These 

data provide the first evidence of altered brainstem function directly before a migraine throughout 

the migraine cycle of multiple individuals and provide compelling evidence for the hypothesis that 

brainstem function is altered immediately before a migraine. 

 

Overall, these data reveal that the 24-hour period immediately preceding a migraine possesses 

unique qualities that may be crucial in the initiation and/or expression of the migraine. My findings 

reflect abnormal activity of the trigeminovascular system, in particular in areas of the brainstem, 

midbrain and hypothalamus. I found increases in ongoing activity patterns in the 24-hour period 

immediately preceding a migraine only, however abnormalities in absolute activity levels were 

also found in higher brain structures in the interictal period. Finally, when exploring the migraine 

cycle within three individuals, I found that the 24-hour period immediately preceding a migraine 

reflected very similar patterns to those revealed in my cross-sectional studies; relatively stable 

activity until the 24-hour period preceding a migraine, where a sudden over-exaggeration of 

activity occurred. It seems that migraine is indeed a cyclic disorder with brainstem function 

oscillating between altered states. 
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1.1 Migraine: an overview 

 

Migraine is a highly prevalent and disabling disorder, impacting approximately 6% of men and 

15-18% of women in the general population (MacGregor, Brandes, & Eikermann, 2003). It has 

been labelled as the sixth most debilitating disorder by the World Health Organization, costing the 

Unites States and Europe $19.6 billion and €27 billion a year respectively (Goadsby et al., 2017). 

Migraine prevalence has been found to be age-dependent, with onset usually in early teens and 

with peak of severity and frequency between the ages of 40 and 50 in both males and females 

(Breslau & Rasmussen, 2001). Therefore, the condition is most damaging in the years where the 

vast population is at their most productive. As a result, migraine has become one of the biggest 

medical burdens on society due to work absences, impaired productivity and billions of dollars 

spent globally on medical-related costs (Ferrari, 1998). Unfortunately, despite its high prevalence 

and debilitating nature, the neural and vascular mechanisms underlying the initiation, expression 

and treatment of migraine remain unclear (Noseda & Burstein, 2013). This is due to the fact that 

migraine is a complex neurological disorder (Burstein, Noseda, & Borsook, 2015) with a 

heritability factor estimated at 50% (Pietrobon & Moskowitz, 2013). The mechanisms explaining 

how migraine attacks are initiated in susceptible individuals has been a topic of hot debate for 

decades. 

 

A migraine attack usually begins with warning signs and symptoms that occur within the 24 hours 

preceding the development of the headache; a period known as the prodrome or premonitory phase. 

The premonitory phase is the first stage of the migraine attack, and acts as a predictor that migraine 

pain is impending. Symptoms often consist of fatigue, dizziness, loss of concentration, heightened 

emotional state, sensory hypersensitivity (Giffin et al., 2003; Pietrobon & Moskowitz, 2013) and 
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sometimes transient focal neurological symptoms such as visual aura (Burstein et al., 2015). Visual 

aura occurs in approximately one-third of migraineurs and is linked to neurological deficits 

(Goadsby et al., 2017). According to a standardised diagnostic tool, the third edition International 

Classification of Headache Disorders (ICHD), the migraine headache must follow a particular set 

of criteria in order to distinguish it from other headache syndromes (Table 1).  

 

The migraine headache commonly begins in a unilateral manner, and must possess at least one of 

the following: a pulsating and throbbing quality, moderate to severe pain intensity, or aggravation 

by physical activity (ICHD, 2013). Aggravation by physical activity is likely due to intensification 

caused by an increase in intracranial pressure (Burstein et al., 2015). The headache is typically 

accompanied by neurological symptoms such as photophobia and phonophobia, nausea and/or 

vomiting, as well as by an array of emotional, cognitive and autonomic disturbances (Noseda & 

Burstein, 2013). It is the presence of these accompanying symptoms that distinguishes migraine 

from other headache disorders, indicating that changes in neurological mechanisms including the 

nature of neural pathways and neuronal behaviour, is important in migraine pathophysiology. For 

72-hours following the resolution of the migraine headache is the postdrome phase before which 

the individual enters the interictal phase, a pain-free state. The interictal phase ends as the 

premonitory phase begins, 24 hours preceding the development of migraine pain. 
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Without aura 

A. At least five attacks fulfilling criteria B-D 

B. Headache attacks lasting 4-72 h (untreated or unsuccessfully treated) 

C. Headache has at least two of the following four characteristics: 

1. Unilateral location 

2. Pulsating quality 

3. Moderate or severe pain intensity 

4. Aggravation by or causing avoidance of routine physical activity (e.g., walking or climbing 

stairs) 

D. During headache at least one of the following: 

1. Nausea and/or vomiting 

2. Photophobia and phonophobia 

E. Not better accounted for by another ICHD-3 diagnosis 

With aura 

A. At least two attacks fulfilling criteria B and C 

B. One or more of the following fully reversible aura symptoms: 

1. Visual 

2. Sensory 

3. Speech and/or language 

4. Motor 

5. Brainstem 

6. Retinal 

C. At least two of the following four characteristics: 

1. At least one aura symptom spreads gradually over ≥ 5 min, and/or two or more symptoms 

occur in succession 

2. Each individual aura symptom lasts 5-60 min 

3. At least one aura symptom is unilateral 

4. The aura is accompanied, or followed within 60 min, by headache 

D. Not better accounted for by another ICHD-3 diagnosis, and transient ischemic attack has been 

excluded 

 

Table 1: International Classification for Headache Disorders (ICHD)-3β. List of criteria 

necessary for diagnosis of migraine, both with and without aura. Modified from Goadsby et al 

(2017) and ICHD (2013).  
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1.2 Migraine mechanism: starting from the beginning 

 

The theory of migraine has evolved over thousands of years. As early as the year 936 AD, 

physicians studied how migraine headaches could be alleviated by applying pressure to the head, 

or by surgically ligating the superficial temporal artery (Shevel, 2007). In the 17th Century, Thomas 

Willis, who is widely considered one of the founders of modern neurology, supported these ideas 

by postulating that the source of pain in some headaches was enlarged blood vessels, laying the 

framework for what would become the vascular theory of migraine (Shevel, 2007). However, from 

the mid-1800s until now, the dichotomous debate between whether migraine originates from 

vasodilatation or from dysfunction of the central nervous system has been ongoing. In the late 

1800s, Edward Liveing theorised that migraine results from a “nerve storm” or “neurosal seizure” 

(Liveing, 1874), whilst in the same time period Peter Wallwork Latham described migraine as 

originating from vasodilation triggered by aura (Goadsby et al., 2017). 

 

With the development of medical and scientific technology, the last 70 years has yielded the largest 

advances in migraine theory (Goadsby et al., 2017). This new era was kicked off by Harold Wolff’s 

influential experiments in the 1940s. Wolff (1898-1962) and his colleagues were the first to subject 

the principles of vasodilatation to thorough experimental and scientific investigation by studying 

cranial blood vessels in conscious patients (Shevel, 2011). They observed that stimulation of the 

cerebral and meningeal blood vessels produced severe headaches (Parsons & Strijbos, 2003). 

Wolff’s vascular theory of migraine consisted of two statements: 1) intracranial vasospasm of the 

cerebral arteries causes the aura of migraine; 2) extracranial vasodilatation is instrumental in 

causing migraine pain (Shevel, 2011). The theory was supported by observations that migraine 

headache was usually accompanied by a pulsating quality, and by later experiments displaying the 
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effects of triptans on migraine pain and vasoconstriction, and the ability of calcitonin gene-related 

peptide (CGRP) to trigger migraine attacks (Goadsby et al., 2017). Wolff’s vascular theory was 

widely accepted for over 40 years. 

 

Wolff was described as “a mixture of greatness and narrowness”; his narrowness attributed to his 

extreme obsessiveness, and the general belief that his observations were too influenced by his own 

migraine experience (J. Blau, 2004). His observations were challenged and eventually his theory 

was invalidated by experimental findings. 

 

The first statement of Wolff’s theory was negated by the phenomenon of cortical spreading 

depression (CSD), which was originally proposed by Aristides Leao in 1944 (Parsons & Strijbos, 

2003). CSD has been described as “a slowly propagating wave of depolarisation/excitation 

followed by hyperpolarization/inhibition in cortical neurons and glia” (Burstein et al., 2015; 

Hadjikhani et al., 2001; Sugaya, Takato, & Noda, 1975); “a severe but transient disruption of 

neural activity in the brain, which spreads like waves in a pond in which a stone has been cast. It 

propagates to normal tissues…Its rate of spread correlates almost exactly with the observed 

spread of the aura of classical migraine” (Pearce, 1985). CSD could not be accounted for by 

intracranial vasospasm of the cerebral arteries (Shevel, 2011). Subsequent experiments further 

challenged the statement. Olesen and colleagues showed that the pattern in the reduction of 

regional blood flow during migraine aura was inconsistent with the anatomical limitations of the 

major cerebral vessels (Jacobs & Dussor, 2016). Moreover, intracranial vessels were shown to 

only have minor dilation that was unaffected by sumatriptan (Humphrey & Goadsby, 1994) and 

meningeal vessels were not found to dilate during spontaneous migraines (Amin et al., 2013). 
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Wolff’s second statement was also challenged when clinical studies were unable to prove that 

extracranial vasodilation could cause a headache, or support that significant extracranial 

vasodilation occurred during a migraine (Bernstein & Burstein, 2012). Clinical studies showed 

that the CGRP-evoked migraine aforementioned had modest arterial vasodilation, which was 

incapable of activating perivascular nociceptors (Goadsby et al., 2017). 

 

Thus, the vascular theory was deemed an inadequate explanation of the pathophysiology of 

migraine. Migraine theory shifted from being considered solely a disorder of blood vessels to a 

“highly choreographed interaction between major inputs from both the peripheral and central 

nervous systems, with the trigeminovascular system and the cerebral cortex among the main 

players” (Pietrobon & Moskowitz, 2013), i.e. the neurovascular theory. 

 

1.2.1 Neurovascular theory 

 

Referred to as the “prevailing view today”, the neurovascular theory proposes that the migraine 

headache has intracranial origin, and that the headache phase is mediated by the activation of 

nociceptors that innervate meningeal blood vessels (Bernstein & Burstein, 2012). That is, migraine 

is a disorder of the brain with symptoms arising “from a combination of dilation-independent 

vascular events and neurogenic mechanisms interacting throughout the brain and within the 

trigeminovascular system in the meninges” (Jacobs & Dussor, 2016). In other words, vasculature 

does play a role in the neuronal mechanisms underlying migraine, simply not in the classical way 

that it was once considered. This theory is based on reports that stimulation of dural vasculature 

during craniotomy produced head pain in alert patients (Penfield & McNaughton, 1940). The dura 

is innervated by nociceptive Aδ and C fiber afferents whose cell bodies are located in the 
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trigeminal ganglion and upper cervical dorsal root ganglia. These afferent fibers contain vasoactive 

neuropeptides such as substance P and CGRP (Bernstein & Burstein, 2012), a fact that will be 

relevant when discussing migraine treatments later on. 

 

Although the neurovascular theory is the current prevailing theory explaining migraine initiation, 

some researchers suggest that this theory has similar inadequacies as the vascular theory, 

predominantly that there is not enough evidence to suggest that cerebral vasculature is instrumental 

in migraine pathophysiology (Schwedt & Dodick, 2009). Nevertheless, compelling evidence does 

suggest that the development of migraine-pain is dependent on the activation and sensitization of 

the trigeminal sensory afferents that innervate meninges and their large blood vessels (Pietrobon 

& Moskowitz, 2013), while dysfunction of central nervous system structures involved in pain 

modulation explains the symptoms of the premonitory phase (Noseda & Burstein, 2013). 

 

1.2.2 The pons, midbrain and hypothalamus 

 

The role of altered brain function, and in particular alterations in the brainstem, has begun to be 

investigated; predominantly the role of the dorsal pons, midbrain periaqueductal gray (PAG), and 

hypothalamus (S.K. Afridi et al., 2005; S. K. Afridi et al., 2005; A. Bahra, M. S. Matharu, C. 

Buchel, R. S. Frackowiak, & P. J. Goadsby, 2001b; Denuelle, Fabre, Payoux, Chollet, & Geraud, 

2007; Karsan, Bose, & Goadsby, 2018; Weiller, May, Limmroth, Juptner, Kaube, Schayck, 

Coenen, & Diener, 1995). Indeed, migraine, potentially preceded by hypothalamic dysfunction, 

has been linked to episodic dysfunction of brainstem nuclei, which in turn activate cortical and 

subcortical structures that modulate nociceptive function and vascular control (Bartolini, 

Baruffaldi, Paolino, & Silvestrini, 2005; Denuelle et al., 2007). It is well known that the 
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hypothalamus is involved in autonomic and endocrine regulation including physiological functions 

such as the circadian rhythms, feeding, thirst and arousal, as well as homeostatic control (Burstein 

et al., 2015; Dampney, 2011; Noseda & Burstein, 2013; Settle, 2000). Due to the sensitivity of the 

migraine brain to deviation from homeostasis, which commonly manifests in sleep disturbances, 

changes in mood, food cravings, thirst and urination in the premonitory phase, the hypothalamus 

dysfunction has been suggested to be important in the expression of early migraine symptoms 

(Denuelle et al., 2007; Goadsby et al., 2017; Noseda & Burstein, 2013). Indeed, in a recent case 

study by Schulte and May, the hypothalamus was shown to have increased sensitivity to noxious 

stimuli and greater functional coupling with the dorsomedial pons and spinal trigeminal nucleus 

(SpV) during the premonitory phase (Schulte & May, 2016). 

 

Whilst the role of the hypothalamus in the generation of migraine is gathering momentum, the role 

of the PAG remains controversial. It is well known that stimulation of the PAG can inhibit 

nociceptive transmission within the dorsal horn as well as correspondent pain reflexes causing an 

analgesic effect (H. L. Fields & Heinricher, 1985; Knight & Goadsby, 2001). Indeed, both pre-

clinical (Goadsby et al., 2017) and clinical studies have also demonstrated analgesic effects during 

PAG stimulation (R. Levy, Deer, & Henderson, 2010). Tract tracing experiments have shown that 

the PAG does not directly project to the primary afferent synapse of the ascending pain pathways, 

but rather indirectly through descending projections to the rostral ventromedial medulla (RVM), 

which in turn projects to the dorsal horn and SpV (H. L. Fields & Heinricher, 1985; Floyd, Price, 

Ferry, Keay, & Bandler, 2001; Morgan, Whittier, Hegarty, & Aicher, 2008). The PAG-RVM 

pathway is considered part of the descending endogenous pain pathway (Goadsby et al., 2017) and 

human brain imaging studies have reported increased resting functional connectivity between the 

PAG and cortical and subcortical regions involved in nociceptive processing (C. Mainero, J. 
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Boshyan, & N. Hadjikhani, 2011a; Schwedt et al., 2013). Thus, projections from the PAG-RVM 

pathway to hypothalamic nuclei (Dampney, 2011) as well as to the SpV may be involved in the 

triggering of migraine symptoms associated with homeostatic changes (Goadsby et al., 2017). The 

dorsal pons has been more implicated in ictal (during a migraine attack) studies (S.K. Afridi et al., 

2005; Bahra et al., 2001b; Denuelle et al., 2007; Weiller, May, Limmroth, Juptner, Kaube, 

Schayck, Coenen, & Diener, 1995), but due to its involvement in respiration, taste and sleep 

(Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth, 2012), it is likely to also be involved in the 

premonitory phase.  

 

Though the exact role of the PAG in migraine has not been delineated, it has been shown to 

modulate trigeminovascular nociceptive responses (Goadsby et al., 2017). In an influential neural 

imaging study by Weiller and colleagues, it was suggested that migraine pathogenesis could be 

related to an imbalance in activity in the dorsal midbrain (Weiller, May, Limmroth, Juptner, 

Kaube, Schayck, Coenen, & Diener, 1995). They showed an increase in cerebral blood flow in the 

dorsal pons and PAG that persisted even after administration of sumatriptan (Weiller, May, 

Limmroth, Juptner, Kaube, Schayck, Coenen, & Diener, 1995). 

 

Surprisingly, unlike the pons, midbrain and hypothalamus, SpV activation was not found in human 

ictal studies (S.K. Afridi et al., 2005; S. K. Afridi et al., 2005; Bahra et al., 2001b; Denuelle et al., 

2007; Weiller, May, Limmroth, Juptner, Kaube, Schayck, Coenen, & Diener, 1995), though 

experimental animal studies have clearly shown SpV activation during dural stimulation (A. 

Strassman, Mason, Moskowitz, & Maciewicz, 1986). Interestingly, it was recently reported that 

noxious-evoked SpV activation is enhanced the closer the individual was to their next migraine 

(Stankewitz, Aderjan, Eippert, & May, 2011), suggesting that the SpV may play a role in the 
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initiation of a migraine attack. These findings support the idea that the hypothalamus, PAG, dorsal 

pons and SpV make up an interactive network that together are involved in the initiation and 

expression of a migraine attack. 

 

1.2.3 The trigeminovascular system 

 

Almost 80 years ago, Penfield and McNaughton reported that dura mater is innervated by three 

nerves, of which the cell somas of these nerves, are found in the trigeminal ganglion (Penfield & 

McNaughton, 1940). In the same year, Ray and Wolff demonstrated how electrical stimulation of 

dural and cerebral arteries could evoke nausea and headache-like pain in conscious human beings 

during brain surgery (Ray & Wolff, 1940). Due to the pain-sensitive quality they reported, the dura 

mater has been extensively studied with respect to its potential role in generating migraine pain 

(Olesen, Burstein, Ashina, & Tfelt-Hansen, 2009).  

 

The trigeminovascular pathway comprises of neurons whose cell bodies are located in the 

trigeminal ganglion (Burstein et al., 2015). Their peripheral processes extend from the ganglion to 

the pial and dural meninges, in addition to the walls of large cerebral arteries (Uddman, Edvinsson, 

Ekman, Kingman, & McCulloch, 1985) (Figure 1). Their central processes extend through the 

pons to the medulla and terminate on the dorsal laminae of the SpV (Y. Liu, Broman, & Edvinsson, 

2004). In addition, the trigeminal nerve relays sensory information from most extracranial (skin, 

muscles and blood vessels) and intracranial (dural and large cerebral arteries) structures to the SpV 

(Olesen et al., 2009). This convergent input may explain the observation that migraineurs often 

develop hypersensitivity in the periorbital skin, expressed as cutaneous allodynia (Bernstein & 

Burstein, 2012).  
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Figure 1: Extracranial and intracranial pain-sensitive structures. A schematic representing 

where the meninges (pia and dura mater) and extracranial structures/muscles are located in relation 

to the trigeminal nerve and brainstem. Input from the blood vessels of the pia, dura mater and 

extracranial structures/muscle carry on afferents that project mainly through the trigeminal nerve 

to reach the brainstem, before innervating the thalamus and cortex. Modified from Olesen et al 

(2009). 
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In the context of migraine, the trigeminovascular system refers to the afferents within the 

trigeminal nerve that transmit noxious information including those from the cerebral vascular 

system. Trigeminovascular neurons terminate within the SpV onto second-order neurons that in 

turn send ascending projections to other brainstem nuclei including the ventrolateral PAG, 

brainstem reticular formation, superior salivatory, parabrachial and cuneiform nuclei, the nucleus 

of the solitary tract, as well as to hypothalamic and basal ganglia nuclei (Burstein et al., 2015; 

Noseda & Burstein, 2013). These multiple ascending projections may be responsible for initiating 

the loss of appetite, yawning, nausea and vomiting and may send projections to higher cortical 

regions that in turn are responsible for the fatigue, anxiety, irritability and depression that 

accompanies the migraine headache itself (Burstein & Jakubowski, 2005; Burstein et al., 2015) 

(Figure 2). 

 

In addition to projecting to regions of the brainstem, trigeminovascular-related SpV neurons 

project to the thalamic ventral posteromedial, posterior and parafascicular nuclei (Malick, 

Strassman, & Burstein, 2000). These thalamic neurons then project to the somatosensory, insular, 

motor, parietal association, retrosplenial, auditory, visual and olfactory cortices. These projections 

are likely crucial for expression of specific symptoms that are characteristic of migraine, such as 

difficulties focusing and motor control, amnesia, allodynia, phonophobia, photophobia and 

osmophobia (Noseda, Jakubowski, Kainz, Borsook, & Burstein, 2011). 
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Figure 2: The ascending trigeminovascular pathway. A schematic representing the ascending 

trigeminovascular pathway. Au, Auditory cortex; C6 –C7, sixth and seventh spinal cord segments; 

DRG, dorsal root ganglion; Ins, insular cortex; Ect, ectorhinal cortex; LP, lateral posterior thalamic 

nucleus; M1/M2, primary and secondary motor cortices; PAG, periaqueductal gray; PB, 

parabrachial nucleus; PO, posterior thalamus; PtA, parietal association cortex; Pul, pulvinar; RS, 

retrosplenial cortex; S1/S2, primary and secondary somatosensory cortices; SpV, spinal trigeminal 

nucleus; SSN, superior salivatory; TG, trigeminal ganglion; V1/V2, primary and secondary visual 

cortex; VPM, ventral posteromedial thalamus. Modified from Burstein et al (2015).  
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1.2.3.1 Sensitization of the trigeminovascular pathway 

 

Over the past 50 years, a number of investigations have explored the underlying mechanism of 

migraine through the direct stimulation of the trigeminovascular pathway. For example, the 1980s 

animal models of neurovascular head pain involved electrical and mechanical stimulation of dural 

sinuses (Davis & Dostrovsky, 1986; A. Strassman et al., 1986) in an attempt to excite dura-

sensitive neurons that project to the brain and spinal cord including to the SpV, thalamus, 

hypothalamus and PAG (Bernstein & Burstein, 2012; Burstein, Yamamura, Malick, & Strassman, 

1998). Whilst these experimental animal investigations helped to identify the involvement of the 

trigeminovascular system in migraine head pain and accompanying symptoms, it has been reported 

that acute electrical or mechanical stimulation of the dura is not sufficient to trigger migraines in 

humans. Indeed it was shown that such electrical or mechanical stimuli had to induce central and/or 

peripheral sensitization in order for it to elicit migraine-like pain (Bernstein & Burstein, 2012).  

 

Over the last 15 years, the theory of peripheral and central sensitization has come to be considered 

by many as critical in explaining some of the factors not considered or explored with respect to 

other migraine theories (Goadsby et al., 2017). It has been hypothesized that peripheral 

sensitization is critical for the initiation of a migraine through the activation of trigeminovascular 

neurons. This activation results in migraine-like symptoms such as throbbing head pain, nausea, 

vomiting, photophobia and phonophobia (Bernstein & Burstein, 2012; Borsook & Burstein, 2012) 

and the intensification of headache by activities that increase intracranial pressure (J. N. Blau & 

Dexter, 1981). In addition, it has been hypothesized that central sensitization of trigeminovascular 

neurons follows this peripheral sensitization and underlies the extracranial hypersensitivity 

associated with migraine (Bernstein & Burstein, 2012; Burstein et al., 1998) (Figure 3). 
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Figure 3: Sensitization of the trigeminovascular pathway. A schematic representing the 

sensitization and subsequent activation of the trigeminovascular pathway. The trigeminal ganglion 

(TG) carries trigeminal primary afferents which synapse on intracranial and extracranial structures. 

Sensitization of peripheral trigeminovascular neurons innervate meninges. Sensitization of 

neurons in the trigeminocervical complex (TCC) project along the ascending trigeminovascular 

pathway to innervate other brainstem areas including the rostral ventromedial medulla (RVM), 

locus coeruleus (LC) and periaqueductal gray (PAG) before reaching the hypothalamus, thalamus 

and cortical areas. (Au, Auditory cortex; Ect, ectorhinal cortex; Ins, insular cortex; M1/M2, 

primary and secondary motor cortices; PtA, parietal association cortex; RS, retrosplenial; S1/S2, 

primary and secondary somatosensory cortices; SPG, sphenopalantine ganglion; SuS, superior 

salivatory nucleus; TG, trigeminal ganglion; V1/V2, primary and secondary visual cortex). 

Modified from Goadsby et al (2017).  
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In accordance with this theory, nociceptive input drives the attack whilst central sensitization 

modulates the headache pain (Olesen et al., 2009). However, this idea relies on the fact that the 

trigger for migraine begins in the periphery (Goadsby et al., 2017; Olesen et al., 2009; A. M. 

Strassman, Raymond, & Burstein, 1996). In other words, activation of the trigeminovascular 

system originates from primary sensory afferents responding to nociceptive input. 

 

Whilst the trigeminovascular system itself is responsible for generating head pain through changes 

in sensitivity of both peripheral trigeminovascular afferents and central neural structures, 

descending projections from regions such as  the PAG-RVM to the SpV can also play a critical 

role by either enhancing or suppressing incoming trigeminovascular inputs (Porreca, Ossipov, & 

Gebhart, 2002). Many modulatory supraspinal pathways converge on the PAG-RVM pathway, 

hence the threshold for incoming noxious inputs to trigger a migraine depends on the balance 

between incoming nociceptive signals and their modulation by spinal and supraspinal pathways 

(Bernstein & Burstein, 2012) (Figure 4). 
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Figure 4: Descending modulation of the trigeminovascular system. A schematic representation 

of the descending pathways that modulate trigeminovascular nociceptive transmission in the SpV. 

Ins, Insula; LH, lateral hypothalamus; PAG, periaqueductal gray; PVN, paraventricular nucleus of 

hypothalamus; S1, primary somatosensory cortex; SpV, spinal trigeminal nucleus; RVM, rostral 

ventromedial medulla. Modified from Noseda and Burstein (2013). 

  



 

  19 

Therefore, if sensitization of trigeminovascular afferents and their central connections are thought 

to explain the headache phase of migraine; what about the premonitory phase of migraine? One 

could argue that the key to understanding how a migraine develops lies in the premonitory phase 

of the migraine attack since this period starts directly prior to pain onset and even in the absence 

of a trigger. Indeed, there is growing evidence that changes in the central nervous system may play 

a critical role in the generation of a migraine, regardless of the presence of a peripheral trigger and 

before headache onset (Akerman, Holland, & Goadsby, 2011; Goadsby, Charbit, Andreou, 

Akerman, & Holland, 2009). Furthermore, CSD was found to occur independently of peripheral 

input (Lambert, Truong, & Zagami, 2011). 

 

Given these observations, it has been hypothesized that migraine is solely a disorder of the central 

nervous system (Schwedt & Dodick, 2009); that the migraine brain has a genetic predisposition to 

a generalised neuronal hyperexcitability (Ferrari, Klever, Terwindt, Ayata, & van den 

Maagdenberg, 2015; Pietrobon & Moskowitz, 2013), rendering it very sensitive to homeostatic 

changes (Burstein et al., 2015) and incapable of habituating itself (Coppola, Pierelli, & Schoenen, 

2007). 

 

1.2.4 Migraine as a central disorder? 

 

Although there has been disparity amongst the migraine field about why, how and when a migraine 

is initiated (Goadsby et al., 2017), with the advance of neural imaging, migraine is now considered 

by many a neurological disorder; “an inherited tendency for the brain to lose control of its inputs,” 

namely by means of the trigeminovascular system (Goadsby et al., 2017). Evidence for this 

enabled the development of the controversial “central generator” theory, which has divided the 
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opinions of many researchers. It was a radical idea, introduced in a 1987 report by Raskin and 

colleagues, when 15 of 175 pain patients developed migraine-like headaches following the 

implantation of electrodes into the PAG (Raskin, Hosobuchi, & Lamb, 1987). These data were 

interpreted as the PAG being the source rather than consequence of migraine pain (Bahra et al., 

2001b; Weiller, May, Limmroth, Juptner, Kaube, Schayck, Coenen, & Diener, 1995). 

 

Whilst this central generator theory remains hotly debated, today there are a number of findings 

that call its validity into question. Firstly, it has been shown that persistent headaches lasting three 

months or longer can occur in up to 40% of subjects undergoing craniotomy regardless of the 

implantation of electrodes (Gee, Ishaq, & Vijayan, 2003; Kaur, Selwa, Fromes, & Ross, 2000; 

Olesen et al., 2009). Secondly, PAG activation was found to occur in other pain paradigms, 

rendering its activity nonspecific to migraine (Olesen et al., 2009). Thirdly, electrical stimulation 

of the PAG produced a general whole body pain relief, again nonspecific to migraine (Olesen et 

al., 2009). Finally, stimulation of the PAG or RVM can only increase or decrease firing in response 

to noxious stimulation of their peripheral receptive fields (Porreca et al., 2002). Therefore, it is 

activation in specific dorsal horn neurons by input that is received from peripheral nociceptors that 

determine where pain modulation is needed. In migraine, it is activation of the trigeminovascular 

neurons in SpV by inputs from meningeal nociceptors. As a result, after accounting for these 

factors, less than 1% of patients in Raskin and colleagues’ report could have had headaches 

attributed to PAG stimulation, leading to the brainstem generator theory being labelled by many 

researchers as nonspecific to migraine and insufficient in explaining modulation of the 

trigeminovascular system (Olesen et al., 2009).  
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1.2.5 Brainstem tone  

 

In an attempt to understand the pathophysiology of migraine, one needs to extend beyond a one-

dimensional view of a “migraine generator” and understand that perhaps, after all, a peripheral 

cerebrovascular trigger is necessary to precipitate a migraine attack (Borsook & Burstein, 2012). 

However, timing of such a trigger is critical in determining whether it is successful in inducing a 

migraine. This is where we are in need of a compromise, an understanding that looks further than 

a dichotomy of central versus peripheral.  

 

The idea of brainstem tone, also referred to as allostatic load, suggests that a peripheral 

cerebrovascular trigger may indeed be required to trigger a migraine attack, but cyclic sensitivity 

changes in brainstem regions that receive noxious orofacial inputs may be critical in allowing such 

triggers to successfully induce a migraine attack (Burstein et al., 2015). The allostatic load is 

defined as the level of brain activity required to appropriately manage levels of emotional or 

physiological stress (McEwen, 1998). Migraine is associated with a failure of intrinsic systems to 

evaluate errors and deviations from physiological signals about homeostatic levels (Borsook, 

Aasted, Burstein, & Becerra, 2014), i.e. the migraine brain is predisposed to having a higher 

allostatic load. Because of this, when allostatic load reaches high levels (diminished brainstem 

tone), the brain’s endogenous system is impaired. Therefore, when a trigger coincides with a 

compromised circadian cycle of brainstem, hypothalamic and thalamic neurons, it is successful in 

inducing a migraine (Burstein et al., 2015). 

 

It has been hypothesized that brainstem function in migraineurs oscillates between enhanced, 

threshold and diminished neural “tone” states (Burstein et al., 2015). When the brainstem is in a 
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state of diminished tone, incoming noxious inputs can activate central pathways and evoke head 

pain. When in an enhanced tone state, endogenous analgesic mechanisms overcome incoming 

noxious inputs to activate higher brain centers and block the development of head pain (Figure 5). 
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Figure 5: Brainstem tone. Conceptualization of how brainstem tone allows for a trigger to induce 

a migraine. The teal arrow in each diagram represents an identical noxious stimulus for each 

condition. When the brainstem tone is high (red dot below line of migraine threshold (MT)), 

nociceptive signals are repressed; and when the brainstem tone is low (red dot above MT), afferent 

signals are not effectively blocked. Therefore, in the ‘enhanced brainstem tone’ state, the 

endogenous analgesic mechanisms of the brainstem are strong enough to block a trigger from 

inducing a migraine. Therefore, the brainstem does not send afferent signals (via the blue arrow) 

to activate central trigeminovascular neurons and hence, induce migraine pain. In the ‘threshold 

brainstem tone’ the system is balanced but could tip into a state that could allow the dura to activate 

central trigeminovascular neurons. In the ‘diminished brainstem tone’ state, these mechanisms are 

compromised, thus allowing the signals to trigger a migraine. Modified from Burstein et al (2015). 
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By considering this concept, we are acknowledging that triggers are inconsistent in inducing a 

migraine, because a headache may or may not develop in response to identical environmental 

and/or endogenous condition changes based on the brainstem tone. The “tone” is driven by 

fluctuation of brainstem neuronal activity that modulates nociceptive signals from the meninges 

(Borsook & Burstein, 2012; Burstein et al., 2015). These nociceptive signals that drive central 

trigeminovascular neurons are controlled by a “gate.” The strength of the gate is determined by 

the threshold of the neural networks that modify the afferent signals (Borsook & Burstein, 2012; 

Burstein et al., 2015). Therefore, we may need to resign to the fact that natural fluctuations occur 

in neuronal excitability that are difficult to measure or quantify (Stankewitz & May, 2009), hence 

internal and/or external triggers will not elicit headache when the brain is protected, and will induce 

one when its excitability is at a peak (Goadsby et al., 2017). 

 

The key in understanding this better would be to study the cyclic behaviour of the brainstem in 

migraineurs throughout their migraine cycle, in particular, in the hours leading up to a migraine. 

Very little is known about the mechanism by which triggers work to activate meningeal 

nociceptors and how premonitory symptoms initiate headache. However, it has been proposed that 

hypothalamic and brainstem neurons that respond to physiological and emotional deviation from 

homeostasis, can lower the threshold for trigeminovascular nociceptive transmission from the 

thalamus to the cortex, hence allowing for a headache to be triggered (Noseda, Kainz, Borsook, & 

Burstein, 2014). Understanding these processes could be influential in not only the study and 

treatment of migraine, but also to the study and treatment of other conditions that share similar 

genetic and pathophysiological backgrounds as migraine, such as epilepsy (Czapinska-Ciepiela, 

2018). Indeed, migraine and epilepsy are often co-morbid conditions, with both diseases 

manifesting in patterns of neuronal hyperexcitation (Czapinska-Ciepiela, 2018; Liao, Tian, Wang, 
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& Xiao, 2018). Epilepsy, like migraine, remains a largely unknown and debilitating disease. 

Therefore, the translatability of migraine research to epilepsy enhances the importance of this body 

of work even more. 

 

1.3 Treating migraine 

 

Despite the debilitating effects of migraine both individually and globally, it is largely undertreated 

with sufferers often having no means of relieving their pain, let alone of preventing future attacks. 

This is not surprising, since the pathophysiology of migraine is still unclear. Nevertheless, given 

what we know of the trigeminovascular system and its involvement in migraine, treatments have 

been developed and have resulted in some success. The involvement of serotonin (5-HT) in 

migraine was proposed over 50 years ago, and with the identification of the receptors involved in 

aborting migraines, 5-HT1B/1D receptor agonists were developed; commonly known as triptans 

(Goadsby et al., 2017). At first, triptans were designed to constrict intracranial blood vessels (D. 

Levy, Jakubowski, & Burstein, 2004), however it now appears that triptans act within the 

trigeminocervical complex to modulate trigeminovascular nociceptive neurons (Goadsby et al., 

2017). Activation of the trigeminovascular system results in the release of neuropeptides such as 

CGRP. The main modulatory role of CGRP seems to be inflammation-induced vasodilation, and 

is commonly found in trigeminal sensory afferents, the SpV and other areas within the nervous 

system (Vikelis, Spingos, & Rapoport, 2018). Studies have shown that intravenous infusion of 

CGRP into the dura can induce migraine attacks whilst CGRP-antagonists and triptans can abort 

them (Goadsby et al., 2017; Olesen et al., 2009) (Figure 6). 
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Figure 6: CGRP-blockers and triptans. A schematic representation of the brain areas expressing 

CGRP and 5-HT1B/1D receptors that are possible sites of action of CGRP-blockers and triptans for 

treatment of migraine. CN, cochlear nucleus; DRN, dorsal raphe nucleus; GN, gracile nucleus; 

LC, locus coeruleus; MRN, median raphe nucleus; SC/IC, superior and inferior colliculus; STN, 

solitary tract nucleus; TG, trigeminal ganglion; TNC, trigeminal nucleus caudalis. CGRP = 

calcitonin gene-related peptide; 5-HT = serotonin. Modified from Edvinsson (2008). 
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Interestingly, efficacy of triptan administration based on time administered, has shed a light on 

migraine pathophysiology, supporting that meningeal nociceptors drive the initiation of a migraine 

(Burstein et al., 2015). In the rat, triptan administered simultaneously with chemical irritation of 

the dura prevents central sensitization from occurring (Bernstein & Burstein, 2012). Similarly, 

treating human patients early (within the first 60 minutes) effectively blocks the development of 

cutaneous allodynia. However, neither in the rat or human can central sensitization/allodynia be 

reversed by late triptan administration (two hours in animal model and four hours in 

human)(Burstein & Jakubowski, 2004) and thus, sensitized meningeal nociceptors are not 

inhibited by triptans (Bernstein & Burstein, 2012). Triptans abort migraine by a central action in 

the SpV that disrupts communication between peripheral (first-order) and central (second-order) 

trigeminovascular neurons (D. Levy et al., 2004). 

 

Though triptans have been shown to be an effective treatment for alleviating migraine symptoms 

if administered in a timely fashion, many migraineurs continue to suffer the debilitating effects of 

migraine without relief by triptans. Further, for those who do experience pain relief many 

experience devastating side-effects, as triptans work to constrict blood vessels, therefore their use 

is limited (Vikelis et al., 2018). Prophylactic medications can also be taken on a daily basis for 

chronic migraine sufferers to reduce frequency of attacks and include Botox (Herd et al., 2018), 

CGRP-blockers (Burch & Rayhill, 2018; Edvinsson, 2008), calcium-channel blockers as well as 

serotonergic antidepressants (Kumar & Kadian, 2018). However patients often have to combine 

prophylactic with acute medication to manage their migraine pain (Kumar & Kadian, 2018), often 

leading to an overuse of medication (Vikelis et al., 2018). A new era in acute migraine prophylaxis 

has been focusing on CGRP-blockers, non-triptan serotonin receptor agonists, as well as different 

delivery systems for older medications such as triptans and nonsteroidal anti-inflammatory 
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medications (Vikelis et al., 2018).  

 

1.4 Neural imaging 

 

Earlier migraine studies have investigated neural activity during spontaneous/triggered migraine 

attacks (S.K. Afridi et al., 2005; S. K. Afridi et al., 2005; Bahra et al., 2001b; Denuelle et al., 2007; 

Weiller, May, Limmroth, Juptner, Kaube, Schayck, Coenen, & Diener, 1995), and interictal 

periods (Calandre, Bembibre, Arnedo, & Becerra, 2002; DaSilva et al., 2007; De Benedittis, 

Ferrari Da Passano, Granata, & Lorenzetti, 1999; Kassab, Bakhtar, Wack, & Bednarczyk, 2009; 

Kim et al., 2009; Kim et al., 2008). Unfortunately, findings throughout these studies are very 

inconsistent and this can be attributed to the limitations of earlier neural imaging techniques. Even 

the influential study by Weiller and colleagues in 1995 lacks the spatial acuity to specify the exact 

nuclei involved (Weiller, May, Limmroth, Juptner, Kaube, Schayck, Coenen, & Diener, 1995). 

Modern non-invasive magnetic resonance imaging (MRI) techniques with greater temporal and 

spatial resolution, such as functional magnetic resonance imaging (fMRI) and arterial spin 

labelling (ASL) have made it possible to identify specific nuclei associated with migraine-related 

dysfunction with more precision. As a result, data from earlier studies investigating changes during 

migraine attacks and in the interictal period, can be corroborated by newer imaging studies. 

 

However, research into the critical 24-hour period preceding a migraine headache is lacking, 

leaving a huge gap in our understanding of the initiating quality of how, why and when a migraine 

occurs. This is likely due to the difficulty of acquiring data in this period, as well as limitations in 

patient reporting, as premonitory symptoms are often interpreted as either the migraine trigger 

itself or as nonspecific to the migraine (Karsan et al., 2018). Due to the insight that we can only 
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gain through investigation into this period, cross-sectional studies utilizing developed neural 

imaging techniques in this period should be our collective priority. If we can develop a more 

comprehensive understanding of these hours preceding a migraine headache, treatments could 

become more specialized and more effective at aborting attacks in the premonitory phase before 

pain onset (Karsan et al., 2018). Through analyzing resting fMRI data, it is possible to measure 

neural circuitry and local neural function using measures such as functional connectivity and 

regional homogeneity. Functional connectivity is suggested to reflect the level of functional 

communication between regions, by measuring the level of co-activation of spontaneous 

functional MRI time-series (Biswal, Kylen, & Hyde, 1997; van den Heuvel & Hulshoff Pol, 2010). 

Regional homogeneity is a marker of local signal coupling, and evaluates the synchronicity 

between the time series of a given voxel and its nearest neighbours (Zang, Jiang, Lu, He, & Tian, 

2004). In addition, the magnitude of resting fluctuations in activity can be measured by assessing 

infra-slow oscillations (ISOs). During the resting state, the brain exhibits fluctuations at 

frequencies <0.1Hz, and increases in these fluctuations have been identified in chronic neuropathic 

conditions (Alshelh et al., 2016). These methods of studying resting-state fMRI have emerged as 

efficient approaches to the exploration of neural circuitry and function. In addition to measuring 

regional patterns of activity and basal connections through fMRI studies, subtler changes in 

absolute regional brain activity can also be identified through ASL data, measuring regional 

cerebral blood flow (rCBF). With the collaboration of both techniques, we are more likely to 

identify abnormalities of the migraine brain and draw insight into the intricacies of the premonitory 

phase of migraine. 

 

Since migraine has been considered a cyclical disorder, longitudinal studies over individuals’ 

migraine cycles are also of utmost importance in understanding the nature of migraine. As the 
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brainstem tone theory suggests, brainstem function oscillates between enhanced, threshold and 

diminished neural “tone” states (Burstein et al., 2015), with triggers only effective in inducing a 

migraine when they coincide with appropriate neural conditions. Therefore, investigation into 

these oscillating neural conditions can help to elucidate patterns in which migraines are triggered 

within an individual. Very little is known about the mechanism by which triggers work to activate 

meningeal nociceptors and how premonitory symptoms initiate headache. By collecting fMRI and 

ASL data in individuals on a daily basis over the cycle of a month as well as recording 

internal/external conditions, these oscillations in brainstem function can be identified, especially 

in the critical 24-hour period preceding a migraine. These longitudinal studies are necessary for 

development of treatments aimed at preventing attacks from occurring, as opposed to merely 

aborting attacks.  

 

1.5 Rationale and general aims of dissertation 

 

As discussed, the questions I ask in this dissertation are based on several key observations: 

 

1. It is well established that sensitization of the trigeminovascular system is involved in the 

experience of migraine head pain. However, due to the lack of research into the critical 24-

hour preceding a migraine, it is still unclear as to what drives the initial sensitization of the 

meningeal nociceptors. 

 

2. Areas of the brainstem including the PAG, dorsal pons and SpV are involved in a network with 

the hypothalamus that are thought to modulate or drive the migraine experience. With the use 

of modern neural imaging techniques, elucidation of this network particularly in the 24-hour 
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period preceding a migraine would help the development of medications targeting brain 

regions involved in migraine pathophysiology. 

 

3. The migraine brain has a generalised neuronal hyperexcitability, making it very sensitive to 

homeostatic changes. Therefore, when the allostatic load is high, changes in the external or 

internal environment can trigger a migraine headache. Understanding the cyclic behaviour of 

the brainstem can help to identify patterns throughout the migraine cycle. 

 

The general aims of this thesis are as follows: 

 

1. Experimental studies have explored neural alterations during a migraine headache and during 

the interictal period, but very few studies have examined the pattern of activity directly 

preceding the development of a migraine headache. This aim of this cross-sectional 

investigation was to determine if ongoing activity patterns, reflected through ISOs and 

functional connectivity, within the brainstem and hypothalamus would alter over the migraine 

cycle, particularly in the premonitory phase (Chapter 2, published in Human Brain Mapping 

2018). 

 

2. While fMRI measures assess regional activity pattern changes throughout the migraine cycle, 

ASL allows for the assessment of absolute regional brain activity levels. The aim of this cross-

sectional investigation was to determine if rCBF differed over the migraine cycle, hence 

supporting the results from our previous investigation. Data from 21 of these migraine subjects 

were used in the previous investigation (Chapter 3, submitted to Neural Image: Clinical 2018). 
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3. In order to explore the concept of brainstem tone, regional activity patterns were measured 

within individuals every day over a four-week period as part of this longitudinal investigation. 

This aim of this longitudinal investigation was to determine if ongoing activity patterns, 

reflected through ISOs, regional homogeneity and functional connectivity, within the 

brainstem would alter over the individual migraine cycle. Data from one of these migraine 

subjects was also included in the previous two investigations (Chapter 4, submitted to PNAS 

2018). 
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3.1 Abstract 

 

Whilst the pathophysiology of migraine remains unresolved, it is likely that both the central 

nervous system and cerebral vasculature changes are critical for migraine initiation. Since it is 

impossible to predict when a migraine will occur, very few studies have explored brain activity 

changes in the critical 24-hour period preceding a migraine. Nevertheless, we recently reported 

changes in the pattern of resting activity in brainstem, hypothalamus and thalamus sites 

immediately prior to a migraine attack, findings consistent with the idea that changes in brain 

function are required to trigger a migraine. It remains unknown however, if these regional activity 

pattern changes are coupled to alterations in absolute regional brain activity levels. To address this 

question, we used pseudocontinuous arterial spin labelling, to measure regional blood flow in 

migraineurs immediately prior to (n=6), immediately following (n=10) and between migraine 

attacks (n=20) and in healthy control subjects (n=50). We found that immediately prior to a 

migraine, blood flow decreases occurred in the brainstem in the region of the midbrain 

periaqueductal gray matter, spinal trigeminal nucleus and hypothalamus, as well as in higher brain 

regions such as the orbitofrontal, visual and retrosplenial cortices. In addition, significantly 

reduced regional blood flow occurred during the interictal phase in the nucleus accumbens, 

anterior insula, ventrolateral prefrontal cortex, orbitofrontal cortex and putamen. These changes 

support the suggestion that abnormal regional brain activity occurs before a migraine attack and is 

involved in underlying migraine pathogenesis. 

 

Keywords: cerebral blood flow, spinal trigeminal nucleus, periaqueductal gray matter, migraine, 

arterial spin labelling 
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3.2 Introduction 

 

Migraine is a highly complex disorder, with headaches accompanied by an array of neurological 

symptoms such as nausea, photophobia, phonophobia, as well as emotional, cognitive and 

autonomic disturbances (Noseda & Burstein, 2013). The presence of these accompanying 

neurological symptoms supports that migraine is more than just a headache and that it likely 

involves changes in multiple brain systems (Burstein et al., 2015). For years, vascular changes 

have been considered the main factor in migraine pathogenesis (Noseda & Burstein, 2013), 

although many now consider migraine as a disorder of the central nervous system (Schwedt & 

Dodick, 2009). Even if the central nervous system is involved in the generation of a migraine 

attack, the significance of cerebral vasculature in migraine cannot be dismissed. Indeed, a large 

body of evidence exists suggesting that the development of migraine-pain is dependent on the 

activation and sensitization of the trigeminal sensory afferents that innervate meninges and their 

large blood vessels (Pietrobon & Moskowitz, 2013).  

 

Irrespective of the precise mechanism responsible for the initiation of migraine, there is evidence 

of changes in brain function immediately prior to a migraine attack. Indeed, we have recently 

shown an altered pattern of brain activity in the 24-hour period preceding a migraine attack (Noemi 

Meylakh et al., 2018). These changes are characterized by increases in resting infra-slow 

oscillations in regions including the hypothalamus, midbrain periaqueductal gray matter (PAG), 

dorsal pons and spinal trigeminal nucleus (SpV); regions that have also been shown to exhibit an 

increase in activity during a migraine attack itself (S.K. Afridi et al., 2005; Bahra et al., 2001b; 

Denuelle et al., 2007; Matharu et al., 2004). 
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Whilst we have shown changes in the pattern and functional connectivity of resting activity 

immediately prior to a migraine attack, it remains unknown if these changes are coupled to 

alterations in absolute activity levels. Whilst traditional human brain imaging methods such as 

positron emission tomography (PET) can measure resting blood flow as an index of on-going 

neural activity levels, this technique does not have the spatial acuity to explore changes within the 

brainstem. Pseudocontinuous arterial spin labelling is a relatively new magnetic resonance 

imaging technique that allows for non-invasive regional blood flow assessment that is based on 

the direct magnetic labelling of blood water protons as an endogenous tracer (Hendrikse, Petersen, 

& Golay, 2012). Whilst, some studies have measured cerebral blood flow (CBF) during the 

interictal phase (i.e. between attacks but not immediately prior or following a migraine) and even 

during a migraine aura, no study has explored regional CBF, particularly within the brainstem, in 

the period immediately preceding a migraine attack. If changes in regional brain activity occur in 

brainstem and hypothalamic regions immediately prior to a migraine attack, it would provide 

additional evidence that changes in brain activity precede the head pain that characterizes most 

migraine attacks. 

 

The aim of this investigation is to determine whether regional brain activity is altered during 

different phases of migraine, i.e. interictal, immediately prior to and immediately following a 

migraine attack. We hypothesise that the same areas displaying changes in resting activing patterns 

immediately prior to a migraine attack, that is in the SpV, PAG, hypothalamus and thalamus, will 

show significant CBF alterations immediately prior to a migraine.  

 

3.3 Methods 

3.3.1 Subjects 
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Thirty-one subjects with migraine (23 females; mean age 31±2.0 years [±SEM]) and 50 pain-free 

controls (36 females; mean age 28.8±1.5 years [±SEM]) were recruited for the study from the 

general population using an advertisement. There were no significant differences in age (t-test, 

p>0.05) or gender composition (chi-squared test, p>0.05) between the two subject groups. 

Migraine subjects were diagnosed according to the IHC Classification ICHD-3 BETA criteria and 

5 of the 31 migraine subjects reported an aura associated with their migraine attacks. Migraine 

subject characteristics, including medication use are shown in Table 1. 22 migraineurs were 

scanned during an interictal period, that is, at least 72 hours after and 24 hours prior to a migraine 

event. Ten migraineurs were scanned immediately (within 72 hours) following an attack, and of 

these ten, four were also scanned during the interictal period. Six migraineurs were scanned 

immediately (within 24 hours) prior to an attack, and of these four were also scanned during the 

interictal period.  In one migraineur scans were collected in all three phases. 

 

Exclusion criteria for controls were the presence of any pain condition including family history of 

migraines, current use of analgesics, or any neurological disorder. Exclusion criteria for 

migraineurs were any other pain condition or neurological disorder. No migraineur was excluded 

based on their medication use and no migraine or control subject had an incidental neurological 

finding that resulted in their exclusion from the study. All migraineurs indicated the intensity (6-

point visual analogue scale; 0=no pain, 5=most intense imaginable pain) and drew the facial 

distribution of pain commonly experienced during a migraine attack. In addition, each subject 

described the qualities of their migraines and indicated any current treatments used to prevent or 

abort a migraine once started. Twenty nine of the 31 migraineurs had episodic migraine whereas 

the remaining two migraineurs had chronic migraine (>15 migraines per month). Informed written 

consent was obtained for all procedures according to the Declaration of Helsinki and local 
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Institutional Human Research Ethics Committees approved the study. Data from 21 of the 31 

migraineurs and 14 of the control subjects were used in a previous investigation (Marciszewski et 

al., 2017), as well as data from 26 of the 31 migraineurs, and 14 of the control subjects in our 

previous investigation (Noemi Meylakh et al., 2018). 

 

3.3.2 MRI Acquisition 

 

All subjects lay supine on the bed of a 3 Tesla MRI scanner (Philips, Achieva) with their head 

immobilized in a tight-fitting head coil. With each subject relaxed and at rest, a high-resolution 

3D T1-weighted anatomical image set, covering the entire brain, was collected (turbo field echo; 

field of view=250x250mm, matrix size=288x288, slice thickness=0.87mm, repetition 

time=5600ms; echo time=2.5ms, flip angle=8º). Following this, a series of 108 pseudocontinuous 

arterial spin labelling images (50 axial slices, 54 label/control image pairs, [TE]=12.7ms, 

[TR]=5310ms, raw voxel size=2.4x2.4x3.0mm, labelling time=1650ms, slice time=36.6ms, post 

label delay time=1600ms, background suppression). 

 

3.3.3 MRI processing and statistical analysis 

3.3.3.1 Image preprocessing 

 

Using SPM12 and Matlab software, Statistical Parametric Mapping, all pseudocontinuous arterial 

spin labelling images were realigned, co-registered to each individual’s T1-weighted image set, 

the label and control images averaged and a mean cerebral blood flow (CBF) image created using 

the subtraction method using the ASL toolbox (Wang et al., 2008). Each subject’s T1-weighted 
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anatomical image was then spatially normalized to a template in Montreal Neurological Institute 

(MNI) space and the parameters applied to the CBF maps. The wholebrain CBF maps were then 

smoothed using a 5mm full-width at half-maximum (FWHM) Gaussian filter. We also performed 

a brainstem specific analysis in each subject. Using the Spatially Unbiased Infratentorial Template 

(SUIT) toolbox (Diedrichsen et al., 2011), the brainstem was isolated from the T1-weighted 

anatomical image and normalized into MNI space and the parameters applied to the CBF maps 

resulting in a blood flow map of the brainstem only in MNI space. These brainstem maps were 

then spatially smoothed using a 3mm FWHM Gaussian filter. A grey matter mask derived from 

the T1-weighted anatomical image segmentation was used to restrict the wholebrain analysis to 

grey matter, and a brainstem-specific mask was used for the brainstem analyses. 

 

We performed three separate voxel-by-voxel analyses to determine if there were any significant 

differences in regional CBF between i) controls versus migraineurs during the interictal phase, ii) 

controls versus migraineurs during the 24-hour period immediately prior to a migraine attack, and 

iii) controls versus migraineurs during the 72-hour period immediately after a migraine attack. 

Significant differences in CBF between groups were determined using a two-sample random 

effects analysis (p<0.05 false discovery rate corrected). Significant clusters were overlaid onto an 

individual T1-weighted anatomical image and also rendered onto a glass three-dimensional view 

of the brainstem and wholebrain. We also measured global CBF to determine if there were any 

significant differences in global CBF values between each group. These values were then used as 

a confound variable when testing regional differences, to ensure that global CBF was not a factor 

in the context of regional CBF. In all analyses, the anatomical locations of significant clusters were 

confirmed using the Atlas of the Human Brain (Mai, Paxinos, & Voss, 2007) and the Atlas of the 

Human Brainstem (G. Paxinos & X. Huang, 1995). 
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For each significant cluster derived from each of the three wholebrain and three brainstem 

analyses, the CBF values were extracted from each subject in each of the four subject groups and 

the mean and SEM plotted. Significant differences between controls and each of the other two 

migraine groups were determined (p<0.05, two-tailed, two-sample t-test, Bonferroni corrected for 

multiple comparisons). Differences in CBF values between the groups in the original voxel-by-

voxel analysis from which the cluster was derived were not compared to avoid “double-dipping.” 

 

In addition to exploring differences between controls and migraineurs during three phases, for each 

significant cluster derived from the controls versus migraineurs during the phase immediately prior 

to a migraine, we plotted CBF values against each individual’s time to their next migraine attack. 

That is, from the day of scanning, how many days until the next migraine to an upper limit of 30 

days. Furthermore, for visualization purposes, mean CBF values for migraineurs with greater than 

30 days prior, 30-12 days prior, 11-2 days prior and 1 day prior to a migraine attack were averaged 

and plotted. Finally, since others have reported increases in CBF specifically within the primary 

somatosensory cortex (Hodkinson et al., 2015; Youssef et al., 2017), we performed a targeted 

analysis of this region by restricting our analysis to the right and left primary somatosensory 

cortices for each of the three voxel-by-voxel analyses (p<0.05 family discovery rate 5 corrected). 

 

3.4 Results 

 

Comparisons of resting CBF within the brainstem revealed no significant differences between 

controls and migraineurs during either the interictal phase or immediately following a migraine 

attack (Figure 1A). However, in striking contrast, during the phase immediately prior to a 

migraine, CBF was significantly lower in migraineurs compared with controls in two regions: the 



 

  66 

region encompassing the right PAG and the area encompassing the left SpV (Figure 1B, Table 2). 

Extraction of CBF values from these two clusters in controls and the three migraine groups 

confirmed the specificity of the CBF decreases; that is, CBF decreased in the PAG and SpV regions 

only during the phase immediately prior to a migraine attack (CBF mean ± SEM ml/100g/min: 

PAG: controls: 78.3±3.8, interictal: 67.8±4.3, immediately prior to an attack: 38.7±9.0, 

immediately following an attack: 56.1±10.0; SpV: controls: 113.2±2.7, interictal: 106.3±5.4, 

immediately prior to an attack: 73.3±10.6, immediately following an attack: 92.6±8.9). 

 

In addition to rCBF, we also measured global CBF to ensure that the patterns of rCBF were not 

influenced by global CBF. Extraction of global CBF values confirmed a similar pattern in the 

brainstem as seen in the rCBF (CBF mean ± SEM ml/100g/min: controls: 60.0±1.6, interictal: 

60.3±3.2, immediately prior to an attack: 47.2±3.5, immediately following an attack: 52.8±5.9) 

Furthermore, the global CBF values were added as a confound variable in the testing of regional 

differences. These findings did not change the nature of the results aforementioned, however the 

threshold was affected. For these results, significant differences in CBF between groups were 

determined using a two-sample random effects analysis (p<0.005). Comparisons of resting CBF 

with global CBF as a confound variable within the brainstem revealed that during the phase 

immediately prior to a migraine, CBF was significantly lower in migraineurs compared with 

controls in two regions: the region encompassing the right PAG and the area encompassing the 

left SpV (Figure ID). (CBF mean ± SEM ml/100g/min: PAG: controls: 80.7±3.8, interictal: 

69.9±4.4, immediately prior to an attack: 39.0±9.1, immediately following an attack: 57.5±10.2; 

SpV: controls: 115.2±2.8, interictal: 108.1±5.3, immediately prior to an attack: 73.2±11.2, 

immediately following an attack: 96.1±8.5). 
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Wholebrain analysis also revealed significant reductions in CBF in migraineurs compared with 

controls during the phase immediately prior to an attack (Figure 2A and B, Table 2). Migraineurs 

displayed significantly reduced CBF in a number of discrete brain regions including the region 

encompassing the right hypothalamus, right orbitofrontal cortex (OFC), left visual cortex and the 

retrosplenial cortex (RSC) bilaterally. Consistent with the brainstem changes, extraction of CBF 

values confirmed the specificity of the CBF decreases during the immediately prior to migraine 

phase only (right hypothalamus: controls: 45.9±1.6, interictal: 40.3±2.4, immediately prior to an 

attack: 27.7±4.6, immediately following an attack: 36.9±3.3; right OFC: controls: 53.1±1.4, 

interictal: 48.1±2.2, immediately prior to an attack: 38.8±1.8, immediately following an attack: 

44.1±4.1; left visual cortex: controls: 70.3±3.3, interictal: 61.8±5.8, immediately prior to an 

attack: 34.1±5.3, immediately following an attack: 67.9±8.5; RSC: controls: 66.7±2.7, interictal: 

61.2±4.2, immediately prior to an attack: 37.5±7.7, immediately following an attack: 51.0±4.4). 

Plots of CBF values for each cluster in individual migraineurs also confirmed the specificity of 

these decreases during the period immediately prior to a migraine attack (Figure 3). They also 

reveal that in the SpV, PAG and hypothalamus, CBF was relatively stable during the interictal 

period, i.e., CBF was stable until the day before the migraine attack during which time they 

decreased abruptly. In contrast, CBF in cortical regions such as the OFC, RSC and visual cortex 

appeared to decrease from approximately 1 week prior to the migraine attack. 

 

In addition to changes in resting CBF in the brainstem and higher brain regions during the phase 

immediately prior to a migraine, we found changes in higher brain centres in the interictal phase 

(Figures 4A and 4B, Table 2). Significantly reduced CBF occurred in migraineurs during the 

interictal phase in areas including in the region of the left nucleus accumbens (NAc), left anterior 

insula, left and right ventrolateral prefrontal cortex (vlPFC), right OFC, as well as in the region of 
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the left putamen. Extraction of CBF values from these clusters during all migraine phases revealed 

that in no cluster was CBF significantly different between controls and migraineurs during the 

phase immediately prior to a migraine, although all apart from the NAc displayed significantly 

reduced CBF during the phase immediately following a migraine (left NAc: controls: 68.0±2.4, 

interictal: 52.4±2.5, immediately prior to an attack: 55.7±4.4, immediately following an attack: 

53.8±5.7; left anterior insula: controls: 43.1±1.3, interictal: 34.3±1.7, immediately prior to an 

attack: 34.9±3.1, immediately following an attack: 31.8±4.9; left vlPFC: controls: 74.9±2.2, 

interictal: 61.1±2.5, immediately prior to an attack: 61.3±3.9, immediately following an attack: 

59.2±5.6; right vlPFC: controls: 93.4±2.6, interictal: 76.6±2.9, immediately prior to an attack: 

74.4±3.7, immediately following an attack: 71.5±6.8; right OFC: controls: 84.5±2.5, interictal: 

66.4±2.4, immediately prior to an attack: 69.7±4.7, immediately following an attack: 62.2±5.7; 

left putamen: controls: 48.2±1.5, interictal: 36.7±1.6, immediately prior to an attack: 37.9±2.7, 

immediately following an attack: 37.6±3.5). 

 

Again, in addition to rCBF, we also measured global CBF flow to ensure that the patterns of rCBF 

were not influenced by global CBF. Extraction of global CBF values confirmed a similar pattern 

in the wholebrain as seen in the rCBF (controls: 60.5±1.9, interictal: 57.2±3.0, immediately prior 

to an attack: 48.2±3.7, immediately following an attack: 55.1±4.4). When adding the global CBF 

values as a confound variable, the regions displayed in the rCBF analysis did not change, however 

the threshold was affected. For these results, significant differences in CBF between groups were 

determined using a two-sample random effects analysis (p<0.005). Wholebrain analysis of resting 

CBF with global CBF as a confound variable confirmed that migraineurs displayed significantly 

reduced rCBF in a number of brain regions including the region encompassing the right 

hypothalamus, right orbitofrontal cortex (OFC), left visual cortex and the retrosplenial cortex 
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(RSC) bilaterally during the phase immediately prior to a migraine (Figure 2D) (right 

hypothalamus: controls: 46.2±1.6, interictal: 40.5±2.5, immediately prior to an attack: 27.1±4.8, 

immediately following an attack: 37.3±3.3; right OFC: controls: 48.6±1.3, interictal: 44.8±2.2, 

immediately prior to an attack: 35.7±1.9, immediately following an attack: 41.5±3.9; left visual 

cortex: controls: 70.2±3.3, interictal: 61.7±5.6, immediately prior to an attack: 34.8±5.3, 

immediately following an attack: 67.1±8.5; RSC: controls: 68.8±2.3, interictal: 64.1±4.3, 

immediately prior to an attack: 35.7±7.5, immediately following an attack: 53.7±4.6). 

 

Furthermore, wholebrain analysis of resting CBF with global CBF as a confound variable 

confirmed that migraineurs displayed significantly reduced CBF occurred in migraineurs during 

the interictal phase in areas including in the region of the left nucleus accumbens (NAc), left and 

right ventrolateral prefrontal cortex (vlPFC), right OFC, as well as in the region of the left putamen 

(Figure 4D) (left NAc: controls: 49.9±1.6, interictal: 38.7±1.8, immediately prior to an attack: 

39.5±2.8, immediately following an attack: 39.3±3.6; left vlPFC: controls: 61.8±1.7, interictal: 

50.5±2.3, immediately prior to an attack: 49.8±3..2, immediately following an attack: 47.9±5.1; 

right vlPFC: controls: 93.0±2.6, interictal: 77.0±3.4, immediately prior to an attack: 74.2±3.9, 

immediately following an attack: 71.5±6.7; right OFC: controls: 82.7±2.4, interictal: 65.7±2.5, 

immediately prior to an attack: 68.5±5.0, immediately following an attack: 61.2±5.6; left putamen: 

controls: 49.9±1.6, interictal: 38.7±1.8, immediately prior to an attack: 39.5±2.8, immediately 

following an attack: 39.3±3.6). 

 

Analysis of medication use in migraineurs revealed that medication use had no significant effect 

on CBF in the regions that showed significant reductions during the phase immediately prior to an 

attack (CBF mean ± SEM ml/100g/min: PAG: interictal: medication: 61.1 ± 6.2, no medication: 
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71.8 ± 5.7, p=0.22; immediately prior to an attack: medication: 44.4 ± 20.0, no medication: 34.4 

± 8.2, p=0.68; SpV: interictal: medication: 97.5 ± 5.9, no medication: 111.4 ± 7.6, p=0.17; 

immediately prior to an attack: medication: 80.8 ± 21.3, no medication: 67.7 ± 12.0, p=0.63; right 

hypothalamus: interictal: medication: 36.1 ± 3.3, no medication: 43.0 ± 3.2, p=0.17; immediately 

following an attack: medication: 40.4 ± 3.6, no medication: 34.5 ± 4.9, p=0.36; OFC: interictal: 

medication: 49.0 ± 2.6, no medication: 47.5 ± 3.4, p=0.75; immediately following an attack: 

medication: 48.4 ± 6.8, no medication: 41.2 ± 5.2, p=0.43; left visual cortex: interictal: 

medication: 60.9 ± 8.6, no medication: 62.3 ± 8.0, p=0.91; immediately following an attack: 

medication: 73.6 ± 8.1, no medication: 64.0 ± 13.6, p=0.56; RSC: interictal: medication: 49.8 ± 

3.6, no medication: 68.7 ± 5.7, p=0.02; immediately following an attack: medication: 52.5 ± 8.1, 

no medication: 49.9 ± 5.5, p=0.80). Furthermore, there was no effect of medication use on CBF 

in the regions that showed significant reductions during the interictal phase (NaC: interictal: 

medication: 46.8 ± 2.8, no medication: 56.2 ± 4.1, p=0.11; immediately following an attack: 

medication: 58.4 ± 7.7, no medication: 50.8 ± 8.3, p=0.52; left anterior insula: interictal: 

medication: 31.0 ± 2.9, no medication: 36.5 ± 2.4, p=0.16; immediately following an attack: 

medication: 28.5 ± 6.3, no medication: 33.9 ± 7.3, p=0.59;  left vlPFC: interictal: medication: 58.3 

± 3.2, no medication: 63.0 ± 4.2, p=0.44; immediately following an attack: medication: 62.9 ± 

11.4, no medication: 56.8 ± 6.3, p=0.66; right vlPFC: interictal: medication: 73.9 ± 4.0, no 

medication: 78.4 ± 4.8, p=0.51; immediately following an attack: medication: 71.1 ± 11.7, no 

medication: 71.8 ± 9.2, p=0.96; right OFC: interictal: medication: 63.2 ± 4.3, no medication: 68.5 

± 3.3, p=0.34; immediately following an attack: medication: 62.8 ± 11.4, no medication: 61.9 ± 

6.8, p=0.95; and left putamen: interictal: medication: 33.2 ± 2.0, no medication: 39.0 ± 2.6, 

p=0.12; immediately following an attack: medication: 40.8 ± 5.7, no medication: 35.5 ± 4.7, 

p=0.50). 
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Finally, our restricted analysis of the primary somatosensory cortex revealed no significant 

differences in CBF between controls and any of the three migraine groups. This lack of difference 

was evident even at corrected thresholds and even at more liberal thresholds such as p<0.01 

uncorrected for multiple comparisons. A small cluster in the orofacial region of the right primary 

somatosensory cortex did appear at p<0.05 uncorrected in the interictal greater than control 

comparison, however the extraction of CBF values revealed no significant difference between the 

groups. 

 

3.5 Discussion 

 

Our data provides strong evidence that in migraineurs, regional on-going activity in a discrete set 

of brainstem and higher brain structures decreases immediately prior to a migraine attack. 

Importantly, these regional activity decreases occurred in many of the same regions in which we 

have shown altered on-going activity patterns during the phase immediately prior to a migraine, in 

particular the hypothalamus, PAG and SpV, and in which others have shown activations and 

alterations during a migraine attack itself (S.K. Afridi et al., 2005; Bahra et al., 2001b; Bednarczyk, 

Remler, Weikart, Nelson, & Reed, 1998; Weiller, May, Limmroth, Juptner, Kaube, Schayck, 

Coenen, & Diener, 1995). Furthermore, CBF in these regions remained at controls levels during 

the interictal phase, decreasing exclusively during the 24-hour period before a migraine attack. 

These data support that CBF is altered in areas of the pain processing system prior to the 

development of migraine head pain and are consistent with the idea that changes in brain circuitry 

activity and/or responsivity may be involved in the initiation of migraine. 

 

Whilst numerous investigations have explored resting regional CBF in migraineurs during the 
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interictal phase, very few have explored the period immediately prior to a migraine attack during 

the prodrome or premonitory phase. Consistent with our data, early investigations using intra-

carotid injection of 133Xe found that during the premonitory phase, CBF decreased in the carotid 

artery territory (Norris, Hachinski, & Cooper, 1975). Furthermore, these CBF decreases were 

replaced by CBF increases during the subsequent migraine attack. More recently, a PET study 

exploring regional CBF during triggered premonitory symptoms through the administration of 

nitroglycerin, reported increased blood flow in areas of the hypothalamus, PAG, dorsal pons and 

cortical regions such as occipital, temporal and prefrontal cortices (Maniyar, Sprenger, Monteith, 

Schankin, & Goadsby, 2014). Whilst this appears contradictory to our results, in the 

aforementioned study, individuals reported symptoms such as photophobia, nausea, tiredness and 

neck stiffness, whereas in our study individuals did not report any such premonitory symptoms. It 

is likely that our regional CBF decreases in many of the same brain regions, reflect neural activity 

changes immediately prior to the onset of premonitory symptoms, which may result in the 

expression of premonitory symptoms and head pain. 

 

In the 24-hour period prior to a migraine, we found CBF decreases in the regions encompassing 

the hypothalamus, PAG and SpV, areas in which we previously reported increased infra-slow 

oscillation (0.03-0.06Hz) strength of resting fMRI signal fluctuations during the same period in 

migraineurs (Meylakh et al., 2018). The hypothalamus and PAG have long been hypothesised to 

be involved in the initiation of migraine, although the precise roles of these regions remain 

unknown (Denuelle et al., 2007). Tract tracing studies have shown that the PAG and hypothalamus 

are reciprocally connected and that the PAG sends projections to the SpV via the rostral 

ventromedial medulla (Floyd et al., 2001; Holstege & Kuypers, 1982; Morgan et al., 2008). This 

circuitry forms part of the descending pain modulating circuitry that can inhibit or enhance 
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incoming nociceptor inputs at the level of the primary afferent synapse, including at the SpV (H. 

L. Fields & Heinricher, 1985), and PAG stimulation that inhibits incoming dural afferent 

information (Knight & Goadsby, 2001). 

 

Indeed, the role of the PAG in migraine generation has been the subject of much debate since 

Raskin and colleagues induced migraine-like headaches with the implantation of electrodes into 

the PAG of non-migraine chronic pain patients (Matharu et al., 2004). Decreases in PAG blood 

flow are however consistent with anatomical reports of decreased grey matter volumes and/or 

increased mean diffusivity in the SpV, rostral ventromedial medulla and PAG (Marciszewski et 

al., 2017), as well as lower fractional anisotropy in the PAG of migraineurs (DaSilva et al., 2007). 

It has been suggested that it is an imbalance between the regulation of antinociception by brainstem 

nuclei and vascular control that contributes to the development of a migraine (Bartolini et al., 

2005). Given these reports and the data presented here, it is likely that the hypothalamus and PAG 

are involved in the transmission of incoming noxious inputs to higher brain centres directly or via 

their modulatory actions at the level of the SpV (Burstein et al., 2015).  

 

Interestingly we found no perfusion changes in migraineurs in the region of the dorsomedial pons, 

although we have previously shown activity pattern changes in this region in the phase 

immediately prior to migraine. Whilst a recent case-study reported greater functional coupling 

between the hypothalamus and dorsomedial pons and SpV during the phase immediately prior to 

an attack (Schulte & May, 2016), in our previous study we found only increased coupling between 

the hypothalamus, PAG and thalamus during this same period. Whilst numerous studies have 

shown dorsomedial pons activation during a migraine attack (S.K. Afridi et al., 2005; S. K. Afridi 

et al., 2005; Bahra et al., 2001b; Denuelle et al., 2007; Weiller, May, Limmroth, Juptner, Kaube, 
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Schayck, Coenen, & Diener, 1995), our data suggests that unlike the hypothalamus, PAG and SpV, 

the precise nature and timing of changes in the dorsomedial pons is different which may result 

from an overall difference in the underlying role of this region in migraine.   

 

In addition to decreased CBF in the brainstem and diencephalon, we found CBF decreases in the 

phase immediately prior to migraine in the OFC, RSC and visual cortex. In contrast to the 

brainstem and hypothalamus, these changes tended to occur gradually, decreasing over the 

interictal period as the 24-hour period before the migraine approached. Interestingly, reduced 

visual cortex CBF occurred in migraineurs, even though the vast majority did not experience 

migraine with visual aura. Whilst CBF changes in the visual cortex in migraineurs without aura 

has rarely been observed (Andersson et al., 1997), multiple CBF studies have reported visual 

cortex hypo-perfusion in migraineurs during an attack, in the interictal phase, and following 

migraine relief (Cheng et al., 2013; Denuelle, Fabre, Payoux, Chollet, & Geraud, 2008; Lauritzen, 

Olsen, Lassen, & Paulson, 1983; Levine, Welch, Ewing, Joseph, & D'Andrea, 1987; Mirza et al., 

1998; Sanchez del Rio et al., 1999; Woods, Iacoboni, & Mazziotta, 1994). 

 

Although the focus of our investigation was to determine regional blood flow changes in the phase 

immediately prior to a migraine, we also found significant regional CBF decreases in migraineurs 

during the interictal phase. These included decreases in the region of the NAc, OFC and vlPFC. 

Overall, studies using measures of on-going perfusion in interictal states have proven to be 

inconsistent. Single photon emission computed tomography and PET studies have displayed 

reduced CBF (Calandre et al., 2002; De Benedittis et al., 1999), increased CBF (Kassab et al., 

2009), asymmetry (Levine et al., 1987; Mirza et al., 1998), or no CBF alterations (Bartolini et al., 

2005) in various brain regions during the interictal state. More recently, selective CBF increases 
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in the primary somatosensory cortex have been reported in adult and adolescent migraineurs, 

findings that are contrary to that of this investigation (Youssef et al., 2017). Nevertheless, reported 

anterior cingulate cortex CBF decreases and our finding of CBF decreases in the OFC and NAc, 

appear consistent with reports of reduced grey matter volumes in these same regions in migraineurs 

(Jin et al., 2013; Kim et al., 2009; Kim et al., 2008; Schmidt-Wilcke, Ganssbauer, Neuner, 

Bogdahn, & May, 2008; Yuan et al., 2013). 

 

In contrast to the decreases in regional CBF during the phase immediately prior to a migraine, the 

CBF decreases in the NAc, OFC and vlPFC appear to be relatively stable over the migraine cycle, 

being significantly reduced during the interictal and the phase immediately following a migraine. 

It is well known that the NAc is activated by noxious stimuli (Becerra & Borsook, 2008); morphine 

injections into the NAc increase pain thresholds (Zhou, Xuan, & Han, 1984), and NAc-prefrontal 

connectivity can predict an individual’s chronic pain intensity (Baliki, Geha, Fields, & Apkarian, 

2010). Furthermore, we have recently shown that an individual’s analgesic propensity, measured 

by their condition pain modulation ability, is significantly correlated to changes in activity within 

the NAc and OFC (Youssef, Macefield, & Henderson, 2016a). Interestingly, this analgesic ability 

is associated with activity within the medullary subnucleus reticularis dorsalis and not the PAG-

RVM-SpV pathway (Le Bars, Dickenson, & Besson, 1979; Youssef, Macefield, & Henderson, 

2016b). Whilst we did not find on-going changes in the medulla during the interictal phase, it is 

possible that during this phase, the NAc and OFC limit the effectiveness of external triggers or the 

ability of resting basal firing levels within the trigeminal pathway to activate higher brain centres 

and to evoke head pain. Hence, only when CBF decreases in the hypothalamus, PAG and SpV 

immediately prior to a migraine can signals reach the cortex resulting in head pain. Of course this 

is speculation and further investigations exploring the role of the brain’s endogenous pain 
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modulation circuitry over the migraine cycle is needed to confirm that such changes occur. 

Whilst our results provide evidence of neural changes prior to the initiation of a migraine attack, 

there are a number of limitations that need to be considered. Firstly, although we utilised spatial 

normalization techniques that are designed specifically for the brainstem, the precise localization 

of clusters to specific brainstem nuclei is difficult. Indeed, whilst we are confident that the CBF 

changes we report encompass the areas described, they also extend to surroundings voxels which 

may be involving other functional nuclei. Secondly, as it is not possible to predict when an 

individual’s next migraine will occur, it is difficult to collect MRI scans during the 24-hour period 

immediately prior to a migraine attack. Essentially this occurs by chance and as a consequence the 

group numbers for this phase are relatively low compared with other migraine phases. Although 

we did employ population based statistical tests that were corrected for multiple comparisons, 

increasing the sample size of the group immediately prior to a migraine would add veracity to the 

current data and our interpretation. 
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Figure Legends: 

Figure 1: A: Significant differences in regional cerebral blood flow between controls (n=42) and 

migraineurs during interictal (n=17), the phase immediately prior to (n=5) and the phase 

immediately following a migraine attack (n=6) in a brainstem specific voxel-by-voxel analysis. 

Note that only during the phase immediately prior to a migraine was blood flow significantly 

different from controls. B: Brain regions in which regional cerebral blood flow was significantly 

decreased (cool colour scale) in migraineurs directly prior to a migraine compared with controls 

overlaid onto a T1-weighted brainstem template. Locations of each slice in Montreal Neurological 

Institute space are indicated at the top left. Note the significantly reduced blood flow in the region 

of the midbrain periaqueductal gray matter (PAG) and spinal trigeminal nucleus (SpV). C: Plots 

of mean (±SEM) blood flow in significant clusters extracted from controls and migraineurs during 

all three phases. There were only significant decreases in regional cerebral blood flow compared 

to controls in these clusters in the phase immediately prior to a migraine (*p<0.05 derived from 

voxel-by-voxel analysis). D: Brain regions in which regional cerebral blood flow, with global CBF 

as a confound variable, was significantly decreased (cool colour scale) in migraineurs directly prior 

to a migraine compared with controls overlaid onto a T1-weighted brainstem template. Note the 

same regions as reported in B. E. Plots of mean (±SEM) blood flow in significant clusters extracted 

from the regional cerebral blood flow analysis with global CBF as a confound variable. There were 

only significant decreases in regional cerebral blood flow compared to controls in these clusters in 

the phase immediately prior to a migraine (*p<0.05 derived from voxel-by-voxel analysis). 

 

Figure 2A: Significant differences in regional cerebral blood flow between controls (n=50) and 

migraineurs during interictal (n=20), the phase immediately prior to (n=6) and the phase 

immediately following a migraine attack (n=10) in a wholebrain voxel-by-voxel analysis. Note 
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that the interictal and phase immediately prior to a migraine showed significant differences 

compared with controls. B: Brain regions in which regional cerebral blood flow was significantly 

decreased (cool colour scale) in migraineurs immediately prior to a migraine compared with 

controls overlaid onto a mean T1-weighted anatomical image set. Locations of each slice in 

Montreal Neurological Institute space are indicated at the top left. Note the significant blood flow 

reductions in the hypothalamus, orbitofrontal cortex (OFC), retrosplenial cortex (RSC) and visual 

cortex. C: Plots of mean (±SEM) blood flow in significant clusters extracted from controls and 

migraineurs during all three phases. There were only significant decreases in regional cerebral 

blood flow compared to controls in these clusters in the phase immediately prior to a migraine 

(*p<0.05 derived from voxel-by-voxel analysis). D: Brain regions in which regional cerebral blood 

flow, with global CBF as a confound variable, was significantly decreased (cool colour scale) in 

migraineurs directly prior to a migraine compared with controls overlaid onto a T1-weighted 

brainstem template. Note the same regions as reported in B. E. Plots of mean (±SEM) blood flow 

in significant clusters extracted from the regional cerebral blood flow analysis with global CBF as 

a confound variable. There were only significant decreases in regional cerebral blood flow 

compared to controls in these clusters in the phase immediately prior to a migraine (*p<0.05 

derived from voxel-by-voxel analysis; #p<0.05 derived from two-sample t-test). 

 

Figure 3: Plots of blood flow in individual migraineurs (grey circles) against days until their next 

migraine for six brain regions found to have decreased regional cerebral blood flow in the period 

immediately prior to a migraine attack. The black squares represent the mean blood flow values 

for the periods greater than 30 days prior, 30-12 days prior, 11-2 days prior and 1 day prior to a 

migraine attack. Note that in the region of the spinal trigeminal nucleus (SpV), midbrain 

periaqueductal gray (PAG) and hypothalamus, blood flow remained relative stable until the phase 
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immediately prior to a migraine attack. In contrast, blood flow in the orbitofrontal cortex (OFC), 

retrosplenial cortex (RSC) and visual cortex gradually decreased throughout the interictal period. 

 

Figure 4: A: Significant differences in regional cerebral blood flow between controls (n=50) and 

migraineurs during interictal (n=20), the phase immediately prior to (n=6) and the phase 

immediately following a migraine attack (n=10) in a wholebrain voxel-by-voxel analysis. Note 

that the interictal and phase immediately prior to a migraine showed significant differences 

compared with controls. B: Brain regions in which regional cerebral blood flow was significantly 

decreased (cool colour scale) in migraineurs during the interictal phase compared with controls 

overlaid onto a mean T1-weighted anatomical image set. Locations of each slice in Montreal 

Neurological Institute space are indicated at the top left. Note the significant blood flow reductions 

in the orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (vlPFC), putamen and nucleus 

accumbens (NAc). C: Plots of mean (±SEM) blood flow in significant clusters extracted from 

controls and migraineurs during all three phases. Note that blood flow remained relatively stable 

and below that of controls during all phase of migraine (*p<0.05 derived from voxel-by-voxel 

analysis; #p<0.05 derived from two-sample t-test). D: Brain regions in which regional cerebral 

blood flow, with global CBF as a confound variable, was significantly decreased (cool colour 

scale) in migraineurs during the interictal phase compared with controls overlaid onto a T1-

weighted brainstem template. Note the same regions as reported in B. E. Plots of mean (±SEM) 

blood flow in significant clusters extracted from the regional cerebral blood flow analysis with 

global CBF as a confound variable. Note that blood flow remained relatively stable and below that 

of controls during all phases of migraine (*p<0.05 derived from voxel-by-voxel analysis; #p<0.05 

derived from two-sample t-test). 
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Table 1. Migraine subject characteristics. B: bilateral, L: left, OCP: oral contraceptive pill; R: 

right; SSRI: selective serotonin reuptake inhibitor 

Subject Age Sex 

Years 

suffering 

Pain 

side Aura 

Migraine/

month 

Intensity 

(0-5) 

Medication taken 

during migraine Daily Medication 

1 53 M 15 B N 15 

(chronic) 

3 ibuprofen, 

paracetamol 

- 

2 24 F 20 B N 4 4 ibuprofen, 

paracetamol 

OCP, budesonide 

/formoterol 

3 26 F 12 R N 2 3-4 ibuprofen OCP 

4 27 F 12 R Y 1 4 ibuprofen OCP 

5 23 F 4 R N 4 4 triptan OCP, metformin 

hydrochloride 

6 25 F 12 L N 5 3 aspirin, rizatriptan desvenlafaxine 

7 21 F 1.5 L N 4 3 ibuprofen, 

paracetamol, 

codeine 

OCP 

8 26 F 1 L N 3 5 paracetamol OCP 

9 26 F 5 R N 1 2 aspirin, codeine, 

ibuprofen 

OCP 

10 32 F 22 L N 12 5 paracetamol - 

11 31 F 20 B N 4 5 panadeine forte, 

mersyndol 

- 

12 23 F 6 R N 1 3-4 ibuprofen OCP 

13 23 F 10 B N 0.5-1 4 ibuprofen, codeine OCP 

14 46 F 15-20 B N 1 3 sumatriptan - 

15 41 F 40 B N 2 4 sumatriptan - 

16 26 M 15 B N 8 3 TCE, panadeine - 

17 23 M 3-4 B N 0.5-1 3.5 paracetamol, 

codeine 

- 

18 27 F 16 R Y 1 3-4 SSRI, opiates, 

muscle-relaxants 

SSRI, OCP 

19 23 M 4-5 B N 0.5 - 1 4 paracetamol - 

20 55 F 40 R N 0.5 -1 3-4 sumatriptan telmisartan 

21 26 M 20 R N 0.5-1 4 metamizole carbamazepine 

22 49 F 30 B N 0.5-1 5 rizatriptan, 

paracetamol 

- 

23 51 F 50 L Y 2 3-4 panadeine - 

24 34 F 15 L Y 2 3 paracetamol, 

ibuprofen 

- 

25 26 F 5 B Y 1 3 paracetamol OCP 

26 25 F 7-8 L N 5-8 3 rizatriptan 

benzoate  

OCP 

27 25 M 6 L N 0.5-1 4 panadeine forte - 

28 19 F 4-5 B N 3-4 3 lexapro OCP 

29 25 M 12 L N 2 4 paracetamol Ciprimal 

30 27 M 7 B N 1 3 paracetamol, 

codeine, 

maxalt/rizatriptan 

- 

http://www.merck.com/product/usa/pi_circulars/m/maxalt/maxalt.html
http://www.merck.com/product/usa/pi_circulars/m/maxalt/maxalt.html
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Table 2. Montreal Neurological Institute (MNI) coordinates, cluster size and t-score for regions 

in which on-going blood flow were significantly different between controls and migraineurs. 

 

 

  

Brain region 

MNI 

Co-ordinate 

cluster 

size 

t-score 
  

 x y z   

Controls greater migraineurs during immediately prior to a migraine phase 

Brainstem analysis 

left spinal trigeminal nucleus 

right midbrain periaqueductal gray matter 

 

6 

-6 

 

-44 

-32 

 

-53 

-3 

 

28 

23 

 

4.36 

4.62 

Wholebrain analysis 

right hypothalamus 

retrosplenial cortex 

right orbitofrontal cortex 

left visual cortex 

 

12 

8 

28 

-12 

 

-6 

-46 

36 

-98 

 

-10 

-4 

-11 

-19 

 

105 

52 

28 

183 

 

3.91 

4.11 

3.35 

4.33 

Controls greater migraineurs during interictal phase      

Wholebrain analysis 

left nucleus accumbens 

left putamen 

left anterior insula 

left ventrolateral prefrontal cortex 

right ventrolateral prefrontal cortex 

right orbitofrontal cortex 

 

-12 

-22 

-34 

-42 

40 

24 

 

4 

-2 

30 

32 

26 

14 

 

-16 

4 

8 

-10 

-10 

-22 

 

30 

58 

17 

14 

54 

60 

 

4.11 

4.13 

4.17 

3.87 

4.43 

4.97 
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Abstract 

4.1 Abstract 

Although the mechanisms responsible for the initiation of a migraine remain unknown, recent 

evidence from cross-sectional studies shows that brain function is different in people immediately 

prior to a migraine. This is consistent with the idea that altered brain function, particularly in 

brainstem sites, may either trigger a migraine itself or facilitate a peripheral trigger that activates 

the brain, resulting in head pain. It is impossible to predict when a migraine will occur, so few 

studies have explored brain activity changes in the critical 24-hour period preceding a migraine. 

To address this shortcoming, we performed resting state functional magnetic resonance imaging 

in three migraineurs and five controls each weekday for four weeks. Focussing on the brainstem, 

we found that although resting activity variability was similar in controls and migraineurs during 

the interictal period, brainstem variability increased dramatically during the 24-hour period 

immediately prior to a migraine. This increase in resting variability occurred in specific areas 

within the brainstem in which orofacial afferents terminate: the spinal trigeminal nucleus and 

dorsal pons. These increases in regional brainstem variability in this specific 24-hour period 

immediately prior to a migraine were characterized by increased power at infra-slow frequencies, 

principally between 0.03-0.06Hz. Furthermore, these power increases immediately before a 

migraine were associated with increased regional homogeneity, a measure of local signal 

coherence. These results show within-individual alterations in brain activity immediately prior to 

migraine onset, and support the hypothesis that altered regional brainstem function immediately 

before a migraine attack is involved in the underlying neurobiology of migraine. 

 

Keywords: resting state fMRI, spinal trigeminal nucleus, dorsal pons, infra-slow oscillations, 

astrocytes. 
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4.2 Introduction 

 4.2 Introduction 

The pathophysiology of migraine has been hotly debated for years as either originating from 

vascular and/or centrally-driven mechanisms. The most prevalent hypothesis for the initiation of a 

migraine attack centres around the idea that sensitization of meningeal nociceptors leads to 

activation of trigeminovascular neurons that enter the central nervous system and evoke 

debilitating head pain (Bernstein & Burstein, 2012; Borsook & Burstein, 2012). More recently, an 

alternative idea of a “central generator” has been proposed, which posits that changes within the 

central nervous system initiate migraine attacks, even though the idea that a peripheral 

cerebrovascular trigger is not necessary for migraine initiation has been vigorously debated 

(Borsook & Burstein, 2012). Indeed, it has been suggested that cerebrovascular inputs may only 

trigger a migraine if the brain, in particular brainstem regions involved in mediating head pain, are 

in a sensitive state (Burstein et al., 2015). That is, the brainstem oscillates between a state where 

incoming cerebrovascular inputs can evoke head pain to a state where the same inputs are 

prevented from travelling to the cortex and evoking head pain. 

 

Consistent with this brainstem oscillation theory, we recently explored the notion of cyclic changes 

throughout the migraine cycle in a series of cross-sectional studies. We found that during the 24-

hour period immediately before a migraine attack, changes occur in both the pattern of resting 

activity (increased resting infra-slow oscillations) and the level of resting activity (decreased 

resting cerebral blood flow) in regions of the trigeminal pain pathway, including the spinal 

trigeminal nucleus (SpV), midbrain periaqueductal gray matter (PAG), dorsal pons and 

hypothalamus (Meylakh et al., 2018). Furthermore, during this 24-hour period there is an increased 

coupling strength between activity in the PAG and the hypothalamus. Interestingly, these same 
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brainstem regions have been shown to be activated during a migraine itself (S.K. Afridi et al., 

2005; Bahra et al., 2001b; Denuelle et al., 2007; Matharu et al., 2004), raising the prospect that the 

changes in activity within the trigeminal pain pathway immediately prior to a migraine are 

precursors to subsequent activity increases and the development of migraine head pain. 

 

Whilst we have shown functional changes in the brainstem in the period immediately prior to a 

migraine in cross-sectional studies, it remains unknown if these changes also occur in an individual 

subject over a full migraine cycle. Though there are obvious logistical difficulties in exploring 

brain function in an individual subject over weeks, given the individual variability in migraine 

attack occurrence, direct evidence of within-person alterations prior to migraine onset would 

strengthen the evidence of a precursor state. The aim of this longitudinal investigation is therefore 

to determine if brainstem function oscillates over a migraine cycle in individual subjects. We 

hypothesise that, consistent with our cross-sectional results, the pattern of resting signal intensity 

characterized by increased resting activity variability and infra-slow oscillations will occur in the 

ascending trigeminal pathway immediately prior to a migraine attack.  

4.3 Methods 
 

4.3 Methods 

4.3.1 Subjects 

 

Three subjects with migraine (2 females, ages 21 and 26; 1 male, age 25) and five pain-free 

controls (3 females; mean age 30.4 ± 4.2 years [±SEM]) were recruited for the study from the 

general population using an advertisement. There were no statistically significant differences in 

age (t-test, p>0.05) or sex (chi-squared test, p>0.05) between the two subject groups. Migraine 

subjects were diagnosed according to the IHS Classification ICHD-3 BETA criteria and none of 
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the migraine subjects reported an aura associated with their migraine attacks. Migraine subject 

characteristics, including medication use are shown in Table 1. All three migraineurs had episodic 

migraine. All subjects were scanned daily, from Monday to Friday over four weeks for a total of 

20 scanning sessions each. The three migraineurs were scanned during three migraine periods: (i) 

interictal, at least 72 hours after and 24 hours prior to a migraine attack; (ii) immediately (within 

24 hours) prior to an attack; (iii) immediately (within 72 hours) following an attack. Subject 1 was 

scanned a total of 20 times; 15 interictal periods, 1 immediately prior to an attack and 3 

immediately following an attack. The last session was excluded due to image acquisition issues. 

Subject 2 was scanned during 12 interictal periods, 2 immediately prior to an attack and 4 

immediately following an attack. The last session was also excluded due to image acquisition 

issues. Subject 3 was scanned during 14 interictal periods, 1 immediately prior to an attack and 2 

immediately following an attack. Three sessions were excluded due to image acquisition 

difficulties. 

 

Exclusion criteria for controls were the presence of any pain condition including family history of 

migraines, current use of analgesics, or any neurological disorder. Exclusion criteria for 

migraineurs were any other pain condition or neurological disorder. No migraineur was excluded 

based on their medication use and no migraine or control subject had an incidental neurological 

finding. All migraineurs indicated the intensity (6-point visual analogue scale; 0=no pain, 5=most 

intense imaginable pain) and drew the facial distribution of pain commonly experienced during a 

migraine attack. In addition, each subject described the qualities of their migraines and indicated 

any current treatments used to prevent or abort a migraine once started. Informed written consent 

was obtained for all procedures according to the Declaration of Helsinki and the local Institutional 

Human Research Ethics Committees approved the study.  
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4.3.2 MRI Acquisition 

 

Subjects lay supine on the bed of a 3 Tesla magnetic resonance imaging (MRI) scanner (Philips, 

Achieva) with their head immobilized in a 32-channel transmit-receive head coil. Scans were 

acquired five days a week (Monday-Friday) for four weeks. For the first scan only, with each 

subject relaxed and at rest, a high-resolution 3D T1-weighted anatomical image set, covering the 

entire brain, was collected (turbo field echo; field of view=250x250mm, matrix size=288x288, 

slice thickness=0.87mm, repetition time=5600ms; echo time=2.5ms, flip angle=8º). Following 

this, during the first scanning session, and on every consecutive scan, a series of 180 gradient echo 

echo-planar functional MRI image volumes using blood oxygen level dependent (BOLD) contrast 

were collected. Each image volume contained 35 axial slices covering the entire brain (field of 

view = 240x240mm, matrix size = 80x78, slice thickness = 4mm, repetition time = 2,000ms; echo 

time = 30ms, flip angle = 90º). 

 

4.3.3 MRI processing and statistical analysis 

4.3.3.1 Image preprocessing 

 

Using Statistical Parametric Mapping version 12 (SPM12) (Friston et al., 1995) and custom Matlab 

software, all functional MRI (fMRI) images were realigned and effects of movement modelled 

and removed from the resting signal intensity of each voxel. In no subject’s scan was there 

significant movement (>0.5mm in any direction) and all sessions were used for the subsequent 

analysis. Images were then processed using the Dynamic Retrospective Filtering algorithm 

(Särkkä et al., 2012), a Bayesian method for physiological noise correction to reduce the potential 

effects of physiological noise on results. A cardiac frequency band of 60-120 beats per minute (+1 
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harmonic) and a respiratory frequency band of 8-25 breaths per minute (+1 harmonic) were 

removed. Global signal intensity changes were removed using the method described by Macey 

and colleagues (Macey, Macey, Kumar, & Harper, 2004), and the images were then co-registered 

to each individual’s T1-weighted anatomical image set. Using brainstem-specific isolation 

software (SUIT toolbox) (Diedrichsen, 2006b), a mask of the brainstem was created on the T1-

weighted anatomical image set and each of the subject’s fMRI image sets. Using these masks, the 

brainstem of the T1 and each of the fMRI image sets were isolated and then spatially normalised 

to a brainstem-specific template in Montreal Neurological Institute (MNI) space. In all analyses, 

the anatomical locations of significant clusters were confirmed using the Atlas of the Human Brain 

(Mai et al., 2007) and the Atlas of the Human Brainstem (G. Paxinos & X. Huang, 1995). 

 

4.3.3.2 Resting brainstem variability: 

 

To assess resting variability of each fMRI scan, a brainstem map of resting signal variation as 

measured by the standard deviation was created for each daily fMRI scan in each migraineur and 

control subject. These signal variability maps were smoothed using a 3mm full-width-half-

maximum (FWHM) Gaussian filter and the three migraineurs’ image sets were then placed into a 

voxel-by-voxel fixed effects analysis. Using a boxcar model design where days immediately prior 

to a migraine were set to “1” and all other days “0”, significant increases and decreases in 

variability were determined across all three migraineurs (p<0.05, false discovery rate (FDR) 

corrected, minimum 5 contiguous voxels). For each significant cluster, the variability was 

extracted for each session in each control and migraineur, the average (±SEM) variability 

calculated and plotted for controls and migraineurs during the interictal, immediately prior to 

migraine and immediately following migraine days. 
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The signal variability of the entire brainstem was also determined and plotted for each session in 

each control and migraineur subject. In addition, for each significant cluster, power spectra were 

calculated from the resting state signals, and the interictal period was subtracted from power 

immediately prior to migraine in all three migraineurs. The resulting plot of power difference 

revealed, as we have previously shown, areas such as the SpV and dorsal pons displaying greater 

power in the 0.03-0.06Hz frequency band during the period immediately prior to a migraine 

compared with the interictal period. To ensure that any variability difference during the period 

immediately prior to a migraine was not due to differences in head movement, we measured the 

variability as standard deviation of each migraine and control subject, and 6 movement parameters 

were created during the realignment preprocessing step (x, y, z, yaw, roll, tilt). Significant 

differences between controls and each migraine period (2 sample t-tests, p<0.05) and between 

migraine periods (paired t-tests, p<0.05) were then determined. 

 

4.3.3.3 Resting infra-slow (0.03-0.06Hz) oscillation power 

 

Using the DPARSFA toolbox, raw infra-slow oscillation (ISO) power between 0.03 and 0.06Hz 

was calculated for each brainstem voxel for each session of each migraineur and control subject. 

The resulting ISO power maps were smoothed using a 3mm FWHM Gaussian filter and the three 

migraineurs’ image sets were placed into a voxel-by-voxel fixed effects analysis. Using a boxcar 

model design identical to that described above, significant increases and decreases in power were 

determined across all three migraineurs (p<0.001, minimum 5 contiguous voxels). For each 

significant cluster, power values were extracted for each session in each control and migraineur, 

and the average (±SEM) power was calculated and plotted for controls and migraineurs during the 

interictal, immediately prior to migraine and immediately following migraine days. In addition, 
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for each significant cluster, power spectra were calculated from the resting state signals during the 

interictal and immediately prior to migraine periods in all three migraineurs. The power spectra 

from these clusters were then plotted. 

 

4.3.3.4 Regional homogeneity 

  

To assess local signal covariation, we assessed regional homogeneity, i.e., the similarity of time 

series within each voxel and its 19 nearest neighbours were measured by calculating Kendall’s 

coefficient of concordance. The resulting brainstem maps were smoothed using a 3mm FWHM 

Gaussian filter and the three migraineurs’ image sets were placed into a voxel-by-voxel fixed 

effects analysis. Using a boxcar model design identical to that described above, significant 

increases and decreases in homogeneity were determined across all three migraineurs (p<0.001, 

minimum 5 contiguous voxels). For each significant cluster, regional homogeneity values were 

extracted for each session in each control and migraineur, and the average (±SEM) homogeneity 

calculated and plotted for controls and migraineurs during the interictal, immediately prior to 

migraine and immediately following migraine days. The overlap between changes in ISO and 

regional homogeneity was also determined. Regional homogeneity and ISO values were extracted 

from each of these clusters in each migraineur and plotted and significant linear relationships 

determined (Pearson correlation p<0.05). 

4.4 Results 
 

4.4 Results 

 

All three migraineurs had at least one migraine attack during the four week scanning period, 

although none were being scanned at the time of the migraine itself. Analysis of brainstem resting 
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activity variability revealed significantly increased standard deviation of the resting signal 

specifically during the 24-hour period immediately prior to a migraine in a number of brainstem 

pain processing regions (Figure 1A, Table 2). These regions included the left SpV (mean±SEM 

variability: controls: 30.6±4.6; interictal: 29.2±7.8; immediately prior to migraine 67.6±48.4; 

immediately following migraine 32.8±7.3), right SpV (controls: 21.1±1.0; interictal: 20.7±2.3; 

immediately prior to migraine 46.4±29.3; immediately following migraine 20.2±2.5), left 

dorsolateral pons (dlPons) (controls: 11.6±0.3; interictal: 13.8±1.6; immediately prior to migraine 

23.4±7.2; immediately following migraine 12.8±1.3), right dlPons (controls: 16.5±0.6; interictal: 

16.2±1.5; immediately prior to migraine 31.0±19.2; immediately following migraine 15.9±2.0) 

left substantia nigra (SN) (controls: 13.0±1.4; interictal: 8.3±1.8; immediately prior to migraine 

15.5±11.4; immediately following migraine 7.8±1.6) and PAG (controls: 15.8±1.4; interictal: 

15.0±0.9; immediately prior to migraine 24.8±12.1; immediately following migraine 16.6±1.5). In 

no region was variability significantly reduced during the period immediately prior to a migraine. 

 

Plots of individual subjects’ total brainstem variability revealed that the day-to-day variability of 

resting brainstem signal intensity was relatively consistent between controls and migraineurs 

(Figure 1B). However, in each migraineur there was a large increase in total brainstem variability 

on one or two days, which were, as evidenced by the results above, only on those days immediately 

prior to a migraine. In accordance with our previous cross-sectional studies, plots of the power 

differences in significantly different clusters between the immediately prior to migraine and 

interictal periods revealed a consistent increase in power between 0.03-0.06Hz in the left and right 

SpV and the left and right dlPons (Figure 1C). These variability differences were not related to 

head movement since we found no significant difference between the variability of x, y, z, yaw, 

roll or tilt movement parameters between controls and any migraine period, or between any of the 
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migraine periods (all p>0.05). 

 

A targeted voxel-by-voxel analysis of ISO power (0.03-0.06Hz) revealed a similar pattern of 

difference (Figure 2, Table 2). Increased ISO power occurred in numerous brainstem regions 

immediately prior to a migraine, including the right SpV (mean±SEM 0.03-0.06Hz power: 

controls: 3.72±0.13; interictal: 3.71±0.13; immediately prior to migraine 5.00±0.81; immediately 

following migraine 3.89±0.18) left dlPons (controls: 2.82±0.03; interictal: 3.33±0.37; immediately 

prior to migraine 4.43±0.50; immediately following migraine 3.25±0.33), right 

dlPons/dorsomedial pons (controls: 2.69±0.04; interictal: 3.19±0.51; immediately prior to 

migraine 4.15±0.89; immediately following migraine 3.10±0.42) and the left SN (controls: 

2.76±0.04; interictal: 2.51±0.06; immediately prior to migraine 3.21±0.64; immediately following 

migraine 2.41±0.12). The PAG did not display any significant difference at this restricted 

frequency band. Notably, in no region was ISO power significantly reduced in the period 

immediately prior to a migraine. Plots of individual power spectra revealed a consistent power 

increase in low infra-slow frequencies immediately prior to a migraine compared with the interictal 

period (Figure 3). In particular, this power increase occurred at frequencies between 0.03-0.06Hz 

in the SpV and dlPons in all three migraineurs. In two of the migraineurs (subjects M1 and M3) 

these power increases appeared to peak at regular frequency intervals; for subject M3 these peaks 

occurred in the SpV with remarkable regularity at approximately 0.025Hz apart. In addition, plots 

of ISO power in each migraineur during the 20 day scanning period revealed that power 

consistently increased immediately prior to a migraine in the SpV and dlPons (Figure 4). 

 

Finally, an analysis of regional homogeneity revealed that immediately prior to a migraine, 

significant increases occurred in most the same brainstem regions in which there were increases 
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in variability and infra-slow oscillations (Figure 5). That is, increases occurred in the region of the 

right SpV (mean±SEM regional homogeneity: controls: 1.78±0.03; interictal: 1.87±0.10; 

immediately prior to migraine 2.50±0.41; immediately following migraine 1.91±0.15), right 

dl/dmPons (controls: 2.64±0.03; interictal: 2.91±0.07; immediately prior to migraine 3.49±0.15; 

immediately following migraine 2.84±0.03) and the left SN (controls: 2.19±0.09; interictal: 

2.32±0.16; immediately prior to migraine 2.71±0.06; immediately following migraine 2.34±0.20). 

In no region was regional homogeneity significantly reduced in the period immediately prior to a 

migraine. Finally, we assessed whether there were brainstem areas that displayed increases in both 

regional homogeneity and ISO and three regions emerged: the right SpV, right dl/dmPons and the 

left SN. Interestingly, in all three migraineurs, there were significant positive relationships between 

regional homogeneity and ISO in the right SpV (subject M1: r=0.56 p=0.01; subject M2: r=0.80 

p<0.001; subject M3: r=0.76 p<0.001) and right dl/dmPons (subject M1: r=0.60 p=0.006; subject 

M2: r=0.87 p<0.001; subject M3: r=0.66 p=0.003) but not the left SN (subject M1: r=-0.07 p=0.76; 

subject M2: r=-0.17 p=0.48; subject M3: r=0.10 p=0.71). 

4.5 Discussion 
 

4.5 Discussion 

 

Our findings show that individual migraineurs’ brainstem function alters through the migraine 

cycle. In particular, we found significantly greater variability in resting activity in the 24-hour 

period immediately prior to a migraine attack in brainstem regions that process head pain and that 

have been shown to be activated during a migraine itself. This increase in resting state variability 

is characterized by increased power at infra-slow frequency ranges and is associated with increased 

regional homogeneity, a marker of local signal coherence. This local signal coherence represents 

the synchronicity between the time series of a given voxel and its nearest neighbours (Zang, Jiang, 
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Lu, He, & Tian, 2004) and is representative of a neural circuitry. Since these changes occur 

immediately prior to a migraine and whilst the individual is not in pain, we suggest they are 

consistent with the idea that brainstem function alters over the migraine cycle. These brainstem 

functional changes can then lead to a migraine directly or by facilitating an incoming 

cerebrovascular trigger to activate higher brain centres resulting in head pain. 

 

Whilst numerous studies have reported that activity increases in areas of the brainstem, including 

the dorsal pons, during migraine attacks (S.K. Afridi et al., 2005; S. K. Afridi et al., 2005; Denuelle 

et al., 2007; Weiller, May, Limmroth, Juptner, Kaube, Schayck, Coenen, & Diener, 1995), few 

studies have investigated whether functional changes occur in the brainstem immediately prior to 

a migraine. Of course exploring function prior to a migraine is extremely difficult since it is not 

possible to predict when a migraine will occur. Whilst the hypothesis that a cerebrovascular trigger 

is required to initiate a migraine attack has been circulating for many decades (Borsook & Burstein, 

2012; Burstein et al., 2015; Burstein, Strassman, & Moskowitz, 2012), more recently it has been 

proposed that migraine results from dysfunction in subcortical sites which results in the perception 

of pain from “basal levels of primary traffic” (Goadsby & Akerman, 2012). Others have suggested 

that brainstem function oscillates and only when the brainstem is in a receptive state can an 

incoming trigger activate central pathways and evoke head pain (Borsook & Burstein, 2012). 

 

Our findings show that brainstem function alters within a given individual throughout the migraine 

cycle, specifically in the SpV, the precise region where trigeminovascular afferents terminate, as 

well as in the dorsolateral/medial pons, an area shown to be activated during a migraine attack. 

Strikingly, in these two brainstem regions, the variability of resting signal fluctuations immediately 

prior to a migraine dramatically increased during the 24-hour period prior to a migraine before 
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returning to controls’ levels during the interictal period. Indeed, overall brainstem variability in 

migraineurs is remarkably similar to that in controls with respect to day-to-day fluctuations; 

however only in migraineurs did dramatic increases occur, and they occurred just before a 

migraine. Importantly, during the period of increased variability, subjects were not experiencing 

head pain, and reported feeling no different from other interictal days. Whilst immediately before 

a migraine some individuals report fatigue, dizziness and reduced concentration (Giffin et al., 

2003), our subjects did not report such changes and the changes in brainstem variability that 

occurred during this period were not associated with differences in head movements. This supports 

that the altered resting activity may be a centrally initiated phenomenon. 

 

The increased variability during the 24-hour period immediately preceding a migraine is 

characterized by increased power at infra-slow frequency ranges and included the frequency band 

0.03-0.06Hz. In addition to previously showing increases in 0.03-0.06Hz power in migraineurs 

immediately before a migraine in cross-sectional studies (N. Meylakh et al., 2018), we have also 

shown that individuals with chronic trigeminal neuropathic pain display increases in resting 0.03-

0.06Hz oscillations in the trigeminal pain pathway including in the SpV (Alshelh et al., 2016). We 

have previously hypothesised that increased ISOs at frequencies between 0.03-0.06 Hz may reflect 

increased modulatory activity on local neurons by increased cyclic gliotransmitter release 

(Halassa, Fellin, & Haydon, 2007; Parri & Crunelli, 2001). Astrocytes display calcium wave 

oscillations at infra-slow frequency ranges similar to those seen here in migraineurs immediately 

prior to a migraine and these infra-slow astrocyte calcium waves can propagate among surrounding 

astrocytes (Crunelli et al., 2002). Indeed, it has been suggested that, in pathological situations, 

greater numbers of astrocytes may display enhanced calcium wave synchrony, amplitude and 

NMDA-receptor function (Halassa et al., 2007; Parri & Crunelli, 2001). Furthermore, increased 
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infra-slow oscillations are associated with paroxysmal events and coupled to high frequency power 

fluctuations in the cortex (Hughes, Lorincz, Parri, & Crunelli, 2011; Mantini, Perrucci, Del Gratta, 

Romani, & Corbetta, 2007; Vanhatalo et al., 2004). 

 

Consistent with the idea that astrocytes may modulate neural activity immediately prior to a 

migraine is our finding of increased regional homogeneity in the same period of the migraine cycle. 

We found a significant positive relationship between regional homogeneity and infra-slow 

oscillation power in the SpV and dorsal pons assessed over the entire scanning period. Regional 

homogeneity evaluates the similarity or synchronization between the time series of a given voxel 

and its nearest neighbours (Zang et al., 2004). Whilst there is no evidence of a direct relationship 

between regional homogeneity and astrocytic gliotransmission, the idea that astrocyte activation 

results in greater and strong synchronicity between astrocytes and thus neighbouring synapses, is 

consistent with such a positive relationship. Indeed, it has been proposed that calcium oscillation 

in astrocytes contributes to the propagation of cortical spreading depression (Nedergaard, Cooper, 

& Goldman, 1995) and evidence from a genetic form of migraine, Familial Hemiplegic Migraine, 

also points to a critical role of astrocytes in migraine (Benarroch, 2005). 

 

Importantly, we found that overall brainstem variability was similar in migraineurs during the 

interictal period as that of controls, suggesting that migraineurs do not simply have increased signal 

variability but rather that variability is specifically altered immediately prior to a migraine attack. 

One plausible theory is that altered astrocyte modulation of neural activity within the brainstem 

drastically changes function which then either triggers a migraine itself or provides a permissive 

brainstem state so that an external cerebrovascular trigger can activate higher brain centres and 

initiate a migraine attack. Interestingly, we recently found that in the 24-hour period before a 
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migraine, the perceived intensity of acute noxious orofacial stimuli are diminished, which appears 

contrary to the idea that immediately prior to a migraine the brainstem becomes more permissive 

to incoming orofacial stimuli (K. K. Marciszewski, N. Meylakh, F. Di Pietro, E. P. Mills, et al., 

2018).  

 

Whilst this is the first study to explore resting signal fluctuations in the brainstem over the migraine 

cycle in individual subjects, a previous study explored functional activity in one migraineur over 

the course of 30 days. Schulte and May (Schulte & May, 2016) reported that during the period 

immediately prior to a migraine, greater functional coupling occurred between the hypothalamus 

and SpV, whilst during a migraine attack, greater functional coupling occurred between the 

hypothalamus and dorsal rostral pons. While we did not explore hypothalamic function in the 

current study, these coupling changes are consistent with our data in that brainstem function 

changes in the period immediately prior to a migraine. If, for example, such functional changes 

are related to altered astrocyte modulation of local neural function, it may be possible to prevent a 

migraine from occurring by preventing such astrocyte changes.  

 

Given the consistency between the results of this longitudinal study and our previous cross-

sectional studies we are confident that our findings are robust. However, there are several 

important limitations to note. Firstly, since we focussed on the brainstem we have not provided 

any insight into diencephalic or higher cortical areas in this present study, though we are aware of 

the importance of these regions in migraine. Secondly, despite using spatial normalization 

techniques designed specifically for the brainstem, given the relatively low spatial resolution of 

resting state fMRI and the intricate parcellation of the brainstem, some clusters likely encompass 

multiple brainstem regions. Thirdly, due to the difficulty of recruiting patients with the availability 
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or willingness to perform multiple MRI sessions we were only able to recruit three migraineurs 

and five controls. Nevertheless, the large number of repeated measures per subject, together with 

the corroboration by our previous cross-sectional studies, helps ensure the findings are robust. 

 

The findings of this study clearly show that resting brainstem function fluctuates over the migraine 

cycle in a given individual, with functional changes reflected particularly in the period 

immediately preceding a migraine. We suggest that this change in brainstem function could result 

from altered synaptic transmission evoked by increased gliotransmission, which could evoke a 

migraine by either an increase in basal firing or by creating a permissive state whereby an external 

trigger can activate trigeminal pain pathways. These data provide a target timeframe and biological 

process for prophylactic treatments for migraine. Whether this includes novel treatments targeting 

gliotransmission remains to be seen. 
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Figure Legends: 

Figure 1: A: Significant increases (hot colour scale) in resting signal variability in migraineurs 

during the 24-hour period prior to the onset of a migraine. Increases are overlaid onto axial slices 

of a T1-weighted anatomical template of the brainstem. Below are plots of mean (±SEM) 

variability (standard deviation) in controls and migraineurs for the left spinal trigeminal nucleus 

(SpV), right SpV, right dorsomedial/dorsolateral pons (dm/dlPons), left substantia nigra (SN) and 

midbrain periaqueductal gray matter (PAG). The slice locations in Montreal Neurological Institute 

space are indicated at the top right of each slice. B: Plots of total brainstem variability in five 

controls (C1-5) and three migraine subjects (M1-3) for each scanning session. C: Plots of the 

power differences between the immediately prior to migraine and interictal periods for the left and 

right SpV and left and right dlPons. Positive values indicate greater power immediately prior to a 

migraine compared with the interictal period. The grey shading indicates the frequency band 0.03-

0.06Hz. *p<0.05 voxel-by-voxel analysis. 

 

Figure 2: Significant increases (hot colour scale) in resting infra-slow oscillation (ISO) power 

(0.03-0.06Hz) in migraineurs during the 24-hour period prior to the onset of a migraine. Increases 

are overlaid onto axial slices of a T1-weighted anatomical template of the brainstem. Below are 

plots of mean (±SEM) ISO power in controls and migraineurs for the right spinal trigeminal 

nucleus (SpV), left dorsolateral pons (dlPons), right dorsomedial/dorsolateral pons (dm/dlPons) 

and left substantia nigra (SN). The slice locations in Montreal Neurological Institute space are 

indicated at the top right of each slice. *p<0.05 voxel-by-voxel analysis. 

 

Figure 3: Plots of power spectra of significant ISO clusters in the three migraineurs (M1, M2, 

M3). Mean power spectra during the interictal and immediately prior to migraine periods are 
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plotted for each subject for the right spinal trigeminal nucleus (SpV), left dorsolateral pons 

(dlPons), right dorsomedial/dorsolateral pons (dm/dlPons) and left substantia nigra (SN). Note that 

particularly for the SpV, dlPons and dm/dlPons, power is greater during the period immediately 

prior to migraine. These increases encompass the frequency band 0.03-0.06Hz as indicated by the 

grey shading. 

 

Figure 4: Plots of daily ISO power (0.03-0.06Hz) in the three migraineurs (M1, M2, M3). Power 

is plotted for each subject for the right spinal trigeminal nucleus (SpV), left dorsolateral pons 

(dlPons), right dorsomedial/dorsolateral pons (dm/dlPons) and left substantia nigra (SN). Note that 

particularly for the SpV, dlPons and dm/dlPons, power is greater during the period immediately 

prior to migraine (black box) compared to other days, although there is also some variability in the 

interictal period. 

 

Figure 5: A: Significant increases (hot colour scale) in resting regional homogeneity (ReHo) in 

migraineurs during the 24-hour period prior to the onset of a migraine. Increases are overlaid onto 

axial slices of a T1-weighted anatomical template of the brainstem. Below are plots of mean 

(±SEM) ReHo in controls and migraineurs for the right spinal trigeminal nucleus (SpV), right 

dorsomedial/dorsolateral pons (dm/dlPons) and left substantia nigra (SN). The slices locations in 

Montreal Neurological Institute space are indicated at the top right of each slice. *p<0.05 voxel-

by-voxel analysis. B: Areas in which ReHo and infra-slow oscillation (ISO) power were increased 

during the period immediately prior to a migraine (red colour shading). Below are plots of ReHo 

against ISO power for each cluster in each of the three migraineurs (M1, M2, M3). Note that for 

the right SpV and right dm/dlPons ReHo and ISO were significantly positively correlated in all 

three migraineurs. *p<0.05 Pearsons correlation. 
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Table 1. Migraine subject characteristics. 

 

 

 

Table 2. Montreal Neurological Institute (MNI) coordinates, cluster size and t-score for regions 

of significant increases in resting variability, amplitude of infra-slow oscillations and regional 

homogeneity immediately prior to a migraine. 

 

 

subject age sex 

years 

suffering 

pain 

side aura 

migraine/

month 

intensity 

(0-5) 

medication 

taken during 

migraine 

daily 

medication 

M1 21 F 1.5 left no 2 3 ibuprofen, 

paracetamol, 

codeine 

oral 

contraceptive 

pill 

M2 25 M 12 left no 2 4 paracetamol Ciprimal 

M3 26 F 9 right no 1 3 ibuprofen Levlen ED 

Brain region 
MNI 

Co-ordinate 

cluster 

size 
t-score   

 x y z   

variability      

midbrain periaqueductal gray matter 

left substantia nigra 

right dorsolateral pons 

left dorsolateral pons 

right spinal trigeminal nucleus 

left spinal trigeminal nucleus 

0 

-2 

10 

-8 

4 

-6 

-38 

-14 

-18 

-44 

-40 

-40 

-19 

-21 

-37 

-35 

-61 

-61 

12 

83 

153 

17 

118 

20 

5.73 

9.34 

8.56 

6.31 

12.22 

9.99 

infra-slow oscillations (0.03-0.06Hz)      

left substantia nigra 

right dorsolateral pons 

left dorsolateral pons 

right spinal trigeminal nucleus 

-4 

6 

-8 

4 

-16 

-34 

-44 

-40 

-7 

-35 

-35 

-60 

14 

8 

16 

19 

3.43 

3.08 

4.23 

4.14 

regional homogeneity      

left substantia nigra 

right substantia nigra 

right dorsolateral/medial pons 

right spinal trigeminal nucleus 

 

-4 

12 

10 

4 

8 

-10 

-18 

-32 

-46 

-38 

-7 

-5 

-29 

-55 

-47 

112 

34 

17 

25 

16 

7.72 

3.96 

3.79 

5.33 

3.74 
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5.1 General discussion 

 

Our understanding of the neurobiology underlying migraine has evolved considerably over the 

past few decades, spurred on by the advent of modern human brain imaging techniques. Whilst 

very few studies have explored human brain function at different times of the migraine cycle, it 

has been proposed that migraine is not characterized by a static brain state but is instead a cyclic 

disorder fluctuating between altered states (Burstein et al., 2015). Whilst this may be the case, the 

lack of experimental data, particularly during the period immediately prior to a migraine (i.e. the 

premonitory period) means that we have a limited understanding of how and why such brain 

function fluctuations may occur and more specifically how these changes may trigger a migraine 

attack. 

 

Although many researchers have suggested that increased sensitization of the trigeminovascular 

pathway is a key factor in migraine initiation (Bernstein & Burstein, 2012), without insight into 

changes during the premonitory period, it is difficult to determine if and why such sensitization 

occurs. Furthermore, it remains unknown if such sensitization changes need to be paired with 

external triggers for a migraine attack to occur. Indeed, it is entirely plausible that peripheral 

triggers are only capable of inducing a migraine when coinciding with high brainstem sensitivity 

levels (Burstein et al., 2015; Goadsby et al., 2017). Alternatively, it may be the case that changes 

in brain sensitivity alone result in a migraine due to ongoing basal levels of activity in the 

trigeminal pain pathway. 

 

The overall aim of the experiments in this thesis was to determine if there are brain activity changes 

in the period immediately prior to a migraine and at other periods of the migraine cycle. The first 
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experimental chapter of this thesis focused on identifying functional differences in the premonitory 

period in an effort to understand the factors involved in the initial sensitization process (Chapter 

2). This cross-sectional study was the first to use high-resolution functional magnetic resonance 

imaging (fMRI) to measure ongoing activity patterns reflected through increases in infra-slow 

oscillations (ISOs) and increases in functional connectivity strengths during the interictal, 

postdrome and premonitory periods of migraine compared with controls. A comparison between 

all migraine periods provided convincing evidence for unique brain activity changes specifically 

during the premonitory period. Increased ISO activity occurred exclusively during the premonitory 

period in areas of the trigeminovascular system including the spinal trigeminal nucleus (SpV), 

midbrain periaqueductal gray (PAG), dorsal pons, thalamus and hypothalamus. Importantly, these 

ISO increases were restricted to the premonitory period as during the interictal and postdrome 

periods, ISO power was similar to that of the control group. 

 

Whilst the precise role of altered ISO activity patterns remains to be determined, ISO activity is 

recognized as an essential component of cerebral and thalamic function and is preserved by 

adenosine receptor-mediated signaling (Hughes et al., 2011; Lorincz, Geall, Bao, Crunelli, & 

Hughes, 2009). Because adenosine can display spontaneous intracellular infra-slow calcium 

oscillations (Parri & Crunelli, 2001), it is highly plausible that adenosine is released by astrocytes 

(Parri & Crunelli, 2001). ISOs have been associated with cyclic gliotransmitter release, with infra-

slow astrocyte calcium waves proposed to propagate among surrounding astrocytes (Halassa et al., 

2007; Parri & Crunelli, 2001). In pathological cases, great numbers of astrocytes have been found 

to show enhanced calcium wave synchrony and amplitude and enhanced NMDA receptor function 

(Parri & Crunelli, 2001). Thus, altered astrocyte function in the premonitory period of migraine 

may result in increased ISO power which in turn can potentially lead to the experience of pain. 
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Even though we cannot measure astrocyte calcium waves directly, given that it has been shown 

that they propagate to neighbouring astrocytes, we can measure an index of such regional 

propagation by calculating regional homogeneity. Regional homogeneity evaluates the 

synchronization between the signal fluctuations of a given voxel with its nearest neighbours and 

thus an increase in this measure is consistent with the idea of astrocyte ISO waves propagating to 

neighbouring astrocytes. In support of this idea, we found that regional homogeneity increased in 

the area of the PAG, thalamus and hypothalamus, again only during the premonitory period. 

Furthermore, the resting connectivity between these three regions also increased only during this 

period indicating greater communication between these brain regions. The results from these initial 

studies strongly suggest that the PAG-hypothalamic-thalamic interaction plays a critical role in 

migraine expression and this interaction may be modulated by astrocytic activity. This has never 

been shown before. 

 

If ongoing activity patterns change dramatically immediately prior to a migraine, and normalize 

almost immediately after, the key to understanding the sensitization of the trigeminovascular 

pathway may indeed lie in this critical and short pain-free window preceding a migraine. Though 

our findings reflecting specific activity patterns in the premonitory period do not allow for direct 

deductions regarding the initiating processes of a migraine, they do support the argument that 

changes in the central nervous system are involved in migraine expression, especially since activity 

increases in these same brain regions have been previously reported to occur during a migraine 

itself (S.K. Afridi et al., 2005; S. K. Afridi et al., 2005; Bahra et al., 2001b; Denuelle et al., 2007; 

Weiller, May, Limmroth, Juptner, Kaube, Schayck, Coenen, & Diener, 1995). Therefore, altered 

sensitivity in these regions may either act as a migraine trigger by increasing the sensitivity of 

already ongoing basal activity levels, or alternatively they may reflect altered “brainstem tone” 
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allowing peripheral triggers to evoke a migraine. 

 

The findings from this cross-sectional fMRI study show a unique resting activity pattern and 

functional connectivity in migraineurs during the premonitory period, but it remains unknown if 

these activity pattern changes are coupled to alterations in absolute activity levels. To address this 

question, the second experimental chapter in this thesis focused on identifying absolute activity 

level changes throughout the migraine cycle by using non-invasive arterial spin labelling (ASL) 

(Chapter 3). This was the first investigation to measure resting CBF during the premonitory period 

in migraineurs. Though many studies have explored CBF during other periods of migraine, 

particularly during migraine attacks themselves, most used positron emission tomography 

techniques with relatively poor spatial resolution and thus areas of the brainstem, for instance, 

were not specifically explored. 

 

Consistent with our initial investigation, CBF was measured during the interictal, postdrome and 

premonitory periods and in controls. Our analysis revealed distinctive alterations in absolute 

activity levels occurring primarily during the premonitory period. These changes were 

characterized by decreased CBF in the hypothalamus, PAG and SpV, the same regions in which 

we showed altered ongoing activity patterns during the same migraine period. In addition, 

decreased CBF occurred in higher brain structures such as the visual, orbitofrontal (OFC) and 

retrosplenial cortices. Interestingly, the brainstem and hypothalamic CBF decreases occurred 

abruptly, remaining relatively stable throughout even as a migraine approached only to drop in the 

24-hour period before the migraine. In contrast, CBF in higher brain structures appeared to 

gradually decline throughout the interictal period as the migraine approached, before seeing a 

greater decline in the 24-hour pain-free period preceding a migraine. 
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The identification of decreased CBF in brainstem, midbrain and hypothalamic regions in the 

premonitory period is consistent with the hypothesis that migraines are associated with altered 

trigeminal system activity in addition to an imbalance of the regulation of incoming noxious inputs 

by brainstem nuclei (Bartolini et al., 2005). Our data are consistent with the idea that only when 

CBF decreases in the PAG, SpV and hypothalamus immediately prior to a migraine can signals 

reach the cortex resulting in head pain. The findings of this study showing altered absolute activity 

levels, together with the initial study revealing altered ongoing activity levels (Chapter 2) in the 

premonitory period, support the hypothesis that the SpV, PAG and hypothalamus form a 

specialized set of brain structures critical for the initiation of a migraine attack (Floyd et al., 2001; 

Holstege & Kuypers, 1982; Morgan et al., 2008). Perhaps this interaction results in an altered 

endogenous analgesic state whereby an external trigger is able to activate the ascending trigeminal 

pain pathway and produce head pain. 

 

Indeed, in another related investigation (see appendix II) we used fMRI to measure brain activation 

during acute noxious stimuli as well as resting connectivity in the brainstem pain modulation 

circuitry throughout the migraine cycle. We found that in individual migraineurs, pain sensitivity 

increased over the interictal period, but then dramatically decreased immediately prior to a 

migraine. Furthermore, despite overall similar pain intensity ratings between groups, in the 

premonitory period, compared to controls and other migraine periods, migraineurs displayed 

greater activation during noxious orofacial stimulation in the SpV and reduced functional 

connectivity of this region with a key area of the brainstem endogenous pain modulation system - 

the rostral ventromedial medulla. These data support the hypothesis that brainstem sensitivity 

fluctuates throughout the migraine cycle, although it suggests that immediately prior to a migraine 

attack, endogenous analgesic mechanisms are in fact enhanced and incoming noxious inputs are 
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less likely to reach higher brain centers. This result needs to be independently replicated and 

explored in more detail. 

 

In addition to changes during the period immediately prior to a migraine, in this related 

investigation we also found that during the interictal period, migraineurs displayed reduced 

activation of the PAG during acute noxious stimulation and enhanced PAG connectivity with the 

rostral ventromedial medulla. Indeed, in chapter 3 of this thesis we found CBF decreases in higher 

brain structures including the nucleus accumbens, putamen, OFC and ventrolateral prefrontal 

cortex. Whilst we did not find changes in the pattern of resting brain activity during the interictal 

period of migraine, these two sets of data are consistent with previous studies showing changes in 

brain function during the interictal period of migraine. These include single photon emission 

computed tomography and positron emission tomography studies that have yielded contradictory 

results displaying both reduced CBF (Calandre et al., 2002; De Benedittis et al., 1999) and 

increased CBF (Kassab et al., 2009) during the interictal period. Furthermore, functional fMRI 

studies have shown abnormal activity in the brainstem, hypothalamus, thalamus, basal ganglia and 

cerebral cortex (Sprenger & Borsook, 2012), including increased resting-state connectivity 

between the PAG and cortical regions such as the thalamus in the interictal period (Caterina 

Mainero, Jasmine Boshyan, & Nouchine Hadjikhani, 2011).  

 

Whilst the first two experimental chapters in the thesis outline results from cross-sectional 

investigations, it is important to determine if the changes in brain function that we found to occur 

across the migraine cycle also occur in individual migraineurs. Given this, the final experimental 

chapter in this thesis consists of a longitudinal investigation in which we explored brain function 

each weekday over a four-week period in three migraineurs and five control subjects (Chapter 4). 
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This aim of this study was to determine if brainstem function oscillates over a migraine cycle in 

individual subjects. Similar to our first investigation (Chapter 2), this study used fMRI to explore 

resting brainstem activity patterns. 

 

We found that although resting activity variability was similar in controls and migraineurs on most 

of the 20 days that were investigated, during the premonitory period, brainstem variability 

increased dramatically. These increases were restricted to the same specific areas that we reported 

in our cross-sectional studies; the SpV and dorsal pons. Increased resting variability was 

characterized by increased ISO power and was furthermore associated with increased regional 

homogeneity. Remarkably, these changes were located in the same brainstem regions which have 

been shown to be activated during a migraine itself, and similar to our initial investigation, they 

occurred whilst the individual was not in pain. 

 

These oscillatory and regional homogeneity changes immediately prior to a migraine in individual 

migraineurs are consistent with the idea that changes in astrocyte function in pathological 

situations can alter neural function (Crunelli et al., 2002; Halassa et al., 2007; Lorincz et al., 2009; 

Parri & Crunelli, 2001). Therefore, it is not unreasonable to suggest that these changes in astrocyte 

function may be involved in the initiation and/or maintenance of the migraine. Indeed, there is 

evidence directly linking migraine with altered glial function (Benarroch, 2005; Nedergaard et al., 

1995). These data provide the first evidence of altered brainstem function directly before a 

migraine throughout the migraine cycle of multiple individuals and support that brainstem function 

alters over the migraine cycle with unique activity displayed in the 24-hour pain-free period 

immediately preceding a migraine. These changes cannot be attributed to individual differences as 

similar spatial patterns were identified in our cross-sectional studies. 
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Overall, the data presented in this thesis provide the first evidence of changes in brainstem function 

throughout the migraine cycle both in cross-sectional and longitudinal studies. The data support 

the hypothesis that migraine is characterized by fluctuations in brain function and is consistent 

with the idea that the brainstem oscillates between periods of increased and decreased sensitivity. 

Although contrary to the hypothesis that brainstem sensitivity increases immediately prior to a 

migraine, we found that it indeed appears to decrease. Whether this decrease in acute orofacial 

pain sensitivity reflects changes in the system that then evokes head pain remains to be determined. 

Nevertheless, there is little doubt that brain function alters dramatically immediately prior to the 

onset of a migraine when the individual is still in a pain-free state. 

 

5.2 Limitations 

 

In this series of investigations there are several important limitations in need of consideration. 

Firstly, due to the limited spatial resolution of resting-state fMRI and ASL, precise localization of 

clusters to specific nuclei, especially in brainstem regions, is difficult. As a result, most clusters 

described also extended to adjacent voxels involving other functional nuclei and brain regions. To 

minimize this effect, we utilized spatial normalization techniques designed specifically for 

brainstem analyses. We are confident that the regions in which we reported either fMRI and CBF 

changes encompass the areas described, especially due to the correspondence between our results 

and those reported in previous migraine investigations. 

 

Secondly, several logistical limitations were associated with our experimental paradigm. Due to 

the inability to predict when an individual’s next migraine will occur, collecting MRI data in the 
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24-hour period preceding a migraine is difficult. As a result, acquisition of this data was based on 

chance. Consequently, we had modest group sample sizes for the premonitory groups in 

comparison to other migraine groups, with an absence of scans during the headache period of the 

migraine cycle altogether. We were able to overcome these barriers in our longitudinal 

investigation (Chapter 4), however, the longitudinal study restricted those who could participate 

due to the time commitments necessary. Though we employed population-based statistical tests 

that were corrected for multiple comparisons, increasing the sample size, particularly in the 

longitudinal study, as well as acquiring data in the headache phase, would be extremely useful. 

 

5.3 Conclusions and future directions 

 

The findings presented in this thesis have shown for the first time that the trigeminovascular 

system, particularly the midbrain, brainstem and hypothalamic regions, exhibits abnormal 

behavior, reflected through changes in ongoing and absolute activity levels, in the 24 hours leading 

up to a migraine. The correlation between the findings of the cross-sectional and longitudinal 

studies has emphasized the importance of the premonitory period. Though no comment can be 

directly made regarding the initiating quality of migraine, this series of investigations has provided 

support for the idea that the central nervous system undergoes a change particularly in the 24-hour 

period preceding a migraine, and this change may be contributing to the initiation and/or 

expression of a migraine. 

 

There is growing evidence to suggest that the mechanism underlying this change in migraine is 

altered glial function (Benarroch, 2005; Nedergaard et al., 1995). In this series of investigations, 

we reported increased ISOs at frequencies between 0.03-0.06 Hz. These infra-slow spontaneous 
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fluctuations in brain activity oscillate at similar ranges as infra-slow calcium waves. Astrocytes 

can exhibit infra-slow calcium oscillations that can propagate among surrounding astrocytes and 

it has been proposed that in pathological situations, enhanced calcium-wave synchrony and 

amplitude may occur which results in significantly altered synaptic function (Crunelli et al., 2002; 

Cunningham et al., 2006; Halassa et al., 2007; Lorincz et al., 2009; Parri & Crunelli, 2001). As we 

have hypothesized, increased ISOs at frequencies between 0.03-0.06 Hz may reflect increased 

modulatory activity on local neurons by cyclic gliotransmitter release (Halassa et al., 2007; Parri 

& Crunelli, 2001). Therefore, increased ISOs in brainstem regions that regulate activity of the 

ascending trigeminal pathway, could influence the susceptibility of an external noxious stimulus 

to act as a trigger, and may be reflective of altered astrocyte function. 

 

Furthermore, in a recent series of investigations, we have shown that migraine is also associated 

with changes in regional anatomy in a number of brainstem regions that fluctuate over the migraine 

cycle (see Appendix III). This further supports the idea that the mechanisms underlying migraine 

are not permanent, but ever changing. These studies found that during the interictal period, 

migraineurs displayed increased free water movement in the PAG, raphe/SpV and dlPons. These 

anatomical data are consistent with the idea that astrocytes are activated and hence their processes 

expand immediately before a migraine leading to an increase in ISO activity and altered diffusivity 

and connectivity resulting in sensitivity within brainstem regions that receive and process orofacial 

noxious information. This change is very rapid and returns to normal levels following the 

resolution of the migraine headache. Therefore, altered brainstem function throughout the migraine 

cycle may result from abnormal neural-glial interactions. 

 

In future studies, the nature of neural-glial interactions needs to be studied with much more 
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veracity. We are unable to comment on direct relationships at this point and hence are only 

speculating about the role of astrocytes in migraine. However, there is preliminary evidence 

showing that palmitoylethanolamide (PEA), a naturally occurring fatty acid amide that belongs to 

the N-acetylethanolamine family, can reduce astrocyte activation (Esposito et al., 2011; Skaper & 

Facci, 2012) and may reduce migraine severity. In a pilot study, 50 migraineurs were treated 

sublingually with ultra-micronized PEA for three months (Dalla Volta, 2016). PEA treatment 

resulted in a significant reduction in the mean number of days per month with migraine; pain 

intensity was significantly mitigated and the number of analgesics required significantly 

decreased. No serious adverse events were observed. Whilst this was a pilot study, it does lend 

support to the suggestion that migraine may indeed involve alterations in neural-glial interactions. 

Further studies using astrocyte inhibitors would be desirable to explore this interaction in more 

depth. 

 

In addition to the potential of further exploring alterations of astrocyte function, the use of different 

MRI techniques particularly in the longitudinal investigation would allow for the extrapolation of 

patterns and changes otherwise undetected. Increasing sample sizes of the premonitory period 

would help to corroborate the findings and conclusions made, particularly due to the lack of 

research into this critical period of the migraine cycle. Insight into the headache period of the 

migraine cycle would provide us with a more accurate time frame of exactly when the alterations 

observed during the premonitory period reverse, and also the mechanisms associated with the 

headache. With the development of neural imaging technology, our understanding of migraine 

pathophysiology will continue to grow with the goal of advancing treatments in order to improve 

the quality of life of millions of migraine sufferers around the world. Our series of investigations 

have lent support to the idea that migraine is a cyclic disorder likely controlled by an interaction 
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between sensitization of the trigeminovascular pathway together with the presence of an 

appropriately timed peripheral trigger. These alterations in specific periods of the migraine cycle 

are potentially modulated by altered glial and astrocytic function. 
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ABSTRACT 

 

The neural mechanism responsible for migraine remains unclear. Whilst an external 

trigger has been proposed to initiate a migraine, it has also been proposed that changes in 

brainstem function are critical for migraine headache initiation and maintenance. Although the 

idea of altered brainstem function has some indirect support, no study has directly measured 

brainstem pain modulation circuitry function in migraineurs particularly immediately prior to a 

migraine. In male and female humans, we performed functional magnetic resonance imaging in 

31 control and 31 migraineurs at various times in their migraine cycle. We measured brainstem 

function during noxious orofacial stimulation and assessed resting-state functional connectivity. 

Firstly, we found that in individual migraineurs, pain sensitivity increased over the interictal period, 

but then dramatically decreased immediately prior to a migraine. Secondly, despite overall similar 

pain intensity ratings between groups, in the period immediately prior to a migraine, compared to 

controls and other migraine phases, migraineurs displayed greater activation during noxious 

orofacial stimulation in the spinal trigeminal nucleus and reduced functional connectivity of this 

region with the rostral ventromedial medulla. Additionally, during the interictal phase, migraineurs 

displayed reduced activation of the midbrain periaqueductal gray matter and enhanced 

periaqueductal gray connectivity with the rostral ventromedial medulla. These data support the 

hypothesis that brainstem sensitivity fluctuates throughout the migraine cycle. However in 

contrast to the prevailing hypothesis, our data suggest that immediately prior to a migraine attack, 

endogenous analgesic mechanisms are enhanced and incoming noxious inputs are less likely to 

reach higher brain centres. 
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SIGNIFICANCE STATEMENT 

 

It has been hypothesised that alterations in brainstem function are critical for the 

generation of migraine. In particular, modulation of orofacial pain pathways by brainstem circuits 

alter the propensity of external triggers or on-going spontaneous activity to evoke a migraine 

attack. We sought to obtain empirical evidence to support this theory. Contrary to our hypothesis, 

we found pain sensitivity decreased immediately prior to a migraine and this was coupled with 

increased sensitivity of the spinal trigeminal nucleus to noxious stimuli and resting connectivity 

within endogenous pain modulation circuitry alters across the migraine cycle. These changes may 

reflect enhanced and diminished neural tone states proposed to be critical for the generation of a 

migraine and underlie cyclic fluctuations in migraine brainstem sensitivity. 
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INTRODUCTION 

 

Migraine is a common, distressing disorder characterised by headaches often 

accompanied by aura, nausea, and sensitivity to light and sound. While the exact neural 

mechanisms surrounding migraine head pain are still debated, human brain imaging 

investigations have shown that during a migraine attack activity increases in a number of cortical 

areas such as the cingulate cortex, insula, thalamus, and hypothalamus, as well as brainstem 

nuclei such as the spinal trigeminal nucleus (SpV), dorsal pons, and midbrain periaqueductal gray 

matter (PAG) (Bahra et al., 2001b; Borsook et al., 2016; Coppola et al., 2016; Denuelle et al., 

2007; Tajti et al., 2012). These sites are particularly important in pain processing since the SpV 

is the site of orofacial nociceptor afferent termination and the PAG is involved in the modulation 

of noxious inputs and generation of autonomic and behavioural consequences of pain (Keay & 

Bandler, 2002; Sessle, 2000). Additionally, several studies have shown that even between 

attacks, migraineurs display neural changes such as decreased grey matter volume density, 

altered sensitivity to somatosensory stimuli, and changes in brainstem, thalamic and cortical 

oscillatory activity (C. D. Chong, Plasencia, Frakes, & Schwedt, 2017; K. K. Marciszewski, N. 

Meylakh, F. Di Pietro, V. G. Macefield, et al., 2018; V. A. Mathur et al., 2016; Noemi Meylakh et 

al., 2018; Porcaro et al., 2017a).  

A recent review has proposed that these observed changes are not permanent, but 

dynamic in nature (May, 2017b). Building on the current focus of migraine research in identifying 

a structures in the brainstem pain-modulation system that may be associated with the initiation of 

a migraine attack (Akerman et al., 2011; Schulte & May, 2017), this review suggests that the 

initiation and maintenance of migraine attacks is unlikely to be caused by one area of the 

brainstem. It is far more likely that spontaneous fluctuations of complex networks involving the 

hypothalamus, brainstem pain-modulation circuitry, and possibly higher cortical areas, lead to the 

initiation and termination of headache attacks. While several independent functional studies have 
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identified activation of brainstem sites thought to be involved in endogenous pain-modulatory 

function, both during and between attacks (Stankewitz et al., 2011; Weiller, May, Limmroth, 

Juptner, Kaube, Schayck, Coenen, & Diener, 1995), few studies have tracked changes in brain 

sensitivity, activity, and volume throughout all stages of the migraine cycle. Importantly, few have 

explored the critical 24-hour period preceding a migraine, which is essential if we are to 

understand how migraines are initiated. 

Using functional magnetic resonance imaging (fMRI), we recently reported increased 

resting infra-slow oscillatory activity (0.03-0.06Hz) and altered hypothalamic-brainstem functional 

connectivity in migraineurs only in the period immediately prior to a migraine attack, when 

individuals were not in pain (Noemi Meylakh et al., 2018). Importantly, these changes did not 

occur immediately after the migraine when individuals are recovering from an attack, or during 

the interictal phase. These data are consistent with the idea that the initiation of a migraine is 

associated with changes in brain function, in particular, changes within the brainstem. Indeed, it 

has been hypothesized that changes in sensitivity of brainstem regions to noxious orofacial inputs 

are critical for the initiation of a migraine.  More specifically, in migraineurs, brainstem function 

oscillates between an (i) “enhanced” neural tone state during which the effectiveness of 

endogenous analgesic mechanisms is too great to allow incoming noxious inputs to evoke head 

pain, and a (ii) “diminished” state during which endogenous analgesic mechanisms are limited 

and incoming noxious inputs can evoke head pain (Burstein et al., 2015). Currently, there is little 

neural evidence to support the idea of altered brainstem endogenous modulation of SpV 

immediately prior to a migraine. 

The aim of this investigation is to determine if functional connectivity within the brainstem 

endogenous pain modulating circuitry is altered throughout the migraine cycle. Furthermore, we 

aim to determine whether individuals with migraine show altered sensitivity and neural activity to 

noxious stimuli applied to the trigeminal nerve distribution in different stages of the migraine cycle. 

We hypothesise that migraineurs will show increased sensitivity and SpV activation to noxious 
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stimuli and reduced functional connectivity within the brainstem pain modulation circuitry 

immediately prior to a migraine attack. 

 

METHODS 

 

Subjects: 

 

Thirty-one subjects with migraine (6 males, mean [±SEM] age: 29.6±1.7 years, range 19-

55 years) and 60 pain-free controls (20 males; mean [±SEM] age: 26.2±0.9 years, range 19-56 

years) were recruited from the general population using an advertisement. Migraine subjects were 

diagnosed according to the criteria set by the International Classification of Headache Disorders 

(ICHD) 3rd edition, sections 1.1 and 1.2. Seven migraineurs reported experiencing aura with their 

migraines, and the remaining 24 reported no aura. Of the 31 migraineurs, 28 were scanned during 

the interictal period (6 males, mean [±SEM] age: 29.6±1.8 years), that is, between 72 hours after 

and 24 hours prior to a migraine attack; 10 during the 24-hour period immediately prior to a 

migraine (3 males, age 29.1±3.4 years) and 10 within the 72-hour period following a migraine (1 

male, age 31±3.1 years). For subjects scanned prior to an attack, there was no predicting factor 

that they were within 24 hours of a migraine. Six migraineurs were scanned during all 3 phases, 

and another 5 migraineurs were scanned during 2 of 3 phases. 

All migraine subjects indicated the pain intensity (6-point visual analogue scale; 0 = no 

pain, 5 = most intense imaginable pain) and facial distribution (drawing) of pain they commonly 

experience during a migraine attack. Each subject described the qualities of their migraines and 

indicated any current treatments used to prevent or abort a migraine once started. Exclusion 

criteria for controls were the presence of any current pain or chronic pain condition, current use 

of analgesics, and any neurological disorder. Exclusion criteria for migraineurs were any pain 

condition other than migraine, and any other neurological disorder. Informed written consent was 
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obtained for all procedures according to the Declaration of Helsinki 7th revision and local 

Institutional Human Research Ethics Committees approved the study. Data from 25 of the 29 

migraineurs were used in a previous investigation (K. K. Marciszewski, N. Meylakh, F. Di Pietro, 

V. G. Macefield, et al., 2018). 

 

MRI acquisition: 

 

In all subjects, prior to entering the MRI scanner, a 3x3cm MRI-compatible thermode 

(Medoc) was placed on the right side of the mouth covering the upper and lower lips for each 

subject. In migraineurs this was done on the side most commonly experiencing headaches (5 left-

sided, 23 right-sided). Care was taken to secure the thermode in the same location in each 

individual subject and to ensure it did not cross the midline. A temperature that evoked moderate 

pain ratings was determined for each individual subject with a Thermal Sensory Analyser (TSA-

II, Medoc), from a resting temperature of 32oC to temperatures at 0.5oC intervals between 44 and 

49oC. Temperatures were randomly applied in 15 second intervals for 10 seconds during which 

each subject rated the pain intensity using a 10-point Computerised Visual Analogue Scale 

(CoVAS, Medoc; 0 = no pain, 10 = worst imaginable pain). The temperature at which individuals 

indicated a pain intensity rating of approximately 6 out of 10, was used for the remainder of the 

experiment. 

All subjects then lay supine on the bed of a 3T MRI scanner (Philips, Achieva) with their 

head immobilised in a 32-channel head coil. With each subject relaxed and at rest, a high-

resolution 3D T1-weighted anatomical image set covering the entire brain was collected (turbo 

field echo; field of view 250 x 250 mm, matrix size = 288 x 288, slice thickness = 0.87 mm, 

repetition time = 5600 ms, echo time = 2.5 ms, flip angle = 8o). A series of 180 gradient-echo echo 

planar resting-state fMRI volumes, using blood oxygen level-dependent (BOLD) contrast, was 

then collected. Each image volume contained 35 axial slices covering the entire brain (field of 
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view = 240 x 240 mm, matrix size = 80 x 78, slice thickness = 4 mm, repetition time = 2000 ms; 

echo time = 30 ms, flip angle = 90o). Following this resting state fMRI series, a series of 140 

gradient-echo echo planar fMRI image volumes with BOLD contrast was collected with each 

image volume covering the entire brain (38 axial slices, repetition time = 2500 ms, raw voxel size 

1.5 x 1.5 x 4.0 mm thick). Following a 30-volume baseline period, 8 noxious thermal stimuli were 

delivered (Figure 1A). Each noxious stimulus was delivered for 15 seconds (including ramp up 

and down periods of 2.5 seconds each), followed by a 6-volume baseline (32°C) period. During 

each period of noxious stimulation, the subject was asked to rate the pain intensity on-line using 

the CoVAS. 

 

Pain rating analysis: 

 

For each subject, the mean pain intensity ratings during each of the 8 noxious stimulus 

periods were calculated and plotted. Our aim was to explore changes in brain activation patterns 

over the migraine cycle compared with controls. Since we found that overall the control group 

rated the pain intensity higher than the migraineurs, we removed those controls with higher pain 

ratings in order to match pain intensities across all control and migraine groups (Figure 1B and 

1C). In addition, for the pain activation protocol, we removed 7 migraineurs scanned during the 

interictal, 3 scanned immediately prior to migraine phase and 2 scanned immediately following 

migraine phase due to excessive head motion (>1mm volume-to-volume movement in the X, Y 

and Z planes and 0.05 radians in the pitch, roll and yaw directions. There was no significant 

difference in applied thermode temperature (oC) between the groups after removal of these 

subjects (Figure 1D).  

The thermal stimulation analysis was conducted on a control group of 31 subjects (10 

males, mean [±SEM] age: 26.5±1.2 years), interictal migraine group of 21 subjects (4 males, 

mean age: 29.8±2.1 years), immediately prior to migraine group of 7 subjects (2 males, mean 
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age: 30.4±4.7 years) and immediately following migraine group of 8 subjects (1 male, mean age: 

29.4±1.9 years). There was no significant difference in age (t test; p > 0.05), gender composition 

(X2 test, p > 0.05), pain rating (t test; p > 0.05), or stimulus temperature (t test; p > 0.05). To 

explore changes throughout the migraine cycle, we plotted the mean (±SEM) pain intensity ratings 

for the following periods: >30 days until next migraine (n=12), 30 to 10 days until next migraine 

(n=4), 9 to 2 days until next migraine (n=5), 1 day until next migraine (n=7), and 1 to 3 days 

following a migraine (n=8). In addition, in 5 subjects, thermal stimulation testing was performed 

during both the interictal and immediately prior to migraine phases and in another subject 4 

sessions including one 2 days prior to a migraine were collected. For these subjects, their pain 

intensity ratings during each session were plotted individually. Finally, we used the same subjects 

to run the resting state connectivity analysis but only needed to remove 3 control subjects due to 

excessive head movement (28 controls, 28 interictal migraineurs, 10 immediately prior to a 

migraine, 10 immediately following migraine, no significant differences in age or gender).  

 

MRI Image analysis: 

 

Using SPM12 (K. J. Friston et al., 1994) and custom software, all fMRI images in the 

resting-state and the thermal stimuli protocol were motion corrected and subjects with excessive 

head movement removed as described above. Five migraineurs experienced migraines most 

commonly on the left side and the thermode was placed on the left side of the mouth, therefore 

their images were reflected in the X plane (“flipped”) so that fMRI signals could be assessed 

ipsilateral and contralateral to the most common side of migraine. The effect of movement on 

signal intensity was modelled and removed, and physiological (i.e. cardiovascular and respiratory) 

noise was modelled and removed using the DRIFTER toolbox (Särkkä et al., 2012). The fMRI 

images were linear detrended to remove global signal intensity changes and each subject’s fMRI 

image set was co-registered to their own T1-weighted anatomical image set so that the T1-



 

  xxiii 

weighted and fMRI images were in the same locations in three-dimensional space. Using 

brainstem-specific isolation software (SUIT toolbox) (Diedrichsen, 2006b), a mask of the 

brainstem was created individually for each subject for both the T1 and fMRI image sets. Using 

these masks, the brainstem of the T1 and fMRI image sets were isolated and then spatially 

normalised to a brainstem-specific template in Montreal Neurological Institute (MNI) space and 

spatially smoothed using a 3mm full-width half maximum Gaussian filter. 

 

Noxious thermal stimuli; experimental design and statistical analysis: 

Significant changes in signal intensity during the 8 test stimuli were determined using a 

repeated box-car model convolved with a canonical haemodynamic response function and time 

dispersions. Firstly, we assessed regional signal intensity increases and decreases across all four 

subject groups, primarily to verify that orofacial noxious stimuli activate the region of the SpV 

(random effects conjunction ANOVA, p < 0.05, family-wise error corrected for multiple 

comparisons). Following this, significant differences in brainstem activation patterns were 

determined between (i) controls and interictal migraineurs, (ii) controls and migraineurs during the 

phase immediately prior to a migraine, and (iii) controls and migraineurs during the phase 

immediately following a migraine (two-group random effects analysis, p<0.001 uncorrected for 

multiple comparisons, minimum cluster size 2 contiguous voxels, age and gender included as 

nuisance variables). Given we hypothesized that noxious thermal stimuli would be associated 

with activation in brainstem regions such as the SpV and PAG, we created regions of interests 

comprising 3mm-radius spheres in these brainstem sites based on the atlas by Paxinos and 

Huang (G. Paxinos & X.-F. Huang, 1995). Following the initial uncorrected threshold of p<0.001, 

we applied small volume corrections using these regions of interest (p<0.05) to reduce the 

likelihood of Type II errors. 

Significant clusters were overlaid onto a standard brainstem template in MNI space. For 

each significant cluster, the percentage change in signal intensity was extracted by comparing 
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the signal intensity of the 30 baseline volumes with both the signal intensities during the 8 noxious 

thermal stimuli periods (“on” periods) and signal intensities during the intervening rest periods 

(“off” periods). These signal intensity changes were extracted for all four groups and significant 

differences between groups determined (p<0.05, two-tailed, two-sample t test, Bonferroni 

corrected for multiple comparisons). Significant differences between controls and the group from 

which the cluster was derived during the original voxel-by-voxel analysis were not determined, to 

avoid “double-dipping”. In addition, to explore changes throughout the migraine cycle, we plotted 

the mean (±SEM) signal changes for the following periods: >30 days until next migraine (n=12), 

30 to 10 days until next migraine (n=4), 9 to 2 days until next migraine (n=5), 1 day until next 

migraine (n=7), and 1 to 3 days following a migraine (n=8). 

 

Functional connectivity: experimental design and statistical analysis: 

We performed brainstem-only functional connectivity analyses using a seeding region 

encompassing the rostral ventromedial medulla (RVM) to determine resting connectivity strengths 

in the well-described PAG-RVM-SpV pain modulating pathway (Basbaum & Fields, 1984; 

Heinricher, Tavares, Leith, & Lumb, 2009; Ossipov, Dussor, & Porreca, 2010). The RVM seeding 

region comprised 6 contiguous voxels: 2 voxels each at 3 rostro-caudal levels from z co-ordinate 

-53 to -49 in MNI space (Figure 4). In each subject, signal intensity changes were extracted from 

the RVM seed and voxel-by-voxel analyses were performed to determine which brainstem areas 

displayed significant signal intensity covariations with this region. The connectivity maps were 

placed into second level, random-effects procedures to determine significant differences in RVM 

connectivity strength between controls and each of the migraine groups. Following an initial 

uncorrected threshold of p<0.001, small volume corrections were applied on the midbrain PAG, 

dorsolateral pons, and SpV using 40mm3 hyper-rectangles centred at the location of each region 

based on the Duvernoy’s Brainstem Atlas (Naidich et al., 2009) and the atlas by Paxinos and 

Huang (G. Paxinos & X.-F. Huang, 1995). 
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The resulting clusters of significant difference were used to extract connectivity strength 

values in each subject, and the mean (±SEM) values were plotted to provide a measure of 

connectivity direction. Additionally, connectivity strength values were extracted for all four groups 

and significant differences between groups determined (p<0.05, two-tailed, two-sample t test, 

Bonferroni corrected for multiple comparisons). Significant differences between controls and the 

group from which the cluster was derived during the original voxel-by-voxel analysis were not 

determined, to avoid “double-dipping”. To explore changes throughout the migraine cycle, we 

plotted the mean (±SEM) connectivity strengths for the following periods: >30 days until next 

migraine (n=16), 30 to 10 days until next migraine (n=4), 9 to 2 days until next migraine (n=8), 1 

day until next migraine (n=10), and 1 to 3 days following a migraine (n=10). Finally, we assessed 

whether there were any areas that displayed both altered activation during noxious thermal stimuli 

and altered functional connectivity, by determining the intersection of significant brainstem maps. 

For regions of overlap, linear relationships between percentage changes in signal intensity and 

resting RVM connectivity were determined (Pearson’s correlation, p<0.05). 

 

RESULTS 

 

Migraine characteristics: 

 In the 31 migraineurs, 12 reported that their headaches were more common on the right side, 

while 5 reported more on the left and the remaining 14 reported that they were mostly bilateral. 

Migraine subjects most frequently described their migraine pain as “throbbing”, “sharp” and/or 

“pulsating” in nature and indicated that “stress”, “lack of sleep” and/or “dehydration” most often 

triggered their migraine attacks. The mean estimated frequency of migraine attacks was 22.2±2.1 

per year, mean length of time since the onset of migraine attacks (years suffering) 14.1±1.8 years, 

and mean pain intensity of migraines 3.7±0.2 on a 6-point visual analogue scale. Although 19 of 

the 31 migraineurs were taking some form of daily medication (mostly the oral contraceptive pill; 
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12 migraineurs), none of the migraine subjects was taking prophylactic medication prescribed for 

migraine. 

 

Activation during noxious thermal stimuli: 

 

The overall pain intensity ratings in all groups during the 8 brief noxious heat stimuli were 

similar in all four groups (mean ± SEM VAS: controls 5.3±0.4; interictal 4.7±0.5; immediately prior 

to migraine 4.9±0.7; immediately following migraine 4.9±0.8; two-tailed t test, all p>0.05). There 

was also no significant difference in the applied thermode temperature used to evoke these pain 

levels between groups (mean temperature: controls 47.7±0.1 oC; interictal 48±0.2 oC; immediately 

prior to migraine 47.9±0.3 oC; immediately following migraine 47.9±0.4 oC; Figure 1B, C, D).  

Whilst pain intensity ratings remained constant over the three migraine periods, when intensity 

ratings were plotted relative to the next migraine, there was a gradual increase in pain intensity 

as the next migraine approached (Figure 1E). However, strikingly, these ratings did not continue 

to increase but instead decreased in the period immediately prior to a migraine. This change was 

clear at an individual level with dramatic decreases in perceived pain intensities in the period 

immediately before a migraine attack despite subjects receiving the same stimuli temperatures 

during each testing period (Figure 1F).  

In all subjects, noxious thermal stimuli evoked increases in signal intensity in various 

brainstem regions, including the regions of the left and right SpV, left and right dorsolateral pons 

and in the medullary raphe (Figure 2). Comparison of signal intensity changes evoked by noxious 

thermal stimuli revealed regional differences over the migraine cycle. Whilst no significant 

difference occurred between controls and migraineurs during the phase immediately following a 

migraine, there were significant differences during the interictal and the phase immediately prior 

to a migraine. During the interictal phase of migraine, acute orofacial pain was associated with 

significantly reduced activation in the region of the left and right PAG compared with controls 
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(Figure 3A, Table 1). Extraction of signal intensity changes revealed that this decrease in 

activation was specific to the interictal phase and did not occur during the phases immediately 

prior to or following a migraine for both the right PAG (mean % change: controls 0.32±0.08; 

interictal 0.04±0.09; immediately prior to migraine 0.35±0.11; immediately following migraine 

0.30±0.07) and left PAG (controls 0.26±0.07; interictal -0.04±0.11; immediately prior to migraine 

0.22±0.15; immediately following migraine 0.25±0.06). Plots of signal intensity changes 

throughout the migraine cycle revealed that in migraineurs, signal intensity changes in both the 

left and right PAG remained stable at approximately zero throughout the interictal period and then 

increased dramatically to control levels in the period immediately prior to a migraine. Furthermore, 

there were no significant differences between signal intensity changes during the intervening “off” 

periods for both the right PAG (controls 0.07±0.06; interictal -0.01±0.06; immediately prior to 

migraine 0.06±0.18; immediately following migraine -0.12±0.11, all p>0.05) and left PAG (controls 

0.09±0.06; interictal -0.07±0.11; immediately prior to migraine -0.08±0.14; immediately following 

migraine -0.09±0.10, all p>0.05).  

In striking contrast, only during the phase immediately prior to a migraine was signal 

intensity significantly greater during noxious stimulation in migraineurs than in controls, with this 

increase encompassing the region of the right SpV (Figure 3B, Table 1). Extraction of signal 

intensity changes revealed a significant increase in signal intensity within the right SpV only during 

the phase that immediately preceded a migraine (controls 0.17±0.05; interictal 0.11±0.05; 

immediately prior to migraine 0.42±0.12; immediately following migraine 0.15±0.08). In addition, 

during the “off” periods there was no significant difference between controls and the interictal 

phase, although there were significantly greater signal intensity reductions during the phases 

immediately prior to and after a migraine (controls 0.13±0.03; interictal -0.02±0.07; immediately 

prior to migraine -0.17±0.12 p<0.05; immediately following migraine -0.08±0.05, p<0.05). Plots of 

signal intensity changes throughout the migraine cycle revealed that in migraineurs, signal 

intensity changes in the SpV remained stable at approximately control levels throughout the 
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interictal period and then increased dramatically to well above control levels in the period 

immediately prior to a migraine.  

 

Functional connectivity: 

 

In addition to brainstem activation patterns during noxious thermal stimuli, we assessed 

resting functional connectivity of the endogenous pain modulation circuitry. That is, we assessed 

the connectivity of the well-described PAG-RVM-SpV circuitry by using an RVM seed. 

Remarkably, we found a very similar pattern of difference in migraineurs compared with controls 

to the above-mentioned activation patterns evoked by noxious stimuli, albeit in the opposite 

direction. That is, during the interictal phase, migraineurs displayed significantly greater 

connectivity strength between the left PAG and RVM (Figure 4A, Table 1). Again, extraction of 

connectivity strength values revealed that this difference in PAG-RVM connectivity occurred 

during the interictal phase only and was in the opposite direction to that of the controls and other 

migraine phases (mean connectivity strength: controls -0.11±0.04; interictal 0.09±0.03; 

immediately prior to migraine -0.09±0.07; immediately following migraine -0.09±0.03). 

Furthermore, the connectivity strength increase remained relatively stable over the interictal 

phase and then decreased dramatically in the period immediately prior to a migraine. As well as 

the PAG, connectivity strength was also significantly greater during the interictal phase in the 

region of the dorsolateral pons bilaterally (controls -0.10±0.04; interictal 0.09±0.03; immediately 

prior to migraine -0.03±0.05; immediately following migraine -0.04±0.05). Although the 

connectivity strength between this region and the RVM were less stable over the interictal phase. 

In contrast, during the phase immediately prior to a migraine, RVM connectivity strength 

was significantly reduced in the region of the right SpV (Figure 4B, Table 1). Extraction of 

connectivity strength values confirmed the specificity of this change during the phase immediately 

prior to migraine only (controls 0.40±0.03; interictal 0.38±0.03; immediately prior to migraine 
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0.13±0.06; immediately following migraine 0.36±0.05). Furthermore, SpV-RVM connectivity 

strength remained stable during the interictal phase and then decreased dramatically during the 

24 hour period immediately prior to a migraine. 

 

Noxious stimuli activation and functional connectivity overlap: 

 

The PAG and SpV displayed significant differences in activation during noxious stimuli 

and resting state functional connectivity. That is, the PAG displayed reduced activation and 

enhanced RVM connectivity during the interictal phase whereas the SpV displayed enhanced 

activation and reduced RVM connectivity during the phase immediately prior to a migraine (Figure 

5). Plots of RVM connectivity strengths against PAG signal intensity changes revealed no 

significant linear relationship in any of the four subject groups (controls r=0.01, p=0.94, interictal 

r=-0.07, p=0.77, immediately prior to migraine r=0.28, p=0.53, immediately following a migraine 

r=0.02, p=0.96). In contrast, plots of RVM connectivity strengths against SpV signal revealed a 

significant positive relationship during the phase immediately prior to migraine only (controls 

r=0.20, p=0.30, interictal r=0.03, p=0.90, immediately prior to migraine r=0.78, p=0.03, 

immediately following a migraine r=-0.12, p=0.78). 

 

DISCUSSION: 

 

This study demonstrates that although sensitivity to applied noxious stimuli increases over 

the interictal period, in the 24 hour period prior to a migraine, this sensitivity decreases 

dramatically. This decrease in noxious input sensitivity is coupled with altered function in the 

brainstem pain modulation circuitry. In the period immediately prior to a migraine attack, 

migraineurs displayed greater SpV activation to noxious orofacial stimuli and reduced functional 

connectivity between the RVM and SpV, which may underlie a change in the modulation of 
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trigeminal noxious input to SpV by the RVM. These functional changes occurred despite the same 

applied stimuli and an overall similar perceived intensity level between controls and migraineurs 

during different phases of the migraine cycle. Furthermore, during the interictal phase, 

migraineurs displayed significantly reduced resting functional connectivity between the PAG and 

RVM. These data support the hypothesis that brainstem sensitivity fluctuates across the migraine 

cycle. However in combination with individual subject’s pain intensity changes, these data suggest 

that in contrast to the idea that immediately prior to a migraine attack the brainstem displays 

diminished ’tone’, our data suggests that during this period, endogenous analgesic mechanisms 

are enhanced and incoming noxious inputs are less likely to evoke head pain. 

 An important finding in this investigation is that at an individual level, pain sensitivity in 

migraineurs increases during the interictal period but then dramatically decreases in the 24 hour 

period prior to a migraine attack. This finding appears at odds with the idea that immediately prior 

to a migraine attack, brainstem endogenous analgesic pathways are in a state as to allow the 

easy passage of incoming noxious inputs to reach higher brain centres, although it is possible 

that sensitivity may increase during an actual migraine attack. In concert with the changes in pain 

sensitivity, we found that during the period immediately prior to a migraine, noxious orofacial 

stimuli evoked greater SpV activation despite similar pain intensity ratings between groups. It is 

important to note that this increase in SpV sensitivity occurred in the same location as the signal 

intensity increases evoked by orofacial noxious stimulation in all subjects and was not a separate 

part of the relatively long and complex SpV nucleus. Furthermore, we did not find a linear 

relationship between SpV signal intensity and pain perception. Whilst this may appear at odds 

with some expectations, BOLD signal intensity changes likely represent summed synaptic activity 

driven by total oxygen demand (Logothetis, 2003) and thus SpV signal intensity changes would 

represent a combination of afferent drive from the periphery and feedback from brainstem 

descending circuitry including that arising in regions such as the RVM and subnucleus reticularis 

dorsalis. 



 

  xxxi 

Although no other investigation has explored brainstem activation during orofacial noxious 

stimuli in the phase immediately prior to a migraine, Stankewitz and colleagues reported that 

orofacial noxious stimuli evoked greater SpV signal intensity increases the closer the migraineur 

was to their next migraine attack (Stankewitz et al., 2011). Although in this previous study, 

individuals were only examined as close as four days prior to their next migraine, our data reveals 

that SpV activation increases most dramatically in the 24-hour period prior to a migraine. Our 

finding that pain perception and SpV processing of noxious stimuli are dynamic raises the 

prospect that orofacial pain processing pathways may also change at the onset or during a 

migraine itself. Alternatively, since preclinical studies have reported convergence of dural-

sensitive and facial cutaneous afferents in SpV (Burstein et al., 1998; Ellrich, Andersen, 

Messlinger, & Arendt-Nielsen, 1999) it is possible that a decrease in noxious cutaneous afferent 

drive onto second-order convergent SpV neurons results in an overall increase in dural afferent 

drive and a change in dural sensitivity. Whilst this is speculative, it is unlikely that the changes in 

SpV function reported here are involved in other functions besides the processing of orofacial 

noxious afferents. 

The increase in SpV sensitivity immediately prior to a migraine was associated with a 

significant reduction in RVM-SpV connectivity. It is possible that during the phase immediately 

prior to migraine, RVM inputs to the SpV are reduced, resulting in an increase in SpV inhibition 

or reduction in SpV excitation and a reduction in the propensity for incoming noxious inputs to 

activate higher brain centres. Interestingly, we found that the greater the reduction in RVM-SpV 

connectivity the smaller the increase in SpV sensitivity to noxious inputs. There is considerable 

evidence that the RVM contains “ON“ and “OFF“ cells that can increase and decrease the 

excitability of neurons in the SpV/dorsal horn, respectively (H. Fields, 2004; H. L. Fields, Bry, 

Hentall, & Zorman, 1983; Hellman & Mason, 2012; Salas, Ramirez, Vanegas, & Vazquez, 2016). 

Indeed, it has been suggested that opposing RVM inhibitory and facilitatory effects are finely 

balanced at rest in pain-free individuals (H. L. Fields & Heinricher, 1985; Heinricher et al., 2009; 
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Ossipov et al., 2010), but that the system can switch between inhibitory and facilitating processes 

depending on the state of the individual (Fields, 2004). If the inhibitory effects of RVM on SpV 

during the interictal phase of migraine were increased as a migraine becomes imminent, one 

would expect that the greater the reduction in connectivity the greater the reduction in SpV 

sensitivity, a situation consistent with our findings. 

 Previous investigations have explored brainstem activation in migraineurs during the 

interictal phase and reported reduced dlPons activation during noxious thermal face and hand 

stimuli (Moulton et al., 2008). Whilst we did not find altered noxious stimulus evoked dlPons 

activity in this study during the interictal phase, we did find reduced activation in the PAG. 

Furthermore, this reduced activation was associated with an increase in resting connectivity 

between the RVM and both the PAG and dlPons. The PAG region that exhibited altered activation 

and resting functional connectivity was located in the region of the ventrolateral PAG column, an 

area that upon activation produces opiate-mediated analgesia, receives primarily noxious inputs 

from deep structures and is thought to mediate the behavioural responses to pain deemed 

inescapable, e.g. migraine (Keay & Bandler, 2002). Furthermore, preclinical studies have 

revealed that superior sagittal sinus stimulation – a key source of noxious trigeminal input in 

migraine – activates the ventrolateral PAG and that ventrolateral PAG stimulation can inhibit SpV 

activity evoked by superior sagittal sinus stimulation (Hoskin, Bulmer, Lasalandra, Jonkman, & 

Goadsby, 2001; Knight & Goadsby, 2001). 

Our data suggests that PAG activity and connectivity sets the RVM-SpV into a state similar 

to non-migraine controls, since noxious orofacial activation evoked similar SpV signal intensity 

changes and pain intensity ratings in both controls and in migraineurs during the interictal phase. 

The precise roles of descending and ascending PAG inputs in altering the functional state of the 

PAG during the interictal phase of migraine are yet to be determined. We have recently shown 

increased PAG-hypothalamic connectivity only in the phase immediately prior to a migraine  

(Noemi Meylakh et al., 2018) and a recent case-study reported the hypothalamus displays 
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increased noxious stimuli sensitivity and increased functional coupling with the dorsomedial pons 

and SpV also during the phase immediately prior to an attack (Schulte & May, 2016). Indeed there 

is a hypothesis that activity changes within the hypothalamus initiate migraine attacks which is 

not inconsistent with the data presented here (Schulte, Allers, & May, 2017).  

Previous human brain imaging studies have also reported altered resting PAG connectivity 

with higher brain regions implicated in pain modulation other than the hypothalamus, such as the 

amygdala, prefrontal and cingulate cortices (C. Mainero et al., 2011a).  Furthermore, there is 

evidence that during the interictal phase, migraineurs displayed significantly reduced endogenous 

analgesic ability as assessed by diffuse noxious inhibitory control (Sandrini et al., 2006). Whilst 

these results suggest that during the interictal phase of migraine, pain sensitivity should be 

increased, we found no significant difference in pain intensity, and indeed we found that the 

temperature needed to evoke moderate pain were if anything greater in migraineurs than controls. 

Furthermore, our data suggests that endogenous pain modulating circuits are enhanced 

immediately prior to a migraine given that pain intensity sensitivities dramatically decreased 

during this period. 

Whilst we are confident in the robustness of our results, there are some limitations which 

need noting. Firstly, it is possible that our interpretation of the signal intensity changes to noxious 

stimuli and RVM connectivity’s are not related to alterations in endogenous pain modulatory 

circuitries. For example, it has been shown that RVM cells that process noxious information are 

also involved in micturition and micturition-related neurons have also been identified in the PAG 

and hypothalamus (Baez, Brink, & Mason, 2005; Numata et al., 2008). Given that in many 

migraineurs, increased urination occurs immediately prior to a migraine, it is possible that the 

changes reported here relate to symptoms other than the processing of incoming noxious inputs. 

Secondly, given the relatively low spatial resolution of fMRI scans, it is difficult to accurately 

localise each cluster to a specific brainstem nucleus or region. However, we used brainstem 

atlases to determine the location of each significant cluster, and our brainstem clusters overlap 
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with regions that have been shown to be involved in nociceptive transmission. Thirdly, the 

brainstem is prone to physiological noise and movement-related artefacts. To limit the influence 

of these factors, we applied a physiological noise correction to account for potential cardiac and 

respiratory noise and we modelled and removed effects of movement on signal intensity. Finally, 

with mounting evidence of migraine being a “cycling” brain disorder, scans in individual 

migraineurs over the course of a few weeks whilst measuring pain sensitivity and brain activity 

would provide evidence to support such a hypothesis. 

In conclusion, it is becoming increasingly clear that the brainstem pain modulating circuitry 

is altered in migraineurs throughout the migraine cycle. Whilst there is a suggestion that pain 

sensitivity increases the closer one is to a migraine, our data shows that indeed pain sensitivity 

falls dramatically immediately prior to a migraine. Whilst  data is consistent with the idea that 

brainstem circuits fluctuate from “enhanced” and “diminished” neural tone states, in the light of 

our data, the timing of these fluctuations needs to be re-examined (Burstein et al., 2015; May, 

2017b). We speculate that during the interictal phase of migraine, the PAG influences the RVM-

SpV circuit to produce a balance of ON and OFF cell function that is similar to that of controls and 

thereby results in similar SpV sensitivities to noxious inputs. In contrast, as a migraine 

approaches, the balance of ON and OFF influences on the SpV shifts to a state dominated by 

OFF cell inputs and, as a result, the SpV becomes less sensitive to incoming noxious inputs. 

Whether this brainstem state shifts again as a migraine attack develops is yet to be determined.  
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Table 1. Montreal Neurological Institute (MNI) coordinates, cluster size and t-score for 
regions in which activation during noxious stimuli or resting rostral ventromedial medulla 
connectivity were significantly different between controls and migraineurs. 
  

 
 
 
  

Brain region 
MNI 

Co-ordinate 

cluster 

size 
t-score   

 x y z   

Noxious stimuli activation 

controls>interictals: 

left midbrain periaqueductal gray 

right midbrain periaqueductal gray  

 

immediately prior to migraine>controls: 

right spinal trigeminal nucleus 

ventral medial medulla 

 

-2 

4 

 

 

8 

-2 

 

-36 

-38 

 

 

-42 

-32 

 

-11 

-13 

 

 

-48 

-49 

 

4 

3 

 

 

3 

4 

 

3.28 

3.32 

 

 

3.67 

3.31 

Resting rostral ventromedial medulla connectivity      

Interictals>controls: 

left midbrain periaqueductal gray 

dorsolateral pons 

 

controls>immediately prior to migraine: 

right spinal trigeminal nucleus 

 

-2 

4 

 

 

4 

 

-36 

-38 

 

 

-42 

 

-17 

-25 

 

 

-47 

 

5 

9 

 

 

8 

 

3.42 

3.41 

 

 

3.24 
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FIGURE LEGENDS 

 

Figure 1: A: In each participant, a thermode was placed on the corner of the mouth and 8 noxious 

heat stimuli were delivered. Each participant rated the pain intensity during each noxious stimulus 

on a Computerised Visual Analogue Scale (CoVAS), where 0=no pain and 10=most pain 

imaginable. B: Plots of mean±SEM pain intensity ratings for each subject group. In each subject, 

pain intensity for each of the 8 noxious stimuli were averaged and these were then averaged 

across subjects for each group. The control group (n=60) was reduced to 31 subjects so that the 

average pain intensity was not significantly different between controls and each of the three 

migraine groups. C: Plots of mean±SEM pain intensity ratings for each of the 8 noxious stimuli 

for each subject group. D: Plots of mean±SEM stimulus temperatures for each subject group. E: 

Plots of pain intensity ratings for individual migraineurs with respect to their next migraine (black 

circles). In addition, mean±SEM pain intensity ratings for the following periods: >30 days until next 

migraine (n=12), 30 to 10 days until next migraine (n=4), 9 to 2 days until next migraine (n=5) and 

1 day until next migraine (n=7) are also plotted (red filled squares).  F: Plots of pain intensity 

ratings for 6 individual migraineurs with respect to their next migraine. Note that perceived pain 

intensity increases over the interictal period and then dramatically decreases immediately prior to 

their next migraine. 

 

Figure 2: fMRI response to pain: Brainstem activation common to the four subject groups during 

8 brief noxious stimuli overlaid onto a series of axial slices of a brainstem T1-weighted anatomical 

template. The location of each sagittal and axial slice in Montreal Neurological Institute space is 

indicated at the upper right of each image. Noxious stimuli applied to the right side of the mouth 

evoked signal intensity increases (hot colour scale) in the region of the spinal trigeminal nucleus 

(SpV) bilaterally, the region of the medullary raphe, and in the dorsolateral pons (dlPons).  
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Figure 3: fMRI response to pain by group: Significant differences in brainstem activation during 

noxious orofacial stimuli in migraineurs compared with controls. A: Significantly reduced 

activation (cool colour scale) in migraineurs during the interictal phase compared with controls 

overlaid onto a sagittal and axial slices of a T1-weighted brainstem template. The location of each 

slice in Montreal Neurological Institute space is indicated at the upper right of each image and 

indicated by the dashed horizontal lines. Plots of mean±SEM percentage signal intensity changes 

during noxious orofacial stimulation for the left and right midbrain periaqueductal gray (PAG) 

clusters during the stimulus periods (ON) and baseline periods (OFF) for each of the four subject 

groups are shown. In addition, to the right are plots of mean (±SEM) signal changes for the 

following periods: >30 days until next migraine (n=12), 30 to 10 days until next migraine (n=4), 9 

to 2 days until next migraine (n=5), 1 day until next migraine (n=7), and 1 to 3 days following a 

migraine (n=8). Note the stability of the signal changes during the interical period and the dramatic 

increases during the phase immediately prior to a migraine. B: Significantly greater activation (hot 

colour scale) in migraineurs during the phase immediately prior to a migraine compared with 

controls. Signal intensity changes during noxious stimuli in the spinal trigeminal nucleus (SpV) in 

all four subject groups during the on and off periods are shown. In addition, plots of signal changes 

over the migraine cycle are shown to the right and again note the stability during the interictal 

period and the dramatic change immediately prior to a migraine. *p<0.05 derived from voxel-by-

voxel analyses. 

 

Figure 4: resting-state connectivity: Significant differences in rostral ventromedial medulla 

(RVM) resting connectivity in migraineurs compared with controls. A: Significantly greater 

connectivity (hot colour scale) in migraineurs during the interictal phase compared with controls 

overlaid onto a sagittal and axial slices of a T1-weighted brainstem template. The location of each 

slice in Montreal Neurological Institute space is indicated at the upper right of each image and 

indicated by the dashed horizontal lines. Plots of mean±SEM connectivity strengths (arbitrary 
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units) for the left midbrain periaqueductal gray (PAG) and dorsolateral pons (dlPons) clusters for 

each of the four subject groups are also shown. In addition, plots of connectivity changes over 

the migraine cycle are shown to the right and again note the stability during the interictal period 

and the dramatic change immediately prior to a migraine. 

 

B: Significantly reduced connectivity strengths (cool colour scale) in migraineurs during the phase 

immediately prior to a migraine compared with controls. The plots to the right are connectivity 

strengths in the spinal trigeminal nucleus (SpV) in all four subject groups. *p<0.05 derived from 

voxel-by-voxel analyses. The inset in the centre shows the RVM seed used for the analysis. In 

addition, plots of connectivity changes over the migraine cycle are shown to the right and again 

note the stability during the interictal period and the dramatic change immediately prior to a 

migraine. 

 

Figure 5: Overlap between alterations in noxious stimulus evoked signal intensity changes and 

resting connectivity (red shading) overlaid onto axial slices of a T1-weighted brainstem template. 

The location of each slice in Montreal Neurological Institute space is indicated at the upper left of 

each image. To the right are plots of connectivity strengths (arbitrary units) against percentage 

signal intensity changes during noxious stimuli for the midbrain periaqueductal gray (PAG) and 

spinal trigeminal nucleus (SpV) in individual subjects for each of the four subject groups. The only 

significant linear relationship occurred in the SpV in the period immediately prior to a migraine. 

That is, the greater the connectivity to the rostral ventromedial medulla, the greater the noxious 

stimulus-evoked signal intensity. 
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ABSTRACT 

The neural mechanisms responsible for the initiation and expression of migraines remain 

unknown. Though there is growing evidence of changes in brainstem anatomy and function 

between attacks, very little is known about brainstem function and structure in the period 

immediately prior to a migraine – which is critical if we are to understand how a migraine is 

generated. The aim of this investigation is to use brainstem-specific analyses of diffusion weighted 

images to determine if the brainstem pain processing regions display altered structure in 

individuals with migraine across the migraine cycle, and in particular immediately prior to a 

migraine. Diffusion tensor images (48 controls, 36 migraineurs) were used to assess brainstem 

anatomy in migraineurs compared with controls. We found that during the interictal phase, 

migraineurs displayed greater mean diffusivity in the region of the spinal trigeminal nucleus, 

dorsomedial/dorsolateral pons and midbrain periaqueductal gray matter. Remarkably, the mean 

diffusivity returned to controls levels during the 24-hour period immediately prior to a migraine, 

only to increase again within the three following days. These data show that regional brainstem 

anatomy changes over the migraine cycle, with specific anatomical changes occurring in the 24 

hours prior to onset. These changes may contribute to the activation of the ascending trigeminal 

pathway by either an increase in basal traffic or by sensitising the trigeminal nuclei to external 

triggers, with activation ultimately resulting in perception of head pain during a migraine attack. 

 

SIGNIFICANCE STATEMENT 

It has been hypothesised that modulation of brainstem pain pathways may be critical for 

the initiation of migraine attacks. There is some evidence that altered brainstem function, possibly 

involving increased astrocyte activation, occurs immediately prior to a migraine attack.  We sought 

to obtain evidence to support this theory. Using diffusion tensor imaging, we found that 

immediately prior to a migraine, mean diffusivity decreased in the spinal trigeminal nucleus, 

dorsomedial/dorsolateral pons and midbrain periaqueductal gray matter. Mean diffusivity then 
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increased again immediately following the migraine attack. Decreased mean diffusivity before a 

migraine is consistent with increased astrocyte activation, since astrocyte processes enlarge 

during activation. These changes may underlie changes in brainstem function that are essential 

for the generation of a migraine. 
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INTRODUCTION 

Migraine is a common, debilitating disorder characterised by headaches and often 

accompanied by aura, nausea, and sensitivity to light and sound. Despite these well-

characterised symptoms, the exact mechanisms underlying the initiation and maintenance of 

migraine head pain are still hotly debated. To date, human brain imaging investigations have 

revealed that during a migraine attack, activity increases in brain regions such as the cingulate 

cortex, insula, thalamus, hypothalamus and dorsal pons (S.K. Afridi et al., 2005; A. Bahra, M.S. 

Matharu, C. Buchel, R.S. Frackowiak, & P.J. Goadsby, 2001a; Denuelle, Fabre, Payoux, Chollet, 

& Geraud, 2004; Weiller, May, Limmroth, Juptner, Kaube, Schayck, Coenen, & Dlener, 1995). In 

addition, a number of studies have identified anatomical, sensitivity and resting activity pattern 

changes between migraine attacks, i.e. in the interictal period (C. D. Chong et al., 2017; C.D. 

Chong & Schwedt, 2015; K.K. Marciszewski et al., 2018; V.A. Mathur et al., 2016; Porcaro et al., 

2017b). These findings highlight the apparent brain dysfunction in migraineurs even when in a 

pain-free state. 

A recent review has proposed that these observed changes in brain function are not 

stable, but dynamic in nature (May, 2017a). Some have suggested that functional brain changes 

actually trigger a migraine from basal firing (Goadsby & Akerman, 2012). Others have suggested 

that the brain fluctuates between a state where the effectiveness of endogenous analgesic 

mechanisms is too great to allow incoming noxious inputs to evoke head pain, and a state where 

incoming inputs can activate central pathways and evoke head pain (Akerman et al., 2011; 

Borsook & Burstein, 2012). Consistent with these hypotheses, it has recently reported that during 

the interictal phase, migraineurs display reduced grey matter density and increased free water 

movement within brainstem pain-modulating regions including the midbrain periaqueductal gray 

matter (PAG), dorsolateral pons (dlPons), medullary raphe and spinal trigeminal nucleus (SpV) 

(Marciszewski et al., 2018a). Furthermore, it was recently shown that immediately prior to a 

migraine resting infra-slow oscillatory activity increases in these same brainstem regions and 
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returns to controls levels shortly after the migraine and it was speculated that these oscillatory 

changes may result from transient increases in astrocyte activation and its associated 

gliotransmission (N. Meylakh et al., 2018). Given there is some evidence that astrocytes may play 

a role in aspects of migraine such as the propagation of cortical spreading depression 

(Nedergaard et al., 1995) and that a genetic form of migraine, Familial Hemiplegic Migraine, is 

associated with astrocyte dysfunction (Benarroch, 2005), it is not unreasonable to suggest that 

astrocytes may also play a critical role in migraine pathophysiology via actions within the 

brainstem. 

It was recently reported that pain sensitivity to noxious stimuli in migraineurs is 

dramatically decreased in the 24 hour period prior to a migraine, and this decrease is associated 

with increased functional magnetic resonance imaging (fMRI) signal intensity within the SpV and 

reduced PAG-SpV connectivity (K. K. Marciszewski, N. Meylakh, F. Di Pietro, E. P. Mills, et al., 

2018). This altered brainstem function may result from altered neural-glial interactions, though 

evidence of astrocyte activation in migraineurs, particularly in the period immediately prior to a 

migraine is lacking. This is likely due to the fact that it is not possible to predict when an individual 

will have a migraine and thus examining them in the 24-hour period before an attack is difficult. 

Although direct astrocyte measurement is not possible in living humans, local free water 

movement, as measured by diffusion tensor imaging, can be used as an indirect measurement of 

astrocyte activity. Due to the observation that when astrocytes are activated their processes 

expand, it is logical to assume that this event would be associated with a decrease in local free 

water movement.  

As such, the aim of this investigation is to use diffusion tensor imaging (DTI) to determine 

if the brainstem displays microstructural alterations throughout the migraine cycle. More 

specifically we aim to explore changes in the 24-hour period prior to a migraine. We hypothesise 

that immediately prior to a migraine, mean diffusivity will decrease, consistent with an increase in 

astrocyte size, in areas of the brainstem that process and modulate pain such the PAG, dlPons, 
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medullary raphe and SpV. Furthermore, that decrease will be reversed during the period 

immediately following a migraine and return to interictal levels. 

 

METHODS 

Subjects 

Thirty-six subjects with migraine (8 males, mean [±SEM] age: 30.6 ±1.7 years) and 48 age 

and gender matched pain-free controls (12 males, age: 32.1±1.7 years) were recruited for the 

study. All subjects were recruited from the general population using an advertisement. Migraine 

subjects were diagnosed according to the criteria laid out by the International Classification of 

Headache Disorders (ICHD), 3rd edition, sections 1.1 and 1.2 (ICHD-3β, 2013) Seven migraineurs 

reported aura associated with their migraines and the remaining 29 reported no aura. Of the 36 

migraineurs, 31 were scanned during the interictal period (7 males, age 30.0±1.9 years), that is, 

between 72 hours after and 24 hours prior to a migraine attack; 10 during the 24-hour period 

immediately prior to a migraine (4 males, age 27.2±3.0 years), and 13 within the 72-hour period 

following a migraine (4 males, age 31.7 ± 2.9 years). For subjects scanned prior to an attack, 

there was no predicting factor that they were within 24 hours of a migraine. Ten migraineurs were 

scanned during the interictal period and period immediately prior to a migraine. In addition, six of 

these 10 subjects were also scanned during the period immediately after a migraine. 

In addition, all migraine subjects indicated the pain intensity (6-point visual analogue scale; 

0 = no pain, 5 = most intense imaginable pain) and facial distribution (drawing) of pain they 

commonly experience during a migraine attack. Each subject described the qualities of their 

migraines and indicated any current treatments used to prevent or abort a migraine once started. 

Exclusion criteria for controls were the presence of any current pain or chronic pain condition, 

current use of analgesics, and any neurological disorder. Exclusion criteria for migraineurs were 

any pain condition other than migraine, and any other neurological disorder. Informed written 

consent was obtained for all procedures according to the Declaration of Helsinki 7th revision and 
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local Institutional Human Research Ethics Committees approved the study. 

MRI acquisition  

Subjects lay supine on the bed of a 3T MRI scanner (Philips Achieva, Neuroscience 

Research Australia, Sydney) with their head immobilised in a fitting 32-channel head coil. With all 

subjects relaxed and at rest, in each subject a high-resolution T1-weighted anatomical image set 

covering the entire brain was collected (turbo field echo; field of view 250x250mm, matrix 

size=288x288, slice thickness=0.87mm, repetition time=5600ms, echo time=2.5ms, flip angle 8o). 

Following this, two high-resolution DTI image sets covering the entire brain were collected using 

a single-shot multisection spin-echo echo-planar pulse sequence (repetition time=8788ms; flip 

angle=90o, matrix size 112x112, field of view 224x224 mm, slice thickness=2.5mm, 55 axial 

slices). For each slice, diffusion gradients were applied along 32 independent orientations with 

b=1000s/mm2 after the acquisition of five b=0 s/mm2 (b0) images. Two DTI acquisitions were 

averaged to improve signal-noise ratios. 

 

Image analysis 

DTI analysis 

Using SPM12 software (K.J. Friston et al., 1994), the two DTI image sets from each 

subject were realigned based on the b0 images, and the diffusion tensors calculated from the 

images using a linear model (Basser & Pierpaoli, 1996). Mean diffusivity (MD) whole-brain maps 

were then derived and co-registered to each individual subject’s T1-weighted image. Using 

brainstem-specific isolation software (SUIT toolbox)(Diedrichsen, 2006a), a unique mask of the 

brainstem was manually created for each subject’s MD maps. Using these masks, the brainstem 

was isolated, spatially normalised, re-sliced to the SUIT template in Montreal Neurological 

Institute (MNI) space, and spatially smoothed using a 3 mm full-width-at-half-maximum (FWHM) 

Gaussian filter. 
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Statistical analyses 

Using a voxel-by-voxel analysis, significant differences in MD values were determined 

between (i) controls and migraineurs during the interictal period, (ii) controls and migraineurs 

during the period immediately prior to a migraine, and (iii) controls and migraineurs during the 

period immediately following a migraine (p<0.05, false discovery rate corrected at a voxel level, 

minimum cluster size 5 contiguous voxels). Age and gender were included as nuisance variables. 

No voxels survived this stringent threshold and so we reduced the stringency (p<0.001, 

uncorrected) and performed cluster correction (Bonferroni correction by the number of voxels in 

each cluster) to assess if more subtle diffusion changes occurred. A brainstem mask that 

excluded cerebrospinal fluid as well as the cerebellum was applied to each analysis. 

Since we found significant MD increases during the interictal period that were eliminated 

immediately prior to a migraine, we extracted MD values from those significant clusters for all 

three migraine periods. Significant MD differences between controls and the period immediately 

prior to and following migraine were then determined for these clusters (two-tailed, two-sample t-

test, p<0.05). Significant MD differences between controls and the interictal period were not 

assessed since these were already established as significant with the voxel-based statistics, thus 

avoiding the issue of “double-dipping”. To explore changes throughout the migraine cycle, for the 

10 migraineurs that were scanned during more than one period, we plotted MD values for each 

cluster. Significant MD differences between migraine periods were determined using paired t-

tests (two-tailed p<0.05). Additionally, for all migraineurs, MD values relative to the time until next 

migraine were plotted to determine if MD increased or decreased as a migraine event 

approached. Finally, for each cluster, significant relationships between MD and migraine 

characteristics were determined (Pearsons correlation, p<0.05).  

 

 

RESULTS 
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Migraine Characteristics 

Using a self-report questionnaire, migraineurs reported the most common location of their 

migraines over the past 12 months. In 12 of the 36 migraineurs, headaches were more common 

on the right side, in six they were more common on the left, and in the remaining 18 they were 

most often bilateral. Migraine subjects most frequently described their migraine pain as 

“throbbing”, “pulsating”, and/or “sharp”, in nature. They indicated that “stress”, “lack of sleep”, and 

“dehydration” most often triggered migraine attacks. The mean (±SEM) estimated frequency of 

migraine attacks was 1.3±0.1 per month, mean length of time since the onset of migraine attacks 

(years suffering) 16.2±1.9 years, and mean pain intensity of migraines was 3.8±0.1 on a 6-point 

visual analogue scale. Although 24 of the 36 migraineurs were taking some form of daily 

medication (mostly the oral contraceptive pill), none of the migraine subjects was taking 

prophylactic medication prescribed for migraine. 

 

Mean Diffusivity 

The DTI analysis revealed that compared to controls, migraineurs show regional 

differences in brainstem MD throughout the migraine cycle (Figure 1, Table 1). Consistent with 

our previous report, during the interictal period migraineurs showed increased MD compared with 

controls in regions encompassing the left SpV, left dlPons, right dorsomedial/dlPons and the PAG 

(Figure 1, Table 1). Strikingly, this MD increase during the interictal period was absent during the 

24-hour period prior to a migraine, with no significant difference between controls and migraineurs 

in this period. The MD increase then returned to above control levels in the dm/dlPons and PAG 

in the 72-hour period immediately following a migraine. Extraction of MD values from the clusters 

displaying a significant increase during the interictal period confirmed this pattern of MD change, 

i.e., i) MD increase during the interictal period: (MD x10-3 mean±SEM) left SpV controls 0.75±0.02, 

migraineurs 0.81±0.01; left dlPons controls 0.78±0.01, migraineurs 0.84±0.01; right dlPons 

controls 0.91±0.01, migraineurs 0.96±0.02; left PAG controls 0.88±0.01, migraineurs 0.95±0.01; 
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ii) no MD difference immediately prior to migraine: left SpV: controls 0.75±0.02, migraineurs 

0.77±0.01, p=0.37; left dlPons: controls 0.78±0.01, migraineurs 0.80±0.01, p=0.21; right dlPons: 

controls 0.91±0.01, migraineurs 0.96±0.03, p=0.06; left PAG: controls 0.88±0.01, migraineurs 

0.91±0.02, p=0.22; and iii) MD increase immediately following a migraine:  left dlPons controls 

0.78±0.01, migraineurs 0.84±0.02, right dlPons controls 0.91±0.01, migraineurs 0.99±0.02 and 

left PAG controls 0.88±0.01, migraineurs 0.96±0.02, but not in the left SpV controls 0.75±0.02, 

migraineurs 0.79±0.02, p=0.09 (Figure 2A). In no brainstem region was MD significantly lower in 

migraineurs compared with controls. 

Plots of MD values in the 10 migraineurs that were scanned during at least two of the three 

migraine periods revealed that the pattern of MD changes was consistent in individual subjects. 

That is, MD was lower immediately prior to a migraine compared with both the interictal and 

immediately following a migraine periods (Figure 2B). More specifically, of the 10 migraineurs, 

MD decreased immediately prior to a migraine compared to the interictal period in nine 

migraineurs within the left SpV, left dlPons and left PAG and in seven migraineurs within the right 

dlPons. Additionally, of the six migraineurs scanned during all three phases, five showed a MD 

decrease immediately prior to a migraine compared with both the interictal and immediately after 

a migraine within the left SpV, left dlPons and left PAG and in four migraineurs within the right 

dlPons. Furthermore, plots of MD values over the migraine cycle revealed that on average, MD 

gradually increased over the interictal period and then rapidly decreased in the 24-hour period 

immediately prior to a migraine (Figure 3). This MD decrease then increased towards interictal 

levels in the period immediately following a migraine.  

 In all migraine subject groups, MD values in these clusters were not significantly correlated 

to migraine frequency (left SpV: interictal: r=0.01, p=0.94; immediately prior to migraine r=0.03, 

p=0.94; immediately following migraine r=0.24, p=0.40; left dlPons: interictals r=-0.07, p=0.71; 

immediately prior to migraine r=0.09, p=0.80; immediately following migraine r=0.40, p=0.15; right 

dlPons: interictals r=0.19, p=0.33; immediately prior to migraine r=0.16, p=0.65; immediately 
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following migraine r=0.35, p=0.22; left PAG: interictals r=-0.13, p=0.50; immediately prior to 

migraine r=0.45, p=0.20; immediately following migraine r=0.54, p=0.06), years suffering (left 

SpV: interictals r=0.10, p=0.61; immediately prior to migraine r=-0.62, p=0.06; immediately 

following migraine r -0.40, p=0.15; left dlPons: interictals r=0.02, p=0.91; immediately prior to 

migraine r=-0.07, p=0.86; immediately following migraine r=-0.36, p=0.21; right dlPons: interictals 

r=-0.30, p=0.11; immediately prior to migraine r=-0.48, p=0.16; immediately following migraine r=-

0.52, p=0.06; left PAG: interictals r=0.09, p=0.63; immediately prior to migraine r=-0.30, p=0.42; 

immediately following migraine r=-0.33, p=0.25), or the intensity of migraine pain (left SpV: 

interictals r=0.35, p=0.06; immediately prior to migraine r=0.09, p=0.81; immediately following 

migraine r=0.21, p=0.46; left dlPons: interictals r=-0.07, p=0.72; immediately prior to migraine r=-

0.15, p=0.68; immediately following migraine: r=-0.36, p=0.20; right dlPons: interictals r=-0.04, 

p=0.81; immediately prior to migraine r=-0.14, p=0.68; immediately following migraine r=-0.18, 

p=0.55; left PAG: interictals r=0.13, p=0.49; immediately prior to migraine r=0.18, p=0.62; 

immediately following migraine r=0.04, p=0.90). 

 

DISCUSSION 

This study demonstrates that migraine is associated with changes in regional anatomy 

that fluctuate over the migraine cycle in a number of brainstem regions. More specifically, during 

the long interictal period, migraineurs display increased free water movement compared with 

controls in areas that process orofacial pain, such as the SpV, dlPons and PAG. Remarkably, 

immediately prior to a migraine attack, this increase in diffusivity reduces to control levels before 

increasing again in the period immediately following migraine. It is clear from these data that in 

episodic migraineurs, regional brainstem microstructural changes occur throughout the migraine 

cycle, and that there are specific anatomical changes in the 24 hours prior to onset. 

 A number of migraine studies have used DTI to identify anatomical changes in large fibre 

bundles such as the corpus callosum, internal capsule and corona radiata, although these studies 
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did not explore changes in diffusion within grey matter or within the brainstem (Neeb et al., 2015; 

Zhang et al., 2017). Whilst a previous investigation used a region of interest approach to find that 

migraineurs show greater MD compared to controls within the red nucleus (Kara et al., 2013), no 

study has specifically explored the brainstem, particularly at different times over the migraine 

cycle. Consistent with a previous study, we found significant MD increases in SpV, dlPons and 

PAG (K.K. Marciszewski et al., 2018) and furthermore, we show that during the 24-hour period 

immediately prior to a migraine, these structural changes disappear so that migraineurs are no 

different from controls in the preictal period. However, these structural changes then return during 

the 72-hour period following the migraine event. 

It has been argued by many that the headache period of migraine results from activation 

of trigeminal afferents in brain meninges and large cerebral arteries and these afferents terminate 

in the SpV and upper cervical dorsal horn (Y. Liu et al., 2004; Y. Liu, Broman, & Edvinsson, 2008; 

Olesen et al., 2009). Whilst the nature of the cellular changes underlying such diffusion changes 

is unclear, MD changes can be associated with oedema, vascular injury, inflammation, 

demyelination, cell count, and cellular morphology; as such our findings could therefore reflect 

several underlying biological changes (Alexander, Lee, Lazar, & Field, 2007; Hutchinson, 

Schwerin, Avram, Juliano, & Pierpaoli, 2017). The dynamic nature of the changes reported here 

suggest that they reflect processes that are not permanent or static in nature, but that can instead 

change relatively rapidly. Since MD changes can result from dynamic processes such as gliosis 

(Sierra et al., 2011), and there is evidence that migraine is associated with altered glial function 

(Benarroch, 2005; Nedergaard et al., 1995), it is possible that the MD decreases immediately 

prior to a migraine result from astrocyte activation and associated expansion of astrocytic 

processes. Indeed, a recent preclinical epilepsy investigation linked microstructural changes in 

astrocytic processes with altered measures of diffusivity (Salo, Miettinen, Laitinen, Grohn, & 

Sierra, 2017). 

Consistent with the idea that migraine is associated with astrocyte activation, it was 
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recently shown that immediately prior to a migraine, resting infra-slow oscillatory activity (0.03-

0.06Hz) increases in these same brainstem regions (N. Meylakh et al., 2018). Astrocytes can 

exhibit infra-slow calcium oscillations that can propagate among surrounding astrocytes and it 

has been proposed that in pathological situations, enhanced calcium-wave synchrony and 

amplitude may occur which can alter local neural function (Crunelli et al., 2002; Cunningham et 

al., 2006; Halassa et al., 2007; Lorincz et al., 2009; Parri & Crunelli, 2001). This raises the 

prospect that immediately prior to a migraine, astrocyte activation results in decreased mean 

diffusivity and increased infra-slow oscillatory activity resulting in altered sensitivity within 

brainstem regions that receive and process orofacial noxious information. Whether such a 

sensitivity change is adequate to evoke head pain from basal levels of neural traffic or simply to 

facilitate an incoming trigger to activate higher brain centres to produce head pain remains to be 

determined. 

The hypothesis that the brainstem pain processing sites become more sensitive as a 

migraine approaches was supported by Stankewitz and colleagues, who reported that orofacial 

noxious stimuli evoked greater SpV signal intensity increases as a migraine attack approaches 

(Stankewitz et al., 2011). Although in this previous study individuals were only examined up to 

four days prior to their next migraine, arecent study showed that noxious stimuli evoked dramatic 

SpV activation increases, particularly in the 24-hour period prior to a migraine (K. K. Marciszewski, 

N. Meylakh, F. Di Pietro, E. P. Mills, et al., 2018). However, despite the increase in SpV activation, 

during acute orofacial stimuli, individuals’ reported pain intensity ratings decreased as a migraine 

approached. This appears at odds with the idea that brainstem pain-processing circuits become 

more sensitive as a migraine approaches although there are a number of potential explanations: 

i) since these data reveal that both the anatomy and function of brainstem pain processing circuits 

are dynamic, it is possible that these pathways may change again at the onset or during a 

migraine itself, ii) since preclinical studies have shown convergence of dural-sensitive and facial 

cutaneous afferents in SpV (Burstein et al., 1998; Ellrich et al., 1999), a decrease in noxious 
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cutaneous afferent drive onto second-order convergent SpV neurons may result in an overall 

increase in dural afferent input sensitivity, iii) changes in descending brainstem modulatory inputs 

onto the SpV may evoke a heightening of dural afferent input sensitivity at the expense of inputs 

from other orofacial structures. Whilst these ideas are highly speculative, it is unlikely that the 

alterations in SpV anatomy and function are involved in other functions to the same degree as 

the processing of orofacial noxious afferents. 

Whilst our data imply that the processes involved in migraine attack onset may be 

astrocytic in nature, whether astrocyte activity is specifically driving migraine initiation or simply a 

symptom of another process cannot currently be discerned. The gradual increase in MD in 

brainstem pain-related regions over the interictal period suggests that changes are occurring 

throughout the interictal period that then dramatically reverse immediately prior to a migraine to 

control levels. Whilst brainstem functional measures such as SpV signal intensity changes and 

infra-slow oscillations were at control levels during the interictal period and dramatically increased 

immediately prior to a migraine, MD was above control levels during the interictal period and 

reduced to control levels prior to migraine. This implies that brainstem anatomy is not simply 

changing prior to a migraine but is altered throughout the long interictal period. Several reports 

suggest reduced endogenous analgesic ability in migraine (de Tommaso et al., 2007; Sandrini et 

al., 2006) whilst others report no change (Perrotta et al., 2010; Teepker et al., 2014). This 

inconsistency may reflect subtle variations in endogenous analgesic responsiveness across the 

migraine cycle and it might be that endogenous analgesic ability gradually increases over the 

interictal period which is consistent with MD increases in pain-processing and modulating regions 

across the interictal period. Additionally, none of the regional microstructural changes we detected 

were correlated to migraine properties such as migraine frequency, intensity or duration, 

suggesting that the changes are not cumulative over time, and is consistent with the idea that 

they may be dynamic in nature. Whilst these results are in line with some migraine studies (Chen 

et al., 2016; Uggetti et al., 2017), others have reported significant linear relationships between 
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anatomical measures and migraine frequency (Kruit, Launer, Overbosch, van Buchem, & Ferrari, 

2009; C. Mainero, J. Boshyan, & N. Hadjikhani, 2011b), intensity (Russo et al., 2012) and years 

suffering (C.D. Chong & Schwedt, 2015; J. Liu et al., 2012; Rocca et al., 2014; Schwedt et al., 

2013); however, none of these studies explored the brainstem. 

There are a number of methodological and subject-related limitations of this study. The 

spatial resolution of human DTI is relatively low and thus it is difficult to precisely localize each 

brainstem cluster with respect to small brainstem nuclei. However, the location of each cluster 

was defined using brainstem atlases and placed the changes into context with respect to the 

existing human and preclinical research. Secondly, we used an uncorrected threshold for the 

initial overlay of diffusion differences which can result in false positives. We limited this potential 

issue by applying cluster correction and we are therefore confident that the changes reported in 

areas such as the SpV are robust (Woo, Krishnan, & Wager, 2014). Thirdly, this is a cross-

sectional study and mounting evidence of relatively rapid brainstem changes, scanning individual 

migraineurs over the course of several weeks while measuring indices of brain anatomy, activity, 

and sensitivity would provide more precise evidence supporting this hypothesis. 

Overall, our findings suggest that migraine is associated with anatomical changes within 

brainstem structures involved in trigeminal noxious transmission and endogenous analgesia. 

More importantly, these anatomical changes alter over the migraine cycle specifically during the 

24-hour period prior to a migraine attack. We speculate that these anatomical changes reflect 

astrocyte activation that alters local neural function by the release of gliotransmitters, which either 

trigger or alter the sensitivity of the brainstem so that an external trigger induces a migraine attack. 

Future investigations exploring brainstem resting activity, evoked activity and anatomy over the 

migraine cycle may provide evidence supporting such a proposal. If dynamic changes in 

brainstem function and structure do occur, we may be in a position to modify these changes and 

potentially prevent the triggering of a migraine attack. 
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Table 1: Montreal Neurological Institute (MNI) coordinates, cluster size and t-score for 
regions of significant increases in mean diffusivity in migraineurs compared with 
controls. 

 

 

  

Brain region 
MNI 

Co-ordinate 

cluster 

size 
t-score   

 x y z   

interictals>controls      

left midbrain periaqueductal gray matter 

right dorsolateral pons 

left dorsolateral pons 

left spinal trigeminal nucleus 

-6 

6 

-4 

-4 

-28 

-36 

-32 

-40 

-3 

-21 

-15 

-47 

41 

7 

8 

7 

4.53 

3.49 

3.93 

3.34 

immediately following a migraine>controls      

left midbrain periaqueducal gray matter 

right dorsomedial/dorsolateral pons 

left dorsolateral pons 

-6 

2 

-8 

-28 

-36 

-38 

-7 

-25 

-27 

24 

22 

7 

4.53 

4.06 

3.11 
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Figure Legends: 

 

Figure 1: Regional mean diffusivity increases in migraineurs compared with controls overlaid onto 

axial brainstem template images. Significant mean diffusivity increases are represented by a t-

value with a hot colour scale. Slice locations are indicated at the upper left of each axial slice in 

Montreal Neurological Institute space. Compared to controls, migraineurs have increased mean 

diffusivity during the interictal and immediately following migraine periods in the left spinal 

trigeminal nucleus (SpV), left and right dorsolateral pons (dlPons) and midbrain periaqueductal 

gray matter (PAG).  

 

Figure 2: A: Plots of mean (±SEM) mean diffusivity changes in migraineurs compared with pain-

free controls in the left spinal trigeminal nucleus (SpV), left and right dorsolateral pons (dlPons) 

and left midbrain periaqueductal gray matter (PAG). Compared to controls, migraineurs show 

increased mean diffusivity during the interictal and immediately following migraine periods but not 

during the period immediately prior to migraine. #p<0.05 voxel-by-voxel analysis; *p<0.05 2-

sample t-tests. B: Plots of mean diffusivity in 10 migraineurs that were scanned during at least 

two of the three migraine phases. Note the consistency of change in which mean diffusivity 

decreases during the period immediately prior to migraine. *p<0.05 paired t-tests; #p<0.05 derived 

from voxel-by-voxel analysis. 

 

Figure 3: Plots of mean (±SEM) mean diffusivity changes in migraineurs over the migraine cycle 

in the left spinal trigeminal nucleus (SpV), left and right dorsolateral pons (dlPons) and left 

midbrain periaqueductal gray matter (PAG). Mean diffusivity values are averaged for those 

migraineurs scanned at least 30 days, 30-10 days, 9-2 days, and 1 day prior to their next migraine, 
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as well as 1-3 days following a migraine. Note how mean diffusivity gradually increases over the 

interictal period and falls dramatically immediately prior to a migraine before recovering. 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Appendix IV. 

 

Dorsal raphe nucleus and harm avoidance: A resting-state 

investigation 

IV. Dorsal raphe nucleus and harm avoidance: A resting-state investigation 
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