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ABSTRACT 

Visual working memory (VWM) is responsible for the temporary storage of visual 

information required for perception and cognition. The capacity of VWM is surprisingly 

limited to three or four items. Despite decades of research, the nature of the capacity limit is 

still unclear, in part due to uncertainty about the main factors contributing to this limit. We 

approached this issue by exploring two instances in which memory performance is enhanced. 

Firstly, while controlling stimulus complexity and similarity, familiarity produced significant 

increases in both encoding rate and capacity. However, familiarity gained from training 

observers to simply recognise the stimuli did not produce any benefits for change detection. 

Secondly, the inclusion of statistical regularities in the displays produced significantly 

improved recall. However, only subjects with explicit awareness of the statistical regularities 

showed improvement, whereas unaware subjects showed no change in their recall 

performance. We extended this result by observing whether contralateral delay activity 

(CDA), a neural marker of the number of item-based representations held in VWM, reduces 

with explicit chunking. Although recall performance was significantly better, the CDA did 

not appear to index equivalent number of chunks, suggesting that online representations do 

not change with the use of explicit chunking. Instead, the behavioural benefit appears to rely 

on retrieval of a long-term memory representation (LTM) when recall is tested. These results 

indicate a major influence of LTM in guiding VWM performance. Behavioural data collected 

at the end of the trial, such as change detection or probed recall, appear inadequate for fully 

examining the nature of VWM. An embedded-process framework, in which activated LTM 

representations can fluidly shift into the focus of attention, is useful in interpreting these 

results and understanding the cognitive processes involved in memory.  
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Chapter 1: Thesis Introduction 

The visual system encounters an enormous amount of complex information, which 

must be processed to produce a smooth phenomenal experience of the world. This 

remarkable feat requires a memory store that encodes, retains and manipulates visual 

information. For example, an active memory store integrates the information between 

saccades (Irwin & Andrews, 1996), orients where attention should be deployed (Awh & 

Jonides, 2001), and retains information about objects during visual tracking and search 

(Carlisle, Arita, Pardo, & Woodman, 2011). The system responsible for actively storing 

visual information for perception has been termed visual working memory (VWM). Despite 

its necessity in everyday perception, the VWM system is surprisingly limited in the amount 

of information it can hold—approximately three to four items (Luck & Vogel, 1997). This 

thesis explores the processes that contribute to this capacity limit, and examines 

circumstances under which this limit might be circumvented. This chapter provides the 

background to the studies reported in the thesis by giving an overview of past VWM 

research. 

 The concept of working memory 

Classical research separated memory into two distinct but interacting systems: short-

term memory (STM) and long-term memory (LTM). The STM store, understood to have a 

highly limited capacity, held current information in awareness; whereas LTM was thought to 

be effectively unlimited in capacity, but requiring effort to retrieve stored information 

(Atkinson & Shiffrin, 1968). Atkinson and Shiffrin were among the first to consider the STM 

system as working: “a system in which decisions are made, problems are solved and 

information flow is directed” (p. 83). That is, working memory functions as a mental 

workspace for higher-level cognition (Nee & D’Esposito, 2018). However, this early 

conception of STM relied on an assumption that encoding of information into LTM—and 

therefore learning—required repeated maintenance in STM. This has since been 

demonstrated to be untrue (Baddeley & Hitch, 1974). The concept of STM was updated by 

Baddeley and Hitch in their highly influential multi-component working memory model. 

Their first iteration contained three subsystems: the central executive, the phonological loop 

and the visuospatial sketchpad (Figure 1-1). The phonological loop and the visuospatial 

sketchpad, collectively known as the slave systems, maintain verbal and visual information 
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respectively. The visuospatial sketchpad is analogous to what researchers now refer to as the 

VWM system. 

 

 

Figure 1-1. An early model of working memory proposed by Baddeley and Hitch. Figure 
adapted from Baddeley and Hitch (1974). 
 

Baddeley and Hitch's (1974) model provided key foundations for a modern definition 

of working memory (Nee & D’Esposito, 2018). Firstly, the processes involved in the 

temporary maintenance of information are distinguishable from those involved in permanent 

transfer of information into long-term memory. Secondly, the processes that modulate and 

manipulate the retained information are dissociable from processes that only retain the 

information, such as those involved in iconic memory. Thirdly, memory processes are modal 

such that visual materials are represented differently from verbal materials. 

Individual differences in VWM tasks have since been shown to predict cognitive 

ability and intelligence (Daneman & Carpenter, 1980; Unsworth, Fukuda, Awh, & Vogel, 

2014a). In fact, estimates of an individual's VWM capacity—specifically the number of items 

that can be held in VWM—correlate robustly with measures of fluid intelligence (Cowan et 

al., 2005; Fukuda, Vogel, Mayr, & Awh, 2010; Unsworth et al., 2014a). VWM capacity 

estimates are significantly reduced in individuals with schizophrenia (Gold et al., 2010), and 

individuals with Parkinson’s disease (Lee et al., 2010). An understanding of the factors that 

contribute to capacity limits in VWM is thus central to understanding the processes of 
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perception and cognition, as well as the VWM deficits that accompany neuropsychiatric 

disorders. 

 Measuring visual working memory capacity 

The term visual working memory is often used synonymously with visual short-term 

memory, which has led to some confusion. Luck and Vogel (2013) provide three defining 

aspects of VWM: (i) represented information is visual in nature; (ii) information is actively 

maintained; and (iii) information is accessed for cognitive use. In their seminal study, Luck 

and Vogel (1997) devised the change-detection paradigm for the measurement of VWM 

capacity. In this paradigm (Figure 1-2), an initial array of objects (sample array or memory 

array) is presented to the observer for a brief duration, usually no longer than a second, 

before disappearing. After a short delay, a second array (test array) appears; it may be 

identical to the sample array (no-change trials) or have one object replaced by another object 

(change trials). The observer has to indicate whether or not a change occurred.  

 

 

Figure 1-2. Example of the stimulus on a change trial in the change-detection paradigm. 
Here, the yellow square in the memory array changes to the purple square in the test array.  
 

The proportion of trials on which a participant correctly indicates whether or not a 

change occurred can be used to estimate the number of items held in visual working memory. 

Assuming the observer has stored a certain number of objects (K) from the sample array, a 

correct response on a change trial (a hit) will occur whenever the changed item is one of 

those K objects. If an array contains N objects, on average this will occur on K out of N 

change trials. Additional hits will occur on a proportion (G) of the remaining (N−K) out of N 

change trials (when the changed object is not among those encoded) if the observer correctly 



 4 

guesses that a change has occurred. For an unbiased observer, this will occur on half of the 

remaining trials (G = 0.5), but G can be estimated directly from an observer’s false-alarm 

rate, the overall number of trials in which a change is reported but no change occurred. This 

produces the formulation proposed by Pashler (1988): 

 𝐻 = #
$
+ $&#

$
× 𝐺, (Equation 1-1) 

where H is the probability of a hit on a change trial. Rearranged to make K the 

subject: 

 𝐾 = $×(+&,)
.&,

. (Equation 1-2) 

However, this equation assumes VWM has no bearing on a no-change trial (Cowan et 

al., 2005). On no-change trials, guesses may be limited to items not stored in VWM (N−K); 

thus the subject will guess that a change has not occurred with a probability of 1−G, where G 

is the probability of guessing a change had occurred. Accordingly, Cowan (2001) estimates 

the correct rejection rate (CR): 

 𝐶𝑅 = #
$
+ $&#

$
× (1 − 𝐺). (Equation 1-3) 

Adding this to Pashler’s formulation (Equation 1-1): 

 𝐻 + 𝐶𝑅 = 3#
$
+ $&#

$
= #4$

$
. (Equation 1-4) 

Rearranging to make K the subject: 

 𝐾 = 𝑁 × (𝐻 + 𝐶𝑅 − 1). (Equation 1-5) 

Using these equations, the capacity of VWM has been estimated to be limited to 

approximately 3–4 items’ worth of information. Luck and Vogel (1997) presented sample 

arrays containing from 1 to 12 coloured squares for 100 ms, before showing a test array 

approximately a second later. They found performance was near perfect for arrays containing 

up to 3 colour blocks before gradually declining from 4 to 12 colour blocks. This pattern 

remained when observers were given two digits to rehearse aloud to suppress the influence of 

verbal working memory; when the sample array was displayed for a longer duration; and 

when observers were only required to make a decision about a single cued item in the array. 

Estimating VWM capacity from change-detection accuracy (Equation 1-2) indicated 

observers stored approximately four items in VWM. 
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 Classic models of visual working memory 

Despite agreement on this capacity limit for simple visual objects, there has been 

much debate regarding the architecture of VWM that produces this limit. In their 

experiments, Luck and Vogel (1997) increased the number of relevant features in the array 

items and found a pattern of memory performance identical to when they presented simple 

colours. For example, when items were defined by conjunctions of colour and orientation, 

VWM performance was no different when observers were instructed to detect changes only 

in colour, only in orientation, or in either feature. This pattern replicated with stimuli that 

were conjunctions of four features (colour, orientation, size, and the presence of a gap), and 

with conjunctions of the same feature type (such as two colours). Since increasing the 

number of relevant features in the stimuli did not influence memory performance, Luck and 

Vogel (1997) proposed that the architecture of VWM comprises 3 to 4 slots. Each slot stores 

a representation of the visual object with its features integrated, rather than the individual 

features of the object. 

The slots model was directly challenged by the findings of Alvarez and Cavanagh 

(2004). In their study, participants completed the same change-detection task as in Luck and 

Vogel’s experiments (1997) but with a range of stimulus sets. These sets included colour 

squares, but also Snodgrass line drawings, shaded cubes, random polygons, Chinese 

characters and English letters. VWM capacities differed significantly between the stimulus 

sets, contradicting straightforward predictions of the slots model. Critically, Alvarez and 

Cavanagh (2004) indexed the complexity of each stimulus set by conducting a visual-search 

task with the same stimulus sets. In this task, observers were presented with a target object 

before indicating whether or not the target was present in an array of objects from the same 

stimulus set. The arrays contained either 4, 8, or 12 objects and included the target object on 

half the trials. The visual search rate, their measure of stimulus complexity, was the increase 

in time to respond that the target was present with each additional item in the array. 

Estimating capacity as the number of objects for each stimulus set that would correspond to 

75% accuracy on the change-detection task, visual search rate was very strongly correlated (r 

= .99) with the inverse of capacity. Alvarez and Cavanagh (2004) suggested VWM capacity 

is limited by total amount of visual information—rather than the number of objects, as Luck 

and Vogel’s (1997) slots model suggests. They proposed a resources model, which suggests 

that more complex visual items (those with more features) require more resources for 
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encoding and storage. Thus, as the visual stimuli get more complex, fewer items can be 

maintained in VWM. 

The findings that inspired these influential models have failed to fully replicate. 

Hardman and Cowan (2015) attempted a direct replication of Luck and Vogel’s (1997) 

finding whereby change-detection performance was no different when change could occur 

either in only one of four relevant features (size, orientation, colour or the presence of a gap) 

or in any of the four features. In eight replications, change-detection performance worsened 

when change was possible in all four features, suggesting a cost of encoding additional 

relevant features. Feature load alone, however, was insufficient to explain the drop in 

performance. Hardman and Cowan reported that there was still strong evidence for an item-

based limit on VWM capacity, but not for a pure item-based account like the slots model. 

Eng, Chen and Jiang (2005) similarly failed to replicate Alvarez and Cavanagh’s (2004) main 

finding, whereby visual search rates almost perfectly correlated with capacity estimates for 

increasingly complex stimuli. While they did reproduce a relationship, the magnitude was 

much weaker (r2 = .26) when memory displays were presented for longer (3000 ms)1. This 

suggests that stimulus complexity does not explain all the variation in VWM capacity, as 

would be predicted under a strict resources model. Visual search rates were better predictors 

of VWM capacity at shorter memory display durations (500 and 1000 ms). Eng et al. (2005) 

suggest that as the relationship between visual search rates and VWM capacity estimates 

weakens with longer presentation, lower capacity estimates for more complex items are due 

to limits on perceptual encoding rather than storage capacity. 

The slots versus resources debate has shaped the majority of VWM research, despite 

failures to fully replicate key findings that inspired each models (Eng et al., 2005; Hardman 

& Cowan, 2015). The situation is also reflected in quantitative models of VWM performance. 

On one side, some researchers report VWM capacity limits are best predicted when assuming 

object storage in three to four slots (Zhang & Luck, 2008). Opponents argue VWM 

performance is best considered as a limited resource that is divisible across any number of 

objects, such that representations become noisier with more information held in VWM (P. M. 

Bays & Husain, 2008). A hybrid slots-plus-resources model proposes a capacity limit 

determined by slots, but with unequal distribution of resources across them (Zhang & Luck, 

                                                        
1 Note, however, that Eng et al. (2005) tested the relationship between search rates and VWM capacity 
estimates, while Alvarez and Cavanagh (2004) tested the relationship between search rates and the inverse of 
VWM capacity estimates. This difference would have attenuated the relationship reported by Eng et al. if the 
inverse transformation produced a more linear relationship. 
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2008). Uncertainty surrounding the contribution to VWM capacity limits of various factors 

like stimulus complexity continues to hinder efforts to develop appropriate models. 

 Factors influencing capacity limits 

Awh, Barton and Vogel (2007) have disputed the claim that stimulus complexity 

affects VWM capacity (Alvarez & Cavanagh, 2004). They suggest that variation in VWM 

performance is due to an increase in comparison errors made when an object stored in 

memory is visually similar to the changed object in the test array. Awh et al. (2007) gave 

participants a change-detection task with memory arrays containing 4 or 8 items selected 

from a stimulus set of 6 shaded cubes and 6 Chinese characters. This meant that either a 

within-category change would occur, where a shaded cube changed to another shaded cube or 

a Chinese character changed to another Chinese character, or a cross-category change would 

occur, where a shaded cube would change to a Chinese character or vice versa. A within-

category change is more likely to produce a confusion error as the to-be compared items 

come from the same stimulus set, whereas the to-be compared items in a cross-category 

change come from different stimulus sets and are therefore relatively dissimilar. If stimulus 

complexity is the key determinant of the number of items that can be stored in VWM, then 

there should be no benefit for a cross-category change compared to a within-category change. 

However, if stimulus complexity simply makes the comparison decision more difficult, there 

should be an improvement in performance for cross-category changes relative to within-

category changes. Awh et al. (2007) indeed found that performance for within-category 

changes was significantly worse than for cross-category changes, and significantly worse for 

Chinese characters compared to a shaded cubes. Change-detection performance for cross-

category changes was equivalent to change-detection performance for colours. From this, 

Awh et al. concluded that the number of items represented in visual working memory is 

fixed, regardless of the complexity of those items. Of course, their findings did not invalidate 

the basic conclusion that stimulus complexity influences change-detection performance. A 

key insight from Awh et al. is that rather than the number of stored items, it may be the 

resolution with which objects can be stored in visual working memory that is the key limiting 

factor in change-detection performance. That is, limited resolution means that changes among 

complex objects are more difficult to detect, leading to poorer overall change-detection 

performance at the same set size. 

Stimulus familiarity is another factor that appears to influence VWM processes. 

Change-detection performance is better for famous faces compared to unfamiliar faces 
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(Buttle & Raymond, 2003; Jackson & Raymond, 2008), and better for the original, canonical 

generation of Pokémon (a popular cartoon during the childhood of the university student 

sample) over a recent generation, only for those reporting familiarity with the characters (Xie 

& Zhang, 2017a). However, Xie and Zhang (2017b, 2018) suggest that capacities for familiar 

stimuli are not in fact larger, but that familiar stimuli are consolidated into VWM faster. They 

observed significant differences in change-detection performance between familiar and 

unfamiliar stimuli only with limited stimulus durations, which were presumably insufficient 

for VWM capacity to be saturated. It is unclear whether these effects of familiarity occur 

independently of the effects of stimulus complexity. Familiarity may allow the observer to 

encode only the distinguishing features of the stimuli, enhancing the rate of consolidation 

into VWM and reducing any influence of stimulus complexity. Having knowledge of the 

distinguishing features of the stimuli may also reduce the sample–test similarity that Awh et 

al. (2007) contend produces the effect of stimulus complexity on VWM capacity. 

Training has the potential to alleviate potential confounds by controlling an observer’s 

fluency with a stimulus set—a combination of how familiar, complex and similar the stimuli 

appear to the observer. While expertise or familiarity from extended experience appears to 

produce profound differences in VWM, attempts to increase VWM capacity through shorter 

periods of training has had mixed results. An hour of change-detection trials with over 20 

repeats of the same sample arrays produced no improvements, despite observers recognition 

of the repeated displays following training (Olson & Jiang, 2004). Only when each display 

was consistently associated with the same changed location did change-detection 

performance significantly improve (Olson, Jiang, & Moore, 2005). This improvement did not 

transfer to novel displays, or to displays in which changes occurred in the non-associated 

locations. Similarly, Chen et al. (2006) trained observers to recognise a subset of eight 

polygons through repeated presentations of those polygons in a change-detection task. 

Observers were consequently able to distinguish a trained polygon from a novel polygon, but 

this learned recognition did not produce any significant improvements in change detection for 

trained polygons over novel polygons. As both of these studies produced no overall increases 

in VWM capacity, learning appeared only to modulate how information is encoded into 

VWM (Olson et al., 2005). However, a recent study by Blalock (2015) found a positive effect 

of familiarity training on VWM capacity. Rather than training with the change-detection task 

itself, Blalock (2015) used a recognition task in which observers were presented a target 

polygon before being asked to select the target from a test array of four polygons. This 
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recognition training produced improved change-detection performance for trained polygons 

over novel polygons, where Chen et al. (2006) had not observed improvements. This might 

suggest that to increase VWM capacity, training must occur outside of the change-detection 

task. However, another cause for this discrepancy may be the difference in the statistical 

power of experiments: While Chen et al. (2006) used only 12 participants in each of their 

experiments, Blalock (2015) used considerably larger sample sizes of 102 and 70 participants 

in separate experiments. We resolve the discrepancy between Chen et al. (2006) and Blalock 

(2015) in Chapter 2 by observing whether familiarity training produces changes to VWM 

performance while controlling stimulus complexity and similarity. 

 Units of storage in VWM 

Apparent increases in capacity limits, like those observed for familiar stimuli over 

unfamiliar stimuli, have been explained by chunking—the combining of disparate elements 

for efficient storage in VWM. Chunking mechanisms often have been invoked to explain 

capacity limits in the verbal working memory domain. Miller (1956) famously reported recall 

was “magically” limited to seven chunks, which could take the form of individual letters, 

digits or words. Further, he suggested that learning allowed more efficient storage of 

information in a chunk, even though the number of chunks remained limited to about seven. 

Chen and Cowan (2009) precisely examined chunking with learned knowledge. They had 

subjects learn lists of words that appeared as singletons or in pairs until they could perfectly 

recall all word partners (or no partner in the case of singletons). Quantifying a learned pair as 

one unit and singletons as one unit, subjects only remembered approximately 3 units when 

required to reproduce the list. While prominent in the study of verbal working memory, 

factors such as chunking that influence the units of representation and storage are less well 

understood in the visual domain.  

Statistical learning is thought to augment VWM capacity limits by changing how 

information is represented in VWM (Brady, Konkle, & Alvarez, 2009). Brady et al. required 

observers to memorise the locations of eight colours, presented as four pairs; however, 

certain pairs were more likely to appear, giving statistical regularity to the displays. 

Observers were able to take advantage of the statistical regularity, with a significant increase 

in recall accuracy compared to when all colour pairs were equally likely, and well beyond an 

accuracy expected with a capacity limit of three to four objects. Brady et al. argued that this 

improvement was produced by visual statistical learning, the learning of associations between 

elements through automatic, unconscious statistical computations (Fiser & Aslin, 2001, 2002; 



 10 

Perruchet & Pacton, 2006; Turk-Browne, Jungé, & Scholl, 2005; Turk-Browne, Scholl, 

Chun, & Johnson, 2008). Learning the statistical redundancies allows the efficient 

compression of information, enabling an apparent increase in VWM capacity. This advantage 

of implicit knowledge in VWM contrasts with Chen and Cowan’s (2009) finding of an 

advantage for explicit knowledge in verbal working memory. We explore how this memory 

compression effect might occur by scrutinizing the nature of learning produced by the Brady 

et al. (2009) paradigm in Chapter 3. 

Perceptual cues that govern the grouping of objects in complex scenes, known as 

Gestalt cues, are also thought to affect the units of storage in VWM (Wagemans et al., 2012). 

Woodman, Vecera and Luck (2003) examined how the Gestalt cues of proximity and 

connectedness influenced change-detection performance (see Figure 1-3). To do this, they 

cued a corner location prior to the memory display and tested change detection at the 

equidistant uncued corners. When items in displays were grouped by proximity, change 

detection was more accurate for the grouped item than for the ungrouped item. For example, 

in Figure1-3a, after pre-cueing the top-left corner, change-detection was significantly better 

for the bottom-left corner than the top-right corner. However, when displays had opposing 

proximity and grouping cues (Figure 1-3b), change-detection was more accurate at the 

connected corner than the proximally grouped corner. That is, in Figure1-3b, after pre-cueing 

the top-left corner, change-detection was now significantly better for the top-right corner than 

for the bottom-left corner. Electrophysiological studies measuring the neural correlates of 

VWM capacity provide further evidence that perceptual grouping cues influence 

representation in VWM (Balaban & Luria, 2016; Luria & Vogel, 2014; Peterson, Gözenman, 

Arciniega, & Berryhill, 2015). 
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Figure 1-3. Adapted examples of memory displays from Woodman et al. (2003). (a) Colour 
squares are grouped vertically due to proximity. (b) Colour squares are grouped horizontally 
by a connectedness cue, as well as grouped vertically due to proximity. 
 

 Neural correlates of VWM capacity 

The majority of VWM research relies on responses made at the end of a trial, such as 

a decision on whether a change occurred or the delayed recall of a probed item. This makes it 

hard to discern what occurs during consolidation and retrieval in a typical VWM task and, as 

such, researchers have begun to examine neural measures during the retention periods. An 

electrophysiological component tightly associated with VWM load is the contralateral delay 

activity (CDA), discovered by Vogel and Machizawa (2004). Measured with 

electroencephalography (EEG), the CDA is the sustained negative activity on parietal–

occipital electrodes of the target side on a lateralized VWM task. The mean amplitude of this 

sustained activity has been shown to increase with memory load before plateauing at the 

typical 3–4 item capacity limit of VWM (Vogel & Machizawa, 2004) and is correlated (r = 

.57) with an individual’s behaviourally estimated VWM capacity (Unsworth et al., 2014a; 

Vogel, McCollough, & Machizawa, 2005). It appears the CDA tracks the number of chunks 

in VWM, as its amplitude drops with the inclusion of Gestalt grouping cues in a display 

(Balaban & Luria, 2016; Peterson et al., 2015), and rises when a single object splits into two 

discrete halves (Balaban & Luria, 2016). We use the CDA to examine whether explicit 

chunking produces changes to encoding and storage of objects in VWM as observed with 

perceptual grouping in Chapter 4. 
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 Overview of Studies 

The studies reported in the following chapters use three different approaches to 

investigate factors that appear to augment VWM capacity. The empirical chapters include 

experiments that have been either submitted or accepted for publication in peer-reviewed 

journals. Chapter 2 isolates the benefit in VWM performance due to familiarity, controlling 

stimulus complexity and similarity, before examining whether familiarity training can 

generate this benefit. Chapter 3 examines whether statistical learning augments VWM 

capacity through memory compression or other means. Finally, Chapter 4 examines whether 

chunking processes influence storage in the same manner as perceptual grouping using 

known neural correlates of VWM capacity. Where a chapter includes experiments that have 

either been submitted or accepted for publication in a peer-reviewed journal, this is indicated 

at the start of the chapter. 
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Chapter 2: The Influence of Familiarity on the Encoding Rate 

and Capacity of Visual Working Memory 

 
Experiment 1 of this chapter was included as Experiment 3 in Ngiam, Khaw, 

Holcombe and Goodbourn (2018), “Visual working memory for letters varies with familiarity 

but not complexity. Journal of Experimental Psychology: Learning, Memory and Cognition. 

 Abstract 

A point of contention for two prominent models of visual working memory (VWM) is 

whether the capacity limit is systematically influenced by stimulus complexity. An often-

ignored factor influencing VWM performance, which could be intertwined with the 

perceived complexity of a stimulus, is stimulus familiarity. It is unclear how stimulus 

complexity, familiarity and similarity interact and contribute to VWM performance. In this 

chapter, we isolate the influence of familiarity by controlling for stimulus complexity and 

similarity. We find familiarity with a stimulus is associated with increased encoding rates and 

higher capacity limits. In Experiments 2 and 3, we examine whether training recognition 

familiarity can increase the encoding rate or capacity of VWM performance. Despite gaining 

recognition, observers did not improve in change-detection for those stimuli. While there is 

clearly a benefit of extensive familiarity to VWM processing, the lower level of familiarity 

needed for successful recognition apparently does not provide any benefit. 
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 Introduction 

A common method employed by visual working memory (VWM) researchers is to 

manipulate the stimuli used in a change-detection task and examine the resulting effect on 

memory performance. For example, a major point of contention central to the current debate 

over the architecture of VWM is the influence of stimulus complexity on VWM processes. 

Contrasting findings from different manipulations of the stimuli, targeting the stimulus 

complexity, brought about two conflicting models of VWM architecture that have shaped 

much of the research—the slots model and the resources model. Defining complexity is 

difficult and different metrics of complexity have likely led to different results. However, a 

less examined influence on the VWM system, and even on the perceived complexity of a 

stimulus, is the observer’s familiarity with the stimulus. This chapter examines the influence 

of stimulus complexity and familiarity on two parameters of VWM: encoding rate and 

capacity. 

2.2.1 Classic models of VWM architecture 

Proponents of the slots model suggest the information capacity limit of VWM is 

defined strictly by the number of objects to be stored, regardless of the complexity of the 

objects. In their seminal paper, Luck and Vogel (1997) increased the stimulus complexity by 

adding features in which change could occur in the to-be-remembered stimuli. They found 

change-detection accuracy was unchanged despite the increase in the number of relevant 

features. This result suggests the items are stored into VWM with their features integrated, 

filling up a limited number of slots.  

On the other hand, proponents of the resources model suggest storing more complex 

objects expends additional limited resources, lowering the number of complex objects that 

can be stored. Alvarez and Cavanagh (2004) manipulated complexity by employing various 

stimulus sets, ranging from complex random polygons and Chinese characters to simpler 

colour squares, in a change-detection task. They found different capacities for the different 

stimulus sets, a finding at odds with the strict slots model. Critically, they indexed each 

stimulus’ complexity by conducting a visual-search task with those stimuli. Alvarez and 

Cavanagh (2004) found that the visual search rate was almost perfectly correlated with the 

inverse of working memory capacity (r2 = 0.99). This finding that stimulus complexity not 

only influences but almost perfectly accounts for VWM performance motivated Alvarez and 

Cavanagh (2004) to propose the resources model, which suggests that the VWM system 
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allocates a finite pool of resources to storing stimuli. As more complex items require more 

resources, fewer items can be stored in VWM. 

Although the object-based slots model (Luck & Vogel, 1997) and the feature-based 

resources model (Alvarez & Cavanagh, 2004) have been influential in VWM research, the 

manner in which object complexity influences VWM processes—that is, the main difference 

between these two models—is still disputed. Firstly, the results upon which these models are 

based have not been perfectly replicated. In their direct replication, Hardman and Cowan 

(2015) were unable to reproduce Luck and Vogel’s (1997) most striking result by which 

change-detection accuracy for objects possessing features from four different dimensions was 

equal, regardless of which feature or the number of features participants were required to 

remember. However, they suggested that despite an effect of feature load on VWM 

performance, significant evidence supported the claim that VWM capacity was 

predominantly constrained by object load. This rules out the pure slots account according to 

which the number of items is the sole factor limiting VWM performance, but retains the 

notion that the number of items is a significant contributor to the capacity limit of VWM. 

Attempts at perfectly reproducing the findings of Alvarez and Cavanagh (2004) have been 

similarly unsuccessful. Eng, Chen and Jiang (2005) were able to replicate the overall finding 

that visual search rate was related to VWM capacity at various memory display presentations 

(500, 1000 ms and 3000 ms). However, they did not replicate the near perfect inverse 

relationship found by Alvarez and Cavanagh (2004), finding a weaker magnitude correlation 

(r2 = .26) with 3000 ms memory display presentations. This suggests that complexity 

explains approximately 25% of the variation in VWM capacity, rather than all the variation 

as posited by the resources model. Eng et al. (2005) suggests that rather than affecting 

overall VWM capacity, complexity limits perceptual encoding during consolidation into 

VWM. 

2.2.2 Similarity 

The stimulus sets used to manipulate complexity likely had other differences that can 

influence VWM performance. Awh, Barton and Vogel (2007) suggest the differences in 

VWM capacity found by Alvarez and Cavanagh (2004) are not due to stimulus complexity 

per se, or perceptual encoding as suggested by Eng et al. (2005), but rather arise from 

confusion at the comparison stage in change detection. In their own experiments, they 

manipulated whether the changed object in the test array came from the same stimulus set 

(within-category) or from a different stimulus set (cross-category). Change-detection 
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accuracy for within-category changes, such as a shaded cube changing to another shaded 

cube, decreased with increasing stimulus complexity, replicating the finding of Alvarez and 

Cavanagh (2004). When changes were cross-category, such as a shaded cube changing to a 

Chinese character, change-detection accuracy was equivalent to change-detection accuracy 

for simple colours. Awh et al. (2007) posited that an effect of complexity only manifests with 

within-category changes because of the similarity between the target item in memory and the 

test item. Direct manipulations of the visual similarity of the test object support this 

interpretation (Jackson, Linden, Roberts, Kriegeskorte, & Haenschel, 2015). Jackson et al. 

used sets of simple polygons and complex polygons and asked participants for subjective 

similarity ratings of polygon pairs within each set. They found change detection was worse 

for complex polygons when test objects were subjectively rated as similar, but no difference 

between simple and complex polygons when the test items were rated as dissimilar. As 

objects that were more complex were more visually similar (high sample–test similarity), 

within-category changes produced more change-detection errors, lowering estimates of 

VWM capacity. The visual comparison of highly similar stimuli leading to lower estimates of 

VWM capacity is likely to contribute to slower visual search rates (Duncan & Humphreys, 

1989), explaining the significant correlations found by Alvarez and Cavanagh (2004) and 

Eng et al. (2005). 

It is still unclear whether effects of stimulus complexity on VWM are entirely 

attributable to sample–test similarity. The conclusions of Jackson et al. (2015) rely on 

matched subjective ratings of simple and complex polygon pairs. Yet, despite being matched 

in subjective similarity, it is not evident that two simple polygons are as visually confusable 

as two complex polygons. Furthermore, Jackson et al. (2015) report capacity estimates for 

both simple and complex polygons using dissimilar test items (approximately 1.5 items) that 

are far lower than estimates reported by Awh et al. (2007) for other stimulus sets with low 

sample–test similarity (3.5 Chinese characters, 3.6 colours, 4.2 shaded cubes). These findings 

in themselves do not completely contradict Alvarez and Cavanagh’s basic claim that VWM 

performance is influenced by stimulus complexity. For example, a more complex object may 

be represented at a lower resolution, with fewer intact features. A degraded representation of 

a complex object, such as a Chinese character, might then be easily distinguishable from a 

coloured square, but not from another character with similar features. Prolonging encoding 

time may allow VWM representations of complex objects to achieve equivalent resolution 

and produce comparable estimates of VWM capacity for simple objects. 
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2.2.3 Familiarity 

Stimulus familiarity is intertwined with stimulus complexity, and has been shown to 

influence consolidation and storage in VWM. Chess experts show improved memory 

performance for chess game positions compared to novices (Chase & Simon, 1973). 

Similarly, higher VWM capacities have been found for famous faces over unfamiliar faces 

(Buttle & Raymond, 2003; Jackson & Raymond, 2008) as well as for Pokémon (characters 

from a popular childhood cartoon) from an original generation over a recent generation 

among those reporting familiarity with the characters (Xie & Zhang, 2017a). Additionally, 

participants familiar with Pokémon showed a higher encoding rate for the characters (Xie & 

Zhang, 2017b, 2018). These studies do not directly control stimulus complexity and it is 

unknown whether these effects of familiarity or expertise are independent of stimulus 

complexity.  

Confounds caused by differences in familiarity between stimuli might be alleviated 

with training. While expertise with stimuli has consistently been shown to produce 

improvements in VWM performance, the results of training have been mixed. Detection of 

changes in spatial locations or shapes showed no improvement following an hour of training 

that included over 20 repeats of the same stimulus arrays, despite recognition of the displays 

in a recognition task following training (Olson & Jiang, 2004). Only when the repeated 

displays were associated with changes at a specific location did change-detection 

performance significantly improve (Olson et al., 2005). This came without improvement in 

overall VWM capacity, as performance was unchanged for novel displays and when change 

occurred at a non-associated location. This suggests following learning of the association 

between a display and a target location, that target location can be prioritized during encoding 

in VWM. It appears that the actual capacity of VWM is very difficult to change, whereas the 

information encoded into VWM is easily modulated through learning (Olson et al., 2005). 

Two noteworthy studies directly training stimulus familiarity were conducted by 

Chen, Eng and Jiang (2006) and Blalock (2015). Chen et al. (2006) trained observers to 

recognise a subset of eight polygons using a change-detection task. On each of 320 trials, 

these observers were briefly presented with a display containing four polygons from the 

training subset. After a short blank delay, a new display containing a polygon at each of two 

previously occupied locations was presented. At one location the polygon remained 

unchanged, while at the other location, the polygon had changed to one of the remaining four 

in the training set. Observers were required to select the location at which they believed the 
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polygon had changed. While they were near perfect at distinguishing a trained polygon from 

a novel polygon, this learned recognition did not improve change-detection with the trained 

polygons compared to novel polygons. Chen et al. suggest that improvements in VWM 

produced by familiarity—such as for faces or Pokémon (Buttle & Raymond, 2003; Jackson 

& Raymond, 2008; Xie & Zhang, 2017a) —require LTM representations that have been built 

over extended periods of experience with stimuli. 

In a similar study, Blalock (2015) found improvements in change detection following 

recognition training. Observers were trained to recognise a subset of twelve polygons in a 

different manner from Chen et al. (2006). On each of 240 trials, observers were shown a 

target polygon before the onset of a backward mask, which interrupted further consolidation. 

In a subsequent display, observers were required to recognise the target amongst three 

distractors. Following recognition training, change-detection performance was significantly 

better for the trained polygons compared to novel polygons. The benefit of the recognition 

training was very small (83% vs 81%), although statistically significant. Change-detection 

performance did not differ across various stimulus onset asynchronies (SOA) for trained 

polygons, but did vary across these intervals for novel polygons. This raises the possibility 

that recognition training protects visual information from impairment by backward masking, 

possibly by producing faster encoding into VWM.   

2.2.4 Encoding rate 

The encoding rate corresponds to the speed at which early VWM processes create 

durable memory representations. However, it is often ignored by researchers, despite the 

possibility that influences on early VWM processing might systematically limit VWM 

capacity estimates. Typically the time between memory and mask is kept constant within an 

experiment but limiting encoding to brief durations may lead to underestimation of VWM 

capacity. Increasing object complexity may slow the rate of encoding into VWM, such that 

complex objects will require more time to saturate VWM capacity. This would confound 

conclusions made from comparisons of VWM capacity for objects of different complexity 

with the same memory array durations, such as those reported by Alvarez and Cavanagh 

(2004). 

The encoding rate was first quantified by Vogel, Woodman and Luck (2006), who 

presented four colours to observers in a change-detection task for a fixed duration (100 ms) 

before interrupting encoding with a backward mask. They varied the stimulus onset 
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asynchrony (SOA), the duration during which stimuli are available to encode their durable 

representations into VWM before the onset of the backward mask. They found change-

detection performance improved with longer encoding durations up to 200 ms, before 

plateauing. From the initial slope of the encoding function, they estimated it took 

approximately 50 ms to encode each colour block, (assuming serial encoding), prior to 

reaching an asymptote of approximately 2.5 objects.  

In a previous study, we examined whether stimulus complexity influences the 

encoding rate. We adapted Vogel, Woodman and Luck’s (2006) paradigm, but employed 

English letters in four different fonts as well as characters from four alphabets that were 

unfamiliar to our participants (Ngiam, Khaw, Holcombe, & Goodbourn, 2018). These stimuli 

varied in perimetric complexity, the square of the combined inside and outside perimeters of a 

letter, divided by its area (Attneave & Arnoult, 1956). Compared to previous measures, there 

are many advantages to using perimetric complexity to define stimulus. Perimetric 

complexity has a nearly perfect negative linear relationship with letter identification 

efficiency, such that as letters increase in perimetric complexity, they are identified 

increasingly inefficiently (Pelli, Burns, Farell, & Moore-Page, 2006). Pelli et al. suggest this 

relationship occurs because complex letters require more features to be bound together, and 

perimetric complexity indexes the number of basic visual features in a letter. Perimetric 

complexity also provides an objective, quantitative measure of complexity derived from the 

stimulus, that corresponds well to subjective figural goodness (Attneave, 1957) and apparent 

information load (Jiang, Shim, & Makovski, 2008; Makovski & Jiang, 2008). An increase in 

perimetric complexity reflects an increase in stimulus complexity without the addition of 

extra feature dimensions, unlike typical manipulations of stimulus complexity. In our study, 

encoding rate and capacity estimates did not vary as a function of perimetric complexity in 

the familiar or unfamiliar alphabets. Model fitting confirmed this, showing performance was 

better explained by an item-based account of VWM like the slots model (Luck & Vogel, 

1997) rather than a feature-based account of VWM like the resources model (Alvarez & 

Cavanagh, 2004). However, across experiments, both encoding rate and capacity differed 

according to the familiarity of the stimulus to the observer (Figure 2-1). A slots model does 

not inherently predict or provide an explanation for the relatively higher capacity for familiar 

stimuli compared to unfamiliar stimuli. A resources model may account for these results by 

positing that familiar stimuli requires less resources for VWM encoding.  
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Figure 2-1. Mean capacity and encoding rate for alphabets used by Ngiam, Khaw, Holcombe 
and Goodbourn (2018). (a) Mean capacity shows two distinct clusters, one for familiar letters 
and the other for unfamiliar letters. (b) Mean encoding rate shows the same two distinct 
clusters. Error bars show ±1 SEM. Horizontal bars represent the range of ±1 SEM for the 
mean across individuals, separately for familiar and unfamiliar stimuli. 
 

Here, we isolate the effect of familiarity on VWM performance. We controlled 

stimulus complexity by comparing the Brussels Artificial Character Set (BACS; Vidal, 

Content, & Chetail, 2017) to an equivalent English font matched in perimetric complexity. 

The BACS is designed to have the same number of junctions, strokes and terminations as 

English letters but was unfamiliar to our observers. BACS characters and English letters are 

also matched with respect to the similarity between characters (Vidal et al., 2017).  

 Experiment 1 

2.3.1 Method 

 Participants 

Ten subjects (six males) recruited from the University of Sydney with normal or 

corrected-to-normal vision completed the experiment. All were native English speakers naïve 

to the aims of the experiment.  
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 Apparatus 

The stimuli were generated using the Psychophysics Toolbox (Brainard, 1997; Pelli, 

1997) in MATLAB (The Mathworks, Natick, MA) and presented on a 40.5 by 30.35 cm 

Trinitron G520 CRT monitor (Sony Corporation, Tokyo, Japan) on a uniform grey 

background. The spatial resolution of the monitor was set to 1024 by 768 pixels, and the 

refresh rate was 100 Hz. Subjects were seated in a dark room, with a chin rest to maintain a 

viewing distance of 57 cm from the monitor. 

 Stimuli 

Each letter was drawn in black within a white circular aperture. The aperture for each 

letter subtended 1.8°, and a letter subtended a maximum of 1.5° on vertical and horizontal 

axes. Each aperture was positioned on the circumference of an imaginary circle, with each 

aperture centred 4.0°from the fixation point. Apertures were equally spaced around the circle, 

with a random rotation applied to the circle of apertures on each trial. 

The English letters were Courier New lowercase, generated using TrueType fonts 

from Apple OSX 10.7.5. The artificial letters were the serif BACS-2 character set. The most 

commonly confused English letters according to our pilot experiments (C, F, I, N, V and W) 

and their BACS equivalents were excluded, leaving 20 matched characters (Figure 2-2). The 

items in each array were selected randomly without replacement from the set of 20 for each 

alphabet.  

 

 

Figure 2-2. Courier New and BACS characters used in Experiment 1. 

 Procedure 

The procedure for each trial is shown in Figure 2-3. A warning tone sounded at the 

beginning of each trial. At the same time, a fixation point appeared with two randomly 

selected digits (1-9) on either side (centred 3.2° to the left and right). Participants were 

instructed to repeat these numbers aloud throughout the trial. This articulatory suppression 

procedure is used to interrupt verbal encoding of the letter stimuli (Besner, Davies, & 

Daniels, 1981), which might otherwise allow participants to rely on systems other than VWM 

to perform the task.  
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Figure 2-3. Stimulus sequence on a single trial. At the beginning of the trial, two digits were 
shown to either side of the fixation point. The memory array, containing different characters 
from the same stimulus set, was presented for 100 ms and followed by a blank screen. The 
dynamic mask contained phase-scrambled transformations of all letters from that stimulus 
set, presented for 200 ms. The SOA for the memory array and mask array was 120, 130, 160, 
200, 270, 390, or 600 ms on each trial. The test array, which was identical to the memory 
array except for a change in letter at one position, was presented 1000 ms after the memory 
array. The test array remained on the screen until the participant made a response. The 
participant responded to each trial by selecting the aperture in which they believed the change 
had occurred. For illustrative purposes, the stimuli shown here have been enlarged. This 
figure depicts an example of a trial with BACS characters, in which the right-most character 
changes on the test array. 
 

The numbers disappeared after 1000 ms, leaving a blank screen with the fixation point 

for 1000 ms, after which the memory array was shown for 100 ms. Finally a dynamic mask 

array was presented for 200 ms. Mask onset occurred 20, 30, 60, 100, 170, 290 or 500 ms 

after offset of the memory array. It contained phase-scrambled transformations of all letters 
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in the set, displayed in each circular aperture. Scrambling the Fourier phase spectrum of an 

image retains the spatial-frequency content while destroying overall form information. On 

each trial, ten different transformations were randomly selected and displayed for 20 ms each. 

The stimulus onset asynchronies (SOAs)—that is, the set of delays between the onset of the 

memory array and the onset of the mask—were therefore 120, 130, 160, 200, 270, 390 or 600 

ms. We expected that concentrating SOAs at the lower end of the range would yield more 

precise measurement of encoding rate by increasing the number of SOAs below ceiling 

capacity.  

The test array was presented 1000 ms after onset of the memory array. In each test 

array, one letter was randomly changed to one of the other letters in the set. Participants were 

required to identify where the change had occurred by using the computer mouse to click on 

the circular aperture of the changed letter. Feedback was provided: A high tone was played 

after a correct response, or a low tone after an incorrect response. The next trial commenced 

1000 ms following feedback.  

Each participant completed eight blocks, four blocks for each of the two alphabets. 

Each block lasted approximately 20 minutes, and contained 210 trials in total (30 trials at 

each of seven SOAs). Within each block, participants were prompted to take a short break 

after completing each set of 70 trials. In total, each participant completed 1680 trials: 120 at 

each of the seven SOAs, for each of the two alphabets. 

 Estimating perimetric complexity 

We used perimetric complexity to quantify stimulus complexity as we had done in our 

previous studies. Perimetric complexity (κ) was defined as the sum of the inside and outside 

perimeter of the stimuli (Ptotal) squared, divided by the area (A) and 4π, 

 𝜅	 = 	 89:9;<
=

>?@
.   (Equation 2-1) 

Because the perimetric complexity of a stimulus depends on the effective resolution 

of the display (Watson, 2011), perimetric complexity estimates will vary with different 

screens. We therefore calculated values for this experiment using a MATLAB program based 

on the algorithm specified by Pelli et al. (2006). These estimates of perimetric complexity 

allowed us to assess the number of features stored in VWM. Using κ as a proxy for the 

average number of features (up to a proportionality constant) contained within letters of an 

alphabet (Pelli et al., 2006), the number of stored features is the product of the number of 

stored items and complexity, 
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 Number of features	 = 	𝐾 × 𝜅 (Equation 2-2) 

 Estimating items stored in VWM 

Pashler’s (1988) formula for estimating the number of stimuli in VWM was adapted 

for our forced-choice change-detection task, as we asked participants to identify the location 

of the change rather than whether or not a change occurred. If the participant encodes, on 

average, a given number of objects in VWM (K) out of the total number of objects in the 

array (N), we make the straightforward assumption that they will detect the location on K out 

of N trials. On the remaining (K-N) trials, when they do not detect the location of change, the 

participants will have to guess from the array. When guessing, participants may randomly 

select one target from the array, such that they will have a 1 out of N probability of selecting 

the correct letter. Thus, the proportion of correct responses (P) will be 

 𝑃 =	#
$
+	 .

$
C1 − #

$
D (Equation 2-3) 

Rearranged to estimate K, 

 𝐾 =	 8$&.
C.&E

FD
 (Equation 2-4)  

We refer to Equation 4 as the random-guessing formulation. This assumes that when 

a participant, cannot identify the location of the change, they select randomly from the array. 

If a participant is able to inform their guess by inferring that it did not occur at any of the 

successfully encoded locations, they will have a 1 out of (N-K) probability of selecting the 

correct letter, such that  

 𝑃 =	#
$
+ C .

$&#
D C1 − #

$
D (Equation 2-5) 

When rearranged to estimate K, 

 𝐾 = 𝑃𝑁 − 1 (Equation 2-6) 

We refer to this equation as the informed-guessing formulation. For simplicity, the 

analyses presented here have been conducted with the random guessing formulation. The two 

formulations produce very similar estimates of K and the conclusions do not change when the 

informed guessing formulation is used.  

 Estimating encoding rate and capacity limits 

For each alphabet, we measured K as a function of SOA. The slope of the initial part 

of this function was taken to be the encoding rate (Vogel et al., 2006). The function was 
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expected to reach a ceiling at longer SOAs; this ceiling is interpreted as the capacity of 

VWM. We estimated encoding rate and capacity by fitting a combination of two lines using 

least-squares (Figure 2-4). The intercept of the first line was set to zero so it passed through 

the origin, with only its gradient (encoding rate) as a free parameter. The second line was the 

ceiling (capacity), a horizontal line whose y-value was its free parameter. The domain of the 

first line was restricted to x-values below where the two lines interested; the domain of the 

second was restricted to x-values above that point. 

 

Figure 2-4. The two-line function fit to the data of each individual for each alphabet to 
estimate encoding rate and capacity. The slope of the first line, representing the encoding 
rate, was allowed to vary as a free parameter. The second line, representing the capacity, was 
a horizontal line with its y-value as a free parameter. 
 

2.3.2 Results 

 Perimetric complexity 

The perimetric complexity of the set of Courier New letters (M = 11.6, SD = 1.7) was 

very similar to the perimetric complexity of the BACS letters (M = 10.8, SD = 2.4), t(38) = 

1.22, p = 0.23. 

 Change-detection performance 

Figure 2-5a shows mean accuracy (percentage correct) as a function of the SOA for 

each alphabet. Figure 2-5b shows K as a function of SOA for each alphabet and Figure 2-5c 

shows the estimate number of features (Kκ) as a function of SOA for each alphabet. A 

combination of two lines was fitted to estimate the encoding rate and capacity for each 

alphabet, separately for each participant. Mean encoding rate (in items per second) was 

significantly faster for Courier New letters (M = 22.8, SD = 6.1) than for BACS letters (M = 

15.7, SD = 6.5). t(9) = 3.76, p < .01. Additionally, capacity was significantly higher for 

Courier New letters (M = 2.5, SD = 0.5) than for BACS letters (M = 1.9, SD = 0.3), t(9) = 

5.17, p < .01. 

K

SOA
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Figure 2-5. Results from Experiment 1. (a) Mean percentage correct on the change-detection 
task as a function of stimulus onset asynchrony (SOA) and alphabet. (b) Number of items 
encoded (K) as a function of SOA and alphabet. (c) Number of features encoded (Kκ) as a 
function of SOA and alphabet. Error bars show ±1 SEM across observers. 
 

2.3.3 Discussion 

In Experiment 1, we examined the influence of familiarity on the encoding rate and 

capacity of VWM for alphabetic stimuli, while controlling for visual complexity and 

similarity by comparing performance for English letters and the Brussels Artificial Character 

Set (Vidal et al., 2017). We matched the perimetric complexity of the letters—an objective, 

intrinsic measure of stimulus complexity that estimates the number of basic visual features it 

contains (as validated by recognition efficiency). The two sets of letters were also equivalent 

in between-letter similarity, and matched on the number of strokes, junctions and 

terminations. We found the familiar English font to have a significantly faster encoding rate 

and higher VWM capacity than the unfamiliar BACS font. 

 Experiment 2 

It has been shown previously that training subjects to recognise polygons increases 

VWM capacity for those polygons (Blalock, 2015). In Experiment 2, we examined whether 

training subjects to recognise the BACS letters with the same training procedure would 

increase VWM capacity.  

2.4.1 Method 

 Participants 

Twenty-seven first–year psychology students at the University of Sydney (23 female) 

completed this experiment in exchange for course credit. Three participants were excluded 
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from analyses due to chance–level performance. All participants reported normal or 

corrected–to–normal vision.  

 Stimuli 

The stimuli were as in Experiment 1. 

 Procedure 

The experiment procedure involved three phases: a training phase, an immediate 

recognition test, and a change-detection task. It took approximately an hour to complete all 

phases. 

 Recognition training 

Each participant was trained to recognise ten randomly selected BACS letters using a 

an adaptation of Blalock’s (2015) procedure, which produced recognition for polygons that 

resulting in improved VWM capacity. The procedure for a trial of recognition training is 

shown in Figure 2-6. One target character was presented in the centre of the screen for 200 

ms at the beginning of each trial. A dynamic mask was shown for 200 ms to interrupt any 

further encoding. The mask contained ten randomly selected and phase scrambled characters, 

each shown for 20 ms. Participants were then shown a test array containing three distractor 

characters and the target character. They were instructed to select the target character. The 

three distractor letters were randomly selected from the subset of ten letters on which subjects 

were being trained. Audio feedback was provided after every trial, where a high-pitched tone 

indicated a correct response and a low-pitched tone indicated an incorrect response. Each 

participant completed 210 training trials.  
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Figure 2-6. (a) Procedure on one trial of recognition training. After a 500 ms fixation, a target 
BACS character was shown for 200 ms before a dynamic backward mask followed for 200 
ms. After a blank screen was presented for 600 ms, a test array was shown with four BACS 
characters including the target. The participant was required to click on the target. (b) An 
example of a display from the recognition test. Of the four BACS characters shown, only one 
was from the set that had been used during training. 
 

 Recognition test 

A surprise recognition test was administered immediately following training. On each 

test trial, one of the BACS characters on which subjects had been trained and three of the 

untrained BACS characters were shown. Participants were asked to click on the letter that 

they had seen in the previous session. Each participant completed 40 trials (four trials for 

each BACS letter on which they had been trained). An example of a test display is shown in 

Figure 2-6b.  

 Change detection 

Following the recognition test, subjects completed a change-detection task similar to 

that in Experiment 1. The SOAs used were set at 200, 270, 390 and 600 ms to achieve stable 

estimates of VWM capacity. There were three sets of stimuli: trained BACS characters, novel 

BACS characters and English letters. Subjects completed four blocks of 40 trials with each 

stimulus set.  

2.4.2 Results 

 Recognition 

Accuracy in the training task was near ceiling (M = .98, SD = .02) and accuracy in the 

surprise recognition test following was also near perfect (M = .98, SD = .03). This suggests 

that subjects had been trained to recognise and distinguish a subset of BACS characters from 

novel BACS characters.  
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 Change-detection performance 

Figure 2-7 shows VWM capacity estimates (K) derived from change-detection 

accuracy as a function of SOA, for each of the three character sets: English letters, trained 

BACS characters and novel BACS characters. A repeated-measures ANOVA revealed a 

significant main effect of stimulus set, F(2, 46) = 89.72, p < .001, but no significant main 

effect of SOA, F(3, 69) = 1.22, p = .31. There was no significant interaction between 

stimulus set and SOA, F(6, 138) = 1.14, p = .35. Planned contrasts revealed the capacity for 

English letters (K = 3.0) was significantly higher than the capacity for BACS letters (K = 

1.7), F(1, 23) = 138.09, p < .001. There was no significant difference in capacity between the 

trained and novel BACS characters (both K = 1.7), F(1, 23) = .08, p = . 78.  

 

Figure 2-7. VWM capacity estimates at each SOA for each of the three character sets in 
Experiment 2: English letters are shown in red, novel BACS characters in blue and trained 
BACS characters in green. Error bars show ±1 SEM across subjects. 
2.4.3 Discussion 

Following training to recognise random polygons, participants showed improved 

change-detection performance with those trained stimuli (Blalock, 2015). Our participants 

completed the same training procedure with a subset of BACS characters. Despite 

successfully learning to recognise and distinguish the trained BACS characters from novel 

BACS characters, change-detection performance was not statistically different between 

trained and untrained stimulus sets. Change-detection performance for BACS characters was 

significantly worse than change-detection with English letters. Because we found no effect of 

SOA, it appears that the SOAs used were sufficiently long enough to capture change-

detection performance with saturated VWM capacity. While recognition training did not 

increase VWM capacity limits for the trained stimuli, there was still an overall effect of 
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familiarity as indicated by the higher capacity estimates for English letters over BACS 

characters. 

 Experiment 3 

While Experiment 2 showed learned recognition of the BACS characters did not 

increase VWM capacity, recognition training may still influence encoding into VWM. 

Familiarity with Pokémon characters accelerated consolidation into VWM (Xie & Zhang, 

2017b, 2018), and we found encoding rate was faster for English letters than for BACS 

characters in Experiment 1. In Experiment 3, we examined whether training recognition 

influences the rate of encoding into VWM. 

2.5.1 Method 

 Participants 

Twenty-five first-year psychology students at the University of Sydney completed the 

experiment in exchange for course credit. No participants took part in the previous 

experiments reported here. All participants reported normal or corrected-to-normal visual 

acuity. 

 Stimuli 

The stimuli were identical to those used in Experiment 2. 

 Procedure 

The experiment procedure was identical to that of Experiment 2 with one exception. 

SOAs for the change-detection task were lowered to 120, 130, 160 and 200 ms to better 

capture encoding into VWM. We estimated encoding rate by calculating the slope of the line 

of best fit through VWM capacity estimates across every SOA, separately for each 

participants and stimulus set. The line was not required to pass through the origin. 

2.5.2 Results 

 Training 

No participants were excluded from analyses. Accuracy was near perfect on the 

training task (M = .99, SD = .01) and in the following surprise recognition (M = .98, SD = 

.04). This suggests participants learned to recognise the subset of BACS characters following 

the training. 
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 Change Detection 

 Figure 2-8 shows estimated VWM capacity for each of the stimulus sets (English 

letters, trained BACS characters and novel BACS characters) as a function of SOA. A 

repeated-measures ANOVA revealed VWM capacity estimates were significantly different 

across the stimulus sets, F(2, 48) = 63.26, p < .001 and varied across SOA, F(3, 72) = 28.99, 

p < .001. However, there was no interaction between SOA and stimulus set, F(6, 144) = .52, 

p = .80. Planned contrasts were conducted to further investigate the differences between 

stimulus sets. VWM capacity across all SOAs, were 2.8 for English letters, 1.8 for trained 

BACS characters and 1.6 for novel BACS characters. VWM capacity was significantly 

higher for English letters than the average of the BACS characters, F(1, 24) = 134.34, p < 

.001. However, capacity estimates were not significantly different between the trained and 

novel BACS characters, F(1, 24) = 1.07, p = .31. Capacity estimates across all stimuli, were 

1.9, 1.9, 2.0 and 2.4 at 120 ms, 130 ms, 160 ms and 200 ms respectively. Follow-up contrasts 

were conducted to investigate the differences between capacity estimates for the various 

SOAs. Estimates were significant lower at the two shortest SOAs (120 ms and 130 ms) than 

at the two longest SOAs (160 and 200 ms), F(1, 24) = 30.50, p < .001. The capacity estimates 

were not significantly different between the two shortest SOAs (120 ms and 130 ms), F(1, 

24) = .004, p = .95, but were significantly higher at 200 ms than at 160 ms, F(1, 24) = 51.18, 

p < .001. 

 

Figure 2-8. VWM capacity estimates at each SOA for each of the three character sets in 
Experiment 3: English letters are shown in red, novel BACS characters in blue and trained 
BACS characters in green. Error bars show ±1 SEM across subjects. 
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 Encoding rate 

To estimate each participant’s encoding rate for each stimulus set, we found the best-

fitting line through the VWM capacity estimates (K) as a function of SOA. The mean 

encoding rate was 6.7 items per second for English letters, 6.2 items per second for trained 

BACS letters and 5.8 items per second for novel BACS letters (Figure 2-9). Encoding rate 

did not vary significantly across the three stimulus sets, F(2, 48) = .19, p = .83. This is 

consistent with the non-significant interaction of stimulus set and SOA in change-detection 

performance. 

 

Figure 2-9. Mean encoding rate for trained BACS characters, novel BACS characters and 
English letters. The encoding rates were estimated by taking the slope of the line of best fit 
through each individual’s K estimates as a function of SOA. Error bars show ±1 SEM. 

 

 This result is at odds with the findings of Experiment 1, in which we found a faster 

encoding rate of English letters compared to BACS characters. However, this may be due to 

differences in modelling methods: In Experiment 1, we fixed the intercept of the initial 

‘encoding’ line to the origin, whereas we applied no such restriction for the intercept to the 

line of best fit in Experiment 3. We re-modelled the current data, requiring the line of best fit 

to pass through the origin. Mean encoding rate for English (M = 7.3, SD = 2.0) was 

significantly faster than BACS characters (M = 4.8, SD = 1.6), t(24) = 6.50, p < .001. The 

encoding rate did not differ significantly between trained BACS characters (M = 4.9, SD = 

2.1) and novel BACS characters (M = 4.6, SD = 1.6), t(24) = .87, p = .39. Figure 2-10 shows 

the mean encoding rates for the three stimulus sets. This alternative analysis replicates the 

finding of Experiment 1 that encoding rate was significantly faster for familiar English 

characters than for BACS characters. 
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Figure 2-10. Mean encoding rate for trained BACS characters, novel BACS characters and 
English letters using an alternative modelling procedure. Encoding rate for each stimulus set 
and participant was estimated by taking the slope of the line of best fit through K as a 
function of SOA, with the line constrained to pass through the origin. Error bars show ±1 
SEM. 
 

2.5.3 Discussion 

In Experiment 3, we examined whether recognition training would influence VWM 

encoding rate by examining change-detection performance at very short stimulus durations. 

We found that change-detection performance, across all SOAs, was significantly higher for 

English letters compared to BACS characters. There was no statistically discernible 

difference between the novel and trained BACS characters, suggesting there was no influence 

(or a negligible influence) of training. There was a significant effect of SOA on change-

detection performance, suggesting improvement with increased time allowed for encoding. 

We computed the line of best fit to the change in K across these short SOAs, using its slope 

to estimate the encoding rate. There were no significant differences in encoding rate between 

all three stimulus sets, suggesting English letters produced an overall advantage independent 

of stimulus presentation times. However, this was inconsistent with our findings from 

Experiment 1. After fixing the line of best fit to the origin (i.e., assuming that encoding 

begins at stimulus onset), we replicated the finding of Experiment 1 that encoding rates were 

significantly higher for English characters than for BACS characters. 

 General Discussion 

VWM is limited to storing approximately three to four items at a time. Researchers 

have scrutinised factors influencing this capacity limit—particularly stimulus complexity and 
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item similarity. A less-researched factor is stimulus familiarity, despite its potential influence 

on the perceived complexity and similarity of the stimuli. Stimulus familiarity also appears to 

improve VWM performance, although there have been mixed findings with respect to the 

effects of training. The goal of the present study was to isolate the influence of familiarity on 

two aspects of VWM, the encoding rate and capacity limit. 

2.6.1 Familiarity 

In the present study, we compared change-detection performance for familiar English 

letters to the unfamiliar Brussels Artificial Character Set (BACS). BACS characters match 

the number of strokes, junctions and terminations of each English letter, and similarity ratings 

between these characters is equivalent to ratings between English letters (Vidal et al., 2017). 

Additionally, we controlled stimulus complexity by selecting a font for English letters that 

matched the perimetric complexity of the BACS characters. Change-detection performance 

for English letters was significantly better than for BACS characters across multiple 

experiments. At longer SOAs, allowing sufficient encoding time to saturate VWM, we 

observed significantly higher estimates for the English letters over BACS characters, 

suggesting familiarity produces robust increases to VWM storage capacity. 

The effect of familiarity at shorter SOAs is less clear. In Experiment 3, although we 

observed an overall advantage for English letters compared to BACS characters, we did not 

observe a difference in encoding rate; this was inconsistent with the faster encoding rate for 

English letters we observed using the same SOAs in Experiment 1. However, in Experiment 

1, we estimated encoding rates from the line of best fit passing through the origin, whereas 

we allowed the intercept to vary freely in Experiment 3. By fixing the intercept of the fit line 

to the origin as in Experiment 1, we replicated the original finding. Modelling with a fixed 

intercept at the origin produces more reliable estimates for at least two reasons. First, 

allowing a freely varying intercept produces unreliable encoding rate estimates for some 

participants in Experiment 1, because they relied on only one or two data points at the 

shortest SOAs. Second, because only short SOAs were used in Experiment 3, we were unable 

to determine if capacity had or had not been saturated. For observers who reached their 

capacity limit prior to our longest SOA (200 ms), the resulting horizontal section of the 

function would have a greater influence on an unconstrained line of best fit and lead to 

underestimated encoding rates. In any case, it is clear there is an advantage in change-

detection performance for English letters compared to BACS characters.  
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2.6.2 Training 

Having identified benefits of familiarity for English letters compared to BACS 

characters, we examined whether training observers to become familiar with BACS 

characters would generate similar improvements to VWM performance. Previous research 

regarding newly acquired familiarity with stimuli has produced mixed results, with some 

finding subsequent improvements in change-detection (Blalock, 2015), while others have not 

(Chen et al., 2006). We replicated a training procedure that had produced increased capacity 

for trained random polygons (Blalock, 2015) and examined subsequent change-detection 

performance at both short SOAs (targeting consolidation into VWM) and long SOAs 

(targeting VWM capacity). Observers successfully learned to recognise the BACS characters, 

but there was no difference in subsequent change-detection performance compared to novel 

BACS characters at either short or long SOAs. As such, encoding rates and capacity were not 

increased for trained versus novel BACS characters. These results suggest recognition 

familiarity was insufficient to produce improvements to VWM processes. Our results mirror 

those reported by Chen et al. who found no improvement in change-detection performance 

for random polygons trained to perfect recognition. This also converges with the finding that 

observers who are trained to identify English letters with the same efficiency as native 

readers do not obtain the same memory span for those letters. Native readers have a memory 

span of approximately four to five letters, whereas trained observers have a memory span 

closer to two letters (Pelli et al., 2006).  

The mechanism driving the influence of familiarity on VWM processing appears to be 

more complex than simply invoking LTM representations. While we found significantly 

better change-detection performance for familiar English letters compared to BACS 

characters, we found no effect of recognition training on change-detection performance. This 

is despite—in the case of recognition training in the present study— the fact that some form 

of LTM representation has been built that allowed observers to distinguish between trained 

and untrained stimuli. These results suggest improvement in VWM performance with 

familiarity requires extended experience with the stimuli, such as previously shown with 

Pokémon (Xie & Zhang, 2017a, 2017b), famous faces (Buttle & Raymond, 2003; Jackson & 

Raymond, 2008), and in the present study with English letters. On the other hand, newly-

acquired familiarity, such as from recognition training (as in the current study) or procedural 

training (Olson & Jiang, 2004), does not seem to produce robust improvements in change-

detection performance. This discrepancy calls for a revision of ideas about the mechanism by 
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which LTM representations produce improvements in VWM. One possibility is that 

familiarity allows participants to selectively attend to the distinguishing features of stimuli, 

effectively reducing subjective stimulus complexity, for encoding and storage, or reducing 

stimulus similarity at the comparison stage. That is, observers are better equipped at 

distinguishing stimuli between memory and test using an accessible LTM representation for 

familiar stimuli. Observers may also be faster to encode familiar stimuli into VWM by 

prioritizing the distinguishing features (Xie & Zhang, 2017b, 2018), such that VWM 

representations durable to interruption from backward masking are created earlier. For 

example, consider the familiar English letters used in the present study. Dehaene, Cohen, 

Sigman and Vinckier propose (2005) extensive experience with English letters produces 

dedicated shape detectors specific in the visual system. These letter detectors then provide an 

efficient neural pathway for encoding English letters. Neuroimaging studies have identified 

the visual word form area, a region in the left inferior occipitotemporal cortex, which shows 

specific activation in response to words and consonant strings but not line drawings or digit 

strings (Dehaene, Le Clec’H, Poline, Le Bihan, & Cohen, 2002). Moore, Cohen and 

Ranganath (2006) trained observers to become experts in a set of random polygons during 

several training sessions totalling over 10 hours. This extensive training was associated with 

increased activity in the aforementioned occipitotemporal cortex, as well as in the 

dorsolateral prefrontal cortex and intraparietal sulcus, during encoding and maintenance on a 

VWM task. These areas were not recruited for the same task with novel polygons, nor for 

polygons that had been trained to familiarity using a match-to-sample task (similar to our 

recognition training), just prior to the neuroimaging session. This parallels our findings with 

the familiar English letters, trained and novel BACS characters. Our recognition training may 

thus have been insufficient to develop the efficient neural pathways required for improved 

VWM processing, that exist already for the familiar English letters. 

2.6.3 Conclusion 

We found an influence of familiarity on VWM processes, demonstrating 

improvements in change-detection performance for English letters compared to BACS 

characters. Although observers learned to recognise and distinguish trained BACS characters 

from novel BACS characters, change-detection performance for trained BACS characters 

was no better than for novel ones. We conclude that recognition training is insufficient to 

produce the improvements in VWM performance observed for expertly familiar stimuli such 

as English letters. We suggest that efficient neural pathways may be recruited to improve 
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VWM performance for familiar letters. Although recognition training did produce some form 

of LTM for novel stimuli, this in itself was insufficient to generate such efficient neural 

pathways. The role of LTM representations should be clearly formalised to elucidate how 

familiarity improves VWM performance.
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Chapter 3: “Memory Compression” Effects are Contingent on 

Explicit Awareness Of Statistical Regularities 

This is an edited version of a manuscript currently under review at the Journal of 

Experimental Psychology: General. 

 Abstract 

In Chapter 2, we examined the influence of familiarity on two measures of visual 

working memory (VWM) and found significantly higher encoding rate and capacity for 

familiar English letters than for unfamiliar BACS characters. Training observers to recognise 

the unfamiliar characters, which match English letters in similarity and complexity, did not 

produce improvements. Here, we investigated another example of apparently increased 

VWM capacity reported by Brady, Konkle and Alvarez (2009). They argued observers were 

able to expand their VWM capacity via visual statistical learning. In a task requiring WM 

recall, they found robust performance enhancements when specific colours were more likely 

to appear together. However, this is inconsistent with previous findings showing no 

improvement in VWM performance following repetitions of specific displays. Here. we 

replicated this effect in two experiments, but only observed the effect in subjects that could 

perfectly and explicitly recall the repeated colour pairs at the end of the study. These findings 

argue against the hypothesis that statistical regularities elicit automatic compression of 

information in visual working memory. Instead, improved recall may rely on paired associate 

learning at retrieval. 

 Introduction 

The visual working memory (VWM) system is responsible for the maintenance and 

manipulation of online information that is required for perception and cognition. Despite its 

importance, the system has a surprisingly severe capacity limit of approximately 3-4 items 

(Luck & Vogel, 1997). Given that measures of an individual’s VWM capacity strongly 

correlate with measures of cognitive ability such as fluid intelligence and scholastic 

achievement (Conway, Cowan, Bunting, Therriault, & Minkoff, 2002; Cowan, Chen, & 

Rouder, 2004; Fukuda et al., 2010; Unsworth et al., 2014a; Xu, Adam, Fang, & Vogel, 2017), 

there is sustained interest in how VWM capacity might be enhanced to overcome this 

capacity limit. An influential paper by Brady, Konkle and Alvarez (2009) reported apparent 

increases in VWM capacity with statistical learning. They demonstrated that when specific 
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pairs of colours were more likely to appear in the memory display, observers were able to use 

this to their advantage and improve recall accuracy. Brady et al. (2009) argued that this 

improvement comes from an increase in the amount of information that can be held 

concurrently in VWM via the compression of information. However, this contradicts 

previous research suggesting that the VWM system is inelastic. For example, VWM 

performance is unchanged by repetitions of the same display (Olson & Jiang, 2004). This 

current pair of experiments investigated the mechanism of learning that produces enhanced 

memory performance, and how any changes would be reflected in the architecture of VWM. 

3.2.1 Chunking 

Working memory limits have classically been explained using chunking. Miller 

(1956) proposed learning allowed greater amounts of information to be stored more 

efficiently as chunks, with the absolute number of chunks stored into memory remaining 

constant. For example, experts recall chess positions from real matches significantly more 

accurately than novices (Chase & Simon, 1973). It is believed chess experts do not have a 

larger overall VWM capacity than novices but instead use their expertise to efficiently chunk 

game positions, which novices cannot do.  

3.2.2 Embedded process models 

Embedded process models of WM provide a more nuanced framework to evaluate 

how the VWM system changes to yield improvements in memory recall performance. These 

models hypothesise WM is a collection of memory processes engaging both offline and 

online representations (e.g. Cowan, 1999; Ericsson & Delaney, 1999; Jonides et al., 2008; 

Oberauer, 2002). For example, Cowan’s (1999) embedded process model proposes a base 

layer containing the entire long-term memory (LTM) content. Within this layer, a specific 

subdivision of LTM maintains content that is still offline but readily accessible due to 

priming or recent activation of the content. The highest layer includes only the 

representations that can be maintained online or in the “focus of attention”. It is this highest 

layer that is typically addressed when researchers examine the highly limited capacity of 

VWM. Various conceptions of embedded process models may differ in the number of layers 

and the capacity limit within each layer, but all acknowledge that complex tasks engage 

interactions between LTM and WM. 
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3.2.3 Effects of training and learning on visual working memory 

Findings regarding whether training can improve VWM have been mixed. Olson and 

Jiang (2004) examined whether VWM could improve in the absence of chunking cues. 

Participants were required to memorise the locations of either six, nine or twelve squares 

before being shown a probe. On half of the trials the probed location was not in the previous 

display (a change trial), and on the other half the probed location had been shown in the 

previous display (a no-change trial). Across 24 blocks of 12 trials each, a subset of six 

displays was kept identical and presented once in every block, intermixed with six displays 

newly generated for each block. Participants showed above-chance recognition of the 

repeated displays but were surprisingly no better at change-detection for those displays. 

Having above-chance recognition suggests participants had encoded the repeated displays 

into LTM, but could not use these LTM traces to assist VWM performance. Olson, Jiang and 

Moore (2005) were only able to produce improvement in change-detection accuracy once the 

changed location was consistently associated with the repeated display. This improvement 

disappeared when the association between change location and display was removed, 

suggesting that participants were prioritising the associated location for encoding into VWM, 

rather than any overall increase in VWM capacity. 

A recent demonstration that explicit associate learning can boost performance in a 

WM task comes from Chen and Cowan (2009). Participants were trained on word lists of 

various lengths such that they would perfectly recognise whether a cued word was a 

singleton, or explicitly recall the associated word partner if the word belonged to a word-pair. 

Assuming learned word pairs effectively became two-word chunks, Chen and Cowan (2009) 

showed WM capacity was constant at approximately 3 chunks, suggesting that training 

enabled subjects to retrieve the learned word partner from LTM and doubling the number of 

individual words recalled. Critically, this account does not require any change to capacity of 

VWM, as the associated knowledge can be retrieved at the time of test. Further evidence for 

this explanation of memory compression effects come from a study that measured the time to 

access colours stored in VWM with and without the benefits of statistical regularities (Huang 

& Awh, 2018). Huang and Awh replicated the benefits of statistical regularities observed by 

Brady et al. (2009), but showed these manifest only when subjects have a relatively long 

period of time (~1 sec) to respond following the test probe. Thus, contrary to what might be 

expected if the additional information was held online in WM, access to the associated 

information was quite sluggish. A natural explanation for this finding is that subjects 
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exploited statistical regularities by encoding the colour pairs in LTM, and then retrieved the 

needed information when the test probes were presented. Here again, this explanation does 

not require any change in the number of representations that can be maintained in the focus 

of attention. 

3.2.4 Visual statistical learning 

In contrast to the interpretation offered by Huang and Awh (2018), Brady et al. (2009) 

argued statistical learning enabled the compression of information held in WM. In this way, a 

larger number of colours was concurrently maintained online during the WM task. This 

interpretation was motivated by past studies of visual statistical learning (Fiser & Aslin, 

2001, 2002; Turk-Browne et al., 2005, 2008) suggesting that observers can learn subtle 

statistical relationships automatically and without awareness of those regularities (Chun & 

Jiang, 1999; Turk-Browne et al., 2005, 2008). For example, observers gained knowledge of 

the structure of the base shapes that made up a complex visual scene even though this was 

irrelevant to the task (Fiser & Aslin, 2001). Visual statistical learning is often thought to 

involve unconscious statistical computations, forming the required associations between 

elements for the efficient chunking of information (Perruchet & Pacton, 2006). In fact, 

statistical learning bears so much similarity to implicit learning that some believe they are 

produced by the same general mechanisms (Perruchet & Pacton, 2006; Turk-Browne et al., 

2008). The fact that statistical learning can occur in the absence of awareness also implies 

that such learning may help to optimise processing in familiar contexts while minimizing the 

load on limited-capacity systems for perception and selection. In line with this interpretation, 

Brady et al. (2009) reported that subjects who reported noticing the regularities did not show 

a larger memory compression effect than the subjects who did not report explicit awareness 

of the colour pairs. That said, there were very few subjects who did not report awareness of 

the regularities in Brady et al.’s study. Thus, a more sensitive test of this key question is 

required. 

 Experiment 1 

We replicated Brady et al.’s (2009) study but included a task explicitly testing 

subjects’ awareness for the colour pairs. Brady et al. also queried subjects about whether they 

had noticed the pairings, and found that the benefit was not reliably different between 

subjects who reported noticing the pairs and those who did not. An important caveat for this 

conclusion, however, is that there were only ten subjects in the relevant condition of the 
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studies reported by Brady et al. Thus, the null result in question—equivalent compression 

effects in subjects who did and did not notice—included only three (Experiment 1) and two 

(Experiment 2) subjects who did not notice the regularities. Here, we collected data from a 

total of 64 subjects (32 in each of Experiments 1 and 2), each of whom participated in both 

patterned (i.e., with statistical regularity) and the uniform  (i.e., without statistical regularity) 

conditions. This within-subjects design, combined with an objective test of subjects’ 

knowledge of the colour pairings, provided a more sensitive test of whether memory 

compression effects were linked to explicit knowledge of the colour pairs.  

3.3.1 Method 

 Participants 

Thirty-two subjects (19 females) were recruited from the local University of Chicago 

community and received monetary compensation (US$10 per hour) for their participation. 

All subjects provided informed consent to procedures approved by the University of Chicago 

Institutional Review Board. All reported normal or corrected-to-normal vision and no 

impairment to colour vision.  

 Apparatus 

Stimuli were generated using the Psychophysics Toolbox (Brainard, 1997; Pelli, 

1997) in MATLAB and presented on a 24-inch BenQ XL2430T LCD monitor with spatial 

resolution set to 1920 × 1080 and a 120 Hz refresh rate. Observers viewed stimuli in a dark 

room from a distance of approximately 70cm. 

 Stimuli 

Stimulus displays contained eight colours (red, green, blue, magenta, cyan, yellow, 

black and white) arranged in four pairs around a fixation point (Figure 3-1b). All colours 

were presented as squares with side length of 1.8° of visual angle or as circles with diameter 

1.8°of visual angle (see Manipulation). The four pairs were presented in fixed, equidistant 

locations 1.7° of visual angle from the central fixation point. Items within a pair were 

separated by a centre-to-centre distance of 2.0°. 

 Manipulation 

Observers completed a set of blocks for each condition, a patterned set and a uniform 

set. A different shape was used in each set of blocks in an attempt to reduce carryover effects 

from completing the first set. That is, if observers completed the first set of blocks with 
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colour squares, the second set was completed with colour circles (or vice versa). Both starting 

shape and condition were counter-balanced across observers. 

In the uniform condition, colours were chosen randomly such that it was equally 

likely for a colour to be paired with any other colour. In the patterned condition, colours were 

not chosen randomly. A joint probability matrix was constructed containing the probabilities 

of each possible colour pair being selected. The diagonal of this matrix was set to zero to 

prevent pairs of the same colour. Each observer was assigned four high-probability pairs 

(probability = 80/372) randomly with the constraint that a colour could only be assigned once 

to a high-probability pair. The fifty-two remaining possible colour pair combinations were 

given an equal probability (probability = 1/372). On each trial, four pairs were randomly 

drawn from this probability matrix without replacement, with the restriction that a colour 

could not be drawn more than once.  

In the final block of the patterned condition, the regularities in colour pairings were 

removed, such that it was identical to a block in the uniform condition. This allowed us to 

quantify the amount of learning that had occurred, by taking the difference in performance 

between the average of the first nine blocks and the final block. This also allowed us to 

compare performance in the final block of both conditions, to check any improvements in 

recall performance were a function of the statistical regularity and not generalised 

improvements in recall. 

 Procedure 

Observers completed a total of 20 blocks (10 from each of the two conditions) of 60 

trials each. Observers completed all blocks within a condition prior to starting the other 

condition. 

The general procedure for each trial is shown in Figure 3-1a. At the beginning of each 

trial, a fixation point was displayed for 750 ms. Four colour pairs were presented surrounding 

the fixation for 1000 ms. Observers were instructed to remember the colour of each item. 

After a delay period for 1000 ms, observers were probed to recall a colour from a randomly 

selected location, outlined with a thicker black line (Figure 3-1b). Below the probe display, 

an array of all colours was presented. The observer was instructed to click on the colour 

below the display they thought was presented previously at the probed location. 

After completing both sets of blocks, observers were tested on their ability to recall 

the colour pairs. Observers were presented a colour in the middle of the screen and asked to 
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click on the colour they thought was most likely to appear with the presented colour (Figure 

3-2). 

 

Figure 3-1. Procedure and stimuli for the experiments in the present chapter. (a) Example of 
the procedure for a single trial of the experiment. A fixation dot was presented for 750 ms 
before eight colours appeared arranged in four pairs around the fixation point for 1000 ms. 
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After a 1000 ms delay, observers were instructed to click on the colour of the item probed 
with the thicker border. A 750 ms inter-trial interval with a blank screen followed the 
response. (b) Examples of the stimuli (top) display and probe (bottom) displays. Distance are 
shown in degrees of visual angle.  

 

 

Figure 3-2. Test for awareness of statistical regularities. Observers were shown each colour 
in the middle of the screen and asked to click on the colour that was most likely to appear 
with the colour shown. 
 

3.3.2 Results 

We measured VWM performance using the proportion of correct responses (PC) for 

each block. These were used to estimate the number of colours observers could recall (K) 

using the following formula from Brady et al. (2009) (see Appendix for derivation): 

 

  (Equation 3-1) 

 Performance across conditions 

We replicated the advantage Brady et al. (2009) reported in the patterned condition 

(Figure 3-3). We observed a statistically significant effect of condition (patterned vs. 

uniform), F(1,31) = 41.30, p < .001 and a statistically significant effect of block, F(8, 248) = 

8.96, p < .001. There was a significant interaction between condition and block, F(8,248) = 

8.66, p < .001. Capacity for colours increased significantly across blocks in the patterned 

condition, F(8,248) = 13.33, p < .001, whereas performance did not change across blocks in 
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the uniform condition, F(8,248) = 1.04, p = .40. There was no significant difference in 

performance in the first block across conditions, t(31) = 1.04, p = .31, but performance in 

following blocks was significantly higher in the patterned condition, all t(31) > 2.39, all p < 

.02. In the last block, in which regularities were removed in the patterned condition, 

performance was not significantly different from performance in the uniform condition, t(31) 

= 1.79, p = .08.  

 

 

Figure 3-3. Mean number of items remembered (K) in each block for both patterned (dark 
squares) and uniform (light circles) conditions. The shaded bar marks the last block in which 
statistical regularities were removed from the patterned condition. Error bars indicate ±1 
S.E.M. 
 

Observers remembered 2.8 colours on average in the uniform condition. This is 

consistent with Brady et al.’s (2009) study, in which average K was 2.7 and 3.4 in 

Experiment 1 and 2 respectively. Observers remembered 4.8 colours on average after 

viewing the regularities in the stimulus displays (Block 9 of the patterned condition). This 

was significantly higher than the 3.1 colours remembered on average when the regularities 

were removed from the displays (Block 10 of the patterned condition), t(31) = 5.29, p < .001. 

Thus, we replicated the learning effects observed by Brady et al. 

 Postperceptual inference  

To test whether observers stored a single colour from each pair, and then inferred the 

identity of the other colour at the end of the trial, Brady et al. (2009) examined whether 
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observers were more likely to erroneously report the high-probability colour associate of the 

adjacent item. Given such a strategy, observers would guess incorrectly on trials in which a 

low-probability pair was probed, systematically guessing the typical partner of the adjacent 

colour. For example, if the observers had learned a blue–green colour pairing, this kind of 

postperceptual inference would bias them to report green when blue was paired with a low 

probability partner. Brady et al. (2009) found no such effect and concluded that 

postperceptual inference did not play a role in the memory compression effect. We observed 

the same result. On average, 76 trials per observer (2427 trials across 32 observers, 14% of 

total trials) tested a low-probability pair. If observers were inferring the colours of the display 

using the high-probability pairings, their responses would more often be the high-probability 

colour of the adjacent item. However, observers reported the high-probability colour of the 

adjacent item only 11% of the time (where chance is 1/7 or 14%). In addition, we found that 

observers’ performance improved over blocks when considering only trials in which the low-

probability pair was probed (Figure 3-4). K when low-probability pairs were probed (M = 

3.8) was significantly greater in Block 9 of the patterned condition than in Block 10 of the 

patterned condition, when all pairs were low-probability (M = 3.1), t(31) = 2.66, p = .012. 

These findings suggest that high probability pairs required a smaller portion of limited 

mnemonic resources, thereby enhancing performance for other items in the display.  

 

Figure 3-4. Mean number of items remembered (K) for each block, including only trials in 
which a low-probability pair was probed. The shaded area marks the last block, in which 
statistical regularities were removed from the patterned condition. Error bars indicate ±1 
S.E.M. 
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Thus, our findings support the conclusion of Brady et al. that subjects were not 

encoding a single item from each pair, and then using postperceptual inference to boost 

performance with high probability pairs. However, we note that this analysis does not rule 

out the possibility that subjects selectively stored a subset of colours after they recognised 

familiar pairs during encoding. 

 Primacy effects 

Because we employed a within-subjects design, in which subjects participated in both 

the patterned and uniform conditions, we looked for possible carryover effects between 

conditions. Indeed, the order of conditions affected the size of the memory compression 

effect. A mixed three-way ANOVA revealed a statistically significant between-subject effect 

of condition order on performance, F(1, 30) = 9.88, p = .004. There were significant two-way 

interactions between condition order and the main effect of condition, F(1, 30) = 8.22, p = 

.008, and between condition order and the main effect of blocks, F(8,240) = 2.08, p = .04. 

There was a statistically significant three-way interaction between the condition order, the 

main effect of condition and the main effect of blocks, F(8,240) = 3.02, p = .003, suggesting 

that the difference in performance across blocks in the patterned and uniform conditions was 

significantly greater for observers that started with the patterned condition than observers that 

started with the uniform condition (Figure 3-5). Thus, the advantage in the patterned 

condition was reduced for subjects who experienced the uniform condition first (Jungé, 

Scholl, & Chun, 2007). 
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Figure 3-5. Mean number of items remembered (K) in each block as a function of within-
subject block order (a) Subjects who completed the patterned condition first showed a larger 
improvement than (b) subjects who completed the uniform condition first. Error bars indicate 
±1 S.E.M. 
 

 Are memory compression effects contingent on awareness? 

The results thus far have provided a close replication of those reported by Brady et al. 

(2009). The central question, however, is whether memory compression effects are 

contingent on subjects’ explicit knowledge of the colour pairings. We classified subjects as 

aware according to the strict criterion that they recalled all high probability pairs at the end of 

the study. While subjects with less-than-perfect performance may still have substantial 

awareness, the results show that subjects falling below this stringent criterion showed no 

evidence of the memory compression effect. Nineteen of the 32 observers were aware of the 

statistical regularities at the end of the experiment (5 out of the 16 observers who completed 

the uniform condition first and 14 out of the 16 observers who completed the patterned 

condition first).  

A mixed three-way ANOVA (awareness; block; condition) revealed a main effect of 

awareness, with higher accuracy in the aware group (M = 57%) than in the unaware group (M 

= 40%), F(1,30) = 17.59, p < .001. There was a significant interaction between awareness 

and condition, F(1,30) = 41.80, p < .001, and between awareness and block, F(8,240) = 2.08, 

p = .039. Finally, there was a statistically significant three-way interaction between 
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awareness, block and condition, F(8,240) = 2.25, p = .025 (Figure 3-6). For aware subjects, 

performance improved across patterned blocks while performance in the uniform condition 

did not change; thus, for these subjects there was a significant interaction between condition 

and block, F(8,144) = 10.83, p < .001. By contrast, for unaware subjects (those who could 

not report all the colour pairings at the end of the study), performance in the patterned and 

uniform conditions remained stable and equivalent throughout the study; thus, for these 

subjects there was no significant main effect of condition and no significant interaction 

between condition and block, F(8,96) = 1.27, p = .27. Therefore, the increase in the number 

of items remembered in the patterned condition was contingent on explicit awareness of the 

colour pairings. 

We computed an effect size by subtracting performance in the 10th block from 

average performance in the first 9 blocks of the patterned condition to capture the amount of 

learning that occurred (see Figure 3-7). Mean effect size for aware observers was 17.9% 

whereas mean effect size for unaware observers was 1.3% (see Figure 3-8). A regression 

analysis showed that the number of correct responses on the awareness test was a significant 

predictor of effect size, b = 2.68, SEb = .68, t(31) = 3.92, p < .001. Aware observers showed a 

significant difference in performance between the 9th and 10th blocks of the patterned 

condition, t(18) = 6.82, p < .001 whereas unaware observers showed no significant 

difference, t(12) = .62, p = .55. Thus, only aware observers remembered a reliably larger 

number of colours in the patterned condition. 
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Figure 3-6. Average number of items remembered (K) in each block in Experiment 1 as a 
function of subject awareness. (a) Aware subjects, who correctly reported all colour pairings 
at the end of the study, showed improvement in the patterned condition. (b) Unaware 
subjects, who did not report all colour pairings correctly, did not show improvement. Error 
bars indicate ±1 S.E.M. 

 

 

 

Figure 3-7. Effect size as a function of the number of items correct in the explicit awareness 
test of Experiment 1. Effect size was calculated by taking the difference in percentage correct 
between the final block and the average of the first nine blocks in the patterned condition. 
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Figure 3-8. Box plot of effect size as a function of participant awareness in Experiment 1. 
Aware observers correctly reported all colour pairings in the explicit awareness test, while 
unaware observers did not. Effect size was calculated by taking the difference in percentage 
correct between the average of the first nine blocks and the ultimate block in the patterned 
condition. 
 

 Experiment 2 

Most observers completing the patterned condition first were explicitly aware of the 

statistical regularities in the display, whereas observers completing the uniform condition 

first were mostly unaware of these regularities. Due to numerous trials without statistical 

regularities, observers who completed the uniform condition first may be primed to believe 

that no statistical regularities are present in the patterned condition. In Experiment 2, 

observers completed blocks of each condition in an alternating order, in an attempt to reduce 

the primacy effect observed in the blocked design of Experiment 1. 

3.4.1 Method 

The method was identical to Experiment 1 except for those aspects noted below. 

 Observers 

Thirty-two observers were tested in total. Sixteen observers (9 females) were recruited 

from the local University of Chicago community and completed the experiment for monetary 

compensation (US$10/hour), and 16 observers (7 females) were recruited from the 

undergraduate psychology student population from the University of Sydney and completed 

the experiment for course credit. None of these subjects participated in Experiment 1. All 

reported normal or corrected-to-normal visual acuity and colour vision, and all gave informed 

consent. 
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 Procedure 

Observers completed a total of 20 blocks containing 60 trials each. Observers 

alternated between blocks of the two conditions: a patterned condition block followed by a 

uniform condition block, or vice versa. The stimulus shape (circles or squares) also alternated 

to be consistent with condition throughout the experiment. The starting condition and shape 

was counterbalanced across observers. Participants completed an awareness test after 

completing all trials. 

3.4.2 Results 

 Performance across conditions 

We observed a statistically significant main effect of condition (patterned vs. 

uniform), F(1,31) = 36.72, p < .001 but no significant main effect of block, F(8,248) = 0.69, 

p = .70. There was a significant interaction between condition and block, F(8,248) = 4.42, p < 

.001. Capacity significantly increased across blocks in the patterned condition, F(8,248) = 

2.15, p = .03, whereas there was no change across blocks in the uniform condition, F(8,248) 

= .93, p = .49. There was no effect of condition in the first block, t(31) = .70, p = .49, but 

performance was significantly higher in the patterned condition in all subsequent blocks prior 

to the last, all t(31) > 2.59, all p < .02. In the last block, in which regularities were removed 

from the patterned condition, performance was not significantly different between conditions, 

t(31) = .56, p = .58. 

 

Figure 3-9. Mean number of items remembered (K) across blocks in Experiment 2. The 
shaded area indicates the last block, in which statistical regularities were removed from the 
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patterned condition. Error bars indicate ±1 S.E.M. 
 

Observers remembered 2.6 colours on average in the uniform condition, consistent 

with mean performance reported by Brady et al. (2009) and Experiment 1 of the present 

study. Observers remembered 3.6 colours on average after viewing the regularities in the 

stimulus displays (Block 9 of the patterned condition). This was significantly higher than the 

2.6 colours remembered on average when the regularities were removed from the displays 

(Block 10 of the patterned condition), t(31) = 3.10, p = .004.  

 Postperceptual inference 

On average, 76 trials per observer (2419 trials across 32 observers, 14% of total trials) 

tested a low-probability pair. Observers reported the high-probability colour of the adjacent 

item only 11% of the time (where chance is 1/7 or 14%). As in Experiment 1, observers’ 

performance varied significantly as a function of the number of high-probability pairs in the 

display (K = 2.4, 2.8, 3.1, 3.3, 3.7 for 0, 1, 2, 3, and 4 high-probability pairs respectively in 

the display, averaged across the entire experiment), F(4,124) = 3.5, p = .01. 

 Primacy effects 

There was no significant interaction between condition order and the main effect of 

condition, F(1,30) = .55, p = .46, and there was no three-way interaction between condition 

order, the main effect of condition and the main effect of block, F(8,240) = 0.65, p = .73. 

This suggests that alternating between conditions every block eliminated the primacy effect 

observed in Experiment 1. 

 Awareness 

Sixteen out of the 32 observers correctly identified all high-probability colour pairs. A 

mixed three-way ANOVA revealed a statistically significant main effect of awareness, 

F(1,30) = 7.87, p = .01. There was a significant two-way interaction between awareness and 

condition, F(1,30) = 21.46, p < .001, but not between awareness and block, F(8,240) = 1.95, 

p = .054. However, there was a significant three-way interaction between awareness, block 

and condition, F(8,240) = 2.74, p = .007. 

To characterise the interactions between awareness and performance, we examined 

aware and unaware observers separately, as we did in Experiment 1. Among unaware 

participants, average performance was statistically higher in the patterned condition 

compared to the uniform condition, F(1,15) = 19.76, p < .01, but this effect was very small 

and did not change across blocks, F(8,120) = 0.82, p = .59. Moreover, there was no 
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significant interaction between condition and block suggesting the trajectory for performance 

did not differ between the uniform and patterned conditions, F(8,120) = .58, p = .79. Indeed, 

the advantage in the patterned condition was over 30 times larger for aware (19.6%) 

compared to unaware (0.6%) participants, based on the difference between performance in 

the penultimate and final blocks in the patterned condition. The difference between the 

patterned and uniform conditions had a different trajectory across blocks, such that the 

learning effect grew with additional exposures in the aware subjects, but showed no such 

interaction with block in the unaware subjects. Among aware participants, K was 

significantly higher in the patterned condition, F(1,15) = 155.10, p < .001 but there was no 

main effect of block, F(8,120) = 1.77, p = .09. Importantly, there was a significant interaction 

between condition and block, F(8,120) = 3.48, p = .001, suggesting the change in 

performance across blocks was different between conditions (see Figure 3-10). That is, 

performance significantly improved in the patterned condition compared to the uniform 

condition for aware participants, but there was no improvement in either the patterned or the 

uniform condition for unaware participants. 

To summarise, Experiment 2 replicated the finding that the advantage in the patterned 

condition was largely restricted to subjects with perfect explicit knowledge of the colour 

pairings (see Figure 3-11). Although there was a statistically reliable advantage in the 

patterned condition for unaware subjects, this effect does not appear to provide evidence for 

the cumulative effects of statistical learning: The effect was extremely small, and did not 

show the monotonic increase in number of items remembered across blocks observed by 

Brady et al. (2009) and in Experiment 1. The number of correct responses on the explicit 

awareness test was a significant predictor of the effect size, b = 1.57, SEb = .61, t(31) = 2.56, 

p = 0.016 (Figure 3-12). Thus, Experiment 2 replicated the finding that the benefits of 

statistical regularities were strongly dependent on the degree to which observers acquired 

explicit knowledge of the colour pairings. Aware observers showed a significant difference in 

performance between the penultimate and last block of the patterned condition, t(15) = 3.82, 

p = .002, whereas unaware observers showed no significant difference, t(15) = .26, p = .79.  
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Figure 3-10. Average number of items remembered (K) in each block of Experiment 2 as a 
function of subject awareness. (a) Aware subjects, who correctly reported all colour pairings 
at the end of the study, showed improvement in the patterned condition. (b) Unaware 
subjects, who did not report all colour pairings correctly, did not show improvement. The 
shaded area indicates the last block, in which statistical regularities were removed from the 
patterned condition. Error bars indicate ±1 S.E.M. 

 

 

Figure 3-11. Box plot of effect size as a function of participant awareness in Experiment 2. 
Aware observers correctly reported all colour pairings in the explicit awareness test, while 
unaware observers did not. 
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Figure 3-12. Effect size as a function of the number of items correct in the explicit awareness 
test of Experiment 2. Effect size. Effect size was calculated by taking the difference in 
percentage correct between the final block and the average of the first nine blocks in the 
patterned condition. 
 

 Aggregated results 

We compared the data across experiments to check for significant differences in 

results, and aggregated the data across experiments to increase sensitivity. In Experiment 1, 

participants completed all the blocks within one condition (patterned blocks or uniform 

blocks) before the other, whereas in Experiment 2, participants completed the blocks from 

each condition in alternating fashion. We expected any significant differences would likely 

be due to this difference in block order. 

3.5.1 Comparison between experiments 

 We conducted a mixed ANOVA with three factors: condition, block and experiment. 

The effect of condition on memory performance was not significantly different between 

experiments, F(1,62) = 3.06, p = .09, nor was the effect of block between experiments, F(8, 

496) = 1.90, p = .06. Additionally, the interaction between the condition and block was not 

significantly different between experiments, F(8,496) = 1.32, p = .23. To further investigate 

the difference in performance across blocks, we analysed the patterned blocks and uniform 

blocks separately. Memory performance significantly increased across blocks in the patterned 

condition, F(8,496) = 11.72, p < .001, and this increase was significantly different between 

experiments, F(8,496) = 2.07, p = .037, indicating that the learning effect was significantly 

larger in Experiment 1 than in Experiment 2. There was no main effect of block in the 
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uniform condition, F(8,496) = .96, p = .46, and performance was not significantly different 

between experiments, F(8,496) = 1.00, p = .44. 

These results indicate that the improvement in memory performance in the patterned 

condition was significantly larger in Experiment 1, in which blocks containing statistical 

regularities were grouped together than in Experiment 2, in which patterned blocks alternated 

with blocks that did not contain statistical regularities. 

3.5.2  Overall effects 

 Collapsing the data across both experiments, memory performance was significantly 

better in the patterned condition compared to the uniform condition, F(1,63) = 74.07, p < 

.001, and significantly changed across blocks, F(8,504) = 4.73, p < .001. The change in 

memory performance across blocks was significantly different between the conditions, 

F(8,504) = 12.49, p < .001. Consistent with our previous analyses, memory performance 

significantly increased in the patterned condition, F(8,504) = 11.52, p < .001, but did not 

change across blocks in the uniform condition F(8,504) = .96, p =.46. 

3.5.3 Effect of awareness 

Across both experiments, there were 35 aware participants (19 from Experiment 1 and 

16 from Experiment 2), and 29 unaware participants (13 from Experiment 1 and 16 from 

Experiment 2). The difference in memory performance between conditions (see Figure 3-14) 

was significantly different between aware and unaware participants, F(1,62) = 60.65, p < 

.001. The memory advantage in the patterned condition over the uniform condition was 

significantly different between aware and unaware participants, F(8,496) = 4.59, p < .001. 

This is consistent with the pattern of findings in both Experiment 1 and 2.  

In unaware participants, memory performance was significantly higher in the 

patterned condition than in the uniform condition, F(1,28) = 7.71, p = .01, but did not change 

across blocks, F(8,224) = .31, p = .96. Additionally, the interaction between condition and 

block was not significant, F(8,224) = 1.17, p = .32.  By contrast, aware participants showed a 

significant difference in memory performance between conditions, F(1,34) = 159.98, p < 

.001, and a significant change across blocks, F(8,272) = 8.46, p < .001. Critically, aware 

participants showed a significant interaction between block and condition, F(8,272) = 16.17, 

p < .001, indicating that only aware participants show significant improvement in the 

patterned condition compared to the uniform condition. Unsurprisingly, this pattern of 

findings was consistent with the results of both Experiment 1 and 2. 
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Figure 3-13. Mean number of items remembered (K) across blocks, with data aggregated 
across Experiment 1 and 2. The shaded area indicates the last block, in which statistical 
regularities were removed from the patterned condition. Error bars indicate ±1 S.E.M. 

 

 

Figure 3-14. Average number of items (K) remembered in each block as a function of subject 
awareness, with data aggregated across Experiments 1 and 2. (a) Aware subjects, who 
correctly reported all colour pairings at the end of the study, showed improvement in the 
patterned condition. (b) Unaware observers, who did not report all colour pairings correctly, 
did not show improvement. The shaded area indicates the last block where statistical 
regularities were removed from the patterned condition. Error bars indicate ±1 S.E.M. 
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 General discussion 

We replicated the results of Brady et al. (2009), finding substantially better VWM 

performance when displays contained consistent colour pairings. This effect was either 

completely absent (Experiment 1) or negligible (Experiment 2) in subjects who did not 

achieve perfect explicit recall of the colour pairs at the end of the study. The fact that 

compression effects were contingent on subjects’ explicit recall of the colour pairs is 

inconsistent with the hypothesis that visual statistical learning, an automatic process that is 

disconnected from explicit awareness (Perruchet & Pacton, 2006; Turk-Browne et al., 2008), 

was responsible for improved performance in the patterned condition. Moreover, the 

statistical learning hypothesis fails to explain multiple published studies that did not observe 

improved performance after repetitions of memory displays similar to those used by Brady et 

al. (Logie, Brockmole, & Vandenbroucke, 2009; Olson & Jiang, 2004). For example, Olson 

and Jiang (2004) reported change detection performance was unaffected by 24 exact 

repetitions of the sample display. Thus, both our findings and others call for a different 

explanation of this “memory compression” effect.  

The embedded process model of WM provides a framework for explaining the 

advantage in the patterned condition in terms of dynamic interactions between WM and 

LTM. We propose that a subset of subjects developed highly accessible long-term 

representations of the colour pairs, evidenced by their explicit recall of the pairings at the end 

of the study. These subjects could then retrieve this information at the time of test to boost 

recall. This explanation does not require a change in the number of representations held 

online in the focus of attention. This is precisely what Chen and Cowan (2009) observed 

when they trained subjects to encode word pairs into LTM. In a subsequent WM task, 

participants could remember the same number of learned pairs of words as they could learned 

individual words. 

Our alternative explanation may also illuminate why other studies found no advantage 

of memory displays repeated up to 24 times (Logie et al., 2009; Olson & Jiang, 2004). Both 

the present study and that of Brady et al. (2009) used a recall procedure to test WM 

performance, while Logie et al. and Olson and Jiang employed a two-alternative choice 

response (same versus different). It is possible that this relatively rapid mode of responding 

was not conducive to the effortful retrieval of long-term memories for the repeated displays. 

This explanation dovetails with the findings of Huang and Awh (2018), who found that the 

improved recall performance in the Brady et al.’s task only emerged after approximately a 
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full second had elapsed after the onset of the test display, in line with sluggish retrieval of 

information from LTM. Consistent with this possibility, Logie et al. (2009) found benefits for 

repeated displays when they used a probed recall procedure (similar to that in the present 

work), but not when they used a change-detection procedure. Thus, the robust benefits of 

statistical regularities in the Brady et al. (2009) procedure can be reconciled with several null 

effects (Logie et al., 2009; Olson & Jiang, 2004) by positing that different methods for testing 

working memory are more or less conducive to the retrieval of related information from 

LTM.  

In both of our experiments, observers who were unaware of the statistical regularities 

showed either negligible or no improvement in recall accuracy. Thus, it appears that this 

procedure does not elicit the same kind of visual statistical learning that has been highlighted 

in past studies (Fiser & Aslin, 2001, 2002; Turk-Browne et al., 2005, 2008) in which subjects 

apprehended statistical regularities in the absence of explicit awareness of those regularities 

(Chun & Jiang, 1999; Turk-Browne et al., 2005, 2008). However, this result does not rule out 

that visual statistical learning may shape performance in a VWM task. For instance, 

Umemoto et al. (2010) measured change detection performance when one quadrant of the 

display—unbeknownst to subjects—was more likely to contain the changed item. They found 

that memory encoding was biased towards the quadrant most likely to contain the changes, 

and subsequent measures of explicit knowledge showed no difference in effect size between 

subjects who could and could not identify the dominant quadrant. This result and others 

(Beck, Angelone, Levin, Peterson, & Varakin, 2008; Jiang, Swallow, & Rosenbaum, 2013) 

suggest that implicit knowledge of likely target positions can elicit useful biases in the items 

that are encoded into WM. 

Interestingly, there is at least some evidence that location information may have a 

special status in implicit learning. Beck et al. (2008) found that unlike location, equally 

predictive cues in the shape and colour dimensions were ineffective at eliciting useful 

encoding biases. Likewise, subjects did not benefit when an item of a specific colour was 

most likely to change its orientation during a change detection procedure (Umemoto and 

Awh, unpublished). The notion that location may have a privileged status in visual processing 

is a longstanding one. Some have argued that location is automatically attended and stored in 

WM (e.g. Foster, Bsales, Jaffe, & Awh, 2017; Rajsic & Wilson, 2014; Schneegans & Bays, 

2017; Tsal & Lavie, 1988) and that spatial attention is a fundamental component of feature 

integration (Treisman & Gelade, 1980). That said, Beck et al. (2008) noted that the non-
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spatial cues in their study were not explicitly task relevant, and this alone may have 

precluded apprehension of the relevant probabilities. Further work is needed to determine the 

boundary conditions under which implicit knowledge can guide performance of VWM. 

In conclusion, while many studies have shown that statistical regularities can be 

automatically apprehended and exploited in the absence of conscious awareness of those 

regularities, this may not be an accurate framing of the memory compression effects in the 

Brady et al.’s (2009) procedure. Instead, the benefits of statistical regularities in this 

procedure may be best characterised as an example of paired-associate learning, given that 

only subjects with perfect explicit knowledge of those pairs were able to benefit from those 

regularities. Thus, while there will surely be continued interest in any manipulation that may 

boost online memory capacity, the memory compression effect examined here provides no 

evidence for such an effect. 

 Appendix 

Derivation of formula for calculating K 

The task in the current study is an eight-alternative forced choice, and observers may 

choose the correct answer if they know it or guess it by chance. Therefore, to estimate 

capacity (K), we need to estimate the number of correct answers from knowing the colours 

and the number of correct answers from guessing. We use the same formulation derived by 

Brady et al. (2009). 

If an observer remembers K items, a remembered item will be probed (and observers 

will consequently be correct) on an average of K in 8 trials. On the remaining trials, the 

observer will guess correctly 1/8th of the time. Therefore, percent correct (PC) in terms of K 

will be: 

 

PC = 
K
8

+ G	
8 - K

8
×

1
8 
H 

Making K the subject: 

PC = 
K × 8
8 × 8

+
8 - K
8 × 8

 

PC × 8 × 8 = K × 8 + 8 - K	

PC × 8 × 8 = 7 × K + 8	
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PC × 8 × 8 - 8 = 7 × K	

K = 
PC × 8 × 8 - 8

7
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Chapter 4: Explicit Chunking Does Not Reduce the Contralateral 

Delay Activity 

 Abstract 

 The previous chapters suggest that VWM performance can be enhanced with learning 

in at least two ways. Firstly, we observed a faster encoding rate and higher capacity for 

familiar English letters over unfamiliar alphabets even when matched on similarity and 

complexity. Secondly, we observed improved VWM recall when statistical regularities were 

included in displays, but only for those participants who gained explicit knowledge of the 

pairings. These findings highlight the complex interactions between LTM and VWM in those 

tasks, as can be understood through the framework of embedded process models. However, 

the findings rely on behavioural responses at the end of a trial, which are not ideal for 

disentangling storage and retrieval processes. In Chapter 4, we attempt to overcome this by 

measuring the contralateral delay activity (CDA)—a neural index of the number of objects 

held in VWM—in the same paradigms. Despite significantly improved recall in a patterned 

condition containing statistical regularities, the CDA was no different from that observed in a 

uniform condition containing random stimulus pairings. These results favour an account by 

which improved recall comes not from a change to online representations, but from a late 

retrieval of a LTM representation after the probe.  
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 Introduction 

 The visual working memory (VWM) system is responsible for holding temporary 

representations of visual information for perception and cognition. Despite this important 

function, VWM is limited to a surprisingly low capacity of approximately three or four items 

(Luck & Vogel, 1997). The factors that produce this striking result have been a topic of 

intense debate for researchers in recent decades. Luck and Vogel proposed a slots model, in 

which VWM holds integrated object representations. They found that change-detection 

performance was equivalent whether those three or four objects in VWM were simple colour 

squares or multifaceted shapes varying in colour, orientation, size and the presence or 

absence of a gap (Vogel, Woodman, & Luck, 2001, but see also Hardman and Cowan, 2015). 

In contrast, Alvarez and Cavanagh (2004) found lower VWM capacity estimates for more 

complex stimuli, where complexity was indexed by visual search slopes. This led them to 

propose an alternative resources model, wherein more complex objects require a larger 

proportion of a finite pool of resources to be stored in VWM (but see Eng, Chen and Jiang, 

2005). Some researchers modelling VWM performance have fallen on the extremes of this 

debate, with some conceiving of VWM storing object-like representations as in a pure slot 

model (Zhang & Luck, 2008) and others taking VWM to act as an infinitely divisible limited 

resource as in a pure resource model (Bays, 2008). Still others have adopted intermediate 

variants, such as a slots plus resources model (Zhang & Luck, 2008). This range of 

perspectives reveals the current uncertainty regarding the nature of the units of storage in 

VWM. 

4.2.1 Embedded process models 

 A less examined issue pertinent to the capacity limitation of VWM is that higher-

order chunking of visual information can influence the unit representation in VWM (Miller, 

1956). Take the finding that experts recall real chess positions significantly more accurately 

than novices, but show less of an advantage when the chess pieces were randomly placed 

(Chase & Simon, 1973; Gobet & Simon, 1996). Rather than revealing a higher VWM 

capacity, this finding can be taken to indicate that expert knowledge allows efficient 

chunking of real game positions in a way that novices are unable to. Gestalt grouping cues 

(Woodman et al., 2003) and statistical learning of relationships between elements (Brady et 

al., 2009) have also been shown to influence the representation of information in VWM. This 

interaction between storage in VWM and cognitive mechanisms can be described by 

embedded process models of WM. These models posit that the WM system comprises a set 
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of memory processes engaging both offline and online representations. For example, Cowan 

(1999) proposed three distinct layers of memory. The highest layer contains all of the 

representations stored in long-term memory (LTM) and is effectively unlimited in capacity. 

The second layer includes ‘activated’ LTM; representations that are offline but readily 

accessible due to recent access or priming. These ‘activated’ representations can be shifted 

into the third layer of online memory representations of which a limited number can be 

maintained in what Cowan calls the ‘focus of attention’. While other variants of embedded 

process models distinguish different numbers of layers, they all acknowledge the complex 

interaction of various levels of memory in any task that requires visual cognition. 

 The assumption that VWM architecture is accurately reflected in embedded process 

models presents a significant challenge in pinning down capacity limits. If activated LTM 

representations can fluidly shift into the focus of attention, the units maintained in VWM 

cannot be assumed simply to be the objects present in memory displays. The behavioural 

responses typically employed at the end of trials, such as recall or change detection, are then 

not ideally suited to disentangling whether the behavioural responses is guided by an 

activated LTM representation or an online VWM representation held throughout the trial. 

Some researchers have turned to neural markers in dissociating contributions of WM and 

LTM. Sustained patterns of neural activity have been associated with representations in 

VWM (Vogel & Machizawa, 2004), whereas storage in LTM is thought to be mediated by 

lasting changes in synaptic connectivity. In the present study, we examine the contralateral 

delay activity (CDA), an electrophysiological component associated with the storage of 

information in VWM (Vogel & Machizawa, 2004).  

4.2.2 Contralateral delay activity 

 The CDA was first isolated by Vogel and Machizawa (2004), who developed a 

lateralised change-detection task. In this task, stimuli are presented to both hemifields, but 

subjects are instructed to remember the stimuli on only one side. The task proceeds the same 

way as a typical change-detection task, requiring observers to identify whether or not a 

change occurred on an ensuing test display. During the retention interval prior to test, a 

sustained negative slow wave manifests across the parietal-occipital electrodes contralateral 

to the side of the visual display that was to be remembered. Subtracting the activity from 

corresponding ipsilateral electrodes from the contralateral signal cancels bilateral activity 

linked to the sensory processing of the visual stimuli. In this way, activity specific to the 

storage of visual information in working memory can be isolated. The mean amplitude of the 
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difference wave during the retention period is referred to as the CDA. Vogel and Machizawa 

(2004) showed that the CDA increases with the number of items held in memory and plateaus 

when VWM capacity is reached at 3-4 items. Additionally, the CDA is correlated with 

individual differences in subjects’ behavioural measures of VWM capacity (r = –.37, 

Unsworth, Fukuda, Awh, & Vogel, 2014b; Vogel et al., 2005).  

 Recent research suggests the CDA tracks the number of individuated representations 

held in the focus of attention. The CDA is the same whether a change-detection task involves 

oriented bars or coloured oriented bars, and polygons or coloured polygons. However, when 

an oriented bar and colour square are presented as two separate objects, the CDA increases 

despite the amount of task-relevant information being equivalent to a coloured polygon 

(Luria & Vogel, 2011; Woodman & Vogel, 2008). This parallels the behavioural findings of 

Luck and Vogel (1997) that change-detection performance is unchanged with the addition of 

relevant features to the stimuli. Similarly, Gestalt grouping cues, such as similarity and 

common fate, reduce CDA amplitude presumably because the number of ‘chunks’ to be 

remembered is reduced (Balaban & Luria, 2016; Peterson et al., 2015). Further evidence for 

the CDA reflecting the number of representations in VWM comes from tasks requiring 

changes to the online representations showing these perceptual grouping cues do not appear 

to automatically influence the objecthood in VWM. Luria and Vogel (2014) found that the 

initial independence of colour squares overrode the strong grouping cue when they 

subsequently came together to form a conjunction as there was no corresponding reduction in 

CDA. When a single object splits into two separate objects, the CDA changes to match the 

increased set size—presumably because separate representations are then required to 

successfully detect changes in those stimuli (Balaban & Luria, 2016). The CDA changes 

similarly when subjects are cued to add or remove objects from attention (Drew, Horowitz, 

Wolfe, & Vogel, 2011). Taken together, these findings suggest the CDA amplitude can be 

interpreted as indexing the number of individuated objects held in the focus of attention. 

While Gestalt grouping cues have been shown to reduce the CDA, it is unclear whether 

higher-order chunking processes will produce similar changes. Researchers do not mention 

any involvement of LTM as Gestalt grouping cues are thought not to require any specialized 

knowledge and thus, primarily be bottom-up, stimulus-driven factors driving perception. 

4.2.3 Memory compression  

 Brady et al. (2009) reported an example of improvement in VWM performance from 

higher-order cognitive processes. In their task, observers were required to memorise the 



 68 

location of eight colours, shown in pairs around a fixation point. Colours were more likely to 

be paired with a specific other colour, adding statistical regularity to these memory displays. 

Observers were able to use the regularity to their advantage and showed increased recall 

accuracy beyond the typical capacity limit of three to four objects. Brady et al. (2009) argued 

that this improvement occurred via efficient compression in the online representations of 

VWM, affording an increase in the amount of concurrent information. We have suggested, 

however, this improved recall may actually occur without any changes to the online 

representations of VWM (see Chapter 3). Taking an embedded process perspective, observers 

may instead rely on activated LTM representations which are retrieved at time of recall. For 

example, during consolidation, individuated representations of the colours may be held in 

VWM prior to any chunking process. Only during retrieval is a LTM representation of the 

chunk accessed to assist recall.  

 These perspectives make opposite predictions about the behaviour of the CDA during 

statistical learning. If learning produces efficient memory compression—the storage of 

information in fewer VWM representations—as Brady et al. (2009) argue, the CDA should 

reduce to the number of pairs in the display. In contrast, the embedded process perspective 

suggests the CDA should remain unchanged as the focus of attention is unchanged. That is, 

an unchanged number of item representations are produced during encoding into VWM, 

tracked by the CDA, before activating retrieval of LTM representations at test. Note that 

capacity estimates calculated from the improved recall are often beyond the capacity limit of 

3-4 items. If learning produces an increase in the number of representations in VWM 

corresponding to these capacity estimates, the CDA would then be expected to be 

significantly higher with the inclusion of regularities, contradicting both the embedded 

process perspective and Brady et al. (2009). 

4.2.4 The present study 

 We implemented the paradigm of Brady et al. (2009), with adjustments to allow the 

measurement of the lateralised CDA. Improved recall is contingent on observers’ explicit 

knowledge of high-probability colour pairs (see Chapter 3). Observers were therefore 

informed of the colour pairings to speed their acquisition of this knowledge. 

 Method 

4.3.1 Participants 
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 Twenty-two members of the university community (8 females), aged 22 to 41 (mean 

age of 27.9 years) were recruited from the University of Sydney. All subjects were naïve to 

the aims of the study, and provided informed consent to procedures approved by the 

University of Sydney Human Research Ethics Committee. Subjects were recruited until a 

sample size of 18 subjects was achieved (following exclusions due to excessive eye 

movement and muscular artifacts). All subjects reported normal or corrected-to-normal vision 

and no impairment to colour vision. 

4.3.2 Apparatus 

 Stimuli were generated using MATLAB (The MathWorks, Natick, MA) and 

PsychToolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). They were presented on a 

24 inch ASUS VG248QE LED backlit LCD monitor with spatial resolution set to 1920 × 

1080 and 120 Hz nominal refresh rate. Observers were seated in a dark room with a viewing 

distance of approximately 70 cm. Responses were recorded with clicks on a standard mouse 

placed in front of the subject.  

 EEG was recorded using Ag–AgCl active electrodes (BrainProducts actiCAP) from 

64 channels based on the modified International 10/20 System: Fp1/2, Fz, AF3/4, AF7/8, 

AFz, F1/2, F3/4, F5/6, F7/8, Fz, FC1/2, FC3/4, FC5/6, FT7/8, FT9/10, FCz, C1/2, C3/4, 

C5/6, Cz, T7/8, CP1/2, CP3/4, CP5/6, CPz, TP7/8, TP9/10, P1/2, P3/4, P5/6, P7/8, Pz, 

PO3/4, PO7/8, POz, O1/2, Oz. The ground electrode was Fpz and all electrodes were 

referenced to FCz, and re-referenced offline to the average of all electrodes. Impedances for 

active electrodes were kept below 10kW. The sample rate was 1000 Hz with a high cutoff 

filter of 250 Hz and a low cutoff filter of 0.01 Hz. EEG activity was recorded using the 

BrainVision Recorder software and analysed using MATLAB and the EEGLAB toolbox 

(Delorme & Makeig, 2004). 

4.3.3 Stimuli 

 All stimuli were presented on a grey background. They were either squares with a side 

length of 2° of visual angle, or circles with diameter of 2° of visual angle. Each item could be 

one of eight colours: red, green, blue, magenta, cyan, yellow, black or white. Stimuli were 

presented in two imaginary regions, one in each hemifield. These regions were 3.9° in width 

and 4.3° in length, centred 2.9° to either side of the central fixation diamond (0.5° × 0.5°). On 

each trial, two locations were randomly selected in each region with the constraints that one 

location was above the fixation point and the other below, and that any presented stimuli 
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would not overlap. In the 2-item condition, items were centred on the selected locations. In 

the 4-item and 2-pair conditions, the items were presented as pairs, equidistant above and 

below the selected locations such that the centre-to-centre distance within the pair was 2.5°.  

4.3.4 Procedure 

 The general procedure for each trial is shown in Figure 4-1. Observers were required 

to click on a fixation diamond to initiate each trial and instructed to hold fixation on this point 

until they were probed for a response. Two hundred ms after the trial was initiated, an arrow 

cue informing the observer the side to which to direct their attention was shown above the 

fixation diamond for 500 ms. The cued side was equally likely to be left or right. After a 500 

ms delay, stimuli were presented for 1000 ms. Observers were instructed to remember the 

colour of each item. After a retention period of 1000 ms with a blank screen, observers were 

probed to recall a colour from a randomly selected location, outlined with a thicker black 

line. Other locations where stimuli were presented were outlined with a thinner black line. 

Below the probe display, an array of all possible colours was presented. The observer was 

instructed to click on the colour they thought had been presented at the probed location. 
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Figure 4-1. Procedure on one trial of the experiment. Durations for each frame are shown in 
brackets. Subjects initiated the trial by clicking the fixation point. An arrow was presented 
above the fixation point to indicate to the observer the side to which they should attend. After 
a variable interval, the memory array was shown for 1000 ms, before a blank retention period 
for 1000 ms. Subjects were required to keep fixation from the mouse click until the end of the 
retention period. Subjects were then shown a test array, in which one location was marked 
with a thicker outline. Subjects were required to select the colour they thought had been 
presented at that location. 

 

 Subjects completed 4 blocks of 30 trials in each of three conditions: 2-items, 4-items, 

and 2-pair. Subjects completed all trials of one condition before moving to the next, and were 

given breaks after every block. The order of conditions was counterbalanced across subjects. 

In the 2-item condition, two colours were selected randomly on each trial, such that it was 

equally likely for any colour to be selected on each trial. Similarly, in the 4-item condition, 
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two colour pairs were randomly selected on each trial. However, in the 2-pair condition, each 

observer was randomly assigned four colour pairs for the duration of the condition, with the 

constraint that each colour could only be assigned to one of those pairs. Prior to completing 

the 2-pair condition, subjects were shown their assigned colour pairs and informed that only 

these pairs would be presented throughout. They were afforded a brief moment to study the 

colour pairs, with the expectation this would facilitate the rapid development of explicit LTM 

representations. A different shape was assigned to the 2-pair condition to help distinguish it 

from the random conditions (2-item and 4-item). Two of the subject’s four assigned pairs 

were randomly selected on each trial, such that a particular colour would only ever appear 

with its assigned partner.  

 After completing all three conditions, observers were tested on their knowledge of the 

colour pairs. Improved recall performance was previously shown to be contingent on having 

perfect accuracy on this awareness test (see Chapter 3). Observers were presented each 

colour in the middle of the screen and asked to click on the assigned partner of that colour 

(Figure 4-2).  

 

Figure 4-2. Example display from the awareness test participants completed at the end of the 
experiment. Each colour was shown in the middle of the screen and participants were asked 
to click on its paired colour in the 2-pair condition. 
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4.3.5 Data analysis 

 Behavioural data 

 To estimate capacity (K) in each condition, we used the following formula (derivation 

in Appendix): 

  𝐾 = $(I8&.)
J

 (Equation 4-1) 

 where P is the porportion correct and N is the set size for that condition. 

 EEG data 

 Unfiltered EEG data were divided into epochs beginning 200 ms before stimulus 

onset and ending 2000 ms after stimulus onset. The data were then baseline corrected by 

subtracting the mean voltage of the 200 ms preceding the memory array. Trials with a peak-

to-peak amplitude greater than 200 µV within a sliding 20 ms time window were excluded 

for excessive noise. To detect blocking, a 200 ms time window was shifted in steps of 50 ms 

and the trial was excluded if any EEG electrode had at least 60 consecutive time points (60 

ms) within 1 µV of each other. Finally, all trials were visually inspected to confirm automatic 

rejection and to exclude trials with eye blinks or saccades detected by the Fp1 and Fp2 

electrodes. Subjects with more than 35% of trials rejected were excluded from further 

analyses. Mean contralateral and ipsilateral activity across the P3/P4, P5/P6, P7/P8, 

PO3/PO4, and PO7/PO8 electrode pairs was calculated for each participant in each of the 

conditions separately. The CDA was calculated as the mean difference between contralateral 

and ipsilateral waveforms from 1000 to 1900 ms after stimulus onset. We also replicated 

analyses conducted by Xie and Zhang (2018) to examine the influence of familiarity on 

consolidation and storage in VWM. They separated the CDA into an early-window CDA, 

measured from 300 ms to 800 ms after stimulus onset, and a late-window CDA, measured 

from 1500 ms to 2000 ms after stimulus onset. They found that stimulus familiarity produced 

significant differences in early-window CDA but not the late-window CDA. This led them to 

conclude that familiarity speeds up consolidation into VWM (as reflected in the early 

window), while overall storage capacity is not enhanced (as reflected in the late window). 

The overall CDA, early-window CDA and late-window CDA data were analysed using 

repeated measures ANOVAs. Figures were generated using low-pass filtered data with 

Hamming windowed-sinc finite impulse response filter (pop_eegfiltnew.m from the 

EEGLAB toolbox) with a cutoff of 30 Hz. 
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 Results 

4.4.1 Behavioural data 

 Mean recall accuracy was 96.8%, 91.2% and 79.4% for the 2-item, 2-pair and 4-item 

conditions respectively, which corresponds to mean K estimates of 1.9, 3.6 and 3.1 (Figure 4-

3). These estimates were significantly different across condition, F(2,32) = 103.77, p < .001. 

Follow-up pairwise comparisons revealed K in the 2 pair condition was significantly higher 

than in the 4 item condition, t(17) =  2.45, p = .025. All observers perfectly recalled the 

colour pairs in the recall test at the end of the experiment suggesting that observers gained 

explicit knowledge of the colour pairs. It appears that observers took advantage of the 

statistical regularity in the 2-pair condition by relying on their explicit knowledge, as 

previously observed by Brady et al. (2009) (see Chapter 3).  

 

Figure 4-3. Mean VWM capacity in the 2-item, 2-pair and 4-item conditions. Error bars 
indicate ±1 standard error of the mean. VWM capacity was significantly higher in the 2-pair 
condition than in the 4-item condition. 
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Figure 4-4. Grand average CDA waveforms for the 2-item, 2-pair and 4-item conditions. The 
shaded region surrounding the waveform indicates ±1 S.E.M. The green region depicts the 
presentation duration of the memory array. The grey areas indicate the time regions used for 
the early-window CDA (300 – 800 ms) and the late-window CDA (1500 – 2000 ms). 
  
4.4.2 Electrophysiological data  

 Full CDA (1000 – 1900 ms) 

 Figure 4-4 shows the grand average CDA waveforms and Figure 4-5 shows the 

average CDA for all three conditions. There were significant differences in the CDA across 

conditions, F(2,34) = 10.72, p < .001. Follow-up pairwise comparisons revealed that the 

CDA was significantly smaller in the 2-item condition (M = –.77) than both the 4 item 

condition (M = –1.42), t(17) = 4.21, p < .001 and the 2 pair condition (M = –1.22), t(17) = 

2.96, p = .009. The CDA was not significantly different between the 4-item and 2-pair 

conditions, t(17) = 1.64, p = .12. 
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Figure 4-5. Mean CDA for the 2-item, 2-pair and 4-item conditions. Error bars indicate ±1 
S.E.M. Pairwise comparisons revealed the mean CDA was significantly higher in the 2-pair 
condition and the 4-item condition than in the 2-item condition. 
 

 Early-window CDA (300 – 800 ms) 

 Figure 4-6 shows the mean CDA from an early time window (300 – 800 ms). 

Repeated-measures ANOVA indicated no significant differences in the early-window CDA 

between conditions, F(2,34) = .63, p = .54. This was confirmed in planned pairwise 

comparisons. 

 

 

Figure 4-6. Mean early-window CDA for the 2-item, 2-pair and 4-item conditions. Error bars 
indicate ±1 S.E.M. There were no significant differences between the conditions on early-
window CDA. 
 

 Late-window CDA (1500 – 2000ms) 

 The mean CDA at a late time window (1500 – 2000 ms) is shown in Figure 4-7. 

There were significant differences in the late-window CDA between conditions, F(2,34) = 
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11.49, p < .001. Follow-up pairwise comparisons revealed that the late-window CDA was 

significantly smaller in the 2-item condition than in the 4-item, t(17) = 3.24, p = . 005, and 2-

pair conditions, t(17) = 4.43, p < .001. The late-window CDA did not differ significantly 

between the 2-pair and 4-item conditions, t(17) = 1.34, p = .20.  

 

 

Figure 4-7. Mean late-window CDA for the 2-item, 2-pair and 4-item conditions. Error bars 
indicate ±1 S.E.M. Pairwise comparisons indicated the mean late-window CDA was 
significantly higher in the 2-pair condition and the 4-item conditions than in the 2-item 
condition. 
 

 General Discussion 

 Observers show improved recall accuracy when statistical regularities are included in 

memory displays. It has been argued that this improvement is produced by efficient 

compression of information in memory representations That is, representations in VWM have 

been augmented to hold more information, possibly by reducing redundancy. An embedded 

process perspective suggests this need not be the case, as activated LTM representations can 

be retrieved to aid recall. Recent work by Huang and Awh (2018) showed that the benefits of 

statistical regularities only manifest if observers are given long response times (~ 1 sec). We 

also reported in Chapter 3 that the advantage appears to be contingent on explicit knowledge 

of the regularities. However, behavioural responses give an incomplete picture of processes 

occurring during the trial. In the present study, we adapted Brady et al.’s (2009) paradigm to 

allow measurement of the CDA, a lateralised electrophysiological marker that robustly tracks 

the number of representations in VWM. 



 78 

 Consistent colour pairs in the displays, to which observers were explicitly alerted, led 

to significantly better recall in the 2-pair condition compared to the 4 item condition. CDA in 

the 2-pair and 4-item conditions was significantly higher than in the 2-item condition, 

replicating the previous finding that memory load is tightly associated with CDA. However, 

despite the 2-pair condition yielding a higher behavioural estimate of capacity than the 4-pair 

condition, the CDA did not significantly differ between them. It appears therefore that the 

recall advantage produced by explicit chunking does not involve changes to the online 

representations held in VWM, but rather the retrieval of learned LTM representations at a 

recall stage. We note that this conclusion rests on a non-significant statistical result 

comparing the CDA in the 2-pair and 4-item conditions. In an experiment examining four 

separate coloured squares combining into two colour conjunctions, but using a perceptual 

common-fate cue rather than explicit chunking, Luria and Vogel (2014) observed a 

statistically significant reduction in the CDA in a sample of 16 subjects. On this basis, the 18 

subjects in the present study should provide sufficient power to observe a similar reduction in 

CDA in the 2-pair condition.  

 Separately analysing early and late-time windows of the CDA produces an interesting 

dissociation. Xie and Zhang (2018) split the CDA into an early time-window to index the rate 

of consolidation into VWM, and a late time-window to index the capacity of VWM. Given 

sufficient encoding time (1000 ms), change-detection performance of observers familiar with 

the stimuli was no better than that of observers unfamiliar with the stimuli. However, familiar 

observers had larger CDA amplitudes in the early time-window and not the late time-

window. Xie & Zhang (2018) concluded that familiar information is consolidated into VWM 

at a faster rate, but the familiarity does not increase overall VWM. They propose this depends 

on pre-existing LTM representations, consistent with an embedded process perspective on the 

memory compression effects (see Chapter 3). We replicated Xie and Zhang’s analysis using 

the same time windows and electrode pairs. Interestingly, there was no difference between 

the three conditions in the early-window CDA. Explicit chunking of the colour pair stimuli 

did not influence the consolidation into VWM, despite observers apparently maintaining 

LTM representations throughout the experiment. The construction of online representations 

does not appear to be influenced by explicit chunking, and may rely on engaging LTM 

processes different from those invoked by stimulus familiarity. However, in the late-window 

CDA, we find the same differences as in the overall CDA. Although we observe a significant 

memory load difference in the CDA, when comparing the 2-item and 4-item conditions, we 
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do not observe a significant difference between the 2-pair and 4-item conditions. In 

conjunction with improved behavioural recall in the 2-pair condition compared to the 4 item 

condition, the most parsimonious account is that the CDA indexes individuated online 

representations within the focus of attention, and that the improved recall found with this 

statistical learning paradigm relies on LTM representations being retrieved when probed 

(Huang & Awh, 2018) with no change to how the online representations are formed.  

 Although observers displayed perfect memory for the colour pairs used and showed 

improved recall in the 2-pair condition, the CDA in that condition was not significantly 

different from the CDA in the 4-item condition. This is consistent with an embedded 

processes perspective that posits involvement of LTM at the retrieval stage. However, if 

observers are only required to store 2 items in the 2-pair condition, why did we not observe a 

significantly lower CDA in the 2-pair condition than in the 4-item condition? One possible 

reason is the number of items in the memory displays. In the present study, the effect of 

statistical regularities was examined at a set size of four (in a single hemifield) whereas 

previous behavioural studies used a set size of eight (Brady et al., 2009; Huang & Awh, 

2018). As eight items far exceeds the typical average VWM capacity of three to four items, 

observers must chunk information efficiently to have any chance at encoding it all. With a set 

size of four items, chunking may not be required to encode all items and VWM may hold 

individual online representations of all items despite the redundancy. This likely occurs in 

tandem with retrieval of LTM at the retrieval stage of the task, which is why the 2-pair CDA 

would then not drop to the same level as in the 2-item condition. This issue is not easily 

addressed by increasing the set size of the displays, as the CDA typically plateaus at a 

memory load of 4 items and it would be difficult to discern any differences between 4 pairs 

and 8 items. However, given recall was significantly better in the paired condition and all 

observers had perfect recall of the colour pairs, we are confident observers did use explicit 

chunking. Thus, it appears that explicit chunking does not influence individual VWM 

representations in the same way Gestalt grouping factors do, as the latter reduce the CDA 

(Balaban & Luria, 2016; Peterson et al., 2015). 

 We found no increase in the early-window CDA for colour pairs, as has been found 

with familiarity for Pokémon (Xie & Zhang, 2018). This suggests that deliberate chunking 

does not speed up consolidation into VWM, even though improvements in VWM 

performance from both explicit chunking and stimulus familiarity are thought to engage 

existing LTM representations. In Chapter 2, we found that consolidation was faster for 
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familiar stimuli, even when matched on factors such as similarity and complexity. It is thus 

likely that explicit chunking does not engage the same attentional processes that lead to faster 

consolidation with familiarity. For example, the chunking bottleneck for colours may occur at 

a later stage in VWM, as the identity of the two separate objects or features (colours in this 

case) have to be confirmed before chunking. This account matches those from an embedded 

process perspective where activated LTM representations retrieved at recall may be the 

reason for improved recall performance. Alternatively, it may be that the colour stimuli, used 

in the present study, are already highly familiar. The consolidation rate of colours has been 

reported to be quite rapid (~50 ms per item; Vogel et al., 2006). Accessing the LTM 

representation of a learned colour pair may then fail to produce detectable increases in the 

consolidation rate, and thus may be why no differences in the early-window CDA were 

observed. High familiarity with the base units that make up the chunk may be required for 

explicit chunking of the units, making it difficult to dissociate the contribution of familiarity 

and explicit chunking to the speed of consolidation of the contents into VWM.  

 Despite finding that the use of explicit chunking improved recall, the current study 

found no evidence of a change to the encoding or representation in VWM occurs as indexed 

by the CDA. The CDA—taken to be a marker of the number of individuated representations 

in VWM—was no different when colours were presented in consistent pairs compared to 

when they were presented in random pairings. This was despite behavioural evidence 

indicating explicit knowledge of the colour pairs led to improved recall, and increased VWM 

capacity estimates. We propose that the most parsimonious account of these results is that 

improved recall relies on activated LTM representations at the retrieval stage, and that 

explicit chunking does not influence object representation in VWM as indexed by the CDA. 

 Appendix 

 If an observer remembers K items, observers will be correct on an average of K in N 

trials (where N is the set size for that condition). On trials in which an item not remembered 

is probed, the observer will guess correctly on 1 in 8 trials on average in an eight-alternative 

forced-choice task. The following derivation is original for this study. 

𝑃 =
𝐾
𝑁 +

𝑁 − 𝐾
𝑁 ×

1
8 

𝑃 =
8𝐾 +𝑁 − 𝐾

8𝑁  

8𝑁𝑃 = 8𝐾 +𝑁 − 𝐾 
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8𝑁𝑃 −𝑁 = 7𝐾 

𝐾 =
8𝑁𝑃 −𝑁

7  

𝐾 =
𝑁(8𝑃 − 1)

7  
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Chapter 5: Thesis Discussion 

 Summary of experimental findings 

The goal of this thesis was to investigate how certain factors can alter the manner of 

encoding and storage of information in visual working memory (VWM) to overcome the 

typical capacity limit of three to four items. The major insight of the present work is that 

deeper consideration should be given to the contributions of long-term memory (LTM) to 

encoding and representation in VWM, and to performance on VWM associated tasks, such as 

change detection and probed recall.  

In Experiment 1 of Chapter 2, we sought to isolate the effect of familiarity on VWM 

performance from its interaction with stimulus complexity and similarity. We compared 

change-detection performance for English letters to the Brussels Artificial Character Set 

(BACS), which was designed to contain the same number of strokes, junctions and 

terminations as English letters and had been shown to have equivalent similarity ratings 

among characters within the set. We also matched the two sets in perimetric complexity, an 

objective measure of stimulus complexity linked to the identification efficiency of letters. 

The familiarity from extensive experience with English letters was associated with 

significantly higher encoding rate and capacity, compared to the novel BACS letters.  

In Experiments 2 and 3, we attempted to produce a benefit of familiarity using a 

recognition-training procedure that previously had been reported to provide a benefit using 

random polygons as stimuli. Although subjects were successfully trained to recognise a 

subset of BACS letters, there was no increase in encoding rate or capacity for the trained 

BACS letters over a novel set. These results suggest that only familiarity from extensive 

experience produces significant benefits in encoding rate and capacity. Having some form of 

learning or LTM trace available is not sufficient to produce familiarity-related improvements 

in VWM performance. 

In Chapter 3, we examined an influential finding suggesting that statistical learning 

can produce an increase in the amount of information held concurrently in VWM. Across two 

experiments, improved recall from the inclusion of statistical regularities in displays was 

dependent on having explicit knowledge of the regularities, rather than occurring through 

implicit learning as argued by Brady et al. (2009). Our results indicate that this form of 

memory compression relies on activation of a relevant LTM trace at retrieval, rather than a 

change to the representations during encoding.  
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In the final empirical chapter (Chapter 4), the behavioural paradigm from Chapter 3 

was adapted for the measurement of the contralateral delay activity (CDA). The CDA is a 

neural marker thought to index the number of individuated representations held in VWM, in 

part because it is sensitive to perceptual grouping cues. In the critical condition of our 

experiment, subjects were informed of the colour pairs they would see in the displays, to 

encourage explicit chunking of the objects in the memory array. Recall was significantly 

more accurate in this condition compared to when the colours were not paired. Despite this, 

the CDA was not significantly different between these conditions. These results suggest that 

the improved recall associated with pairing relies on LTM activation during retrieval rather 

than any change to the encoding of the representations in VWM. 

Overall, there were two main results in this thesis revealing significant effects on 

encoding and capacity in VWM. Firstly, English letters produced a faster encoding rate and a 

larger capacity limit compared to novel BACS letters. This effect was apparently due to 

greater familiarity with the English letters, as the character sets were otherwise matched in 

complexity and similarity. However, benefits of familiarity were not reproduced following 

recognition training of a subset of BACS letters, suggesting more extensive experience is 

required. Secondly, the inclusion of statistical regularities in a memory display produced 

significantly enhanced recall, but only in those observers who had gained explicit awareness 

of the regularities. Observers without awareness did not show any improvement. 

Additionally, the CDA did not change despite improved recall produced by explicit 

chunking, suggesting this benefit manifests not at encoding or storage, but rather at retrieval. 

Improvements associated with both pairing and (extensive) familiarity appear to rely on 

contribution from LTM, pointing to a complex interaction between VWM and LTM that has 

been somewhat overlooked in classic models of VWM. 

 Implications for classic models of VWM 

The capacity of VWM has classically been explained using resources or slots models. 

Resource models posit a finite amount of resources for storing items in VWM; more complex 

objects—those containing more features—require more resources (Alvarez & Cavanagh, 

2004). Therefore, fewer complex items than simple items can be stored in VWM. Slots 

models suggest all features of an object are integrated into one representation such that each 

object is stored in a single slot (Luck & Vogel, 1997). Neither type of model inherently 

predicts influences from LTM, such as those related to familiarity and chunking reported in 

this thesis. How might these models be amended to account for such effects?  
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In the case of a resources model, the consumption of resources for storage in VWM 

may vary according to perceptual fluency, a metric that combines subjective complexity, 

similarity and familiarity. An individual becomes more fluent with the stimuli as the 

distinguishing features of the stimuli are learned, reducing their subjective complexity and 

similarity. For successful change detection, fluency provides a benefit in part because the 

individual needs to encode only the distinguishing features rather than the whole object, 

using less resource. Alternatively, expertise may allow the chunking of features into LTM 

representations of the entire objects. We favour linking the distribution of resources to 

perceptual fluency as it allows the resource model to explain results in which VWM capacity 

changes with complexity, similarity and familiarity manipulations in a cohesive manner 

(Awh et al., 2007; Buttle & Raymond, 2003; Jackson & Raymond, 2008), whereas the 

availability of entire object LTM representations does not explain the effects of complexity 

and similarity.  

The idea of perceptual fluency also has been raised with respect to statistical learning. 

In a similar result to those we report in Chapter 2, recent work suggests that an individual’s 

familiarity with stimuli moderates statistical learning performance far more than the 

complexity of those stimuli (Perfors & Kidd, 2018). Perceptual fluency might also explain 

the strong correlation between visual search rates and VWM capacity for stimuli of varying 

complexity upon which resources models of VWM are grounded on (Alvarez & Cavanagh, 

2004; Eng et al., 2005). As the observer becomes more fluent with the stimuli, the target 

object may be located more quickly as the distinguishing features are known to the observer. 

Initial visual search rates for completely unfamiliar stimuli may reflect the complexity of the 

stimulus (because complexity is the primary determinant of initial fluency. After gaining 

expertise, visual search rates may more closely track the observer’s perceptual fluency with 

the stimulus. If VWM capacity is also tied to perceptual fluency, the correlation between 

VWM capacity and initial visual-search rates may decline. 

It is unclear whether a slot-based model can account for increases in both the rate of 

consolidation and storage capacity in VWM produced by expertise. Slot-based models make 

the strong prediction that objects are stored in VWM with all their features integrated. 

Perceptual fluency may allow the observer to store only the distinguishing features of an 

item, speeding up consolidation as fewer features require integration prior to storage in 

VWM. But it is not apparent how this would lead to increased storage capacity, which strictly 

requires an increased number of slots for storage. The effect of familiarity on capacity 
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previously has been disputed. Apparent differences, such as those reported between famous 

faces and novel faces (Buttle & Raymond, 2003; Jackson & Raymond, 2008), may be an 

artefact of insufficient encoding time (Xie & Zhang, 2018). That is, capacity appears larger 

for familiar stimuli because after a limited time for encoding, the more slowly encoded 

unfamiliar stimuli have not yet saturated VWM. However, we found significant increases in 

capacity with familiarity when we modelled storage capacity using exposure times at which 

performance has clearly plateaued, suggesting such differences persist when encoding time is 

sufficient for saturation of VWM (Chapter 2).  

Chunking may better account for familiarity-related changes in VWM capacity within 

a slot-based model. Under this proposal, the individual features of unfamiliar stimuli would 

be stored in separate slots; stimulus familiarity would then allow the features of an object to 

be chunked together and stored in a single slot. This proposal brings the encoding of 

unfamiliar stimuli closer to the initial resources model proposed by Alvarez and Cavanagh 

(2004) (whereby resources are distributed according to the number of features in the stimuli), 

with the added constraint on the maximum number of features that can be stored 

concurrently. A point of resolution between slot and resource models thus may come by 

considering the effect of stimulus familiarity. That is, the features of unfamiliar stimuli are 

encoded and stored in VWM according to a resource-like model, while expertise allows the 

storage of stimuli in an object-like manner as in a slots model. Note that this change in 

storage format may require extensive training that enables the recruitment of differential 

brain areas (Moore, Cohen and Ranganath, 2006), that is beyond the training of stimulus 

recognition given our findings reported in Chapter 2. Characterising the moment that storage 

format may shift, and whether this shift occurs in a discrete or continuous fashion, appears 

important to understanding the nature of capacity limits in VWM.  

 Embedded process model of VWM 

The embedded process perspective, which characterises the complex interaction 

between VWM and LTM, is one framework that can help explain the limits of VWM found 

in the present experiments. We have relied on Cowan’s (1999) conceptualisation comprising 

three distinct layers of memory: a base layer that contains all LTM representations, a middle 

layer where a subset of LTM is activated, and lastly the limited number of online 

representations held in the focus of attention—or what we have referred to as VWM. The 

debate over the nature of representations epitomised by slot and resource models is centred 

on this focus of attention. A critical aspect of the embedded process perspective, marginalised 
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by much of the slots and resources debate, is that activated LTM representations can fluidly 

shift into the focus of attention to affect behaviour on change-detection or recall tasks 

typically assumed to involve only VWM. This presents a noteworthy challenge to the 

characterisation of the VWM capacity limit especially if activated LTM representations are 

recruited when memory is accessed at test (Oberauer & Lin, 2017). Capacity estimates 

measured with behavioural responses at the end of a trial, such as with change-detection or 

probed recall, would then be inflated with the recruitment of activated LTM. 

The embedded process perspective helps to explain the combination of behavioural 

results from Chapter 3 and neural measures from Chapter 4. When we included statistical 

regularities in memory displays by increasing the likelihood of certain colour pairs, only 

observers who possessed explicit knowledge of the colour pairs produced significantly 

improved recall on those displays. In contrast, recall performance by unaware observers was 

unchanged. Increased VWM capacity estimates were contingent on explicit awareness of the 

colour pairings, which we interpreted as reflecting the acquisition of LTM representations. 

Huang and Awh (2018) found that these improvements in recall only manifest if subjects are 

allowed a long response time, which they suggest is because this time is required for the 

retrieval of LTM representations. But despite improved recall when observers were relying 

on explicit knowledge of statistical regularities, the CDA—a neural measure of the number of 

individuated representations held in VWM—was no higher than it was in the absence of such 

regularities. These last results are consistent with the proposal that LTM representations are 

activated at recall, but the representations in the focus of attention are unchanged.  

It is important to note that we do not claim to have found evidence supporting the 

embedded process theory as a model of working memory; we suggest only that its framework 

of interactions between VWM and LTM provides a useful account of the findings reported 

here and elsewhere. There exist many forms of embedded process models with various 

numbers of layers and different capacity limits (e.g. Ericsson & Delaney, 1999; Jonides et al., 

2008; Oberauer, 2002). A significant challenge for future research is to clarify the distinction 

between activated LTM and VWM. Recent research on the role of VWM and LTM in the 

deployment of attention during visual search might inform potential approaches to this 

challenge. The CDA decreases after repeated presentations of the same target in a visual 

search, suggesting the target may be represented in LTM rather than VWM (Carlisle et al., 

2011). This reduction in CDA has been found to correspond to increases in the amplitude of a 

different event-related potential component known as the P170, thought to index LTM 
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activation (Reinhart & Woodman, 2014; Woodman, Carlisle, & Reinhart, 2013). The use of 

activated LTM representations rather than online VWM representations, predicted by 

embedded process models, would be substantiated if the same reduction in CDA and 

corresponding increase in P170 amplitude were observed during VWM tasks using familiar 

stimuli. 

 Future directions and limitations 

When comparing differences in capacity estimates across stimuli, observers’ 

familiarity with the stimuli must be taken into account. While extensive familiarity can lead 

to changes in VWM performance, it is unclear how this occurs. Familiarity may speed up 

encoding into VWM (Xie & Zhang, 2018), such that some apparent capacity differences are 

due to insufficient encoding times; but it may also influence sample-test similarity (Awh et 

al., 2007) as items become more readily distinguishable with increasing familiarity. A 

limitation of the present studies is the lack of a measure that captures an observer’s 

perceptual fluency with a stimulus (Perfors & Kidd, 2018). One method to account for the 

effects of familiarity is to provide training using initially novel stimuli. Our recognition 

training, however, did not produce any improvement in change detection. This may be 

because the subjective similarity between trained and novel items was reduced, while the 

similarity among trained items was unaffected, meaning that sample-test similarity remained 

equivalent between conditions. A future study could directly examine the influence of 

recognition training on encoding and sample-test similarity by having a trained item change 

to a novel item, or vice versa, in a change-detection task. Significantly better performance 

when a trained item changes to a novel item compared to the opposite would support the 

notion that recognition benefits encoding in VWM because the degree of change is equivalent 

in both situations. This encoding benefit might also be reflected in the early-window CDA, as 

observed by Xie and Zhang (2018) in observers familiar with Pokémon characters. It should 

be noted that training might only produce improvements when it has been extensive enough 

to build corresponding neural pathways, as suggested by increased activation of 

occipitotemporal cortical areas during encoding and maintenance on a WM task specifically 

for trained, but not untrained, polygons (Moore et al., 2006). How familiarity and training 

shape working memory has important implications for real-world applications of change 

detection and visual search, such as in radiography and airport baggage scanning. 

Behavioural indices of VWM performance, such as change detection or recall, may be 

insufficient to fully appreciate the nature of VWM, because LTM representations may be 
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activated at test and affect behaviour. One approach, used in the present study, is to collect 

behavioural evidence in conjunction with neural measures such as the CDA to examine 

activity during the retention period. The CDA has been observed to reduce with perceptual 

grouping cues (Luria & Vogel, 2014), such that the CDA appears to index discrete item-

based representations. We observed improved recall with explicit chunking of displays but it 

without an accompanying reduction in the CDA. This result suggests that the observed  

increase in VWM capacity with statistical regularity did not occur through efficient memory 

compression as posited by Brady et al. (2009). Instead, we have proposed that activated LTM 

representations recruited at recall produce this result. It is far from certain, however, that 

higher-order chunking does not influence the online representations indexed by the CDA. 

Extensive experience and training may be required for LTM to influence the online 

representations of objects in VWM, and for such changes to be reflected in the CDA. In our 

study, observers were not trained but informed of the colour prior to the tasks. While this was 

successful in producing improved recall performance, it may be insufficient to produce 

changes to encoding or storage in VWM itself. Further, the task demands did not necessitate 

explicit chunking because set sizes were within the typical VWM capacity limit of three to 

four items. A future study could use stimuli that require the chunking of multiple elements 

into a single representation, such as dice patterns. Canonical dice patterns likely have learned 

LTM representations that may be recruited during encoding in VWM, producing a CDA 

corresponding to the number of dice rather than the number of dots. Jumbled dice patterns, 

however, do not have such LTM representations and the CDA may reflect instead the number 

of dots in the dice patterns (within VWM capacity limits). If this is the case, observers could 

be trained to learn specific random dice patterns to examine the point at which learning 

influences the online representation in VWM.  

One aspect of working memory not directly examined in the present thesis is the 

fidelity of the representations held in VWM. Fidelity in VWM is typically measured using 

recall on a continuous scale, such as a colour wheel (Zhang & Luck, 2008). The dispersion of 

responses around the true value of the presented object indexes the precision of VWM 

representations. Using this approach, some have presented evidence that three items are 

stored with a constant precision and any extra items are not represented at all (Zhang & Luck, 

2008), while others suggest all items are stored but representations become noisier as more 

items are stored (Bays & Husain, 2008). Gaining perceptual fluency may involve the fine-

tuning of representations in VWM such that there are gradual increases in precision. This 
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would correspond with objects becoming subjectively less similar to each other. In fact, it has 

been shown that the precision of representations measured using a continuous scale appears 

to be perfectly modelled by psychological distance, or the subjective similarity of items 

(Schurgin, Wixted, & Brady, 2018). Unfortunately, it is not straightforward to adopt a 

continuous scale for the stimuli used in the present thesis (English letters, Brussels Artificial 

Characters) to explore the influence of perceptual fluency on the fidelity of the 

representation. It might be expected that an observer whose profession involves 

distinguishing colours, perhaps a painter or graphic designer, may show a higher precision for 

colour that leads to a higher VWM capacity for colours; it is, however, unclear exactly how 

this finding from expertise with colours would relate to the increased capacity we observed 

for English letters over novel, artificial characters. 

 Conclusion 

The instances examined in the present thesis in which the typical capacity limit of 

VWM is overcome suggest a significant contribution of LTM but one that is not adequately 

addressed by classic slots models or resource models. The online representations in VWM do 

not appear to be readily influenced. Change detection was unchanged following recognition 

training, and the CDA did not reduce with explicit chunking. However, according to an 

embedded process framework, extensive experience may shape these representations in 

VWM—perhaps by fluidly shifting activated LTM representations into the focus of attention. 

The conjunction of behavioural and neural measures such as the CDA appears valuable in 

understanding the interplay of VWM and LTM, and the core processes involved in visual-

cognition tasks.
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