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Abstract  

 

The last 1-2 decades have seen remarkable advances in organ procurement and preservation 

practices, especially with renewed enthusiasm for machine perfusion (MP) technology. However, 

cold static storage (CS) remains the most popular world-wide approach for the preservation of 

organs such as the kidneys, liver, and pancreas, largely due to its simplicity. It is clear that CS 

techniques have limited potential for further improvement, and will likely be supplanted and/or 

supplemented with MP technologies over the coming years due to the reparative, resuscitative, and 

assessment capabilities afforded by MP. This is especially important as we increase our utilisation 

of marginal and/or donation after circulatory death (DCD) organs to meet the ever-increasing 

demand requirements for transplantation. 

 

This dissertation explores selected aspects of abdominal organ procurement and preservation as 

targets for improvement and/or modification with the aim to enhance recipient transplantation 

outcomes. The kidney is used as a model organ for the development and exploration of MP as a 

means to ameliorate transplant organ ischaemia-reperfusion injury (IRI), including through the 

targeted delivery of anti-IRI drugs. In contrast, the optimization of CS protocols, including 

identification of ideal perfusion fluids and in situ perfusion routes, forms the basis for liver and 

pancreas transplantation work in this thesis. Such investigations are necessary to promote 

uniformity of practice between centres, and allow appropriate comparisons between MP and CS. 

 

The kidney MP work was guided by a systematic review and meta-analysis comparing MP and CS 

in the clinical and pre-clinical setting. Although hypothermic MP (HMP) was shown to enhance 

short-term graft outcomes, results were equivocal with respect to graft survival, especially in the 

DCD setting. Preliminary evidence indicated the potential superiority of normothermic MP (NMP) 

above HMP or CS, which may be further enhanced by using NMP as a conduit for directed drug 

delivery to the kidney to ameliorate IRI. We therefore developed and optimized a local NMP set-

up using a series of porcine kidneys, which was then utilized to deliver the anti-IRI agent CD47-

blocking antibody (αCD47Ab) in a porcine DCD model. The significant potential of this agent was 

initially confirmed by testing in a murine model of severe warm IRI, including its comparative 

efficacy to two other promising IRI agents, soluble complement receptor 1 (sCR1), and 
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recombinant thrombomodulin, and also sCR1 in combination with αCD47Ab. αCD47Ab was 

successfully delivered to porcine DCD kidneys using NMP, with subsequent downstream positive 

impacts upon renal perfusion, and some functional and IRI-related parameters. 

 

The clinical utilisation of renal NMP has so far been limited to the UK, and this modality has not 

been tested in human kidneys in Australasia. Furthermore, the mechanistic basis of brief renal 

NMP is not entirely clear. Therefore, and as a prelude to a phase I clinical trial, NMP was tested in 

discarded deceased donor human kidneys. Fifteen kidneys were obtained from 10 donors, and 

successfully underwent NMP. NMP was especially effective for assessing and improving DCD 

kidneys discarded for poor macroscopic perfusion at retrieval. Flow cytometry analyses showed 

evidence of a massive passenger leukocyte efflux during NMP. In paired kidney analyses, one 

hour of NMP was shown to be superior to CS alone after simulated transplantation using ex vivo 

whole allogeneic blood reperfusion, in terms of renal perfusion and functional parameters. Whole 

transcriptome RNA sequencing revealed NMP-mediated induction of protective stress and 

inflammatory-related pathways, in addition to a reduction in cell death pathways. Accordingly, 

immunofluorescence techniques confirmed a reduction in cell death and IRI in NMP kidneys 

compared to their CS counterparts.  

 

CS and procurement techniques formed the basis of liver and pancreas transplantation-related 

studies conducted for this thesis. Firstly, we showed that blood transfusion requirements can be 

significantly reduced in recipients if the pancreas is retrieved using ultrasonic shears (Harmonic 

Scalpel), implying a reduction in procedural risk and recipient sensitization. Two systematic 

reviews and meta-analyses were then conducted to ascertain optimal in situ perfusion/preservation 

fluids, and perfusion routes, during procurement of pancreatic and hepatic allografts. There was a 

lack of overwhelming evidence favouring any specific preservation fluid, although University of 

Wisconsin solution will likely remain the solution of choice, especially for the pancreas. 

Furthermore, in standard criteria donors, aortic-only perfusion was found to produce equivalent 

liver transplant outcomes in comparison to dual (aorto-portal perfusion). However, existing studies 

included small patient numbers and short periods of follow-up. We therefore compared aortic and 

dual perfusion during liver retrieval using the Australia and New Zealand Liver Transplant 

Registry, which provided a much larger patient cohort with prolonged follow-up. This study 

confirmed the equivalence of aortic-only and dual perfusion in standard criteria liver donors, 
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however there was also evidence indicating the superiority of dual perfusion in a subset of 

suboptimal/higher risk donors.  

 

Overall, this thesis expounds upon the putative benefits of NMP in kidney transplantation, 

including by directed drug delivery targeting the IRI cascade, and also enhances our understanding 

of optimal perfusion routes and preservation fluids for the liver and pancreas. The ultimate aim is 

to facilitate expansion of the donor pool whilst simultaneously enhancing recipient transplantation 

outcomes through the evidence-based implementation of technologies and techniques in a unified 

and coordinated manner.  
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Chapter 1 - Introduction  

 

Organ transplantation is a life-saving and life-altering process for thousands of recipients 

worldwide each year. The immediate post-implantation period is characterized by the 

complexities of the ischaemia-reperfusion cascade and the alloimmune response, the severity of 

which largely determines immediate and longer term graft function. Indeed, improvements in 

methods to modulate ischaemia-reperfusion and alloimmunity comprise the majority of 

transplantation research. The ultimate goals of such research are the amelioration of ischaemia-

reperfusion and induction of tolerance to promote life-long graft survival. 

 

However, transplantation outcomes are influenced by events that occur well in advance of the 

transplantation procedure itself. Transplantation requires a suitable organ donor, whom may be 

deceased or, in certain circumstances, living. The donor must be managed appropriately, with 

management strategies dictated by evidence-based guidelines, local laws, and resource 

availability. The organ must then be procured safely and effectively, avoiding anatomical 

damage and minimizing any warm ischaemic insult. There-in, it is the responsibility of the 

procurement team to ensure appropriate storage and preservation of the graft during transport to 

the recipient centre. Organ transplantation must then proceed in a technically sound and timely 

manner to avoid major surgical complications that may compromise the graft and/or patient. 

After implantation commences the life-long process of medical management of the patient, 

including the institution of tailored immunosuppression regimens. 

  

This dissertation focuses on the defined phase in transplantation starting from surgical 

procurement of the major abdominal organs, the kidney, liver, and pancreas, to the point of 

transplantation, and how certain processes can be modified and/or improved to enhance recipient 

graft function. This exploration will occur in the context of the increasing use of more marginal 

organs to help reduce ongoing donor organ shortages. Preservation of the deceased donor kidney 

will form the core of this thesis, investigating the modulation of ischaemia-reperfusion injury 

(IRI) using pharmacologic agents and machine perfusion (MP). Selected aspects of liver and 

pancreas procurement and preservation will also be analyzed with respect to their impacts on 

post-transplantation outcomes. 
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1.1 The need for organ transplantation, organ supply & demand, and maximizing the 

donor pool 

Organ transplantation represents the best viable long-term treatment option for diseases such as 

end-stage renal failure (ESRF) and type I diabetes mellitus (DM). Liver transplantation, in the 

context of hepatic failure, is an immediately life-saving procedure. 

 

The acceptance and growth in transplantation as a therapeutic option is justified by both short 

and long-term clinical outcome data, and patient quality of life (QoL) parameters. In a systematic 

review incorporating data from close to two million patients, Tonelli et al. compared renal 

transplantation outcomes to those achieved with long-term dialysis
1
. The authors showed 

significantly reduced mortality and cardiovascular complications, in addition to enhanced QoL, 

in transplanted patients. Similarly, successful pancreatic transplantation, or replacement of beta-

cell function through islet cell transplantation, reduces patient mortality and undoubtedly 

improves QoL as the need for exogenous insulin therapy and further complications from DM are 

minimized.
2
 Furthermore, analyses of liver transplantation have shown a realistic possibility of 

long-term survival and superior QoL outcomes.
3, 4

  

 

The reality however is that there is a perpetual shortage of available organs with respect to 

demand.
5-8

 This disparity is not only reflected in transplant wait times, but also in proportions of 

patients with end-stage organ disease removed from active waiting lists, and/or dying whilst 

wait-listed. As an example, median waiting time for renal transplantation in Australia is 2-3 

years, with more than 1000 patients on the waiting list during any one time.
9
 Of particular 

relevance and oft-forgotten is that these statistics will still grossly misrepresent the true shortage 

of donor organs. This is because only a small percentage of patients with end-stage organ disease 

are actively placed on waiting lists due to relatively strict eligibility criteria to account for donor 

shortages.  

The ongoing shortage of donor organs has necessitated the implementation of multiple strategies 

to address this deficiency. These encompass a host of domains, including interventions aimed at 

(i) the education of relevant stakeholders and the public at large regarding transplantation, in 

association with policies regarding donation consent and allocation (also including regulated live 

donor and/or paired organ exchange programs); (ii) enhancing the pre-procurement management 
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of potential donors to minimize organ deterioration; (iii) improving procurement and 

preservation techniques such that graft outcomes are optimized and discard rates are minimized; 

and (iv) widen the number of potential organs through (a) the loosening of organ acceptance 

criteria, such as donation after circulatory death (DCD) and expanded criteria donor (ECD) 

organs, and (b) exploring alternative sources for donor allografts, primarily through research into 

xenotransplantation and in some cases stem-cell derived sources.  

 

1.2 Organ procurement, preservation, and transplantation – major concepts  

1.2.1 DECEASED DONORS – TYPES AND DEFINITIONS 

Deceased donor organ donation can occur after the irreversible cessation of brain function or 

following circulatory arrest. The former places donors in the donation after brain death (DBD) 

category, whilst the latter classifies them as donation after circulatory death (DCD) donors.  

 

DCD donors can be further sub-classified based on the pattern/nature of circulatory arrest. The 

primary classification system in this regard was developed after a consensus meeting in 

Maastricht, The Netherlands.
10

 Overall there are five DCD donor categories.
11, 12

 DCD I to V 

donors are defined by death on arrival (I), failed resuscitation (II), cardiac/circulatory arrest 

awaited (III), circulatory arrest in a DBD donor (IV), or unexpected circulatory arrest in a patient 

who has critical illness (V), respectively.
11

 Controlled DCDs encompass category III and IV 

donors in which life support measures are withdrawn in a controlled/planned manner, whilst 

Maastricht I, II and V donors are ‘uncontrolled’.
13

 The majority of DCD donation occurs in a 

controlled fashion, and uncontrolled DCD donation is limited to a few countries. Currently 

within the Australian and UK setting, only Maastricht III or IV donors can proceed to 

donation.
14, 15

 

 

Expanded criteria donors (ECD) are named as such due to an anticipated shorter graft life-span 

after transplantation in comparison to standard criteria donor (SCD) grafts. ECDs can 

incorporate both DCD or DBD donors. Within the sphere of kidney transplantation, ECD 

terminology has largely been supplanted by the related concepts of the kidney donor risk index 

(KDRI) and kidney donor profile index (KDPI). However, ECD and high KDPI will be used 

interchangeably in this thesis due to ongoing use of ECD in the literature. The KDRI and KDPI 
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estimate risk of graft failure relative to other donor kidneys.
16, 17

 The Australian KDPI score 

incorporates donor age, history of hypertension or DM, height/weight, cause of death (COD) as 

stroke, terminal creatinine level, and DCD pathway within overall scoring.
16

 A high KDPI 

generally equates to a score >80-85%.
18, 19

 The older ‘ECD’ definition for kidney donors defined 

ECD as a donor either greater than 59 years old, or between the ages of 50 and 59 years and 

having at least two of the following three variables – death due to a cerebrovascular accident, a 

history of hypertension, and/or a terminal serum creatinine that exceeds 1.5 mg/dl.
12

  

 

Liver ECD definitions vary, with no clear consensus, but once again encompass higher risk 

donors. Donor-related risk factors that may be associated with graft failure can include increased 

age, hypernatraemia, hepatitis B or C, transaminitis as a marker of ischaemic damage, and/or 

macrosteatosis.
20, 21

 The Donor Risk Index (DRI), and in Europe the Eurotransplant DRI (ET-

DRI), attempt to more formally define the contribution of donation-related factors to subsequent 

graft failure.
22, 23

 These indices include within the risk scores such factors as advanced donor age, 

donor COD, the use of partial grafts, ischaemic times, DCD pathway, and graft shipping. 

 

A consensus ECD definition also does not yet exist for pancreas transplantation, although it can 

be argued that a donor who does not fit within ‘standard’ acceptance criteria can be considered 

an ECD.
24

 This may include donors above 45-50 years of age, with/without obesity, and dying 

due to cerebrovascular accident, and/or circulatory death.
24-26

 The Pancreas Donor Risk Index 

(PDRI) was proposed in 2010, and considers parameters such as elevated donor age (> 28 years), 

body mass index > 24, COD as stroke, cold ischaemic time > 12 hours, and the DCD pathway as 

risk factors for graft loss.
27

 An alternative score was developed for the Eurotransplant region, the 

Pre-procurement Pancreas Allocation Suitability Score (P-PASS), incorporating purely donor-

related factors, including intensive care unit stay, and donor amylase and lipase levels.
28

  

 

1.2.2 DECEASED DONORS – UTILISATION AND OUTCOMES BY TYPE 

DBD donors continue to represent the highest proportion of organ donors in Australia, USA, and 

Europe. However, the landscape of organ donation with respect to acceptable donor risk factors 

has changed significantly over the past few years in order tackle the problem of organ shortages. 

The greatest change has been in the proportion of ECD and DCD donor organs utilized. In 
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Australia in 2017, 70% of all donors resulted from the DBD pathway, whilst 30% of donors were 

from the DCD category; in comparison, the corresponding percentages for 2009 were 83% and 

17% for DBD and DCD donors, respectively.
29

 In contrast, DCD donors represent 17-18% of all 

deceased donors in the USA, and a much larger 39% in the UK.
15, 30

 In general, donor age has 

also seen a significant increase in Australia over the last decade, and comorbidities such as DM, 

hypertension, and smoking are much more prevalent in donors today compared to even 10 years 

ago.
31

 

 

Kidney transplantation outcomes from DCD and ECD/higher KDPI donors are not equivalent to 

those achieved from SCD DBD donors. Even before reaching the stage of transplantation, there 

is a significantly greater risk of discarding grafts retrieved from DCD and/or higher KDPI 

donors.
32-34

 DCD and ECD kidneys confer a higher risk of early graft loss due to primary non-

function (PNF) or vascular thrombosis.
35-37

 Delayed graft function (DGF) rates, most commonly 

defined as the requirement for dialysis in the first week post-transplantation, are significantly 

higher in both DCD and ECD kidneys.
37-41

 DGF in turn is associated with greater hospital 

length-of-stay and costs.
42-44

  

 

The relationship between the use of marginal and/or DCD kidneys and long-term graft survival is 

more complicated. A large multi-institutional study from the UK showed equivalent 5-year graft 

survival in DCD and DBD kidneys.
38

 However amongst both DBD and DCD donors, increasing 

donor age, cold ischaemic times (CITs), and stroke as a COD were associated with graft 

failure.
38

 A more recent large cohort study from the Netherlands showed similar 10-year graft 

and patient survival rates after kidney transplantation from DCD or DBD donors.
37

 Other studies 

similarly show no impact on long-term graft survival,
45-47

 although there may be a trend towards 

inferior graft survival in the higher risk donors after a 10 year period.
48

 Regardless, the presence 

of multiple risk factors within the same donor such as increasing age and/or comorbidities 

reduces graft survival.
44

 

 

Difficulties arise when considering the impact of DGF on graft and patient survival in DCD 

kidney transplantation. A paired kidney study comparing survivals in DCD kidney pairs with and 

without DGF showed a significantly higher risk of graft loss in the DGF grafts.
49

 Similarly, 



7 
 

increased risk of graft loss was shown in paediatric recipients of DCD grafts with subsequent 

DGF.
50

 In contrast, other authors suggest that the occurrence of DGF has no subsequent impact 

on graft survival in DCD transplantation.
51-53

 Another large paired registry analysis conversely 

suggested that DGF adversely impacts on graft survival, but only in the first post-transplant 

year.
54

 Duration of DGF and/or functional recovery of renal filtration may be a more important 

consideration and determinant of subsequent graft loss.
55, 56

 Another reason for differences 

between studies may be attributed to the alternate definitions of DGF used (dialysis-based versus 

creatinine clearance-based). However, the negative impact of DGF on DBD transplant survival 

appears to be much clearer in comparison to its impacts on DCD kidney transplants.
37, 52, 53

 

Importantly, even when accounting for increased DGF, DCD and/or ECD kidney transplantation 

continues to offer a significant survival advantage, improved access to transplantation, improved 

QoL, and cost advantages when compared to remaining on dialysis.
19, 35, 57-59

   

 

The DCD and/or ECD categories have a clearer impact upon graft and patient survival after liver 

transplantation. A large multi-centre cohort study from the UK showed a higher graft loss 

conferred upon DCD livers.
60

 This trend is also shown in other studies, including meta-

analyses.
61-63

 Much of this difference is probably attributable to a greater incidence of ischaemic-

type biliary lesions (ITBL) in DCD liver transplants.
61-63

 Indeed, DCD livers that do not develop 

ITBL likely have similar survivals compared to matched DBD livers.
64

 ‘Expanded’ criteria 

livers, characterized by such factors as increased donor age, ischaemic time greater than 8 hours, 

and macrosteatosis, tend to have worse outcomes.
22, 23, 65

 Younger DCD donor livers appear to 

perform better in comparison to older DBD livers and therefore careful selection of DCD donors 

and an emphasis on keeping ischaemic times short can significantly close any gaps in outcomes 

between DCD and DBD livers.
66, 67

  

 

Within the realm of pancreatic transplantation, long-term success equivalent to that seen from 

DBD donors can be achieved with DCD pancreases.
68-70

 A large cohort study from the UK 

confirmed this finding, although DCD pancreases were used from significantly younger donors 

compared to the DBD cohort.
25

 A recently published study investigated the medium-term 

comparative efficacy of selective ECD pancreatic allografts, utilizing donors with an age of 50-
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60 years and/or BMI of 30-34. In comparison to SCD organs, ECD pancreases had a very similar 

one-year graft survival.
71

 

 

1.2.3 MULTI-ORGAN PROCUREMENT 

Organ procurement requires efficient and safe organ dissection and removal to facilitate effective 

transplantation outcomes. The rapidity and exact nature of the retrieval process is significantly 

impacted by whether the donor is within the DBD or DCD subclass. Procurement can be 

undertaken for single organs or multiple organs from the same patient; both abdominal and 

thoracic organs may be obtained from a donor, if indicated and suitable. Furthermore, donor 

organs can be retrieved individually, or in some cases can be removed from the donor in an en 

bloc fashion, after which they are separated on the back-table. 

 

The standard multi-organ DBD donor proceeds utilizing a method originally described by Starzl, 

which was later modified by the same author into a rapid procurement technique.
72, 73

 

Preliminary dissection of organs is minimized, and the procurement procedure proceeds in a 

more stream-lined fashion. Procurement occurs in the ‘warm’ and ‘cold’ phases, representing the 

period before and after the cold in situ perfusion/flush, respectively. Primary steps in this 

procedure, which are facilitated by mobilization of the large bowel and small intestinal 

mesentery, include: 

 A general laparotomy, inspecting the abdomen for pathology that would contra-indicate 

donation (e.g. cancer); 

 Dissection of the supracoeliac aorta;  

 Dissection of the aorta at its bifurcation into the common iliac arteries; 

 Distal aortic cannulation with or without portal venous cannulation; 

 Minor preliminary organ dissection (warm phase), in particular involving 

dissection/identification of vital structures that may easily be damaged in the cold phase 

(e.g. ureters, portal structures); 

 Supracoeliac aortic cross-clamping and cold in situ perfusion (~2-4 degrees Celsius) via the 

aortic cannula (and portal vein, if applicable); blood/perfusion fluid is vented via the inferior 

vena cava (IVC) after cannulation or into the thoracic cavity following transection; 
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 Cold dissection and removal of relevant organs, along with suitable lengths of supplying 

arteries and draining veins; aberrant anatomy must be accounted for; and 

 Back-table dissection and perfusion of organs prior to subsequent storage and 

transportation.
73, 74

   

Modifications to Starzl’s methods exist, involving variable levels of preliminary organ and 

vessel dissection in the warm phase.
74

 Although no systematic evidence exists, Brockmann et al. 

found no significant evidence of organ compromise when multi-organ retrieval of the liver, 

pancreas and kidneys is undertaken.
75

 Furthermore, rapid procurement techniques with minimal 

warm-phase dissection do not tend to impair graft function.
75

 Additionally, en bloc organ 

removal, in contrast to separate dissection and removal, is likely associated with improved liver 

and pancreas graft outcomes.
75

 

 

In contrast, DCD organ procurement requires the rapid administration of cold in situ perfusion as 

an initial step, such that the organs’ warm ischaemic insult is minimized. Casavilla, from Starzl’s 

group in Pittsburgh, described this ‘super-rapid’ technique in 1995.
76

 It entails a swift 

laparotomy, exposure of the distal aorta, followed by immediate cannulation and cold 

perfusion.
76

 Cold phase dissection of the organ(s) of interest is then undertaken prior to their 

removal. Alternative techniques that may be considered in the DCD setting, in particular the 

potential use of ante-mortem interventions, are considered in section 1.4. 

 

1.2.4 IN SITU ORGAN PERFUSION AND STATIC METHODS OF PRESERVATION 

A cold in situ systemic vascular flush must be undertaken during organ procurement in order to 

induce rapid organ cooling, remove static red blood cells (RBCs), and provide an appropriate 

substrate for subsequent organ preservation. Cooling of the organ must be achieved such that its 

metabolic rate is dropped in the absence of a blood supply; each 10 degree Celsius reduction in 

temperature causes an approximately two-fold reduction in enzyme activity.
77

 The type of fluid 

used for the in situ organ flush is generally subsequently used for organ storage during 

transportation to the transplant centre. 

 

Perfusion/preservation fluids 
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Cold organ preservation fluids should ideally minimize and/or reverse the following cellular and 

subcellular processes occurring within the organ of interest secondary to an absent blood supply 

(also see Section 1.3):  

 Disrupted ionic pumps and ion accumulation and/or depletion, with additional downstream 

effects; 

 Altered redox potentials; 

 Cellular oedema; 

 Acidosis; 

 Accumulation of reactive oxygen species (ROS), including in mitochondria; 

 Adenosine triphosphate (ATP) depletion; and, 

 Disruption of glycolytic pathways.
77-79

 

 

Current static hypothermic preservation solutions can broadly be classified as (i) intracellular 

versus extracellular or intermediate, based largely upon the solution’s potassium content, and/or 

(ii) low viscosity versus high viscosity solutions.
80

 Common components include colloid and/or 

impermeants to counteract cellular oedema, antioxidants for protection against ROS generation, 

ATP precursors to allow replenishment upon reperfusion, and buffers to retard the acidosis 

attendant with organ ischaemia.
80

 University of Wisconsin (UW) solution is arguably the most 

well-known and commonly utilized fluid. Other popular preservation fluids include histidine-

tryptophan-ketoglutarate (HTK, or Custodiol), Celsior, Eurocollins, Marshall’s 

(Ross/Hyperosmolar Citrate), and Institute Georges Lopez (IGL)-1.
78

 

 

Perfusion routes, techniques and volumes, and static storage during transportation 

Abdominal organ perfusion prior to procurement is primarily undertaken via the aorta, with the 

option of undertaking additional portal venous perfusion (‘dual’ perfusion) for liver retrievals. 

Unfortunately to date there has been no uniformity in guidelines regarding whether the aortic or 

dual perfusion route should be employed.
81-83

 Furthermore, another potential variation exists in 

the use of a ‘pre-flush’ whereby a fluid that is not the final preservation fluid is utilized in the 

systemic flush prior to the final flush to allow for adequate clearance of PRBCs. Perfusion 

volume depends on the solution utilized (e.g. much higher volumes required for equilibration of 
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HTK), and is partially determined by the perfusionist/surgeon based on the resistance to fluid 

flow and perceived content of blood within the perfused effluent visualized from the venting site. 

The back-table provides an additional site for final perfusion of the organ prior to transport to the 

recipient centre.
74

  

 

Following in situ and back-table perfusion, the majority of organs undergo cold (static) storage 

(CS) whereby they are bagged and/or boxed in cold preservation solution, surrounded by at least 

one more layer of ice slush.
84-86

 This helps maintain the organ(s) in a suitable, hypothermic 

microenvironment in preparation for transport to the transplantation centre. Alternative 

preservation approaches, in particular dynamic and/or normothermic methods, are introduced in 

section 1.4.   

 

What is the best perfusion fluid, volume, and route to use? 

Perfusion fluid types, route(s), and volumes for abdominal transplant organs largely seem to be 

dependent on individual transplant retrieval unit preference in the context of the exact organ(s) 

being retrieved. Indeed, organ flush protocols vary significantly between centres with respect to 

all of these parameters, and there is certainly no worldwide consensus.
81-83, 87, 88

 

 

The most commonly utilized static preservation solutions for deceased donor kidneys are UW, 

HTK, Celsior, Eurocollins, and Marshall’s. Systematic evaluations of their comparative 

efficacies largely fail to demonstrate inferiority of one fluid type over another with the exception 

of Eurocollins, which may be responsible for higher rates of DGF.
89-92

 One registry analysis also 

purported reduced kidney transplant survival associated with the use of HTK, although this is an 

isolated finding.
93

 The choice of perfusion and static preservation solution is likely more relevant 

in the context of liver and pancreas transplantation. Perhaps the greatest controversy is in the 

comparison between UW and HTK. Some studies have failed to show a graft survival difference 

for either organ, using either preservation solution.
94-96

 Later, larger registry analyses have 

shown a higher risk of pancreatic and hepatic graft failure when HTK was used in comparison to 

UW.
97-99
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Paramount in the setting of multi-organ retrieval, the perfusion fluid that is chosen must not 

compromise outcomes for any of the procured organs. As for what the ideal solution is for all 

organs, the current literature and guidelines are also not entirely clear, and significant further 

work is required in this area. The situation becomes further complicated by the increasing use of 

dynamic preservation strategies during transportation or in the pre-implantation setting, which 

will be an important focus of this dissertation. 

 

1.3 Damage to the donor organ during storage and transplantation 

The function of a transplant organ is determined by donor, recipient, and preservation-related 

factors. Organ function in the original donor is usually superior to what is achieved upon 

transplantation  as the donor organ suffers two major interacting insults after procurement and 

implantation – (i) an antibody and cell-mediated alloimmune response to the graft (this is beyond 

the scope of this thesis); and (ii) ischaemia-reperfusion injury (IRI). The severity of IRI itself is a 

function of (i) the time to transplantation and restoration of sanguinous oxygenated perfusion in 

the recipient; (ii) organ temperature dynamics during storage; and (iii) the preservation 

conditions and/or substrates utilized. Ischaemic injury can either be ‘warm’ or ‘cold’, and in 

effect primes the organ for further damage upon reperfusion in the recipient.   

 

1.3.1 ISCHAEMIC TIMES AND DEFINITIONS  

Ischaemic times encountered during the donation/transplantation process are outlined in Figure 

1.  

 

 

 

 

 

 

Figure 1. Ischaemic intervals encountered in organ transplantation. Note that definitions of the initial warm 

ischaemic time (WIT) vary, and may be measured from the time of withdrawal of life support, or from the time of 

asystole and pronunciation of death, or after pre-defined patient vital criteria. The period between aortic cross-
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clamping and cold in situ perfusion and subsequent anastomosis may be partially replaced by normothermia or 

subnormothermia as part of dynamic machine perfusion techniques. In DCD donors, the time prior to aortic cross-

clamp/cold perfusion may also incorporate a period of artificial re-institution of the patient’s circulation using 

normothermic regional perfusion. CIT – cold ischaemic time; SWIT – second warm ischaemic time 

 

Exact definitions of ischaemic times are somewhat heterogeneous in the literature, in particular 

with respect to the first warm ischaemic time (WIT) in DCD donors.
100, 101

 Most commonly, the 

WIT is defined as the period from extubation (withdrawal of life support) to institution of cold in 

situ perfusion.
101

 Alternative definitions may describe the WIT as the time from asystole to cold 

perfusion, or the time after the blood pressure or oxygen saturation drops below a pre-defined 

level until cold perfusion (i.e. the ‘functional warm ischaemic period’).
101

 Some authors have 

suggested splitting the WIT into two phases – (i) phase I, representing the time from extubation 

to asystole, and (ii) phase II, denoting the time from asystole to cold perfusion.
101

  Use of the 

additional sub-phase of functional warm ischemia, alternatively defined based on blood pressure 

or saturation measurements, is potentially more useful and impactful upon an organ’s subsequent 

function.
102

 

 

Another important consideration with respect to defined ischaemic intervals is that they do not 

consider the initial warm ischaemic insult suffered by DBD donor organs. This warm ischaemic 

insult is secondary to the haemodynamic disturbances and inflammatory activation commonly 

present in these donors, in addition to potential exposure of the organs to warm ischaemia during 

retrieval and dissection, and priming of DBD organs to further immune-related damage upon 

reperfusion.
103-108

 

 

The kidney, liver, and pancreas all have different tolerance to cold and warm ischaemic periods. 

Generally, in the context of controlled DCD procurement, the initial WIT (from time of 

extubation) should not exceed 30-45 minutes for the liver, and 45-60 minutes for the kidney and 

pancreas, otherwise there is an increased risk of transplant graft dysfunction.
109

 These values are 

not absolute however, and particularly in the UK units may wait up to 2 hours after the 

‘functional’ warm ischaemic threshold is reached before abandoning kidney retrieval.
110

 

Generally recommended CITs for DCD livers, pancreases, and kidneys are less than 10 hours, 18 
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hours, and 24 hours, respectively, although there is considerable variation between 

jurisdictions.
109, 110

  

 

1.3.2 ISCHAEMIA-REPERFUSION INJURY (IRI)   

Organ ischaemia commences upon the cessation of effective circulation within the donor. In the 

absence of intervening dynamic oxygenated perfusion, the ischaemic interval ceases once the 

arterial clamps are released during the transplantation procedure. At this point, the reperfusion 

phase comes into effect with an influx of oxygen, leukocytes, complement, and other plasma 

mediators. Together, the cumulative insult that is derived is known as ischaemia-reperfusion 

injury (IRI). IRI is a complex cascade that represents the intersection of multiple injurious 

pathways, and its severity can impact upon short and long-term graft function.
103, 111-113

 A 

schematic representation of IRI in organ transplantation is presented in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The ischaemia-reperfusion injury cascade. ATP – adenosine triphosphate; DGF – delayed graft function; 

DAMP – danger-associated molecular patterns; IFTA – interstitial fibrosis and tubular atrophy; NO – nitric oxide; 

PDF – primary graft dysfunction; ROS – reactive oxygen species 
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Disconnection of an organ’s arterial supply naturally induces absolute ischaemia and hypoxia. 

ATP stores are depleted, and anaerobic metabolism is induced. There is attendant acidosis, 

malfunction of membrane ATP-dependent ion exchange pumps, including the Na
+
/K

+
 

transporter, in addition to intracellular calcium accumulation, and the formation of reactive 

oxygen species (ROS). Endothelial and parenchymal cellular oedema and injury is induced, in 

addition to the increased expression of adhesion molecules such as ICAM-1, release of damage-

associated molecular patterns (DAMPs), and the up-regulation of gene expression related to 

inflammatory and hypoxic signaling.
114, 115

 These changes during the ischaemic phase prime the 

organ for subsequent reperfusion injury when sanguinous perfusion is restored. 

 

The reperfusion process paradoxically induces further damage as it brings with it allogeneic 

blood containing reactive innate and adaptive immune cells, along with other injury-provoking 

mediators such as complement components, coagulation factors, and plasma immunoglobulins. 

There is also an acute inflammatory immune response dominated by innate immune cells, which 

induces local damage.
114

 ROS formation is amplified with the re-introduction of oxygen. 

Leukocyte adhesion and diapedesis, along with platelet binding and activation of coagulation, 

contribute to a local ‘no reflow’ phenomenon and microvascular dysfunction. Angiogenic 

induction in the local environment is inhibited, contributing to a chronic relative hypoxia. The 

adaptive immune response is also activated in response to IRI. Endothelial and parenchymal cell 

injury may result in cell death via necrosis, apoptosis, and/or induction of autophagy-related 

pathways.
103, 113-115

 

 

It is important to note that hypothermia does not completely attenuate IRI, and indeed may be 

damaging in of itself.
112, 116, 117

 It is very difficult to isolate the potential deleterious effects of 

hypothermia from the general IRI process, but it is nonetheless clear that the CS period is not 

benign in of itself.
116

 Although the organ’s metabolic rate is reduced at lower temperatures, some 

metabolic processes nonetheless continue and deplete stores of ATP. Enzyme function and 

protein conformation is sub-optimal, impairing critical subcellular processes that continue in 

hypothermia.
77

 A prolonged period of hypothermic organ storage can be highly deleterious, 

especially in combination with period(s) of warm ischaemia and the inevitable reperfusion in the 

recipient.
112

 Indeed, a critical determinant of cold ischaemic injury may be its coupling to warm 
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reperfusion; if this occurs abruptly, as is generally the case in transplantation, there is evidence 

for mitochondrial stress, dysfunction, and induction of apoptotic pathways.
116-118

 

 

1.3.3 CLINICAL SIGNIFICANCE OF IRI 

The primary aim of organ preservation strategies is the minimization of IRI-related damage to 

the graft, which is pictorially depicted in Fig. 3, and is a function of preservation time and 

temperature, amongst other factors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Organ procurement and preservation practices impact organ quality at transplant. The aim of 

preservation approaches between procurement and transplantation are to minimize the rate of decline of organ 

quality. This may be achieved by minimizing storage time, modulating temperature, modifying preservation 

solutions, and using technologies such as machine perfusion, in addition to other approaches. 

 

The manifestation of IRI in the graft depends on the severity of the insult. Within the kidney, 

severe IRI with associated acute tubular necrosis may manifest as DGF. Potential 

delayed/longer-term effects are mediated by activation of the adaptive immune response and 

progressive tubular trophy and interstitial fibrosis due to epithelial-to-mesenchymal cell 

transition, with subsequent impacts on graft survival.
103, 111

 Liver transplant IRI may present as 

primary graft dysfunction (PDF) and/or primary non-function (PNF), biliary injury and ITBL, 

and impaired graft survival.
119

 Pancreatic graft IRI is naturally associated with graft pancreatitis, 
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which also serves as a risk factor for graft thrombosis.
120, 121

 Transplant graft IRI may also 

increase graft immunogenicity and contribute to episodes of acute and/or chronic rejection.
111, 122

 

 

The clinical severity and manifestations of graft IRI are not uniform, and are modified by donor 

and recipient factors, in addition to the duration of ischaemia, temperature during ischaemia, 

anti-IRI therapeutic delivery, the nature of perfusion/preservation solution(s) utilized, and the use 

of other technologies such as machine perfusion (MP). The duration of anastomoses, i.e. the 

second WIT (SWIT), is also critical to subsequent graft function, as a prolonged period will 

increase the severity of the IRI hit. All of these factors will be discussed in detail over the course 

of this dissertation. 

 

1.3.4 PHARMACOLOGIC AMELIORATION OF IRI IN CLINICAL TRANSPLANTATION 

The transplant and IRI literature is replete with pre-clinical studies investigating the role of 

different pharmacologic/therapeutic agents in the amelioration of IRI-related injury. Multiple 

reviews have been published investigating the role of such agents, especially in the context of 

kidney and liver transplantation.
111, 113, 123-126

  

 

Broadly, the pathophysiologic processes within the IRI cascade targeted by these agents most 

commonly include oxidative and/or mitochondrial stress, inflammation/leukocyte influx, the 

complement cascade, the coagulation cascade, and local vascular abnormalities.
127-136

 This 

includes the utilization of newer, experimental drugs, monoclonal antibodies, repurposing of 

existing drugs, and other experimental techniques such as the use of small interfering RNAs 

(siRNAs) and microRNAs (miRNAs). 

 

Very few agents have made it past the pre-clinical phase and been tested in the human 

transplantation setting, and close to none are being used regularly. It is clear that the majority of 

pre-clinical work has been lost in translation, a transplant-specific version of the ‘Valley of 

Death’.
137, 138

 Reasons for this are multi-factorial, and are related to such factors as: (i) uncertain 

or poor clinical efficacy of these agent(s) despite promise in animal testing; (ii) ethical 

considerations related to the systemic treatment of donors (especially in the DCD setting); (iii) 

inherent difficulties related to the translation of drugs to allow the systemic treatment of 
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recipients, including the large costs associated with drug development and trials; and (iv) 

difficulties with conducting clinical trials in transplantation.
138, 139

 

 

Newer approaches must be utilized to try and ameliorate transplant organ IRI using therapeutic 

agents. One such approach, the role of MP for drug delivery, will be discussed further in Part 2 

of this dissertation. 

 

1.4 Modern strategies to enhance organ procurement and preservation 

Once a potential organ donor patient is identified, there are many potential therapies and/or 

management protocols that can possibly be instituted to minimize graft damage and help 

optimize function post-transplantation. However, none of these can be implemented without 

express consideration of the ethical and legal considerations specific to the local setting, and also 

taking into account the donor’s and/or donor’s family’s wishes. This is especially pertinent in our 

own state (New South Wales, Australia) with regards to restrictions on the use of ante-mortem 

interventions in DCD donors.
140

  

 

1.4.1 DBD DONOR MANAGEMENT 

Specific considerations need to be made for DBD donors. In conjunction with a rising 

intracranial pressure, DBD donors have complex cardiovascular and respiratory changes, a 

systemic inflammatory response, and changes to systemic hormones secondary to pituitary 

failure.
141, 142

 As such, these areas serve as potential therapeutic targets that can be reversed prior 

to organ retrieval. The primary goal of DBD donor management is to achieve and maintain the 

donor’s physiologic parameters as close to normal as possible.
141

 Pituitary failure may be 

compensated for by use of hormonal resuscitation, which may include the administration of 

steroids, thyroid hormones, insulin, and desmopressin.
143

 However, the individual role(s) of each 

of these agents is not well-defined, and most studies that have been conducted have been 

retrospective in nature and/or of low-quality.
144-146

 Targeting of circulatory changes is perhaps 

more essential, and can be achieved through the use of intravenous fluids and vasopressors.
143

 

Achievement of donor management goals may increase the number of transplantable organs 

from each individual DBD donor.
147

 Overall donor management goals may include the 

following: 
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 Mean arterial pressure 60-100 mmHg; 

 Central venous pressure 4-10 mmHg; 

 Ejection fraction > 50%; 

 Use of one or less vasopressor at a low dose; 

 Maintenance of a normal pH; 

 Maintenance of normal pulmonary function (PaO2:FiO2 > 300); and 

 Maintenance of normal urine output (>0.5-3 ml/kg/hr), serum sodium, and glucose levels.
141, 

143, 147
 

Another potential pre-procurement intervention of note in DBD donors is the use of therapeutic 

hypothermia. A study by Niemann et al. compared DBD kidney transplant outcomes from 

donors either externally cooled to 34-35⁰C or maintained at a normal temperature of 36.5-

37.5⁰C.
148

 DGF rates were significantly reduced in the hypothermic group, with this effect most 

pronounced in ECD donors.
148

 

 

1.4.2 DCD DONORS – HEPARIN AND NORMOTHERMIC REGIONAL PERFUSION 

DCD organ donors present unique challenges but also opportunities within the pre- and intra-

procurement phases of donation. Local customs, laws, and policies are a major determinant of 

whether certain strategies to enhance function of the DCD organ can be successfully 

implemented. Furthermore, the type of approach utilized is also dependent upon the type of DCD 

pathway, i.e. controlled or uncontrolled. 

 

The controlled DCD situation affords the ideal opportunity for the delivery of ante-mortem 

interventions, if permitted under the legislation of the governing jurisdiction. Administration of 

ante-mortem heparin is a simple yet very effective therapy that is likely to improve outcomes 

from DCD organ transplantation.
149

 Prior to its use, consideration must be made that therapeutic 

intravenous heparin can theoretically accelerate death in potential DCD donors with concomitant 

intra-cranial haemorrhage, although there is no clinical evidence for this.
150, 151

 Ante-mortem 

heparin is estimated to reduce the increased risk of graft thrombosis in DCD pancreas 

transplantation.
70

 Evidence for or against the use of heparin is DCD kidney transplantation is 

sparse, although it is hypothesized to reduce DGF by minimizing formation of microthrombi.
152, 
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153
 Ante-mortem heparin is also deemed to be beneficial for DCD liver grafts, and is likely 

superior to the administration of tissue plasminogen activator post-arrest.
154, 155

 

 

Ante-mortem femoral vessel cannulation is used by certain centres in the controlled DCD setting, 

allowing for rapid institution of cold in situ perfusion as soon as death is declared.
109, 149, 153

 

Abdominal regional perfusion (ARP) is one technique that may take advantage of such cannulae 

to reinstitute an artificial donor circulation in a manner that is similar to extracorporeal 

membrane oxygenation (ECMO) technology. ARP can be performed under hypothermic 

conditions (hypothermic regional perfusion, HRP), or more commonly under normothermia 

(normothermic regional perfusion, NRP).
156

 HRP has only been used in the context of kidney 

transplantation, and although some promising results have been obtained, the combined clinical 

experience with this technique is relatively sparse.
156

 NRP in contrast has been more extensively 

utilized, including for kidneys, the liver, and pancreas. NRP has potential benefits in both 

controlled and uncontrolled DCD donors, and may be administered via femoral or more centrally 

placed cannulae. NRP may facilitate more objective graft assessment prior to organ recovery, in 

addition to graft repair and amelioration of IRI.
157, 158

 Beneficial effects have been shown with 

respect to graft outcomes and utilization rates in controlled DCD kidney, liver, and pancreas 

transplantation without preceding (ante-mortem) heparinization.
157, 159

 NRP is perhaps more 

innovative and incrementally useful in the uncontrolled DCD setting, and is usually performed 

after vascular cannulation, heparin administration, and simultaneous external cardiac 

compressions and ventilation.
159

 NRP is especially beneficial with respect to the reduction of 

ITBL rates in DCD liver transplantation.
159

 

 

1.4.3 ORGAN PRESERVATION POST-PROCUREMENT 

The comparative use of different cold in situ preservation solutions and techniques was been 

introduced in section 1.2.4, and will be expanded upon in Part 2 of this thesis. The utilization of 

ex vivo organ perfusion techniques (i.e. MP) in the pre-implantation period is a major focus of 

this dissertation, especially in the context of kidney transplantation, and will be explored in detail 

over the course of Part 1. MP in of itself is a useful strategy to target IRI, and its efficacy can 

potentially be enhanced by using MP as a direct delivery method for anti-IRI agent(s) to the 

donor organ of interest. A detailed discussion regarding MP has been deliberately omitted from 
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this introductory chapter in order to avoid unnecessary repetition and redundancy, but is included 

through the course of Part 2 of this dissertation. 

 

1.5 Aims and introduction to the research conducted for this PhD 

The perpetual shortage of donor organ supply with respect to demand necessitates ongoing 

strategies and research to close this gap. The aims of such research should be twofold – (i) to 

increase the number of organs available for transplantation; and (ii) to simultaneously improve 

their outcomes in recipients. As a result of increasing requirements for organs such as the liver, 

kidney, and pancreas, there has been increasing use of DCD and/or ECD kidneys locally and 

overseas. These organs are more susceptible to IRI incurred during procurement, transportation, 

and implantation. We therefore need improved procurement and preservation techniques to 

optimize the use of these organs. Identification of best-practice in these areas and further 

research gaps will also help streamline surgical procurement and preservation techniques, and 

allow future work to occur in a more unified fashion. Fig. 4 summarizes the work conducted for 

this dissertation in the context of IRI, and the cycle of donor organ procurement, preservation, 

and transplantation. 

 

PART 2 – The Kidney 

 

The kidney, liver, and pancreas are all commonly procured and transplanted abdominal organs, 

with the potential to increase life expectancy and improve quality of life. However, the kidney is 

the most prolific organ with respect to procurement and transplantation rates worldwide, and also 

serves as an ideal and convenient model to test potential advances in organ preservation, which 

may then be extrapolated to other organs. Therefore, the kidney is the primary organ of focus for 

the initial section of this thesis. In particular, advances in deceased donor kidney preservation 

techniques and the re-emergence of MP preservation are emphasized as a potential means to 

improve the number and quality of kidney transplants from DCD and higher KDPI donors. 

 

Chapter 2 explores the latest advances in the preservation of abdominal and thoracic organs, 

expanding upon the utilization of MP techniques in the general field of organ transplantation.  
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This then sets the scene for Chapter 3, which consists of a systematic review and meta-analysis 

comparing MP to traditional CS in the setting of deceased donor kidney transplantation. Here we 

show the superiority of hypothermic MP (HMP) over CS with respect to the occurrence of DGF, 

but equivocal results regarding graft survival and also in DCD transplantation in general. This is 

supplemented by a systematic exploration of pre-clinical studies investigating the utility of 

dynamic modalities that have to date seen limited clinical use, including oxygenated HMP and 

normothermic MP (NMP). The significant potential of NMP with respect to graft resuscitation, 

assessment, and as a means for direct pharmacologic treatment of the kidney is identified and 

emphasized. 

 

As a result of the findings from the systematic review, and a resolution from a multi-disciplinary 

Transplantation Society of Australia and New Zealand Machine Perfusion workshop to pursue 

the investigation of NMP in preference to HMP for kidney preservation, work from Chapter 4 

was commenced. A porcine model of NMP was developed and optimized using modified 

cardiopulmonary bypass technology, adapted from existing set-ups in the UK and Canada. As 

part of this process, a customized 3D-printed perfusion chamber was developed to facilitate renal 

NMP without cannulating the renal vein; this is outlined in Chapter 5. 

 

Simultaneously, the tremendous potential ability of NMP to act as a drug-delivery portal for the 

kidney was recognized. This is especially relevant in the local climate where systemic donor 

interventions in the DCD setting are not permitted. As such, a mouse IRI model comparing three 

well-known IRI-targeting agents was established. The feasibility and efficacy of drug delivery by 

NMP was then investigated by delivering the most efficacious drug from the murine experiments 

to porcine DCD kidneys using NMP. The results from these experiments are outlined in Chapter 

6. 

 

Finally, as a prelude to the implementation of NMP in the clinical setting, experience with 

human kidney NMP was required. This work is outlined in Chapter 7, and employs discarded 

and/or non-utilized human kidneys. Not only does this work demonstrate the feasibility, safety, 

and efficacy of this technique in the local setting, but also explores the mechanistic basis for the 
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potential success of brief pre-implantation NMP, the comparable use of autologous or banked 

blood for NMP, and also leukocyte extravasation from the graft during NMP. 

 

PART 3 – The Liver and Pancreas 

 

Abdominal organs such as the kidneys, liver, and pancreas are often procured in concert in the 

multi-organ donor setting. The procurement techniques and preservation fluids used need to take 

into account any subsequent impacts on the post-transplantation outcomes of all of these organs. 

This part highlights these concepts, especially in the context of deceased donor liver and 

pancreas procurement/preservation, which require their own special consideration. 

 

Chapter 8 outlines our unique method for recovery of the pancreas in multi-organ donors using 

ultrasonic shears. The impact of this technique on blood loss and transfusion requirements, in 

particular, is explored in pancreas transplant recipients. 

 

Chapters 9 and 10 then proceed to convey the results of two systematic reviews and meta-

analyses that attempt to fill gaps in our knowledge regarding the most effective 

perfusion/preservation fluids, routes, and volumes for retrieval and storage of the pancreas and 

liver, respectively. These reviews generated interest within the transplant community and 

prompted a Letter to the Editor; our reply Letter is included in Chapter 11. 

 

The liver systematic review and meta-analysis identified a significant evidence gap with respect 

to the use of aortic-only or dual (aortic and portal venous) in situ perfusion during liver retrieval. 

All existing articles either had insufficient patient numbers, or limited periods of follow-up. As 

such, a large national registry analysis with prolonged follow-up was conducted comparing liver 

transplantation outcomes after aortic or dual perfusion in Australia. Details and results of this 

analysis form the basis of Chapter 12. 
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Figure 4. Summary of research conducted for this thesis and its relation to organ procurement, preservation, and 

transplantation. The top panel indicates potential strategies that may be targeted/improved at each step to 

enhance transplantation outcomes. The bottom panel indicates some papers published as part of this PhD in the 

context of organ type and organ procurement, preservation, and transplantation. 
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2.1 Abstract 

Organ transplantation provides the best available therapy for a myriad of medical conditions, 

including end-stage renal disease, hepatic failure, and type I diabetes mellitus. The current 

clinical reality is however that there is a significant shortage of organs available for 

transplantation with respect to the number of patients on organ waiting lists. 

 

As such, methods to increase organ supply have been instituted, including improved donor 

management, organ procurement and preservation strategies, living organ donation, 

transplantation education, and the increased utilization of donation after circulatory death and 

expanded criteria donors. In particular, especially over the last decade we have witnessed a 

significant change in the way donor organs are preserved, away from static cold storage 

methods to more dynamic techniques centred on machine perfusion.  

 

This review highlights the current state and future of organ preservation for transplantation, 

focusing on both abdominal and thoracic organs. In particular, we focus on machine perfusion 

preservation of renal, hepatic, pancreatic, cardiac and lung allografts, also noting relevant 

advances in Australasia. Machine perfusion of organs after procurement holds considerable 

promise, and has the potential to significantly improve graft viability and function post-

transplantation, especially in donors in whom acceptance criteria have been expanded. 
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2.2 Introduction 

The field of organ transplantation continues to push the boundaries between the possible and 

impossible, allowing successful function in grafts that would previously have been deemed 

non-viable. Such advances have been necessitated by the continuing gap between organ supply 

and demand, despite overall increases in transplantation rates. 

 

In particular, we have seen a significant shift towards the utilisation of organs from donation 

after circulatory death (DCD) and expanded criteria (ECD) donors, as compared to standard 

criteria donation after brain death (DBD) donors. These organs theoretically have a higher 

chance of short and/or longer-term dysfunction, owing to an increased duration of warm 

ischaemic insult and/or suboptimal pre-donation function due to higher donor age and 

comorbidities.  

 

A major contributing factor to the expansion of the donor pool has been the modification and 

enhancement of the organ preservation process post-procurement. Not only have there been 

advancements in preservation solution(s) used, but we have also seen a significant shift away 

from the traditional paradigm of static cold (hypothermic) organ storage (CS). In fact currently, 

there is a worldwide push towards dynamic organ storage, such as the use of machine 

perfusion (MP), potentially in association with perfusate oxygenation and normothermia. 

 

2.3 Mechanistic basis and uses of MP 

The primary aims of conventional organ preservation methods are the reduction of the organ’s 

metabolic rate whilst simultaneously storing the allograft in an environment that minimises 

cellular oedema and ischaemic damage. Hypothermic in situ perfusion is currently the 

mainstay of allograft preservation, and is instituted during the procurement process upon 

cannulation and perfusion of the aorta, and is some cases the portal vein and/or pulmonary 

arterial system, with chilled organ preservation solution. Topical sterile saline ice slush is 

usually used to provide a supplemental source of hypothermia, thereby further reducing organ 

cellular processes and thus substrate requirements.  

  

Traditionally, the CS organs are bathed in preservation fluid inside sterile plastic bags, which 

varies by the type of organ and centre preference, prior to transportation to the recipient centre. 

MP, however, entails cannulation of the organ’s vascular inflow such that it is mechanically 

perfused with the preservation solution during storage, with natural venting and re-cycling of 
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the perfusate via its venous outflow. In contrast to MP, once organs are bagged for CS the 

amount of preservation solution maintained within the graft is significantly reduced owing to a 

collapse of its vasculature; this subsequently impairs the extracellular excretion of waste 

products.
1
 MP further allows for improved maintenance of organ ATP levels, and ameliorates 

endothelial damage and swelling and thus enhances post-transplantation vascular perfusion.
2-4

  

  

Transplantation centres differ regarding the timing and nature of MP utilised, often dependent 

on the availability and/or transportability of MP apparatus to retrieval hospitals. As such, MP is 

often combined with brief periods of CS, although the ideal perfusion period and timing of 

perfusion is still debated.
5
 Furthermore, exact perfusion parameters are far from well-defined. 

The benefits of perfusate oxygenation and warming are not yet well-established, and are the 

subject of ongoing clinical trials.
6
 Interestingly, MP also allows direct perfusion of the organ of 

interest with pharmacotherapies targeting the ischaemia-reperfusion process, although the best 

combination of such therapies is not yet known.
7
 

 

Another potential use of MP of interest to transplant surgeons is in the assessment of graft 

viability and quality prior to transplantation, especially through the analysis of perfusion 

resistance and flow, and measurable biomarkers within the perfusate.
8-10

 Although these 

parameters provide some indication of subsequent graft function, at this stage they cannot be 

used as the only basis for not clinically using the organ.  

 

2.4 Abdominal Organs 

2.4.1 ABDOMINAL REGIONAL PERFUSION 

Abdominal regional perfusion (ARP) entails the application of modified cardiopulmonary 

bypass (CPB) technology in vivo during organ procurement. Vascular access is usually either 

obtained peripherally, with simultaneous balloon occlusion of the thoracic aorta, or centrally in 

association with clamping of the thoracic or supracoeliac aorta, with subsequent perfusion of 

abdominal organs using the donor’s own blood.
11

 Isolation of the abdominal circulation from 

the supra-diaphragmatic aorta aims to ensure that cerebral blood-flow is not restored and thus 

any potential possibility of auto-resuscitation is avoided. The most promising area of the 

application of ARP is in the DCD setting, especially in uncontrolled donors that would benefit 

the most from this resuscitative bridge prior to organ removal.
12

  

 

A systematic review by Shapey and Muiesan showed that hepatic allograft function in 
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uncontrolled DCDs after ARP is still suboptimal when compared to DBD donors, whilst 

subsequent kidney survival may in fact be better in comparison to DBD and non-ARP 

kidneys.
12

 Potentially the greatest utility of this technique however is in the fact that it provides 

a possible mechanism to increase organ availability by resuscitating and allowing the 

assessment of organs that would otherwise not be procured or transplanted.
13

 

 

Future application of ARP still requires considerable refinement if its use is to be expanded 

however, not only to make it more cost effective, but also to address the important potential 

ethical controversies surrounding its implementation.
11,14

 Indeed, within the Australasian 

setting, there are also significant legal barriers to its widespread utilisation, especially 

regarding the inability to institute donor treatment prior to the declaration of death and the lack 

of permissibility to procure uncontrolled DCD (Maastricht category I, II and V) grafts.   

 

2.4.2 DECEASED DONOR KIDNEY PRESERVATION 

Kidney preservation over the last half century has almost come full-circle. MP was commonly 

utilised in the 1970s, and was later supplanted by CS as a result of evidence contradicting its 

efficacy in addition to the significant costs incurred by MP.
15

 There has been a push back 

towards MP of kidneys over the last decade, however, due to the aforementioned increased use 

of DCD and ECD kidneys. 

 

Standard MP apparatus consist of a reservoir of preservation solution, which is utilised as the 

source of perfusate for the kidney that is pumped via the renal artery. Temperature and flow 

characteristics can be monitored and controlled, and some machines also allow direct 

oxygenation of the perfusion solution. Modern MP apparatus such as the LifePort® kidney 

transporter are of small enough size and weight such that they can be transported by car or 

plane during the organ procurement process.
16

  

 

A multi-centre trial in Europe compared MP to CS preservation for matched pair kidneys.
17

 

MP preservation significantly reduced the incidence of delayed graft function (DGF), defined 

as the need for dialysis in the first week after transplantation, and increased one-year graft 

survival. Later subgroup analyses and follow-up studies showed significantly lower DGF rates 

in DCD and ECD kidneys, with higher three-year graft survivals in ECD but not DCD 

kidneys.
18-20

 Systematic reviews and meta-analyses comparing CS to MP for kidney 

transplantation confirm lower rates of DGF, with better graft survival in only ECD but not 
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DCD renal grafts.
21-23

 

 

Hypothermia has long been an essential component of kidney, and indeed any organ’s, pre-

implantation storage, allowing for reduced organ metabolism during the period in which it has 

no blood supply. MP has allowed this concept to be turned on its head, as it allows the 

continuous provision of oxygen and metabolic substrates directly to the kidney. Initial 

experimental work in animals showed that the maintenance of kidneys during storage in a 

normothermic environment using MP was beneficial to post-transplantation graft function, 

helping to maintain the organs in closer to physiological circumstances and avoiding cold 

ischaemic injury.
24

 More recently, Nicholson and Hosgood applied this technique to human 

ECD kidneys, with significantly reduced rates of DGF.
25

 There is still a pressing need for 

future research and modifications in this area, including in the ascertainment of ideal MP times, 

the role of oxygenation, and the nature of, and potential additives to, the preservation solution. 

 

Currently within the Australasian setting, MP of kidneys is only being utilised in one centre in 

Brisbane.
26

 Due to accumulating evidence regarding the effectiveness of the technique, 

especially in more marginal organ donors, momentum is developing toward its potential 

expansion to other centres.  

 

2.4.3 DECEASED DONOR LIVER PRESERVATION 

Liver allograft preservation from deceased donors is most commonly undertaken using 

traditional CS. However, liver donation rates face the same supply and demand gap, with an 

increased need for viable donor organs and therefore push to utilise more ECD and DCD 

donors. The proportion of DCD donors within Australia for all organs has now exceeded 30% 

and is anticipated to increase further; 5-10% of liver transplants are from DCD donors.
23

 DCD 

livers suffer close to 20% incidence of ischaemic cholangiopathy, lower graft survivals, and are 

at higher risk of requiring re-transplantation.
27,28

 Hence, there is an even greater need to 

improve liver preservation from this donation pathway. 

 

In contrast to renal MP studies, there is significantly less published literature regarding the 

efficacy of hepatic MP in humans. Guarrera et al. from the USA presented the first clinical data 

for liver transplantation after hypothermic MP of DBD livers.
29

 These authors utilised dual 

portal vein and hepatic artery perfusion and showed reduced hospital stays and serum injury 

markers in the MP group when compared to CS. Early allograft dysfunction rates appeared 



 

 

41 

lower in the MP group, although this only approached statistical significance. A group from 

Switzerland later employed hypothermic oxygenated MP (“HOPE”) for eight DCD livers, 

delivered only through the portal vein.
30

 Highly promising results were obtained, with good 

early graft function and the absence of ischaemic cholangiopathy in any patient six months 

post-transplantation. Significantly, these high-risk DCD livers performed no worse than 

matched DBD livers that underwent CS. A randomized control trial comparing HOPE to CS is 

currently underway.
30

 

 

Normothermic MP of the liver is also being actively investigated, with preliminary results from 

a European trial demonstrating the feasibility of this technique.
31

 Evidence from animal models 

also shows that normothermic liver perfusion holds considerable promise for the future of liver 

preservation.
32,33

         

 

2.4.4 DECEASED DONOR PANCREAS PRESERVATION 

The use of the pancreas as a donor organ aims to confer beta-cell function to the diabetic 

recipient, and is unique as either the whole organ or islets isolated from the organ may 

potentially be transplanted.  

 

DCD pancreatic grafts represent a very small proportion of donated pancreata in Australia.
23

 

We recently showed that these grafts have similar survival compared to those from DBD 

donors.
34

 Graft thrombosis rates are however higher in the DCD subset; importantly, this risk 

can be significantly reduced with the provision of antemortem heparin to the donor.
34

 

 

Like all organs, donor pancreata are most commonly preserved in CS solutions.  A variation to 

CS was developed in the form of the ‘two-layer method’, whereby the donor pancreas was 

stored at the interface of Euro-Collins solution and an oxygenated perfluorochemical.
35

 This 

was later applied to humans, replacing Euro-Collins with University of Wisconsin solution, 

although there were no statistically significant improvements seen compared to conventional 

CS
36

. More clinical studies have been performed regarding the two-layer method for islet 

isolation, however its utility has been questioned for this purpose as well.
37

 

 

Pancreatic allograft MP preservation is still in its infancy, with no current studies analysing 

effects of this technique in human recipients. Part of the reason for this is the ‘low flow’ nature 

of the pancreas, with fears that the pressures generated by MP will confer barotrauma to the 
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organ. Leeser et al. did however employ MP for pancreas preservation prior to islet isolation in 

four human pancreata without subsequent transplantation.
38

 Islet yield and in vitro function 

appeared to be better in the MP group compared to CS controls. 

 

An interesting alternative dynamic preservation option is known as persufflation. This method 

involves oxygen gas perfusion of the pancreas delivered through its arterial inflow, and 

preliminary studies have indicated that it can improve pancreatic histology and adenosine 

triphosphate levels.
39,40

 

 

Islet cell transplantation isolation and transplantation in particular suffers from suboptimal 

donor organ preservation, with a lack of improvements in this area likely contributing to the 

static transplantation rates in Australia.
41

 It remains to be seen whether techniques such as MP 

and/or persufflation will allow further advances in this area. 

 

2.5 Thoracic Organs 

2.5.1 DECEASED DONOR HEART AND LUNG PRESERVATION  

DCD grafts represent an important subset of transplanted abdominal organs, yet up until very 

recently DCD cardiac donation did not exist. Factors contributing to this included the obvious 

difficulties in the assessment of cardiac function after circulatory cessation, in addition to the 

ethical issues surrounding revival of the non-functioning heart and the subsequent debate 

regarding how death is defined. 

 

A group is Sydney was the first in the world to report on the successful human transplantation 

of DCD hearts after MP preservation.
42

 The preservation system utilised was the Organ Care 

System™, perfusing the cardiac graft with the donor’s blood under normothermic conditions. 

Ex vivo perfusion in this fashion allowed resuscitation of the heart, and thence graft function 

and viability could subsequently be assessed prior to transplantation. DCD heart 

transplantation has since been successfully conducted in the United Kingdom, albeit using a 

modified method in which the heart was revived in situ using normothermic regional perfusion 

prior to explantation.
43

        

 

Lung allograft transplantation from DCD donors commenced well before DCD heart 

transplantation. Snell et al. published the early experiences of a unit in Melbourne, reporting 

good lung function in all eight DCD lung recipients with a mean follow-up of 311 days; 
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standard CS preservation strategies were utilised in these lungs.
44

 MP in lung transplantation, 

or ex vivo lung perfusion (EVLP), was first used for the ex vivo assessment of DCD lung 

function prior to transplantation.
45

 Machuca et al. extended the use of normothermic EVLP up 

to 18 hours, with significantly shorter hospital stays in DCD lungs preserved by EVLP 

compared to standard methods.
46

 There is significant potential for the expansion of the utility 

of EVLP beyond mainly a role in lung graft assessment to the possible modification of 

pulmonary surfactant, amongst other factors.
47

 

 

2.6 Conclusions 

Organ preservation techniques are advancing in an attempt to increase the potential donor 

organ pool and ensure adequate graft function in marginal DCD and ECD organs. MP 

preservation has been successfully utilised in both animal and clinical models for most 

abdominal and thoracic transplantable organs, with encouraging results. Abdominal organ 

perfusion to date has largely been hypothermic, however research is being conducted into the 

utility of normothermic, oxygenated perfusion systems. DCD and ECD transplantation is 

becoming more prevalent, with Australia leading this field in cardiac transplantation. With 

further time and research, we will likely see the expansion of MP methods for abdominal organ 

preservation in Australasia, with refinements to the process contributing to even better 

transplantation outcomes.  
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3.1 Abstract 

Objective: To elucidate the benefits of machine perfusion (MP) preservation with and without 

oxygenation, and/or under normothermic conditions, when compared to static cold storage 

(CS) prior to deceased donor kidney transplantation. 

 

Background: The two main options for renal allograft preservation are CS and MP. There has 

been considerably increased interest in MP preservation of kidneys, however conflicting 

evidence regarding its efficacy and associated costs have impacted its scale of clinical uptake. 

Additionally, there is no clear consensus regarding oxygenation, and hypo- or normothermia, 

in conjunction with MP, and its mechanisms of action are also debated.  

 

Methods: Clinical (observational studies and prospective trials) and animal (experimental) 

articles exploring the use of renal MP were assessed (EMBASE, Medline and Cochrane 

databases). Meta-analyses were conducted for the comparisons between hypothermic MP 

(HMP) and CS (human studies) and normothermic MP (WP) compared to CS or HMP (animal 

studies). The primary outcome was allograft function. Secondary outcomes included graft and 

patient survival, acute rejection and parameters of tubular, glomerular and endothelial function. 

Subgroup analyses were conducted in expanded criteria (ECD) and donation after circulatory 

(DCD) death donors. 

 

Results: A total of 101 studies (63 human and 38 animal) were included. There was a lower 

rate of delayed graft function in recipients with HMP donor grafts compared to CS kidneys 

(RR 0.77; 95% CI 0.69-0.87). Primary non-function (PNF) was reduced in ECD kidneys 

preserved by HMP (RR 0.28; 95% CI 0.09-0.89). Renal function in animal studies was 

significantly better in WP kidneys compared to both HMP (standardized mean difference 

[SMD] of peak creatinine -1.66; 95% CI -3.19 to -0.14) and CS (SMD of peak creatinine -1.72; 

95% CI -3.09 to -0.34). MP improves renal preservation through the better maintenance of 

tubular, glomerular and endothelial function and integrity. 

 

Conclusions: HMP improves short-term outcomes after renal transplantation, with a less clear 

effect in the longer-term. There is considerable room for modification of the process to assess 

whether superior outcomes can be achieved through oxygenation, perfusion fluid manipulation, 

and alteration of perfusion temperature. In particular, correlative experimental (animal) data 

provides strong support for more clinical trials investigating normothermic MP. 
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3.2 Introduction 

The optimal long-term treatment option for end-stage renal disease remains kidney 

transplantation. On a worldwide basis, access and referral for transplantation is limited; in 

those patients referred for transplantation, there is an imbalance between the supply and 

demand for suitable organs.
1
 In the USA alone, the median time to deceased donor renal 

transplantation is approximately three to four years.
2
 This organ deficit has prompted the 

adoption of different strategies in order to increase the availability of kidneys for 

transplantation. One approach of considerable importance is the increasing utilization of 

donation after circulatory death (DCD) and expanded criteria donors (ECD), which must 

supplement the standard criteria, donation after brain death (DBD) kidneys.
1,3

The growing demands for DCD and ECD kidneys must be balanced with their perceived 

suboptimal post-transplant function. There are higher rates of delayed graft function (DGF) for 

both DCD and ECD kidneys, and higher discard rates and by definition poorer survival in the 

ECD subset, when compared to standard criteria DBD kidneys.
4-10

 Further improvements to the 

organ procurement and preservation process are therefore essential in order to improve 

marginal donor kidney quality.  

Although cold static storage (CS) is still the most commonly utilized method for renal 

preservation, machine perfusion (MP) provides an important alternative. CS largely supplanted 

MP in the 1980s due to a lack of evidence with regards to improvement in transplantation 

outcomes and the large associated costs.
11-13

 MP has seen a resurgence in the last decade due to 

the changing donor profile and advancements in perfusion solutions and technology.
14

Indeed, application of MP is still not widespread, with conflicting evidence even in recent 

years regarding its utility.
15,16

 Furthermore, there is minimal clinical data regarding the utility 

of evolving modifications to the MP process, and its mechanisms of action are also poorly 

understood. In particular, the use of warm (normothermic) perfusion (WP), oxygenation or 

pharmacotherapies has largely been the subject of experimental (animal) studies. 

The aims of this systematic review and meta-analysis were therefore to: (i) describe ways in 

which MP is currently utilized; (ii) provide an updated and comprehensive analysis of the 

effect of hypothermic MP (HMP) on post-transplant graft function in deceased donor kidney 

transplantation; and (iii) explore experimental (animal) literature to (a) investigate the utility of 
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normothermic (WP) and/or oxygenated MP, and (b) understand the mechanisms of action of 

MP preservation.  

 

3.3 Methods 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was 

utilized in the completion of this review.
17

 The review protocol was registered with the 

PROSPERO International Prospective Register of Systematic Reviews (March, 2016; 

registration number – CRD42016037100).
18 

 

3.3.1 ELIGIBILITY 

Inclusion criteria 

Clinical (human) studies consisted of randomized control trials (RCT) or prospective (non-

randomized) and observational studies, and were included in the presence of MP data. 

Experimental (animal) studies by their nature are prospective, and were included in the 

presence of comparative data either between different types of MP, and/or MP and an 

alternative form of preservation. Both English and non-English articles were considered, 

utilizing a translator if necessary. Only published works, and not conference abstracts, were 

included; although there is some evidence to suggest that grey literature exclusion can 

contribute to publication bias
19

, these abstracts were all assessed and deemed to have either 

insufficient data or quality for inclusion. 

 

Exclusion criteria 

Clinical/human studies were excluded if less than 10 patients were in the MP group, or there 

was significant data and/or patient overlap between two or more published studies, and/or there 

was insufficient data with regards to delayed graft function (DGF), primary non-function 

(PNF), or graft/patient survival. These parameters were chosen as they were the most 

commonly and uniformly reported in the studies analyzed. For animal studies, an article was 

excluded if there was no appropriate control group for comparison, and/or there was a lack of a 

reperfusion period (either ex vivo or in vivo) after MP preservation. All studies prior to 1980 

were excluded. This publication year reflects a time after which there was a distinct shift in the 

type of perfusion machines and perfusion solutions used.  

 

3.3.2 SEARCH STRATEGY 
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The EMBASE, Medline and Cochrane (1980 to December 2015) databases were searched 

using Ovid, with key search terms including “kidney or renal” and “machine perfusion” (see 

Table, Supplemental Digital Content [SDC] 1, for complete strategy). In an effort to include all 

eligible studies, a manual literature search was also conducted using any potential articles’ 

bibliographies, in addition to reference lists from other reviews. 

 

3.3.3 DATA COLLECTION 

Data was extracted from each article by two independent reviewers utilizing a pre-determined 

template; a third reviewer was consulted if necessary for any disagreements. 

 

Clinical (human) data 

Human data was analyzed for the extraction of the following: date of publication and study 

period; study type (i.e. prospective or retrospective); kidney allocation; study center(s); patients 

in MP and CS groups; stratification of MP and CS patients by DBD, DCD and ECD status; MP 

characteristics, including the use of oxygenation and preservation temperature; perfusion 

machine(s) used; and the preservation solution(s) used in CS and MP groups. Quantitative data 

was extracted for – the incidence of DGF and primary non-function (PNF), 1-year graft and 

patient survival in the whole cohort, acute rejection rates, and post-transplant renal function 

(CrCl in ml/min and serum creatinine in mg/dl). DGF was defined as the need for dialysis in 

the 1
st
 week after transplantation

20
. Only six studies either utilized an alternate definition of 

DGF, or did not define DGF.  

 

Hazard ratios (HR) for graft survival were calculated, when possible, using the methods 

described by Tierney et al.
21 

 

Although the “ECD” graft description is not as descriptively useful as a high Kidney Donor 

Profile Index (KDPI) donor kidney, ECD is used in this manuscript as it is the most commonly 

utilized term in the included literature.  

 

Experimental (animal) data 

Study parameters collected for animal data included: date of publication, institution(s) 

involved, animal/species employed, weight range of animals, experimental procedure(s)/model 

employed (study groups, DCD or DBD, ex vivo perfusion or transplantation after preservation, 

experimental period), number of animals in each group, cold/warm ischemic times (CIT/WIT), 
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perfusion machine and settings used, preservation/perfusion solution(s) used, additives to 

preservation/perfusion solution(s), temperature of preservation/perfusion, and the use of 

oxygen. Study outcomes consisted of renal function parameters (peak creatinine in mg/dl, 

creatinine clearance (CrCl) in ml/min,), renal tubule parameters (fractional excretion of sodium 

(Na) (FeNa); enzymatic markers of tubular damage), glomerular parameters (proteinuria), 

endothelial injury parameters, markers of inflammation, oxidative stress markers, 

microcirculatory tissue perfusion post-preservation, oxygen consumption, histology, and 

animal survival.  

 

The standardized mean difference (SMD) was calculated between comparator groups for peak 

creatinine, CrCl, FeNa and survival using an effects size calculator.
22

  

 

3.3.4 BIAS ASSESSMENT 

Clinical (human) data 

Bias assessment of prospective cohort studies included in the meta-analyses was performed 

using the Newcastle-Ottawa quality assessment scale for cohort studies.
23

 RCT study quality 

was assessed using the Cochrane Collaboration’s tool.
24

  

 

Experimental (animal) data 

Animal experimental studies have several important differences in comparison to clinical 

studies. As such, SYRCLE’s risk of bias tool for animal studies was instead utilized to assess 

the quality of animal data included in meta-analyses.
25 

 

3.3.5 SYNTHESIS AND ANALYSIS OF RESULTS  

Observational (retrospective) human studies, in conjunction with prospective studies, were 

collated to systematically summarize the current parameters of MP utilization clinically. 

Observational studies were not included in subsequent formal quantitative analyses. 

Similarly, animal studies comparing HMP and CS were only utilized to explore mechanisms of 

MP preservation. As there are multiple human studies focusing on the comparison between 

HMP and CS, animal studies for this comparator group were not formally meta-analyzed in 

order to avoid additional heterogeneity. 

 

3.3.6 META-ANALYSES 
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In general, the HMP or WP groups were considered the intervention group when compared to 

CS; the intervention group was WP when compared to HMP, and oxygenated HMP when 

compared to non-oxygenated HMP. In the event of multiple experimental groups and one 

control group, each different experimental group was compared with the control group and 

analyzed as a separate study. 

 

Human (clinical) data  

Only prospective studies were included in meta-analyses. As only one study utilized WP
26

 it 

could not be separately analyzed. Therefore, studies comparing HMP to CS were meta-

analyzed. Further subgroup analyses for HMP versus CS in DCD and ECD donors were 

undertaken. In the event that one article presented the results from a sub-group of a larger 

study, the ECD or DCD donor results were only included in subgroup analyses. Forest plots 

denoting relative risk (RR) were constructed for DGF and PNF; HR was utilized in graft 

survival plots. 

 

Animal (experimental) data  

Meta-analyses were undertaken for studies comparing WP to CS or HMP, and oxygenated 

HMP to non-oxygenated HMP. All WP studies employed a DCD model so further subgroup 

analyses could not be undertaken. Forest plots were created for the SMD of relevant 

quantitative parameters. 

 

Meta-analyses were performed for the above comparator groups using Comprehensive Meta-

Analysis Version 2.2 (Biostat, Inc., New Jersey, USA). The I
2
 statistic was used to analyze 

study heterogeneity, with values ≥ 50% indicating high levels of heterogeneity. In these cases, 

a random effects model was used; otherwise, a fixed effects model was employed. Publication 

bias was assessed using funnel plots. A p-value < 0.05 denotes statistical significance, and 

meta-analysis results are presented with 95% confidence intervals (CI). 

 

3.4 Results

3.4.1 SUMMARY CLINICAL AND EXPERIMENTAL STUDY CHARACTERISTICS 

Both human and animal studies were analyzed in the formulation of this systematic review, 

with human studies used in comparisons between HMP and CS, and animal articles utilized for 

the analysis of oxygenated HMP, WP and the mechanisms of MP. In total, 63 human and 38 

animal studies met inclusion criteria for which data was extracted for both quantitative and 
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qualitative analyses. Figure 1 outlines the study selection process. Baseline study 

characteristics are outlined in SDC 2 and 3 (Tables), whilst Table 1 summarizes preservation 

and perfusion parameters for all studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study selection flow diagram.  

 

Cr – creatinine; CrCl – creatinine clearance; DGF – delayed graft function; FeNa – fractional excretion of sodium; 

PNF – primary non-function.  

 

*In articles that compared more than two treatment groups, each comparator group pair was treated as a 

separate experiment for the purposes of the meta-analysis. 
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268 duplicates removed 
 

Records screened 
(n = 573) 

Records excluded 
(n = 430) 

       

Full-text articles assessed 
for eligibility 

(n = 164) 

Full-text articles excluded, with 
reasons (n = 50) [human] 

Insufficient data (n = 10) 
Less than 10 patients (n = 5) 
No machine perfusion data (n = 3) 
Published before 1980 (n = 13) 
Significant data/patient overlap 
with another study (n = 19) 

 Studies included in qualitative 
synthesis 

 Clinical: n = 63 

 Experimental: n = 38 
 

Records identified by 
manual search 

(n = 21) 

Full-text articles excluded, with 
reasons (n = 13) [animal] 

No reperfusion period after 
preservation (n = 6) 
No machine perfusion group (n = 2) 
No control group (n = 2) 
Inappropriate controls (n = 2) 
Insufficient data (n = 1) 

 

Studies included in quantitative synthesis (meta-analysis) 

 Clinical: n = 18 (DGF, PNF, or 1-year graft loss) 

 Experimental: n = 26* (peak Cr, CrCl, FeNa, or survival) 
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Table 1. Summary human and animal study perfusion and preservation characteristics^  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS – cold (static) storage; EC – Euro-Collins; EMS – exsanguinous metabolic support; FGF – fibroblast growth 

factor; HMP – hypothermic machine perfusion; HOC – hyperosmolar citrate; HTK – histidine–tryptophan–

ketoglutarate; IOPS – isolated organ perfusion system; MP – machine perfusion; PEG – polyethylene glycol; PEG-

SOD – polyethylene glycol-superoxide dismutase; PGE1 – prostaglandin E1; UW – University of Wisconsin; WP – 

warm (normothermic, machine) perfusion 

  

ζ
 Where recorded 

¥ 
Each study may have used > 1 perfusion/preservation solution (for different experimental groups) 

^Excluding subgroups in study counts 

^^ In addition to ‘standard’ additives such as insulin, penicillin and dexamethasone, as instructed by 

manufacturers of UW solution – see UW product sheet
137

 

^^^ Plasma-free packed red cells + Ringer’s solution used in WP study 

* Excludes any potential CS solution used prior to MP 

** Includes Kidney Perfusion Solution (KPS) 1, Belzer Machine Perfusion Solution (MPS), Belzer II MPS  

 

Humans Preservation solution 
[n studies]

ζ ¥
 

 

Additives to perfusion 
solution^^

 ζ
 

 

Perfusion machine 
[n studies]

ζ
 

Storage/perfusion 
temperature  
[range 

ο
C]

ζ
 

Use of Oxygen, 
n studies

ζ
 

CS EC [14] 
HTK [3] 
Other [4] 
UW [15]  

N/A N/A Hypothermic Nil 

MP Plasma/albumin-based 
[16] 
Other [3]^^^ 
UW [32] 

α-Ketoglutarate 
L-Arginine 
N-Acetylcysteine 
Papaverine 
PEG-SOD 
Phentolamine 
Prostacyclin 
PGE1 
Verapamil 
 

Gambro [4] 
LifePort [16] 
Other [5] 
Waters (RM3 or 
MOX-100) [31] 
 

Hypothermic [1-8] 
Normothermic 
[34.6]*** 

4  
[3 x HMP; 
1 x WP] 

Animals Preservation solution 
[n studies]

ζ¥
 

 

Additives to perfusion 
solution

 ζ
^^ 

 

Perfusion machine 
[n studies]

ζ
 

Storage/perfusion 
temperature  
[range 

ο
C]

ζ
 

Use of Oxygen, 
n studies  
[pO2 mmHg]

ζ
 

CS HTK [9] 
HOC [3] 
Other [2] 
UW** [11]  

N/A N/A Hypothermic Nil 

HMP Albumin-based [3] 
Custodiol-N/dextran

 κ
 [5] 

HTK [3] 
Other [4] 
UW** [21] 

Alanine
β
 

Aspartate
β 

Deferoxamine
β
 

Glycine
β
 

L-arginine
β
 

PEG
γ
 

Belzer [2] 
Gambro [3] 
LifePort [10] 
Other [5] 
Waters (RM3 or 
MOX-100) [8] 
 

Hypothermic [0-8] 19 [150-800] 

WP Blood [6]
α 

Custodiol-N/dextran [2] 
EMS medium [5] 
Other [1] 

Components of EMS 
media

ϯ
  

FGF 
Sodium nitroprusside 

EMS technology [4] 
IOPS

ε 
[4] 

Other [3] 

Subnormo/normo-
thermic [20-38] 

14 [150-700] 
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*** n = 1 study 

α 
In some cases leukocyte-depleted 

β
 Part of Custodiol-N solution 

γ 
As part of Institut Georges Lopez (IGL)-1 solution (substitute for hydroxyl ethyl starch in extracellular UW 

solution)
138

 

ε 
Based on pediatric cardiopulmonary bypass apparatus 

ϯ 
See Brasile et al.
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κ
 Modified form of HTK 

 

3.4.2 HUMAN (CLINICAL) DATA 

MP parameters for deceased human donor kidney preservation (All Studies) 

University of Wisconsin (UW)-based MP solutions were the most commonly utilized 

preservation solutions in human MP (Table 1). Perfusion fluid was pumped through kidneys 

using Waters or LifePort MP apparatus in most cases (Table 1). Pulsatile perfusion was 

employed in the vast majority of studies; only two (3.2%) articles specified the use of non-

pulsatile MP.
27,28

 Median perfusion pressure was 50 mmHg (range 30-60 mmHg) in HMP 

articles, whilst the one WP study used pressures of 52-70 mmHg.
26

  

 

Pharmacologic manipulation of the perfusate was minimal, with only eight (12.7%) human 

studies entertaining the addition of non-standard additives (Table 1), and four (6.3%) of articles 

utilizing oxygenated MP. All but one human study utilized HMP; in the WP study the 

perfusate was warmed to a temperature of 32-36°C.
26

  

 

The duration and location of placement of kidneys on the machine varied between centers. In 

particular, 18 of 63 (28.6%) of articles specified the use of CS in conjunction with MP; in these 

cases, MP was usually commenced upon arrival to the recipient center. Kidneys that underwent 

MP tended to have greater median CITs compared to CS kidneys (23.4 versus 19.5 hours, 

respectively) (see Table, SDC 2), largely reflecting the use of MP as a possible means to 

extend preservation times. 

 

Meta-analyses (Prospective Studies) 

Eighteen studies were included in the human meta-analysis, out of which 11 (61.1%) articles 

were RCTs, and seven (38.9%) studies were prospective but non-randomized (prospective 

cohorts). As there was only one study comparing WP to CS, WP could not be directly 

compared to other preservation methods using the human studies.  
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Forest plots of selected meta-analyses are shown in Figure 2, with all results tabulated in SDC 

4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Forest plots comparing DGF (A), PNF (B) and 1-year graft loss (C) for all studies comparing HMP to CS – 

human studies. Data expressed as RR (for DGF and PNF) and HR (for graft loss) ± 95% CI. Different analyses 

within the same study are denoted by an alphabetical letter suffix (e.g. “a”). 

 

Human studies displayed the short-term advantages of MP when compared to CS. The RR 

(unadjusted) of DGF for HMP versus CS studies was 0.77 (95% CI 0.69-0.87; p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study name Outcome Statistics for each study Risk ratio and 95% CI

Risk Lower Upper 
ratio limit limit Z-Value p-Value

Moers et al., 2009 DGF 0.787 0.598 1.035 -1.717 0.086

van der Vliet et al., 2001 DGF 0.600 0.376 0.957 -2.144 0.032

Matsuno et al., 1994 DGF 0.727 0.446 1.185 -1.278 0.201

Merion et al., 1990 DGF 1.313 0.779 2.212 1.021 0.307

Mendez et al., 1987 DGF 0.529 0.291 0.962 -2.085 0.037

Halloran et al., 1987 DGF 0.719 0.464 1.114 -1.476 0.140

Heil et al., 1987 DGF 1.273 0.711 2.278 0.812 0.417

Alijani et al., 1985 DGF 0.278 0.119 0.648 -2.965 0.003

Toledo-Pereyra, 1983 DGF 2.500 0.625 9.996 1.296 0.195

Guy et al., 2015 DGF 0.581 0.378 0.892 -2.484 0.013

Watson et al., 2010 DGF 1.040 0.725 1.493 0.213 0.832

Reznik et al., 2008 DGF 0.636 0.400 1.011 -1.914 0.056

Mozes et al., 1985 DGF 0.793 0.588 1.069 -1.524 0.127

Abboud et al., 2011 DGF 0.286 0.067 1.226 -1.686 0.092

Veller et al., 1994a DGF 1.200 0.446 3.232 0.361 0.718

0.773 0.686 0.872 -4.184 0.000

0.01 0.1 1 10 100

Favours A Favours B

Meta Analysis

Favors CS Favors HMP 

(A) 

Study name Outcome Statistics for each study Risk ratio and 95% CI

Risk Lower Upper 
ratio limit limit Z-Value p-Value

Moers et al., 2009 PNF 0.438 0.182 1.050 -1.851 0.064

van der Vliet et al., 2001 PNF 1.543 0.476 5.003 0.722 0.470

Matsuno et al., 1994 PNF 0.333 0.015 7.501 -0.692 0.489

Merion et al., 1990 PNF 0.333 0.036 3.099 -0.966 0.334

Halloran et al., 1987 PNF 1.065 0.531 2.137 0.177 0.859

Guy et al., 2015 PNF 0.272 0.013 5.583 -0.844 0.398

Watson et al., 2010 PNF 3.000 0.125 71.738 0.678 0.498

Reznik et al., 2008 PNF 0.117 0.006 2.118 -1.452 0.146

Abboud et al., 2011 PNF 0.333 0.014 7.763 -0.684 0.494

0.753 0.477 1.187 -1.223 0.221

0.01 0.1 1 10 100

Favours A Favours B

Meta Analysis

(B) 

Favors CS Favors HMP 

Study name Outcome Statistics for each study Hazard ratio and 95% CI

Hazard Lower Upper 
ratio limit limit Z-Value p-Value

Moers et al., 2009 1-yr graf t survival 0.522 0.290 0.940 -2.167 0.030

Watson et al., 2010 1-yr graf t survival 3.320 1.155 9.540 2.228 0.026

1.247 0.204 7.620 0.239 0.811

0.01 0.1 1 10 100

Favours A Favours B

Meta Analysis

(C) 

Favors CS Favors HMP 

I2 88.897 

I2 45.194 

I2 0 
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Within the DCD kidney subgroup, the RR of DGF was 0.78 (95 % CI 0.66-0.91; p = 0.002), 

whilst it was 0.67 for ECD donors (95% CI 0.42-1.08; p = 0.097). It should be noted that only 

two studies were available for the ECD comparison. A significant difference in PNF rates 

between HMP and CS was only detected in the ECD cohort (RR 0.28, 95% CI 0.09-0.89; p = 

0.031). 

 

The medium to long-term effects of MP were less clear. With respect to graft failure rates 

within the first year, there was no difference between HMP and CS overall (HR 1.25, 95% CI 

0.20-7.62; p = 0.81). Insufficient data precluded HR calculations for further subgroup analyses, 

or for the comparison of patient survival between the HMP and CS groups. 

 

Meta-analysis Publication bias and Heterogeneity (Prospective Studies) 

Visual assessment of funnel plots displayed no significant asymmetry when comparing HMP 

to CS for the DGF parameter. There was only mild asymmetry in favor of positive studies for 

studies comparing PNF (see Figure, SDC 5, for funnel plots). Study heterogeneity was low for 

a majority of parameters (see Table, SDC 4). 

 

Trends in one-year graft loss and patient survival (Prospective Studies) 

Meta-analyses for graft loss/survival at one year could only be conducted in two studies. In one 

of these studies by Moers et al., graft loss at one year was significantly higher in the CS group 

compared to HMP (HR 0.52; p = 0.03); this finding was maintained in the ECD (HR 0.35; p = 

0.02) but not DCD subgroups (HR 1.29; p = 0.7) in subsequent expansions of the study 

cohorts.
16,29,30

 Graft loss (survival) data for the one year time-point were available in eight 

further prospective studies. Although there were no statistically significant differences between 

HMP and CS, there was a trend towards higher survival after HMP in four studies, including 

one article investigating ECD kidneys.
31-34

 In contrast, although still underpowered to produce 

statistical significance, two studies indicated higher survival in CS kidneys, with one of these 

studies analyzing DCD kidneys.
35,36

  

 

There were seven prospective studies with results available for patient survival one year post-

transplant.
15,16,29-32,34

 Median survivals were 94.9% (range 80.6-97%) for HMP kidneys, and 

96.7% (range 77.7-100%) for CS kidneys. No study reported statistically significant 

differences between either preservation method.  
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Nicholson and Hosgood presented the only human study exploring the use of WP for renal 

preservation.
26

 The WP cohort impressively had 100% one year graft and patient survival rates, 

although there were only 18 patients in the WP group. 

 

Graft rejection (Prospective Studies) 

Acute graft rejection rates were not statistically comparable owing to variable definitions and 

immunosuppression. Rejection rates were no different in the multi-center trial by Moers et al. 

(13.7% for CS versus 13.1% for MP).
16

 In contrast, three prospective studies showed a strong 

trend toward lower rates of acute rejection in the HMP group, although this did not reach 

significance.
15,37,38

  

 

Risk of bias assessment (Prospective Studies) 

The risk of bias assessment of cohort studies is summarized in SDC 6 (Figure). Six out of 8 

domains in the assessment scale were adequately covered in at least 60% of studies. 

Comparability of cohorts in study design or analysis was less adequately covered, as a 

proportion of studies did not appropriately account for factors such as organ ischemic times. 

SDC 7 (Table) displays the risk of bias assessment for the included RCTs upon utilization of 

the Cochrane Collaboration’s bias tool.
24

 Across studies, it can be seen that there is a low risk 

of bias in at least three of the domains. Within the domains of blinding and allocation 

concealment, however, at least half of the studies were at risk of selection and performance 

bias. 

 

3.4.3 ANIMAL (EXPERIMENTAL) DATA  

MP characteristics (All Studies) 

In stark contrast to human studies, 30 of 38 (78.9%) animal articles utilized oxygenated MP. 

Furthermore, WP, including subnormothermic MP, was used in 14 (36.8%) of the included 

animal studies (see Table, SDC 3). As such, further quantitative analyses regarding oxygenated 

and/or WP were undertaken in animal studies.  

 

Meta-analyses (Oxygenated HMP and WP Studies) 

There were 10 distinct animal data-sets utilized in the meta-analyses that compared CS to WP, 

whilst 11 studies were included that compared HMP to WP and five studies were available for 

the comparison between oxygenated and non-oxygenated HMP. 
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Figure 3 displays forest plots of selected meta-analyses, with results tabulated in SDC 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Forest plots comparing peak creatinine (A), peak CrCl (B), and survival (C) for WP compared to HMP – 

animal studies. Data presented as SMD ± 95% CI. Different analyses within the same study are denoted by an 

alphabetical letter suffix (e.g. “a”). 

 

Post-preservation renal function in animal experiments was assessed using the parameters of 

peak creatinine, CrCl and FeNa, and animal survival during the experimental period. Peak 

creatinine values were significantly lower in animal groups utilizing WP (SMD -1.72, 95% CI 

-3.09 to -0.34; p = 0.014) when compared to CS. The SMD of peak serum creatinine levels in 

the WP group was also significantly lower when compared to the HMP group (-1.66, 95% CI -

3.19 to -0.14; p = 0.033). There was no significant difference however between peak creatinine 

levels in the oxygenated HMP versus non-oxygenated HMP group (SMD -0.39, 95% CI -1.85 

to 1.08; p = 0.60), however there were only 2 studies eligible for this comparison.
39,40

 

However, the SMD of peak CrCl between the WP and HMP (0.83, 95% CI -0.50 to 2.15; p = 

0.22) and CS (2.08, 95% CI -1.83 to 6.00; p = 0.22) groups was not significantly different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study name Statistics for each study Std diff in means and 95%  CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Wijk et al., 1980a Creatinine -1.000 0.612 0.375 -2.200 0.200 -1.633 0.102

van der Wijk et al., 1980b Creatinine -1.500 0.654 0.427 -2.781 -0.219 -2.295 0.022

Rijkmans et al., 1984 Creatinine -4.300 0.838 0.702 -5.943 -2.657 -5.130 0.000

Hosgood et al., 2011_1 Creatinine -0.200 0.579 0.335 -1.334 0.934 -0.346 0.730

-1.664 0.780 0.608 -3.193 -0.135 -2.133 0.033

-6.00 -3.00 0.00 3.00 6.00

Favours A Favours B

Meta Analysis

(A) 

Favors HMP Favors WP 

Study name Outcome Statistics for each study Std diff in means and 95%  CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

Bagul et al., 2008 CrCl -0.400 0.583 0.340 -1.543 0.743 -0.686 0.493

Hoyer et al., 2014 CrCl 1.300 0.696 0.485 -0.064 2.664 1.868 0.062

Schopp et al., 2015 CrCl 1.700 0.674 0.454 0.380 3.020 2.524 0.012

0.827 0.676 0.457 -0.498 2.152 1.223 0.221

-3.20 -1.60 0.00 1.60 3.20

Favours A Favours B

Meta Analysis

Favors WP Favors HMP 

(B) 

Study name Outcome Statistics for each study Std diff in means and 95%  CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

Brasile et al., 2002 Survival 2.209 1.180 1.393 -0.104 4.522 1.872 0.061

Brasile et al., 2005b Survival 2.099 1.185 1.405 -0.224 4.422 1.771 0.077

van der Wijk et al., 1980b Survival 1.775 0.854 0.730 0.101 3.449 2.078 0.038

Rijkmans et al., 1984 Survival 1.902 0.730 0.533 0.471 3.333 2.605 0.009

Hosgood et al., 2011_1 Survival -0.505 0.770 0.593 -2.014 1.004 -0.656 0.512

1.293 0.396 0.157 0.516 2.070 3.262 0.001

-4.50 -2.25 0.00 2.25 4.50

Favours A Favours B

Meta Analysis

Favors WP Favors HMP 

(C) 

I2 82.048 

I2 69.230 

I2 46.907 
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FeNa could not be compared between WP and other groups due to an insufficient number of 

studies. Importantly, pooled FeNa was significantly lower in studies comparing oxygenated to 

non-oxygenated HMP (SMD -1.54; 95% CI -2.54 to -0.54; p = 0.002). 

 

Animal survival in such studies is a reflection of maintenance of renal function as opposed to 

actual survival per se as the vast majority of deaths reflected euthanasia after manifestation of 

features of renal failure. Importantly, WP once again demonstrated its superiority over HMP 

(SMD 1.29; 95% CI 0.52-2.07; p = 0.001). There was not enough data to analyze this 

parameter for WP compared to CS groups. 

 

Meta-analysis Publication bias and Heterogeneity (WP Studies) 

Analysis of funnel plots did not display significant asymmetry when comparing peak creatinine 

between WP and the HMP or CS groups (see Figure, SDC 9, for funnel plots). Study 

heterogeneity was high for most parameters (see Table, SDC 8). 

 

Mechanisms of action of MP – tubules, glomeruli and endothelium (All Studies)  

The animal studies outlined comparisons between experimental and control groups for a wide 

range of parameters that could not be meta-analyzed due to significant variability in reporting 

between different studies. These functional indicators are displayed in Table 2, and can broadly 

be characterized into those relating to tubular, glomerular or endothelial function or damage, 

oxidative stress, levels of inflammation, micro-circulatory tissue perfusion, and oxygen 

consumption. Histology was not included in this analysis due to wide variability in the 

reporting of histological criteria. Broadly, improved tubular function with a reduction in 

tubular injury, improved glomerular function, and reduced endothelial injury seemed to be 

evident after the utilization of HMP compared to CS. Furthermore, HMP appeared to improve 

renal cortical micro-circulation. There was no obvious advantage for any experimental group 

regarding markers of inflammation or oxidative stress. Furthermore, with the exception of 

higher oxygen consumption in all three studies comparing WP to CS, no clear differences 

could be elucidated between the other experimental and control groups (Table 2). 
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Table 2. Tubular, glomerular & endothelial function and damage in animal studies* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS – cold (static) storage; HMP – hypothermic machine perfusion; NR – not recorded; WP – warm (machine) 

perfusion 

  

* Number of studies for each respective outcome included only if statistically significant difference recorded in 

each study (see meta-analyses for pooled outcomes for FeNa); in studies where there were > 2 study groups, 

study outcome(s) only included for comparable groups 

** Markers measured (references): alanine aminopeptidase
45, 115

; aspartate aminotransferase
40, 113, 128

; gamma-

glutamyl transpeptidase
59

; lactate dehydrogenase
39, 59, 67, 113, 118, 129, 132, 134

; liver fatty acid binding protein
47, 58

; N-

acetyl-β-D-glucosaminidase
45, 115

 

 

 CS vs HMP  
[n studies/total] 
 

HMP vs WP 
[n studies/total] 
 

CS vs WP 
[n studies/total] 
 

HMP no-O2 vs HMP-O2 

[n studies/total] 
 

Tubules 1. Lower FeNa: 

 CS – 0/8 

 HMP – 8/8 
2. Higher serum/urine 
tubular damage 
markers**: 

 CS – 7/11 

 HMP – 0/11   
 

1. Lower FeNa: 

 HMP – 0/2 

 WP –  1/2 
2. Higher serum/urine 
tubular damage 
markers**: 

 HMP – 0/3 

 WP – 1/3 
 

1. Lower FeNa: 

 CS – 1/4 

 WP – 3/4 
2. Higher serum/urine 
tubular damage 
markers**: 

 CS – 2/4 

 WP – 1/4 
 

1. Lower FeNa: 

 No-O2 – 0/2 

 O2 –  0/2 
2. Higher serum/urine 
tubular damage 
markers**: 

 No-O2 – 2/5 

 O2 –  0/5 
 

Glomeruli Lower proteinuria: 

 CS – 1/6 

 HMP – 4/6 
 

Lower proteinuria: 

 HMP – 0/1 

 WP – 0/1 
 

Lower proteinuria: 

 CS – NR  

 WP – NR 
 

Lower proteinuria: 

 No-O2 – 0/1 

 O2 –  1/1 
 

Endothelium Higher injury markers 
***: 

 CS – 3/5 

 HMP – 1/5 

Higher injury markers 
***: 

 HMP – 0/1 

 WP – 0/1 

Higher injury markers 
***: 

 CS – 1/3 

 WP – 0/3 
 

Higher injury markers 
***: 

 No-O2 – 1/1 

 O2 – 0/1 
 

Inflammation Increased 
inflammatory 
markers^: 

 CS – 1/5 

 HMP – 2/5 

Increased 
inflammatory 
markers^: 

 HMP –  0/2 

 WP – 1/2 
 

Increased 
inflammatory 
markers^: 

 CS –  0/2 

 WP – 1/2 
 

Increased 
inflammatory 
markers^: 

 No-O2 – 0/1 

 O2 –  0/1 

Oxidative stress Elevated markers of 
oxidative stress^^: 

 CS – 2/4 

 HP – 2/4 

Elevated markers of 
oxidative stress^^: 

 HMP – 1/1 

 WP – 0/1 

Elevated markers of 
oxidative stress^^: 

 CS – 0/1 

 WP – 1/1 

Elevated markers of 
oxidative stress^^: 

 No-O2 – 1/2 

 O2 – 2/2^^^ 
 

Microcirculation
κ
 Better cortical 

microcirculation
λ
: 

 CS – 0/4 

 HMP – 4/4 

Better cortical 
microcirculation

λ
: 

 HMP – NR 

 WP – NR 

Better cortical 
microcirculation

λ
: 

 CS – NR 

 WP – NR 

Better cortical 
microcirculation

λ
: 

 No-O2 – 0/1 

 O2 –  0/1 

O2 consumption Higher O2 
consumption

μ
: 

 CS – 0/5 

 HMP – 0/5 

Higher O2 
consumption

μ
: 

 HMP – 0/2 

 WP – 1/2 

Higher O2 
consumption

μ
: 

 CS – 0/3 

 WP – 3/3 

Higher O2 
consumption

μ
: 

 No-O2 – 0/3 

 O2 –  0/3 
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*** Endothelial injury markers (references): endothelin-1
47, 113, 114, 132, 134

; thrombomodulin
39

; von Willebrand 

factor
45, 116, 128

 

^ Inflammatory markers (references): high mobility group protein B1
116

; intercellular adhesion molecule 1
116

; 

interleukin-6
132, 133

; myeloperoxidase activity
113

; nuclear factor kappa B1
114

; toll-like receptor 4
116

; tumor necrosis 

factor α
59, 133

  

^^ Free radical damage/oxidative stress markers (references): 8-isoprostane
113, 118, 132

; malondialdehyde
70

; 

oxidized to total glutathione ratio
115

; thiobarbituric acid reactive substances
45, 68

; unspecified lipid peroxidation 

products
39

  

^^^ In Gallinat et al.
39

, lipid peroxidation products significantly lower in the no oxygen group during preservation 

(perfusion), with the opposite true after transplantation; in Hoyer et al.
66

, markers of oxidative damage were 

also measured during preservation (perfusion), and were lower in the no oxygen group 

κ 
Assessed as mean cortical erythrocyte flux 10 minutes post-reperfusion by Laser Doppler flowmetry  

λ 
Studies included – 

39, 43, 45, 47, 116
 

μ 
Studies included – 

44, 58, 59, 67, 113, 118, 132, 134
 

 

Risk of bias assessment (All Studies) 

Animal study bias assessment was performed using SYRCLE’s assessment tool
25

 and is 

summarized in SDC 10 (Figure). Overall, there were very few domains in which there was 

clearly a high risk of bias. In 6 out of the 10 parameters however, bias assessment was largely 

unclear as the domains could not be analyzed from the available study data. 

 

3.5 Discussion 

This systematic review and meta-analysis provides a comprehensive and up-to-date insight into 

the current published literature regarding MP preservation of renal grafts prior to 

transplantation in the clinical setting. Animal data was included to explore modifications to MP 

that are as yet grossly under-explored in human studies, namely WP and oxygenated MP, in 

addition to allowing the development of a greater mechanistic understanding of MP. 

 

We show a definite reduction in DGF post-HMP preservation for renal allografts in humans 

when compared to CS, including in DCD and ECD kidneys. PNF appeared to be reduced in the 

ECD subset. There was not enough data to give sufficient power to comparisons of one year 

graft survival by meta-analysis, and subgroup analyses could not be conducted for this 

parameter. One year patient survival was comparable amongst the different studies. We 

obtained mixed results regarding the benefits of oxygenated HMP. Furthermore, although there 

was only one human study that employed WP
26

, multiple animal studies showed its advantages 

over both CS and HMP kidneys in terms of post-transplantation creatinine levels and animal 
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survival. Animal study results showed mechanisms for improved allograft function in MP 

kidneys, including better tubular and glomerular function, and less endothelial damage.     

 

Increased demands for donor kidneys have necessitated the use of more marginal organs for 

transplantation. Indeed, any method such as MP that will increase the pool of usable kidneys 

can benefit developing and developed countries alike, especially due to the often prohibitively 

high costs associated with long-term dialysis, and should be explored further.
1
 A detailed 

economic analysis by Wight et al., albeit from 2003, showed that MP is likely to be more 

effective than CS in the long-term, with an economic benefit more pronounced when MP 

preservation is applied to DCD kidneys.
41

 Whilst Groen et al. in 2012 could not make the same 

conclusion for DCD transplants due to insufficient numbers, these authors found reduced costs 

after MP in the ECD subset, largely due to a reduced need for post-transplantation dialysis and 

hospital bed-stays.
42

  

 

Mechanistically, MP reduces preservation-related damage and aids renal recovery through a 

variety of mechanisms. ATP levels, and thus energy homeostasis, are better preserved in 

perfused kidneys.
43,44

 Tubular and glomerular integrity seems to be aided by MP, an assertion 

that is supported by the reduction in markers of tubular damage and improved tubular and 

glomerular function seen after MP as compared to CS (Table 2). Furthermore, MP ensures 

better reperfusion of grafts as measured by cortical microcirculation; this is likely related to a 

reduction in endothelial damage and swelling
43,45

 (Table 2). The flow cessation itself in CS as 

compared to MP likely contributes to the increased endothelial dysfunction in CS grafts.
46

 The 

pulsatile aspect of MP likely has an important effect on the maintenance of endothelial 

integrity, as pulsatile-perfused kidneys compared to non-pulsatile MP have been shown to have 

higher renal vascular flow, reduced expression of endothelin-1, and increased expression of the 

vasoprotective kruppel-like factors and nitric oxide.
47

 We did not however find significant 

support for less inflammation and oxidative stress in the HMP group (Table 2), although recent 

evidence suggests that apoptosis and inflammation may be reduced in HMP through up-

regulation of aldehyde dehydrogenase 2 and reduction in expression of nuclear factor-κB and 

matrix metalloproteinase 9.
48,49 

 

In congruence with previous systematic reviews
8,50-52

 our data shows that DGF is undoubtedly 

reduced in patients undergoing MP compared to CS. We additionally showed the possibility of 

reduced PNF after HMP preservation of ECD kidneys. In contrast to Jiao et al.
53

 however, we 
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could not find statistical evidence for improved graft survival in the ECD cohort, due to a lack 

of available HR data that could subsequently be pooled. Furthermore, statistical methods in the 

former study are flawed, with survival analyses conducted using OR instead of HR; in 

addition, two out of the three studies in their survival analysis had significant patient overlap.
53

 

Perhaps most pertinently however, the pivotal large-scale and multi-center RCT performed by 

Moers et al. showed significantly improved graft survival in HMP patients, with this survival 

advantage still present after three years in DBD and especially ECD kidneys, but not in 

kidneys from DCD donors.
16,54,55

  

 

Whilst Moers and colleagues' study provides evidence regarding the efficacy of machine 

perfusion as it is utilized currently, our analysis of all retrospective and prospective MP studies 

in humans to date show that it is still employed in a very limited fashion, with considerable 

room for modification to maximize the potentials of this technique. In particular, temperature 

modification, oxygenation and pharmacologic manipulation of perfusion solutions are all in 

their infancy with regard to human renal preservation via MP. 

 

The inclusion of animal data has allowed this review to capture the possible future of MP, as 

this experimental work has not yet caught up with application to the clinic. In particular, a 

reasonable deduction can be made regarding the applicability and potential success of WP, 

which currently has little human data. WP reverses the pivotal concept of hypothermia in organ 

preservation, sustaining normal metabolic rates with an oxygenated red blood cell-based 

perfusate. Compared to CS and HMP kidneys, WP kidneys had significantly lower peak 

creatinine and better survival (Figure 3; also see Table, SDC 8). Nicholson & Hosgood utilized 

WP in human ECD kidney grafts, and also reported lower rates of DGF compared to CS.
26

 WP 

potentially reduces the possibility of irreversible cold-induced metabolic disruption in addition 

to reducing ischemia-reperfusion injury upon commencement of normothermic reperfusion in 

vivo.
48,56,57

  

 

An alternative to WP at body temperature is the concept of subnormothermic MP, successfully 

utilized here in two studies.
58,59

 Subnormothermic perfusion helps avoid the injuries induced by 

cold ischemia without necessitating a significant change in perfusion equipment or solutions.
59

 

In addition, it guards against the pitfalls inherent to an immediate temperature shift from 

hypothermia to body temperature upon post-anastomotic reperfusion.
58 

 



66 
 

The perfusion solution and its additives potentially have a major impact on the effectiveness of 

kidney preservation. UW or a modified form of UW was the most commonly employed 

solution for CS and MP in both animal and human studies (Table 1), which is not surprising 

considering its proven efficacy.
49

 Although there is considerable ongoing research into 

pharmacological manipulation of organ preservation solutions, surprisingly few studies utilized 

additives to try and change graft outcomes (Table 1). Pathophysiological targets for these 

additives include free-radical injury, endothelial damage and vasoconstriction, the complement 

cascade, and apoptosis.
60-64

 These processes were in some cases targeted as part of new 

perfusion solutions, including Custodiol-N, Vasosol, and Exsanguinous Metabolic Support 

(EMS) media.
60,62,64,65

 It is difficult to ascertain individual effects of each pharmacologic agent, 

as few studies undertook direct comparisons between them. Guerrera et al. compared Vasosol 

solution, which contains vasodilatory agents such as prostaglandin E1 (PGE1) and 

nitroglycerin, and the anti-oxidant N-acetylcysteine, to UW (Belzer MPS), and showed 

significant lower DGF rates in the Vasosol group.
64

 The addition of PGE1 to UW was also 

shown to be effective in another study.
62

 Other pharmacological therapies that may be 

incorporated into renal preservation are reviewed by Chatauret et al.
66 

 

Oxygenation is also a pharmacologic intervention that can be applied to HMP. Its use was 

much more prevalent in animal studies, with comparisons showing significantly lower FeNa in 

the oxygenated HMP compared to non-oxygenated HMP group (see Table, SDC 8). The 

absence of a statistical difference with regards to peak creatinine may be explained by the fact 

that there were only two studies for comparison.
39,40

 Active oxygenation of the perfusate may 

potentially increase the generation of reactive oxygen species (see Table 2), although this was 

not supported post-transplantation in the study by Gallinat et al.
39

 In contrast, the use of 

oxygen during HMP is purported to restore adequate mitochondrial and cellular homeostasis 

prior to reperfusion.
67,68

 An alternative to oxygenated MP is the use of persufflation, through 

which oxygen can be delivered to the kidneys directly through its vasculature. Suszynski et al. 

summarize the utility of persufflation for renal preservation;
69

 this technique was compared to 

CS and HMP by Treckmann et al., with persufflated kidneys having significantly lower 

creatinine levels post-transplantation compared to HMP.
70 

 

Limitations of this review include the suboptimal comparability of HMP and CS cohorts within 

the human studies. This was largely due to the fact that CIT for human MP kidneys was higher 

than that for CS kidneys (see Table, SDC 2), which is not surprising given that MP is often 
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used as a means to extend the period of preservation. Furthermore, a not insignificant 

proportion of RCTs suffered from features of selection bias due to poor blinding and allocation 

concealment. Additionally, it is difficult to tease out the impact of MP solutions on the overall 

effect of MP, as a variety of solutions were utilized that were usually different to the CS 

control. Animal studies, although informative, were quite heterogeneous and difficult to 

formally assess for bias. We attempted to minimize bias by excluding all retrospective studies 

from the meta-analyses, and in order to account for any study heterogeneity a random effects 

model was employed to help reduce type I error.  

 

In summary, we have shown distinct short-term advantages in the use of MP over CS for the 

preservation of renal allografts, especially with regards to the reduction of DGF. ECD graft 

recipients may benefit further from a reduction in PNF rates. In the medium to long-term, there 

is likely a survival and cost advantage for ECD kidneys that have undergone MP in this way. 

Although results from animal studies should be interpreted with more caution, they show some 

mechanistic advantages to the use of oxygenated MP, and distinct functional improvements 

upon the use of normothermic perfusion; this should provide a further stimulus for MP 

oxygenation and WP human trials. We strongly encourage additional exploration and 

enhancement of the MP preservation technique, through a variety of modifications based on the 

presented experimental evidence, which may improve its short and long-term efficacy.  
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4.1 Abstract 

Introduction: The ongoing supply-demand gap with respect to donor kidneys for transplantation 

necessitates the increased use of higher kidney donor profile index (KDPI) and/or circulatory 

death donor (DCD) kidneys. Machine perfusion (MP) preservation has become increasingly 

popular as a means to preserve such organs. Human data regarding normothermic kidney MP 

(NMP) is in its infancy, and such a system has not been established in the Australasian clinical 

setting. 

 

Methods: Modified cardio-pulmonary bypass technology was utilized to develop a viable NMP 

kidney perfusion system using a porcine DCD model. System development and optimization 

occurred in two stages, with system components added in each experiment to identify optimal 

perfusion conditions. 

 

Results: Device functionality was demonstrated by the successful perfusion of and urine 

production by, eight porcine kidneys. Urine production diminished in the presence of colloid in the 

perfusate. Pressure-controlled (compared to flow-controlled) perfusion is preferable as a safe 

perfusion pressure range can be maintained. More physiologic perfusion conditions are achieved if 

oxygenation is provided by an oxygen/carbon dioxide mixture compared to 100% oxygen. 

 

Discussion: A viable and reproducible NMP system was established and tested in porcine kidneys, 

which was able to simulate graft function extra-corporeally. Further work is required to identify 

the most optimal perfusion conditions. Prior to its utilization in clinical transplantation, the system 

should be tested in non-transplanted human kidneys.   
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4.2 Introduction 

Organ transplantation is the optimal option for the management of end-stage renal disease. The 

ever-increasing gap between kidney supply and demand necessitates expansion of the organ donor 

pool through increased utilization of higher kidney donor profile index (KDPI) kidneys, including 

donation after circulatory death (DCD) and expanded criteria donor (ECD) kidneys. Such kidneys 

have a significantly higher risk of discard, delayed graft function, and overall graft loss.
1-4

 This has 

provided the stimulus for the adoption of novel organ perfusion and preservation strategies, such 

as machine perfusion (MP), as a means to rejuvenate kidneys, minimize kidney discard, and 

improve graft function.
5, 6 

 

Normothermic MP (NMP) has potential distinct advantages over the more commonly employed 

hypothermic MP (HMP). NMP effectively ‘restarts’ the graft ex vivo and may allow more accurate 

prediction of graft viability by assessing adequacy of perfusion, renal blood flow parameters, and 

urine production.
7
 Nicholson and Hosgood were the first to publish an observational study 

investigating the use of NMP in human ECD kidneys; the delayed graft function (DGF) rate was 

remarkably low (5.6%) in the NMP group in comparison to 36.2% for CS kidneys.
8
 More 

importantly, kidneys initially underwent cold static storage (CS), and later only had NMP for 1 

hour during the immediate pre-implantation period.  

 

The use of renal NMP has not yet been reported in the Australasian transplantation setting. A 

recent Machine Perfusion Workshop run by the Transplantation Society of Australia and New 

Zealand (TSANZ) discussed the merits of nationwide implementation of HMP, trialling of NMP, 

or continuation of the current gold standard (CS). There was strong interest in NMP, and a watch-

and-wait approach with regards to further international trials of NMP was adopted.
9
 The primary 

purpose of this study was to undertake technical development and determine the feasibility for a 

customized NMP system using porcine kidneys, with a staged introduction of core NMP 

components. This project was performed in anticipation of the increased use of NMP for higher 

KDPI kidneys, and as a prelude to its testing in human donor kidneys. 

 

4.3 Methods 

4.3.1 ANIMALS 
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Westran pigs (Westmead Transplant, Westmead, NSW, Australia) were utilised for these 

experiments. All protocols were approved by the Western Sydney Local Health District Animal 

Ethics Committee, in accordance with the Guidelines for Animal Welfare outlined by the National 

Health and Medical Research Council.  

  

4.3.2 DEVICE AND PERFUSION DETAILS 

The normothermic machine perfusion (NMP) device (Supplemental Digital Content [SDC] 1) was 

adapted from similar device descriptions,
8, 10, 11

 and utilised existing cardiopulmonary bypass 

(CPB) technology. SDC 2 outlines device components and baseline perfusion solution details.  

 

4.3.3 SYSTEM OPTIMIZATION  

As the primary purpose of this study was to undertake technical development and optimization of 

the NMP process using pre-defined stages (consisting of two kidney perfusions per stage), 

statistical powering was not required. Study stages and the gradual introduction or alteration of 

core system components are summarized in Fig. 1. 

 

Figure 1. Experimental/system optimization protocol for kidney NMP. 

 

Stage 1 – Hardware Testing 

In the first subset of experiments, kidneys (n = 2) were retrieved from a 110 kg female Westran 

pig and sequentially placed onto the NMP device to test device functionality and feasibility. 

Kidneys were retrieved in a standard fashion after circulatory arrest was induced by 

exsanguination and abdominal perfusion was conducted using heparinized University of 

Wisconsin (UW) solution (see SDC 2 for full details). NMP was conducted over a period of 10 



80 
 

mins at 37 ͦ C; pump flow rate was arbitrarily set at 0.25 L/min, and oxygen (100%) was diffused 

through the membrane oxygenator at 2 L/min. 

 

Stage 2 – NMP device testing in a DCD model of porcine kidney retrieval 

In the second set of experiments, kidneys (n = 6) were retrieved from Westran pigs using a 

donation after circulatory death (DCD) model (based on the methods of Kaths et al.
11, 12

), with 30 

mins warm ischaemia time (WIT) and close to 24 hrs of cold ischaemia time (CIT) (SDC 3). The 

kidneys were perfused on the NMP circuit for 60 mins each. Certain modifications to the NMP 

process were made between respective pigs to help identify ideal perfusion conditions (Fig. 1), and 

are outlined in detail in SDC 4. 

 

4.3.4 SAMPLES 

Wedge biopsies were taken immediately prior to and after cessation of NMP, and stained with 

hematoxylin and eosin (H&E). Appropriate blood samples were taken at the commencement and 

conclusion of NMP (i.e. 0 and 60 minutes), whilst urinary assessment was undertaken utilizing the 

60 min urinary sample. 

4.4 Results 

4.4.1 STAGE 1 

Both left and right kidneys displayed patchy perfusion after retrieval and back-table flushing (Fig. 

2 A & B, respectively). WIT was < 5 minutes for each kidney, whilst the CIT was 2.5 hours and 4 

hours for the left and right kidney, respectively. Both left and right kidneys displayed a 

homogenous perfusion appearance, and commenced urine production after 1-2 minutes (Fig. 2). 

Urine output (UO) over the 10 minute period was approximately 300 ml and 260 ml for the left 

and right kidney, respectively. 

 

4.4.2 STAGE 2 

Donor and retrieval details 

Kidneys from five pigs were utilized; these included two males and three females, with a median 

weight of 70 kg (range 67.5-90 kg). WIT was controlled at 30 minutes. Median CIT was 22.5 

hours (range 20-25.8 hours). NMP was undertaken for one hour. 
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Figure 2. NMP of kidneys 1 and 2. (A, B) Kidney appearance after retrieval and backtable perfusion; (C, D) 

corresponding kidney appearance at end-NMP; n.b. homogenous/uniform perfusion with NMP (cyst on left kidney); 

and (E, F) urine production into ureteric cannula and collection bag. 

 

Retrieval and NMP characteristics 

These are summarized in SDC 5. Post-retrieval kidney macroscopic appearance after cold 

perfusion was generally poor, likely due to the prolonged WIT. In general, this could not be 

salvaged by NMP 24 hours later, regardless of perfusion conditions, and was reflected by dropping 

flow rates and raised intra-renal resistance (IRR) during the final 20 minutes of NMP (SDC 6, B & 
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C). This was especially the case in kidneys 7 and 8: flow parameters improved during the first half 

of NMP (SDC 6, B), but abruptly dropped after this point (see Histology results, below). 

Furthermore, lactate was measured at 0 and 60 minutes in kidneys 5, 6 and 8, without evidence of 

clearance over one hour (median 16 mmol/L at 0 minutes [range 8.2-19 mmol/L], compared to a 

median of 18 mmol/L at 60 minutes [range 11.7-21 mmol/L]).  

Flow vs pressure-controlled perfusion 

All flow-controlled kidneys had notable, gross oedema and tense capsules, which was not seen in 

the pressure-controlled kidneys. Representative pressure, flow and IRR measurements are depicted 

in SDC 6. In the flow-controlled kidney it can be seen that even at a flow rate of 0.25 L/min, a 

higher pressure of 220 mmHg was achieved; this was not the case in pressure-controlled kidneys. 

Histologic changes 

Due to the severity of the ischaemic insult, all histologic sections at end-CS showed evolution 

from changes of ischaemic tubular damage to gross glomerular and tubular disruption, loss of 

architecture, dilatation of peritubular capillaries, and microthrombi within the glomeruli at end-

NMP (Fig. 3). This potentially explains the abrupt drop in flows for kidney 8, with tubular debris 

and glomerular disruption during NMP. 

Urinary parameters 

All kidneys produced urine, with appearance varying from clear to blood-stained. Total UO did 

not directly correlate with the degree of macroscopic perfusion during NMP (SDC 5). One-hour 

UO was lower once colloid was added to the perfusion solution (median 250 ml, range 100-500 

ml) compared to the use of crystalloid alone (median 2180 ml, range 810-3550 ml).

Fractional excretion of sodium, as a measure of tubular function, could not be measured as 

creatinine was not added to the isolated system. Nevertheless, the kidneys in which urinary 

electrolytes were measured (kidneys 5-8) displayed tubular function, with a median urinary 

sodium of 122.5 mmol/L (range 120-129 mmol/L) in comparison to 137.5 mmol/L in the baseline 

perfusion solution (range 137-138 mmol/L). 

Leucocyte depletion 
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The median white cell count (WCC) in pigs during whole blood retrieval was 4.9 x 10
9
/L (range 

4.6-7.6 x 10
9
/L). The median WCC count after leucocyte depletion by centrifugation and washing 

of PRBCs was 0.7 x 10
9
/L (range 0.6-0.7 x 10

9
/L) in comparison to 0.3 x 10

9
/L (range 0.2-0.4 x 

10
9
/L) when a filter was utilized as an additional step. 

 

Figure 3. Histologic changes after NMP, H&E sections. (A) End-CS (pre-NMP) [kidney 8]; (B) End-NMP, with 

glomerular microthrombi, tubular flattening, interstitial oedema and dilatation of peritubular capillaries, and 

retraction of the glomerulus within Bowman’s capsule [kidney 8]; and (C) End-NMP of a flow-controlled kidney 

[kidney 3], with interstitial oedema; red blood cells are also seen in the tubular lumen, peritubular capillaries and 

glomerular capillary loops, indicative of loss of basement membrane integrity. 
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Acid-base homeostasis and partial pressure of O2/CO2 

Kidney 8, in which carbogen was used instead of 100% O2, was the only kidney in the series that 

was able to improve perfusate pH from 0-60 minutes of NMP (pH at 0 minutes 6.97, and at 60 

minutes 7.04).  

 

Partial pressure of O2 and CO2 in kidney 7, where 100% O2 was utilized, was 477 mmHg and < 5 

mmHg at 0 minutes, respectively, in comparison to the more physiologic 111 mmHg and 38 

mmHg, respectively, for kidney 8. 

 

Renin-angiotensin-aldosterone (RAA) system 

Neural autoregulatory capacity is lost in the isolated kidney. The RAA system also plays an 

essential role in the regulation of renal tubular function and blood flow. Aldosterone was 

detectable in the perfusate of kidneys 5-8 at both 0 and 60 mins (median 182 pmol/L at 0 minutes 

and 136 pmol/L at 60 minutes; reference interval 32-654 pmol/L). Renin was also measured but 

not detected at any stage (< 2 mIU/L for all kidneys; reference interval 2.8-39.9 mIU/L). 

 

Pump-related haemolysis 

Plasma free haemoglobin (Hb) levels were measured as an indicator of haemolysis during NMP in 

kidney 8; the measured level at the start of NMP was 1.21 g/L (reference < 0.05 g/L), which 

dropped to 0.79 g/L at the conclusion of NMP. The drop in free Hb levels indicates there was no 

significant haemolysis attributable to the use of a roller pump; the high values at the 

commencement of NMP likely indicate RBC lysis during storage and processing.   

 

4.5 Discussion 

Normothermic machine perfusion of the renal allograft has the potential to significantly alter graft 

viability, assessment, and outcome, especially for higher KDPI kidneys that may either be 

discarded prior to transplantation or suffer from inferior graft function once transplanted. Kidney 

preservation techniques in Australia, particularly with respect to the uptake of MP preservation, 

have significantly lagged behind Europe and the USA. This has led us to develop and test a 

preliminary NMP device using porcine kidneys as described. Further development of this model 

will allow us to expand our investigation of optimal perfusion settings, timing, and 
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solutions/additives, with the ultimate aim of device testing initially in non-transplanted human 

kidneys prior to translating NMP into a clinical program. 

 

A severe DCD model with a prolonged CIT was utilized in this experimental set-up to help 

ascertain the extent of injury that can potentially be reversed using NMP. Whilst our current NMP 

apparatus and perfusion constituents were able to perfuse porcine donor kidneys and successfully 

simulate graft appearance upon potential transplantation, the long WIT and CIT resulted in 

significant damage to the kidneys that could not effectively be reversed by the NMP set-up. This 

may well have been the result of microthrombi, as intravenous heparin was deliberately not used to 

better mimic the clinical legal requirement of no ante-mortem interventions within New South 

Wales and most other local jurisdictions; ante-mortem heparin may in fact protect against 

thrombotic complications in the transplant setting.
13

 Thereafter, ischaemic damage sustained 

during storage primed these porcine kidneys for tubulo-glomerular disruption upon perfusion on 

the circuit.  

 

Overall, both advantageous and deleterious perfusion conditions and parameters were identified 

during the optimization process. The danger of flow-based perfusion settings was demonstrated, 

with high arterial and intra-graft pressures, and consequent graft oedema. This was also explored 

in greater detail by Mancina et al.
14

 The ideal pressure setting is not clearly defined, and will differ 

for pigs and humans. In a porcine NMP model that served as a prelude to the clinical NMP model 

used by Nicholson and colleagues, a mean arterial perfusion pressure of 75 mmHg in comparison 

to 55 mmHg resulted in significantly less endothelial injury in the higher pressure group, whilst 

allowing better perfusion parameters and urine production.
15

 Earlier work by the same group 

showed that pressures up to 95 mmHg may in fact sustain superior renal function during NMP.
16

   

 

The fluid in which PRBCs are suspended and supplemented with can vary significantly. 

Differences can be elucidated between the Toronto and Cambridge experiences – in particular, the 

Canadian group utilizes STEEN solution, which contains human serum albumin, to stabilize 

perfusate oncotic pressures and minimize graft oedema, whilst this is lacking in the UK perfusion 

cocktail.
11, 17

 Lack of albumin in the perfusion fluid may also promote endothelial cell apoptosis, 

although this requires further investigation in the context of NMP.
18

 Presence of colloid in the 
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perfusate also affects total UO; after its addition into our perfusion fluid, cumulative UO from the 

system dropped.   

 

One hour of NMP was chosen for this pilot study, although there is evidence that 

continuous/prolonged NMP may be more advantageous than the one-hour perfusion period.
10, 19

 

The primary reason for this is the clinical applicability and potential for translation if 1-3 hours of 

NMP is utilized – this can be performed at the recipient centre during the period in which the 

patient is being prepared for surgery. In contrast, the costs and logistical issues associated with 

prolonged perfusion periods may initially be hard to justify in any local clinical program. 

 

There is considerable potential for Australasian transplant programs to progress kidney 

transplantation outcomes and research through the implementation of NMP as part of carefully 

conducted clinical trials. A randomized control trial comparing one hour of pre-implantation NMP 

to CS alone for DCD kidney transplants is currently underway in the UK.
20

 Logistically, a similar 

trial in Australia would be possible to implement. Alternatively, another highly fruitful trial would 

involve the head-to-head comparison of NMP and HMP (oxygenated) prior to transplantation, as 

there is currently no clinical data for this. Such trials could likely be instituted after the safety, 

feasibility, and/or efficacy of NMP is demonstrated in pre-clinical models and human kidneys. 

NMP also provides an excellent opportunity to deliver pharmacological, cellular or genetic 

therapies prior to the second insult of reperfusion during transplantation. The legal framework in 

Australia currently significantly restricts drug therapies delivered to the donor to preserve graft 

function for the recipient. However, NMP can potentially bypass this consideration by allowing 

direct treatment of the donor graft itself. 

 

The current spike in interest and research into normothermic perfusion of the kidney heralds an 

exciting time in transplantation research, with the potential for significant improvements in clinical 

transplantation outcomes. As this technique continues to be investigated at various centres 

overseas, this is the perfect opportunity for establishing and testing NMP systems in the 

Australasian setting such that our patient outcomes and advances keep pace with the rest of the 

world, and also allowing a contribution to the collective knowledge regarding the efficacy, ideal 

conditions and settings, and mechanisms of action of NMP. 
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5.1 Letter to the Editor 

Dear Editors, 

 

Normothermic machine perfusion (NMP) prior to transplantation has gained significant 

prominence in the recent past, and has been clinically utilized in the setting of liver, heart, lung, 

and kidney transplantation.
1
 Nicholson and Hosgood were the first to report a series of kidney 

transplants following a brief period of pre-implantation NMP in 18 marginal donors; the success of 

this initial study and further investigations has led to a multi-center randomized control trial that is 

currently underway in the UK.
2-4

 

 

One consideration that may impact the subsequent widespread uptake of clinical NMP systems is 

cost. In particular, the costs of consumables for each individual organ need to be sufficiently low 

to stimulate further uptake by transplant centers. Consumables must also be sterilizable and 

provide ease of use for the clinical team. 

 

Our NMP set-up has been described previously.
5
 We initially used a custom-designed metal 

chamber, however this was difficult to clean/re-sterilize, and did not adequately collect and funnel 

all residual blood into the reservoir. This prompted the design and development of the 3D-printed 

perfusion chamber (Fig. 1). 

 

The 3D-printed chamber employs gravity drainage of renal venous outflow and any other blood 

leak (e.g. biopsy site) into a funnel-shaped cavity; only the renal artery is cannulated, allowing 

open drainage from the renal vein. The chamber is placed above the blood/perfusion fluid 

reservoir, and therefore blood can drain into the reservoir without necessitating an additional pump 

mechanism. The need for a separate reservoir may be completely obviated depending on the prime 

and packed red cell volume used in the circuit.   

 

The kidney itself is placed on a fenestrated ‘mesh’ that can be incorporated into the print; this 

requires the additional printing of polyvinyl alcohol supports that need to be dissolved in water 

post-printing. A separate, reusable and sterilizable stainless steel mesh can alternatively be used 

(Fig. 1D-E), significantly reducing print times. 
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Figure 1. Customized, 3D-printed kidney perfusion chamber. (A) Front aspect, with holes for arterial and ureteric 

cannulae; (B) Side aspect, showing ¼ inch PVC tubing draining the chamber directly into the venous inflow port of 

the reservoir; (C) Perfusion chamber with ‘mesh’ (upon which kidney sits) incorporated into print; (D-E) Perfusion 

chamber with mesh in this case provided by a reusable, custom-cut stainless steel metal sheet. The perfusion 
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chamber in (D) was printed using polypropylene (autoclavable), whilst the perfusion chamber in the other images 

was printed using copolyester. (F-G) Renal blood flow and intra-renal resistance (IRR) in one porcine kidney and one 

discarded human kidney placed on the 3D-printed perfusion chamber during 1 hour of NMP. The human and porcine 

kidneys produced 43 ml and 180 ml of urine, respectively. 

 

Use of such a chamber affords the following advantages: 

(i) Low cost – the chamber is printed using copolyester (CPE+) or polypropylene (Ultimaker 

B.V., Geldermalsen, The Netherlands) on an Ultimaker 3 extended 3D printer (Ultimaker 

B.V., Geldermalsen, The Netherlands). Costs per print are estimated at approximately 15-

20 USD.  

(ii) Printable at the transplant center on-demand, and readily sterilizable. An ever increasing 

range of printable materials allows for specific print properties. Advanced printers can print 

polypropylene, which if used, can be safely autoclaved. If CPE is employed, sterilization 

can be achieved using ethylene oxide gas or gamma irradiation; in this situation, it is 

prudent that a relevant number of chambers are pre-printed and made available for use 1-2 

weeks prior to any anticipated need. We have successfully printed and used both CPE and 

polypropylene for the purposes of NMP. 

(iii) Its components and dimensions can be readily and easily modified by altering print 

settings. 

(iv) The chamber obviates the need to (a) cannulate the renal vein (and therefore avoids the 

need to shorten the vein prior to transplantation), and (b) ensure a blood-tight circulation 

with little to no leak. 

(v) The chamber is compatible with perfusion constituents. Albumin, which is an important 

constituent of the perfusate in some normothermic perfusion setups,
6
 is not significantly 

adsorbed by CPE and therefore remains in the perfusate. An isolated perfusion test was 

performed using 20% human albumin diluted in 100 ml of 0.9% sodium chloride; this was 

circulated into and out of the 3D-printed perfusion chamber via ¼ inch PVC tubing using a 

pump generating a flow rate of 0.5 L/min. There was no albumin adsorption over 1 hour 

(albumin concentrations at 0, 30, and 60 minutes of perfusion were 99 g/L, 97 g/L, and 102 

g/L, respectively). 
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We have successfully perfused 12 discarded human kidneys and 17 porcine kidneys using this set-

up.
7, 8

 Each kidney had declining intra-renal resistance (IRR) and increasing flow, in addition to 

evidence of urine output. Examples of flow and intra-renal resistance parameters in one porcine 

and human kidney respectively are presented in Figure 1F-G. 

 

Overall, it is hoped that the innovative use of 3D-printing technology can further help facilitate the 

uptake of normothermic machine perfusion of different organs, including the kidney, by lowering 

costs and promoting ease of perfusion. 
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6.1 Abstract 

Objectives and Summary Background Data: (i) To compare the relative efficacy of CD47-

blocking antibody (αCD47Ab), soluble complement receptor 1 (sCR1), and recombinant 

thrombomodulin (rTM) in a murine model of kidney ischemia-reperfusion injury (IRI), and (ii) 

investigate direct intra-renal delivery of the most efficacious agent to porcine donation after 

circulatory death (DCD) kidneys using normothermic machine perfusion (NMP). NMP is an 

emerging modality for kidney preservation prior to transplantation, and may allow 

pharmacomodulation of renal IRI without the need for systemic donor/recipient therapies. The 

aforementioned agents, although proven to be effective in the amelioration of IRI, have not been 

directly compared, and are not yet in widespread clinical use. NMP may allow the rapid clinical 

translation of these drugs to allow rejuvenation of damaged donor kidneys prior to transplantation. 

 

Methods: Severe murine kidney IRI was induced; ischemic induction was preceded by intra-

venous injection of αCD47Ab, sCR1, rTM, αCD47Ab+sCR1, or vehicle control (n = 7-8/group). 

Renal function and histopathologic features were compared after 24 hours. Porcine kidneys had 10 

min warm ischemia and 6 hrs cold storage, followed by NMP with or without the addition of the 

porcine-specific version of the most effective murine agent (αCD47Ab) (n = 8-9/group). 

Feasibility and IRI-related effects of drug delivery were ascertained.  

 

Results: Serum creatinine after 24 hours was significantly reduced in mice treated with CD47, 

sCR1, or αCD47Ab+sCR1, but not rTM. Histologically-confirmed injury was least severe in the 

CD47-blockade mice, as was inflammatory leukocyte infiltration, and renal cellular death. 

αCD47Ab was therefore given via NMP to adult pig kidneys. CD47 receptor blockade was 

successfully demonstrated by immunofluorescence. Renal perfusion/flow was better when CD47 

was blocked, and there was a trend towards improved tubular and glomerular functional 

parameters. Oxidative stress was significantly reduced in the αCD47Ab-treated kidneys, also with 

evidence of reduced histologic damage, but not cell-death. 

 

Conclusions: αCD47Ab provides a broad target for the amelioration of IRI. NMP can be 

successfully utilized for targeted drug delivery to the kidney as a means to ameliorate IRI in the 

setting of transplantation.  
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6.2 Introduction 

End-stage renal failure (ESRF) has a sizeable global burden of disease, causing at least 1.2 million 

global annual deaths.
1
 Kidney transplantation is the best available treatment for ESRF, conferring 

a significant survival benefit over dialysis.
2-4

 However, there is a perpetual supply-demand gap 

between patients awaiting transplantation and the availability of deceased donor kidneys. This has 

necessitated expansion of the donor pool to include more marginal organs, including donation after 

circulatory death (DCD) kidneys, which are subjected to greater warm ischemia.
5-7

 Short-term 

transplantation outcomes, including delayed graft function (DGF), are inferior in DCD kidneys in 

comparison to kidneys from brain-dead (DBD) donors with no significant comorbidities.
6
 This 

increased susceptibility to ischemia-reperfusion injury (IRI) and DGF can translate into poorer 

long-term graft survival.
8 

 

As such, an improved method of kidney assessment, repair and preservation is required above and 

beyond the currently accepted gold standard of cold static storage (CS), particularly in this donor 

kidney subset. Machine perfusion (MP) preservation is an important alternative that has regained 

prominence.
9
 Normothermic MP (NMP) is especially promising, and is now the subject of a multi-

center randomized control trial (RCT) comparing it to CS alone in DCD kidneys.
10-13

  

 

Most pharmacotherapeutics shown to ameliorate renal IRI have been unable to bridge the ‘valley 

of death’ (translational gap) to the clinic. This is at least partly attributable to the inherent 

difficulties and ethical considerations associated with the systemic use of such therapies in donors 

or recipients.
14, 15

 NMP can serve as a bridge across this valley by providing a platform for direct, 

non-systemic drug treatment of the kidney whilst it is undergoing normal metabolic processes.
15, 16

   

Amongst the multiple anti-IRI agents tested in pre-clinical models, CD47-blocking antibody 

(αCD47Ab), recombinant thrombomodulin (rTM), and soluble complement receptor 1 (sCR1) are 

especially translatable as they have been safely employed for other clinical applications.
17-25

 

However, the comparative efficacy of these agents has not been established. Because IRI is 

characterized by the activation of multiple intersecting pathways,
26, 27

 it is also plausible that 

synergistic anti-IRI effects may be derived by delivering 2 or more of these agents together. 

 

The primary aims of this study were therefore to directly compare αCD47Ab, sCR1, and rTM in a 

murine model of renal IRI, and establish the combined efficacy of 2 of the best agents. Secondly, 
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we aimed to show that direct intra-renal delivery of the chosen drug(s) to porcine DCD kidneys 

using NMP could enhance renal perfusion parameters and ameliorate IRI.  

 

6.3 Methods 

A detailed description of the study methods is provided in Supplemental Digital Content (SDC) 1. 

All animal protocols were approved by the Western Sydney Local Health District Animal Ethics 

Committee, in accordance with the Australian code for the care and use of animals for scientific 

purposes (8
th

 Ed., 2013), developed by the National Health and Medical Research Council. 

 

6.3.1 PART 1: COMPARISON OF IRI TARGETS – MURINE MODEL 

Animals and IRI model 

A model of severe unilateral renal IRI was utilized in male C57BL/6 mice (weight 25.3 ± 1.3 g) as 

follows: 

 Right nephrectomy. 

 Intra-venous injection of anti-IRI drug(s) diluted in vehicle control, or vehicle control alone 

(total volume 0.25 ml). 

 Left renal ischemia using an arterial microvascular clamp (Roboz Surgical Instrument Co., 

MD, USA) for 25 mins (mouse temperature maintained at 36 ͦ C). 

 Mice were euthanized 24 hrs after induction of IRI for collection of blood and renal tissue 

samples.  

Study groups and pharmacotherapeutic agents 

Mice were treated with the following agent(s) [n.b. these products are still mainly investigational 

for the purposes described here]: 

1. Group I – 0.9% NaCl (vehicle control) only 

2. Group II – rTM (Asahi Kasei Pharma Co., Tokyo, Japan), 1 mg/kg body weight
28

 

3. Group III –sCR1 (CDX-1135; Celldex Therapeutics, MA, USA), 25 μg/g body weight
29

 

4. Group IV – αCD47Ab (MIAP 301 [sc-12731]; Santa Cruz Biotechnology, TX, USA), 0.8 

μg/g body weight
30
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5. Group V – combination of best 2 performing drugs, determined by relative serum creatinine 

(Cr) decrease compared to vehicle controls – αCD47Ab (0.8 μg/g body weight) and sCR1 (25 

μg/g body weight) given as a single combined dose. 

Serum samples 

Blood (serum) samples were analyzed for urea and Cr levels. 

 

Histology – Hematoxylin and Eosin (H&E)  

Renal tubular damage at the corticomedullary junction was scored from 0-5 by 2 blinded renal 

histopathologists using H&E sections, as described previously.
21 

 

Immunohistochemistry 

Immunohistochemistry was performed for the detection of neutrophil infiltration as described in 

SDC 1. Positively stained cells were counted from 5 high-power fields (HPF) at the 

corticomedullary junction in each section. 

 

Reactive oxygen species (ROS) characterization – Cytochrome C and Amplex Red 

Superoxide production and hydrogen peroxide-generating activity was calculated in homogenized 

mouse whole kidney tissue using cytochrome C, and amplex red, respectively. Further details can 

be found in SDC 1. 

 

Inflammatory markers – pro-inflammatory cytokine/chemokine mRNA expression 

Real-time polymerase chain reaction (RT-PCR) was performed using homogenized renal tissue 

sections for the expression of HPRT1, IL-6, TNF-α, IL-1β, CCL2, and CXCL2, as described in 

SDC 1. The ∆∆Ct method was used to calculate expression fold changes normalized to HPRT1, 

with the 0.9% NaCl group utilized as the control. 

 

Immunofluorescence 

Complement C3 and C9 staining was ascertained using complement C3 (Thermo Fisher Scientific) 

or C9 (Abcam, Cambridge, UK) polyclonal primary antibodies and a goat anti-rabbit Alexa Fluor 

647 secondary antibody (Thermo Fisher Scientific). Staining was visualized using a confocal 

microscope, and quantified using Image J. 
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TUNEL staining 

Cellular death was ascertained using a commercially available kit (In Situ Cell Death Detection 

Kit, TMR Red; Sigma-Aldrich/Merck, MO, USA), and visualized by confocal microscopy. 

TUNEL-positive cells were counted from 3-5 HPF in each section.  

 

6.3.2 PART 2: DIRECT INTRA-RENAL DELIVERY OF αCD47AB USING NMP – PORCINE 

DCD MODEL 

Animals and porcine kidney DCD model 

Female adult outbred Landrace pigs (70.7 ± 14.2 kg) were utilized for a DCD kidney retrieval 

model as follows: 

 Renal pedicle and aortic dissection and mobilization. 

 Cannulation of the infra-renal aorta using a TUR giving set (Baxter Healthcare, IL, USA), 

through which each pig was exsanguinated for autologous blood collection. 

 Clamping of the renal pedicle (simultaneously with exsanguination) for 10 mins to simulate 

warm ischemia in a DCD setting. 

 Nephrectomy, and renal artery and ureteric cannulation. 

 Cold perfusion of the kidney after exactly 10 mins (via the renal artery) using 500 ml of 

University of Wisconsin (UW) solution containing 10,000 IU/L heparin. The 2 experimental 

groups were – (i) control kidneys (no further additives); (ii) treatment kidneys, which were 

given the best performing anti-IRI agent from the murine study via the renal artery, 

immediately after the initial UW flush (i.e. [porcine/human-specific] αCD47Ab – BRIC-126 

[sc-59079], Santa Cruz Biotechnology;100 μg diluted in 10 ml UW).  

 All kidneys were stored in UW solution prior to NMP (4 ͦ C; 6 hrs). 

Normothermic machine perfusion 

NMP was performed using a modified cardio-pulmonary bypass circuit, as described previously, 

and outlined in SDC 1.
31

 Kidneys were perfused via the renal artery at a mean pressure of 75-85 

mmHg and temperature of 37 ͦ C (1 hr). The 1 hr time period was chosen as it has been shown to 

be effective in human kidney transplantation after initial CS, and is now the subject of a multi-

center RCT in the UK.
11, 12

 The kidney was placed in a customized 3D-printed copolyester 

perfusion chamber during NMP.
32

  Immediately prior to starting NMP in treatment kidneys, 200 
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μg of αCD47Ab (BRIC-126) was directly injected into the renal arterial line (i.e. ~0.8 μg/g of 

kidney weight). 

 

Renal tissue, blood, and urine samples 

Sequential kidney biopsies, perfusion fluid blood samples (from the arterial limb), and blood gases 

(from the arterial and venous limbs) were taken for further analyses as described in SDC 1. 

 

Histology 

H&E sections were scored from 0-3 (from least to most severe) by a blinded renal histopathologist 

based on the extent of tubular dilatation, tubular debris, cytoplasmic vacuolation, and 

inflammatory cell infiltration.
33, 34 

 

Inflammatory markers – pro-inflammatory cytokine/chemokine mRNA expression 

RT-PCR was performed as described using porcine-specific primers for HPRT1, IL-6, TNF-α, IL-

1β, and IL-18 (Thermo Fisher Scientific). 

 

Immunofluorescence 

αCD47Ab binding to porcine renal tissue was visualized by immunofluorescence using a goat anti-

mouse secondary antibody conjugated to Alexa Fluor 647 dye (Thermo Fisher Scientific). Porcine 

renal tissue oxidative stress was quantified using dihydroethidium (DHE) (Thermo Fisher 

Scientific), which is indicative of tissue levels of superoxide. TUNEL staining was also performed, 

as described above. All immunofluorescence sections were co-stained for DAPI to visualize 

nuclear staining. 

 

Statistical analyses 

Data is presented as mean ± standard deviation (SD). Continuous parametric variables were 

compared using the unpaired student’s t-test. In the event that more than 2 groups of parametric 

variables were to be compared, the ANOVA test was utilized. Area under the curve (AUC) was 

calculated for renal blood flow (RBF) and intra-renal resistance (IRR) prior to further statistical 

comparisons. GraphPad Prism v. 7.02 was used for all statistical analyses. A p-value of <0.05 was 

deemed statistically significant. 
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6.4 Results 

6.4.1 PART 1: MURINE RENAL IRI MODEL (WARM ISCHEMIA) 

αCD47Ab results in the greatest protection from injury in a murine model of severe IRI 

Severe IRI was evident in vehicle control murine kidneys 24 hours after induction of ischemia, as 

indicated by serum urea and Cr levels, and the degree of histologic injury seen at the 

corticomedullary junction (Fig. 1). Treatment with αCD47Ab prior to IRI resulted in a 

significantly lower serum urea and Cr, and less histologic damage. A significant decrease in serum 

Cr was also seen in the sCR1 (alone) group, but not the rTM-treated mice. In contrast, rTM-treated 

mice had significantly less injury evident on histology as compared to controls, but this was not 

evident in the sCR1 group. 

 

Combination of αCD47Ab and sCR1 does not significantly ameliorate IRI in comparison to CD47 

alone 

Although mice treated with both αCD47Ab and sCR1 (αCD47Ab+sCR1) showed a significant 

reduction in serum urea and creatinine in comparison to controls, this decline was not cumulative 

to that seen with αCD47Ab alone (Fig. 1A). Microscopic (tubular) injury in the αCD47Ab+sCR1 

mice was not significantly reduced (Fig. 1B). 

 

Neutrophil influx after IRI is depleted in all treatment groups, in particular αCD47Ab and sCR1 

given alone 

Leukocytes, especially neutrophils, infiltrate renal tissue after IRI. Extensive neutrophil infiltration 

was seen in vehicle controls (Fig. 2A). In comparison, all mouse treatment groups showed 

significantly less neutrophil staining, with the greatest reduction evident in the sCR1 and 

αCD47Ab groups of mice. 

 

Superoxide but not hydrogen peroxide ROS production is diminished in all treatment groups 

Superoxide production was significantly reduced in mice treated with αCD47Ab, sCR1, rTM, or 

αCD47Ab+sCR1 (Fig. 2B). However, hydrogen peroxide levels did not decrease in any treatment 

group, and in fact were significantly higher in rTM-treated mice (Fig. 2B). 
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Figure 1. (A) Serum urea and creatinine 24 hours post-IRI in mice treated with 0.9% NaCl (vehicle control), αCD47Ab, 

sCR1, rTM, or αCD47Ab+sCR1. (B) Representative H&E sections and semi-quantitative renal tubular damage scores 

from each treatment group 24 hrs after the induction of IRI (20 x). Data shown as mean ± SD; n = 7-12/group. 

*p<0.05,**p<0.01,***p<0.001,****p<0.0001. 
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Figure 2. (A) Representative sections and quantitative analyses from each murine treatment group after 

immunohistochemical staining for neutrophils (number of cells per high power field [HPF]) (20 x). (B) Quantification 

of reactive oxygen species production (hydrogen peroxide [amplex red] and superoxide [cytochrome C]) in all murine 

treatment groups. Data shown as mean ± SD; n = 5/group. *p<0.05, **p<0.01,***p<0.001. 
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Pro-inflammatory cytokine and chemokine mRNA expression is variably modulated in treated 

mice after IRI 

IL-6 levels were significantly lower in all treatment mouse groups at 24 hours in comparison to 

controls (Fig. 3). However, no significant reductions were seen in the mRNA expression profiles 

of TNF-α, IL-1β, CCL2, or CXCL2. Interestingly, expression of TNF-α was significantly higher in 

αCD47Ab-treated mice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Pro-inflammatory cytokine and chemokine (IL-6, TNF-α, IL-1β, CCL2, and CXCL2) mRNA expression profiles 

in mouse kidney tissue 24 hrs after the induction of IRI following various drug treatments. Fold change calculated by 

normalizing to HPRT1, with the 0.9% NaCl (Control) mice used as the reference group. Data shown as mean ± SD; n = 

6/group. (B)  *p<0.05, **p<0.01,***p<0.001,****p<0.0001. 
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Complement C3 deposition is reduced by CD47 or sCR1 treatment alone or in combination, but 

C9 is not affected 

All three complement pathways are implicated in IRI, with the activation of C3 and culminating in 

the formation of the membrane attack complex (C5b-9). No significant differences were seen 

between any mouse groups with respect to C9 staining (Fig. 4A). C3 deposition was poorly 

defined, displaying constitutive tubular staining; however, it was significantly reduced in all 

treatment groups except rTM (see figure, supplemental digital content 2). 

 

Cell death is reduced in all mice treatment groups in comparison to controls 

Renal tubular epithelial cells are the primary site of injury following IRI. Cell death quantified by 

TUNEL staining 24 hours post-IRI induction was most significantly reduced in αCD47Ab+sCR1-

treated mice, although the reduction in the combined blockade group was not significantly greater 

than that achieved by αCD47Ab or sCR1 treatments alone (Fig. 4B).  

 

6.4.2 PART 2: PORCINE RENAL DCD MODEL AND DRUG DELIVERY VIA NMP 

As shown in Part 1, αCD47Ab was the most effective IRI treatment in the murine model across 

multiple comparative domains, and was therefore chosen as the targeted agent for part 2 of the 

study. DCD porcine kidney NMP was compared with and without αCD47Ab treatment. 

 

αCD47Ab can be directly and effectively delivered to the kidney using NMP 

There is no αCD47Ab binding evident in untreated kidneys (Fig. 5A). In the treated kidneys, 

addition of αCD47Ab to the UW cold flush did not result in binding of the antibody to the kidney 

(Fig. 5B, ‘End CS’). In contrast, direct antibody infusion into the arterial line at the 

commencement of NMP resulted in widespread αCD47Ab binding along the glomerulus and renal 

tubular epithelium, which was detectable at the end of NMP (Fig. 5B, ‘End NMP’). 

 

αCD47Ab treatment during NMP improves renal perfusion parameters  

In comparison to untreated kidneys, kidneys receiving αCD47Ab during NMP had a significantly 

greater RBF and lower IRR (Fig. 5C). There was also a trend towards improved renal oxygen 

consumption, UO, CrCl, and FeNa in the αCD47Ab-treated kidneys (Fig. 5C). 
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Figure 4. (A) Representative renal tissue photomicrographs (immunofluorescence) and quantitative integrated 

density scores for complement C9 staining 24 hrs post-IRI in each mouse treatment group (20 x). (B) Quantification 

of renal cellular death by TUNEL staining, with associated representative photomicrographs (immunofluorescence) 

(40 x). Data shown as mean ± SD; n = 5-6/group. **p<0.01,***p<0.001, ****p<0.0001. 
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Figure 5. (A-B) αCD47Ab localisation in porcine NMP kidneys by immunofluorescence (20 x). αCD47Ab was given to 

treatment group kidneys by addition of the drug into the (i) UW cold flush, and (ii) NMP circuit. (A) No antibody 

binding evident in control kidneys (i.e. untreated kidneys). (B) Faint/minimal antibody binding at end CS (i.e. prior to 

the commencement of NMP); strong binding is evident in biopsies at the end of NMP, especially in the glomerulus. 

(C) Flow, IRR, glomerular, and tubular parameters after 1 hr of NMP in porcine kidneys treated with αCD47Ab in 

comparison to no CD47 treatment. Data presented as mean ± SD; n = 8-9/group. AUC – area under the curve; CrCl – 

creatinine clearance; CS – cold storage; FeNa – fractional excretion of sodium; NMP – normothermic machine 

perfusion; UO – urine output; UW – University of Wisconsin solution. 
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Pro-inflammatory cytokine mRNA expression is increased after NMP 

In both treated and untreated kidneys, renal expression of IL-6, TNF-α, IL-1β, and IL-18 increased 

after NMP in comparison to end CS samples (Fig. 6). Although not significant, the increase in 

expression of IL-6 and IL-18 was less pronounced in the αCD47Ab group. In congruence with the 

mouse RT-PCR data, expression levels of TNF-α and IL-1β appeared to be elevated in the 

αCD47Ab treatment group. 

Figure 6. Pro-inflammatory cytokine (IL-6, TNF-α, IL-1β, and IL-18) mRNA expression in porcine tissue from sections 

taken at the end of NMP in comparison to the end CS reference group. Fold change normalized to HPRT1. Data 

shown as mean ± SD; n = 7/group. *p<0.05, **p<0.01. 

Renal tubular debris is reduced in CD47-treated kidneys after NMP but other histologic 

parameters remain similar to controls 

NMP re-institutes oxygenated blood flow to the kidney after a period of cold ischemia, and as such 

would be expected to precipitate IRI, albeit at a reduced magnitude due to the leukocyte depletion 

of the blood. Histologic comparison of the renal tubular condition before and after NMP showed a 
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significant increase in tubular dilatation and vacuolation in both αCD47Ab-treated and untreated 

kidneys (Fig. 7A). There was no significant change in inflammatory cell infiltrate in either group. 

However, there was a significant decrease in tubular debris in the αCD47Ab-treated kidneys after 

NMP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Representative porcine renal tissue photomicrographs and quantitative scoring for (A) tubular injury (H&E 

staining) (20 x), (B) oxidative stress (DHE staining) (20 x), and (C) renal cellular death (TUNEL staining; 40 x) at the end 

of NMP. Data shown as mean ± SD; n = 5-7/group. *p<0.05, ***p<0.001, ****p<0.0001. 
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Renal oxidative stress induced by NMP is reduced by αCD47Ab treatment however renal tubular 

epithelial cell death remained similar 

Oxidative stress quantified by DHE staining was significantly reduced in αCD47Ab-treated 

kidneys in comparison to controls (Fig. 7B). Renal cellular death however was not significantly 

different between treated and untreated kidneys (Fig. 7C).   

 

6.5 Discussion  

This study provides the first direct in vivo comparison of three potent anti-IRI agents, αCD47Ab, 

sCR1, and rTM, in a murine model of severe renal IRI. We show that αCD47Ab alone provides 

the greatest level of protection that is not substantially increased by its combination with sCR1. 

We investigated the feasibility of direct αCD47Ab delivery to the porcine kidney using NMP, 

showing that it can be given at a dose based on renal weight alone, with evidence of renal tubular 

and glomerular binding, and subsequent downstream beneficial effects on kidney perfusion, 

oxidative stress, and tubular and glomerular function. 

 

CD47 provides a plausible target that can be blocked to significantly ameliorate IRI via the 

modulation of multiple IRI-related pathways. CD47 signaling is important for promoting IRI; 

injury primarily results from the renal parenchymal cell membrane-associated CD47 binding its 

ligand thrombospondin-1.
21

 Downstream effects include inhibition of nitric oxide and its effects on 

vascular smooth muscle, exacerbation of oxidative stress, inflammatory cell recruitment, and an 

impairment of parenchymal cellular repair.
21, 35, 36

 As such, receptor blockade should ameliorate 

IRI by impacting multiple inter-related injurious processes. In our mouse model, we confirmed a 

significant reduction to renal injury, with better preservation of renal function in the αCD47Ab 

treated mice, which was superior to that provided by sCR1 or rTM alone. Neutrophil influx was 

also correspondingly reduced to the largest extent in the αCD47Ab group, in addition to a robust 

reduction in renal cellular death. Although levels of superoxide also significantly declined in the 

αCD47Ab group, no reduction was seen in hydrogen peroxide levels. Indeed, substantial fluxes of 

superoxide may significantly impact the stoichiometry of hydrogen peroxide detection by amplex 

red, possibly explaining the different quantification trends of superoxide and hydrogen peroxide in 

the study groups.
37

 Interestingly, with the exception of IL-6, there was no reduction in the mRNA 

expression of TNF-α, IL-1β, CCL2, or CXCL2 in the αCD47Ab-treated mice. A lack of impact on 
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TNF-α mRNA expression in response to CD47 blockade has also been noted elsewhere, indicating 

this pathway is not directly involved in CD47-mediated cellular injury during IRI.
21, 38 

 

In order to investigate the potential synergistic amelioration of IRI by combining different drugs, 

the 2 most efficacious drugs, αCD47Ab and sCR1, were given as a combined dose. Although 

serum Cr levels were significantly lower in these mice compared to sCR1 alone, there was no 

significant difference between the αCD47Ab+sCR1 group and the group of mice treated with 

αCD47Ab alone. Furthermore, histologic injury, inflammatory cell infiltration, complement 

deposition, ROS production, and cellular death were not incrementally improved in the combined 

treatment group compared to αCD47Ab-treated mice. This acts to highlight the relatively broad 

impact of CD47-blockade on the IRI cascade, therefore serving as a highly effective single agent. 

Due to its relative superiority in the mouse renal IRI experiments, αCD47Ab was chosen as the 

optimal agent to be administered using NMP in a porcine DCD model. Antibody was retained in 

the renal parenchyma at the end of NMP, ensuring the CD47 receptor remains blocked prior to 

potential transplantation. The drug was dosed according to kidney weight and not the weight of the 

donor animal, as NMP affords the opportunity of direct intra-renal delivery. An additional dose of 

αCD47Ab was given immediately after the induction of cold ischemia to account for potential 

drug binding/uptake by the CD47 receptor on circulating cells/PRBCs.
39

 However, there was no 

immunofluorescence evidence that this cold perfusion dose caused effective αCD47Ab binding to 

its receptor. In contrast, Xu et al. showed renal binding after pre-implantation delivery of 

αCD47Ab to porcine kidneys via a direct renal artery cold flush.
38

 However, these authors used a 

dose that was approximately 50 times greater (total 10 mg) than that used in this study, and the 

αCD47Ab solution used was flushed via the renal artery 5 times.
38

 From our current work it can be 

concluded that NMP facilitates highly specific and targeted delivery of reduced αCD47Ab dose(s) 

to the kidney that cannot be achieved by adding blocking antibody(s) to the cold flush alone, and 

this binding is retained over the 1 hr period of NMP. 

 

Addition of αCD47Ab to the NMP perfusion circuit did not induce or worsen renal injury on the 

machine in comparison to control kidneys. NMP involves reperfusion of the kidney with an 

oxygenated PRBC-based solution, and as such can be considered as an early induction of IRI after 

a period of CS. The primary difference between NMP and reperfusion after transplantation is that 

the latter occurs in a uremic recipient with allogeneic whole blood containing the recipient’s 
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leukocytes, pre-formed antibodies, and complement components. As such, the insult sustained 

during NMP is unique in its nature. Overall, a pro-inflammatory state is induced.
40, 41

 Therefore 

and unsurprisingly, renal mRNA expression of pro-inflammatory cytokines increased after NMP 

in this study, albeit to a lesser extent for IL-6 and IL-18 in the αCD47Ab-treated group. 

Furthermore, there was a mild increase in renal tubular injury parameters as evident by light 

microscopy post-NMP; these parameters were similar in both groups with the exception of tubular 

debris, which was significantly reduced in the CD47-blocked group. Importantly, the oxidative 

stress induced by NMP was significantly less in the αCD47Ab treatment group.  

 

CD47 blockade during NMP enhanced some functional parameters over the course of perfusion. 

RBF and IRR were significantly better in the treatment group, which may be related to the effects 

of CD47 binding on the nitric oxide pathway and vascular responsiveness.
35

 Encouragingly, renal 

oxygen consumption, UO, CrCl, and tubular function improved in the αCD47Ab-treated group, 

although not reaching statistical significance. Additional improvements in these parameters during 

NMP might require a higher dose of αCD47Ab or the induction of more severe injury through 

prolongation of ischemic times such that more clear differences may be elucidated. Any ultimate 

improvement in renal IRI by CD47 blockade needs to be proven after full-scale reperfusion with 

leukocyte-replete allogeneic blood (i.e. transplantation). 

 

Pharmacomanipulation of the kidney during NMP may also improve the efficacy of the short 

periods of pre-implantation NMP currently in clinical use.
12

 There is some experimental evidence 

to indicate the longer periods (8 or more hours) of renal NMP are superior to 1 hour of pre-

implantation NMP; this is in the setting where no additional anti-IRI drugs are added.
42, 43

 Longer 

periods of NMP are however more labor-intensive, expensive, and likely less readily taken up by 

transplant centers. Pharmacologic amelioration of IRI during NMP may provide a compromise, 

allowing shorter pre-implantation NMP. 

 

In conclusion, this paper has shown the feasibility and efficacy of using NMP as a targeted drug 

delivery system to the kidney as a means to ameliorate IRI. Three proven anti-IRI drugs were 

compared in a murine kidney model of severe IRI, and αCD47Ab was shown to be most 

protective. The porcine-specific version of this antibody was tested in a DCD model using NMP, 

achieving renal binding, and improving some renal perfusion and injury parameters. NMP has a 
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remarkable potential to not only directly treat and resuscitate donor kidneys prior to implantation, 

but also to fast-track drug discovery/application from small animal and/or cell culture models into 

the clinical setting. Its impacts may be significantly amplified through the targeted delivery of 

anti-IRI drugs to the kidney, which will likely translate into vast future clinical applications.  
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7.1 Abstract 

Introduction: Normothermic machine perfusion (NMP) is a promising new modality that 

provides the potential for the resuscitation and improved assessment of kidneys prior to 

transplantation. Using discarded human kidneys, we aimed to investigate the mechanistic basis and 

translational potential of NMP as a superior strategy compared to the current gold standard of cold 

static storage (CS).  

 

Methods: Discarded deceased donor kidneys (n = 15) underwent brief (one hour) NMP after a 

period of CS during transportation. Renal perfusion, biochemical, and histologic parameters were 

recorded. Leukocyte efflux from the kidney was measured in selected grafts. NMP was directly 

compared to CS in paired donor kidneys using simulated transplantation with whole allogeneic 

blood, followed by assessment of perfusion and functional parameters, markers of ischemia-

reperfusion injury (IRI), and RNA sequencing. 

 

Results: All kidneys were successfully perfused, with demonstration of improving renal blood 

flows and resistance (median 260 ml/min and 0.29 mmHg/ml/min, respectively), and urine output 

(median 21 ml), in all but one kidney. NMP completely resolved non-perfused regions in 

discarded DCD kidneys. In paired kidneys, transcriptomic analyses showed induction of stress and 

inflammatory pathways in NMP kidneys, with upregulation of pathways promoting cell survival 

and proliferation. Furthermore, the NMP pairs had signifincantly better renal perfusion (1.5-2 fold 

improvement in flow and resistance) and functional parameters, and amelioration of cell death, 

oxidative stress, and complement activation. 

 

Conclusions: NMP demonstrated multiple superior outcomes to CS, allowing for the rejuventation 

of marginal kidneys. NMP has consdiderable potential to enhance early graft function in such 

kidneys, and also reduce organ discards in order to increase kidney transplantation rates. 
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7.2 Introduction 

Normothermic machine perfusion (NMP) is a recently developed technique that may be applied to 

deceased donor kidney preservation prior to transplantation. NMP has been shown to have early 

potential in the enhancement of kidney transplant outcomes.
1-4

 It may be performed in conjunction 

with cold static storage (CS; the current reference standard), and/or as a sole modality prior to 

transplant, although current human application has only seen employment of the former. 

 

The emergence of NMP is a natural progression from increased prominence of machine perfusion 

(MP) preservation for organ transplantation.
4, 5

 The field of MP in kidney transplantation has 

largely been dominated by hypothermic MP (HMP).
6
 However, this modality has not gained 

widespread acceptance due to an inability to accurately predict longer-term graft function, in 

addition to ongoing high rates of delayed graft function (DGF) in donation after circulatory death 

(DCD) kidneys, and equivocal impacts on graft survival.
6-9

 NMP presents a potential solution to 

these problems, which is required to help close the organ supply-demand gap and improve 

outcomes from the DCD and expanded criteria (high kidney donor profile index [KDPI]) kidneys 

that organ transplantation centers are now increasingly reliant upon.
10-13

 Not only does NMP have 

the potential to improve the function of these organs post-transplantation, it may also allow for 

accurate functional assessment of the graft in a near-physiologic state.
4
 Furthermore, NMP enables 

the directed delivery of therapeutics to the kidney during perfusion while metabolic processes are 

active. 

 

Although preliminary evidence indicates superiority of NMP over CS alone, and a RCT is 

currently underway to compare both techniques, many questions remain unanswered prior to the 

more widespread uptake of NMP worldwide.
1, 14

 In particular, little is known about the actual 

mechanistic changes induced by NMP that may help improve graft outcomes, with the sparse 

evidence available limited to porcine studies.
15, 16

 This is crucial to more clearly inform clinicians 

regarding how best to utilize NMP, including what type(s) of organs and recipients will benefit the 

most from this technology. One important area of controversy relates to the thresholds and 

duration at which NMP will be most beneficial, with current clinical evidence existing only for 

one hour of pre-implantation NMP.
1, 17, 18

 However, experimental (porcine) evidence indicates that 

longer periods of NMP (> 8 hours) may be more beneficial to subsequent transplant function, 

whilst others have explored the feasibility of perfusion periods up to 24 hours.
3, 19, 20

 Brief (1-3 
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hour) pre-implantation NMP however continues to remain attractive as it is convenient, and 

therefore more readily employed, especially considering that current NMP technology is not easily 

transportable. 

 

Therefore, we aimed to investigate the comparative efficacy of a brief period of NMP following 

CS, to CS alone, using paired human kidneys, with a particular focus on the mechanistic changes 

that underlie any potential advantages offered by NMP. We will also examine the following 

parameters that have not been clearly investigated using human kidneys – (i) biochemical, acid-

base, and perfusion-related trends during NMP that may be used to inform decision-making 

regarding potential transplantation; (ii) passenger leukocyte load of donor kidneys and the use of 

NMP to induce extravasation of these leukocytes; and (iii) the comparative efficacy of NMP with 

autologous or banked (allogeneic) blood.  

 

7.3 Methods 

7.3.1 ETHICS 

Ethics approval for this project was obtained from the Western Sydney Local Health District 

human research ethics committee. All prospective donors’ families were consented for the 

potential research use of kidneys for research purposes prior to the procurement process. Further 

project support was obtained from the NSW Organ and Tissue Donation Service (OTDS), and 

collaboration was also established with the Australian Red Cross Blood Service (ARCBS).  

 

7.3.2 INCLUSION AND EXCLUSION CRITERIA 

Kidneys were obtained for the purposes of this research from any deceased donor in the event that 

– (i) they were deemed unsuitable for transplantation for any reason during or after procurement, 

or (ii) in the event of a planned liver-only donor whereby the kidneys had been deemed medically 

unsuitable prior to retrieval. Kidneys were only excluded from subsequent NMP when autologous 

or allogeneic blood was not available for perfusion.  

 

7.3.3 KIDNEY PROCUREMENT 

Retrieval was undertaken in a standard fashion, after aortic cannulation and cold perfusion with 

Soltran, and in the event of liver or pancreas retrieval, also University of Wisconsin (UW) 

solution. In the event that autologous blood was to be utilized for subsequent NMP, the inferior 
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vena cava (IVC) was dissected and immediately accessed using a 28-32 Fr intercostal catheter 

attached to a TUR giving set at the commencement of cold perfusion. Vented blood was collected 

into a customized blood bag (LivaNova Australia, Dandenong, Australia) containing 

anticoagulant-citrate-dextrose solution A (ACD-A) (Aurora Bioscience, Bella Vista, Australia) 

and saline-adenine-glucose-mannitol solution (SAGM) (Macopharma, Chatswood, Australia), and 

stored on ice. Kidneys were stored in the final flush solution (University of Wisconsin [UW] 

solution or Soltran solution), surrounded by 0.9% sodium chloride ice slush, prior to transportation 

to our center. 

Donor and retrieval details that were recorded included age, sex, comorbidities, donation pathway 

(DBD or DCD), ABO blood group, kidney donor profile index (KDPI), donor cause of death 

(COD), intended and actual organs retrieved, reason for kidney discard/non-utilization, cross-

clamp time, warm ischemic time (WIT), cold ischemic time (CIT), and kidney anatomy. The 

KDPI estimates the risk of graft failure relative to other donor kidneys and incorporates donor age, 

history of hypertension or diabetes mellitus, height/weight, COD as stroke, terminal creatinine 

level, and DCD pathway within overall scoring.
21, 22

7.3.4 KIDNEY PREPARATION 

Kidneys underwent standard back-table preparation. The renal artery was cannulated with heparin 

tips connected to a ¼ inch luer lock adaptor (Medtronic, MN, USA and LivaNova Australia, 

Dandenong, Australia), and the cannula was secured with a silk tie. The ureter was cannulated 

with a shortened heparin tip (Medtronic), which was also secured using a silk tie. Kidneys 

remained on ice slush until the commencement of NMP. 

7.3.5 BLOOD PREPARATION 

In the event that autologous blood was used, collected donor whole blood was centrifuged at 3500 

RPM for 15 minutes, and the supernatant discarded. The residual packed red blood cell (PRBC) 

mass was washed with Hartmann’s solution, re-centrifuged for 10 minutes, and the supernatant 

was once again discarded. PRBCs were then passed through a leukocyte filter (Terumo Pty Ltd, 

Tokyo, Japan) and collected into a new blood bag (total PRBC volume approximately 250 ml). 

The ARCBS provided all PRBC units for the NMP cases in which banked blood was utilized (O+ 

or O- units only; total PRBC volume approximately 250 ml). All subsequent simulated 
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transplantation experiments were conducted using whole banked blood (O+ or O-), also obtained 

from the ARCBS. Total volume of each whole blood unit was approximately 500 ml, with 250 ml 

of this used for each paired kidney (see below).  

  

7.3.6 EX VIVO PERFUSION SET-UP 

The NMP system was assembled as previously described.
23

 In brief, NMP was undertaken using 

autologous or banked PRBCs, to which was added Hartmann’s solution (150 ml), gelofusine (250 

ml), 10% mannitol (50 ml), 10% calcium gluconate (5 ml), 8.4% sodium bicarbonate (15 ml), 

sterile water for injection (25 ml), and heparin (2000 units). Continuous infusions of nutrient 

(M199 with ultraglutamine) solution (20 ml/hr), 5% dextrose (5 ml/hr), and verapamil (5 mg in 2 

ml, run at 5 ml/hr) were also run during NMP. Creatinine was added to the circuit (700 μmol in 5 

ml 0.9% NaCl, to give an approximate concentration of 1000 μmol/L; Merck, Darmstadt, 

Germany) to enable subsequent quantification of creatinine clearance (CrCl). The kidney was 

placed in a customized, 3D-printed perfusion chamber.
24

 Only the renal artery was cannulated, 

with the renal vein left open to drain into the reservoir via the perfusion chamber. Urine was 

collected and output replaced with Hartmann’s solution. NMP was undertaken at a temperature of 

37°C, with flow rates adjusted to maintain at a mean arterial pressure (MAP) of 75-85 mmHg.  

 

To provide a direct comparison between CS and NMP in the absence of the ability to transplant 

these kidneys, ex vivo reperfusion with whole blood was undertaken in paired kidneys to simulate 

transplantation. This system utilizes whole blood containing leukocytes, complement, and other 

inflammatory mediators; furthermore, the protective verapamil infusion was omitted. Ex vivo 

whole blood reperfusion was undertaken at a MAP of 85-95 mmHg (maintained by flow 

adjustment), at 37°C for 60 minutes, after a simulated second warm ischemic (‘anastomotic’) time 

of 30 minutes during which the kidney was left at room temperature. Perfusion parameters 

(pressure and flow) and urine output (UO) were sequentially recorded during NMP and whole 

blood reperfusion. 

 

7.3.7 PERFUSION EXPERIMENTS 

(i) Single kidneys (n = 7) underwent NMP for 1-3 hours. These kidneys were used to (a) 

establish NMP system feasibility, functionality, and safety; (b) compare NMP using 
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autologous and banked blood; and (c) investigate leukocyte extravasation from the 

graft during NMP. 

(ii) Paired kidneys (n = 8, i.e. 4 kidney pairs) were randomly allocated to either the cold

static storage (‘CS’) or ‘NMP’ groups. ‘CS’ kidneys underwent standard CS, a

subsequent 30 minute simulated SWIT period at room temperature, and then ex vivo

whole blood reperfusion for 60 minutes to simulate the immediate post-transplant

reperfusion period. ‘NMP’ kidneys underwent CS, followed by one hour of NMP, a

simulated SWIT of 30 mins, and finally ex vivo whole blood reperfusion for 60 minutes

(using the initial NMP circuit set-up).

7.3.8 SAMPLES 

Sequential kidney biopsies were taken at the end of CS, after each hour of NMP (if applicable), 

and at the end of ex vivo whole blood reperfusion (if applicable). Biopsy samples were stored in 

10% natural buffered formalin, RNALater solution (Ambion/Thermo Fisher Scientific, TX, USA), 

or snap frozen in dry ice with or without OCT media (Tissue-Tek, ProSciTech, Australia), for 

subsequent analyses. Blood samples were also taken from the circuit and the start and end of 

perfusion, as applicable, and sent to the hospital laboratory for quantification of hemoglobin, white 

cell counts, platelet counts, hematocrit, electrolytes, urea, creatinine, blood sugar level, aspartate 

aminotransferase (AST), lactate dehydrogenase (LDH), albumin, and osmolality. Arterial and 

venous blood gas samples were taken during the start and end of perfusion, and analysed for 

lactate, pH, partial pressure of oxygen (pO2) and carbon dioxide (pCO2), bicarbonate (HCO3), and 

base excess (BE) using the i-STAT Alinity machine (Abbott, IL, USA). Urine samples were taken 

at the end of perfusion and analysed for electrolyte, creatinine, and protein levels. 

7.3.9 MEASUREMENTS AND ANALYSES 

Renal blood flow (RBF) and intra-renal resistance (IRR = MAP/RBF)
1
 was recorded throughout

perfusion and normalized to a kidney weight of 250 grams. Urine output (UO) was recorded every 

hour of perfusion (ml). CrCl (ml/min/100g/hr) during NMP and ex vivo whole blood reperfusion 

was calculated using the following formula – (urine Cr (μmol/L) x urine volume (L))/plasma Cr 

(μmol/L). Fractional excretion of sodium (FeNa) (%) was calculated as – (100 x plasma Cr 

(μmol/L) x urine Na (mmol/L))/(plasma Na (mmol/L) x urine Cr (μmol/L)). Renal oxygen 
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consumption (mmHg*ml/min/g) at end-NMP or ex vivo reperfusion was determined using – [RBF 

(ml/min) x (PaO2 – PvO2) (mmHg)]/kidney weight (g).
25

7.3.10 RENAL HISTOPATHOLOGY 

All biopsies underwent Periodic Acid-Schiff (PAS) staining according to standard methods. Each 

pre- and post-NMP, and post-ex vivo whole blood reperfusion was assigned a Remuzzi score by a 

blinded renal histopathologist.
26

 The following parameters were assessed – number of glomeruli;

glomerular sclerosis (%); chronic damage (tubular atrophy/interstitial fibrosis; %); arteriolar 

hyalinosis (0 – absent; 1 – present); intimal elastosis (0 – absent; 1 – less than medial thickness; 2 

– more than medial thickness); and extent of acute tubular injury (0 – absent; 1 – loss of tubular

cell brush borders/vacuolization; 2 – cell detachment/casts; 3 – coagulation necrosis). 

7.3.11 IMMUNOFLUORESCENCE 

Renal tubular epithelial cell death was compared between paired kidneys (NMP versus CS pairs, 

using cryosections cut from samples taken at the end of ex vivo whole blood reperfusion) using 

TUNEL staining. A commercial in situ cell death detection kit was utilized for this purpose 

(Sigma-Aldrich/Merck, MO, USA). Slides were co-stained with DAPI (1:25,000) for 2 minutes. 

TUNEL staining was quantified using confocal microscopy. 

Renal tissue oxidative stress was quantified and compared in paired NMP/CS samples using 

dihydroethidium (DHE) (Thermo Fisher Scientific), an indicator of tissue superoxide levels. 

Unfixed cryosections were thawed; DHE (10 μM) was applied to the surface of each section 

(incubated at 37⁰C for 22 mins). Slides were co-stained with DAPI as above. Confocal microscopy 

was utilized for visualization of DHE staining. Integrated densities were quantified using ImageJ 

software (National Institutes of Health, USA). Each section had 4 images taken, with mean 

densities for each image calculated from a further 4 regions of interest. 

Complement (C9) staining was also performed in paired samples. Cryosections were fixed, 

blocked, and thence stained with C9 primary antibody raised in rabbits (1:250 dilution; Abcam, 

Cambridge, UK), and incubated for one hour at room temperature. This was followed by staining 

with goat anti-rabbit secondary antibody conjugated to Alexa Fluor 647 (1:400 dilution; 
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Invitrogen, CA, USA) for a further one hour at room temperature. DAPI co-staining was 

performed. Sections were visualized using confocal microscopy; C9 staining intensity was 

quantified using ImageJ software, with 4 regions of interest utilized for each section image. 

7.3.12 FLOW CYTOMETRY ANALYSIS FOR LEUKOCYTE EFFLUENT FROM THE GRAFT 

DURING NMP 

Blood samples were taken from the circuit at different time points (n = 3 kidneys) to analyze 

leukocyte extravasation from the graft. Samples were taken from the PRBC blood bag, and then at 

‘start’ NMP (5 minutes after the commencement of NMP), one hour post-commencement of NMP, 

and 1.5 and 2 hours post-commencement of NMP. Briefly, samples were spun and equivalent 

amount of “PRBCs” were used for staining. 50 μL of the graft circuiting “PRBCs” and control 

baseline “PRBCs” were added into a Trucount tube (BD Biosciences) and blocked with pure 

Fc1.3070 (BD Biosciences), followed by staining with an antibody cocktail and cell lysis/fixation 

with BD FACS lysing solution (BD Biosciences) according to the manufacturer's instructions and 

as described previously.
27

 Fluorochrome-coupled anti-human antibodies to CD45, CD3, CD11c,

CD14, CD16, CD19, CD56, CD123, CD141, HLA-DR, lineage cocktail (CD3, CD14, CD19, 

CD20, CD56) (BD Biosciences), and CD303 (Miltenyi Biotec) were used. Potential dendritic cell 

detection was performed using the following markers: HLA-DR+CD3-CD14-CD19-CD20-

CD11c+CD141 and/or HLA-DR+CD3-CD14-CD19-CD20-CD11c-CD303+CD123+. Flow 

cytometric analysis was performed on a BD-LSR Fortessa (BD Biosciences) and Diva software 

(BD Biosciences) for evaluation of absolute numbers of granulocytes, monocytes, NK cells, B 

cells, T cells, NKT cells, and dendritic cells. Data was analyzed using FlowJo V10.  

7.3.13 RNA EXPRESSION BY NEXT-GENERATION SEQUENCING 

Targeted whole transcriptome RNA expression
28, 29

 was analyzed using paired kidneys undergoing

NMP or CS alone, followed by ex vivo whole blood reperfusion. Kidney biopsies from each group 

were taken at end-CS, end-NMP (if applicable), and end-ex vivo reperfusion. RNA extraction was 

conducted using an ISOLATE II Mini-kit (Bioline Australia). For Ampliseq transcriptome 

analyses, libraries were prepared using Ion AmpliSeq Transcriptome Human Gene Expression Kit 

(Thermo Fisher Scientific) following the manufacturer’s protocol using 10 ng of total RNA and 

quantified by qPCR with Ion Library TaqMan Quantitation Kit (Thermo Fisher Scientific). 

Libraries with concentration ranging from 1,515 pM to 6,629 pM were obtained and normalized to 
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100 pM. Seven to eight normalized libraries were pooled together, templated on the Ion Chef 

System, then sequenced on Ion 540 Chips using the Ion S5 XL system. Reads were aligned back to 

the manufacturer’s supplied target reference with built in mapping software Tmap. The aligned 

data was TMM normalized using the edgeR package.
30

7.3.14 STATISTICAL ANALYSES 

Unless otherwise indicated, data is presented in the format mean ± standard deviation (SD). 

Continuous parametric variables were compared using the unpaired Student’s t-test, whilst non-

parametric continuous variables have been compared using the Mann-Whitney U test. The paired 

t-test was used for comparison of baseline and end-NMP data for each individual kidney, or

functional data for each paired kidney at the end of ex vivo reperfusion. RBF and IRR graphs were 

compared by first calculating the area under the curve (AUC) for each parameter plotted on the 

graph. GraphPad Prism v. 7.02 was used for all of these statistical analyses. For all data 

comparisons, a p-value <0.05 was considered as statistically significant. 

Differential expression analysis was performed using voom.
31

 For all comparisons, changes in

gene expression were deemed significant if they had a Benjamini-Hochberg adjusted p-value < 

0.05. Pathway analysis was performed using a hypergeometric test to test if any Gene Ontology or 

Reactome categories were enriched for differentially expressed genes.
32-34

 Wilcoxon-rank-sum

tests with directional alternative hypotheses were used on the test statistics to test if any of the 

pathways were significantly up or downregulated. Further pathway analyses were conducted 

through the use of Ingenuity Pathway Analysis (IPA) (Qiagen Inc.).
35

7.4 Results 

7.4.1 RENAL HISTOLOGY, HEMODYNAMICS AND URINE OUTPUT DURING 

NORMOTHERMIC MACHINE PERFUSION (NMP) 

Fifteen discarded and/or non-utilized kidneys from 10 human donors were obtained. Donor and 

perfusion characteristics are summarized in Table 1; also see Supplemental Digital Content (SDC) 

1 for images of each kidney before and during perfusion. Eleven kidneys underwent NMP for 1-3 

hours as defined in the methods. Four of these 11 kidneys underwent NMP followed by simulated 

transplantation using ex vivo reperfusion with whole blood, whilst their direct pairs had CS alone 

followed by ex vivo whole blood reperfusion. There were no significant changes with respect to 

the renal tubular pathology when assessed by light microscopy during 1-3 hours of NMP (SDC 2).  
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CIT – cold ischemic time; COD – cause of death; CS – cold static storage; CVA – cerebrovascular accident; DBD – 

donation after brain death; DCD – donation after circulatory death; Hx – history; HTN – hypertension; ICH – intra-

cerebral hemorrhage; KDPI – kidney donor profile index; NA – not applicable; NMP – normothermic machine 

perfusion; SI – small intestine; VT/VF – ventricular tachycardia/fibrillation; WIT – warm ischemic time 

* Both kidneys obtained for research however 2
nd

 kidney not perfused as majority of parenchyma (90%) consisted of

cystic tissue 

** Frozen section of liver lesions equivocal, however clinically consistent with melanoma liver metastases 

*** Declined due to donor hepatorenal syndrome (26 offers made to recipient centers), however contralateral 

kidney was accepted and transplanted  

^ 
Kidneys considered unsuitable due to elevated donor creatinine (207 μmol/L [2.3 mg/dL]) and proteinuria, although 

note KDPI was only 52 

^^
 Contralateral kidney well-perfused and transplanted 

^^^ 
NMP delayed due to logistical reasons 

^^^^
 Kidneys not considered due to donor comorbidities/KDPI, in addition to low donor eGFR (30-40 ml/min/1.73 m

2
) 

φ 
Time from extubation/withdrawal of life support to cold perfusion (time from cessation of circulation to cold 

perfusion in brackets) 

ϯ 
Both kidneys had upper pole arteries; upper pole artery of left (‘CS’) kidney was divided at retrieval, and as such the 

upper pole artery of the right kidney (‘NMP’) was similarly ligated prior to NMP to make both kidneys more 

comparable  

Hemodynamics during NMP generally indicated a rise in renal blood flow (RBF) and decline in 

intra-renal resistance (IRR) over time, with the exception of one kidney (DCD-D3) (Fig. 1A). 

Median RBF and IRR after one hour was 260 ml/min/250g (range 172-359) and 0.29 

mmHg/ml/min/250g (range 0.23-0.45), respectively. The median hourly urine output (UO) was 21 

ml (range 0-46 ml); only one kidney did not produce any urine (DCD-D4) (Fig. 1B; also see 

explanation in figure caption). Fig. 1B provides a graphical depiction of UO, creatinine clearance 

(CrCl) and fractional excretion of sodium (FeNa). Visually it can be seen that UO was generally 

positively correlated with creatinine clearance (CrCl) and inversely related to fractional excretion 

of sodium (FeNa), although these relationships were not absolute (Fig. 1B). 
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Figure 1. Perfusion, functional, and biochemical parameters and changes during NMP. (A) Renal blood flow and 

intra-renal resistance (IRR) during NMP, with a MAP maintained between 75-85 mmHg. (B) LEFT PANEL – Urine 

output (UO) per hour of NMP for each donor kidney. RIGHT PANEL – Relationship between UO, creatinine clearance 

(CrCl), and fractional excretion of sodium (FeNa) in each donor kidney. (C) Perfusate acid-base balance (pH, lactate, 
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and bicarbonate) and electrolyte (sodium, and osmolality) concentrations over the course of NMP, plotted for each 

individual kidney. n.b. Although there was no UO recorded from the DCD-D4 kidney during NMP, perfusate creatinine 

levels dropped over the course of perfusion (997 μmol/L at baseline  633 μmol/L after 60 min NMP  585 μmol/L 

after 90 min NMP). This indicates either (i) an abnormality related to ureteric function/vermiculation (unlikely as the 

ureter was not significantly distended during perfusion), or (ii) urine leak into the perfusion chamber from an 

unidentified site (more likely). 

7.4.2 ISCHEMIC TIMES CORRELATE WITH PERFUSION PARAMETERS DURING NMP IN 

DCD BUT NOT DBD KIDNEYS 

NMP is likely to have differential impacts and characteristics in DCD and DBD kidneys 

depending on the severity of the ischemic insult. In particular, it is useful to gain an understanding 

of RBF and IRR during NMP and establish potential correlations between perfusion parameters 

and ischemic times to provide a more objective graft functional assessment prior to 

transplantation. This also provides an important baseline against which potential therapeutics 

delivered to the kidney during NMP can be tested.  SDC 3 plots each donor kidney’s RBF and 

IRR, split by donor type (DCD or DBD) and arranged according to ischemic time. DCD kidneys 

with a lower WIT/CIT demonstrated an elevated RBF (median 328 ml/min/250g; range 286-370) 

and lower IRR (median 0.26 mmHg/ml/min/250g) in comparison to the two kidneys with a higher 

WIT and CIT (median RBF 205 ml/min/250g [range 200-210] and median IRR 0.41 

mmHg/ml/min/250g [range 0.39-0.42]; SDC 3A). In contrast, DBD kidneys showed no obvious 

correlation between CIT and RBF or IRR; indeed, the two kidneys with the greatest CITs had 

comparatively better perfusion parameters during NMP (SDC 3B). A correlation between 

perfusion parameters and KDPI could not be established in either DCD or DBD donor subset. 

7.4.3 LACTATE IS NOT CLEARED DURING BRIEF (1-3 HOURS) RENAL NMP 

Lactate clearance can be used as a biomarker that defines effective perfusion and/or suitability for 

transplantation during NMP of other organs such as the liver and heart.
5, 36, 37

 Lactate levels did not 

decline after brief NMP in this series, but in fact increased significantly from baseline (11.2 

mmol/L) to 60 minutes (13.1 mmol/L; p = 0.002; Fig. 1C). However, a rising lactate was not 

indicative of acidemia in the perfusate, and a general uptrend was observed with respect to 

perfusate pH (7.23-7.33; p = 0.003) and bicarbonate levels (16.8-19.4 mmol/L; p = 0.009; Fig. 

1C). Furthermore, there was an observed increase in perfusate sodium levels after 60 minutes of 
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NMP (143-148 mmol/L; p = 0.007), and a corresponding elevation in osmolality (338-345 

mmol/kg; p = 0.004) (Fig. 1C). 

 

7.4.4 LEUKOCYTES ARE IMMEDIATELY MOBILIZED FROM THE GRAFT INTO THE 

CIRCUIT DURING NMP  

Perfusion fluid samples were taken prior to and at defined intervals after the commencement of 

NMP from donors 8-10, and then analyzed using flow cytometry. A significant efflux of 

leukocytes (CD45+) was detected in all tested samples within 2-3 minutes of commencement of 

NMP (“start NMP” samples). Dendritic cells (markers defined in methods) were not detectable by 

our methods at any time-point. However, large populations of granulocytes (CD45lowSSChigh) were 

detected, along with smaller populations of monocytes (CD14+), T (CD3+) and B-lymphocytes 

(CD19+), and NK cells (CD56+) (Fig. 2).  

 

7.4.5 NMP UNDER SPECIAL CIRCUMSTANCES – KIDNEYS WITH MULTIPLE VESSELS, 

AND KIDNEYS DISCARDED DUE TO POOR IN SITU PERFUSION AT RETRIEVAL 

NMP can be safely and effectively performed in kidneys with more than one artery, including 

more than one artery on a patch and/or separate upper or lower pole arteries (Fig. 3A-B). Back-

table arterial reconstruction is not required, and perfusion is facilitated by the use of Y-connectors 

attached to separate cannulae.  

 

NMP can also be utilized to assess and/or predict adequacy of renal perfusion in kidneys discarded 

due to poor in situ perfusion post-retrieval from the deceased donor (Fig. 3C). Two kidneys in this 

series (from donor 2 and donor 9) were discarded due to poor perfusion at retrieval in the context 

of DCD donation. In both cases, NMP ‘cleared’ the non-perfused region(s) within 10 minutes of 

commencement, thereby rendering these kidneys potentially transplantable. 
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Figure 2. Leukocyte efflux from the donor kidney during NMP. Absolute cell counts for granulocytes, monocytes, NK 

cells, and lymphocytes were calculated by flow cytometry using the pre-perfusion sample as a baseline, followed by 

NMP arterial line sampling at selected time points. n = 3 kidneys. n.b. No dendritic cells were detected. 
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Figure 3. NMP is possible in the presence of multiple arteries, and is a very useful tool in poorly perfused kidneys. (A-

B) NMP is feasible and safe for kidneys with multiple renal arteries, achieving good renal blood flows and intra-

renal resistance. Kidneys shown are from (A) donor 7 (DBD-D4) and (B) donor 8 (DBD-D5). (C) NMP is ideal 

for the assessment of kidneys discarded for poor in situ perfusion. LEFT PANEL – Kidney (donor 2; DCD-D1) visualized 

at end-cold storage, discarded due to a non-perfused lower pole and patchy middle region. RIGHT PANEL – The lower 

pole of the same kidney is pictured 5 minutes after the commencement of NMP, showing complete resolution 

of the previously non-perfused area. 
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7.4.6 DONOR AUTOLOGOUS PACKED RED BLOOD CELLS (PRBCS) CAN BE UTILIZED 

FOR NMP  

Banked blood transfusions (allo-) may increase the risk of allosensitization in kidney transplant 

recipients; the feasibility of using autologous blood for NMP was therefore explored.
38, 39 

Autologous whole blood was collected from 3 donors, and PRBCs were subsequently isolated for 

the perfusion of 4 kidneys; all other kidneys underwent NMP using banked blood group O blood 

(Table 1). There were no significant baseline differences with respect to KDPI (median 89 versus 

83; p = 0.783) and CIT (median 8.9 versus 11.7 hours; p = 0.226) in kidneys perfused with 

autologous or banked blood, respectively. Baseline blood parameters for both autologous and 

banked blood are outlined in SDC 4. Hemoglobin levels (43.8 versus 65.3 g/L; p  = 0.094) and 

hematocrit (14.3% versus 20.7%; p = 0.150) were lower in the autologous blood group, and the 

white cell count was higher (0.15 x 10
9
/L versus 0.06 x 10

9
/L; p = 0.071), despite using 

identical volumes of PRBCs, but this did not reach statistical significance; platelet counts were 

however statistically lower in the banked blood group (45.0 x 10
9
/L versus 0.9 x 10

9
/L; p 

< 0.001). Perfusate potassium levels showed a trend towards an increase in the banked blood 

group (5.4 versus 7.6 mmol/L; p = 0.107); there were no differences in sodium (142.0 versus 

143.9 mmol/L; p = 0.404) and bicarbonate (13.0 versus 14.3 mmo/L; p = 0.491) concentrations. 

SDC 5 compares NMP parameters between both groups after 60 minutes of NMP. Although AUC 

for RBF was significantly higher (p = 0.005), and IRR significantly lower (p = 0.001), in the 

banked blood perfusion group, these differences are unlikely to be clinically meaningful. There 

were no significant differences with respect to glomerular (CrCl 0.7 vs. 0.5 ml/min/100g/hr; p = 

0.610) or tubular function (FeNa 31.9 versus 26.4%; p = 0.806), or renal oxygen consumption 

(298.0 versus 381.7 ml/min/g; p = 0.330) in the autologous compared to banked blood groups, 

respectively (SDC 5). Perfusate LDH levels showed a higher trend in the autologous blood group 

but this was not significant (p = 0.125), while AST levels were significantly lower in the group 

perfused with banked blood (121.8 versus 49.2 U/L; p = 0.039). 

7.4.7 NMP INDUCES GENE EXPRESSION CHANGES INVOLVING INFLAMMATORY, 

STRESS, CELL DEATH, AND SURVIVAL-RELATED PATHWAYS 

Targeted whole transcriptome RNA expression was performed, comparing paired kidneys treated 

with CS alone or NMP after a period of CS (n = 3 pairs – pair 1-3, identified in Table 1). Samples 
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were taken at the end of CS (‘end-CS’), after NMP (if applicable; ‘end-NMP’), and after simulated 

transplantation (‘end-ex vivo’). Simulated transplantation allowed for a direct comparison between 

CS and NMP kidneys, and involved ex vivo reperfusion with whole blood at a MAP of 80-90 

mmHg, without the addition of any protective mediators. The SWIT (‘anastomoses’) was 

approximated by leaving each kidney at room temperature for 30 minutes prior to reperfusion. The 

principal component analysis (PCA) plot revealed unique population clusters, defined by donor 

kidney pair (SDC 6). Within each donor kidney pair, end-CS samples were clustered close 

together, whilst the end-ex vivo samples were distinctly different (SDC 6). Importantly, at baseline 

(i.e. end-CS) within the kidney pairs there were no statistically significant differentially expressed 

genes between the NMP and CS groups (data not shown). 

One hour of NMP induced multiple gene expression changes. In comparison to biopsies taken at 

the end of CS, NMP in the same kidneys modified expression of 200 genes (n = 196 were 

significantly upregulated, and n = 4 were down-regulated) (Fig. 4A). A total of 115 pathways were 

significantly enriched for differentially expressed genes. The most differentially up and down-

regulated genes and pathways are also indicated in Fig. 4A, whilst SDC 7 outlines expression 

patterns for all genes and pathways. Ex vivo whole blood reperfusion (simulated transplantation on 

the circuit using whole blood) produced distinctly different gene expression changes (65 genes) in 

comparison to those induced by NMP (Fig. 4B, and SDC 8). This therefore indicates the technique 

is a valid simulation for transplantation that does not merely recapitulate changes induced by the 

NMP process. These gene expression changes were not evident in the CS group of kidneys after ex 

vivo whole blood reperfusion, as shown in the scatter plots displayed in Figs. 4-5. 

After simulated transplantation, paired kidneys subjected to either NMP or CS alone displayed 

highly disparate gene signatures characterized by the differential expression of 495 genes (435 up- 

and 60 down-regulated, respectively) (Fig. 5A). These are indicated in the scatter plot displayed in 

Fig. 5A. A full list characterizing gene expression and pathway changes is provided in SDC 9. The 

top 20 (plausible) pathways that were significantly impacted by NMP as determined by Ingenuity 

Pathway Analysis (IPA) are summarized in Fig. 5B, ordered based on the –log(p-value). 

Diseases/functions activated or repressed by NMP in comparison to CS alone, as predicted by IPA 

based on differential gene expression profiles, are outlined in SDC 10-11. Overall, the signatures 
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revealed were strongly consistent with a decrease in cell death and apoptosis in NMP kidneys, 

with a corresponding increase in cell survival, viability, and proliferative functions. 
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Figure 4. Whole transcriptome RNA sequencing in kidneys that underwent NMP. Sequential biopsies were taken 

immediately prior to the commencement of NMP (end-CS), after one hour of NMP (end-NMP), and after 

one hour of simulated transplantation (end-ex vivo). (A) LEFT PANEL – Gene expression changes (heatmap) after 

NMP in comparison to the end-CS period (for the same kidneys). RIGHT PANELS – Pathway analyses, displaying the 

most up- (TOP) and down-regulated (BOTTOM) pathways after NMP. (B) LEFT PANEL – Heatmap showing 

differentially expressed genes in the NMP group of kidneys after ex vivo whole blood reperfusion (in comparison to 

the end-NMP samples from the same kidneys). RIGHT PANELS – (TOP) HMGA1 is the most differentially expressed 

gene between end-NMP and end-ex vivo samples. (BOTTOM) Scatter plot showing the most up- and down-

regulated genes after ex vivo reperfusion (simulated transplantation) in comparison to end-NMP samples from the 

same kidneys. Relevant comparator columns are indicated by the dark black lines.

7.4.8 ONE HOUR OF NMP ENHANCES RENAL HEMODYNAMICS AND FUNCTION, AND 

AMELIORATES ISCHEMIA-REPERFUSION INJURY (IRI) IN COMPARISON TO CS KIDNEYS 

Over the period of ex vivo whole blood reperfusion, RBF was greater, and IRR was lower, at most 

time points in NMP compared to paired CS kidneys (Fig. 6A). RBF and IRR at the one hour time 

point after ex vivo reperfusion in the NMP and CS pairs respectively was 250.3 ± 79.7 

ml/min/250g versus 152.1 ± 138.8 ml/min/250g (p = 0.175), and 0.4 ± 0.1 mmHg/ml/min/250g 

versus 0.9 ± 0.6 mmHg/ml/min/250g (p = 0.137). Aggregated (AUC) RBF was significantly 

higher (p = 0.023) and IRR was significantly lower in the NMP-‘treated’ kidneys (p = 0.009).  

Paired comparisons of other functional parameters and injury markers were also performed (Fig. 

6B), and showed a significantly better (lower) FeNa and perfusate AST in the NMP group (p = 

0.034 and p = 0.043, respectively). There were strong trends favoring NMP over CS kidneys with 

respect to CrCl, oxygen consumption, and UO, although these did not reach statistical 

significance. 

Furthermore, renal tubular epithelial cell death, as measured by TUNEL staining, was significantly 

ameliorated in the NMP-treated kidneys after simulated transplantation (5.9 versus 9.6 TUNEL-

positive cells/HPF; p < 0.001); Fig. 7A). Similar significant trends were seen with respect to 

oxidative stress (quantified using integrated density of DHE staining; p = 0.022; Fig. 7B), and 

complement activation (measured by integrated density of complement C9 staining; p = 0.002; 

Fig. 7C). Comparative histologic sections (PAS stain) from one donor pair (DBD-D3 – ‘Pair 2’) 

are shown in Fig. 7D. Overall, there were no significant differences with respect to acute tubular 

injury following ex vivo whole blood reperfusion, regardless of the initial treatment (SDC 12). 
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Figure 5. Whole transcriptome RNA sequencing in kidney pairs that underwent one hour of NMP following CS in

comparison to CS alone. Comparisons were conducted after a simulated second warm ischemic period of 30 mins 



and then reperfusion of each kidney with whole allogeneic blood at a MAP of 85 mmHg and temperature of 37⁰C.  (A) 

LEFT PANEL – Gene expression heatmap comparing paired kidneys having CS or NMP, after ex vivo whole blood 

reperfusion. RIGHT PANELS – (TOP) Scatter plot outlining the most significantly up- and down-regulated genes in the 

NMP group in comparison to CS paired kidneys (relevant columns indicated by dark black lines). (BOTTOM) Most 

differentially expressed gene between NMP and CS kidneys (HSPH1), with an obvious difference in expression at 

the end-ex vivo time point for all 3 kidney pairs. (B) Ingenuity pathway analyses (IPA) showing top canonical 

pathways significantly up- or down-regulated in the NMP group of kidneys in comparison to kidneys having CS alone. 

Pathways are ordered by magnitude of –log(p-value). LEFT PANEL – Indication of pathway activation or repression 

based on the z-score, which gives an indication of the non-randomness of pathway directionality. A positive z-score 

suggests pathway induction, and a negative z-score denotes pathway suppression. RIGHT PANEL – Percentage 

(indicated by colored bars) of total number of genes (indicated by numbers to right of bars) in a specific pathway that 

are differentially expressed in NMP compared to CS kidneys. 

7.5 Discussion 

Normothermic machine perfusion prior to kidney transplantation presents a paradigm shift in the 

preservation of deceased donor grafts, with the potential to simultaneously recondition and 

objectively assess the donor kidney. We present the largest series of discarded human kidney NMP 

outside of the UK, and demonstrate many novel findings that should help motivate translation of 

this technique to clinical transplantation. In particular, using a paired kidney design and simulated 

transplantation, we show that brief (one hour) NMP is superior to CS alone, as evidenced by 

enhanced early perfusion parameters, glomerular and tubular function, and amelioration of IRI. 

Transcriptome-wide sequencing demonstrated activation of protective stress-related responses, 

together with promotion of cell survival and proliferation. The existing potential of NMP to 

objectively assess renal allografts and reduce discard rates through assessment perfusion-related 

parameters was confirmed. We also demonstrated the feasibility of using autologous (donor) blood 

during NMP compared to the use of 3
rd

 party (banked) blood. Finally, we showed a massive efflux 

of passenger leukocytes from the donor kidney into the NMP circuit during perfusion, which may 

be targeted to modulate the acute rejection response in the recipient. 

The attractiveness of brief pre-implantation NMP lies in its simplicity and the logistical 

advantages this method affords above continuous methods of NMP, which require perfusion 

during the whole transportation period. However, this technique remains experimental other than a 

single UK trial. One important reason for a reluctance of uptake by centers is a lack of 

understanding regarding the mechanistic benefits, if any, that can be offered by only one hour of 

140 
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NMP. This is notwithstanding the clear benefits of reducing graft discard rates offered by brief 

NMP, especially in the setting of poorly perfused DCD kidneys, which was shown by Hosgood et 

al. and supported by the findings here.
18

 Our unique study design comparing paired kidneys has

allowed us to confidently explore the impacts of NMP without requiring large patient numbers. In 

particular, this design removes the confounding influences of different donor and recipient 

parameters, which contribute to variability in transplantation outcomes. 
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Figure 6. Perfusion and functional parameters (after simulated transplantation [whole blood reperfusion (RFN)]) in 

kidney pairs from the same donor, with 1 kidney having CS alone and the contralateral kidney undergoing CS followed 

by one hour of NMP. (A) UPPER PANELS – Renal blood flow and intra-renal resistance (IRR) graphed for each individual 

donor kidney. LOWER PANELS – Cumulative flow and IRR for the kidneys stored by CS alone in comparison to 

contralateral kidneys having CS followed by NMP. (B) Comparison of renal functional parameters between the 

two study groups after simulated transplantation – urine output (UO), creatinine clearance (CrCl), fractional 

excretion of sodium (FeNa), oxygen consumption, and perfusion fluid levels of lactate dehydrogenase (LDH) and 

aspartate aminotransferase (AST). 

NMP kidneys displayed better perfusion and functional parameters in comparison to the CS pairs 

after simulated transplantation. Whole transcriptome sequencing demonstrated that a large number 

of genes were differentially expressed in kidney after NMP in comparison to CS controls. 

Important gene signatures included the significant upregulation of pro-inflammatory cytokines 

(including IL-6), chemokines, and heat shock proteins (HSPs). Interestingly, porcine studies by 

Nicholson and Hosgood in the UK have demonstrated increased expression of HSP-70 and IL-6 in 

kidney tissue after NMP, and Stone et al. demonstrated a general pro-inflammatory response 

during NMP.
15, 40, 41

 NMP likely rejuvenates and/or conditions the kidney through induction of 

HSPs, in an ischemic preconditioning (IPC)-like response.
42-45

 Additional pathway analyses were 

dominated by differential impacts of NMP on unfolded protein signaling responses (which is 

largely HSP-dependent), cell death/apoptosis-related cascades, and cell survival. These factors 

were demonstrated not only in pathway predictions, but confirmed by TUNEL, DHE, and 

complement staining, which were all significantly improved in NMP kidneys. Overall, the 

combination of gene expression data, pathway analyses, tissue staining, and finally in vivo renal 

function, provides a convincing picture of the beneficial impacts that may be attributed to brief 

pre-implantation NMP.  

By itself, brief pre-implantation NMP is protective and beneficial to the graft, even after a period 

of CS. However, the potential capabilities of NMP extend far beyond this conditioning effect. 

Owing to the nature of NMP, the kidney is functional at a normal metabolic rate in oxygenated and 

normothermic conditions. This provides a unique opportunity to objectively assess the graft before 

implantation, and previous studies have shown a correlation between 12-month kidney transplant 

function and macroscopic kidney perfusion during NMP, in addition to total urine output, and 

renal blood flows achieved.
17, 18

 Additional work has demonstrated a correlation between IRR
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during NMP and transplant kidney function in porcine studies, and further attributed predictive 

value to perfusate pH, bicarbonate, AST, and lactate levels.
46

 In contrast, lactate was not a good 

predictive factor in our study. Our study has also verified the relationship between UO, CrCl, and 

FeNa during NMP, and importantly demonstrates that ischemic time crucially impacts upon RBF 

and IRR in DCD kidneys.  

 

Passenger leukocytes play a role in the initiation and regulation of the alloimmune response 

directed against the transplanted organ.
47, 48

 Depletion of these leukocytes requires whole 

body/organ irradiation, which has variable success and is not feasible in the transplant setting.
49

 

Stone et al. demonstrated efflux of passenger leukocytes during NMP of both the porcine kidney 

and lungs.
50

 
41

 We now demonstrate the efflux of substantial numbers of passenger leukocytes 

from human donor kidneys into the perfusion circuit during NMP, providing obvious therapeutic 

potential in an attempt to modulate rejection in the recipient. Leukocyte filters have been 

incorporated into lung perfusion systems to capture circulating leukocytes, but have uncertain 

efficacy, likely due to saturation of the filter.
51

 Nevertheless, NMP provides the unique 

opportunity to deliver directed therapeutic targets to the kidney, which may include targeting of 

such leukocytes. Delivery of other agents that specifically target endothelial cells, ameliorate IRI, 

and/or attempt to modulate endothelial cell MHC antigen expression using gene therapies, have 

also been demonstrated by groups including our own.
52-54 

 

Existing renal NMP devices have differed in perfusion settings and constituents.
1, 3, 19, 20, 23

 

Therefore, parameters such as RBF, IRR, and UO may not be readily compared between different 

studies in terms of significance and predictive potential. Nevertheless, our use of NMP in 

discarded human kidneys enhanced RBF and IRR in all but one kidney, providing good predictive 

value for subsequent transplant graft function.
17

 Furthermore, DCD kidneys used here that were 

discarded due to poor in situ perfusion after retrieval were homogenously and effectively perfused 

during NMP. Overall, NMP has a remarkable potential to reduce kidney discards and increase 

utilization rates, and this was also recently reflected in a liver NMP RCT.
5 
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Figure 7. Histopathology and ischemia-reperfusion injury in kidney pairs having NMP or CS followed by simulated 

transplantation. (A) Representative photomicrograph (pair 2; DBD-D3) and cumulative comparison of renal cell 

death/apoptosis in both study groups as determined by TUNEL staining (40 x). Similar immunofluorescence-based 

comparisons of (B) oxidative stress (using DHE staining) (pair 3; DBD-D4), and (C) complement C9 staining (pair 2; 

DBD-D3) after ex vivo whole blood reperfusion (20 x). (D) Representative photomicrograph of a kidney pair (pair 2; 

DBD-D3) after simulated transplantation following either CS or NMP; periodic acid-schiff stain (20 x). 

 

This study was wholly reliant upon the provision of discarded and/or non-utilized deceased donor 

human kidneys, and as such all study variables could not be controlled. In particular, depending on 

resource and staffing availability, not all factors (e.g. leukocyte efflux) could be tested for all 

kidneys. Although kidney numbers are relatively small (n = 15), we included more kidneys than 

other recent published discarded human NMP series.
20, 55

 More importantly, direct comparisons of 

CS and NMP using paired kidneys from the same donor have added greater reliability to our 

results. Although final result validation requires kidney transplantation, ex vivo perfusion as a 

simulation of transplantation is an acceptable alternative when transplantation is not possible.
16, 25, 

56, 57 

 

In summary, this study has utilized brief NMP of discarded human kidneys to provide the clearest 

insight to date with respect to the mechanistic basis and superiority of NMP to CS alone. Strength 

has been added to the notion that NMP can reduce kidney discard rates and therefore increase 

organ utilization in recipients. 
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8.1 Letter to the Editor 

Dear Editors, 

 

Pancreatic transplantation for the treatment of type I diabetes offers the current gold standard 

treatment for a previously incurable disease.
1
 During our extensive experience with en bloc liver 

and pancreas recoveries, we noted the time-consuming nature of individually dividing vessels 

along the greater curvature of the stomach, in addition to dissection of the superior mesenteric 

pedicle close to the root of the small bowel mesentery. Additionally, small vessels around the 

pancreatic graft borders are often missed during cold phase dissection, and are thus likely sources 

of blood loss during organ reperfusion in the recipient.
2
 

 

The ultrasonically activated Harmonic Scalpel (Smithfield, RI, USA) uses high frequency 

ultrasound vibrations to cut and coagulate tissue.
3
 The mechanical energy at the tip of the shear 

results in the denaturation of proteins, which then form a coagulum to produce haemostasis.
3
 

Direct comparisons between the Harmonic Scalpel (HS) and electrocautery have shown that the 

HS is associated with reduced operative time and bleeding.
4, 5

  

 

Herein, we describe easily adaptable modifications to the en bloc technique incorporating pancreas 

recovery by using the HS that allows for more timely and effective procurement of the organ; to 

our knowledge the use of the HS has not yet been described for this procedure.   

  

The standard technique for procurement of the pancreas for transplantation has been described in 

detail previously.
6-8

 Our HS modification (the modified (Westmead) technique) to the standard 

recovery technique can be divided into an in situ and ex situ phase. 

 

In situ, the instrument is used for dissection around the greater curvature of the stomach, including 

division of the short gastric vessels. The HS is further utilized in mobilizing the splenic flexure of 

the colon, which is often surrounded by diffuse fatty and vascular tissue. This enables almost 

bloodless dissection down onto the pancreas and lower pole of the spleen, and facilitates rapid 

skeletonization of the pancreas to allow its mobilization to the midline.  

 

Following perfusion within the cold phase of dissection, the HS allows the sealing of small jejunal 
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branches, facilitating the rapid and safe creation of a more defined superior mesenteric artery 

(SMA) and vein (SMV) pedicle inferior to the pancreatic head (Fig. 1a). This pedicle can then be 

easily and safely ligated with the single deployment of a vascular stapler, whilst ensuring minimal 

vessel leakage in the recipient. Complete en bloc removal of the liver-pancreas block then 

proceeds in a standard fashion. 

 

 

Figure 1. (a) Creation of a more defined SMA/SMV pedicle with the Harmonic Scalpel prior to stapling. (b) PRBC 

requirement in pancreas recipients by use of Harmonic Scalpel (modified (Westmead) technique) in the donor (n = 

19 for Westmead technique, n = 36 for standard technique group) [* p < 0.01, Mann Whitney test]. (c) Final back 

table specimen after use of standard techniques, and (d) after use of Harmonic Scalpel (Westmead technique). 

 

Ex situ the HS can also effectively be employed on the back-table for further clearing of 

extraneous tissues from the pancreas. We first use the device to separate the pancreas from the 

spleen via division of the splenorenal ligament.  The splenic artery and vein are individually 

ligated with sutures, having skeletonized the vessels using the HS technique. It is then utilized for 

the removal of any remaining/excess fatty tissue around the body and tail of the pancreas, such 

that there is no further adherent tissue requiring removal at the recipient center. We believe that 
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the quality of the final retrieved organ is significantly superior compared to cases when the HS is 

not employed (Fig. 1c, 1d), thereby facilitating a more timely implantation process at the recipient 

center as little further dissection of the specimen is required. 

 

In the period 2011-2015, there were 21 recipients of pancreas transplants where the donation 

surgery was performed using the Westmead technique (WT); 20 of these were simultaneous 

pancreas-kidney (SPK) transplants. One of 20 (5%) SPK transplant patients in the WT group 

underwent graft pancreatectomy due to graft vascular thrombosis compared to 6 of 102 (5.8%) in 

the standard technique group (p = 0.68), and it is thereby as safe from this perspective.  

 

Blood loss and PRBC requirement in recipients of SPK transplants retrieved using the WT (n = 

19) was significantly less when compared to a random subset of SPK recipients of organs where 

the standard technique was used (n = 36). PRBC requirement was 1.8 units (95% CI 1.2-2.3) in the 

standard technique group compared to 0.5 units (95% CI 0.1-0.9) in the WT group (p < 0.01) (Fig. 

1b). Mean blood loss in standard group was 928 ml (95% CI 533-1322), compared to 488 ml (95% 

CI 324-652 ml) in the WT group (p = 0.14). 

 

It is unlikely that other confounding variables are responsible for the lower blood product 

requirement in the WT group as only SPK transplants were compared that were performed within 

the same unit by experienced surgeons with similar surgical techniques, with exclusion of patients 

on significant anti-coagulation or anti-platelet therapy. Regardless, a difference in surgical 

technique may have partly contributed to the final result; a prospective, randomized trial would be 

able to definitively answer this. Blood product requirements in the standard technique group are 

comparable to the few reports in the literature regarding transfusions in pancreas transplant 

recipients.
9, 10

  

 

Overall, the use of the HS is a modification that is technically safe and simple, yet allows rapid 

dissection of the pancreas with a subsequent reduction in blood loss upon reperfusion, especially 

from small peri-pancreatic vessels. Propagation of this method will likely improve recipient 

outcomes, or at a minimum stimulate interest in alternative technique(s) for pancreatic 

procurement. Further prospective, randomized comparative data is required to prove the 
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effectiveness of the Westmead technique over more conventional strategies for organ recovery, 

especially with regards to back-table dissection and longer-term recipient outcomes.  
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9.1 Abstract 

Background: This study aimed to synthesize evidence regarding the most effective solution for in 

situ perfusion and preservation of the pancreas in donation after brain death donors, and to identify 

the optimal in situ flush volume(s) and route(s) during pancreas procurement.  

 

Methods: The Embase, Medline and Cochrane databases were searched (1980-2017). Articles 

comparing pancreas graft outcomes between two or more different perfusion/preservation fluids 

(University of Wisconsin (UW), histidine-tryptophan-ketoglutarate (HTK) and/or Celsior) were 

included, and comparisons were estimated using random effects models.  

 

Results: Thirteen articles were included (939 pancreas transplants). Overall, confidence in the 

available evidence was low.  A higher serum peak lipase (standardized mean difference 0.47, 95% 

CI 0.23-0.71, I
2
 = 0) was observed in pancreatic grafts perfused/preserved with HTK compared to 

UW, but no differences in short-term (one-month) pancreas allograft survivals or early thrombotic 

graft loss rates between UW and HTK solutions were observed. Similarly, there were no 

significant differences in the rates of graft pancreatitis, thrombosis and graft survival between UW 

and Celsior solutions, and between aortic-only and dual aorto-portal perfusion. Perfusion volumes 

could not be analyzed due to a lack of comparative data. 

 

Discussion: The use of UW cold perfusion may reduce the peak serum lipase, but there is no 

quality evidence to suggest UW cold perfusion improves graft survival and reduces thrombosis 

rate, especially in younger donors or with shorter ischemic times. Further research is needed to 

establish longer-term graft outcomes using the different perfusion/preservation solutions, the 

comparative efficacy of Celsior, and ideal perfusion volumes. 
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9.2 Introduction 

Hypothermia has long been the dominant paradigm in organ preservation, and is most effectively 

initiated by the cold vascular in situ flush.
1-3

 Subsequently, organs are retrieved and immersed in 

the same preservation fluid as is used for the flush for cold static storage (CS) and transportation 

prior to transplantation. 

 

Multiple types of perfusion/preservation fluids have been investigated in abdominal organ 

procurement, with various combinations and volumes of perfusion.
2-6

 However, there is no 

universal consensus regarding the optimal perfusion/preservation fluid, nor the route(s) or ideal 

volume of flush. There are considerable variations in recommendations in different jurisdictions.
1, 

7, 8
 UK guidelines recommend 50-70 ml/kg of UW solution for aortic perfusion in the retrieval of 

the pancreas from donation after brain death (DBD) donors, with or without UW portal perfusion 

in situ or on the back-table, and no pre-flush.
7
 Australian recommendations in DBD donors 

suggest the use of either low-viscosity solution alone, such as HTK, or low-viscosity pre-flush 

followed by 1.5-2 L of UW flush; centers are given leniency with regards to aortic-only or dual 

perfusion.
8
 There are no clear guidelines from the American Society of Transplant Surgeons 

regarding DBD organ procurement. Eurotransplant advocates for HTK or UW aortic only 

perfusion, without a pre-flush; the option of portal perfusion is provided if the pancreas is not 

procured.
1
 

 

Clinical evidence regarding perfusion/preservation fluids is not unequivocally in favor of one 

solution over another for pancreas preservation, although a single registry analysis suggests a 

higher incidence of graft loss with HTK compared to UW solution for preservation of the 

pancreas.
9, 10

 

 

The relative efficacy of the various preservation solutions for the pancreas, in the context of in situ 

perfusion volume and route, has not been systematically explored. Therefore, the aims of this 

systematic review and meta-analysis were to synthesize the existing evidence regarding effective 

solution for in situ perfusion and subsequent CS of the DBD pancreas, and to identify the optimal 

in situ flush volume(s) and route(s) during pancreas procurement. 

 

9.3 Methods 
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The protocol for this systematic review was prospectively registered with PROSPERO 

(registration number – CRD42016038993).
11

 The review was undertaken with adherence to the 

Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines.
12

 

 

9.3.1 STUDY SELECTION AND ELIGIBILITY  

Randomized controlled trials (RCT; or quasi-RCTs) and/or observational articles were deemed 

eligible for this review, without language restriction. An article was only included if it presented 

data for a minimum of at least 10 patients/transplants per study group, and included information 

regarding perfusion fluid route(s), flush volume(s), back-table perfusion and final preservation of 

the pancreas. Paediatric studies, animal experiments, articles without a control group, and studies 

exploring machine perfusion, were excluded from the analysis. Conference abstracts were also 

excluded due to insufficient perfusion data and/or quality. Only data from DBD donors was 

included; if mixed DCD and DBD donor data was presented in an article, this study was excluded 

from further analysis if the DBD patient data could not be extracted.  

 

9.3.2 LITERATURE SEARCH STRATEGY 

Literature searching was conducted by two independent researchers, and encompassed the 

Embase, Medline and Cochrane databases, and the Cochrane Register of Controlled Trials (1980 

to January 2017). The full search strategy is outlined in Supplemental Digital Content (SDC) 1 

(Table). A manual search of relevant full-text article reference lists was conducted to identify 

further potential eligible articles. 

 

9.3.3 DATA EXTRACTION 

Two independent reviewers extracted study data into a pre-determined template for the following 

parameters: 

 

Baseline Characteristics and Study Demographics 

Author(s), study date and period, center(s); donor patients/transplants, type of pancreas transplant; 

donor cardiac arrest and vasopressor/inotrope requirements, donor and recipient age, donor 

intensive care unit (ICU) stay, donor body mass index (BMI); aortic or dual perfusion (flush), use 

of pre-flush and type (a pre-flush is defined as the removal of static blood from organs using a 

solution that is different to the final flush and preservation solution), use of back-table perfusion 
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and its type and route, perfusion volume(s), perfusion (preservation) solution(s) used, procurement 

technique; cold ischemic time (CIT) and warm ischemic time (WIT). 

 

Recipient Outcomes 

Primary study outcomes included peak amylase and lipase in the first week post-transplantation, 

the number of pancreatitis episodes, and thrombotic graft loss. Other secondary outcomes of 

interest included C-peptide and HbA1C at last follow-up, acute rejection rates, graft survival (one, 

six & 12-month – survivals beyond this reported only sporadically), hospital length-of-stay (LOS), 

and surgical complications (e.g. exocrine pancreatic leak). Graft pancreatitis was variably defined 

in the included studies. The study definition was accepted in this analysis. The definitions included 

a serum amylase levels > 2.5 times the upper limit of normal (ULN) from post-operative day two 

onwards,
13

 surgical appearance on reperfusion,
14

 amylase levels > 2.5 times the ULN with 

associated pain,
15

 pancreatic enzyme derangement with increased insulin requirements,
16

 or 

amylase > 2 times ULN with associated clinical or radiologic features of pancreatitis.
17-19

    

 

9.3.4 DATA ANALYSIS 

Median ischemic times, donor/recipient ages, perfusion volumes, and graft survival were 

calculated (to allow a comparison between Celsior and UW or HTK) based on the number of 

patients in each study group. If necessary prior to meta-analysis, continuous variables initially 

underwent standardized mean difference (SMD) calculations between study groups using the 

Practical Meta-analysis Effect Size Calculator.
20

 

 

Meta-analyses were conducted using studies with directly comparable groups, as determined by 

the nature of perfusion solution used, perfusion route(s), and graft ischemic times. Only 

observational studies were included in meta-analyses as there were insufficient RCTs with 

comparable groups eligible for meta-analysis. Risk ratios (RR) and SMD between two comparable 

groups were estimated using Dersimonian Laird random effects models. Publication bias was 

assessed using funnel plots. Heterogeneity was evaluated using the I
2
 statistic, and considered the 

I
2
 thresholds of < 25%, 25-49%, 50-75% and > 75% to represent low, moderate, high and very 

high heterogeneity. Subgroup analyses/meta-regression to further define sources of heterogeneity 

could not be conducted due to insufficient data. Meta-analyses were conducted, where applicable, 

using Comprehensive Meta-Analysis Version 2.2 (Biostat, Inc., Englewood, New Jersey, USA).  
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9.3.5 RISK OF BIAS  

The Cochrane Collaboration’s bias assessment tool was utilized to formally assess RCTs, and 

includes the domains of random sequence generation, allocation concealment, blinding, 

incomplete outcome data and selective reporting.
21

 Cohort studies undergoing meta-analysis were 

screened for bias through the utilization of the Newcastle-Ottawa scale; this incorporates in its 

assessment of bias the domains of representativeness of the exposed cohort, selection of the non-

exposed cohort, ascertainment of exposure, comparability of cohorts, assessment of outcomes and 

follow-up timing and attrition.
22

 Publication bias was determined by examining funnel plots for 

each meta-analysis parameter analyzed.  

 

9.3.6 QUALITY OF EVIDENCE 

The overall quality of evidence and thus confidence that may be derived from the summary 

estimates derived from meta-analyses was assessed utilizing the Grading of Recommendations, 

Assessment, Development and Evaluations (GRADE) guidelines.
23

 

 

9.4 Results  

9.4.1 OVERALL STUDY SELECTION AND CATEGORIES  

Articles comparing different perfusion/preservation solutions and techniques for pancreas 

transplantation were analyzed. The study selection process is summarized in Fig. 1. A total of 805 

records were identified. Following screening, 10 data-sets (incorporating 13 studies with 

overlapping data) were included in qualitative analyses, out of which only four cohort studies had 

sufficient data and were eligible for meta-analyses.
13-19, 24-29

 Seven study data-sets were 

observational in nature, and three were RCTs.  
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Figure 1. Study selection flow diagram.  

α 
Includes articles with overlapping results that were analysed together  

β 
Parameters analysed: peak amylase & lipase, graft pancreatitis, thrombotic graft loss, hospital length of stay, and 

one-month graft survival 

 

9.4.2 RISK OF BIAS ASSESSMENT  

The overall risk of bias for observational studies was considered high. A summary of bias 

assessment using the Newcastle-Ottawa scale is provided in SDC 2 (Table). All studies provided a 

representative cohort of pancreas donors and recipients, and a clear description of the 

exposure/intervention chosen. Comparability of study cohorts, as determined by similar 

donor/recipient ages and/or ischemic times, was demonstrated in 62.5% of cohort studies included 
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in meta-analyses. A majority of studies failed to specify whether the pancreas was retrieved en 

bloc with the liver, and whether a rapid retrieval technique was utilized.  

The overall risk of bias for RCTs was largely indeterminate due to the difficulty to assess a 

majority of domains (Table, SDC 3). Risk of bias with respect to random sequence generation and 

blinding was difficult to ascertain/unclear in two of the three studies (Table, SDC 3). All studies 

had a low risk of bias with respect to incomplete outcome data. Both allocation concealment and 

selective reporting could not be assessed from available data in any of the included RCTs. Funnel 

plots were generated to assess publication bias, but were uninformative owing to only three or four 

studies being included in each comparison (Graph, SDC 4).  

 

Overall quality of study evidence is summarized utilizing the GRADE evidence profile (Table, 

SDC 5). Quality of evidence is either low or very low for all outcome measures investigated. 

Overall study evidence was downgraded due to the observational nature of studies included in 

meta-analyses, and small sample sizes and/or wide confidence intervals (imprecision).  

 

9.4.3 BASELINE CHARACTERISTICS OF INCLUDED STUDIES  

Whole pancreas perfusion study characteristics, including comparator groups, donor and recipient 

ages and ischemic times, are summarized in Table 1. Six whole pancreas studies compared UW to 

HTK perfusion; eight of the studies overall specified the utilization of aortic-only pancreas 

perfusion. A total of 939 pancreatic transplants were included in the analysis; these comprised, 

where specified, 664 simultaneous pancreas-kidney transplants, 90 pancreas transplants alone, and 

144 pancreas-after-kidney transplants. Median CIT was 10.1 hours, and median donor and 

recipient ages were 26.2 and 41.9 years, respectively. A rapid procurement technique was utilized 

in four articles;
30

 retrieval type was not clearly specified in the other studies. All studies 

investigated in situ perfusion with subsequent CS in DBD donors.  

 

Pancreas retrieval was performed en bloc with the liver, with separation of the organs on the back-

table, in three of the included study series. The remaining studies did not specify what organ(s) 

were procured in addition to the pancreas, or the order in which they were removed. 
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CIT – cold ischemic time; CS – cold storage; EC – Euro-Collins; HTK – histidine-tryptophan-ketoglutarate; NA – not 

applicable; NR – not recorded; P – prospective; PAK – pancreas after kidney transplant; PTA – pancreas transplant 

alone; R – retrospective; RCT – randomized control trial; SPK – simultaneous pancreas kidney transplant; UW – 

University of Wisconsin; WIT – warm ischemic time 

 

* Total ischemic time 

** Statistically significant difference between the two study groups (i.e. p < 0.05) 

α 
Dual perfusion indicates aortic + portal perfusion; in the Fridell et al. data-set,

26-28, 31
 the portal circulation was 

slowly perfused with plasmalyte, and was accessed through the inferior mesenteric vein 

β
 One liter EC pre-flush + one liter formal UW flush 

γ
 Not recorded by perfusion fluid; for Manrique et al.,

19
 in total there were 67 SPKs and 5 PAKs, whilst for 

Schneeberger et al.,
16

 there were 65 SPKs, 2 PTAs, and 1 PAK 

φ
 The majority of studies included 

^ 
In addition to the pancreas 

ε 
By each group as specified in Table 1  

 

9.4.4 PERFUSION AND PRESERVATION CHARACTERISTICS 

Table 1 outlines the perfusion and preservation fluids utilized in each study group, in addition to 

the routes and volumes of in situ perfusion. A ‘pre-flush’ to remove static blood was only utilized 

in one included article.
13

 Aortic-only perfusion was most prevalent in the pancreas studies, with 

UW being the most popular perfusion solution and was used at lower volumes than HTK (3 L 

[range 0.88-5.6 L] compared to 6.5 L [range 4.9-9.7 L], respectively). Back-table perfusion with 

UW was used in two studies (1 L, volume only recorded in one study),
14, 28

 and HTK in two 

studies (1 L, volume only recorded in one study).
14, 28

 This back-table flush was given via the 

splenic artery and superior mesenteric artery (SMA)/coeliac axis. Two studies explicitly specified 

not using back-table flush.
17, 29

 In one of two pancreas back-table flush studies,
14

 only in situ aortic 

perfusion was performed, whilst dual perfusion was utilized in the other article due to combined 

liver-pancreas procurement.
28, 31

 

 

9.4.5 TRANSPLANT OUTCOMES 

Peak serum amylase/lipase and graft pancreatitis rates 

Of the seven studies that included peak serum amylase and/or lipase as outcomes, only four 

(57.1%) provided sufficient data for meta-analyses. Pancreatic allografts being perfused with and 
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subsequently preserved in UW had a lower serum peak lipase compared to those preserved in 

HTK solution (SMD 0.42, 95% CI 0.14-0.69; p = 0.003; I
2
 = 0; n = 205 patients; Fig. 2). However, 

the difference in peak amylase did not reach statistical significance (SMD 0.32, 95% CI -0.13-

0.76; p = 0.159; I
2
 = 67.0; n = 302 patients; Fig. 2).  

 

In pancreatic allografts perfused and subsequently preserved in UW compared to HTK, via the 

aortic-only route, graft pancreatitis rates were considerably higher in the HTK group in Alonso et 

al.’s study (9 of 16 [56.3%] HTK patients versus 19 of 81 [23.5%] UW patients; p = 0.01).
15

 There 

was no statistical difference in pancreatitis rates between UW and HTK in the study by Potdar et 

al., as defined by pancreatic appearance upon reperfusion (5 of 16 [31.3%] HTK patients 

compared to 4 of 17 [23.5%] UW patients; p = 0.62).
14

  

 

Of the three UW versus Celsior studies, including two studies with aortic-only perfusion and one 

study utilizing dual perfusion, there were no significant differences in peak amylase, lipase or graft 

pancreatitis rates.
17-19, 29

 

 

Thrombotic graft loss rates 

Of the eight studies that reported thrombotic graft loss rates, only three (37.5%) provided 

sufficient data for meta-analyses. There were no significant differences between thrombotic graft 

loss rates between pancreata perfused via the aorta using UW or HTK (time period not recorded in 

most studies; n = 269 patients; Fig. 2). 

 

Thrombotic graft loss rates were also no different in the articles comparing UW and Celsior in situ 

pancreas perfusion and preservation.
17-19, 29

 

 

Hospital length-of-stay 

Hospital length-of-stay (LOS) was reported in three articles, all of which compared UW and HTK, 

and were also eligible for meta-analysis. Mean difference between hospital LOS in the HTK and 

UW groups was 2.91 days (95% CI -0.04-5.87; p = 0.053; I
2
 = 0; n = 174 patients; Fig. 2).  
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Figure 2. Forest plots for (A) peak amylase, (B) peak lipase, (C) hospital length-of-stay, (D) thrombotic graft loss rates, 

and (E) one-month graft survival after in situ aortic perfusion and preservation of the pancreas with UW or HTK.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Study name Outcome Statistics for each study Std diff in means and 95%  CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

Potdar et al., 2004 Peak amylase 0.610 0.356 0.127 -0.088 1.308 1.712 0.087

Englesbe et al., 2006 Peak amylase 0.070 0.228 0.052 -0.378 0.518 0.306 0.759

Becker et al., 2007 Peak amylase -0.090 0.205 0.042 -0.492 0.312 -0.438 0.661

Alonso et al., 2008 Peak amylase 0.860 0.280 0.079 0.310 1.410 3.066 0.002

0.319 0.226 0.051 -0.125 0.763 1.410 0.159

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Favours UW Favours HTK 

I2 = 67.0 

A 

n = 302 patients 

 

Study name Outcome Statistics for each study Std diff in means and 95%  CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

Potdar et al., 2004 Peak lipase 0.630 0.357 0.127 -0.069 1.329 1.765 0.077

Englesbe et al., 2006 Peak lipase 0.450 0.231 0.053 -0.003 0.903 1.946 0.052

Becker et al., 2007 Peak lipase 0.320 0.207 0.043 -0.085 0.725 1.550 0.121

0.417 0.141 0.020 0.140 0.694 2.951 0.003

-1.00 -0.50 0.00 0.50 1.00

Favours A Favours B

Meta Analysis

Favours UW Favours HTK 

I2 = 0 

B 

n = 205 patients 

 

Study name Outcome Statistics for each study Difference in means and 95%  CI

Difference Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

Englesbe et al., 2006a Hospital LOS 2.800 1.914 3.663 -0.951 6.551 1.463 0.143

Englesbe et al., 2006b Hospital LOS 1.000 2.967 8.803 -4.815 6.815 0.337 0.736

Alonso et al., 2008 Hospital LOS 7.600 4.333 18.773 -0.892 16.092 1.754 0.079

2.916 1.508 2.273 -0.039 5.872 1.934 0.053

-10.00 -5.00 0.00 5.00 10.00

Favours A Favours B

Meta Analysis

C 

Favours UW Favours HTK 

I2 = 0 

n = 174 patients 

 

Study name Outcome Statistics for each study Risk ratio and 95% CI

Risk Lower Upper 
ratio limit limit Z-Value p-Value

Englesbe et al., 2006 Thrombotic graft loss 0.854 0.205 3.564 -0.216 0.829

Becker et al., 2007 Thrombotic graft loss 0.979 0.144 6.667 -0.022 0.983

Alonso et al., 2008 Thrombotic graft loss 5.063 1.121 22.866 2.108 0.035

1.673 0.518 5.400 0.860 0.390

0.01 0.1 1 10 100

Favours A Favours B

Meta Analysis

D 

Favours UW Favours HTK 

I2 = 37.9 

n = 269 patients 

 

E 

 Study name Outcome Statistics for each study MH risk ratio and 95% CI

MH risk Lower Upper 
ratio limit limit Z-Value p-Value

Potdar et al., 2004 1-month graft survival 3.176 0.139 72.747 0.723 0.469

Englesbe et al., 2006 1-month graft survival 1.898 0.487 7.392 0.924 0.356

Alonso et al., 2008 1-month graft survival 2.500 0.500 12.510 1.115 0.265

Becker et al., 2007 1-month graft survival 0.979 0.340 2.820 -0.039 0.969

1.515 0.737 3.117 1.130 0.259

0.01 0.1 1 10 100

Favours A Favours B

Meta Analysis

I2 = 0 

 Favours HTK 

 
Favours UW 

 

n = 302 patients 
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Exocrine pancreatic leak and fistula formation 

Pancreatic leakage, as evidenced by a peri-pancreatic fluid collection, abscess and/or fistula 

formation, was not uniformly or consistently reported and hence could not be statistically 

analyzed. The leak rate for UW in situ perfusion/preservation groups was reported in six studies, 

with a median of 10.0% (range 0-13.3%). Median leak rates were similar in both HTK and Celsior 

perfusion/preservation groups, at 11.1% (range 11.1-31.3%, n = 2 studies) and 10.0% (10.1-

17.9%, n = 3 studies), respectively. 

 

Graft survival 

One-month graft survival was reported in five studies, out of which four (80%) were eligible for 

meta-analysis. There was no significant difference in one-month pancreatic graft survivals 

subsequent to UW or HTK in situ aortic perfusion and preservation, although there was a trend 

favoring UW (n = 302 patients; Fig. 2). Twelve-month graft survival data for this comparator 

group was available for only two studies,
15, 25

 and as such formal meta-analyses were not 

conducted. In the study by Alonso et al., pancreatic graft survival at 12 months after UW and HTK 

perfusion/preservation was 90% and 81%, respectively (p = 0.09); corresponding levels in 

Englesbe et al.’s article were 89% and 72.5%, respectively (p > 0.05).
15, 25

 

 

To allow for survival comparisons between Celsior perfusion/preservation and UW or HTK, one, 

six, and 12-month pancreas graft survivals were collated. Survival data is presented in Table 2. 

Survival data for pancreas procurement after dual perfusion was only available from one study
28

 

and thus no meaningful comparisons could be made. More data were available for the assessment 

of aortic-only perfusion; aortic perfusion using UW provided a median 12-month graft survival of 

90%, compared to 81% for HTK-perfused grafts. Only one Celsior aortic-only perfusion article 

was available (from a single center in Pisa, Italy), with 12-month pancreas allograft survival of 

95.9%.
18

 

 

Other perfusion/preservation group comparisons  

Fridell et al. compared UW and HTK dual perfusion and preservation; there were no significant 

differences in peak amylase or lipase, whilst pancreatitis and thrombotic graft loss rates were not 

recorded.
28

 The one study that employed an Euro-Collins pre-flush followed by a formal UW flush 
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found no differences with the UW-only perfusion/storage group in terms of graft pancreatitis and 

thrombotic graft loss rates.
13

 

 

Table 2. Comparison of median one, six and twelve-month graft survivals in pancreatic grafts obtained after UW, HTK 

or Celsior perfusion. Data presented as median (range).**  

 

 

 

 

 

 

 

 

 

HTK – histidine-tryptophan-ketoglutarate; NA – not applicable; UW – University of Wisconsin 

 

* NA here indicates that there was no extractable study data available 

** Median overall survivals weighted by total patient numbers in each study group  

 

9.5 Discussion and Conclusions 

This systematic review has compared the various different DBD pancreas perfusion and 

preservation conditions, and analyzed their potential for impacting graft outcomes in the recipient. 

Overall the quality of evidence was poor, with wide confidence intervals for effect estimates and 

only a small number of studies. Furthermore, the majority of included data was from younger 

donors, with relatively short CITs. At best, UW in situ perfusion and preservation results in less 

biochemical pancreatic enzyme release in comparison to HTK, and may manifest in lower graft 

pancreatitis rates, although definitions for this vary between studies. There were no clear 

differences between UW and HTK for other short-term graft parameters, including thrombotic 

graft loss. HTK-preserved pancreata tended to have lower graft survivals in comparison to UW. 

Despite meta-analyses not being possible in the comparison between UW and Celsior, there was 

no evidence of deleterious consequences in the short and longer term when Celsior was utilized. 

Study heterogeneity and limited data precluded any conclusions being drawn regarding ideal 

 

PANCREAS UW (Aortic 
Perfusion) 

UW (Dual 
Perfusion) 

HTK (Aortic 
Perfusion) 

HTK (Dual 
Perfusion) 

Celsior (Aortic 
Perfusion) 

Celsior (Dual 
Perfusion) 

1-month 
survival, % 
(range; n 
studies) 

95 (87.0-100; 5) 94 (NA*; 1) 87.5 (85-93.8; 4) 95 (NA; 1) NA NA 

6-month 
survival, % 
(range; n 
studies) 

90 (80.0-95.8; 6) NA 85.4 (81-86.1; 4) NA 95.9 (67-95.9; 2) NA 

12-month 
survival, % 
(range; n 
studies) 

90 (82.6- 95.8; 4) 86 (NA; 1) 81 (72.5-85.4; 3) 92 (NA; 1) 95.9 (NA; 1) NA 



171 
 

perfusion volumes or routes, although aortic-only perfusion with lower volumes of UW was the 

most common occurrence.  

An important consideration in the interpretation of data from this study is the separate but also 

likely synergistic impact on the pancreatic allograft of in situ perfusion during procurement, and 

also subsequent CS preservation in the same perfusion fluid. As such, it is very difficult to tease 

out the individual effects of the initial flush and then subsequent preservation on graft outcomes. 

This suggests that both factors must be considered before analyzing the efficacy of a CS 

preservation fluid, and as such, only articles including both procurement and preservation data 

were included in this study. 

 

A number of abdominal organ perfusion fluids exist, which vary in constituents/composition and 

viscosities. The three most commonly employed solutions for the pancreas, which also tend to be 

the same for all abdominal organ procurement, are UW, HTK and Celsior. These all contain 

impermeants designed to counteract cellular edema, buffers to counteract ischemic acidosis, and 

energy substrates to encourage ATP formation upon reperfusion.
32

 UW differs further in that it is 

an ‘intra-cellular’ type solution that is of higher viscosity due to the presence of hydroxyethyl 

starch and as such its flow rates during organ flushing are lower.
32, 33

 In contrast, higher flush 

volumes are recommended in particular for HTK to allow for equilibration of the fluid’s 

electrolyte content with the graft extracellular space, although this has been challenged by 

others.
14, 28, 34, 35

  

 

UW compared to HTK pancreas perfusion and preservation resulted in a reduction of recipient 

peak lipase, which may translate to lower graft pancreatitis rates. A formal comparison of graft 

pancreatitis was precluded not only by insufficient studies reporting this parameter, but more 

importantly by the significant variability in how graft pancreatitis was defined.
36

 Clinical acute 

graft pancreatitis must be distinguished from histologic pancreatitis and definitions incorporating 

clinical signs, biochemical parameters and/or imaging findings should be preferred over the 

utilization of individual parameters.
36, 37

  If indeed UW is superior to HTK with respect to recipient 

graft pancreatitis, this may at least partially be related to the ‘low-flow’ nature of the pancreas 

being better-suited to the more viscous UW solution compared to faster flush rates achieved with 

HTK and the potential for hyper-perfusion.
38
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The impact of perfusion/preservation fluid on graft outcomes may also be modified by the duration 

of cold ischaemia.  In the study by Englesbe et al., where both study groups had a CIT of less than 

10 hours, UW was not clearly advantageous in comparison to HTK.
25

 In contrast, CITs of more 

than 12 hours were seen in Alonso et al.’s article, with superior outcomes in the UW group, 

possibly suggesting that UW is a better preservative in the event of longer ischemic times.
15

 

Although pancreas articles could not be meta-analyzed for differences between UW and Celsior, 

this comparison was made in three different studies, including two studies with CITs of 12 hours 

or less, and showed no significant outcome disparities between either perfusion solution.
17-19, 29

 

Overall, especially when attempts are made to minimize pancreas CIT, it is possible that the 

choice of preservation solution may not significantly impact subsequent transplantation outcomes. 

 

Another important consideration is the quality of the donor pancreas, as determined by factors 

such as donor age. Median donor age for all included studies in this systematic review was 26.2 

years. Current evidence indicates a decline in pancreas transplantation rates, in part related to 

donor factors, and therefore the future may see the increased utilization of so-called expanded 

criteria donors, including DCD and older DBD donors.
39-41

  There is conflicting evidence 

regarding post-transplantation outcomes when older and/or DCD pancreata are utilized, 

however.
41-44

 Although one strategy in the expanded criteria donor cohort could include the 

minimization of CITs through local allocation alone, optimal and novel donor management and 

preservation strategies will likely need to be employed to further enhance recipient outcomes.
39, 40, 

43, 45
    

 

Pancreas retrieval is almost always undertaken in a multi-organ retrieval setting, where the liver 

and kidneys are also often procured. As such, high quality perfusion and preservation of the 

pancreatic allograft needs to be undertaken without compromising the quality and outcomes of 

other retrieved organs, in particular the liver. Only three of the studies included here specified liver 

procurement in addition to the pancreas, but hepatic allograft outcomes were not discussed.
13, 18, 28

 

A systematic review and meta-analysis by O’Callaghan et al. however did not show any 

significant differences in liver transplantation outcomes when UW, Celsior or HTK solutions were 

utilized.
6
 In contrast, a recent European registry analysis suggested a higher risk of liver allograft 

loss when HTK solution was employed, which was in fact also shown in a pancreas registry 

analysis.
9, 46

 A further confounding factor not considered by these studies is the effect of the route 
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of in situ perfusion, namely aortic-only in comparison to dual perfusion. Few comments can be 

made regarding pancreas retrieval after dual perfusion from this present article, due to the lack of 

included studies investigating this technique. Nevertheless, pancreatic procurement after dual 

perfusion is discouraged due to possible risks of increased graft injury stemming from venous 

congestion and graft edema.
2, 47

 Significantly, dual in situ perfusion does not seem to provide clear 

benefits for liver transplantation outcomes, and as such its routine use must be questioned, 

especially in a multi-organ retrieval setting.
48, 49

 We are currently in the process of formally 

investigating dual compared to aortic-only in situ perfusion for liver retrieval in a further 

systematic review. 

 

Procurement teams have the option of employing a ‘pre-flush’ prior to the final in situ organ flush. 

A pre-flush is advocated by relatively few authors as a means to improve final preservation fluid 

distribution within the organ, especially prior to the use of UW flush due to its high viscosity and 

its possible tendency to aggregate with red blood cells.
33

 Pre-flush employment may also decrease 

the total volume of UW required, thereby reducing preservation costs due to the significantly 

greater expense of UW in comparison to fluids such as HTK.
13, 27

 Gonzalez et al.’s study was the 

only article included here that utilized a pre-flush.
13

 These authors compared Euro-Collins pre-

flush followed by UW aortic flush with UW aortic flush alone for pancreas procurement, and 

showed no significant post-transplantation outcome differences between both over a three-month 

time period.
13

 It is clear that most major retrieval units do not utilize or report on a pre-flush 

technique, however, and if it continues to be utilized by some units it would be worth a larger 

prospective trial to ensure its value and ensure it is not in fact detrimental. 

 

Certain biases and disadvantages must be considered in the interpretation of findings from this 

review. Firm conclusions could not be made regarding longer-term graft outcomes and ideal 

perfusion routes and volumes, owing to a paucity of available data. Furthermore, the fact that most 

included articles were retrospective in nature introduced confounding and heterogeneity to the 

cumulative data; this was reflected by low or very low quality of evidence as determined by the 

GRADE assessment. Despite our attempts to minimize biases and account for study heterogeneity 

by only meta-analyzing comparable study cohorts, and using a random effects model in all cases, 

the cumulative evidence presented here must be interpreted with caution.  
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In summary, this is the first review to systematically investigate DBD donor pancreas in situ 

perfusion and preservation prior to transplantation. Although cumulative evidence suggests that 

UW may reduce ischemia-reperfusion injury of the pancreas, as manifested by a lower peak lipase, 

longer-term outcomes, the comparative efficacy of UW and Celsior, and ideal perfusion volumes 

remain uncertain. The development of uniform pancreas procurement and preservation guidelines 

will require additional studies that are prospective in nature and higher-powered, although this 

may be difficult owing to declining pancreas transplantation activity in some centres. Currently, it 

can only be concluded that pancreas procurement after in situ aortic perfusion and subsequent cold 

static storage using UW solution remains safe and is the most commonly reported option.  
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10.1 Abstract 

Background: The efficacy of cold in situ perfusion and static storage of the liver is one possible 

determinant of transplantation outcomes. The aim of this study was to determine whether there is 

evidence to substantiate a preference for a particular perfusion route (aortic or dual) or 

perfusion/preservation solution in donation after brain-death (DBD) liver transplantation.  

 

Methods: The Embase, Medline and Cochrane databases were utilized (1980-2017). Random 

effects modeling was used to estimate effects on transplantation outcomes based upon (i) aortic or 

dual in situ perfusion, and (ii) the use of University of Wisconsin (UW), histidine-tryptophan-

ketoglutarate (HTK), Celsior and/or Institut Georges Lopez-1 (IGL-1) for perfusion/preservation. 

 

Results: Twenty-two articles were included (2294 liver transplants). The quality of evidence 

ranged from very low to moderate (GRADE score). Meta-analyses were conducted for 14 eligible 

studies. Whilst there was no difference in the primary non-function (PNF) rate, a higher peak 

alanine aminotransferase (ALT) was recorded in dual compared to aortic-only UW-perfused livers 

(Standardized Mean Difference 0.24; 95% CI 0.01-0.47); a back-table portal venous flush was 

undertaken in the majority of aortic-only perfused livers. There were no relevant differences in 

peak enzymes, PNF, thrombotic graft loss, biliary complications or one-year graft survival in 

comparisons between dual-perfused livers using UW, HTK, Celsior or IGL-1. 

 

Conclusion: There is no significant evidence that aortic-only perfusion of the DBD liver 

compromises transplantation outcomes, and may be favored owing to its simplicity. However, 

there is currently insufficient evidence to advocate for the use of any particular 

perfusion/preservation fluid over the others. 
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10.2 Introduction 

Cold in situ perfusion and subsequent cold static storage (CS) of the liver is the most commonly 

pursued approach prior to transplantation. Across different jurisdictions internationally, there are 

many differences in protocols for the composition and route of administration of 

perfusion/preservation fluid.
1-3

 Perfusion fluid(s) utilized in this process vary by composition, 

viscosity, and volumes administered; most commonly, University of Wisconsin (UW) or histidine-

tryptophan-ketoglutarate (HTK) solutions are used.
4-6

 In situ perfusion can be instituted via 

cannulation of the aorta alone, with or without additional access to the portal venous system to 

achieve ‘dual’ perfusion. A back-table flush is then often performed via the portal vein and/or 

hepatic artery in the donor center before the liver is stored in the same solution for transportation.  

 

One reason for inconsistency between guidelines is the conflicting evidence with respect to 

perfusion fluid composition. Analysis of European and American registry data suggests an 

association between the use of HTK and hepatic allograft loss.
7-8

 However, a systematic review 

and meta-analysis by O’Callaghan et al. found no significant outcome differences between UW, 

Celsior or HTK.
9
 Moreover, there is a paucity of data regarding the route or volume of in situ 

perfusion, in particular aortic-only compared to dual perfusion. Indeed, an important unknown is 

whether both in situ perfusion and subsequent CS preservation impact transplantation outcomes, 

rather than just the preservation fluid itself during transportation. 

 

In this systematic review and meta-analysis we analyzed published data pertaining to outcomes of 

liver transplantation after procurement from donation after brain death (DBD) donors, with the aim 

of identifying evidence supporting a specific perfusion route, volume(s) and/or fluid(s).  

 

10.3 Methods 

The protocol for this systematic review was prospectively registered with PROSPERO 

(registration number – CRD42016038993).
10

 The review was undertaken with adherence to the 

Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRIMSA) statement and 

Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines.
11, 12

 

 

10.3.1 STUDY SELECTION AND ELIGIBILITY  
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Both English and non-English language randomized control trials (RCTs) and observational 

studies were included. Study inclusion mandated information with respect to in situ perfusion 

route(s) and volume(s), with at least 10 transplants in each study group. UW, HTK, Celsior or 

Institut Georges Lopez-1 (IGL-1) solution(s) must have been utilized as the final perfusion/CS 

solution in included articles, with comparisons either between these perfusion solutions, or 

between aortic and dual perfusion, pre-flush versus no pre-flush, or variable perfusion volumes. 

All pediatric and experimental studies were excluded, in addition to studies utilizing machine 

perfusion preservation of the liver. Live donor data was not included in analyses. A uniform lack 

of perfusion data and poor study quality necessitated the exclusion of conference 

abstracts/proceedings. Only DBD donor data was included and analyzed here as it became 

apparent after an extensive literature search that there was insufficient published literature 

comparing in situ perfusion solution(s) and/or route(s)for donation after circulatory death (DCD) 

hepatic allografts. 

 

10.3.2 LITERATURE SEARCH STRATEGY 

Two independent researches reviewed (A.H. & W.H.) the Embase, Medline and Cochrane 

databases, including in-process and Epub ahead of print citations (January 1980 to February 2017). 

Supplemental Digital Content (SDC) 1 outlines the search strategy. Reference lists from full-text 

articles of relevance were subsequently manually searched to help include all available studies.  

 

10.3.3 DATA EXTRACTION 

A template was derived prior to the extraction of study data by two independent reviewers for the 

following parameters: 

 

Baseline data 

Author(s); study date and period; center(s); donor patients/transplants; donor cardiac arrest and 

vasopressor/inotrope requirements; donor intensive care unit (ICU) stay; donor liver function tests, 

cause of death, split liver utilization and allocation region;
13

 donor and recipient age; recipient 

model for end-stage liver disease (MELD) or Child-Pugh score at transplant; procurement 

technique (classic or rapid);
14, 15

 cold ischemic time (CIT) and warm ischemic time (WIT); aortic 

or dual perfusion (flush); use of pre-flush (defined as an in situ perfusion fluid used prior to the 
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final perfusion fluid) and type; use of back-table perfusion and its type and route; perfusion 

volume(s); and perfusion (preservation) solution(s) used. 

 

Outcome data 

Primary study outcomes extracted included: peak post-transplant aspartate aminotransferase (AST) 

and alanine aminotransferase (ALT), graft loss post-arterial thrombosis, and graft primary non-

function (PNF).  

 

Secondary study outcomes included: ischemic biliary complications, and graft survival (one-year). 

Ischemic biliary complications were defined as biliary strictures/stenosis in the absence of graft 

vessel thrombosis and/or rejection.
16

 Initial poor function, a commonly used definition for which is 

provided by Ploeg et al.,
17

 was not considered in the analysis due to insufficient data and variable 

definitions amongst the different studies. 

 

10.3.4 DATA SYNTHESIS AND STATISTICS 

Meta-analyses for risk ratios (RR), mean difference (MD) or standardized MD (SMD), where 

applicable, were calculated using a random effects model in all cases. If necessary prior to meta-

analysis, continuous variables initially underwent standardized mean difference (SMD) 

calculations between study groups using an online calculator.
18

 Meta-analyses were conducted 

using Comprehensive Meta-Analysis Version 2.2 (Biostat, Inc., Englewood, New Jersey, USA). 

Funnel plots were created for assessment of publication bias, where appropriate. Heterogeneity 

was estimated using the I
2
 statistic, with a value ≥ 50% representing a high level of heterogeneity.  

 

10.3.5 RISK OF BIAS ASSESSMENT  

RCTs included in meta-analyses were assessed for bias by utilizing the Cochrane Collaboration’s 

assessment tool, whilst cohort/observational studies were subjected to the Newcastle-Ottawa 

scale.
19, 20  

 

10.3.6 QUALITY OF EVIDENCE 

The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) 

guidelines were utilized to derive overall evidence quality for meta-analyses.
21 
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10.4 Results 

10.4.1 STUDY SELECTION 

Figure 1 outlines the study selection process. There were 22 articles included in the systematic 

review, which were combined into 19 data-sets after accounting for overlapping data. RCTs or 

quasi-RCTs accounted for nine data-sets, whilst six and four data-sets were from retrospective and 

prospective cohort studies, respectively.
16, 22-41

 Fourteen articles were eligible for meta-analyses.

Figure 1. Study selection flow diagram. 

α
 Includes articles with overlapping results that were analyzed together 

β 
Parameters meta-analysed: peak aspartate aminotransferase & alanine aminotransferase, primary non-function, thrombotic 

graft loss, 12-month graft survival 

γ
 Therefore unable to perform collective analysis of data 

Records identified through 
database search  

(n = 3806) 
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e
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cl
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d

e
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El
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ty
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1136 duplicates removed 

Records screened  
(n = 2676)

Records excluded  
(n = 2620)

Full-text articles assessed 
for eligibility  

(n = 56) Full-text articles excluded, with reasons  
(n = 34) 

Uncommon perfusion/preservation fluid 
&/or perfusion route(s) (n = 16)

γ
 

Insufficient perfusion data (n = 6) 

Living donor/paediatric data (n = 4) 
No comparator group (n = 3) 
Experimental/animal studies (n = 2) 
Other (n = 3) 

Studies included in qualitative 
synthesis 
(n = 22α) 

Records identified by 
manual search  

(n = 6) 

Studies included in quantitative 
synthesis (meta-analyses) 

(n = 14α,β) 
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10.4.2 BIAS ASSESSMENT  

The Cochrane Collaboration’s tool was utilized for bias assessment of RCTs. Overall, selection 

bias and attrition bias were minimal, as evidenced by a low risk of bias for a majority of studies 

with regards to random sequence generation and incomplete outcome data presentation, 

respectively. There was a high risk of performance bias as it is extremely difficult if not 

impossible to blind surgical/perfusion staff. The remaining domains presented a mixed bias risk 

and/or were difficult to assess due to a lack of appropriate information (see Table, SDC 2). 

 

Cohort study bias assessment is presented in SDC 3. Study cohort comparability was established 

in 78.6% of studies, especially with regards to organ CITs and donor and recipient ages. Less than 

60% of the articles had adequate follow-up. The nature of outcome assessment by study personnel 

(i.e. independent blind assessment and/or record linkage) was not specified in 57.1% of cases.  

 

There were too few studies within each parameter analysis to enable the appropriate interpretation 

of any funnel plots. 

 

10.4.3 BASELINE STUDY CHARACTERISTICS  

Summary information regarding liver perfusion articles is provided in Table 1. Overall, there were 

2294 liver transplants, with a median CIT of 8.2 hours. The comparison between UW and HTK 

was the most common (six studies), followed by UW and Celsior (four studies). The majority of 

article data-sets utilized dual perfusion alone (12 of 19, 63.2%). Where specified, a rapid retrieval 

technique was explicitly employed in seven studies,(15) whilst a mixture of rapid and classic 

procurement techniques were specified in five studies.(14) The different study comparator groups 

are also compared with respect to other donor and recipient characteristics, such as cause of death, 

graft steatosis, graft peak transaminases, split liver utilization, and recipient sex and hepatitis virus 

status (SDC 4). Where reported, the vast majority of donor deaths were secondary to trauma or a 

cerebrovascular accident; in general, whole livers with mild steatosis or less were employed, with 

normal donor transaminases (donor AST and/or ALT was reported in seven studies, out of which it 

was only elevated in 10% of patients from one study
30

).  
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CIT – cold ischemic time; CS – cold storage; HA – hepatic artery; HTK – histidine-tryptophan-ketoglutarate; IGL-1 – 

Institut Georges Lopez; L – liters; MELD – model for end-stage liver disease score; NR – not recorded; P – 

prospective; PV – portal vein; R – retrospective; RCT – randomized control trial; UW – University of Wisconsin 

No significant differences between parameters in comparator groups unless otherwise indicated 

  

* Pseudo-randomized 

** Estimate based on 60 ml/kg for UW, and 90 ml/kg for Celsior 

*** Includes back-table flush volume, given via portal vein 

¥ 
Only standard criteria donor data from Mangus et al., 2008 included;

35
 perfusion details utilized from Mangus et al., 

2006 study
36

 

Φ
 Significance not specified 

δ
 Total ischemic time 

γ
 p < 0.05 

€ 
Estimate based on 150 ml/kg for HTK, and 90 ml/kg for Celsior 

ξ 
Article states no statistically significant difference between each group 

ϯ 
In situ perfusion ceased when “liver was palpably cold and free of blood” 

κ 
Four liters of Ross pre-flush was given, followed by 2 L of UW flush, in both study groups  

ϖ
 Given in 74 patients 

Ω
 Does not include back-table flush volume, unless otherwise indicated 

 

10.4.4 PERFUSION CHARACTERISTICS 

UW solution was the most commonly employed perfusion and preservation solution. None of the 

included studies described the use of one fluid for perfusion and another for CS. Pre-flush was 

only utilized in one study.
25

 UW dual perfusion was undertaken at lower volumes (median 4.4 L, 

range 3.0-5.0 L; n = 12 studies) compared to HTK (median 6 L, range 3.0-20.0 L; n = 7 studies) 

and Celsior (median 6.3 L, range 4.5-6.3 L; n = 5 studies), but not IGL-1 (median 4.0 L, range 3.0-

4.0 L; n = 3 studies). Median volumes for aortic-only UW and HTK perfusion were 3.2 L (range 

3.0-5.5 L; n = 4 studies) and 3.8 L (range 3.8-9.0 L; n = 2 studies), respectively. 

 

A median of 1.0 L of perfusion fluid was utilized on the back-table for each of the UW (range 

0.25-1.0; n = 10 studies), HTK (range 0.5-1.0; n = 5 studies), Celsior (n = 2 studies) and IGL-1 (n 

= 2 studies) groups. When the back-table perfusion route is stratified by perfusion fluid, the portal 

vein was solely utilized in 5 of 10 studies employing UW, compared to one study that only utilized 

the hepatic artery and three studies that undertook back-table perfusion via the portal vein and 
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hepatic artery or bile duct. Three HTK studies (out of 5) utilized only the portal vein on the back-

table, whilst mixed porto-arterial perfusion was pursued in a further two studies. One study each 

using Celsior employed solely the portal vein or both the portal vein and hepatic artery, whilst 

both IGL-1 articles utilized mixed back-table perfusion. Importantly, all studies that employed 

aortic-only in situ perfusion did so in conjunction with back-table portal perfusion, with the 

exception of one article in which the utilization of back-table perfusion was not specified.
41 

 

 

10.4.5 META-ANALYSES 

Aortic versus Dual perfusion (UW) 

Overall study quality was very low (see Table, SDC 5). Two parameters were eligible for meta-

analysis – peak ALT and graft PNF. There were no significant differences between aortic or dual 

UW perfusion with respect to PNF rates (Figure 2). Peak ALT post-transplantation was however 

significantly lower in the aortic-only perfusion group (SMD 0.24; 95% CI 0.01-0.47; p = 0.04). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Forest plots for (A) PNF, and (B) peak ALT after in situ aortic or dual UW perfusion and preservation of the 

liver. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study name Outcome Statistics for each study Risk ratio and 95% CI

Risk Lower Upper 
ratio limit limit Z-Value p-Value

De Goyet et al., 1994 PNF 2.078 0.637 6.781 1.212 0.225

Anthuber et al., 1993 PNF 1.623 0.456 5.771 0.748 0.454

Gabel et al., 2001 PNF 1.000 0.067 15.000 0.000 1.000

Chui et al., 1998 PNF 1.000 0.067 14.904 0.000 1.000

Boillot et al., 1993 PNF 5.862 0.293 117.234 1.157 0.247

1.810 0.844 3.878 1.525 0.127

0.01 0.1 1 10 100

Favours A Favours B

Meta Analysis

Favors Dual 

I2 = 0 

Favors Aortic 

A 

Study name Outcome Statistics for each study Std diff in means and 95%  CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

De Goyet et al., 1994 Peak ALT 0.310 0.171 0.029 -0.024 0.644 1.816 0.069

Anthuber et al., 1993 Peak ALT 0.350 0.178 0.032 0.002 0.698 1.971 0.049

Chui et al., 1998 Peak ALT -0.320 0.318 0.101 -0.944 0.304 -1.006 0.315

Boillot et al., 1993 Peak ALT 0.290 0.258 0.067 -0.216 0.796 1.123 0.262

0.240 0.119 0.014 0.007 0.473 2.021 0.043

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

I2 = 18.3 

Favors Dual Favors Aortic 
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UW versus HTK dual perfusion 

Study quality, as derived using the GRADE guidelines, was once again very low (SDC 5). There 

were no significant differences in peak post-transplantation ALT or AST upon UW or HTK dual 

perfusion and preservation (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Forest plots for (A) peak AST, and (B) peak ALT after in situ dual perfusion and preservation of the liver with 

UW or HTK. 

 

UW versus Celsior dual perfusion 

Study quality, based on the GRADE guidelines, was moderate (SDC 5). Thrombotic graft loss/re-

transplantation and PNF rates, in addition to 1-year graft survival, were not significantly different 

for either perfusion/preservation solution (Figure 4). 

 

10.4.6 OTHER COMPARISONS 

Thrombotic graft loss 

Three studies compared graft loss secondary to hepatic artery thrombosis after UW aortic-only 

versus dual perfusion.
26, 41, 42

 In the aortic-only perfusion groups, rates were 3.9% (three 

patients)
26

, 0% 
42

 and 4.5% (one patient)
41

, whilst in the respective dual-perfused groups, 

thrombotic graft loss occurred in 6.3% (four patients)
26

, 0 patients
42

 and 0 patients
41

 (p > 0.05). 

 

 

 

 

 

 

 

 

 

 

Study name Statistics for each study Std diff in means and 95%  CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

Hatano et al., 1997 Peak AST -0.260 0.299 0.090 -0.847 0.327 -0.869 0.385

Erhard et al., 1994 Peak AST 0.030 0.258 0.067 -0.476 0.536 0.116 0.908

Moench et al., 2006 Peak AST 0.000 0.187 0.035 -0.367 0.367 0.000 1.000

-0.045 0.135 0.018 -0.310 0.220 -0.331 0.740

-3.00 -1.50 0.00 1.50 3.00

Favours A Favours B

Meta Analysis

Favors HTK 

I2 = 0 

Favors UW 

A 

Study name Outcome Statistics for each study Std diff in means and 95%  CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

Hatano et al., 1997 Peak ALT -0.090 0.298 0.089 -0.675 0.495 -0.302 0.763

Erhard et al., 1994 Peak ALT 0.080 0.258 0.067 -0.426 0.586 0.310 0.757

Moench et al., 2006 Peak ALT -0.010 0.187 0.035 -0.377 0.357 -0.053 0.957

-0.002 0.135 0.018 -0.267 0.263 -0.013 0.989

-3.00 -1.50 0.00 1.50 3.00

Favours A Favours B

Meta Analysis

B 

Favors HTK 

I2 = 0 

Favors UW 
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Graft loss secondary to hepatic arterial thrombosis in the various study groups was generally 

sparsely reported. For studies employing aortic-only in situ perfusion, data was available only for 

UW perfusion/CS (median 3.9%; range 0-4.5%; n = 131 patients, 3 studies). In the dual-perfused 

groups, UW-perfused/CS livers had a median hepatic arterial thrombotic graft loss rate of 1.0% 

(range 0-6.3%; n = 359, 6 studies), compared to 3.1% (range 0-3.1%; n = 85, 2 studies), 2.0% 

(range 0-2.4%; n = 246, 4 studies) and 0.9% (n = 113, 1 study) for HTK, Celsior and IGL-1, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Forest plots for (A) thrombotic graft loss/re-transplantation, (B) PNF, and (C) 1-year graft survival after in 

situ dual perfusion and preservation of the liver with UW or Celsior. 

 

Ischemic anastomotic and non-anastomotic biliary complications (Ischemic-type biliary lesions 

[ITBL]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study name Outcome Statistics for each study Risk ratio and 95% CI

Risk Lower Upper 
ratio limit limit Z-Value p-Value

Cavallari et al., 2003 Thrombotic graft loss/re-Tx 0.542 0.102 2.883 -0.718 0.473

Lopez-Andujar et al., 2009 Thrombotic graft loss/re-Tx 1.130 0.072 17.817 0.087 0.931

Garcia-Gil et al., 2011 Thrombotic graft loss/re-Tx 3.000 0.125 71.956 0.678 0.498

0.852 0.231 3.137 -0.241 0.810

0.01 0.1 1 10 100

Favours A Favours B

Meta Analysis

Favors Celsior Favors UW 

I2 = 0 

A 

Study name Outcome Statistics for each study Risk ratio and 95% CI

Risk Lower Upper 
ratio limit limit Z-Value p-Value

Cavallari et al., 2003 PNF 0.361 0.015 8.743 -0.626 0.531

Lopez-Andujar et al., 2009 PNF 1.130 0.162 7.865 0.124 0.901

Nardo et al., 2001 PNF 0.226 0.011 4.603 -0.967 0.333

0.614 0.144 2.622 -0.659 0.510

0.01 0.1 1 10 100

Favours A Favours B

Meta Analysis

Favors Celsior Favors UW 

I2 = 0 

B 

Study name Outcome Statistics for each study MH risk ratio and 95% CI

MH risk Lower Upper 
ratio limit limit Z-Value p-Value

Cavallari et al., 2003 1-year graft survival 1.168 0.584 2.336 0.438 0.661

Lopez-Andujar et al., 2009 1-year graft survival 0.915 0.515 1.626 -0.303 0.762

Garcia-Gil et al., 2011 1-year graft survival 1.100 0.513 2.360 0.245 0.807

Nardo et al., 2001 1-year graft survival 0.943 0.305 2.914 -0.101 0.919

1.023 0.712 1.470 0.122 0.903

0.1 0.2 0.5 1 2 5 10

Favours A Favours B

Meta Analysis

Favors Celsior Favors UW 

I2 = 0 
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One article reported biliary stenosis/ITBL after utilization of aortic-only perfusion and hepatic 

preservation.
23

 Multiple intra-hepatic stenosis occurred in none of the patients receiving a graft 

perfused with UW compared to one (5.9%) from the HTK-perfused recipient cohort, with up to six 

months follow-up (p > 0.05). All patients in this study underwent portal vein back-table perfusion 

at the donor center, but not hepatic artery back-table perfusion.  

 

Biliary complication rates after in situ liver dual perfusion/ CS using UW were available from five 

articles. Comparative anastomotic and/or non-anastomotic stricture rates between UW and Celsior 

in Lopez-Andujar et al.’s study were 3.9% (4/103) versus 2.2% (2/92), respectively, and 11.8% 

(6/51) versus 15.7% (8/51) in another study (p > 0.05 for both studies).
29, 31

 Dondero et al. 

compared UW and IGL-1, with non-anastomotic stricture rates of 3.3% (3/92) versus 2.1% (1/48), 

respectively (p > 0.05).
39

 Hepatic arterial back-table perfusion was not utilized in any of these 

studies. UW was compared to HTK by both Moench et al. and Meine et al., with no significant 

differences in ischemic biliary complications between both perfusion/preservation fluids in either 

study.
16, 32

 Notably, Moench et al. suggested that ITBL rates were significantly lower in UW-

perfused and preserved livers that underwent high-pressure arterial back-table perfusion compared 

to UW perfusion without this (2.7% compared to 21.1%, p < 0.001).
16

 

 

Graft survivals 

Meta-analyses were not possible for graft survival comparisons in a majority of cases, with the 

exception of UW versus Celsior dual perfusion (Figure 4). There was no one-year graft survival 

data for aortic or dual perfusion using IGL-1, aortic-only perfusion utilizing Celsior, or aortic 

versus dual UW perfusion/CS. Aortic compared to dual UW perfusion/CS survivals were however 

available after 20 months in one study – 72.9% (62/85 Patients) versus 61.5% (48/78), respectively 

(p > 0.05).
26

 

 

One-year graft survivals were available from one study for UW (n = 98 patients) compared to 

HTK aortic-only (n = 98 patients) liver perfusion; respective survivals were 83.7% and 86.5% (p > 

0.05).
35

 UW dual perfusion yielded a median one-year graft survival of 85.0% (range 80.0-93.8%, 

n = 370 patients, 5 studies), compared to 83.0% for Celsior dual perfusion (range 78.4-90.6%, n = 

299, 5 studies). One-year graft survival after HTK dual perfusion was 94.0% (range 75.0-94.0%, n 

= 2 studies), although this analysis only included data from a total of 57 patients. 



10.5 Discussion and Conclusions 

This systematic review has attempted to analyze the data in the literature regarding the ideal 

perfusion route (aortic-only or dual), volume(s) and solution(s) for DBD liver transplantation. In 

situ liver perfusion utilizing UW is the most common occurrence in the literature. UW appears to 

be perfused via the aortic and portal routes in a majority of studies, and at lower volumes 

compared to HTK and Celsior. Although the overall quality of included articles was either low or 

moderate, the most important finding of this study is the lack of a significant beneficial effect to 

the use of dual perfusion over aortic-only perfusion with respect to early and one-year graft 

outcomes. Furthermore, after stratifying by in situ perfusion routes, we were unable to show 

significant differences in post-transplantation outcomes including thrombotic graft loss, graft 

survival and ITBL for grafts that underwent UW, HTK, Celsior or IGL-1 perfusion and subsequent 

CS. This latter observation should however be interpreted in the context of insufficient study data 

for these parameters in the majority of perfusion fluid and/or route comparisons, thereby 

preventing further statistical analyses. 

Dual perfusion during procurement entails cannulation and fluid perfusion via both the aorta and 

portal vein, and necessarily requires more preparation time and dissection in comparison to aortic-

only perfusion. Furthermore, dual perfusion poses added potential risks when the pancreas is to be 

retrieved, due to potential blockage of pancreas perfusate outflow and subsequent pancreatic 

congestion.
43-45

 Although the dual perfusion technique should theoretically achieve more 

comprehensive liver perfusion and cooling, at a faster rate, final liver temperature appears to be 

very similar to that achieved via aortic-only cooling.
25

 Perhaps of more significance than the rate 

at which an organ is cooled is its rate of rewarming, which may partially explain the advantages of 

controlled rewarming and/or subnormothermic machine perfusion.
46, 47

 Furthermore, aortic-only 

cooling also indirectly provides a portal flush through the mesenteric venous outflow.
25

 An 

additional consideration that possibly explains the equivalence of the two techniques is the use of a 

portal venous back-table flush in at least five of seven articles utilizing aortic-only in situ 

perfusion. Meta-analyses in this study showed a lower graft peak ALT but not PNF after aortic-

only versus dual perfusion, and there was no evidence of impaired graft survival. The impact of 

possible confounding factors such as donor liver steatosis, elevated donor enzymes and split liver 

utilization could not be reliably assessed due to insufficient available data (SDC 4). Nevertheless, 

the overall outcome data from this systematic review and meta-analysis does not support the 

192 
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additional time and complexity of establishing dual perfusion in situ compared to aortic-only 

perfusion.   

 

The only objective evidence in favor of dual perfusion in the literature to our knowledge is 

provided by D’Amico et al., who compared aortic to dual perfusion using Celsior for “suboptimal” 

liver procurement, without associated pancreas retrieval.
48

 This study was excluded from our 

analyses as it employed a modified portal perfusion technique using Celsior with simultaneous 

tourniquet clamping of splenomesenteric inflow, and focused on suboptimal grafts. D’Amico et al. 

included data from a total of 35 patients, and although not statistically significant, the aortic-flush 

group here had a trend towards greater CITs and donor hemodynamic compromise, and a higher 

proportion of recipients with hepatitis C as the reason for transplantation. Use of dual perfusion in 

suboptimal/expanded criteria livers in preference to aortic-only perfusion is not supported by other 

major studies, and as such this remains an area for further investigation. Moreover, some authors 

also recommend dual perfusion during DCD liver retrieval.
49

 Similarly, this recommendation is 

not supported by any significant evidence in the literature and requires additional research. 

 

Multiple abdominal organ perfusion and preservation fluids are available, with differing 

viscosities, electrolyte compositions, and other mediators. Although previous systematic reviews 

have attempted to compare hepatic allograft outcomes stratified by preservation fluid, the in situ 

perfusion routes were altogether ignored; it is highly likely that final graft outcomes are related not 

only to organ preservation during transportation per se, but also to the period of in situ perfusion.
9, 

50
 From our findings, there appears to be no difference in at least short-term liver transplant 

outcomes when DBD grafts are perfused and subsequently stored in UW, HTK, Celsior or IGL-1. 

Survival data was limited and far from conclusive for one fluid over another. However, in a recent 

multi-center European database analysis, Adam et al. suggested lower three-year graft survivals in 

HTK-preserved grafts, including split livers, in comparison to UW, IGL-1 and Celsior.
8
 The 

possible deleterious effect of HTK may be related to CITs and donor status, with Stewart et al. 

showing a further increase in graft loss for HTK livers compared to UW when DCD livers and/or 

livers with CITs more than eight hours were transplanted.
7
   

 

ITBL present a significant complication of liver transplantation that can potentially be targeted by 

alterations in perfusion fluids and techniques. Indeed, Eurotransplant guidelines recommend high-
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pressure arterial perfusion of the hepatic graft on the back-table to prevent ITBL based on the 

work of Moench et al.
3, 51

 The theoretical basis for this is provided by the apparent impairment in 

perfusion of small vessels supplying the biliary tree if higher viscosity fluids such as UW are 

employed; this may be negated by high pressure perfusion via the aorta or on the back-table via 

hepatic artery.
16, 51, 52

 The corollary of this is that the use of HTK itself may reduce intra-hepatic 

biliary strictures when compared to UW, especially in DCD donors, due to its lower viscosity.
35, 53, 

54
 Data from the studies included in this review does not appear to support these assertions,

16, 32
, 

although this may have been impacted by the fact that only DBD donor data was included. 

Furthermore, back-table hepatic arterial perfusion was not utilized in multiple studies, seemingly 

without deleterious consequences to biliary luminal integrity. 

 

Procurement costs are an important consideration in most parts of the world, and have in some 

cases driven research into alternative flush and perfusion strategies. The majority of articles 

comparing perfusion economics analyze alternatives to the relatively higher cost UW solution. 

One liter of UW costs $300 to $500 US dollars.
55-57

 Adam et al. in France substituted UW dual 

liver perfusion with Euro-Collins aortic perfusion/ UW portal perfusion, demonstrating savings of 

$750 per case, and perhaps even improved immediate graft parameters.
58

  A potential area of cost-

saving may also be provided by switching from dual to aortic-only UW perfusion, with lower UW 

volumes used in aortic-only perfusion, although this remains to be formally proven. Considering 

that cumulative evidence does not seem to support dual liver perfusion, a cost advantage here may 

provide further impetus to utilize the single route. 

 

Results presented in this systematic review and meta-analysis must be interpreted cautiously. In 

particular, overall study quality, as determined by the GRADE assessment, was mostly very low, 

and at best moderate (SDC 5). Selection bias also needs to be considered as much of the study data 

is derived from recipient liver transplantation outcomes, and as such is confounded by the 

omission of grafts that may have been discarded. Heterogeneity, small study sample sizes, 

inadequate patient follow-up in some studies, and a significant proportion of observational studies 

all introduced further biases to overall effect estimates, necessitating the use of random effects 

models in all meta-analyses. With respect to the RCTs alone, blinding of research personnel was 

of concern, although this is to be expected in studies of this nature; furthermore, a significant 

proportion of domains could not be assessed due to a lack of appropriate information. In addition, 
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we could not formulate conclusions regarding optimal volumes of preservation solution during in 

situ perfusion due to a paucity of relevant data. 

 

Overall, we have attempted to correlate liver transplantation outcomes with the initial route of in 

situ cold perfusion, in addition to the preservation solution used for this perfusion and 

subsequently also for static cold storage. Because it is extremely difficult, if not impossible, to 

tease out the individual effects of in situ perfusion and then later cold static storage/preservation, 

study groups have been analyzed with both factors in mind.  

 

We have shown that despite the ubiquity of dual perfusion in the literature and guidelines, its 

utilization has not been supported by better outcomes in comparison to aortic-only perfusion for 

DBD liver transplantation. It should however be noted that aortic-only perfusion is usually 

accompanied by a portal venous back-table flush. There is insufficient data to draw robust 

conclusions about the outcome associated with the use of different perfusion/preservation fluids, 

especially with regards to graft survivals, ITBL rates, and thrombotic graft loss rates. Outcome 

data is also lacking regarding the utilization of an in situ pre-flush, optimal perfusion volumes, 

perfusion in DCD donors, appropriate protocols for back-table perfusion, and the use of dual 

perfusion in suboptimal donors. Additional appropriately powered RCTs focusing on these 

specific issues are required to resolve these questions. If aortic-only perfusion is indeed proven to 

be cheaper and not deleterious in comparison to dual perfusion, including in the DCD and 

expanded criteria donor setting, this may influence procurement surgeons towards the utilization 

of a more unified retrieval approach.  
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11.1 Letter to the Editor 

Dear Editor, 

 

We thank Adam and colleagues for their interest in our recent article.
1
 In particular, they are 

concerned, and we are very sympathetic to their view, that histidine-tryptophan-ketoglutarate 

(HTK) is not being presented as a cause of graft loss due to insufficient power. We are also 

well aware of the large registry analyses referenced to by Adam et al, two of which are also 

specifically referenced in the Discussion of our own article and therefore not missed.
2, 3

 

 

However, if our paper is read in detail, it will be evident that the conclusions stem from the 

lack of strong evidence within the constraints of strict inclusion/exclusion criteria as specified 

by the systematic review’s inclusion/exclusion criteria. The low quality of evidence, small 

patient numbers, and limits of article selection are all outlined at-length in our article. The 

primary reason that Adam et al. and Stewart et al.’s studies were not included in our systematic 

review/meta-analysis is that they did not include relevant retrieval details, such as perfusion 

route(s), volume(s), and back-table perfusion methods, and were hence not applicable to the 

aims of our study. Furthermore, our emphasis was on shorter-term graft outcomes, as longer-

term graft survival was not expounded upon in a majority of studies – as such, only meta-

analyses comparing peak AST and ALT after University of Wisconsin (UW) or HTK 

perfusion/preservation were possible. It should also be noted that both older and more recent 

systematic reviews/meta-analyses comparing HTK to other preservation fluids have also not 

shown significantly deleterious effects upon the use of HTK.
4-8

 Similarly, they were unable to 

explore longer-term graft survival and could not include the analyses by Stewart et al. and 

Adam et al. in the formulation of their final conclusions.  

 

There are many proponents and opponents of big data within the field of transplantation, and it 

is not our intention to take a ‘side’ in this debate here. Nevertheless, major issues with registry 

data still need to be considered.
9-11

 

 

These studies cannot always be considered to provide the final word especially when it is 

technically and ethically feasible to conduct multi-center randomized control trials, in 

association with a common event rate (graft loss). We also note the concerns expressed by 

Nashan et al. regarding the original analyses by Adam and colleagues, and applaud the further 

analyses addressing some of the expressed concerns, including a propensity-based analysis.
11-13
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However, another potential confounder not considered by these analyses is the use of aortic-

only or dual perfusion, which may significantly impact graft function – once again, this was 

not clearly shown by our systematic review, but is nonetheless still controversial and has 

spurred us to look at Australian liver transplantation outcomes over the preceding 10 years 

(Paper Submitted for Publication). 

 

In summary, and specifically in response to Adam et al.’s comments: 

1. “Was this meta-analysis able to obtain a good scientific comparison of preservation 

solutions?” The meta-analyses were conducted in a scientifically sound manner, using 

strict inclusion/exclusion criteria, and in association with risk of bias assessments. 

Statistical comparisons could only be made depending on the availability of appropriate 

data-points within each included study. 

2. “What is the clinical relevance of the results of this meta-analysis?” This systematic 

review/meta-analysis aimed to approach the broader issue of retrieval technique, and 

perfusion practices, in the context of disparate practices and guidelines throughout the 

transplant world. It should also be interpreted in conjunction with a parallel systematic 

review/meta-analysis for pancreas transplantation.
14

 We highlight that many individual 

issues related to retrieval practice, in particular the choice between aortic-only and dual 

perfusion, need to be definitively resolved, such that retrieval and perfusion can be unified 

worldwide.  

3. “How to integrate this “lack of evidence” in the knowledge of significant difference 

demonstrated by large patient cohort studies?” In no way did we attempt to hide the 

results from the aforementioned large cohort studies, far the opposite we indeed discussed 

these in our paper. Even within the Eurotransplant region, HTK is not specifically 

precluded for the purposes of liver preservation, despite the conclusions of these registry 

studies.
15

  

 

Overall, it is expected that readers and in particular expert policy makers should be able to 

synthesize all available evidence to come to an informed decision regarding the ultimate choice 

of perfusion/preservation fluid. We are in no way promoting HTK, and indeed utilize UW for 

our own liver and multiorgan retrievals. However it is imperative that each individual study 

only makes conclusions applicable to the data at hand – national/international guidelines 

should be able to synthesize the best recommended practice and also drive any further research 
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that may be required. With the increasing interest in organ preservation and many disparate 

views regarding the optimal technique for liver preservation, as evidenced by the letter by 

Adam et al., the transplant community needs to instigate further multi-center RCTs across the 

deceased organ donor sector. 
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12.1 Abstract 

There is lack of consensus in the literature regarding the comparative efficacy of in situ aortic-only 

compared to dual (aortic and portal venous) perfusion for retrieval and transplantation of the liver. 

Recipient outcomes from the Australia/New Zealand Liver Transplant Registry (2007-16), 

including patient and graft survival, and causes of graft loss, were stratified by perfusion route. 

Subgroup analyses were conducted for higher risk donors. A total of 1382 liver transplant 

recipients were analyzed (957 aortic-only; 425 dual perfusion). There were no significant 

differences in five-year graft and patient survivals between the aortic-only and dual cohorts (80.1 

versus 84.6%, and 82.6 versus 87.8%, respectively), or in the odds ratios of primary non-function, 

thrombotic graft loss, or graft loss secondary to biliary complications or acute rejection. When 

analyzing only higher-risk donors (n = 369), multivariate graft survival was significantly less in 

the aortic-only cohort (HR 0.52, 95% CI 0.27-0.98). Overall, there was a trend towards improved 

outcomes when dual perfusion was utilized, which became significant when considering higher-

risk donors alone. Inferences into the ideal perfusion technique in multi-organ procurement will 

require further investigation by way of a RCT, and outcomes after the transplantation of other 

organs will also need to be considered. 
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12.2 Introduction 

Liver perfusion during deceased donor organ retrieval can be conducted by cannulation of the 

aorta and portal vein (dual perfusion), or via the abdominal aorta alone. Intuitively, aortic 

perfusion alone is simpler and faster to achieve, as it involves one less step during retrieval, and 

will not obstruct pancreatic venous outflow unlike dual perfusion achieved via an inferior or 

superior mesenteric venous cannula.
1, 2

  

 

There is controversy in the literature regarding the utility of each approach in comparison to the 

other. In a recent systematic review and meta-analysis, we showed that aortic and dual perfusion 

likely achieve equivalent outcomes for DBD, standard criteria liver recipients; however, studies 

included in this comparison all had small sample sizes, and maximum recipient follow-up was 20 

months.(3-8) In contrast, D’Amico et al. compared the two techniques in 35 “suboptimal” grafts, 

and showed significantly poorer outcomes in aortic-only perfused livers.(9) Overall, due to 

disparate results from existing studies, small patient numbers, and relatively short patient follow-

up, retrieval guidelines with respect to the utilization of aortic-only or dual perfusion significantly 

vary between and within different jurisdictions.
8, 10-12

 

 

We therefore aimed to analyze the efficacy of aortic and dual perfusion using a larger national 

cohort with a prolonged period of follow-up. This cohort was analyzed as a whole, with further 

subgroup analyses conducted for higher risk donor grafts. Recipient outcomes including graft and 

patient survival, and causes of graft loss, were stratified by perfusion route. 
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12.3 Methods 

12.3.1 DATA COLLECTION AND DATA-POINTS 

The Australia and New Zealand Liver Transplant Registry (ANZLTR) and the Australia and New 

Zealand Organ Donation (ANZOD) Registry were utilized for the collection of relevant study 

data-points. Both donor and recipient parameters were obtained. Donor characteristics were as 

follows – preservation fluid type(s), donor age, sex, cause of death (COD), liver enzymes, pressor 

requirements, state (region) of retrieval, and body mass index (BMI). Recipient characteristics 

obtained included – recipient age, sex, primary liver diagnosis, Model for End-Stage Liver Disease 

(MELD) score, graft number for the recipient, and recipient transplant center. Transplantation 

parameters recorded were – cold ischemia time (CIT), secondary warm ischemia time (SWIT), 

graft utilization locally or interstate (“shipped”), graft and patient survival, reason for graft loss 

(primary non-function [PNF], hepatic artery thrombosis [HAT], portal vein thrombosis [PVT], 

biliary complications, acute rejection), and the need for re-transplantation. PNF was defined as the 

need for re-transplantation and/or patient death within 7 days due to graft non-function. Each 

Australian state has a dedicated liver transplantation unit, and distinct liver retrieval team(s). Graft 

retrieval technique (i.e. aortic or dual perfusion), and back-table retrieval practices are not 

recorded in either database and were therefore obtained by surveying senior surgeons from each 

unit that performed the retrieval. Retrieval team practices with regards to aortic or dual perfusion 

have remained consistent over the study period. Ethics approval for this project was obtained from 

the local institutional review board. No organs from executed prisoners were used. 

 

12.3.2 STUDY INCLUSION AND EXCLUSION CRITERIA 

Adult (≥ 16 years), Australian liver DBD donor and corresponding recipient data was analyzed 

from the period 2007-2016, inclusive. Partial liver donors (split or reduced-size grafts) were 

excluded from analyses, as were donors in whom University of Wisconsin (UW) solution was not 

utilized as the final perfusion and preservation fluid, and patients who had a previous liver 

transplant. DCD donors could not be included as dual perfusion was not commonly employed in 

this donor subset. 

 

12.3.3 RETRIEVAL TECHNIQUE 

All units employed a pre-flush, consisting of 2-4 L of either Hartmann’s solution, 0.9% NaCl or 

Ross/Marshall’s Hyperosmolar Citrate Solution (Soltran, Baxter Healthcare, UK), given via the 
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aorta, and in the cases of dual perfusion, also via the portal vein. This was followed by a 

formal UW flush of 2-6 L, again via the aorta, and in the cases of dual perfusion, also via the 

portal vein. Retrieval teams undertaking dual perfusion accessed the portal vein via a cannula 

inserted into the inferior mesenteric vein, unless the pancreas was also retrieved, in which case the 

portal vein was usually transected just proximal to the pancreas and accessed directly. The 

decision to undertaken aortic or dual perfusion was specific to each retrieval unit, and not 

impacted by consideration of donor or recipient factors. All retrieval teams gave an additional 

back-table portal venous flush. 

12.3.4 PATIENT OUTCOMES AND STATISTICAL ANALYSES 

Recipient data was stratified by the in situ perfusion route utilized, i.e. aortic or dual perfusion. 

Final outcomes of interest were graft survival (all-cause), patient survival, and cause of graft 

loss (PNF, HAT, PVT, acute rejection, or biliary complications). All statistical analyses 

were undertaken using IBM SPSS Statistics for Windows, Version 24.0 (Armonk, NY, USA), and 

Stata, Version 14.0 (College Station, Texas, USA). 

Baseline patient data was compared using the student’s t-test or Mann Whitney U test, and 

chi-square test or Fisher’s exact test, as appropriate. Survival data between study groups 

was compared using Kaplan-Meier curves, with statistical significance obtained using the log-rank 

test. Cox regression models were constructed for graft and patient survival data, stratifying for 

aortic and dual perfusion, and other relevant donor or recipient factors (donor/recipient 

gender, donor/recipient age, donor COD or recipient cause of liver failure, donor BMI, recipient 

MELD, CIT, SWIT, recipient transplant center, and graft shipping versus local utilization). 

Multivariate Cox regression models comparing aortic and dual perfusion survival 

outcomes were then constructed using a backward stepwise approach and included all univariate 

factors with a p-value < 0.2 and/or baseline characteristics that were significantly different 

between both study cohorts. Model diagnostics were performed using the global proportional 

hazards test and Cox-Snell residuals. The level of data missingness was < 5% for all variables 

used in Cox regression models, with the exception of MELD, CIT, and SWIT, which were missing 

in 11.1%, 18.9%, and 20.4% of cases, respectively. The technique of multiple imputations was 

employed to account for any missing data, using chained equations; 20 imputed data-sets 

were created.  Causes of graft loss were compared using Fisher’s exact test, and univariate and 

multivariate logistic regression.  
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12.3.5 SUBGROUP ANALYSIS 

The Donor Risk Index (DRI) (USA) characterizes risk of liver graft failure based on the presence 

of donor age > 40, and especially for donors > 60 years, DCD donors, partial/split grafts, lower 

height, African-American race, and cerebrovascular accident (CVA) or “other” COD for the 

donor.
13

 Additional factors incorporated in the risk model are a CIT above 8 hours, and regional or 

national shipping of organs. The Eurotransplant DRI (ET-DRI) utilizes the existing DRI score, 

with the omission of donor race and height, and further incorporates donor gamma-glutamyl 

transferase (GGT) above 50 and rescue liver offers as risk factors.
14

 These indices have not yet 

been validated in the Australian setting. We therefore only undertook subgroup graft survival and 

cause of graft loss analyses for the highest risk donors in our cohort, defined by age > 60 years, 

COD “other” (i.e. death unrelated to CVA, trauma, and/or anoxia), and/or with a CIT ≥ 12 hrs. 

Graft shipping was not considered as it produced better outcomes than locally procured grafts (see 

Results), whilst donor height had no association with graft survival, donor race was not available, 

and donor GGT data was missing for a large proportion of patients.  

 

12.4 Results 

12.4.1 BASELINE PARAMETERS 

Over the study period, a total of 1382 liver transplant recipients were included as they fulfilled the 

inclusion criteria. In total, 957 transplant livers were procured using aortic-only in situ perfusion, 

in comparison to 425 livers in which dual perfusion was employed. Baseline study characteristics 

are summarized in Table 1. There were no significant differences between aortic and dual groups, 

with the exception of CIT, SWIT, and recipient MELD (7.0 versus 6.3 hours; 45.4 versus 37.8 

minutes; and 18 versus 14, respectively; p < 0.001). 

 

12.4.2 ALL-CAUSE GRAFT LOSS (WHOLE COHORT) 

Fig. 1A shows the unadjusted Kaplan-Meier curve comparing aortic-only and dual perfusion. 

Actuarial 5-year graft survival rates were 80.1% for the aortic-only group, compared to 84.6% for 

the dual group; overall, there were no significant differences in graft survival (p = 0.066). Table 2 

shows results univariate and multivariate Cox regression analyses of covariates potentially 

associated with graft survival. Aortic and dual perfusion did not differ in both analysis types. 

Interestingly, shipped grafts had better outcomes than unshipped grafts, even after adjustment for 



211 
 

confounders (HR 0.62, 95% CI 0.42-0.94, p = 0.022). Baseline characteristics stratified by graft 

shipping are shown in Supplemental Digital Content 1. 
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BMI – body mass index; CIT – cold ischemic time; COD – cause of death; CVA – cerebrovascular accident; HBV/HCV – 

hepatitis B or C virus; HCC – hepatocellular carcinoma; ICH – intracerebral hemorrhage; IQR – inter-quartile range; 

MELD – model for end-stage liver disease score; NA – not applicable; NAFLD – non-alcoholic fatty liver disease; NASH 

– non-alcoholic steato-hepatitis; SD – standard deviation; SWIT – second warm ischemic time 

 

* “Unshipped” denotes graft utilized in same state it was procured 

 

12.4.3 PATIENT SURVIVAL (WHOLE COHORT) 

Fig. 1B shows the unadjusted Kaplan-Meier curve comparing aortic-only and dual perfusion, with 

respective actuarial 5-year patient survival rates of 82.6% and 87.8%. Overall patient survival was 

significantly lower in the aortic-only cohort (Fig. 1B; p = 0.026); after adjustment for confounders, 

there were no differences in patient survival between both perfusion groups (HR 0.75, 95% CI 

0.53-1.06, p = 0.103) (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Unadjusted Kaplan-Meier curves comparing (a) all-cause graft loss (survival), and (b) patient survival after 

aortic-only or dual in situ liver perfusion for the complete patient cohort. (c-d) Kaplan-Meier curves for graft and 

patient survival, respectively, in the subgroup of transplants performed from donors > 60, and/or CIT ≥ 12 hours, 

and/or if donor COD was “other.” 
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BMI – body mass index; CI – confidence interval; CIT – cold ischemic time; COD – cause of death; HR – hazard ratio; 

MELD – model for end-stage liver disease; SWIT – secondary warm ischemic time; Tx – transplant  

12.4.4 CAUSES OF GRAFT LOSS (WHOLE COHORT) 

Different causes of graft loss were compared in liver transplant recipients after aortic versus dual 

in situ perfusion, including PNF, HAT, PVT, biliary complications, and acute rejection (Table 3). 

There were no significant differences in unadjusted odds ratios (OR) between recipients after 

aortic-only or dual perfusion in donors. Subsequent re-transplantation rates amongst the two 

groups did not differ (OR 1.05, 95% CI 0.55-2.01, p = 0.876). 

Table 3. Unadjusted odds ratios for different causes of graft loss after dual in situ perfusion in comparison to aortic-

only perfusion – whole patient cohort. 

HAT – hepatic artery thrombosis; PNF – primary non-function; PVT – portal vein thrombosis 

12.4.5 SUBGROUP ANALYSES OF HIGHER RISK DONORS 

Baseline characteristics of the higher risk donor subgroup are also shown in Table 1, whilst Table 

4 and 5 analyze graft/recipient survival, and causes of graft loss, respectively. When analyzing 

only cases in which donors were > 60 years, donor COD was “other,” and/or CIT was ≥ 12 hours 

there were 278 recipients in the aortic-only cohort, and 91 recipients in the dual perfusion cohort.  

Graft survival was significantly lower in the aortic-only cohort in comparison to dual perfusion 

using univariate Cox regression (HR 0.52, 95% CI 0.27-0.98; p = 0.044). This was also reflected 

in the unadjusted Kaplan-Meier curve (Fig. 1C). After multivariate Cox regression, dual perfusion 

remained protective over aortic-only perfusion with respect to graft loss (HR 0.48, 95% CI 0.26-

0.92, p = 0.028). Overall patient survival was not significantly different between either group upon 

univariate (Fig. 1D) and multivariate analyses (HR 0.58, 95% CI 0.30-1.11, p = 0.098). There 

were no significant differences between groups with respect to causes of graft loss (Table 5).  

Cause of Graft Loss OR, 95% CI p-value

PNF 0.25 (0.03-1.97) 0.187 

HAT 1.23 (0.45-3.35) 0.684 

PVT 4.52 (0.41-49.99) 0.219 

Biliary Complications 0.32 (0.02-6.22) 0.452 

Acute Rejection 1.50 (0.25-9.03) 0.656 



215 



216 

BMI – body mass index; CI – confidence interval; CIT – cold ischemic time; COD – cause of death; HR – hazard ratio; 

MELD – model for end-stage liver disease; SWIT – secondary warm ischemic time; Tx – transplant 

In this subset of patients, grafts that were transplanted within the same state did not have different 

outcomes to shipped grafts (Graft survival: HR 1.00, 95% CI 0.56-1.80, p = 0.993; Patient 

survival: HR 1.10, 95% CI 0.60-2.02, p = 0.772). Furthermore, this parameter was not included in 

final graft and patient survival models after multivariate analyses as it did not have a significant 

effect on final model parameters (data not shown). 

Table 5. Different causes of graft loss after dual in situ perfusion in comparison to aortic-only perfusion, expressed as 

a proportion of total patients in each cohort – higher risk donors only. 

12.5 Discussion 

This paper has compared aortic-only in situ perfusion during DBD whole liver retrieval to dual 

aorto-portal perfusion with respect to recipient outcomes using a national registry over a 10-year 

period. When both standard and expanded-risk grafts are analyzed together, there are no 

significant differences in graft and patient survival, or in causes of graft loss, between either in situ 

perfusion technique. However, dual perfusion is superior when utilized in higher risk donors 

defined by advanced age (> 60 years), and/or COD “other,” and/or with a prolonged cold ischemic 

time (≥ 12 hours). 

The primary aim of in situ liver perfusion is to achieve rapid graft cooling and commence 

‘preservation’ by the expulsion of residual blood and exposing the graft parenchyma to cold 

preservation fluid. Despite the liver’s dual circulation, aortic-only perfusion should theoretically 

be able to simultaneously achieve portal perfusion via the mesenteric venous drainage, albeit in a 

slightly delayed fashion.
6
 Although appropriate liver perfusion takes longer when aortic-only

perfusion is utilized, the final liver temperature achieved by either modality does not significantly 

Cause of Graft Loss n, Aortic (%) n, Dual (%) p-value

PNF 3 (1.1) 0 (0) 1.000 

HAT 4 (1.4) 0 (0) 0.576 

PVT 0 (0) 1 (1.1) 0.247 

Biliary Complications 2 (0.7) 0 (0) 1.000 

Acute Rejection 1 (0.4) 0 (0) 1.000 
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differ (12.5 ± 3.4°C versus 11 ± 3°C, for the aortic-only and dual-perfused livers, respectively; p > 

0.05).
6

Accordingly, the short-term equivalence of both perfusion techniques with respect to graft 

outcomes (PNF and peak alanine aminotransferase [ALT]) has been shown previously in our 

meta-analysis.
8
 However, only standard criteria donor livers were considered, and there was

insufficient data available for comparison of longer-term outcomes.
8
 In concordance with these

results from the meta-analysis, D’Amico et al. in their small cohort of patients showed 100% six-

month graft survival in optimal livers utilizing either aortic or dual perfusion; however, there were 

significantly superior results in ‘expanded criteria’ grafts after dual perfusion, and the trial was 

terminated early.
9
 These authors conducted portal perfusion via a cannula inserted in the inferior

mesenteric vein, additionally minimized/reduced mesenteric venous return by tightening a 

tourniquet across the distal portal vein.
9, 15

 Expanded criteria donors were defined by the presence

of at least one feature of donor age > 60 years, hepatic steatosis > 20%, and/or total ischemia time 

> 10 hours, or two out of other lesser arbitrary criteria.
9

Interestingly and perhaps surprisingly, when comparing the higher-risk donor subgroup within 

each perfusion cohort, we have also now shown superior graft survival outcomes in the higher-risk 

dual perfusion group, despite the utilization of a back-table portal venous flush in all cases. Our 

definition of higher risk donors incorporated factors from the DRI/ET-DRI, albeit without the 

inclusion of some factors such as graft shipping that did not fit the data-set utilized. Recipient 

parameters were not considered in the subgroup analyses for the same reason they are not included 

in risk scores such as the DRI, as the idea is to facilitate an appropriate donor-recipient ‘match’ 

based on the characteristics of the donor organ. 

Unexpectedly, we also found that shipped grafts had better outcomes in comparison to unshipped 

grafts, even after accounting for multiple confounders. The only significant difference between 

both groups was mean donor age (40.2 and 43.1 years for shipped and unshipped grafts, 

respectively; p = 0.030), whilst CIT, SWIT, donor COD, perfusion route, and recipient 

characteristics did not significantly differ. Interestingly, shipping did not significantly impact 

outcomes in the higher risk donor cohort. This finding is difficult to explain, and warrants further 

investigation, although it may relate to center-level transplantation practices and patient selection, 
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which could not be fully accounted for in our models, and altered retrieval-related practices in 

anticipation of shipping. 

The influence of either perfusion method on pancreas transplantation outcomes in the context of 

multi-organ procurement is yet to be definitively ascertained. Dual perfusion adds theoretical risks 

when the pancreas is to be retrieved, due to pancreatic congestion from the potential blockage of 

pancreas perfusate outflow secondary to the portal venous catheter.
1, 2

 This can be avoided by

transecting the portal vein immediately proximal to the pancreas and inserting the cannula directly 

into the proximal portal vein.
16

 The ideal perfusion approach during combined liver and pancreas

retrieval must account for the impact on both organs, and the relative risks and benefits weighed 

especially against the life-saving nature of liver transplantation. 

Data-base analyses have inherent disadvantages that must be acknowledged. Missing data, 

inconsistent recording, and loss to follow-up patients are some clear limitations. Furthermore, each 

center had slightly different perfusion protocols within the aortic-only and dual perfusion groups, 

which may have made a small impact on results. Most importantly, each state in Australia has one 

liver transplantation unit that may vary with respect to donor and recipient selection. As aortic and 

dual perfusion practices tend to split by individual units, our results will at least somewhat reflect 

differing unit patient selection bias. However, as the majority of livers retrieved within a state are 

also transplanted in the same state, we incorporated the transplant center in multivariate analyses 

to help account for any confounding introduced by this factor. The perfusion/preservation fluid 

utilized can impact graft outcomes, and as such only grafts that were given a UW final flush and 

preservation were included.
17, 18

 The exclusion of partial liver transplants and patients undergoing

repeat transplantation slightly narrows the generalizability of this analysis, however this was 

deemed necessary due to a likely significant confounding of results.
13, 19, 20

At the least, results from this review warrant further confirmation and investigation in the form of 

a multi-center trial with prolonged recipient follow-up. Any such trial should also analyze 

pancreas transplantation outcomes in recipients from the same donor. Another future consideration 

is any potential impact of hypo- and/or normothermic perfusion of the liver, which has not yet 

been clinically implemented in Australasia but is gaining significant prominence in the global 

setting.
21, 22
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The ultimate goal of organ retrieval in the age of multi-organ procurement should be a unified 

approach amongst all retrieval surgeons and units that maximizes organ yield and transplantation 

outcomes from the different organs retrieved. Transplant centers should endeavor to 

collaboratively investigate and discuss this issue, and organize further studies, such that uniform 

global guidelines can be developed. 
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Chapter 13 – Discussion 

 

This thesis has explored selected aspects of abdominal organ procurement and preservation as 

targets for improvement and modification with the aims of enhancing donor organ availability and 

recipient transplantation outcomes. Abdominal organs are retrieved by the same underpinning 

processes, including similar surgical techniques, perfusion procedures, and perfusion fluids. As 

such, the breadth of topics covered in this thesis encompasses kidney, liver, and pancreas in situ 

perfusion and subsequent static or dynamic preservation, and in particular their impacts on organ 

function and damage secondary to ischaemia-reperfusion injury (IRI). 

 

Over the course of this chapter, each aspect of organ procurement and preservation explored in this 

thesis will be addressed. The order of topics pursued, in addition to models and methods utilised 

will be justified. Results will be placed in the context of the existing literature, and clinical 

implications and future directions will then be explored.  
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13.1 Machine perfusion and renal IRI – more organs, better outcomes 

13.1.1 JUSTIFICATION OF SCIENTIFIC METHODS AND MODELS USED 

Part 1 of this dissertation commences with a systematic review of the literature, with identification 

of knowledge gaps and fruitful targets for further research. These then form the basis for the 

development and optimization of pre-clinical models for IRI and MP. The ultimate aim is to 

provide better options and/or evidence for application to clinical practice. 

 

The directions pursued stemmed from the following considerations: 

(i) Primary basis of work – as described over the course of this dissertation, better methods of 

deceased donor kidney resuscitation, preservation, and/or repair are required to minimize or 

reverse the comparatively greater deleterious impacts of IRI on DCD and higher KDPI 

kidneys. 

(ii) MP provides a real, viable, and potentially implementable solution to this problem. However, 

MP is not a uniform procedure, incorporating the utilisation of multiple types of 

machines/devices, and can be modified in many different ways including temperature, 

oxygenation, and perfusion fluid constituents (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. MP preservation entails kidney perfusion via the renal artery using a mechanical pump-based mechanism. 

Many options are available with respect to how MP parameters are set. Alterations may be made to perfusion 

temperature (normothermic, hypothermic, or subnormothermic), timing (pre-implantation, continuous, or some 

other combination with CS), pressure/pulsatility (pulsatile, or non-pulsatile), and fluid constituents (blood, or non-
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blood-based; oxygenated, or non-oxygenated, and so on). Further heterogeneity is potentially introduced to the 

process when drug therapy(s) are added to the circuit, or other modifications are made. Depending on the exact 

methods and constituents used, graft viability assessment parameters and the significance of different biomarkers 

will vary. 

 

(iii) A multi-centre RCT in Europe compared continuous HMP to CS, showing a significant 

reduction in DGF rates, and a significant improvement in one-year graft survival, in favour of 

the HMP group.
1
 Three-year data from this trial showed an ongoing survival benefit in the MP 

kidneys. Subgroup analyses showed that this benefit was present in DBD and DBD-ECD 

kidneys, but not DCD kidneys, and the impacts of DGF were significantly more pronounced 

in DBD kidneys.
2
 A DCD-specific publication related to this study demonstrated a significant 

reduction in DGF rates, although the DGF rate for MP kidneys was still high at 53.7%, and 

there were no impacts upon graft survival.
3
 A later UK-specific RCT comparing HMP and CS 

in the DCD setting contradicted the Moers et al. trial, with no reduction in DGF rates in HMP-

treated kidneys.
4
 

(iv) As a result of conflicting data, and the equivocal impacts of HMP especially in DCD kidneys, 

uptake from the Moers et al. trial has not been as widespread as anticipated. Furthermore, 

other pre-clinical and clinical studies had been published regarding the potential utilisation of 

MP with modified settings, including the use of oxygenated HMP, subnormothermic MP 

(SNMP), NMP, and perfusion fluid modification using different IRI-targeting therapies.
5-9

 

(v) Previous systematic reviews had been published, amalgamating cumulative evidence 

comparing the clinical outcomes of HMP in comparison to CS.
10-14

 However, the role of the 

aforementioned modifications, including the use of oxygenation, temperature manipulation, 

and/or the addition of drugs, had not been considered in these analyses.  

Due to the ongoing clinical equipoise with respect to implementation of MP practices, and 

significant variations in approach available to transplant centres, we performed an updated and 

wide-ranging systematic review and meta-analysis that incorporated both clinical and pre-clinical 

data.
15

 I was able to present the findings and major conclusions from this review, in addition to a 

update of all relevant renal MP literature, at a specially-convened Transplantation Society of 

Australia and New Zealand (TSANZ) MP workshop.
16
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Factors considered by the renal committee at this meeting included the equivocal impacts of MP 

on graft survival, especially in the DCD setting, and the emergence of other MP modalities that 

may ultimately prove to be superior. In particular, the possible advantages of NMP were noted, in 

particular the opportunity to more objectively assess the graft during its normal metabolic 

processes. Evidence considering the efficacy of only one hour of pre-implantation NMP in 

comparison to the longer times required for (non-oxygenated) HMP increased enthusiasm for the 

NMP approach.
1, 5, 17

 Furthermore, the applicability of the Moers et al. clinical trial to the 

Australian setting was questioned. This was largely attributed the longer ischaemic times seen in 

Europe in comparison to Australia, in addition to logistical difficulties associated with transporting 

perfusion machines on the small private jets commonly used for the transport of organ 

procurement teams in Australia. 

 

We therefore decided to undertake local development of a NMP system that could provide a 

platform for testing porcine kidneys, then progressing to testing on discarded human kidneys. The 

main clinical and scientific problems we wished to tackle included: 

(i) Could we develop a working, optimized NMP system that would provide realistic and 

invaluable exposure to the NMP process, prior to potential implementation in the clinical 

transplantation setting? 

(ii) Is there a way to use NMP to circumvent systemic donor and/or recipient treatment to 

ameliorate renal IRI, especially in the DCD setting, using therapies that have been extensively 

tested in the pre-clinical setting? This is essential in the Australian donor setting, and also 

relevant to other places such as the UK, as ante-mortem interventions are not allowed in the 

DCD setting as discussed in the Chapter 1. 

(iii) Could we provide further evidence for the superiority of one hour of NMP in comparison to 

CS alone, and if yes then what is the mechanistic basis for this? This is especially important to 

understand prior to clinical implementation, as pre-clinical evidence from Toronto suggests 

that longer periods of kidney NMP (> 8 hours) are superior to one hour of pre-implantation 

NMP, which the suggestion that the one hour period may in fact be damaging.
18, 19

 

NMP model 

The main barrier to undertaking this work was the lack of an accessible commercial device at its 

commencement. As such, I had to develop my own NMP set-up. The basis of this system was a 
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pump allowing the circulation of perfusion fluid through an arterial filter, oxygenator, and heat-

exchanger, prior to achieving renal perfusion via the renal artery. Components were purchased, 

borrowed, or self-designed, in consultation with cardiac perfusionists, and optimized or modified 

over a period of months. Eventually I was able to modify an existing cardio-pulmonary bypass 

(CPB) set-up to allow NMP of porcine kidneys, adding/replacing components as appropriate to 

accommodate renal perfusion. Our initial system was based upon the Leicester/Cambridge circuit, 

with potential system alterations further informed by the work of the Toronto NMP group.
5, 19, 20

 

Modifications tested included the addition of a colloid component to the perfusion circuit, the use 

of carbogen instead of 100% oxygen, pressure versus flow-controlled perfusion, and the utilisation 

of a vasodilator infusion in the circuit.
21-23

 Verapamil was employed as the vasodilator instead of 

prostacyclin, which is used by the Cambridge group, as verapamil is more cost-effective, easy to 

obtain, and no less effective with respect to its pharmacodynamics.
21

 

 

A roller pump was used instead of a centrifugal pump due to availability and funding restrictions. 

However, there was insignificant pump-related haemolysis during perfusion, and cardiac studies 

also show that pump-related haemolysis can be minimized to a similar level to centrifugal pumps 

by adjusting occlusion settings.
23, 24

 Support was obtained from a cardiac perfusionist team during 

the NMP set-up and optimization period, with advice obtained about features such as tubing 

configuration, the ideal oxygenator/reservoir/heat-exchanger, safe use of the pump and 

contingencies such as a recirculation line, appropriate roller pump occlusion settings, and accurate 

pressure monitoring.  

 

A significant issue that was encountered was the inability to acquire a commercial perfusion 

chamber that was appropriate for the kidney. As such, a perfusion chamber was designed and 3D-

printed to allow for an appropriate support structure for kidneys whilst simultaneously facilitating 

free venous drainage during NMP.
25

 Unlike both the Cambridge and Toronto set-ups, the renal 

vein was not cannulated. The two primary reasons for this approach were as follows: (i) During 

our initial porcine kidney NMP experiments, it was noted that the venous cannula was obstructing 

renal outflow and causing a significant rise in circuit mean arterial pressure. Although the effects 

of this could have been dampened by utilizing a larger cannula, we opted for a system that allowed 

the vein to remain open because (ii) Avoidance of a cannula/ligature of the renal vein would mean 

the vein does not have to be shortened prior to potential transplantation. The perfusion chamber 
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also facilitated perfusate salvage, such that the NMP circuit could be maintained, without loss of 

blood from the circuit. 

 

Overall, the NMP set-up developed in our lab using porcine test kidneys was safe, consistent, and 

reproducible in its function. This allowed us to proceed to further porcine and discarded human 

kidney NMP experiments, and provided a platform through which one or more agents could be 

given to further repair the kidney. Indeed, our published systematic review analyzing MP in 

kidney transplantation showed significant untapped potential with respect to the use of MP as a 

mechanism for therapeutic drug delivery.
15

 NMP in particular is a promising modality for 

pharmaco-manipulation of the kidney owing to the near-physiologic temperature and pH achieved, 

which is ideal for drug(s) to exert their therapeutic effects.
26

 As cells will have normal metabolic 

processes during NMP, pathways that are dysregulated by ischaemic injury can be more easily 

modified by pharmacologic intervention. Therefore one of the primary aims of this thesis was to 

employ the developed NMP set-up as a direct renal drug delivery modality, to allow targeting of 

the IRI process and modify perfusion characteristics. Prior to proceeding with this work, a 

candidate drug for delivery using NMP was identified and tested in a small animal model. 

  

IRI model in mice 

In order to be able to utilise NMP as a means to provide direct anti-IRI drug therapy to high KDPI 

and/or DCD kidneys, we needed to investigate what types of pharmacologic agent(s) would be of 

benefit, confirm optimal dose rates and timing, and ascertain whether combining one or more 

drugs would be synergistic or antagonistic. We utilised a rodent warm IRI model for 

approximation of the DCD setting, as a quicker, less laborious, and less expensive means to help 

answer some of these questions. Furthermore, we opted for a relatively simple IRI model instead 

of a rodent kidney transplant model due to time limitations, and the technical difficulties 

associated with this procedure (n.b. surgeries were primarily conducted by myself).
27

 

 

The three agents tested in the rodent model were CD47-blocking antibody (αCD47Ab), 

recombinant thrombomodulin (rTM), and soluble complement receptor 1 (sCR1). Out of many 

possible agents that have been tested in the IRI setting and could have been used here, these three 

agents were utilised owing to their (i) clear demonstrated benefit in IRI, (ii) ease of availability, 
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and (iii) potential for clinical translation as each agent has been administered in the clinical trial 

setting (not necessarily for the amelioration of IRI). 

 

IRI experiments were initially conducted in rats due to a larger vascular caliber, as an attempt was 

made to simulate direct intra-renal perfusion of drug(s) by injection via the infra-renal aorta (Fig. 

2). However, rats had a high post-procedural mortality and/or needed to be euthanized due to hind 

limb paralysis (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Direct intra-renal perfusion of drug(s) in a rat model. The aorta is clamped above and below the left renal 

artery, and accessed using a 30 gauge (G) cannula. The distal aspect of the left renal vein is also clamped, and a 

venotomy is made distal to this. The kidney is perfused via the aortic cannula, with any renal effluent expelled via the 

venotomy site on the renal vein. 

 

As such, we changed our protocols to instead use a mouse model with intra-venous drug injection. 

C57BL/6 mice were used due to our broader research group’s extensive experience with these 

mice in the context of IRI models.  

 

Drug delivery using NMP 

We were then able to proceed to the testing of the feasibility and efficacy of intra-renal αCD47Ab 

(porcine-specific) administration to porcine DCD kidneys using NMP. The other drugs tested in 
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the murine model, sCR1 or rTM, were not utilised due to the superiority of αCD47Ab in affecting 

a wide range of pathophysiological pathways changed by IRI. The combination of αCD47Ab and 

sCR1 was not used for the NMP model, as this combination did not provide significant synergy in 

comparison to the use of αCD47Ab in the murine renal IRI experiments. However, in the future it 

is clear that these alternate drugs, combinations, or indeed any other anti-IRI drug, can be 

conveniently administered and tested using NMP, either in a large animal model or using 

discarded human kidneys. The αCD47Ab was given in 2 phases: (i) immediately after the cold 

UW flush (to account for potential antibody uptake by PRBCs in the circuit), and (ii) into the 

arterial line immediately preceding the commencement of NMP (such that the majority of the drug 

dose passes through the kidney, before encountering the rest of the PRBC mass). The drug was 

dosed based on renal weight, and not the pig’s whole weight. The fact that clear drug binding was 

evident in the renal parenchyma at the end of NMP, in addition to the αCD47Ab having a 

beneficial effects on renal flow/resistance parameters, and some features of IRI, indicated that 

NMP can successfully facilitate intra-renal drug delivery at a significantly reduced dose in 

comparison to systemic administration.  

 

Human kidney NMP 

Discarded human kidneys present a precious resource, and must therefore be used in a manner that 

is respectful, appropriate, and maximizes their scientific utility. As such, the discarded human 

kidney work was performed in a staggered manner after gaining sufficient porcine NMP 

experience. The human discarded kidney NMP project was performed for the following reasons: 

(i) to gain experience with human kidney perfusion as a prelude to a clinical trial/application in 

transplantation; (ii) to identify a reasonable baseline regarding perfusion parameters, urine output, 

and biochemical changes in the perfusate; (iii) to compare the use of allogeneic (banked) PRBCs 

with autologous (donor) PRBCs during NMP; (iv) to elucidate the passenger leukocyte load of 

deceased donor kidneys; and (v) to compare the mechanistic basis of any potential superiority of 

brief pre-implantation NMP in comparison to CS alone, especially with respect to IRI and gene 

expression changes.  

 

Aim (v) was especially pertinent as we approached the decision to undertake a local clinical trial 

using NMP faced with uncertainty of the NMP duration that should be utilised. Nicholson and 

Hosgood have successfully employed one hour of pre-implantation NMP and shown superiority in 
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comparison to CS alone in ECD and DCD kidneys.
5
 These results have formed the basis for their 

ongoing UK multi-centre RCT.
28

 In contrast, Selzner’s group in Toronto has suggested that one 

hour of NMP is inferior to NMP undertaken for 8 or more hours, albeit only in porcine auto-

transplantation studies.
29, 30

 The one hour time period was chosen for our discarded human studies 

as we felt this is much more readily implementable locally. As such, further mechanistic evidence 

supporting the efficacy of this perfusion time would give our own centre additional impetus for the 

clinical implementation of NMP. Our unique study design, which allowed for the comparison of 

CS alone with CS and one hour of NMP, involved the use of kidney pairs from the same donor, 

thereby eliminating the influence of any donor-derived variability. In the absence of the ability to 

transplant these kidneys, ex vivo allogeneic whole blood reperfusion was used after a simulated 

SWIT of 30 minutes to simulate transplantation. Such a technique has been used by Nicholson’s 

group in animal studies amongst others, and provides an acceptable compromise.
31-34

 

 

13.1.2 RENAL MACHINE PERFUSION WORK UNDERTAKEN IN THE CONTEXT OF WIDER 

PERFUSION-RELATED RESEARCH – BACK TO THE FUTURE  

MP preservation of the kidney has seen emerging popularity over the past 10-20 years, however 

this era does not represent the first use of this technology in the sphere of transplantation. Indeed, 

HMP-based set-ups were commonly utilised in the 1970s and early 1980s, only to be supplanted 

by CS.
35

 The decline of MP was related to the development of better cold preservation solutions, 

more common utilisation of DBD donors, and evidence suggesting that MP performed no better 

than CS.
35, 36

 When considering the MP literature, it is clear that its impacts are disparate based on 

the perfusion settings used, and on the type of deceased donor, i.e. DCD or DBD, and much 

current work is focusing on its role in the DCD and/or ECD (high KDPI) setting. Prior to fitting 

the NMP-related work presented in this thesis into the general storyline of renal MP research and 

utilisation, current evidence for other MP modalities first needs to be discussed. Only then can an 

accurate comparison be made that informs future decisions regarding their comparative utility(s). 

This section will focus on renal MP research, and will be supplemented in particular from liver 

MP evidence where the clinical renal experience is sparse or non-existent. 

 

HMP 

The resurgence of MP utilisation is related to the increasing use of marginal and/or DCD donors, 

which require improved methods of organ preservation and assessment, in addition to the 
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development of better, more portable machines and perfusion solutions.
35

 HMP has been the 

dominant modality in the recent peak of MP use in the sphere of kidney transplantation. Postulated 

mechanisms of action for HMP include better protection and preservation of endothelial integrity 

and by extension subsequent tubular and glomerular function, in addition to a possible 

amelioration of IRI by reducing pro-inflammatory cytokine and adhesion molecule expression.
15, 37

 

Another important consideration is that organs preserved and stored by simple CS are likely to 

have minimal remaining intravascular preservation solution due to gravity-related vascular 

collapse.
38

 This means that minimal preservation fluid is at the organ/vessel interface during 

transportation, and ischaemic end-products are allowed to accumulate within the organ.
38

 HMP in 

contrast likely ensures a homogenous and continuous distribution of cold preservation fluid within 

the organ during the perfusion period, improving the efficacy of the fluid used.
39

 

 

It is unlikely that HMP alone will have an uptake that is significantly greater than its current 

utilisation world-wide, and modifications to the HMP process and/or alternative forms of MP will 

most likely come into greater prominence in order to help further close the organ supply-demand 

gap by using more marginal organs. Indeed, in the Australian setting only one kidney transplant 

centre uses HMP, and largely on an ad hoc basis. Along the spectrum of dynamic preservation 

approaches, the current viable options are indicated in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Dynamic preservation options currently available and/or tested during organ procurement and/or 

transportation. A spectrum exists from cold (hypothermic) methods to warm (normothermic) methods. Hypothermic 

temperatures generally range from 0-10 ⁰C, in comparison to 20-34⁰C for subnormothermia, and 34-37⁰C for 

normothermia. HRP and NRP are the hypothermic and normothermic versions of abdominal regional perfusion 
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(ARP). SNMP may also incorporate the concept of controlled oxygenated rewarming (COR). Persufflation entails 

gaseous perfusion of an organ with oxygen or an oxygen-mixture, either in an antegrade fashion via its arterial 

inflow, or through the vein in a retrograde manner. HMP – hypothermic MP; HMP-Ox – oxygenated HMP; HRP – 

hypothermic regional perfusion; MP – machine perfusion; NMP – normothermic machine perfusion; NRP – 

normothermic regional perfusion; SNMP – subnormothermic MP. * Dynamic modalities can be used continuously, or 

in conjunction with CS (i.e. before or after CS).   

 

A technically minor but potentially crucial modification of HMP involves surface oxygenation of 

the perfusion solution, i.e. HMP-Ox. The efficacy and mechanistic effects of HMP-Ox in 

comparison to HMP alone are not well-elucidated, especially in clinical studies. It is important to 

note that kidneys retain ongoing metabolism during hypothermic storage, albeit at a significantly 

reduced rate. Our systematic review/meta-analysis attempted to compare oxygenated and non-

oxygenated HMP in pre-clinical studies.
15

 Although only a limited number of studies were eligible 

for inclusion, there was some indication that HMP-Ox results in better tubular preservation and 

subsequent function.
15

  

 

HMP-Ox for deceased donor liver preservation perhaps gives a better indication of the potential 

benefits of this technique in kidney transplantation. Pre-implantation liver HMP-Ox, or 

“Hypothermic Oxygenated Perfusion” (HOPE), has shown equivalent short-to-medium-term 

transplantation results for DCD livers in comparison to DBD livers.
40, 41

 Its effect is believed to be 

dependent on oxygenation in combination with hypothermia, and does not seem to be related to 

the HMP component alone.
42, 43

 During ischaemia, and in the absence of oxygen, there is 

mitochondrial succinate accumulation; after reperfusion, this results in a reversal of electron 

transport, mitochondrial dysfunction and significant ROS formation, which may be exacerbated by 

normothermic perfusion systems.
43-45

 HOPE is purported to mitigate against these effects by 

allowing a replenishment of ATP in hypothermic conditions in which minimal energy is required, 

reduce succinate accumulation, and prevent significant ROS generation upon transplantation.
43, 45

 

There are 2 major European trials investigating the utility of HMP-Ox in kidney transplantation 

are nearing completion and publication, and will better delineate the future role of such a 

technology: (i) ‘COPE-POMP’ – pre-implantation HMP-Ox versus CS in the ECD donors, and (ii) 

‘COPE-COMPARE’ – continuous HMP-Ox versus continuous HMP in DCD III donors aged ≥ 50 

years.
46, 47
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SNMP and COR 

Subnormothermic machine perfusion (SNMP) presents another dynamic kidney preservation 

option that lies further to the right of the temperature spectrum, and can also incorporate the 

concept of controlled oxygenated rewarming (COR). However, these approaches have not yet been 

utilised in the context of clinical kidney transplantation, and evidence is limited to pre-clinical 

studies. The concept underlying SNMP is the achievement of an elevated organ temperature such 

that direct hypothermia-related injury is avoided. If temperatures of 20-25 ⁰C are employed then 

an oxygen carrier is generally not required in the perfusate, in contrast to near-physiologic 

temperatures up to 34 ⁰C which will require an oxygen-carrier.
46, 48

 Hoyer et al. compared 

continuous SNMP (20 ⁰C) (including surface oxygenation to achieve a venous oxygen 

pressure/tension [PvO2] that is greater than 150 mmHg [20 kPa]) to continuous HMP-Ox or CS in 

a porcine DCD model, showing significantly better perfusion and functional characteristics in the 

SNMP group after simulated transplantation.
8
 Similarly, better perfusion characteristics were also 

demonstrated in the SNMP group in comparison to HMP by Gage et al.
49

 A recent study compared 

SNMP using Steen solution to NMP using whole blood alone or whole blood and Steen solution, 

again demonstrating improved resistance/flows in the SNMP group in comparison to NMP with 

whole blood but not NMP with Steen and whole blood.
50

 However, potential therapeutic 

mechanisms of action promoting the use of SNMP in these studies are not clear, and no animal let 

alone human transplantation studies have been performed to strengthen any notion of efficacy for 

SNMP in kidney transplantation. 

 

COR in contrast currently has a better-defined underlying mechanistic basis, although it has also 

not yet been employed in the context of clinical kidney transplantation. As its name implies, COR 

entails staged rewarming of the graft in an oxygenated environment, with the express aim of 

avoiding the more sudden temperature flux and the associated mitochondrial dysfunction inherent 

with reperfusion during transplantation after removal from a CS environment.
46, 48, 51

 The potential 

merit of this concept was first demonstrated by Minor and colleagues using porcine livers that 

were subjected to CS followed by COR, SNMP, or HMP-Ox, and then ex vivo whole blood 

reperfusion.
52

 Both COR and SNMP reinstituted ATP levels prior to reperfusion, whilst after 

simulated transplantation the COR group had significantly reduced hepatocellular biochemical 

injury and apoptosis, and enhanced bile production and flow parameters, in comparison to the 



235 
 

other treatment groups.
52

 Schopp et al. later utilised COR in porcine kidneys, demonstrating 

improved renal function, reduced injury, and enhanced mitochondrial recovery in comparison to 

continuous HMP or pre-‘implantation’ HMP-Ox.
33

 A more recent porcine kidney study has further 

shown the beneficial effects related to mitochondrial recovery imparted by COR.
34

 

 

Another possibility within the realm of SNMP is the performance of SNMP at a near-physiologic 

temperature (~30-34 ⁰C). However, once again human transplantation studies investigating this 

approach are still lacking.
48

 Brasile and colleagues from the Netherlands are perhaps the greatest 

proponents of this approach, employing the use of an exsanguinous metabolic support (EMS) 

media during SNMP, which contains an acellular tissue-culture medium-like perfusate that is 

supplemented with bovine haemoglobin.
53-56

 Their work provides some support for the notion that 

DCD kidneys in particular do not tolerate cold ischaemic damage specifically, and require ex vivo 

perfusion at a near-physiologic temperature during the preservation period and prior to 

transplantation.
53

  

 

MP in the context of other approaches – ARP (NRP/HRP) and Persufflation  

The exact role of MP with respect to other technologies such as ARP and persufflation has not yet 

been clearly defined. The concept of ‘continuous’ NMP in the DCD setting, commenced during 

retrieval by the institution of NRP, and continued ex vivo using NMP, is potentially attractive. 

Preliminary porcine liver transplantation evidence demonstrated the superiority of this approach 

over CS alone, or NRP alone.
57

 More recently, a Chinese group demonstrated a case of 

“ischaemia-free” transplantation of the liver by instituting liver NMP in vivo in the donor (as 

opposed to NRP of all abdominal organs), which was continued ex vivo and then in vivo in the 

recipient whilst the graft was being implanted.
58

 Data with regards to the use of such approaches in 

kidney transplantation is currently lacking. 

 

Persufflation as a technology has extremely limited clinical transplantation evidence, and there is 

no human evidence comparing its efficacy to MP.
59

 Few porcine studies demonstrate potential 

advantages over MP with respect to IRI and oxidative stress, although the technique has so far 

only been compared to HMP.
60-62

 The sparse human studies that have utilised renal persufflation in 

the setting of transplantation have at the least demonstrated that this technique is feasible, although 
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its use has not taken off and significant further work is required to define its role in deceased donor 

kidney preservation.
63

  

 

NMP 

The NMP literature is slightly more complicated to interpret in the context of all other MP work as 

NMP can potentially fulfill multiple purposes, including:  

(i) Reconditioning and/or rejuvenation of a high-risk graft;  

(ii) Simulation and/or provision of an objective assessment of graft function; 

(iii) Acting as a vehicle for the delivery of drugs/therapies to the kidney; and/or 

(iv) In some pre-clinical studies NMP is employed as a simulated model for transplantation to    

test the effects of new therapies in an isolated organ perfusion set-up.  

A significant proportion of the current evidence and studies exploring the utility of renal NMP has 

been outlined in other sections of this dissertation and discussion. However as is the case with 

other MP modalities, many questions still need to be answered such that consensus 

recommendations and guidelines can be developed informing routine clinical use.  

 

Utilisation for functional graft assessment 

When considering the use of NMP in the context of all MP modalities, perhaps it is best to 

consider what NMP can offer that is unique compared to the other technologies. By virtue of re-

instituting normothermic, sanguinous, and oxygenated perfusion, NMP is arguably the best 

modality to achieve an objective assessment of graft function whilst its metabolic machinery is 

fully switched on. Therefore more informed decisions regarding graft utilisation or discard can be 

made. NMP of the liver has reached significant prominence in the recent past, and serves as a good 

case-in-point for the utility of NMP with respect to graft functional assessment, whereby great 

importance is placed upon such factors as bile production and bile pH.
64, 65

  

 

Although there is less clinical experience with renal NMP in comparison to the liver, NMP of the 

kidney can similarly objectively simulate graft function through measurement of parameters such 

as urine output, creatinine clearance, tubular function, and renal oxygen consumption.
31, 66, 67

 

Nicholson and Hosgood developed a renal allograft assessment score incorporating macroscopic 

appearance (score 1-3, from best to worst), RBF (score 1 if < 50 ml/min/100 g), and urine output 
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(score 1 if < 43 ml in 60 mins), however this is currently only able to predict graft function up 

until 12 months post-transplantation.
66

  Other potential markers that can be utilised to strengthen 

the confidence of this assessment includes the measurement of urinary neutrophil gelatinase-

associated lipocalcin (NGAL) and endothelin-1 (ET-1), which correlate with perfusion parameters 

and the donor’s terminal creatinine level.
68

 Selzner’s group in Toronto also demonstrated that 

perfusion parameters (specifically IRR) correlate with post-transplant renal function, albeit in 

pigs.
69

 In addition, perfusate acid-base parameters (pH, bicarbonate, and base excess) and levels of 

AST and lactate from hour 1-4 of NMP negatively correlated with post-transplant creatinine 

levels.
69

  

 

Poor macroscopic in situ perfusion and clearance of blood from the kidney during DCD retrieval is 

an important cause for renal discard prior to transplantation.
67, 70

 An objective assessment of 

macroscopic perfusion appearance during renal NMP in particular is an immediate advantage 

provided over HMP that can be readily used to reduce graft discard rates. This was shown by 

Nicholson and Hosgood, who demonstrated that out of 10 kidneys that were declined by all 

transplant centres and subsequently assessed using NMP, eight were declined due to poor 

macroscopic perfusion (after in situ and back-table perfusion), and five of these were successfully 

transplanted post-NMP.
67

 Similarly in our discarded human kidney NMP series, we obtained two 

DCD kidneys that were discarded due to poor in situ perfusion after retrieval. However, both 

developed excellent global macroscopic perfusion during NMP (within the first 5-10 minutes) and 

were therefore potentially transplantable. 

 

In our own discarded human kidney series, a combination of WIT and CIT clearly correlated with 

RBF and IRR during NMP in DCD but not DBD kidneys, suggesting that other markers may be 

more relevant in the DBD setting. Furthermore, we demonstrated that urine output is a relatively 

good indicator of glomerular and tubular function, but confidence in this assessment should 

incorporate measurement of creatinine clearance and/or fractional excretion of sodium. It is also 

essential that urine output is interpreted in the context of the exact perfusion circuit and 

constituents utilised, as the outputs achieved in all major published NMP series including our own 

are grossly different.
18, 23, 66, 71

 In concordance with the discarded kidney series from the Oxford 

study, we were unable to demonstrate lactate clearance during brief NMP, and question the value 

of this marker in kidney NMP.
71

 Our findings in combination with those from other groups 
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suggest that obvious improvements in tubular condition (light microscopy) should also not be 

expected during NMP, and likely cannot be used as a marker for effective or successful 

perfusion.
18, 71-75

  

 

Overall, NMP biomarkers with sufficient predictive value for long-term graft function remain 

lacking. Any scoring system or biomarker measurement will still need to be supplemented with 

relevant donor and recipient parameters to inform decisions regarding transplantation until more 

NMP clinical transplantation experience is gained.
67

 

 

A novel modality for the delivery of therapeutic agents 

Another distinct advantage of NMP is that it is likely to be more useful than hypothermic 

modalities as a direct delivery mechanism for intra-renal therapeutics such as anti-IRI 

drugs/agents, gene therapies, and mesenchymal stem cells or other reparative agents. The primary 

reason for this is that the kidney retains close to physiologic metabolism during NMP, providing 

an ideal environment for such agents to function optimally.
26, 76, 77

 In comparison, if given during 

HMP, drug/therapeutic agent uptake is altered, and downstream cascades and effects of the 

therapy are sub-functional at lower temperatures.
77

 Interestingly however, in the setting of a 

randomized trial Guarrera and colleagues demonstrated improved renal function after renal HMP 

using Vasosol solution in comparison to HMP with Belzer MP solution.
9
 Vasosol solution 

contains additional protective mediators, including N-acetylcysteine (antioxidant function), 

nitroglycerin and prostaglandin E1 (vasodilatory function), and L-arginine (nitric oxide 

precursor).
9
 These agents would not be reliant upon binding to the kidney to exert their effects 

however, and it is more plausible that any beneficial effects would have been exerted during 

reperfusion in the recipient in the context of residual retention of such agents in the renal 

vasculature.    

 

Our porcine work exploring the feasibility and efficacy of CD47-blocking antibody therapy to the 

kidney during NMP quite clearly demonstrates the utility of NMP as a drug-delivery modality. Not 

only is effective antibody binding to the kidney achieved and retained at the end of NMP, but 

blockade of the CD47 receptor was shown to have beneficial effects during NMP itself with 

respect to perfusion and some IRI-related parameters. This study also demonstrated how renal 

NMP can be used to potentially rapidly translate murine IRI agents into a more clinically 
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meaningful setting, rather than languishing in the pre-clinical phase for an indefinite period due to 

constraints related to donor and/or recipient systemic therapies. Drug delivery during NMP can 

potentially be made even more targeted by such approaches as conjugating nanoparticles to anti-

CD31 antibody (against endothelial cells), achieving more prolonged and specific drug 

accumulation in the renal vasculature.
74

 Other possible therapies that have been tested in the pre-

clinical NMP setting with beneficial effects include vasodilatory nitric oxide and carbon 

monoxide-releasing agents, erythropoietin, and cobalt protoporphyrin as a means to induce 

increased expression of protective heme-oxygenase 1 (HMOX-1).
55, 78, 79

  

 

The potential of NMP to treat and enhance the kidney will only increase in the future, as other 

therapies such as stem cells, growth factors, and gene-altering technology is explored and 

perfected. Brasile et al. demonstrated that the addition of fibroblast growth factors to their EMS 

media and normothermic perfusion for 24 hours enhanced the cytoskeletal integrity and synthetic 

function of canine kidneys with severe warm ischemic damage.
56

 The reparative effects of 

mesenchymal stem cells delivered via NMP are also currently being studied and hold considerable 

promise.
80

 Furthermore, the use of gene therapies, either vector-based or through RNA 

interference approaches, may be potentially safer and more effective if delivered during NMP, 

although all of these techniques still remain experimental.
77

 If NMP is undertaken with such a 

reparative aim in mind, it is likely that it needs to be performed over a longer period such that gene 

or stem-cell treatments have enough time to exert their relevant effects. Achievement of efficacy 

during brief pre-implantation NMP will rely on effective retention of the specific agent in 

appropriate areas/cell types in the kidney, such that they can fulfil their functions after 

transplantation.
77

 Another possible crucial role for NMP in the future is the modulation of the 

recipient’s alloimmune response to the donor allograft by depleting passenger leukocytes from the 

graft, which we showed exist in large numbers in human kidneys and migrate into the NMP 

circuit. Other groups have also started investigating other methods for immunomodulation during 

NMP, such as the use of RNA interference methods to silence MHC expression on the vascular 

endothelium prior to implantation.
81

 

   

System physiology and individual components 

Although some physiologic conditions are established and maintained during NMP, it is false to 

claim that the entirety of the kidney’s in vivo homeostatic function is replicated on the circuit. As 
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an example, the kidney is an organ that is exquisitely reliant upon neuro-hormonal feedback, 

including the renin-angiotensin-aldosterone system (RAAS).
82

 The involvement of the RAAS 

system during ex vivo NMP has not been extensively investigated. We attempted to measure 

aldosterone and renin levels during porcine perfusion; although aldosterone was detectable, no 

renin was detected.
23

 The implications of this need to be characterized in significantly more detail 

in the future. Artificial conditions created during NMP readily explain the fact that prolonged or 

indefinite periods of organ NMP are very difficult to maintain. Our human perfusion data 

displayed significant changes in serum electrolyte and acid-base content during the course of 

perfusion, with similar changes shown by other groups.
69, 71

 Weissenbacher et al. suggested 

recirculation of urine within the circuit as a potential solution to allow for the maintenance of 

perfusion fluid homeostasis, which readily allowed 24 hours of discarded human kidney NMP.
71

 

The exact mechanisms of this however remain to be elucidated. 

 

An appropriate oxygen-carrying source is required to support tissue metabolism under 

normothermic conditions. Blood (PRBCs) represents the most obvious modality, and in general 

can be allogeneic (banked) or autologous. Allogeneic blood in particular may confer disadvantages 

with respect to potentially stimulating an immune response, resource utilisation considerations, 

and additional logistical considerations with respect to cross-matching and sourcing.
83

 Most 

clinical NMP set-ups utilize allogeneic blood, including for the liver and kidney studies that have 

already been undertaken.
5, 65

 Alternatively, the St Vincent’s team’s DCD cardiac NMP set-up 

employs autologous whole blood collected immediately prior to cold in situ perfusion during 

retrieval.
84

 For the first time, we showed in our discarded human kidney NMP series that 

autologous PRBCs isolated from the donor blood simultaneous to cold perfusion can also be 

effectively used for renal NMP. Potassium-rich perfusion fluid was centrifuged and removed from 

the PRBCs, and NMP was performed without overt deleterious effects in comparison to banked 

blood. A mean haemoglobin (Hb) level of 43.8 g/L was achieved using autologous blood in our 

circuit; this is above the 30 g/L threshold established in porcine liver NMP studies that is required 

to sustain adequate oxygenation.
85

 Non-blood based oxygen-carrying sources have also been 

explored in the context of kidney NMP (pre-clinical) with variable success, and are summarized 

elsewhere; the clinical utility of these remains to be seen.
77

 However, the clinical use of one such 

agent (HBOC-201) has recently been described in a series of six machine-perfused livers, with 

subsequent successful transplantation.
86
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NMP duration 

It is important to emphasize that although the aforementioned studies in Toronto suggested 

superior results after 8-16 hours of renal NMP in comparison to one hour of pre-implantation 

NMP (a) these were porcine and not human studies, and pigs were all sacrificed at 8 days post-

operatively, and (b) by post-operative days 7-8, serum creatinine results in study groups having 1, 

8, or 16 hours of pre-implantation NMP all converged to very similar levels without intervening 

dialysis.
18, 19

 Furthermore, no true mechanistic basis was provided conferring an advantage to 

prolonged NMP. No true clinical comparisons exist between brief and prolonged NMP of the 

kidney, and at this stage a truly informed recommendation cannot be made for the clinical setting. 

Prolonged renal NMP is however feasible and safe, and can safely extend the preservation period 

of the kidney.
18, 71, 87

 

 

Mechanistic basis for NMP 

The mechanistic basis for any therapeutic efficacy attributable to renal NMP is not yet clearly 

defined. It is difficult to amalgamate evidence from different NMP groups in this regard as only 

the Cambridge group has used this technology clinically, and other groups that have performed 

pre-clinical renal NMP have done so for variable time periods with/without different perfusion 

settings and fluid constituents. Furthermore, (i) analyses comparing kidney pairs from the same 

donor with or without NMP have so far been lacking, and (ii) exploration of gene expression 

changes have largely been performed after NMP, rather than also investigating the ultimate 

alterations induced after transplantation. 

 

Published evidence clearly displays that renal NMP is associated with a significant pro-

inflammatory state. Stone et al. showed using porcine kidneys an NMP-induced pro-inflammatory 

response characterized by increasing perfusate concentrations of interferon-γ, IL-1β, IL-6, IL-18, 

and CXCL-8, amongst others, and a large efflux of passenger leukocytes.
88

 There was a 

corresponding increase in cell-free DNA, indicative of cell death, which may either indicate cell 

damage on the circuit, or the clearance of cells already irreversibly damaged by the preceding 

ischaemic state and/or damage to the circulating leukocytes.
88, 89

 However, this inflammatory state 

did not compromise kidney perfusion, which displayed favorable flow characteristics, urine 
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output, and oxygen consumption over six hours of NMP.
88

 Hosgood et al. had also shown 

increases in pro-inflammatory cytokines during porcine kidney NMP, including levels of IL-6.
90, 91

 

 

Our discarded human kidney NMP study was very unique in comparison to previously published 

projects in that for the first time, in this study we attempted to gain a better understanding of the 

functional and mechanistic alterations induced by NMP using paired human kidney discards. This 

analysis was made all the more powerful by gaining sequential samples at the end of CS, after one 

hour of NMP, and also after simulated transplantation with whole allogeneic blood. After NMP, 

the same kidneys had a significant inflammatory signature as determined by mRNA expression, 

and in particular induction of cytokine-mediated signaling. This pro-inflammatory state cytokine 

and chemokine-state remained, and was significantly increased in comparison to CS counterparts 

even after simulated transplantation. However, amongst paired kidneys in our analyses, after 

simulated transplantation the NMP kidneys had better RBF and IRR, glomerular and tubular 

functional parameters, and less IRI as characterized by TUNEL staining, oxidative stress, and 

complement activation. Brief NMP after CS has proven to have a conditioning (beneficial) effect 

in other pre-clinical studies, and after clinical transplantation.
5, 32, 77, 91

 Furthermore, porcine 

kidneys exposed to 30 minutes of warm ischemia have been shown to have better function after 

eight hours of NMP and auto-transplantation in comparison to immediate transplantation without 

any intervening storage period or NMP.
87

 Taken together, all of these results indicate that NMP 

has a conditioning and/or reparative effect in kidneys damaged by warm ischaemia. 

 

From the summation of existing studies and our data, there is strong evidence for the induction of 

a pro-inflammatory state by NMP, which exceeds the inflammatory response in kidneys that have 

undergone CS and subsequent whole blood reperfusion. However, there is also very convincing 

evidence for a NMP-mediated protection with respect to renal flows, functional parameters, and 

IRI-related damage. The question that then follows is how can these two apparent contradictions 

be reconciled to explain the possible (beneficial) mechanistic basis for NMP?  

 

The first hypothesis is that this inflammatory response may in fact be beneficial rather than 

damaging. Indeed, pathway analyses outlined in our study indicated the promotion of cell survival 

and proliferation, with a reduction in cellular death and apoptosis. In our paired human data, there 

was no elevation of mRNA expression of traditional ‘anti-inflammatory’ cytokines such as IL-4, 
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IL-10, IL-13, interferon-α (IFN-α), and transforming growth receptor-β (TGF-β). However, it is 

well-known that many cytokines can fulfil both pro- and anti-inflammatory functions, depending 

on timing, the cellular environment, and type(s) of target cells.
92, 93

 IL-6, which has well-known 

pro-inflammatory functions, also has proven anti-inflammatory effects, both of which are 

mediated by different signaling pathways (classical IL-6 signaling versus trans signaling).
94

 

Interestingly, in the context of acute kidney injury (AKI), IL-6 signaling via these different 

pathways can simultaneously promote or ameliorate renal injury, and effects differ based on 

whether the pathway is stimulated before or after the injurious stimulus.
95

 Furthermore, induction 

of renal protection seems to be mediated by a reduction in oxidative stress.
95

 In our RNA 

expression data, pathway analyses showed up-regulation of the positive regulation of tyrosine 

phosphorylation of the STAT protein pathway (p = 0.008); this pathway is induced by IL-6 

signaling. Furthermore, IL-6 expression was significantly enhanced in the NMP kidneys compared 

to CS controls (log-fold change 3.8, p < 0.01). Hosgood et al. have also shown significant IL-6 

increases (actual levels as measured by ELISA) in NMP kidneys.
91

 Therefore the elevation of IL-6 

after NMP and subsequent whole blood reperfusion may be postulated to be protective. However, 

further investigation will be required to more clearly prove this hypothesis.  

 

An important alternative consideration for the increased inflammatory response one hour after 

whole blood reperfusion of NMP kidneys is that it is occurring to the same degree in both NMP 

and CS kidneys after reperfusion, but peaks after the 1-3 hour time period. As such, it is possible 

that a similar increase may be expected in the CS kidneys if simulated transplantation was allowed 

to run for longer. Indeed, NMP kidneys were overall exposed to two hours of reperfusion (one 

hour of NMP followed by one hour of whole blood reperfusion [simulated transplantation]), in 

comparison to just one hour for their CS counterparts. Cytokine levels increase in time-dependent 

manner during reperfusion, with Stone et al. showing significantly higher inflammatory cytokine 

levels in the NMP circuit after 6 hours of NMP in comparison to the first hour.
88

 Therefore, the 

reduced cytokine/chemokine mRNA expression in the CS may merely reflect that levels were 

measured prior to a peak in these factors. This question would be answered by allowing simulated 

transplantation to run for a significantly longer period, and re-measuring cytokine expression 

profiles. Furthermore, cytokine levels should be measured in the circuit and correlated with RNA 

expression levels. Additional consideration should also be given to the massive leukocyte 

efflux/mobilization induced by NMP, and the possible contribution of these mobilized and/or 
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dying leukocytes to the enhanced pro-inflammatory response post-whole blood reperfusion. A 

similar signature has been observed in NMP of the lungs.
89

 

 

Another putative mechanism that is likely to explain some of the protection offered by NMP in 

comparison to CS is the induction of heat shock proteins (HSPs). Nicholson and Hosgood’s group 

have demonstrated significantly elevated HSP-70 expression in the NMP kidneys compared to CS 

after simulated transplantation (i.e. whole blood reperfusion).
79, 91

 Our human RNA expression 

data also shows significant elevations of RNA expression for a multitude of different types of HSP 

in the NMP kidneys, including HMOX-1 and genes encoding HSP-70. HSP-related pathways were 

also upregulated, including the HSP binding protein pathway (p = 0.004) and the response to 

unfolded proteins (p < 0.001). HSPs play a cytoprotective role in response to numerous injurious 

stimuli, including IRI, with a protective effect largely mediated through their repair and/or 

removal of damaged proteins, and interference of other apoptotic and inflammatory pathways.
96-99

 

HSPs are a critical component of ischemic preconditioning (IPC), and indeed NMP may function 

via similar methods as IPC.
100-103

 

 

There are many other possible mechanisms that may play a part after the performance of NMP. 

Brief NMP increases the ATP-to-ADP ratio at the end of the preservation period in comparison to 

CS kidneys.
32

 An improved maintenance of aerobic metabolism may enhance mitochondrial 

recovery and/or reduce mitochondrial damage; this has not been investigated in renal NMP, but 

has however been shown in livers preserved by NMP.
104

 HSPs, including HSP 70, also mediate 

mitochondrial protection, which is another possible mechanism for the beneficial effects of 

NMP.
105, 106

 In addition, kidneys undergoing longer periods of NMP display significantly elevated 

parenchymal cell proliferation and repair (as indicated by the Ki-67 index) after transplantation in 

comparison to CS kidneys.
87

 Indeed, cell proliferation pathways were significantly altered in our 

human kidney series in NMP compared to CS kidney pairs. 

   

Importantly, NMP induces a unique form of ischaemia-reperfusion that occurs in the absence of 

damaging leukocytes, platelets, or complement. Notably, leukocyte-depletion of the blood used 

during NMP has significant beneficial effects.
107, 108

 Leukocytes, complement, and platelets are all 

essential contributors to IRI in transplant allografts, and their absence during the NMP process 



245 
 

may allow graft reconditioning and restoration of energy stores outside of a damaging 

environment, with a subsequent reduction in IRI in the recipient.
87

 

 

Overall, it can be seen that there are many potential mechanisms and pathways induced and/or 

altered by the NMP process, which are summarized in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Possible mechanisms of action contributing to the likely beneficial effects of NMP in donor allografts. 

 

NMP in the context of other types of MP 

Beyond the likely advantages of NMP in graft assessment and the delivery of therapeutic 

agents/substances, the exact comparative role of NMP with respect to other MP modalities needs 

to be more clearly defined. A large part of the problem faced when deciding between different MP 

approaches lies in the lack of head-to-head comparisons between each technique in the context of 

clinical kidney transplantation. One of the most important reasons these comparisons do not exist 

is that the individual utility of each approach with respect to the current gold standard of CS has 

still not been defined, mainly due to high levels of variability associated with each method. As an 

example, although renal HMP has been utilised in clinical transplantation for a considerable period 

of time, there is little long-term efficacy data, and trials exploring modifications to the process 

such as oxygenation are still being conducted, as discussed above. This again leads us to the 

question of when and how we should utilize NMP for deceased donor kidneys. This question will 
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require further insights into the mechanisms lying at the heart of NMP, in particular after different 

time points during NMP and post-transplantation, and will be further informed upon completion of 

the renal NMP trial conducted by Nicholson and Hosgood in the UK.
109

 Overall, the complexities 

of MP decision-making and utilisation are outlined in Fig. 5.  

 

Perhaps in the future we will be using a combination of approaches in the same kidney. A 

particularly appealing combination may consist of initial COR, taking advantage of the 

mitochondrial recovery associated with this technique, followed by NMP for objective graft 

assessment, conditioning, and also possible resuscitation using therapeutic agents. Indeed, Porte’s 

group in The Netherlands has demonstrated the feasibility of combining different MP settings in 

the context of clinical liver transplantation, with grafts initially undergoing HMP, followed by 

COR, and finally NMP (Netherlands Trial Register Number NTR5972).
86
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Figure 5. Possible decision tree and relevant factors to consider when considering the use of different MP modalities. 

‘Intermediate’ MP implies MP wedged between 2 significant periods of CS, e.g. when a graft is transported using CS 

to a central MP laboratory, after which it is sent to the recipient centre once again via CS. Different dynamic 

techniques may also be used in combination. CS – cold static storage; DCD – donation after circulatory death; HMP – 

hypothermic MP; HMP-Ox – oxygenated HMP; KDPI – kidney donor profile index; MP – machine perfusion; NMP – 

normothermic machine perfusion; NRP – normothermic regional perfusion; SNMP – subnormothermic MP.  

  

13.2 Abdominal organ procurement, in situ perfusion, and subsequent cold preservation – 

back to basics 

Cold in situ perfusion and subsequent CS is an effective and time-honoured approach to the 

preservation of deceased donor organs prior to transplantation. However even the basic principles 

upon which this is based are complicated by the existence of varying techniques, 

perfusion/preservation fluids, and surgical preferences, and an optimal approach is not defined.  

 

If we are truly going to be able to compare studies between CS and MP then surely standardized 

principals must be applied in the undertaking of CS. For this reason, epidemiologic techniques 

were applied to try and enhance our understanding of optimal procurement, perfusion, and static 

preservation in the context of liver and pancreas transplantation. A primary stimulus for this work 

was the lack of consistency in guidelines and practices between units/jurisdictions regarding the 

procurement of these organs. This is especially problematic as MP continues to gain increasing 

prominence, especially in the sphere of liver transplantation,
65

 and trial outcomes and 

interpretation may be confounded by variable in situ perfusion practices prior MP commencement. 

Furthermore, we felt that there was considerable scope to try and improve procurement and CS 

practices with subsequent positive impacts on liver and pancreas transplantation. This is essential 

in resource-limited settings where MP would be difficult to institute on a wider scale. It is also 

very important for institutions where MP use is being explored and/or utilised more commonly, as 

CS is generally the comparator against which the efficacy of MP is ascertained. 

 

13.2.1 IN SITU PERFUSION AND PRESERVATION FLUIDS 

The pancreas is often procured together with the liver and kidneys, and therefore multi-organ 

procurement and perfusion/preservation techniques account for the outcomes of all of these 

organs. As outlined in the Introduction (section 1.2.4), kidney transplant outcomes are not grossly 
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influenced by the type of perfusion/preservation fluid used, and this consideration is more 

important for the pancreas and liver. UW is the dominant perfusion fluid used, and we showed that 

its use resulted in biochemically superior results after pancreas transplantation, without a 

significant impact on other outcomes.
110

 A corresponding analysis in liver transplantation revealed 

no obvious superiority of UW over other fluids, in particular HTK, which contradicted some large 

registry analyses.
111-113

 A more recent large registry analysis of the Eurotransplant region however 

once again failed to demonstrate a difference between UW and HTK in liver transplantation after 

adjusting for all relevant risk factors and accounting for clustering of fluid use by geographic 

region/retrieval units.
114

 However overall, owing to the possible benefits of UW use for the 

pancreas, especially for more prolonged preservation periods, it is advisable to continue to use UW 

in the multi-organ retrieval setting. Well-conducted prospective studies with long-term outcome 

data are lacking, and need to be pursued in the future, especially if we ever hope to be able to 

pursue direct head-to-head comparisons between CS and MP of any type. 

 

13.2.2 IN SITU PERFUSION ROUTES 

Liver perfusion during procurement can be conducted using the aortic-only route, or via the aorta 

and portal vein. Data from our systematic review and meta-analysis indicated no difference 

between these routes in standard DBD liver transplantation.
111

 However, only short-term outcomes 

could be analyzed, and most existing studies had small numbers with insufficient follow-up. 

Furthermore, one paper indicated significantly inferior graft survival outcomes after aortic-only 

perfusion in expanded criteria/higher risk grafts.
115

 This catalyzed our analysis of the Australia and 

New Zealand Liver Transplant Registry, which allowed for comparison of prospectively collected 

graft and patient survivals over a prolonged period, with a larger patient subset.
116

 Although we 

once again demonstrated the absence of significant outcome differences between aortic or dual 

perfusion after transplantation of standard criteria DBD livers, a significant difference became 

apparent in higher risk donors, despite accounting for relevant confounders.
116

 Interestingly, a very 

recent publication from Italy also aortic and dual perfusion with respect to the risk of developing 

ischemic-type biliary lesions (ITBL), and showed a significantly greater risk in the aortic-only 

group for donors 80 years or older.
117

 Taken together, these results suggest the significant role 

perfusion route can play in liver transplantation outcomes, especially as we continue to use higher 

risk/marginal donor livers to meet organ demand. A multi-centre RCT is warranted comparing 

aortic-only and dual perfusion in liver transplantation, especially focusing on suboptimal donors. 
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The contribution of each technique to DCD liver transplant outcomes also needs to be more clearly 

defined. Only then can a unified approach that optimizes CS of the liver be advocated, against 

which newer technologies such as MP will need to be compared. 

 

13.3 Closing remarks 

We are currently at an exciting juncture in the history of transplantation, especially with regards to 

the availability of newer technologies designed to enhance deceased donor organ preservation, 

increase organ utilisation, and optimize subsequent transplantation outcomes. As the demand for 

organs continues to rise, it is imperative that the transplantation community continues to improve 

organ preservation methods, presents a more unified approach, and utilises new technologies in the 

fight to increase organ availability and further enhance transplantation outcomes. These aims must 

be targeted at multiple fronts, and must begin with appropriate management of the donor. Organ 

retrieval must be undertaken in a meticulous manner, and may be enhanced by the use of such 

approaches as abdominal regional perfusion. In most settings, such a technique is still not available 

or logistically feasible, and cold in situ perfusion remains a cornerstone. Subsequent to organ 

retrieval, a significant number of preservation options have become available, and range from the 

existing gold standard of cold static storage, to dynamic methods such as machine perfusion. 

Furthermore, a combination of static and dynamic techniques can also be employed, especially if 

this will help enhance the feasibility of utilizing beneficial dynamic approaches. There is still 

significant scope to improve cold static storage, especially for the liver and pancreas, which is 

imperative if any true incremental benefit of machine perfusion is to be calculated. However 

perhaps the most exciting aspect of machine perfusion is that there is potentially no limit to the 

advantages afforded by this technique, if not now, then in the future.  There are many 

opportunities related to the use of machine perfusion, not least with respect to graft conditioning, 

but also graft assessment and repair, which may be further improved by the routine use of 

therapeutic agents directly delivered to organs during ex vivo perfusion.  

 

Indeed, it is clear that cold static storage will always be limited in what it can achieve, and it is 

unlikely that significant further advances will be made in this regard (Fig. 6). Currently, we ask the 

question of how we can improve organ procurement and preservation to slow the rate of organ 

decline prior to transplantation. Perhaps we should now be asking how we can enhance graft 

capability and function above that demonstrated in the organ donor. Therefore, we will be able to 
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resuscitate and use organs that previously never would have been deemed suitable for 

transplantation, expanding the donor pool whilst simultaneously improving transplantation 

outcomes.  

 

 

 

 

 

 

 

 

 

Figure 6. Organ procurement and preservation practices impact organ quality at transplant. Organ quality is a 

function of storage/preservation time and donor-related factors, and most organ preservation research is aimed at 

reducing the organ’s rate of decline prior to transplantation. A more radical approach is indicated on the right, which 

will be reliant upon advanced therapeutics delivered using such methods as machine perfusion. 
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SDC Chapter 3 

Number Search terms 
1 (Kidney OR renal).mp 

2 ((Dynamic perfusion) OR (machine perfusion)).mp 

3 1 AND 2 

 

SDC 1: Search strategy – combined search of EMBASE, Medline and Cochrane databases. 
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Author, Year Species/sex* 
(weight) 

Study groups (duration) Animals, 
n 

Model 
(Experimental 
Period) 

Ischemic times  

CIT
η
 (hr) WIT 

(min)
φ

 

Hosgood et al., 
2011_1 

113
 

Large white 
pigs (60-70 
kg) 

HMP (18 hr) NR DCD^ (10 min) 
Ex vivo 
perfusion** (3 hr) 

18 10 

CS (18 hr) NR 18 10 

CS (4 hr)  HMP (14 hr) NR 18 10 

Minor et al., 2015 
60

 
German 
landrace pigs 
(25-30 kg) 

HMP [Custodiol-N] (20 hr) NR DBD^ 
Auto-transplant 
*** (7 d) 

20.4 2-4 

HMP [UW
α
] (20 hr) NR 20.5 2-4 

Gallinat et al., 2014 
114

 
German 
landrace pigs 
(25-30 kg) 

CS (18 hr) 6 DBD 
Ex vivo perfusion 
(1.5 hr) 

18 Min^^ 

CS (18 hr)  HMP (1 hr) 6 19 Min 

CS (18 hr)  HMP (4 hr) 6 23 Min 

Hoyer et al., 2014 
68

 
Female 
landrace pigs 
(~30 kg) 

HMP (21 hr) 5 DCD (30 min) 
Ex vivo perfusion 
(2 hr) 

21 30 

HMP (21 hr) + 21% O2 5 21 30 

HMP (21 hr) + 100% O2 5 21 30 

Thuillier et al., 
2013 

40
 

Large white 
pigs (30-35 
kg) 

HMP (22 hr) 4 DCD (60 min) 
Auto-transplant 
(3 m) 

22 60 

HMP (22 hr) + 100% O2 4 22 60 

Gallinat et al., 
2012_2 

39
 

German 
landrace pigs 
(25-30 kg) 

HMP (21 hr) 5 DBD 
Auto-transplant 
(7 d) 

21 Min 

HMP (21 hr) + O2! 5 21 Min 

Codas et al., 2012 
115

 
Large white 
pigs (~40 kg) 

CS [UW]
 
(22 hr) 7 DCD (60 min) 

Auto-transplant 
(1 m) 

22 60 

HMP [UW] (22 hr) 7 22 60 

CS [IGL-1] (22 hr) 7 22 60 

HMP [IGL-1] (22 hr) 7 22 60 

Gallinat et al., 
2012_1 

116
 

German 
landrace pigs 
(25-30 kg) 

CS (21 hr) 5 DBD 
Auto-transplant 
(7 d) 

21 Min 

HMP (21 hr) 5 21 Min 

CS (19 hr)  HMP (2 hr) 5 21 Min 

Schreinemachers et 
al., 2010 

117
 

Female 
landrace pigs 
(~30 kg) 

CS [HTK] (20 hr) 6 DCD (30 min) 
Auto-transplant 
(7 d) 

20.2 30 

CS [PS] (20 hr) 6 20.1 30 

HMP (20 hr) 6 20.2 30 

Hosgood et al., 
2010 

118
 

Large white 
pigs (60-70 
kg) 

CS [HOC] (18 hr) 6 DCD (10 min) 
Ex vivo perfusion 
(3 hr) 

18 10 

CS [HTK] (18 hr) 6 18 10 

CS [UW] (18 hr) 6 18 10 

HMP (18 hr) 6 18 10 

Koetting et al., 
2010 

67
 

Female 
landrace pigs 
(25-30 kg) 

CS (20 hr) 6 DBD 
Ex vivo perfusion 
(1.5 hr) 

20 Min 

CS (18 hr)  HMP + 21% O2 (2 
hr) 

6 20 Min 

CS (18 hr)  HMP + 100% O2 (2 
hr) 

6 20 Min 

Le Manna et al., 
2009 

119
 

Large white 
(female) pigs 
(weight NR) 

CS (15 hr) 6
β
 DCD (10/15/30 

min) 
Auto-transplant 
(4 d) 

15 10/15/30 

HMP (15 hr) 6
β
 15 10/15/30 

Treckmann et al., 
2009 

70
 

German 
landrace pigs 
(weight NR) 

CS (4 hr) 7 DCD (60 min) 
Auto-transplant 
(7 d) 

4 60 

HMP (4 hr) 5 4 60 

ROP (4 hr) 6 4 60 

SDC 3: Baseline animal study characteristics. 
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Maathuis et al., 
2007 

45
 

German 
landrace pigs 
(20-30 kg) 

CS (20 hr) 5 DBD 
Auto-transplant 
(7 d) 

20.4 2-6 

HMP at 30 mmHg (20 hr) 5 20.4 2-6 

HMP at 60 mmHg (20 hr) 5 20.4 2-6 

Manekeller et al., 
2005 

120
 

German 
landrace pigs 
(20-25 kg) 

HMP [UW] (18 hr) NR DCD (40 min) 
Allotransplant

γ
 (6 

d) 

18 40 

HMP [HTK] (18 hr) NR 18 40 

Lindell et al., 2005 
121

 
Female 
beagle dogs 
(5-10 kg) 

CS (24 or 72 hr) NR DCD (60/75 min) 
Auto-transplant 
(10 d) 

24/72 60/75 

HMP [UW1] (24 or 72 hr) NR 24/72 60/75 

HMP [UW2] (24 or 72 hr) NR 24/72 60/75 

Minor et al., 2005 
43

 
German 
landrace pigs 
(20-25 kg) 

CS (18 hr) 5 DCD (40 min) 
Allotransplant (7 
d) 

18 40 

HMP [HTK] (18 hr) 5 18 40 

HMP [UW] (18 hr) 5 18 40 

Nicholson et al., 
2004 

122
 

Large white 
(female) pigs 
(35-70 kg) 

CS (24 hr) 10
δ
 DBD & DCD (30 

min) 
Auto-transplant 
(14 d) 

23.3 Min/30 

HMP (24 hr) 10
δ
 22.9 Min/30 

Hansen et al., 1997 
123

 
New Zealand 
white rabbits 
(weight NR) 

CS (24 hr) NR DBD & DCD 
(60/90 min) 
Ex vivo perfusion 
(0.75 hr) 
 

24 Min/60/9
0 

HMP (24 hr) NR 24 Min/60/9
0 

Booster et al., 1993 
124

 
Female 
beagle dogs 
(10-12 kg) 

CS (24 hr) 
 

6 DCD (30 min) 
Auto-transplant 
(14 d) 

24 30 

CS (2 hr)  HMP (22 hr) 6 24 30 

McAnulty et al., 
1989 

125
 

Female 
mongrel dogs 
(~20 kg) 

HMP (120 hr) 4 DBD 
Auto-transplant 
(10 d) 

120 Min 

HMP + 0.5 mM Ca (120 hr) 8 120 Min 

HMP + 1.5 mM Ca (120 hr) 12 120 Min 

HMP + 0.5 mM Ca & Ch (120 
hr) 

8 120 Min 

HMP + 1.5 mM Ca & Ch (120 
hr) 

6 120 Min 

Gallinat et al., 2013 
47

 
German 
(female) 
landrace pigs 
(25-30 kg) 

CS (19.5 hr) 6 (A) DBD 
Ex vivo perfusion 
(time NR) 

19.5 Min 

CS (18 hr)  HMP, non-
pulsatile (1.5 hr) 

6 19.5 Min 

CS (18 hr)  HMP, pulsatile 
(1.5 hr) 

6 19.5 Min 

CS (19.5 hr) 5 (B) DBD 
Auto-transplant 
(7 d) 

19.5 Min 

CS (18 hr)  HMP, pulsatile 
(1.5 hr) 

5 19.5 Min 

Brasile et al., 2001 
56

 
Foxhounds 
(20-30 kg) 

CS (18 hr) 4 DCD (30 min) 
Auto-transplant 
(14 d) 

18 30 

WP (18 hr) 4 18 30 

CS (18 hr)  WP (3 hr) 4 21 30 

CS (18 hr)  WP (18 hr) 4 36 30 

WP (18 hr)  CS (12 hr) 4 30 30 

WP (18 hr)  CS (24 hr) 4 42 30 

Brasile et al., 2002 
126

 
Canine (type 
NR) 

WP (18 hr) 10
ε
 DCD (45/120 min) 

Auto-transplant 
(time NR) 

18 45/120 

Re-implantation without WP
ζ
 4

ε
 WIT 45/120 

Brasile et al., 
2002_1 

127
 

Foxhounds 
(20-30 kg) 

WP (18 hr) 5 DCD (120 min) 
Auto-transplant 
(10 d) 

18 120 

HMP (18 hr) 2 18 120 

Re-implantation without WP
ζ
 2 WIT 120 
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Brasile et al., 2005 
65

 
Canine (type 
NR) 

WP (24 hr) 2 DCD (120 min) 
Auto-transplant 
(time NR) 

24 120 

WP + FGF (24 hr) 4 24 120 

HMP (24 hr) 2 24 120 

Re-implantation without MP
ζ
 2 WIT 120 

Bagul et al., 2008 
128

 
Large white 
pigs (60-70 
kg) 

CS (2 hr) 6 DCD (10 min) 
Ex vivo perfusion 
(3 hr) 

2 10 

CS (18 hr) 6 18 10 

HMP (18 hr) 6 18 10 

CS (16 hr)  WP (2 hr) 6 18 10 

Stubenitsky et al., 
2000 

129
 

Foxhounds 
(35-40 kg) 

CS (24 hr) 11 DCD (30 min) 
Auto-transplant 
(14 d) 

24 30 

CS (24 hr)  WP (3 hr) 11 27 30 

van der Wijk et al., 
1980 

130
 

Mongrel dogs 
(~22 kg) 

HMP (96 hr) 6 DBD 
Auto-transplant 
(14 d) 

96 Min 

HMP (48 hr)  WP (4 hr)  
HMP (44 hr) 

6 96 Min 

HMP (144 hr) 6 144 Min 

HMP (72 hr)  WP (4 hr)  
HMP (68 hr) 

6 144 Min 

Rijkmans et al., 
1984 

131
 

Mongrel dogs 
(21-24 kg) 

HMP (144 hr) 8 DBD 
Auto-transplant 
(14 d) 

144 Min 

HMP (72 hr)  WP (3 hr)  
HMP (69 hr) 

11 144 Min 

Hosgood et al., 
2013 

132
 

Large white 
pigs (60-70 
kg) 

CS (24 hr) 6 DCD (10 min) 
Ex vivo perfusion 
(3 hr) 

24 10 

CS (23 hr)  WP (1 hr) 6 24 10 

Hosgood et al., 
2011_2 

133
 

Male 
landrace pigs 
(37-44 kg) 

HMP (22 hr) 6 DCD (30 min) 
Auto-transplant 
(10 d) 

22 31.5 

HMP (20 hr)  WP (2 hr) 6 21.6 33 

Patel et al., 2014 
134

 
Large white 
pigs (60-70 
kg) 

CS (24 hr) 6 DCD (10 min) 
Ex vivo perfusion 
(3 hr) 

24 10 

CS (23 hr)  WP at 55 mmHg 
(1 hr) 

6 24 10 

CS (23 hr)  WP at 75 mmHg 
(1 hr) 

6 24 10 

Hoyer et al., 2014 
59

 
Female 
landrace pigs 
(~30 kg) 

CS (7 hr) 5 DCD (30 min) 
Ex vivo perfusion 
(2 hr) 

7 30 

HMP (7 hr) 5 7 30 

WP (7 hr) 5 7 30 

Schopp et al., 2015 
58

 
German 
landrace pigs 
(25-30 kg) 

HMP (18 hr) 6 DBD 
Ex vivo perfusion 
(1.5 hr) 

18 Min 

CS (18 hr)  WP (3 hr) 6 21 Min 

CS (18 hr)  HMP + O2 (3 hr) 6 21 Min 

Metcalfe et al., 
2002 

135
 

Large white 
pigs (80-100 
kg) 

CS (2 hr)  HMP (16 hr) 6 DBD 
Ex vivo perfusion 
(2 hr) 

18 8 

CS (2 hr)  WP (16 hr) 6 18.1 8 

Lindell et al., 2013 
136

 
Adult beagle 
dogs (weight 
NR) 

HMP, RM3 (24 hr) 8 DCD (45 min) 
Auto-transplant 
(7 d) 

24 45 

HMP, LifePort (24 hr) 8 24 45 

HMP, LifePort/non-pulsatile 
(24 hr) 

4 24 45 

Yland et al., 1996 
44

 Adult 
mongrel dogs 
(18-23 kg) 

CS (72 hr) 6 DBD 
Auto-transplant 
(15 d) 

72 Min 

HMP at high flow (72 hr) 6 72 Min 

HMP at low flow    (72 hr) 6 72 Min 
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Totals (%) Porcine: 25 
studies (65.8) 

CS
θ
: 23 studies (60.5) CS

θ
: 161 

(27.6)  
DBD: 15 studies 
(39.5) 

CS
ϯ
: 20.1 

(2-72) 
 
 

CS
ϯ
: 25 (0-

120) 
 

 Canine: 12 
studies (31.6) 

HMP
ι
: 33 studies (86.8) HMP

ι
: 

286 
(49.1) 

DCD: 23 studies 
(60.5) 

HMP
ϯ
: 21 

(4-144) 
HMP

ϯ
: 30 

(0-120) 
 

 Rabbit: 1 
study (2.6) 

WP
ι
: 14 studies (36.8) WP

ι
: 122 

(20.9) 
Auto-transplant: 
23 studies (60.5) 

WP
ϯ
: 24

η
  

(7-144) 
WP

ϯ
: 30 

(0-120) 

 Other: N/A Other: 1 study (2.6) Other: 14 
(2.4) 

Allotransplant: 2 
studies (5.3) 

 Overall: 38 
studies 

 Overall: 
583 (100) 

Ex vivo perfusion: 
13 studies (34.2)  

Ca – calcium; Ch – chlorpromazine; CS – cold (static) storage; CIT – cold ischemic time; d – day(s); DBD – 
donation after brain death; DCD – donation after circulatory death; F/U – follow-up; FGF – fibroblast 
growth factor; HMP – hypothermic machine perfusion; HOC – hyperosmolar citrate; min – minimal; HTK 
– histidine-tryptophan-ketoglutarate; IGL – Institut Georges Lopez; NR – not recorded; O2 – oxygen; PS – 
polysol; ROP – retrograde oxygen persufflation; WIT – (initial) warm ischemic time; WP – warm (machine) 
perfusion; UW – University of Wisconsin 
  
* If specified 
** Ex vivo perfusion indicates preservation post-nephrectomy (either by cold storage or machine 
preservation) followed by perfusion in an external circuit, using either blood or an alternative solution 
*** Auto-transplant indicates preservation post-nephrectomy (either by cold storage or machine 
preservation) followed by re-implantation in the animal, along with contralateral nephrectomy 
φ Initial WIT 
^ A DCD model involved the artificial creation of a warm ischemic period prior to nephrectomy through 
the ligation or clamping or renal vessels for a defined period of time (indicated in parentheses); this did 
not occur in the DBD model experiments (WIT here is simply the period from sacrifice (if applicable) to 
nephrectomy) 
^^ WIT for DBD recorded as “min” when NR (minimised simply by experimental design; also see note ^) 
! Percentage NR 
α See Table 1 for further details regarding preservation solutions 
β Each group was split into a further 3 groups by WIT 
γ Allotransplant denotes transplantation into another animal of the same species, necessitating 
immunosuppressive therapy 
δ Each group was split into a further 2 groups (‘0’ and 30 min WIT) 
ε Each group was split into a further 2 groups by WIT 
ζ In this control group, kidneys were reimplanted post-warm ischemia without any further preservation 
η In studies with WP, value given is the total ischemic time 
θ Studies in which there was a comparator group using CS only 
ι HMP value includes any studies where HMP was used with/without CS, whilst WP value includes any 
studies where WP was used with/without CS and/or HMP 
ϯ Expressed as median (range) of all studies 
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Parameter HMP vs. CS HMP vs. CS (DCD) HMP vs. CS (ECD) 

DGF  0.77, 0.69-0.87
ϯ 

(45.2; 15) 

0.78, 0.66-0.91
ε 

(0; 6) 

0.67, 0.42-1.08
ζ* 

(32.0; 2) 

PNF 0.75, 0.47-1.19
ζ 

(0; 9) 

1.04, 0.44-2.49
ζ 

(0; 5) 

0.28, 0.09-0.89
φ   

(0; 2) 

Graft failure 
(1-year)  

1.25, 0.20-7.62
ζ 

(88.9; 2) 

NA** NA** 

SDC 4: Summary of human meta-analyses. Data expressed as RR, ± 95% CI (I2; n studies) 
for DGF and PNF, and HR for graft survival. 
 

CI – confidence interval; CS – cold (static) storage; DBD – donation after brain death; DCD – donation after 
circulatory death; DGF – delayed graft function; ECD – expanded criteria donor; HMP – hypothermic machine 
perfusion; HR – hazard ratio; PNF – primary non-function; MP – machine perfusion; NA – not applicable; OR – 
odds ratio; WP – warm (normothermic) perfusion 
  
* p = 0.097; only two studies available for this comparison 
** Insufficient data to perform meta-analysis 
ζ p not significant 
φ p < 0.05 
ε p < 0.01 
ϯ p < 0.001 
 

14 App. 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

S
ta

n
d

a
rd

 E
rr

o
r

Log risk ratio

Funnel Plot of Standard Error by Log risk ratio(B) 

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

S
ta

n
d

a
rd

 E
rr

o
r

Log risk ratio

Funnel Plot of Standard Error by Log risk ratio(A) 

SDC 5: Funnel plots for the assessment of publication bias in prospective human studies 
comparing HMP to CS in terms of (A) DGF and (B) PNF.  
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SDC 6: Quality/risk of bias assessment for cohort studies included in the human meta-
analyses using the Newcastle-Ottawa Quality Assessment Scale. 
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SDC 7: Quality/risk of bias assessment for randomized control trial data included in 
human meta-analyses using the Cochrane Collaboration’s tool for assessing risk of bias. + 
Low risk of bias, – High risk of bias, ? Unclear/uncertain risk of bias. 

 

Study Adequate sequence 
generation 

Allocation 
concealment 

Blinding Incomplete outcome 
data addressed 

Free of selective 
reporting 

Free of other bias 

Alijani et al. (1985) 
93

 

      
Mozes et al. (1985) 

115
 

      
Halloran et al. (1987) 

91
 

      
Heil et al. (1987) 

92
 

      
Matsuno et al. (1994) 

45
 

      
Veller et al. (1994) 

121
 

      
van der Vliet et al. (2001) 

85
  

      
Moers et al. (2009) 

21
 

      
Jochmans et al. (2010)* 

80
 

      
Watson et al. (2010) 

20
 

      

* This study is an extension of the Moers et al.21 paper, with the recruitment of additional patients 
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Parameter WP vs. CS  WP vs. HMP HMP-Ox vs. HMP no-Ox 

Creatinine, 
peak 

-1.72 (-3.09 to -0.34)
φ 

(77.2; 6)
 
 

-1.66 (-3.19 to -0.14)
φ 

(82.0; 4) 
-0.39 (-1.85 to 1.08)

ζ      

(55.8; 2) 

CrCl, peak 2.08 (-1.83 to 6.00)
ζ   

(89.9; 2) 
0.83 (-0.50 to 2.15)

ζ    

(69.2; 3) 
1.18 (-0.39 to 2.76)

ζ         

(79.4; 4) 

FeNa, peak  NA* NA* -1.54 (-2.54 to -0.54)
ε    

(0; 2) 
 

Survival NA* 1.29 (0.52 to 2.07)
ε     

(46.9; 5) 
 

NA* 

SDC 8: Summary of animal meta-analyses. Data expressed as SMD, ± 95% CI (I2; n 
experimental groups). 

CI – confidence interval; CS – cold (static) storage; DCD – donation after circulatory death; HMP – hypothermic 
machine perfusion; HMP-Ox – oxygenated HMP; HMP no-Ox – non-oxygenated HMP; NA – not applicable; SMD 
– standardized mean difference; WP – warm (normothermic) perfusion 
  
* Insufficient data for meta-analysis 
ζ p not significant 
φ p < 0.05 
ε p < 0.01 
ϯ p < 0.001 
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SDC 9: Funnel plots for the assessment of publication bias – animal studies. SMD for peak 
creatinine in (A) WP compared to CS studies, and (B) WP compared to HMP studies.  
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SDC 10: Quality/risk of bias assessment for animal experiments included in quantitative 
analyses using SYRCLE’s risk of bias tool for animal studies.  
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SDC Chapter 4 

SDC 1: NMP circuit components. A packed red blood cell-based perfusion fluid is added to 
the reservoir, and pumped into the renal artery after passing through an oxygenator and 
heat exchanger. The fluid recirculates through the circuit via a cannula inserted in the 
renal artery. 
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Device Components 
Renal artery and vein cannulas were attached to ¼ inch polyvinyl chloride (PVC), synthetic X-
coating tubing (Lovell Surgical Supplies, Carrum Downs, Australia) using luer lock connections – 
the arterial and venous limbs of the “kidney line,” respectively (Fig. S1). Venous effluent drained 
into the fluid/venous reservoir with integrated oxygenator/heat exchanger and arterial filter 
(Terumo Capiox FX05, Macquarie Park, Australia), with subsequent outflow via ¼ inch PVC 
tubing to the roller pump (Stockert SIII, LivaNova Australia, Dandenong South, Australia). After 
perfusate passage via the roller pump, it was circulated through the integrated oxygenator and 
heat exchanger, before entry into the renal arterial line. Circulation fluid temperature was 
controlled using a heater unit (Hemotherm, Cincinnati Sub-Zero Products Inc, Cincinnati, USA).  
 
Baseline perfusion solution  
The initial perfusion solution utilized was adapted from Nicholson and Hosgood.1, 2 One unit of 
packed red blood cells (PRBCs; 200-250 ml) were employed for each kidney perfusion, and were 
isolated from autologous whole blood after centrifugation and washing in Hartmann’s solution. 
The PRBCs were resuspended in 500 ml of Hartmann’s solution; mannitol (25 ml, 10%) and 
heparin (2000 units) were added to the perfusion solution. Two separate infusion pumps were 
set up to infuse (1) 5% dextrose (5 ml/hr), and (2) M199 nutrient solution with ultraglutamine 
(Sartorius AG, Goettingen, Germany), to which was added multivitamins (Cernevit; Baxter 
Healthcare Pty Ltd, Old Toongabbie, Australia) and 12.5 units of insulin (Actrapid, Novo Nordisk 
Pharmaceuticals Ltd, Baulkham Hills, Australia) (20 ml/hr).  Further Hartmann’s solution was 
added to the reservoir to directly replace urine output (UO). 
 
References 
1. Adams TD, Patel M, Hosgood SA, Nicholson ML. Lowering Perfusate Temperature From 37 
degrees C to 32 degrees C Diminishes Function in a Porcine Model of Ex Vivo Kidney Perfusion. Transplant Direct 
2017;3(3): e140. 
2. Nicholson ML, Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the first 
clinical study. Am J Transplant 2013;13(5): 1246-52. 

  
  
 

SDC 2: Device components and baseline perfusion solution. 
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Porcine kidney retrieval (Stage 1) 
General anaesthesia was induced with 16mg/kg intravenous thiopentone (Pentothal, Abbott 
Australasia Pty Ltd, Sydney, Australia) and maintained with 1–2% isoflurane (Zeneca Ltd, 
Macclesfield, UK) in oxygen after intubation.  
A midline laparotomy was performed, after which the right and left kidney, aorta, and inferior 
vena cava (IVC) were dissected. The pig was exsanguinated using an infra-renal aortic catheter. 
Whole blood was collected for subsequent PRBC isolation into tubes containing Anticoagulant-
Citrate-Dextrose solution A (ACD-A) (Aurora Bioscience, Bella Vista, Australia) in a 0.15:1 ratio 
(one part whole blood, 0.15 parts ACD-A).1  Upon confirmation of cardiac arrest, the supra-
coeliac aorta was cross-clamped and abdominal perfusion was commenced via the aortic 
catheter. A total of 3 L of University of Wisconsin (UW; Bridge to Life Ltd, Columbia, USA) 
solution was used, with 25,000 units of heparin added to the first (1 L) bag. Residual blood and 
perfusion solution was vented via the IVC. Both kidneys were then removed in the cold phase. 
UW solution (250 ml) was infused via the renal arteries on the back-table; the kidneys were 
subsequently stored in UW solution, overlying 0.9% sodium chloride ice slush, whilst the NMP 
circuit was prepared.  
 
Porcine kidney retrieval, DCD model (Stage 2) 
Pigs were anaesthetized as per Stage 1, and whole blood collected in the same manner. In 
addition, the renal artery and renal vein were dissected bilaterally and then clamped with 
vascular clamps to induce warm ischaemia (30 minutes). Specifically, no intravenous heparin 
was given prior to circulatory arrest in this animal model, as in the clinical DCD setting this is not 
legal within NSW.  During warm ischaemia, the renal arteries and veins were divided and 
cannulated (heparin tips connected to a ¼ inch adaptor with luer locks; Medtronic, Minneapolis, 
USA and LivaNova Australia, Dandenong, Australia) intra-corporeally. The ureters were 
cannulated using 16 G intra-venous catheters (Terumo Surflo Catheters, Macquarie Park, 
Australia). Thirty minutes later, both kidneys were perfused via the renal artery using 500 ml of 
cold UW solution containing 10,000 units of heparin/liter. The kidneys were subsequently 
stored in sterile bags containing UW solution at 4 ⁰C overnight for approximately 23 hours. 
  
References 
1. Wilson ME, Hung JC. Evaluation of heparin and anticoagulant citrate dextrose in the preparation 
of technetium-99m-red blood cells with UltraTag RBC kit. J Nucl Med 1992;33(2): 306-308. 

  
  
  
 

SDC 3: Retrieval details for stage 1 and 2. 
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Perfusion fluid/condition modifications  
Colloid 
The perfusion fluid was altered to include a colloid (Gelofusine, B. Braun Australia Pty Ltd, 
Bella Vista, Australia), as its exclusion from the perfusate can artificially elevate UO.1 This 
perfusion fluid was based upon both the Cambridge and Toronto groups, albeit with some 
modifications;2-4 we utilized 1 unit of washed PRBCs, 250 ml Gelofusine, 150 ml Hartmann’s, 
10 ml 8.4% Sodium Bicarbonate, 50 ml of 10% Mannitol, and 2000 units of heparin. 
Additional infusions were as outlined above. 
 
Vasodilator 
Verapamil infusion (0.25 mg/hr; Isoptin, Abbott GmbH & Co KG, Macquarie Park, Australia) 
was added to the arterial limb of the circuit to counteract the elevated renal arterial 
pressures seen at relatively low flow rates in kidneys 1-6.1 

 
Pressure-based perfusion 
Flow rates were set at 0.25 L/min for the first four kidneys regardless of arterial pressure. In 
the final two perfused porcine kidneys, blood flows were manually adjusted to maintain an 
arterial perfusion pressure range of 90-100 mmHg during perfusion.1, 4 

 
Leucocyte depletion 
Leucocyte-depleted blood ameliorates renal ischaemia-reperfusion injury during NMP.5 After 
PRBC isolation by centrifugation, addition leucocyte depletion was undertaken by passing the 
PRBC suspension through a leucocyte filter (Imugard III-RC, Terumo, Tokyo, Japan).  
 
Carbogen (5% CO2 in 95% O2) 
Acid-base regulation of the perfusion solution may be aided by the addition of CO2 to the 
oxygen supply (“carbogen”) to allow adequate function of the bicarbonate buffer system.6, 7 
Carbogen (BOC Australia, North Ryde, Australia) was supplied to the circuit, instead of 100% 
O2, at a flow rate of 2 L/min for the final kidney. 
  
References 
1. Kaths JM, Spetzler VN, Goldaracena N, Echeverri J, Louis KS, Foltys DB et al. Normothermic Ex 
Vivo Kidney Perfusion for the Preservation of Kidney Grafts prior to Transplantation. J Vis Exp 2015;101: e52909. 
2. Kaths JM, Echeverri J, Linares I, Cen JY, Ganesh S, Hamar Met al. Normothermic Ex Vivo Kidney 
Perfusion Following Static Cold Storage-Brief, Intermediate, or Prolonged Perfusion for Optimal Renal Graft 
Reconditioning? Am J Transplant 2017. Epub ahead of print, DOI 10.1111/ajt.14294 
3. Adams TD, Patel M, Hosgood SA, Nicholson ML. Lowering Perfusate Temperature From 37 
degrees C to 32 degrees C Diminishes Function in a Porcine Model of Ex Vivo Kidney Perfusion. Transplant Direct 
2017;3(3): e140. 
4. Nicholson ML, Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the 
first clinical study. Am J Transplant 2013;13(5): 1246-52. 
5. Harper S, Hosgood S, Kay M, Nicholson M. Leucocyte depletion improves renal function during 
reperfusion using an experimental isolated haemoperfused organ preservation system. Br J Surg 2006;93(5): 
623-9. 
6. Daniel CR, Labens R, Argyle D, Licka TF. Extracorporeal perfusion of isolated organs of large 
animals - Bridging the gap between in vitro and in vivo studies. ALTEX 2017. Epub ahead of print, DOI 
10.14573/altex.1611291 
7. Mancina E, Kalenski J, Paschenda P, Beckers C, Bleilevens C, Boor Pet al. Determination of the 
preferred conditions for the isolated perfusion of porcine kidneys. Eur Surg Res 2015;54(1-2): 44-54.  

  
  
 

SDC 4: Perfusion fluid/condition modifications. 
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NMP Kidney 

Number 

Post-Retrieval 

Macroscopic Perfusion 

Appearance  

Post-NMP Macroscopic 

Perfusion Appearance 

Urine 

Production (1 

hr) (ml) 

Other Comments 

3 Uniform, pale Uniform, pink 3550 Graft oedema 

4 Uniform, dark Moderate/patchy  810 Graft oedema & capsular 

tearing; rose-coloured urine 

towards end of NMP
‡
 

5 Moderate/patchy Uniform, pink 

anteriorly; 

moderate/patchy 

posteriorly 

230 Graft oedema; petechial 

haemorrhages kidney 

surface end-NMP
†
; rose-

coloured urine
‡
 

6 Moderate/patchy Poor/mottled 500 Graft oedema; petechial 

haemorrhages kidney 

surface end-NMP
†
; rose-

coloured urine
‡
 

7 Moderate/patchy
§
 Poor/mottled 100 Frank, bloody urine; lower 

pole ?thrombosis 

8 Moderate/patchy
§
 Poor/mottled 270 Rose-coloured urine

‡
 

SDC 5: Kidney retrieval and NMP characteristics. 

† Blood collected and likely clotted in perfusion chamber prior to returning to reservoir 
‡ Also occasionally noted by Nicholson & Hosgood (Personal Communication, June 30, 2017) 
§ Gross clots expelled during back-table cold perfusion; difficult to perfuse on back-table  
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SDC 6: Pressure-flow curves during NMP. (A) A representative example of flow-controlled 
perfusion [kidney 6]; (B) A representative example of pressure-controlled perfusion 
[kidney 8]; and (C) IRR during NMP [kidney 8]. IRR – intra-renal resistance. 
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SDC Chapter 6 

SDC 1: Detailed methods explaining animal methods, sample processing, and analyses. 

PART 1. Comparison of IRI targets – murine model 
Animals 
Male C57BL/6 mice (weight 25.3 ± 1.3 g; 10-12 weeks age) were obtained from the Animal 
Resources Centre (Canning Vale, Australia), acclimatized and allowed free access to food and 
water until surgery.  
 
IRI model 
General anesthesia (GA) was induced using intra-peritoneal ketamine (100 mg/kg) and xylazine 
(8 mg/kg). The abdomen was shaved, prepared with povidone-iodine, and a midline laparotomy 
performed. The small intestine was wrapped in gauze moistened with 3 ml of 0.9% sodium 
chloride (NaCl) (36-37 ͦ C), and placed outside the operating field. The right renal pedicle was 
ligated (6-0 silk tie) prior to a right nephrectomy. Each drug/combination was diluted to a total 
volume of 0.25 ml in 0.9% NaCl, and injected intra-venously using a 30 G needle. The left renal 
pedicle was then clamped for 25 minutes using an arterial microvascular clamp (Roboz Surgical 
Instrument Co., MD, USA). Mouse temperature was maintained at 36 ͦ C (RightTemp 
Temperature Monitor and Homeothermic Warming Control Module [Kent Scientific, CT, USA]). 
Kidney reperfusion was confirmed by the return of its original color. Warmed 0.9% NaCl (0.3 ml) 
was instilled into the peritoneal cavity, abdominal contents were replaced anatomically, and the 
defect was closed using 6-0 PDS. All mice were given buprenorphine (0.1 mg/kg) 
subcutaneously at defined intervals post-operatively (at least 2 doses). 
 
Study groups and pharmacotherapeutic agents 
Mice were treated with the following agent(s) [n.b. these products are still mainly 
investigational for the purposes described here]: 
Group I – 0.9% NaCl (vehicle control) only 
Group II – rTM (Asahi Kasei Pharma Co., Tokyo, Japan), 1 mg/kg body weight28 
Group III –sCR1 (CDX-1135; Celldex Therapeutics, MA, USA), 25 μg/g body weight29 
Group IV – αCD47Ab (MIAP 301 [sc-12731]; Santa Cruz Biotechnology, TX, USA), 0.8 μg/g body 
weight30 
Group V – combination of best 2 performing drugs, determined by relative serum creatinine (Cr) 
decrease compared to vehicle controls – αCD47Ab (0.8 μg/g body weight) and sCR1 (25 μg/g 
body weight) given as a single combined dose. 
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Blood and renal tissue samples 
Mice were culled 24 hours after reperfusion under GA. Blood samples were taken from the IVC 
immediately prior to exsanguination. The left kidney was removed and processed – samples 
were stored in 10% formalin, RNAlater RNA stabilization solution (Ambion/Thermo Fisher 
Scientific, TX, USA), and also snap frozen in dry ice (with or without OCT media [Tissue-Tek, 
ProSciTech, Australia]). Serum samples were analyzed for urea and Cr levels using the 
Dimension Vista 1500 Lab System (Siemens, Munich, Germany).  
 
Histology – Hematoxylin and Eosin (H&E)  
Paraffin-embedded sections (6 μm thickness) were stained with H&E. Renal damage at the 
corticomedullary junction was scored by 2 blinded renal histopathologists. Six regions of 
interest were taken per section, and tubular damage was scored from 0-5 as described 
previously.21 

 
Immunohistochemistry 
Immunohistochemistry was performed using the Leica Bond Rx Automated Research Stainer 
(Leica Biosystems, Wetzlar, Germany) and the Bond Polymer Refine Detection Kit (Leica 
Biosystems, Newcastle upon Tyne, UK), on formalin-fixed, paraffin-embedded sections (6 μm). 
An optimized staining protocol was developed – 3-4% hydrogen peroxide block (20 mins), 
primary antibody (60 mins) and secondary antibody (30 mins) incubation, administration of 
poly-HRP IgG reagent for localization of rabbit (secondary) antibodies (8 mins), application of 
3,3’-Diaminobenzidine tetrahydrochloride hydrate (DAB) (5 mins), and hematoxylin 
counterstaining (5 mins). Slides were cover-slipped using mounting media (Dako/Agilent 
Technologies, CA, USA). Neutrophils were detected using primary rat anti-mouse Ly-6G/Ly-6C 
antibody (RB6-8C5) at a 1:200 dilution (Biolegend, CA, USA), and secondary rabbit anti-rat IgG 
(BA-4001) at a 1:200 dilution (Vector Laboratories, CA, USA). Positively stained cells were 
counted from 5 high-power fields (HPF) at the corticomedullary junction in each section. 
Reactive oxygen species (ROS) characterization – Cytochrome C and Amplex Red 
 
Measurement of Superoxide (O2•−) in particulate fractions using cytochrome c 
Whole kidney tissue was homogenized in ice-cold phosphate buffer (PBS) and scraped in lysis 
buffer (8 mM potassium, sodium phosphate buffer pH 7.0, 131 mM NaCl, 340 mM sucrose, 2 
mM NaN3, 5 mM MgCl2, 1 mM EGTA, 1 mM EDTA and protease inhibitors [Roche Diagnostics 
GmbH, Mannheim, Germany]). Tissue was further lysed by five freeze/thaw cycles, and passage 
through a 30-gauge (G) needle 5 times. The lysate was centrifuged at 1000 g (5 min; 4°C) to 
remove unbroken cells, nuclei and debris. Extreme care was taken to maintain the lysate at a 
temperature close to 0 °C. The cell lysate was centrifuged at 28,000 g (15 min; 4°C). The 
supernatant was removed, membranes were resuspended in lysis buffer, and protein 
concentration was measured using the Bradford microplate method. 
 
Superoxide production in particulate fractions (20 μg/ml) of untreated, CD47Ab-, rTM-, or 
sCR1-treated mice was measured in 0.1 ml of oxidase assay buffer (65 mM sodium phosphate 
buffer pH 7.0, 1 mM EGTA, 10 μM FAD, 1 mM MgCl2, 2 mM NaN3 and 0.2 mM cytochrome c 
[Sigma-Aldrich]). Superoxide production was initiated by the addition of 180 μM NADPH and 
was calculated from the initial linear rate of superoxide dismutase (SOD) (150 U/ml) (Sigma-
Aldrich) inhibitable cytochrome c reduction quantified at 550 nm using an extinction coefficient 
of 21.1 mM-1 cm-1 (Biotek Synergy 4 Hybrid Multi-Mode Microplate Reader). 
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Hydrogen peroxide (H2O2)-generating activity 
Whole kidney tissue was homogenized in ice-cold disruption buffer (PBS containing 0.1 mM 
EDTA, 10% glycerol, protease inhibitor cocktail, and 0.1 mM phenylmethylsulfonyl fluoride 
[Sigma-Aldrich]), and further lysed as for superoxide. Lysate (50 μg/ml) was added to the assay 
mixture (25 mM Hepes, pH 7.4, containing 0.12 M NaCl, 3 mM KCl, 1 mM MgCl2, 0.1 mM 
Amplex red [Invitrogen, CA, USA], and 0.32 U/ml HRP). The reaction was initiated by the 
addition of 36 μM NADPH. Fluorescence measurements were made using a Biotek Synergy 4 
hybrid multimode microplate reader with a 530/25-excitation and a 590/35-emission filter. The 
reaction was monitored at 25°C (15 min); the emission increase was linear during this interval. 
To confirm the H2O2 signal, catalase (300 U/ml; Sigma-Aldrich) was added in parallel wells, and 
the catalase-inhibitable rate of H2O2 production was quantified from an H2O2 standard curve. 
 
Inflammatory markers – pro-inflammatory cytokine/chemokine mRNA expression 
Kidney tissue sections stored in RNAlater were homogenized, and RNA was extracted using the 
ISOLATE II RNA Mini Kit as per manufacturer’s instructions (Bioline/Meridian Life Science, TN, 
USA). One microgram of RNA was reverse transcribed using the SensiFAST cDNA synthesis kit 
(Bioline/Meridian Life Science). cDNA amplification was performed in triplicate in volumes of 10 
μL, consisting of cDNA, SensiFAST Probe No-ROX, and the relevant gene-specific primer/Taqman 
probes (HPRT1 – MM00446968_m1; IL-6 – MM00446190_m1; TNF-α – MM00443258_m1; IL-
1β – MM00434228_m1; CCL2 – MM00441242_m1; CXCL2 – MM00436450_m1) (Thermo Fisher 
Scientific, MA, USA). Real-time polymerase chain reaction (RT-PCR) was performed on a Bio-Rad 
CFX384 machine – 95⁰C for 10 mins, 95⁰C for 30 sec (40 cycles), and 60⁰C for 45 sec (40 cycles). 
The ∆∆Ct method was used to calculate expression fold changes normalized to HPRT1, with the 
0.9% NaCl group utilized as the control. 
 
Immunofluorescence 
Complement C3 and C9 staining was ascertained using immunofluorescence. Cryosections (7 
μm thickness) were fixed for 10 mins using 4% paraformaldehyde, followed by blocking at room 
temperature with 1% BSA, 0.1% Tween 20, and 22.5 mg/ml glycine in PBS (30 minutes). The 
primary antibody of interest (complement C3 [Thermo Fisher Scientific] or C9 polyclonal 
antibodies [Abcam, Cambridge, UK]) was added to separate cryosections at a 1:250 dilution in 
blocking solution, and left in a humidified chamber overnight (4⁰C). Sections were incubated 
with goat anti-rabbit Alexa Fluor 647 secondary antibody (Thermo Fisher Scientific) at a 1:400 
dilution at room temperature (1 hour), co-stained with DAPI (1 min), and then cover-slipped. 
Staining was visualized using a confocal microscope, and quantified using Image J. 
 
TUNEL staining 
Cellular death was ascertained using terminal deoxynucleotidyl transferase-mediated dUTP 
nick-end labeling (TUNEL) staining, performed with a commercially available kit (In Situ Cell 
Death Detection Kit, TMR Red; Sigma-Aldrich/Merck, MO, USA), as per the manufacturer’s 
instructions. Staining was visualized by confocal microscopy; TUNEL-positive cells were counted 
from 3-5 HPF in each section. 
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PART 2. Direct intra-renal delivery of αCD47Ab using NMP – porcine DCD model 
Animals 
Female adult outbred Landrace pigs (70.7 ± 14.2 kg) obtained from a certified animal supplier 
were acclimatized and allowed free access to food until 12 hours before surgery. Water was 
available ad libitum until the time of surgery.  
 
Porcine kidney retrieval – DCD model 
Kidney retrieval and a DCD model was established as previously described.1 In brief, 
In brief – All operative procedures were performed under general anesthetic, including pre-
medication with intramuscular 1 mg/kg Ilium Xylazil (Xylazine, Troy Laboratories Pty Ltd, Sydney, 
Australia), 25 mg/kg Tiletamine combined with 25 mg/kg Zolazepam (Zoletil 100, Virbac 
Australia Pty Ltd, Sydney, Australia), and 1mg/kg Azaperone (Stresnil, Boehringer Ingelheim Pty 
Ltd, Sydney, Australia). General anesthesia was subsequently induced with 16 mg/kg 
intravenous thiopentone (Pentothal, Abbott Australasia Pty Ltd, Sydney, Australia) and 
maintained with 1–2% isoflurane (Zeneca Ltd, Macclesfield, UK) in oxygen after intubation. NaCl 
(0.9%) was given intravenously at 60 ml/hr for the surgical duration. After a midline laparotomy, 
the renal pedicles and aorta were exposed/mobilized. The infra-renal aorta was cannulated 
using a TUR giving set (Baxter Healthcare, IL, USA), through which each pig was exsanguinated; 
blood was collected into tubes containing Anticoagulant-Citrate-Dextrose solution A (ACD-A) 
(Aurora Bioscience, Bella Vista, Australia).2 During exsanguination, the renal pedicle was 
clamped for 10 mins to simulate warm ischemia in a DCD setting. The renal artery was 
cannulated intra-corporeally using heparin tips cannulas (Medtronic, Minneapolis, USA), and 
the ureter was cannulated using a 12 G intra-venous catheter (Terumo Surflo Catheters, Tokyo, 
Japan). After exactly 10 mins, the kidney was cold-perfused via the renal artery with 500 ml 
University of Wisconsin (UW) solution containing 10,000 IU/L heparin. The 2 experimental 
groups were – (i) control kidneys (no further additives); (ii) treatment kidneys (given the best 
performing anti-IRI agent from the murine study, i.e. [porcine/human-specific] αCD47Ab – BRIC-
126 [sc-59079], Santa Cruz Biotechnology) via the renal artery (100 μg diluted in 10 ml UW 
solution), immediately after the initial UW flush. All kidneys were stored in UW solution prior to 
NMP (at 4 ͦ C for 6 hrs). 
 
Normothermic machine perfusion 
Kidney NMP was performed using a modified cardio-pulmonary bypass circuit, as described 
previously.1 In brief, packed red blood cells (PRBCs) were isolated from autologous whole blood, 
and leucocyte-depleted using a leucocyte filter (Imugard III-RC, Terumo, Tokyo, Japan). PRBCs 
(230 ml) were added to a reservoir (with integrated oxygenator, heat exchanger, and arterial 
filter) (Terumo Capiox FX05, Tokyo, Japan), along with 150 ml Hartmann’s solution, 250 ml 
Gelofusine (B. Braun Australia Pty Ltd, Bella Vista, Australia), 18 ml sodium bicarbonate 8.4%, 50 
ml mannitol 10%, 2000 IU of unfractionated heparin, 5 ml calcium gluconate 0.22 mmol/ml, 
and 25 ml water for injection. Cr (Merck, Darmstadt, Germany) was added to achieve a 
concentration of 1000 μmol/L to allow for subsequent creatinine clearance (CrCl) calculation.3 
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The kidney was flushed with Hartmann’s solution to remove residual UW solution, weighed, 
and perfused through the renal artery at a mean pressure of 75-85 mmHg and temperature of 
37 ͦ C (1 hr). The 1 hour time period was chosen as it has been shown to be effective in human 
kidney transplantation after initial CS, and is now the subject of a multi-center RCT in the UK.4, 5 
The kidney was placed in a customized 3D-printed copolyester perfusion chamber during NMP.6  
Continuous infusions of verapamil (0.5 mg/hr), 5% dextrose (5 ml/hr), and M199 nutrient 
solution containing 100 IU of actrapid and multivitamins (1 vial of Soluvit N dissolved in Vitalipid 
N; Fresenius Kabi, Bad Homburg, Germany) (100 ml at 20 ml/hr) were also provided. 
Immediately prior to starting NMP in treatment kidneys, 200 μg of αCD47Ab (BRIC-126) was 
directly injected into the renal arterial line (i.e. ~0.8 μg/g of kidney weight). 
 
Renal tissue, blood, and urine samples 
Sequential kidney biopsies were taken just prior to the commencement of NMP (end CS) and at 
the end of NMP (1 hr), and processed as above. Perfusate blood samples taken from the arterial 
arm of the circuit (immediately after commencement, and just prior to cessation, of NMP) were 
analyzed for sodium (Na), creatinine (Cr), lactate dehydrogenase (LDH), and aspartate 
aminotransferase (AST). Urine samples were taken at the end of NMP and analyzed for Cr and 
Na. All automated analyses were conducted using the Dimension Vista 1500 Lab System 
(Siemens). Blood gas analyses (arterial and venous) for pH, partial pressure of oxygen and 
carbon dioxide, base excess (BE), lactate, and bicarbonate levels were also conducted at the 
start and end of NMP using the i-STAT Alinity (Abbott, IL, USA).  
 
Calculations 
Renal blood flow (RBF) was adjusted to a kidney weight of 250 g and recorded at 5 min 
intervals. Intra-renal resistance (IRR; pressure/flow) was also calculated at each corresponding 
time point. Urine output (UO) was measured at the end of NMP. CrCl, fractional excretion of 
sodium (FeNa), and renal oxygen consumption were calculated as described elsewhere.3 

 
Histology 
H&E was performed as above. Sections were scored from 0-3 (from least to most severe) by a 
blinded renal histopathologist based on the extent of tubular dilatation, tubular debris, 
cytoplasmic vacuolation, and inflammatory cell infiltration.7, 8 

 
Inflammatory markers – pro-inflammatory cytokine/chemokine mRNA expression 
RT-PCR was performed as described above using the following porcine-specific primers: HPRT1 
(Ss03388274_m1), IL-6 (Ss03384604_u1), TNF-α (Ss03391318_g1), IL-1β (Ss03393804_m1), and 
IL-18 (Ss03391203_m1) (Thermo Fisher Scientific). 
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CD47 antibody binding to renal tissue – immunofluorescence 
αCD47Ab binding to porcine renal tissue was visualized on cryosections fixed with 96% ethanol 
(room temperature), permeabilized using 0.1% Triton X-100 in PBS (10 minutes), and blocked 
using 1% BSA and 22.5 mg/ml glycine in PBS (25 minutes). CD47 BRIC-126 is a mouse 
monoclonal antibody; goat anti-mouse secondary antibody conjugated to Alexa Fluor 647 dye 
(Thermo Fisher Scientific) was therefore added to the sections (1:400 dilution), and left in a 
humidified chamber (45 mins). Samples were co-stained with DAPI, and cover-slipped. 
Fluorescence signaling was visualized using confocal microscopy. 
 
Renal oxidative stress 
Porcine renal tissue oxidative stress was quantified using dihydroethidium (DHE) (Thermo Fisher 
Scientific), indicative of tissue levels of superoxide. DHE (10 μM in PBS) was added to unfixed 
cryosections at 37 ͦ C in a light-protected humidified chamber (22 min). Slides were co-stained 
with DAPI and mounted. Fluorescence was visualized using confocal microscopy. DHE staining 
density was quantified using Image J software.  
 
TUNEL staining 
TUNEL staining was performed as described above. 
 
Statistical analyses 
Data is presented as mean ± standard deviation (SD). Continuous parametric variables were 
compared using the unpaired student’s t-test. In the event that more than 2 groups of 
parametric variables were to be compared, the ANOVA test was utilized. Area under the curve 
(AUC) was calculated for RBF and IRR prior to further statistical comparisons. GraphPad Prism v. 
7.02 was used for all statistical analyses. A p-value of <0.05 was deemed statistically significant. 
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SDC 2: Complement C3 staining in all murine study groups 24 hrs of induction of 
ischemia-reperfusion injury, as visualized by immunofluorescence (20 x). Data shown as 
mean ± SD; n = 5-6/group. *p<0.05. 
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SDC Chapter 7 

SDC 1: Pictorial representation of all donor kidneys at the end of cold (static) storage (CS), 
NMP, and ex vivo whole blood reperfusion (RFN), as appropriate. 
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SDC 2: Renal tubular injury scores at selected time-points in kidneys undergoing NMP. 

* Sloughed cells 
** Casts and sloughed cells 
*** Few casts only 
**** 90 min sample; occasional casts 
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Kidney 
 

End CS 60 min NMP 120 min NMP 180 min NMP 

DBD-D1 1 (focal 2*) 2 1 (focal 2*) 1 (focal 2*) 

DBD-D2-L 1 (focal 2**) 1 (focal 2*) 1 (focal 2*)  

DBD-D2-R 1 (focal 2*) 1 (focal 2**)   

DBD-D3-L 1 1   

DBD-D4-L 0-1 1   

DBD-D5 0 1*** 1  

DBD-D6-R 1 (focal 2**) 1   

DCD-D1 1 1   

DCD-D2-L 1 (focal 2*) 1   

DCD-D3 0 0-1   

DCD-D4 1 1 (focal 2**) 1 (focal 2****)  

 



SDC 3: Renal blood flow (RBF) and intra-renal resistance (IRR) in (A) DCD, and (B) DBD 
kidneys, arranged by cold (CIT) and/or warm (WIT) ischemia times, as applicable. 
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SDC 4: Comparative perfusate baseline hematologic and biochemical parameters at the 
start of NMP in kidneys perfused with autologous or banked (allogeneic) blood. 

Characteristic Autologous Blood (Mean, 
SD) 

Banked Blood (Mean, 
SD) 

p-value  

Hemoglobin (g/L) 43.8 (25.2) 65.3 (13.7) 0.094 

White cell count (x 
109/L) 

0.15 (0.1) 0.06 (0.05) 0.071 

Platelet count (x 109/L) 45 (19.9) 0.9 (1.5) < 0.001 

Hematocrit (%) 14.3 (8.7) 20.7 (5.2) 0.150 

Sodium (mmol/L) 142 (1.4) 143.9 (4.0) 0.404 

Potassium (mmol/L) 5.4 (0.4)* 7.6 (1.5)* 0.107 

Bicarbonate (mmol/L) 13 (4.2) 14.3 (1.9) 0.491 
 

* Values for 2 autologous samples and 1 banked sample missing due to sample hemolysis  (post/during 
collection) 
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SDC 5: Comparison of NMP using autologous or banked (allogeneic) packed red blood 
cells (PRBCs). UPPER PANELS – Flow and intra-renal resistance (IRR) during NMP using 
each source of blood. LOWER PANELS – Comparative renal glomerular, tubular, and 
functional parameters after NMP with banked versus autologous PRBCs. AST – aspartate 
aminotransferase; CrCl – creatinine clearance; FeNa – fractional excretion of sodium; LDH 
– lactate dehydrogenase; UO – urine output. 
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SDC 6: Principal component analysis (PCA) for all paired kidney samples that underwent 
whole transcriptome RNA sequencing. 
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SDC 7: Differentially expressed genes and pathways in paired kidneys after NMP (in 
comparison to the end-CS samples from the same kidneys [NMP group]). 
 
SDC 8: Differentially expressed genes and pathways after ex vivo whole blood reperfusion 
in paired kidneys having NMP (in comparison to the end-NMP samples from the same 
kidneys). 
 
SDC 9: Differentially expressed genes and pathways after ex vivo whole blood reperfusion 
in paired kidneys having NMP compared to CS alone. 
 
SDC 11: IPA – Tabulation of Diseases/Functions outlined in SDC 10. 

Excel spreadsheets – accessible via the 
following link: 

 
https://www.dropbox.com/sh/d5r4r44aexver

9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0 
 
 

41 App. 

https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0
https://www.dropbox.com/sh/d5r4r44aexver9c/AACkytA6dRLnm38bQjiOxVb9a?dl=0


SDC 10: IPA – Diseases/functions activated and/or repressed by NMP in comparison to 
paired kidneys having CS alone (sampled at the end of simulated transplantation). Each 
large box indicates a Disease/Function category, whilst each small box represents a 
distinct Disease/Function process (annotation). Boxes are colored based on z-score 
(orange indicates an increase in the predicted pathway activation state, and blue 
indicates a decrease). 
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SDC 12: Remuzzi scores (including tubular injury scores) after simulated transplantation in 
paired kidneys having CS alone or NMP. 
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Pair No. Treatment 
Group 

No. 
Glomeruli 

% 
Sclerosed 

% Chronic Damage 
(Tubular 
atrophy/Interstitial 
fibrosis) 

Arteriolar 
Hyalinosis 

Intimal Elastosis Acute Tubular 
Injury 

1 NMP  22 
 

5 5 1 NA 1 

1 CS  20 
 

5 5 1 NA 1 

2 NMP  40 
 

5 5 1 2 1 (with focal 2) 

2 CS  30 
 

10 5 1 1 1-2 

3 NMP  60 
 

0 2 0 0 1 (with focal 2) 

3 CS  35 2 2 1 NA 1 

4 NMP  225 
 

4 5 1 1 1-2 

4 CS  280 
 

3 3 1 2 1 (with focal 2) 

 



SDC Chapter 9 

SDC 1: Search strategy – databases searched simultaneously using Ovid: Cochrane 
Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Embase, 
Ovid Medline, and Epub Ahead of Print, In-Process & Other Non-Indexed Citations. Last 
search date 25 January, 2017. 
 

Number Search terms 

1 transplant.mp. or exp transplantation/ 

2 pancreas surgery/ or pancreas/ or pancrea*.mp. or exp kidney pancreas 
transplantation/ 

3 (university of wisconsin or UW or HTK or histidine* or collins or hyperosmolar 
citrate or HOC or celsior or IGL-1 or institut-George* or custodial or belzer or 
MPS or KPS or marshall* or hypertonic citrate or soltran or ross).mp 

4 1 AND 2 AND 3 

5 REMOVE DUPLICATES FROM 4 
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SDC 2: Newcastle-Ottawa Quality Assessment Scale – bias assessment of cohort studies 
included in meta-analyses for procurement and preservation of the pancreas. 
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SDC 3: Cochrane Collaboration’s tool for assessing risk of bias – bias assessment of 
randomized trials. ? Unclear risk of bias; + High risk of bias; – Low risk of bias. 

Study Random 
sequence 
generation 

Allocation 
concealment 

Blinding of 
participants 
& personnel 

Blinding of 
outcome 
assessment 

Incomplete 
outcome 
data  

Selective 
reporting 

Boggi et al., 2004 ? ? + + – ? 

Nicoluzzi et al., 2008 – ? ? ? – ? 

Schneeberger et al., 2009 ? ? ? ? – ? 
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SDC 4: Funnel plots for the assessment of publication bias in studies comparing UW to 
HTK aortic perfusion and preservation for the parameters of (A) peak amylase, (B) peak 
lipase, and (C) thrombotic graft loss rates. 
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SDC 5: Grading of Recommendations, Assessment, Development and Evaluations 
(GRADE) – assessment of studies comparing UW or HTK aortic-only perfusion and cold 
static storage. 

Outcome type No. of studies 
(Type of study) 

Risk of bias/Quality 
of evidence 

Consistency Directness Precision Publication 
bias 

Overall 
effect size 
estimate 
(95% CI) 

Quality of 
evidence 

Peak amylase 4 (4 cohort) 
No serious risk of 
bias; observational 
evidence (+2) 

Moderate 
inconsistency; 
I
2
 = 67.0 (-1) Direct (0) 

Small 
sample size 
(-1) 

No 
important 
publication 
bias 

0.32 (-0.13-
0.76) (0) 

Very low 

Peak lipase 3 (3 cohort) No serious risk of 
bias; observational 
evidence (+2) 

No 
inconsistency; 
I
2
 = 0 Direct (0) 

Small 
sample size 
(-1) 

Cannot 
confidently 
assess (0) 

0.42 (0.14-
0.69) (0) 

Very low 

Hospital LOS 2 (2 cohort) No serious risk of 
bias; observational 
evidence (+2) 

No 
inconsistency; 
I
2
 = 0 Direct (0) Wide CI (-1) 

Cannot 
confidently 
assess (0) 

2.92 (-0.04-
5.87) (0) 

Very low 

Thrombotic 
graft loss 

3 (3 cohort) No serious risk of 
bias; observational 
evidence (+2) 

Some 
inconsistency; 
I
2
 = 36.9 Direct (0) 

Small 
sample size 
(-1) 

Cannot 
confidently 
assess (0) 

1.50 (0.55-
4.11) (0) 

Very low 

One-month 
graft survival 

3 (3 cohort) No serious risk of 
bias; observational 
evidence (+2) 

No 
inconsistency; 
I
2
 = 0 Direct (0) Wide CI (-1) 

Cannot 
confidently 
assess (0) 

2.22 (0.83-
5.94) (+1) 

Low 

 

CI – confidence interval; HTK – histidine-tryptophan-ketoglutarate; LOS – length of stay; UW – University of 
Wisconsin 
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SDC Chapter 10 

SDC 1: Search strategy – databases searched simultaneously: Cochrane Database of 
Systematic Reviews, Cochrane Central Register of Controlled Trials, Embase, Ovid 
Medline, and Epub Ahead of Print, In-Process & Other Non-Indexed Citations. Last search 
date 30 January, 2017. 
 

Number Search terms 

1 transplant.mp. or exp transplantation/ 

2 exp liver preservation/ or exp liver transplantation/ or liver/ or liver.mp. or exp liver 
perfusion/ or hepatic.mp 

3 (university of wisconsin or UW or HTK or histidine* or collins or hyperosmolar 
citrate or HOC or celsior or IGL-1 or institut-George* or custodial or belzer or 
MPS or KPS or marshall* or hypertonic citrate or soltran or ross).mp 

4 1 AND 2 AND 3 

5 REMOVE DUPLICATES FROM 4 

 

Additional search: 

Number Search terms 

1 transplant.mp. or exp transplantation/ 

2 exp liver preservation/ or exp liver transplantation/ or liver/ or liver.mp. or exp liver 
perfusion/ or hepatic.mp 

3 (aortic perfusion or dual perfusion or aortic cooling or dual cooling or portal 
perfusion or portal cooling).mp 

4 1 AND 2 AND 3 

5 REMOVE DUPLICATES FROM 4 

 

Additional search #2 (donation after circulatory death liver transplantation (April 26, 2017): 

Number Search terms 

1 exp liver preservation/ or exp liver transplantation/ or liver/ or liver.mp. or exp liver 
perfusion/ or hepatic.mp 

2 (donation after cardiac death or donation after circulatory death or DCD or 
nonheart beating donor or non-heart beating donor).mp 

3 1 AND 2 

4 (university of wisconsin or UW or HTK or histidine* or collins or hyperosmolar 
citrate or HOC or celsior or IGL-1 or institut-George* or custodial or belzer or 
MPS or KPS or marshall* or hypertonic citrate or soltran or ross).mp 

4 3 AND 4 

5 REMOVE DUPLICATES FROM 4 
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SDC 2: Cochrane Collaboration’s tool for assessing risk of bias – bias assessment of 
randomized trials included in meta-analyses. ? Unclear risk of bias; + High risk of bias; – 
Low risk of bias. 

Study Random 
sequence 
generation 

Allocation 
concealment 

Blinding of 
participants 
& personnel 

Blinding of 
outcome 
assessment 

Incomplete 
outcome 
data  

Selective 
reporting 

Cavallari et al., 2003 – ? + ? – – 

Chui et al., 1998 – – + ? – ? 

Erhard et al., 1994 ? + ? – – ? 

Garcia-Gil et al., 2011 – – ? ? – – 

Meine et al., 2006 – ? + ? – – 

Nardo et al., 2001 ? ? + ? – ? 
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SDC 3: Newcastle-Ottawa Quality Assessment Scale – bias assessment of cohort studies 
included in meta-analyses. 
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SDC 4: Additional article donor, recipient and preservation characteristics. No statistically 
significant differences between groups unless otherwise indicated. 
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SDC 5: Grading of Recommendations, Assessment, Development and Evaluations 
(GRADE) – assessment of studies included in meta-analyses. 

Outcome type No. of studies 
(Type of study) 

Risk of bias/Quality 
of evidence 

Consistency Directness Precision Publication 
bias 

Overall 
effect size 
estimate 
(95% CI) 

Quality of 
evidence 

Aortic vs. Dual (UW) 

Peak ALT 4 (3 cohort, 1 RCT) No serious risk of 
bias; observational 
evidence (+2) 

Minor 
inconsistency; 
I
2
 = 18.3 (0) Direct (0) 

Small 
sample size 
(-1) 

Cannot 
confidently 
assess (0) 

0.24 (0.01-
0.47) (0) 

Very low 

PNF 5 (4 cohort, 1 RCT) No serious risk of 
bias; observational 
evidence (+2) 

No 
inconsistency; 
I
2
 = 0 Direct (0) 

Small 
sample size 
(-1) 

Cannot 
confidently 
assess (0) 

1.81 (0.84-
3.88) (0) 

Very low 

UW vs. HTK (Dual) 

Peak ALT 3 (2 cohort, 1 RCT) No serious risk of 
bias; observational 
evidence (+2) 

No 
inconsistency; 
I
2
 = 0 Direct (0) 

Small 
sample size 
(-1) 

Cannot 
confidently 
assess (0) 

-0.00 (-0.27-
0.26) (0) 

Very low 

Peak AST 3 (2 cohort, 1 RCT) No serious risk of 
bias; observational 
evidence (+2) 

No 
inconsistency; 
I
2
 = 0 Direct (0) 

Small 
sample size 
(-1) 

Cannot 
confidently 
assess (0) 

-0.05 (-0.31-
0.22) (0) 

Very low 

UW vs. Celsior (Dual) 

Thrombotic 
graft loss 

3 (3 RCT) No serious risk of 
bias; RCT evidence 
(+4) 

No 
inconsistency; 
I
2
 = 0 Direct (0) Wide CI (-1) 

Cannot 
confidently 
assess (0) 

0.85 (0.23-
3.14) (0) 

Moderate 

PNF 3 (3 RCT) No serious risk of 
bias; RCT evidence 
(+4) 

No 
inconsistency; 
I
2
 = 0 Direct (0) Wide CI (-1) 

Cannot 
confidently 
assess (0) 

0.61 (0.14-
2.62) (0) 

Moderate 

1-year graft 
survival 

4 (4 RCT) No serious risk of 
bias; RCT evidence 
(+4) 

No 
inconsistency; 
I
2
 = 0 Direct (0) Wide CI (-1) 

Cannot 
confidently 
assess (0) 

1.02 (0.71-
1.47) (0) 

Moderate 

 

ALT – alanine aminotransferase; AST – aspartate aminotransferase; CI – confidence interval; HTK – histidine-
tryptophan-ketoglutarate; PNF – primary non-function; UW – University of Wisconsin 

54 App. 



SDC Chapter 12 

SDC 1: Baseline transplantation characteristics stratified by graft shipping. 
 

BMI – body mass index; CIT – cold ischemic time; COD – cause of death; CVA – cerebrovascular accident; HBV – 
hepatitis B virus; HCV – hepatitis C virus; HCC – hepatocellular carcinoma; ICH – intracerebral hemorrhage; IQR – 
inter-quartile range; MELD – model for end-stage liver disease score; NA – not applicable; NAFLD – non-alcoholic 
fatty liver disease; NASH – non-alcoholic steato-hepatitis; SD – standard deviation; SWIT – secondary warm 
ischemic time 

55 App. 

 Shipped Unshipped p-value 

Transplants, n (%) 256 (18.5) 1125 (81.4) NA 

Donor Age (SD) 40.2 (19.8) 43.1 (17.6) 0.030 

Donor COD (%) 

 Trauma 

 CVA/ICH 

 Anoxia 

 Other 

 

 60 (23.4) 

 121 (47.3) 

 59 (23.0) 

 16 (6.3) 

 

 272 (24.2) 

 548 (48.7) 

 220 (19.6) 

 85 (7.6) 

 
0.611  

CIT (hr) (SD) 7.1 (2.5) 6.8 (2.5) 0.097 

SWIT (min) (SD) 43.4 (14.2) 42.7 (15.8) 0.535 

Perfusion Technique 

 Aortic 

 Dual  

 

 188 (73.4) 

 68 (26.6) 

 

 768 (68.3)  

 357 (31.7) 

 
0.115  

Recipient Age (SD) 52.4 (10.7) 51.6 (11.3) 0.315 

Recipient Primary Diagnosis 
(%) 

 Fulminant/Subacute 
Hepatic Failure 

 Cholestatic Cirrhosis 

 HBV/HCV-related 
Cirrhosis 

 Alcoholic Cirrhosis 

 HCC 

 NAFLD/NASH-related 
Cirrhosis 

 Other 

 

 23 (9.0) 
 

 30 (11.7) 

 77 (30.1) 
 

 47 (18.4) 

 33 (12.9) 

 21 (8.2) 
 

 25 (9.8) 

 

 104 (9.2) 
 

 156 (13.9) 

 306 (27.2) 
 

 160 (14.2) 

 182 (16.2) 

 76 (6.8) 
 

 141 (12.5) 

 
0.309 

Recipient MELD (IQR) 16 (11-25) 17 (12-25) 0.292 
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The Evolution of Kidney Transplantation Surgery
Into the Robotic Era and Its Prospects for
Obese Recipients
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Abstract:Robotic-assisted kidney transplantation (RAKT) represents themost recent innovation in the evolution of kidney trans-
plantation surgery. Vascular techniques enabling kidney transplantation have existed since the early 20th century and contributed
to the first successful open kidney transplant procedure in 1954. Technical advances have since facilitated minimally invasive lap-
aroscopic and robotic techniques in live-donor surgery, and subsequently for the recipient procedure. This review follows the de-
velopment of surgical techniques for kidney transplantation, with a special focus on the advent of robotic-assisted transplantation
because of its potential to facilitate transplantation of those deemed previously too obese to transplant by standard means. The
different techniques, indications, advantages, disadvantages, and future directions of this approach will be explored in detail.
Robot-assisted kidney transplantation may become the preferred means of transplanting morbidly obese recipients, although
its availability to such recipients remains extremely limited and strategies targeting weight loss pretransplantation should never
be abandoned in favor of a “RAKT-first” approach.

(Transplantation 2018;102: 1650–1665)
K idney transplantation is the most commonly performed
solid organ transplant procedure. Establishment of its

safety and success has built on an effective method for vascu-
lar and ureteric anastomoses that provided the basis for sub-
sequent open, laparoscopic, and robotic transplantation.
Each technique has different advantages and disadvantages
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and is suitable for different patient subsets. In particular,
obese recipients have traditionally suffered reduced access
to transplantation using the open approach, which at least
is in part attributable to impaired access to iliac vessels,
greater surgical morbidity and inferior graft outcomes. In this
overview, we outline the evolution of kidney transplantation
surgery, focusing on the indications and techniques used for
robot assisted surgery, and its possible implications for obese
patients requiring kidney transplantation.
VASCULAR ANASTOMOSES AND THE ADVENT OF
KIDNEY TRANSPLANTATION

Vascular surgical techniques existed before the work of
French Surgeon, Alexis Carrel. However, he is credited for
providing the impetus for their implementation in organ
transplantation after conducting extensive work in animal
organ transplantation, including the auto and allotransplan-
tation of kidneys in collaboration with Charles Guthrie.,1,2

Carrel's vascular suturing technique, initially published in
1902 and later refined through this collaboration, consisted
of a triangulation method for end-to-end anastomoses, using
3 circumferential stay sutures and traction on 2 of 3 sutures
while undertaking anastomoses in any particular segment.2,3

Particular emphasis was placed on the use of fine suturing ma-
terial and precise instruments.4 The “Carrel Patch,” practical
only with the use of deceased donor renal arteries, was also de-
veloped during this period, with the aim of minimizing the
thrombotic risk associated with small vessel anastomoses.3
Transplantation ■ October 2018 ■ Volume 102 ■ Number 10
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CLINICAL KIDNEY TRANSPLANTATION AND
OPEN SURGERY

After the development of these vascular suturing tech-
niques, Ukrainian surgeon Yuri Voronoy performed the first
human kidney transplants, with a succession of 6 human kid-
ney allografts transplanted into the thigh of uremic patients
between 1933 and 1949.5 However, he was unable to
achieve successful graft function because of issues related to
prolonged warm ischemia and/or donor-recipient mismatch.

Successful human kidney transplantation with subsequent
recipient graft function was not performed until Michon in
1953 undertook the first living-donor kidney transplant.
It rejected after 3 weeks. Murray subsequently performed
the first successful living-donor kidney transplant in the fol-
lowing year1,6 The kidney donor, an identical twin of the re-
cipient, underwent an open nephrectomy in an adjacent
operating theater. Murray used an oblique right lower quad-
rant incision in the recipient, with the renal artery anasto-
mosed to the internal iliac artery in an end-to-end fashion,
and the renal vein to the common iliac vein using an end-
to-side anastomosis.6,7

Open kidney transplantation is most commonly under-
taken using an oblique (Rutherford Morison) muscle-cutting
incision, or the pararectal (Alexandre/‘hockey stick’) incision.
An incision of 15 to 20 cm is required for appropriate expo-
sure, and is often longer in the obese. It is either parallel to
the inguinal ligament with extension toward the anterior su-
perior iliac spine (Rutherford Morison), or down the lateral
margin of the rectus abdominis muscle (pararectal). In compar-
ison to nonobese patients, wound dehiscence, incisional hernia,
and wound infection rates, and hospital length-of-stay, are
higher in obese open kidney transplant recipients.8
OBESITYAND ACCESS DISPARITIES IN OPEN
KIDNEY TRANSPLANTATION

Obesity is a major public health concern, and carries spe-
cific risks for patients with end-stage renal disease (ESRD).
Furthermore, obesity is a significant problem in patients
with ESRD, associated with both its incidence and progres-
sion.9,10 Global prevalence data continue to show an in-
crease in the proportion of the obese among the general
population and its subsequent adverse effect on healthcare-
related costs.11-13

Although obesity is not an absolute contraindication to
transplantation in most national guidelines, it is quite clear
that comorbid obesity restricts such patients' access to donor
kidneys.14-21 The US data show that obesity independently
decreases the chances of transplantation (hazard ratio
[HR], 0.93), with this trend compounded in proportion to
the degree of obesity (HR, 0.56 in the morbidly obese), de-
spite these patients being listed for transplantation.17 Fur-
thermore, obese recipients are more likely to be bypassed
during kidney allocation.17 European data are concordant
with these findings, also showing that each annual 1 kg/m2

decrease in body mass index (BMI) enhanced the likeli-
hood of transplantation by approximately 10%.18 Trans-
plantation access may be disparate between obese men
and women, with Gill et al22 showing a reduced likelihood
for transplantation among women with a BMI≥ 25 kg/m2.
In comparison, this trend was only seen in men with a
BMI ≥ 35 kg/m2. In Australia and New Zealand, obese
Copyright © 2018 Wolters Kluwer H
ESRD patients are less likely to be placed on an active kid-
ney transplant waitlist.23 Bariatric surgery is likely to allow
a greater proportion of morbidly obese dialysis patients to
achieve and maintain sufficient weight, become waitlisted
and eventually receive a kidney transplant. However, this
surgery carries specific risks in dialysis patients and is not al-
ways readily available.19,24-28 Advances in surgical technolo-
gies that improve the ease of transplantation in confined
spaces, such as robotic transplantation surgery, may help
more obese patients escape the rigors of dialysis and improve
their quality of life.29,30
KIDNEY TRANSPLANTATION OUTCOMES IN
OBESE RECIPIENTS

Approaching potential open kidney transplantation in
obese recipients warrants special consideration of the added
technical challenges of the implantation procedure itself, as
well as surgical/wound-related complications and their im-
pact on short- and longer-term graft function.

Obesity significantly compounds the technical difficulty of
kidney transplantation surgery using traditional open ap-
proaches.21,31 Unsurprisingly, postoperative complications
are higher in this recipient cohort, including wound dehis-
cence, infection, and lymphocele formation rates.8,32-37 A
positive relationship between obesity, wound infection, and
dehiscence, in addition to incisional hernias has been con-
firmed in a meta-analysis.8 However, interpretation is made
difficult by the limited number of patients in the obese co-
hort, and the subsequent tendency to use a relatively low
BMI of 30 kg/m2 or greater to define obesity. There is a likely
incremental effect the greater the patient’s BMI is above
this “cutoff.”34

Adverse impacts of obesity on longer-term clinical out-
comes, particularly for well-screened recipients, are less clear.
As with any patient population or subtype, the risks and ben-
efits of transplantation in this cohort need to be balanced
against remaining on dialysis, with further consideration
given to the individual patient's comorbidities and functional
status. Transplantation still offers obese dialysis patients a
significant survival benefit, albeit less so in patients with a
BMI of 40 kg/m2 or greater.38,39 Furthermore, patient quality
of life after transplantation is not negatively impacted by
pretransplantation obesity.40

There is also conflicting evidence for the correlation be-
tween obesity and poorer patient and graft survival.41 Obe-
sity as a risk factor for delayed graft function (DGF) was
shown in a meta-analysis of 21 studies.42 A recent analysis
of more than 191000 patients from the Scientific Registry
of Transplant Recipients database also showed a correlation
between obesity and adverse graft outcomes independent of
comorbidities such as diabetes mellitus.41 The authors found
that the OR increased from BMI class I to III for DGF (1.47
to 2.43), acute rejection (1.14 to 1.26), and the HR increased
for graft failure (1.02 to 1.25). In contrast, an analysis of
Australia and New Zealand Dialysis and Transplant registry
data showed no association between obesity and graft or pa-
tient survival, after accounting for appropriate confounders.43

Other authors suggest that obesity confers similar risks of graft
failure to such factors as recipient diabetes mellitus.44,45 The
confounding nature of BMI as ameasure of obesity in contrast
to waist circumference also needs to be considered, in addition
ealth, Inc. All rights reserved.
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to the relative importance of weight gain after transplantation
rather than pretransplant weight per se.45

Overall, although surgical and/or wound-related compli-
cations are increased with obesity, its impacts on graft and
patient survival are not absolute, and obesity alone should
in no way preclude transplantation. Kidney transplantation
in this population still has significant potential with respect
to patient survival benefit, as discussed, and remains a supe-
rior option compared with the significantly reduced survivals
associated with staying on dialysis. Evolving surgical tech-
niques which address the technical challenges in this patient
cohort may help reduce immediate surgical morbidity, and
thus begin to address disparities in access to transplantation.

Minimally invasive techniques have the potential to benefit
transplant recipients of any weight, but in particular, may
be 1 approach that helps mitigate donor kidney access dis-
parities for the obese. We will next discuss the evolution of
kidney transplant surgery to incorporate such practices,
especially focusing on robotic surgery. A historical timeline
depicting the evolution of donor and recipient renal trans-
plant surgical techniques is presented in Figure 1.
LAPAROSCOPIC KIDNEY DONOR SURGERY
The introduction of laparoscopic surgery was a major ad-

vance in living donor kidney transplantation. The donor pa-
tients, preferring smaller incisions that minimize the cutting
ofmuscles, have largely driven this. The first laparoscopic do-
nor nephrectomy (LDN) was reported by Ratner et al46 in
1995, with the donor discharged home 1 day after surgery.
Laparoscopic donor nephrectomy allows for reduced hospi-
tal length-of-stay and postoperative analgesic requirements
in comparison to open surgery, without adverse impacts on re-
cipient graft outcomes.47,48 Furthermore, recipient blood loss
is not increased, and it is possible to achieve similar operating
times to open donor surgery with operator experience.47,49,50

Significant variations in LDN technique exist, and include
a purely laparoscopic approach, hand-assisted LDN, retroper-
itoneal LDN, and robot-assisted LDN. The purely intraperito-
neal laparoscopic technique is technically more challenging
than hand-assisted LDN. Surgeonswithout other laparoscopic
surgery practice are likely to have a preference for the latter,
allowing them to safely meet donor patient and referring
FIGURE 1. Major milestones in the evolution of kidney transplantation do

Copyright © 2018 Wolters Kluwer
clinician demand forminimally invasive surgery. By using their
nondominant hand as a retractor and a finger to assist dissec-
tion, they are afforded a greatermargin of safety in the event of
a vascular catastrophe. To support this approach, it also can
be argued that regardless, the donor kidney still needs to be re-
moved through a hole in the abdominal wall. Retroperitoneal
mobilization and removal of the donor kidney is a routine sur-
gical approach for urologists. Although smaller than that for
open surgery, abdominal wall muscles need to be divided or
retracted to remove the kidneywith this approach. Prospective
randomized trials comparing different approaches, including
the impact of hand assistance, retroperitoneal LDN, and the
safety and utility of right versus left LDN, have been con-
ducted and summarized in other reviews.51-56

Robot-assisted LDN was first reported in living donors by
the University of Illinois (Chicago group) in 2002.57,58 There
is a suggestion that this approach, which facilitates dissection
of the renal artery behind the inferior vena cava, may allow
the retrieval of right-sided arterial graft with less divided
early branches in comparison to LDN.59 However, without
a significant reconstructive component to donor surgery
and the increased costs associated with the robot-assisted ap-
proach, its utilization above LDN alone is hard to justify on a
routine basis.60 Furthermore, right kidney donation and/or
the donation of kidneys with multiple renal arteries and/or
from selected obese donors is not precluded by a purely lap-
aroscopic approach.61-68 Indeed, a more important consider-
ation is a short right renal vein, probably a greater technical
challenge for the recipient surgeon and more likely to pre-
clude use of a right donor kidney than multiple right renal
artery branches.69

The live-donor nephrectomy is a unique procedure in that
the operation is performed on a very healthy patient for
wholly altruistic reasons. As such, it is paramount that this
procedure is undertaken by highly trained providers, and
any procedural risks are as close to absolutely negated. Al-
though operative complications are not significantly higher
in laparoscopic donors, the rare but potentially catastrophic
complication of a loss of vascular control can be difficult
to manage especially if this occurs postoperatively.48,70 Lap-
aroscopic donor surgery has therefore evolved to incorpo-
rate safer methods of securing the renal artery stump using
transfixionmethods such as a vascular stapler and/or locking
nor and recipient surgical techniques. PKD, polycystic kidney disease.

 Health, Inc. All rights reserved.

http://www.transplantjournal.com


© 2018 Wolters Kluwer Hameed et al 1653
vascular clips such as the Hem-o-Lok (Teleflex, Morrisville,
NC).71,72 However, no single technique is fail-safe, and there
have still been reported cases of severe arterial hemorrhage
despite the use of these transfixion methods, including vascu-
lar staplers.72-74 The use of locking clips alone is especially
problematic in the event of a short renal artery stump, with
a risk of delayed clip failure. Furthermore, the manufacturer
withdrew support of the use of Hem-o-Lok as the primary
method of arterial control during live-donor nephrectomies
in 2006.75 Some surgeons in our unit prefer the combined uti-
lization of a noncutting stapler such as the Endo-TA, in addi-
tion to the deployment of the Hem-o-Lok clip on the most
proximal staple line.76 This approach allows for maximal
vessel length in addition to a further failsafe against the loss
of vascular control (Figure 2).

THE QUEST FOR MINIMALLY INVASIVE
TRANSPLANTATION (RECIPIENT) SURGERY

Upon establishment of minimally invasive live-donor tech-
niques, the logical next step was the attempt to use minimally
invasive procedures in the kidney transplant recipient to min-
imize the size and morbidity of the incision associated with
open surgery (minimally invasive open kidney transplanta-
tion [MIOKT]). Laparoscopic and robot-assisted kidney
transplantation (RAKT) was the natural progression for sur-
geons with appropriate skills and access to equipment. The
challenge was to perform such surgery without compromis-
ing graft and patient outcomes.

Minimally invasive open kidney transplantation modifies
the existing open approach by using a smaller incision size
that is 5 to 10 cm, depending on the size of the donor kidney.
Øyen et al77 in 2006 were the first to describe the technique.
They used a 7- to 9-cm transverse incision superior to the
inguinal ligament to obtain adequate exposure of the iliac
vessels. It often necessitated division of the conjoint ten-
don. Median BMI in a cohort of 21 MIOKT patients was
25.7 kg/m2 in comparison to 24.4 kg/m2 for the control
group of 21 conventional open-kidney transplants recipients
(COKT). Overall, operative time and postoperative stay was
impressively less in the MIOKT group (118 minutes vs
187 minutes, and 8.2 days vs 12.4 days, respectively), with-
out any significant differences in surgical complications and
DGF.77 Minimally invasive open kidney transplantation has
FIGURE 2. Our center's technique for securing the renal artery stump d
across renal artery stump, B, Secure renal artery stump after transection,
origin of the artery (arrow), and C, Renal artery and vein visualized after a
LRV, left renal vein; RRA, right renal artery.

Copyright © 2018 Wolters Kluwer H
been described in various publications since this initial re-
port, with some evidence of less requirement of analgesia
and return to normal activity in the MIOKT compared with
COKT groups. Importantly, short- to medium-term graft
outcomes do not seem to be negatively impacted.78-82

Laparoscopic kidney transplantation (LKT) endeavors to
further reduce incision size while enhancing the surgeon's
field of view. The most difficult part of such a procedure is
the successful achievement of intracorporeal anastomoses
using instruments with limited rotational degrees of freedom.
Laparoscopic kidney transplantation requires an access point
for the kidney, either via an abdominal incision (up to 7 cm)
or the transvaginal route, in addition to the insertion of up to
4 laparoscopic instrument ports. Rosales et al83 performed the
first LKT in 2009. The recipient had a BMI of 22 kg/m2, and
intra-abdominal access was achieved using a 7-cm Pfannenstiel
incision, and 3 right-sided access ports. The secondary
warm ischemic (anastomotic) time (SWIT) was prolonged
at 53minutes, although an attemptwasmade to cool the kid-
ney by topical means using ice slush and surface irrigation
with cold saline.83

Modi et al's group from India has the greatest published
experience of LKT.84-87 A series of 72 patients with an aver-
age BMI of 20.5 kg/m2 underwent LKT after laparoscopic
live-donor nephrectomy was compared to a cohort of 145
COKT patients.86 LKT was conducted using a Pfannenstiel
incision, and 4 left-sided abdominal ports. The iliac vessels
were accessed transperitoneally and topical cooling was not
applied during the anastomoses. Before wound closure, the
kidney was fixed in position using a peritoneal flap. Mean
wound length in the LKT group was 5.5 cm, in comparison
to 17.8 cm in the COKT group. However, the anastomotic
and rewarming times were significantly longer in the LKT
group (50.3 vs 27.1 minutes, and 60.3 vs 30.3 minutes, re-
spectively). Analgesic requirement was significantly reduced
in LKT patients. Although the estimated glomerular filtration
rate at 7 and 30 days postoperatively was also significantly
lower in the LKT group, estimated glomerular filtration rate
values in both groups converged between 3 and 18months.86

Modi et al87 later demonstrated that the transvaginal route
could be used in women who had previously undergone vag-
inal delivery, precluding the need for the Pfannenstiel inci-
sion. Mean kidney rewarming time was still prolonged at
uring laparoscopic donor nephrectomy. A, Endo-TA stapler deployed
with Hem-o-lok clip additionally used across the stapler line close the
utotransplantation and reperfusion. Ao, aorta; IVC, inferior vena cava;

ealth, Inc. All rights reserved.
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62.9 minutes, therefore extending the ischemic time, whereas
analgesic requirements were only marginally less than re-
quired when an abdominal incision was used.87

There are several limitations attributable to LKT based on
the current published experience. The prolonged rewarming
time with its potential adverse impact on graft function is
probably the most important consideration. Furthermore,
LKT is currently only applicable to a very small subset of kid-
ney transplant recipients, with procedures performed by a
few select surgeons. Published studies have largely included
low risk and thin patients, and explicitly excluded obese re-
cipients and those with significant atherosclerotic disease,
and previous lower abdominal surgery. Establishment of
pneumoperitoneum for the purposes of LKT may also be
problematic, with contribution to respiratory acidosis, and
impaired renal perfusion.86,88 Modi et al, however, suggest
that these effects can be ameliorated by maintaining insuffla-
tion pressures less than 10 to 12 mm Hg.86 Regardless, it is
probable that LKT is not likely to be feasible in the near fu-
ture for the majority of kidney transplant recipients, espe-
cially those that are overweight or obese.
THE ERA OF ROBOTIC KIDNEY TRANSPLANTATION

Robotic-assisted Kidney Transplantation
The promise and potential of robotic surgery stems from

its ability to facilitate complex operations using smaller inci-
sions while simultaneously providing an enhanced field of
view and a higher degree of instrument maneuverability.
These characteristics are especially beneficial in obese pa-
tients who are not suitable for LKT and traditionally require
long incisions prone to multiple complications, as already
discussed. The da Vinci Surgical System (Intuitive Surgical,
CA) has been used in all published reports to date (Table 1),
and consists of a “master/slave” set-up. A patient side-cart con-
taining multiple robotic arms must be docked onto the patient,
and procedural assistance is provided by assistant surgeon(s) at
the patient's side. Robotic-assisted kidney transplantation using
systems, such as the da Vinci robot, allows 7 degrees of freedom
at the instrument tip, in addition to a 3-dimensional view and
significant ergonometric advantages compared to laparos-
copy. It also eliminates tremor.108

RAKT—Uptake and Variations in Reported Technique
Over Time

In 2001, Hoznek et al89 performed the first reported par-
tial RAKT. Although a full-length open incision was used in
the left lower quadrant, this case report nevertheless demon-
strated that anastomoses required for transplantation could
be performed using a robotic system. Due to robot-specific is-
sues identified by this group, such as a lack of fine haptic
feedback, a prolonged SWIT of 57 minutes, and high costs,
the adoption of RAKT has been slow. In 2009, Geffner and
colleagues performed transperitoneal robotic vascular anas-
tomoses and ureteric implantation after having placed the
kidney extraperitoneally through a reduced length iliac fossa
incision.109 A group from Chicago later undertook the first
total RAKT, with the primary aim of allowing safe and success-
ful transplantation in a morbidly obese patient.29 A 7-cm
periumbilical incision was used to insert the graft, making use
of a hand access device (Lap Disc, Ethicon, Cincinnati, OH).
Robot redocking was required for the ureteroneocystostomy
Copyright © 2018 Wolters Kluwer
component of the procedure, and the final graft position
was intraperitoneal.29

Boggi et al90 then described the first purely RAKT proce-
dure in Europe. The primary difference in their approach
was that the ureteric implantation was performed in an open
fashion after conducting the vascular anastomoses roboti-
cally. The graft was also placed in a retroperitoneal pocket
before closure.90 Further evolutionary steps in RAKT were
introduced by Menon and colleagues92 from Detroit in the
United States and Medanta in India. The major differences
in the approach used by these groups from that of the Chi-
cago group, included the introduction of regional hypother-
mia to counteract the effects of prolongation of SWIT,
extraperitoneal repositioning of the graft after implantation
to avoid the risk of torsion, and the avoidance of robotic
redocking for performance of the ureteroneocystostomy.95

All of the aforementioned approaches required a 4- to
7-cm incision for graft insertion. An alternative used by some
centers in female recipients is transvaginal graft inser-
tion.99,103,110-112 Suitability for the transvaginal route re-
quires preoperative assessment. For example, Modi et al in
the situation of LKT, ensure both an absence of local infec-
tion and/or malignancy, in addition to sufficient vaginal lax-
ity.87 It is likely that only women who have previously
undergone normal vaginal delivery will be suitable for this
approach, and gynecologic input is essential. Bacteriologic
contamination can potentially be reduced by kidney insertion
using a sterile bag or wound retractor. Analgesic requirements
are likely to be reduced, although data are very limited.87,103

RAKT—A Summary of Techniques
Techniques used in all published RAKT articles to date

are summarized in Table 1. The RAKT technique does not re-
quire significant variation for obese recipients.

Entering the Abdomen
Robotic-assisted kidney transplantation requires port

placement for visualization of the surgical field and con-
trolled intra-abdominal access of robotic instruments. There
is no set port placement for the performance of RAKT but
is not dissimilar to common positioning used for other pelvic
procedures, such as prostatectomies and cystectomies. Access
points used by the groups in Chicago and Detroit/Medanta
are summarized in Figure 3.29,93,95 Port types common to
all centers include those for robotic arms, bedside assistant
port(s), and a camera port. The size of each individual port
tends to range between 8 and 12 mm, depending on the
system used.

Recipient Vascular and Bladder Dissection
The external iliac vessels are prepared for anastomoses in

the vast majority of published reports, although Boggi et al
used the common iliacs (Table 1).90 Vascular access is most
commonly achieved by the transperitoneal approach. Peri-
toneal flaps may be created if the graft is to be retro-
peritonealized after implantation.90,93 The catheterized
bladder may be prepared at this stage,93,95 or after vascu-
lar anastomoses are completed.29

Graft Preparation and Insertion
Meticulous back-table preparation of the graft is essen-

tial to minimize recipient blood loss in RAKT because the
 Health, Inc. All rights reserved.
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FIGURE 3. Robot-assisted kidney transplantation port placement/access points—2 common techniques.
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surgeon does not have the ability to readily apply pressure
over bleeding site(s), and the extensive use of suction results
in a loss of pneumoperitoneum. A useful technique described
by the Chicago group in the context of robotic simultaneous
pancreas/kidney transplantation involves a back-table arte-
rial flush using University of Wisconsin solution containing
methylene blue dye to identify any obvious vascular leaks.113

Estimated blood loss does not appear to be higher after
RAKTin comparison to conventional techniques, as reported
by the current major proponents of RAKT.30,93

Graft insertion requires an incision that can accommodate
kidney size. Transabdominal incisions have been described in
a periumbilical position, directed vertically,29,93,102 horizon-
tally in the suprapubic region (Pfannenstiel),90 or upper mid-
line.100,105 Gel-based hand-assisted devices are generally
required to seal these incisions, and include the Lap Disc
(Ethicon, Cincinnati, OH) and GelPOINT devices (Applied
Medical Inc., Rancho Santa Margarita, CA); further ports
can also be placed through these.29,90,93 Alternatively, the
aforementioned transvaginal access avoids the need for an
abdominal incision. After vaginal access is created, an Alexis
wound retractor (Applied Medical Inc., Rancho Santa Mar-
garita, CA) can allow subsequent graft insertion.99

Incorrect kidney orientation during implantation can be
avoided bymarking the lower pole of the kidney. In our prac-
tice, all kidneys are placed in a “stockinette” to allow ease of
handling and manipulation of the graft during anastomoses.
Easier identification of the lower pole of the kidney after it is
covered by the “stockinette” is facilitated by placing a large
knot inferiorly.
Patient Positioning
The Chicago technique involves left lateral decubitus pa-

tient positioning during RAKT.29 In contrast, other RAKT
units introduce a degree of Trendelenburg (“head-down”) tilt
(15-20 degrees) to facilitate better intraoperative exposure.95

Anecdotally, the degree of Trendelenburg tilt may be greater
in obese recipients with increased intra-abdominal fat. Im-
portant anesthetic considerations with this patient position
Copyright © 2018 Wolters Kluwer H
include potential impacts on lung expansion/compliance, im-
paired cardiac output (due to effects in combination with
pneumoperitoneum), raised intracerebral/ocular pressures,
and the potential for lower limb ischemia.95,114,115 This
may necessitate the avoidance of RAKT in patients particu-
larly at risk from these factors. Importantly, however, au-
thors have demonstrated that a head-down tilt of up to 40
degrees does not necessarily compromise cardiorespiratory
function, and cerebral perfusion and oxygenation.116 Our
view is that safety can be further enhanced by utilization of
the “modified Z Trendelenburg position,” which is designed
to maintain the head and shoulders in the horizontal posi-
tion, and significantly ameliorates any impacts of raised in-
traocular pressure.117 Furthermore, patient suitability and
positioning should always be planned preoperatively and
discussed with the involved anesthetic team.

Kidney Transplantation
A major advantage of total RAKT is provision of signifi-

cantly improved vision over open procedures while perform-
ing the vascular anastomoses. They can be achieved with
standard techniques in an end-to-side or end-to-end fashion,
using atraumatic vascular instruments.29,90,93 The different
types of available robotic instruments has been summarized
by Boggi et al.90 Polytetrafluoroethylene is the commonly
used suture material because it displays minimal suture mem-
ory.30,95 After the kidney transplant is revascularized and he-
mostasis achieved, the robot may need to be redocked for the
ureteroneocystostomy, depending on the patient’s original po-
sition.29,95 The ureteric anastomosis is generally created over a
ureteric stent inserted into the ureter/bladder.29,93 Previously
fashioned peritoneal flaps and/or the cecum can then be used
to reposition the graft in the extraperitoneal plane.90,93

Graft Cooling and the Amelioration of a Prolonged SWIT
Graft insertion, positioning, and creation of vascular anas-

tomoses may prolong the anastomotic time (SWIT) during
RAKT in comparison to COKT; a summary of SWITs/
rewarming times for published reports is outlined in Table 1,
ealth, Inc. All rights reserved.
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and range from 40 to 73 minutes. A prolonged SWIT in turn
is associated with inferior short- and longer-term graft out-
comes.118 Although there is some evidence that cumulative
RAKT experience helps shorten the time taken to perform
vascular anastomoses,94,119,120 active attempts at graft
cooling after its removal from cold storage may be protective
even when SWIT is prolonged.120 Menon et al introduced a
technique of RAKT incorporating regional hypothermia,
achieved by the instillation of ice slush onto the vascular
bed and graft, after first surrounding the kidney with a gauze
jacket containing ice slush during its introduction into the ab-
domen.92,93 This technique has since been replicated by other
groups, with kidney surface temperature before reperfusion
remaining below 20°C.95,102,104,121,122 In a porcine study,
Meier et al used an alternative graft cooling technique com-
prising a kidney jacket through which ethanol andmethylene
blue was continuously recirculated at 4°C.123 Using this sys-
tem, mean kidney temperature was 6.5°C at reperfusion,
with evidence that ischemia-reperfusion injury in cooled kid-
neys was less compared to noncooled controls.123 At present,
there is no published clinical comparison of RAKToutcomes
with and without the utilization of graft cooling techniques.

In addition to active graft cooling, the impact of overall
graft ischemia times can be reduced by the simultaneous com-
mencement of recipient and live donor surgery in 2 separate
operating rooms.95,101

RAKTand the Obese Recipient
Robotic-assisted kidney transplantation has the potential

to enhance the numbers of obese patients receiving a kid-
ney transplant. Table 1 summarizes patient BMI in each
published RAKT report. It can be seen that although some
centers have explicitly excluded patients with a BMI of
40 kg/m2 or greater,107 others have either focused purely
on obese patients, or at least allowed for RAKT in the
morbidly obese.30,95,105,106,121

Obesity has been the primary indication for RAKT by the
Chicago team.29,30,106 The rationale for this approach is to
facilitate an increased transplantation rate in this recipient
group while minimizing wound complications, such as surgi-
cal site infections, and thereby also indirectly targeting graft
loss.124 Obese patient selection followed standard guidelines
for kidney transplant recipients. In comparison to obese
COKT recipients, initial work by this group demonstrated
that RAKT reduced wound complications (3.6% vs 28.6%,
P = 0.02) with no significant adverse impact on graft out-
comes, including DGF (P = 0.99), acute rejection (P = 0.99),
6-month graft survival (100% in both groups), and serum
creatinine at 6 months (1.5 mg/dL vs 1.6 mg/dL, P = 0.47).30

A later analysis by the same group compared outcomes be-
tween their RAKT recipients with all COKTobese recipients
registered in the United Network of Organ Sharing data-
base.106 Overall, there were 545 COKT recipients and 67
RAKT recipients; although both groups had a mean
BMI > 40 kg/m2, patients in the RAKT group still had signif-
icantly higher BMIs. Patient and graft survival up to 3 years
after transplantation was not different (96.8% and 89.7%,
respectively, for RAKT patients, compared to 94.6% and
90%, respectively, for the COKT group). None of the RAKT
grafts were lost secondary to thrombosis, infection, or uro-
logic complications. Unfortunately, wound infection rates
were not available for comparison, and interestingly hospital
Copyright © 2018 Wolters Kluwer
length-of-stay was not reduced by RAKT.106 In France,
Doumerc et al105 outlined the potential utility of RAKT to reduce
the access disparity for transplanted kidneys in the obese by
transplanting 2 recipients with BMIs of 37 and 40 kg/m2, respec-
tively, who had been previously been refused transplantation.
Neither patient suffered postoperative complications, with satis-
factory graft function at 3 months posttransplantation.105

Although bariatric surgery is not always readily available,
it is certainlymorewidespread thanRAKTand remains a fea-
sible option that can lead to more possible transplant re-
cipients than RAKT alone.8,24,26-28,125 The feasibility of
simultaneous RAKT and sleeve gastrectomy for weight
loss has also been described by the Chicago group, with a
randomized trial currently in progress.98,126

Overall, although these articles have demonstrated the sig-
nificant potential of RAKT in obese recipients, it is unlikely
that RAKT on its own will improve overall access to trans-
plantation for obese recipients. This is in part related to the
limited availability of the RAKT because of cost. Further-
more, more large-scale evidence is required for the routine
implementation of such an approach. In particular, outcomes
after RAKT, and especially in the morbidly obese, need to
be compared with obese patients remaining on dialysis
with respect to survival and quality of life. In addition,
the most productive approach to reducing transplantation ac-
cess disparities in obese recipients should always encompass si-
multaneous aggressive weight-loss strategies to mitigate the
impacts of the patient’s obesity on their overall health.

Utilization and Uptake of RAKT

Donor Source
Most of the world's experience in RAKT is in living donor

kidney transplantation (Table 1), with very few published arti-
cles describing utilization of the robotic technique for deceased
donor kidneys in a small number of patients.29,30,97,100,105 The
likely explanation for this is that living donor transplantation
involves the use of ideal donor kidneys at a planned time and
under controlled circumstances, allowing the preparation of
the necessary equipment, and fully robotically trained theater
and surgical staff.

Robotic Experience
The introduction of RAKT at a transplant center necessi-

tates previous robotic surgical and kidney transplantation ex-
perience. Sood et al94 demonstrated that the learning curve
for RAKT is minimal in the presence of extensive robotic ex-
perience (defined by the completion of >300-2000 cases).
Prolific robotic surgeons performed better than surgeons with
little robotic experience (< 10 cases) but extensive COKTexpe-
rience (> 2000 cases) with respect to procedure learning curves
and task completion. Surgeons with both robotic (> 300 cases)
and COKT (> 2000 cases) experience performed the best with
regard to a lack of learning phase for completion of anastomo-
ses.94 Importantly, however, a lack of robotic experience did
not negatively impact graft functional outcomes, with the au-
thors' conclusion that this was related to the utilization of
regional hypothermia.94

Breda et al,107 in their recent publication of the European
experience, outlined that all surgeons had performed signifi-
cant numbers of both robotic cases and COKT (> 100 of
each) and had undergone further supervised RAKT training
 Health, Inc. All rights reserved.
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using animal models. Additional supervision was provided
during each surgeon's initial 4 RAKT cases in human recipi-
ents. Overall, previous robotic experience in the pelvis seems
to be essential to the successful and safe performance of
RAKT, more so than sole COKT experience. Centers aiming
to introduce RAKTneed to take this into account, and poten-
tially need to hone surgeons' skills by practicing necessary
techniques on animal models or cadavers.92,107,127 Similarly,
oncology surgeons have demonstrated the advantages of ac-
tivities to reduce robotic learning curves with prescribed cur-
ricula; similarmodels could lead to the wider implementation
of RAKT.128-133

Costs
Any decision to implement RAKT at a transplant center

must take into account the higher costs of such a system to
cover the purchase of the robot itself and purpose-made dis-
posable consumables. Large-scale cost-benefit analyses compar-
ing RAKTandCOKT have not yet been conducted, largely due
to limitedworldwide experienceusingRAKT.Oberholzer et al30

did however outline individual transplantation costs for RAKT
and COKT in their cohort of patients. When comparing the
transplant procedure alone, without consideration of the cost
of the robotic system itself, RAKTwas still significantly more
expensive per transplant (approximately 75000US dollars in
comparison to 60000 US dollars for COKT). Six-month hos-
pital costs were also significantly higher in the RAKT group
by approximately 20000 US dollars per patient.30

It is expected that the cost of robotic surgery will decrease
over time, especially as surgeons' experience and outcomes
improve. In our own experience, the operating theatre costs
of RAKT are very similar to robot-assisted prostatectomies
(~10000 USD). Reassuringly, in the sphere of prostate sur-
gery, increased operating costs of the robotic procedure are
offset by reductions in hospital length of stay, and cost-
neutrality can be achieved after the performance of 140 cases
per year.134

Relative Contraindications and Patient Selection
Absolute contraindications for RAKT are likely to be the

same as COKT. However, factors that might limit the appli-
cation RAKTnow are likely to change as operator and center
experience increases, and robotic technology and feedback
improves. For example, initial reports from the Detroit/
Medanta groups excluded recipients with significant iliac artery
atherosclerosis, a previous kidney transplant, likely intra-
abdominal adhesions secondary to major abdominal surgery,
a high risk of rejection, and dual/multiorgan recipients.92,93 In
contrast, the Chicago teamdid not preclude previous transplant
recipients or immunologically at-risk transplants.30 Indeed, the
robotic technique has been taken up in an expanded fashion
and has been demonstrated to be possible for the perfor-
mance of simultaneous pancreas/kidney transplants and
dual-kidney transplantation.100,113,135

Recipient atherosclerotic disease is probably the most im-
portant consideration with respect to appropriate patient se-
lection due to the potential for disaster if clamps do not
achieve adequate vascular control, compounded by the loss
of haptic feedback with the robot that precludes accurate in-
traoperative assessment. In the interests of patient safety, and
especially during the early implementation of RAKT, it is
Copyright © 2018 Wolters Kluwer H
probably prudent to continue to be wary of recipients with
significant risk factors for atherosclerosis, and preoperative
computed tomography should be used to identify any sub-
clinical iliac vessel disease.107

Autotransplantation and RAKT Beyond Obesity
Robotic assistance can be used to achieve complete

intracorporeal autotransplantation for such indications as he-
maturia loin-pain syndrome and obstructing ureteric strictures.
Gordon et al136 published the first report of a completely ro-
botic kidney auto-transplant, using intracorporeal cooling with
a continuous, cold Hartmann's flush that was delivered via the
renal artery before anastomoses. This therefore meant that the
kidney did not need to be extracted via a separate abdominal in-
cision for ex vivo cooling before reimplantation. Case reports of
total robotic autotransplantation have subsequently been re-
ported by other groups.137,138

Our center has commenced the implementation of RAKT
specifically for kidney autotransplantation.We propose an ex-
panded utilization of robot-assisted renal autotransplantation
itself in procedures requiring the repair of complex renal artery
aneurysms. In our first case demonstrating this approach
(Figure 4; SDC 1, http://links.lww.com/TP/B592), a 22-year-
old patient with a proximal left renal artery stenosis, and
poststenotic aneurysm located just proximal to the renal
artery bifurcation, underwent a LDN, ex vivo vascular bench
repair, and subsequent heterotopic RAKT. This patient had
poorly controlled hypertension despite the use of multiple
agents. In this case, the renal artery anastomosis to the
external iliac artery was performed in and end-to-side manner
before the renal vein. One week after surgery, the patient was
normotensive without need for antihypertensive medication.

Overall Outcomes and Complications After RAKT
Table 1 summarizes outcomes after RAKTin the published

reports to date. Early experience with totally robotic kidney
transplantation indicated a slower creatinine decline after
RAKT patients compared with COKT. This difference was
no longer significant at 6 months.30 It is likely that the crea-
tion of pneumoperitoneum during RAKT contributes to this
initial reduction in graft function.30,139 For this reason, the
Detroit/Medanta system reduces gas insufflation pressure
from 15 to 8mmHg after kidney revascularization, although
any beneficial effects of this are still unclear.93

Currently, there is minimal published evidence comparing
the efficacy of RAKT to other kidney transplantation ap-
proaches. Published articles and conference proceedings are
dominated by case reports or case series. No randomized
control trials have been published.Nevertheless, comparative
graft function and survival does not seem to differ in selected
patients when compared to COKT.106,121 Sood et al121 pro-
spectively compared RAKT (n = 59) and COKT (n = 168) pa-
tients in phase 2B of their study based in Medanta and Detroit,
showing no difference in graft and patient survival. In concor-
dance with results from the Chicago group, wound complica-
tions were reduced when RAKT was used, in addition to
postoperative pain and subsequent analgesic requirements.30,121

Conversion to open surgery is uncommon, and was re-
ported in only 5 of 256 patients in published articleswhere this
outcome was commented on.30,95,97,102,104,107 Lymphocele
formation is potentially reduced after RAKTand is likely ex-
plained by the intraperitoneal rather than conventional
ealth, Inc. All rights reserved.
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FIGURE 4. Robot-assisted autotransplantation of the kidney in the case of a complex left renal artery aneurysm. After laparoscopic donor ne-
phrectomy and ex vivo bench repair, the kidney was heterotopically autotransplanted using a total robotic approach. A, Arteriotomy, B, Com-
mencement of arterial anastomosis (n.b. severely atherosclerotic renal artery), C, Completion of arterial anastomosis, and D, Reperfusion after
completion of vascular anastomoses. E-F, Preprocedural and postprocedural CT angiograms. n.b. A previous attempt at endoluminal repair
caused thrombosis of an upper pole renal artery, thereby rendering the superior pole nonperfused.
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extraperitoneal surgery.121,140 In the consideration of graft
placement, torsion is a theoretical risk of intraperitoneal po-
sitioning. However, this complication has not yet been de-
scribed by the Chicago group, which routinely uses such a
technique. Furthermore, intraperitoneal positioning necessi-
tates a laparoscopic procedure under general anesthetic when
a renal biopsy is required. This is unnecessary when the kid-
ney is extraperitonealized.30,108 Regional hypothermia in-
duced through the instillation of ice slush has been blamed
for ileus in 2 cases in 1 series, although a reduction in the
amount of slush used may prevent this from occurring.104

Graft thrombosis after RAKT necessitating transplant ne-
phrectomy has been reported in the literature, although this
is reassuringly uncommon.107,122

When considering minimally invasive kidney transplanta-
tion techniques in general, there is 1 recently published sys-
tematic review comparing such an approach to COKT.141
Copyright © 2018 Wolters Kluwer
Not surprisingly, overall quality of evidence for the included
studies was low. However, this review did cautiously con-
clude that surgical/wound complications and patient recov-
ery may be enhanced by minimally invasive transplantation
without negatively impacting graft outcomes.141
CONCLUSIONS AND FUTURE DIRECTIONS
Robotic-assisted kidney transplantation presents the latest

innovation in the evolution of kidney transplantation sur-
gery. It is a highly specialized procedure performed only by
a limited number of kidney transplant centers. A variety of
technical variations exist, with differences in patient position-
ing, incision(s), port placement, graft placement, and the uti-
lization of kidney cooling techniques. All techniques still
require an incision ranging from 4 to 7 cm for graft insertion,
depending on kidney size. Ischemic times may be prolonged
 Health, Inc. All rights reserved.
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with the robotic approach, although active cooling of the
graft before reperfusion should at least partially ameliorate
this problem. The majority of RAKT has been undertaken
using live-donor kidneys and in carefully selected recipients.
Randomized controlled trials, and indeed even prospective
or retrospective cohort studies, are still required to compare
and confirm the long-term safety and efficacy of RAKT in
preference to COKT.

The future expansion in the implementation of RAKT re-
quires the appropriate facilities and technical expertise, and
must be balanced with the increased costs of such an ap-
proach. New RAKT programs must involve surgeons with
both extensive open transplantation and robotic surgical ex-
pertise, potentially supplemented by formal robotic training
curricula and training using animal and/or cadaveric models,
such that patient safety is maintained, especially for obese re-
cipients. Furthermore, the increased costs of RAKT must be
balanced against any potential benefits conferred to recipients.

Although bariatric surgery is an important and feasible
consideration in morbidly obese ESRD patients, and is more
commonly available, it is not without complications and does
not guarantee absolute success. Especially in the patientswho
either fail bariatric surgery, or in whom this option is not
available, RAKT presents a unique opportunity for safe and
effective transplantation. In comparison to obese recipients
undergoing open transplantation, RAKT improves wound/
surgery-related outcomes, without compromising graft func-
tion, and has the potential to allow transplantation in recipi-
ents previously excluded exclusively due to morbid obesity.
Initial costs will certainly be higher; however, these should
decrease as center volume and outcomes improve further still.
Especially when considering that transplantation in the obese
offers a survival advantage in comparison to remaining on di-
alysis, the authors believe that in the ensuing years, RAKT for
morbidly obese recipients who are unable to lose weight will
become the preferred option for this otherwise largely
dialysis-dependent group, although availability of this ap-
proach remains limited and overall access disparities cannot
be addressed by RAKT alone. Furthermore, we hope that
RAKTwill never abrogate the need to encourage obese recip-
ients to continue to pursue weight-loss strategies for the on-
going optimization of their general health.
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Abstract 

Anastomosing the renal artery and vein in transplant recipients without a cooling mechanism exposes the 

kidney to temperatures exceeding the metabolic threshold (15-18 °C), at which the protective effects of 

renal hypothermia are lost. This anastomotic time, or second warm ischemic time, can be deleterious to 

graft outcomes, especially if it is prolonged. Techniques to ameliorate organ warming prior to reperfusion 

have been designed, and range from simpler surface cooling techniques, to organ immersion in bags of ice 

slush, and the application of ‘jackets’ that incorporate their own internal cooling mechanism. The efficacy 

of these methods with respect to the minimization of kidney temperature prior to reperfusion and 

subsequent effects on graft outcomes are discussed using clinical and experimental data, in the setting of 

open, laparoscopic, and robotic kidney transplantation.  
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Introduction 

Kidney transplantation outcomes are a complex function of donor, procurement, preservation, and 

recipient characteristics. Significant prominence is traditionally given by transplantation teams to 

maintenance of an appropriately cold environment during organ procurement and transportation. In recent 

years much research has concentrated on the impact of cold ischemic time (CIT) and technologies such as 

machine perfusion (MP) to reduce its impacts on kidney allograft outcomes.[1, 2] However, often less 

importance is given to temperature dynamics during the second warm ischemia time (SWIT), denoting 

the time from the commencement of vascular anastomoses until reperfusion. 

Ischemia-reperfusion injury (IRI) is a key component of early and potentially longer-term graft outcomes, 

and is significantly impacted by the duration of ischemia and preservation temperature. An important aim 

during procurement and preservation, therefore, is both the minimization of the total ischemic time (TIT) 

and also induction of organ hypothermia, such that the kidney’s metabolism is significantly reduced 

during the time it has no blood and/or oxygen supply. Core organ cooling is achieved during retrieval by 

in situ perfusion of the kidney with cold preservation fluid; core cooling is the primary mechanism by 

which renal hypothermia is induced in preparation for transportation to the transplant center. Ideally, the 

temperature should be maintained at less than 15-18 °C; above this threshold, the degree of renal 

glomerular and tubular metabolic activity results in warm ischemic damage.[3-5]    

Maintenance of appropriate renal hypothermia is therefore not only important during 

preservation/transportation, but also when the kidney is removed from its cooled transport media in 

preparation for anastomoses. Delayed graft function (DGF) is a function of donor and transplantation 

factors, with likely contributing mechanisms including kidney re-warming during the SWIT, in addition 

to other considerations such as surgical inexperience with a prolonged anastomotic time. A prolonged 

duration of anastomoses (greater than 35-45 mins) significantly increases the risk of delayed graft 

function (DGF) and histologic injury, including interstitial fibrosis, and may independently reduce graft 
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survival.[6, 7] DGF itself is also associated with poorer longer-term graft survival.[8, 9] Moreover, an 

increased SWIT potentially explains the poorer graft survival of right compared to left deceased donor 

kidneys.[10] 

SWIT may in fact have a pivotal influence on transplantation outcomes for higher kidney donor profile 

index (KDPI) and donation after circulatory death kidneys, and is an area of potential research growth, 

particularly with the advent of MP technology. Strategies that reduce the SWIT and/or its impacts should 

therefore be employed. An important area of investigation here is the reduction of core kidney 

temperature during the SWIT as a means to maintain low levels of renal metabolism right up until 

reperfusion, to thereby minimize the IRI hit. Using current technologies, this cannot be achieved using 

core cooling methods (i.e. direct intra-vascular perfusion) during anastomoses, but rather relies upon 

external methods and/or devices. In this review, we aim to investigate this concept further in the setting of 

open, laparoscopic and/or robotic renal transplantation. 
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Methods 

The Cochrane, Embase and Medline databases (January 1975- September 2017) were searched using the 

following keywords: 

(Kidney or renal) AND (transplant* or kidney transplantation or transplantation) AND (second warm 

ischemic time or SWIT or anastomosis or anastomotic time) AND (cool or temp*). 

All relevant experimental and clinical articles exploring active kidney cooling techniques during the 

SWIT in open, laparoscopic and/or robotic renal transplantation were extracted, and effects on kidney 

temperature and clinicopathologic outcomes were recorded.  

Study evidence levels and grades of recommendation were assessed based on the guidelines provided by 

the Oxford Centre for Evidence-Based Medicine.[11] This system classifies studies from level 1 to level 

5, from a high to low level of evidence. A final, cumulative recommendation grade from A to D (highest 

to lowest) is given based on these evidence levels, which estimates the confidence that can be placed in 

the suggested efficacy of the approach utilized based on the consistency and quality of studies.  
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Results 

Temperature changes during renal transplantation 

Kidney temperature alterations during living donor transplantation were measured in 152 patients by 

Kuipers et al, and during deceased donor transplantation in 65 patients by Feuillu et al.[4, 5] Grafts from 

both studies were flushed and stored in University of Wisconsin (UW) solution. Kuipers et al. covered 

grafts with a wet, cold sponge during implantation, with surface temperature measurements taken using 

an infra-red thermometer; in contrast, Feuillu et al. utilized cooled paper towels on the back-table, then 

flushed the kidney with cold serum, followed by immersion in cold serum until anastomoses. 

Temperature here was measured at a depth of 15 mm. Comparative temperature changes in these studies 

during the SWIT are summarized in Figure 1. Mean kidney temperature prior to reperfusion (i.e. end-

SWIT) in both studies was 25.5 and 26.7 °C, respectively, with the so-called 15-18 °C metabolic 

threshold exceeded between an anastomotic time of 10-20 minutes.[3-5] 

Porcine, ex vivo studies have explored kidney temperature changes depending on kidney surface and size. 

The posterior kidney surface in contact with the iliac fossa itself warms at a faster rate in comparison to 

the anterior surface exposed to the ambient environment, and organ warming is inversely proportional to 

the kidney’s size/weight.[12, 13]   

Cooling techniques 

A variety of cooling methods applicable to the SWIT have been tested in the clinical and experimental 

setting, and are summarized in Table 1. Broadly, these can be classified as topical/surface cooling 

techniques overlying the isolated kidney, kidney immersion in bags/stockinettes containing ice slush with 

or without additional cold preservation solution, and/or the application of a shell/jacket containing a 

mechanical cooling system around the kidney.  
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Only the former two have been utilized in clinical transplantation, with the use of cooling shells/jackets at 

this stage largely restricted to the experimental setting. Kidney placement in a bag/stockinette necessitates 

small holes being made in the receptacle at the region of the hilum such that the renal vessels can be 

brought out for anastomoses. The bag is prevented from obscuring the operating field by obliquely 

affixing it to the wound edge/drapes, although intuitively this is more likely to occur in comparison to 

when less bulky receptacles are used for the kidney.[14, 15] 

Thermodynamic effects 

Each technique causes differential cooling of the kidney cortex and medulla. Kidney temperatures at 

different time points for each study are outlined in Table 1. Assuming a SWIT of 30 minutes, median 

cortical and medullary temperatures, respectively, at reperfusion were as follows – 22.1 and 22.5 °C for 

surface/topical cooling methods,[5, 13, 16, 17] 6.5 and 6.3 °C for shell/jacket-based approaches,[18-21] 

and 4 and 5 °C when ice bag/stockinettes were utilized.[15, 22, 23] 

Impacts on graft outcomes 

Table 1 outlines the clinic-pathologic and/or other effects of cooling systems in comparison to no cooling. 

Topical/surface cooling systems are utilized at a minimum by most units, and as such no comparative data 

was available for this subset. In contrast, clinical transplantation outcomes were documented by two study 

groups utilizing the ice bag/stockinette method; one study group suggested there were no significant 

outcome differences when this technique was employed in comparison to standard methods, whilst the 

other group found better 14-day estimated glomerular filtration rates and a lower cumulative delayed graft 

function and acute rejection rate in the ice bag group.[15, 22, 24] Application of a shell/jacket, which also 

incorporated a mechanical cooling system, appeared to be beneficial in all animal studies applying such 

systems.[18, 19, 21] 

Robotic or Laparoscopic Applications 
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SWIT can potentially be further prolonged during kidney transplantation in the setting of robotic or 

laparoscopic transplantation. Laven et al. investigated kidney cooling in the context of laparoscopic 

surgery, whilst Meier et al. and Menon et al. outlined cooling techniques for use in robotic 

transplantation.[17, 21, 25] Meier et al. employed a jacket-based cooling system, and demonstrated 

continuous, adequate cooling despite a mean anastomotic time of 70.4 minutes in the robotic 

transplantation group.[21] In contrast, Menon et al. used primarily topical cooling methods to achieve a 

higher mean temperature (20.3 °C) prior to reperfusion.[17] A continuous kidney surface infusion of 

microparticulate ice slurry was delivered in the laparoscopic ischemia-reperfusion study, and was able to 

cool the renal cortex to 15 °C.[25] 

Overall Comparison of Techniques 

Relative advantages and disadvantages of the different cooling techniques, accounting for the evidence 

presented above, are compared in Table 2. 

Levels of Evidence 

Study level of evidence is indicated in Table 1. For human studies investigating topical cooling methods, 

the overall Grade of Recommendation is C, owing to a preponderance of case series or case control 

studies with small patient numbers. All papers investigating cooling shells/jackets were conducted using 

animal models, and thus overall evidence Grade is D. In contrast, published articles outlining ice bag 

immersion techniques had an overall evidence grade of C, as these consisted of prospective studies with 

inconsistent results or case series. 
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Discussion & Conclusions 

The second warm ischemic time is an important period in kidney transplantation, as the kidney is 

transferred from a cold setting to the warm environment of the abdominal cavity. Unless methods are 

employed to actively cool the kidney, the kidney’s temperature will naturally equilibrate to its 

surroundings. The more time the organ spends without reperfusion and restoration of oxygenation, the 

closer its temperature will get to its ambient environment. Kidney cooling techniques should therefore be 

especially important when the SWIT is expected to be prolonged, such as in laparoscopic or robotic 

transplantation, or in obese recipients. A prolonged SWIT in association with ineffective organ cooling 

may translate to poorer short and longer term graft outcomes. 

The ischemic insult sustained during the second warm ischemic time may be modulated by techniques 

that cool the kidney during this time period. A variety of options are available, and can fit within the 

broad categories of surface (or topical) cooling using cold fluid, kidney immersion in a receptacle 

incorporating an ice slush, and/or sandwiching the kidney within a temperature-modulating jacket. The 

latter two methods both appear to achieve renal temperatures of less than 10 °C at the time of reperfusion, 

although temperature monitoring was more consistent in studies employing cooling jackets.  

The clinical and/or pathologic implications of renal cooling systems have been less uniformly explored, 

and comparisons between different systems are largely lacking. Within these studies, a link between 

higher temperature and the occurrence of DGF was made by Szostek et al. and Kaminska et al., although 

the latter study compared cumulative DGF and acute rejection between cooled and non-cooled 

kidneys.[16, 24] In contrast, one larger cohort study found no difference in outcomes, including DGF, 

between kidneys cooled using an ice bag compared to controls.[14] Kidney temperatures were not 

recorded in this study however, in comparison to the 4 °C maintained by Kaminska et al. All animal 

studies investigating the utility of cooling jackets demonstrated a superior reduction of ischemia-
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reperfusion injury compared to controls, although only Meier et al. tested their device in a transplantation 

setting, and therefore further applicability to the clinical setting is uncertain.[18, 19, 21] 

In considering the evidence and studies presented, it can be concluded that effective cooling techniques 

can be instituted such that the renal parenchyma can be cooled to below the metabolic threshold during 

vascular anastomoses. This is most likely to be achieved by kidney immersion in cool solution or 

application of a cooling jacket/shell, with the latter appearing to be more effective as a consistent, low 

temperature is easier to achieve. Downstream effects with respect to graft function and patient outcomes 

are largely unknown, however. Furthermore, the overall quality of published studies was poor; all study 

summations lead to a Grading of Recommendation of only C or D, thereby indicating the need for higher 

quality evidence.  

Additional considerations must be made in conjunction with kidney anastomotic cooling techniques. MP 

preservation is being increasingly utilized either continuously or for a brief period prior to organ 

implantation. The use of cooling techniques during SWIT has not been investigated in the context of MP, 

and whether these would have synergistic or competing effects. Furthermore, effective cooling during the 

SWIT entails an abrupt temperature shift from hypo- to normothermia upon reperfusion, which does not 

occur if the graft is allowed to naturally warm during anastomoses. There is at least some evidence that 

suggests abrupt temperature shifts may in fact be detrimental, compromising mitochondrial integrity.[2, 

26] 

Overall, a large, multi-center randomized control trial comparing different cooling modalities with 

conventional techniques is still required to prove the advantageous nature of such approaches. Such a trial 

would be especially useful in transplantation procedures with longer SWITs. Simple, cost-effective 

solutions should be trialed as a priority, before the widespread implementation of more complex and/or 

expensive techniques can be justified. These techniques also need to be investigated in the context of the 

increasing utilization of modalities such as machine perfusion preservation. Furthermore, the need for 
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time-efficient vascular anastomoses without unnecessary prolongation of the SWIT should always be 

recognized; external cooling technologies are ideally deployed with this concept always in mind.  
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Figure Legends 

Fig. 1 Comparative kidney temperatures during the SWIT in two studies. Data expressed as means, with 

upper and lower temperature limits. CS – cold storage 
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Table 1. Cooling techniques applied during the SWIT with associated thermodynamic, histologic and/or clinical implications. 

Author, Yr; 

Centre  

Level of Evidence Cooling Technique during Anastomoses Thermodynamic Effects (Cooled Kidneys) Clinicopathologic/Other Implications 

Surface/Topical Cooling  

Anderson et al., 

1973[27] 

 

St Louis, USA 

4 (Case Series) Kidney placed in stockinette & intermittently 

washed with iced saline. 

Transplantation setting 

[Human] 

NR NR 

Doorschodt et al., 

1997[13] 

 

Amsterdam, The 

Netherlands 

5 (Animal Study) Kidney wrapped in gauze, with surface 

irrigation using cold 0.9% saline (4 °C) at 5 

minute intervals 

Isolated kidney model, without transplantation 

[Porcine] 

Kidney cortex: 14 °C at 10 mins & 27 °C at 

30 mins; 30 °C at 60 mins 

Kidney medulla: 10-11 °C at 10 mins & 21 

°C at 30 mins; 28 °C at 60 mins
a
 

NR 

Feuillu et al., 

2003[5] 

 

 

 

 

Nancy, France 

3b (Case-Control 

Study) 

Ice-cooled paper tissues placed on kidney 

during back-table preparation; flushed with and 

then immersed in cold serum until ready for 

anastomoses, at which point it was 

intermittently surface cooled with cold serum. 

Transplantation setting 

[Human] 

See Fig. 1 

 

Kidney temperature as a function of time 

(t) was expressed by the following 

equation: 

Temperature = 7.2ln(t) – 0.6  

In comparing kidneys with and without DGF, 

there were no significant differences in 

kidney temperature at the commencement, 

during, & end of anastomoses.** 

Laven et al., 

2007[25] 

 

 

 

 

Chicago, USA 

5 (Animal Study)   Microparticulate ice slurry delivered 

laparoscopically to kidneys (surface) through a 

modified suction/irrigation cannula; flow of 

slurry maintained by peristaltic pump. 

In vivo ischemia-reperfusion model without 

transplantation 

[Porcine] [Laparoscopic] 

Kidney cortex: 15 ⁰C achieved by 16.5 

mins 

Kidney medulla: NR 

NR. 

Menon et al., 

2014[17] 

 

 

 

 

Detroit, USA & 

Gurgaon, India 

4 (Case Series) Kidney wrapped in gauze ‘jacket’, also 

containing ice slush; pelvic bed is lined with ice 

slush & then the kidney/gauze jacket is 

introduced via hand-access port; further ice 

slush is introduced onto the kidney/gauze once 

in pelvis. 

Transplantation setting 

[Human] [Robotic] 

Kidney cortex: 20.3 ⁰C achieved at end-

SWIT (mean 46.6 mins) 

Kidney medulla: NR 

DGF in 0 out of 25 patients (living donor 

kidney transplants)
b
 

Szostek et al., 3b (Case Control Kidney placed in holding net, onto which a 0.9% Kidney cortex: 19 ⁰C achieved at end-SWIT In comparing kidneys with and without DGF, 
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1996[16] 

 

 

 

Warsaw, Poland 

Study) saline infusion (4 °C) was continuously applied 

(i.e. to kidney surface) during anastomoses. 

Transplantation setting 

[Human] 

(mean 33.6 mins) 

Kidney medulla: NR 

 

Surface kidney temperature increased by 

0.3 ⁰C/min 

temperature at end-SWIT was significantly 

higher in the former group (19.7 compared 

to 14.9 ⁰C). 

Cooling Jackets 

Creagh et al., 

1992[18] 

 

 

 

Dublin, Ireland 

5 (Animal Study) Frozen polymer gel cylinders enclosed in 

metallized polyester laminate jacket; kidney is 

sandwiched between two layers of this. 

In vivo ischemia-reperfusion model without 

transplantation 

[Canine] 

Kidney cortex (surface): 10 °C achieved by 

5 mins & 2 °C at 12 minutes; 7 °C at 120 

mins 

Kidney medulla (core): 10 °C achieved by 

10 mins & 4 °C at 17 mins; 12 °C at 120 

mins 

Significantly lower serum Ur, Cr, & 

histologic damage in dogs with cooled 

compared to non-cooled kidneys. 

Desgrandchamps 

et al., 1996[19] 

 

 

 

 

 

Paris, France 

5 (Animal Study) Cooling shell (two magnetic half-shells; 10 mm 

thickness each) applied around kidney – shells 

contain Multitherm sponge (freezes when 

water evaporated), impregnated with water 

and overlaid by a metallic mesh. 

In vivo ischemia-reperfusion model without 

transplantation  

[Porcine] 

Kidney cortex: 10 °C achieved by 5 mins & 

7-8 °C at 20 minutes; 7-8 °C at 60 mins 

Kidney medulla: 10 °C achieved by 15 

mins; 7-8 °C at 60 mins 

No surface damage of kidneys; greater UO 

in cooled compared to non-cooled kidneys 

(p = 0.06); better tubular function in cooled 

compared to non-cooled kidneys. 

 

Forsythe et al., 

1989[20] 

 

 

Newcastle upon 

Tyne, UK 

5 (Animal Study) Double-layered, biocompatible plastic jacket (8-

10 mm thick); between the layers is a weave of 

plastic enclosing trapped air (which has low 

thermal conductivity). 

Isolated kidney model, without transplantation 

[Porcine] 

Kidney cortex: NR 

Kidney medulla: 1.8 °C at 10 mins; 8 °C at 

45 mins 

 

Core kidney temperature increased by 0.9 

°C/5 min, between 5-45 mins 

NR 

Meier et al., 

2017[21] 

 

 

 

Geneva, 

Switzerland 

5 (Animal Study) Kidney sandwiched between a double sheath 

(external thickness 5 mm) enclosing a silicone 

tubing system, through which ethanol and 

methylene blue (4 °C) are continuously 

circulated during vascular anastomoses. 

Transplantation setting 

[Porcine] [Robotic] 

Kidney cortex: 6.5 ⁰C achieved at end-

SWIT (mean 70.4 mins) 

Kidney medulla: Max. difference between 

cortex and medulla was 1.4 ⁰C 

 

Surface temperature at reperfusion was 

28.7 ⁰C if cooling system not utilized 

No significant differences in UO between 

cooled & non-cooled kidneys over 7 hrs; 

less parenchymal heterogeneity/perfusion 

defects seen on MRI in cooled kidneys; 

greater histologic damage (at 7 hrs) in non-

cooled kidneys. 

Ice Slush/Ice Bag Techniques 

Gill et al., 

1994[15] 

 

4 (Case Series) Single-ply stockinette containing fine-

consistency ice slush used to enclose the kidney 

during vascular anastomoses; ice slush 

Kidney cortex: NR 

Kidney medulla: Temperature maintained 

between 4- 6 ⁰C during anastomoses  

No complications related to the use of the 

stockinette. Other data NR. 
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Lexington, USA 

intermittently replaced to maintain target 

temperature. 

Transplantation setting  

[Human] 

Kaminska et al.; 

Lepiesza et al.; 

Pupka et al., 

2016[22-24, 28] 

 

 

 

 

 

Wroclaw, Poland 

2b (Randomized 

Control Study) 

High-density polyethylene bag (0.04 mm 

thickness) consisting of 3 compartments – 

kidney in central compartment, surrounded on 

either side by cold saline/ice slush. 

Transplantation setting 

[Human]  

Kidney temperature maintained at 

approximately 4 ⁰C
 c
 

Paired kidney analysis – eGFR at 14 days 

post-transplantation was 40% higher in non-

cooled kidneys (p < 0.05), but no significant 

differences beyond this time-point up to 5 

yrs; cumulative DGF and one-year acute 

rejection rates significantly lower in cooled 

compared to non-cooled kidney transplant 

recipients; no significant difference in 

histology approximately 30 mins post-

reperfusion 

Karipineni et al.; 

Ortiz et al., 

2014[14, 29] 

 

Philadelphia, USA 

2b (Cohort Study) Plastic sterile bag (transport bag) containing ice 

slush and preservation fluid; kidney is 

introduced into this bag. 

Transplantation setting 

[Human] 

NR No difference in outcomes between cooled 

and non-cooled kidneys (DGF, one-year 

acute rejection, one-year graft survival). 

 

Schenkman et al., 

1997[30] 

 

West Virginia, 

USA 

4 (Case Series) Polyurethane bag containing ice slush, into 

which the kidney is placed in preparation for 

vascular anastomoses. 

Transplantation setting 

[Human] 

NR No complications related to the use of the 

polyurethane bag. Other data NR. 

 

Cr – creatinine; DGF – delayed graft function; eGFR – estimated glomerular filtration rate; MRI – magnetic resonance imaging; NR – not recorded; UO – urine 

output; Ur – urea  

a
 Temperatures provided recorded without surface cooling; however, text states surface cooling did not significantly reduce cortical and medullary 

temperatures in comparison to those recorded here 
b
 No comparison conducted with non-cooled kidneys 

c
 Unclear if surface or core temperature; temperature trends NR 
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Table 2. Relative advantages and disadvantages of different anastomotic kidney cooling techniques. 

Cooling Technique Advantages Disadvantages 

Topical/surface cooling • Simple 

• Cheap 

• Ineffective temperature drop 

and/or control 

Ice slush/bag immersion • Relatively simple 

• Cheap 

• Bulky – may obscure surgeon view 

• Fluid may drip into operative field 

• Ice slush may need to be 

intermittently replenished to 

maintain cooling efficacy 

Cooling jackets • Temperature control superior to 

other approaches 

• More costly 

• No evidence from human studies 
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Highlights 

• A prolonged anastomotic time beyond 35-45 minutes negatively affects kidney function post-

transplantation. 

• The effects of this can potentially be countered by cooling the kidney during anastomoses such 

that its temperature is maintained below the metabolic threshold. 

• Cooling mechanisms include ice bags for organ immersion, surface cooling methods, and/or 

specifically designed kidney cooling jackets. 

• There is some clinical evidence for the use of the ice bag technique, however kidney cooling 

jackets have currently only been used in the experimental setting.  
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Abstract

For more than five decades, we have been refining advances in pancreas whole organ 
and islet cell transplantation as clinical therapies to treat the ever-increasing number of 
patients suffering from type-1-diabetes. Research and clinical practice have contributed 
to making both whole organ and cellular transplantation viable therapeutic options for 
a broader range of patients. Furthermore, both forms of clinical transplantation results 
have progressively improved, due to the ongoing refinement of organ donation and its 
various technical processes, combined with the evolution of immunosuppression and 
patient care now offering excellent long-term treatment for both type-1-diabetes and 
concomitant renal failure. This chapter provides an overview on how this has been 
undertaken and achieved over decades to ultimately provide outstanding outcomes on 
par with other organ transplantation results. Briefly, we cover the history of pancreas 
retrieval procedures, the importance of donor selection, the intricate processes of the 
organ donor operation, preservation of the pancreas, and the ideal ways to best improve 
outcomes for transplantation. Improving and providing the optimal donor and preserva-
tion conditions underpinning the success of subsequent whole pancreas or islet trans-
plantation as a safe, effective, and feasible therapeutic option for an increasing number of 
patients suffering from type-1-diabetes.

Keywords: diabetes, insulin, islet, islet cell, islet cell allotransplantation, islet cell 
transplantation, islet cell isolation, organ perfusion, organ retrieval, renal failure, type 1 
diabetes, whole organ transplantation
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1. Introduction

Since Kelly and colleagues performed the first whole pancreas transplant in 1966, significant 
advancements in pancreas transplantation have been made. [1] There was a gap following the 
first series of whole pancreas transplants due to poor graft outcomes with significant impact 
from poor organ preservation of the pancreas playing a major role. It took almost 20 years 
for the development of newer surgical techniques including use of newly developed perfu-
sion solutions, segmental grafts, advances in ductal drainage including bladder drainage, and 
effective immunosuppression regimens such that whole organ transplantation burgeoned, 
with great advances made by Sutherland and colleagues at the University of Minnesota [2]. 
However, it was not until much later following many years of experimental research that pan-
creata for islet cell isolation and transplantation became a reality. Over the past two decades 
in particular a great deal of effort has underpinned making islet cell transplantation a viable 
therapy for a broader range of patients with type 1 diabetes (T1D). Clinical results have pro-
gressively improved, now demonstrating outcomes on par with other organ transplants, spe-
cifically in terms of insulin independence, and graft and patient survival [3]. We are now at 
the point where islet cell transplantation, in the form of allotransplantation, like its forebear 
whole organ transplantation, has become widely accepted as a clinical therapy for patients 
affected by T1D.

Now more than five decades on and with many organ donor operations having been per-
formed since the advent of organ donor procedures as we know them, we have refined and 
perfected the organ donor process since the first organ retrieval of a brain dead donor in 1963 
[4] and the subsequent adoption of the “Acceptance of Brain Death for Organ Donation” 
issued by the Ad Hoc Committee of the Harvard Medical School [5]. We have seen an increas-
ing emergence of specialized organ retrieval teams with focus on the overwhelming need to 
improve organ donor rates for the ever increasing recipient patient population [6]. Always 
a dedicated surgical pursuit, research into organ donation and the surgical retrieval process 
for the pancreas and most other organs has often been overlooked in favor of recipient-
related research into the prevention of rejection, and improving immunosuppression and 
tissue matching. This is particularly problematic when it comes to whole pancreas and islet 
transplantation as the pancreas is a less retrieval tolerant organ than other solid organs, and 
requires extra attention both during and after retrieval to ensure that the organ’s valuable 
islets, which are especially susceptible to hypoxia and the ischemic insult, are effectively 
preserved [7, 8].

In this chapter we provide a general overview of Pancreas Retrieval for both Whole Organ 
and Islet Cell Transplantation, but it should be noted that there are clear overlaps in this 
process for both whole organ and cellular transplantation. As such the way the processes 
are performed can be utilized for retrieval for either type of subsequent transplant. Overall, 
we have seen significant improvements to pancreas transplantation results, in particular in 
the islet cell arena, due to the significant research undertaken to improve graft outcomes 
by improving donor selection and organ procurement and preservation [9]. On the recipi-
ent side we have also further improved outcomes with changes to the transplant and to the 
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pharmacological treatment of recipients such as newer focused monoclonal immunosup-
pressive strategies that better control graft rejection [9].

This chapter focuses on the optimal process for deceased donor pancreas retrieval and its role 
in maximizing graft function and survival. However, with a great number of processes to 
outline, only the major ones will be covered in this chapter. In particular, we will emphasize 
major improvements in donor selection, surgical retrieval techniques, pancreas retrieval in 
the context of multi-organ donors, back-table preparation of the pancreas, perfusion fluid 
types, and future perspectives including the utilization of technologies such as machine per-
fusion and persufflation. These factors will be discussed in the context of improved outcomes 
to the engraftment, function and survival of the transplants. It is also acknowledged that there 
remains the ongoing need for further improvements to both whole organ and islet cell trans-
plantation, however both techniques clearly offer safe and achievable therapeutic options for 
the ever-expanding number of patients suffering from T1D [10].

2. Historical timeline

The original retrieval processes of the modern era were initially developed for and used in 
kidney only retrieval surgery. As per Figure 1 the procedure first introduced in 1963 utilized 
cold lactated Ringer’s or low-molecular-weight dextran solutions infused directly into the 
renal artery of the retrieved kidneys, performed only after their removal from the donor [11]. 
These were the beginnings of modern donor retrieval but they were less than ideal techniques 
due to the time taken to perfuse the organs, and therefore a number of more active and by far 
more effective methods of perfusion and cooling of organs were subsequently developed in 
order to minimize ischemic insult and subsequent damage to organs. These techniques were 
based upon the concepts from cardiothoracic surgery, involving active patient cooling during 
procedures to prevent ischemic damage [12, 13]. The transplant fraternity quickly adopted 
these intravascular perfusion-related cooling techniques, which were standardly utilized as a 
first step in the preservation of all whole-organ grafts. The currently accepted modern cadav-
eric donor procedure is performed using some basal form of the ex situ techniques developed 
and performed in the mid to late 60’s by Starzl and colleagues [14] for not only kidneys but 
also incorporating the pancreas and liver. Further refinements saw the perfusion and addition 
of heparin to the perfusate solutions and also the donor. Ensuring removal of blood by ex situ 

perfusion as described by Belzer et al. [15] resulted in improved but only satisfactory kidney 
preservation of several days. However, this technique was eventually abandoned in most 
kidney transplant centers when it was learned that the quality of 2-day preservation was no 
better than with the simpler “iced slush” methods [16].

The underpinning method of iced slush for shipping was based around experimental work 
on kidneys [17]. This research and practice focused on perfusion fluids of differing intra-
cellular and extracellular fluids consisting of electrolytes with varying osmotic and oncotic 
effects that were infused into the allograft before placing it in a cold storage container. Collins 
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and colleagues developed a relatively simple technique (infusion of mannitol, phenoxyben-
zamine, and their Collins perfusate) providing good preservation in kidneys stored for up 
to 30 hours [17]. Other perfusates, such as Ringer’s lactate and 10% invert-sugar solutions, 
gave inferior results. The new perfusate solution and technique extended the time of simple 
ice storage from 12 hours to 30 hours. Continuous hypothermic perfusion saw further addi-
tions by Ackerman and Snell [18] and Merkel, Jonasson, and Bergan [19] who following many 
organ donor studies developed the widely accepted and much more simplified core cool-
ing. These utilized cold perfusion solutions with the infusion of the fluids being performed 
directly to the vascular bed of all the organs via the distal aorta and demonstrated signifi-
cant improvement for the pancreas but they were still less than ideal for this most sensitive 
organ. However, the development of these techniques used throughout the 70’s meant that 
organs could generally be removed without causing issues when retrieving multiple organs, 
which included the liver and sometimes pancreas. Kidney preservation became more feasible 
along with the other abdominal organs seeing times of 1 to 2 days, long enough to allow 
tissue matching and sharing of organs between hospital units even interstate or in Europe 
between countries. However, these were purely focused still on the kidneys rather than the 
other abdominal organs and as such a number of groups undertook experiments focusing on 
other organs including the pancreas and liver; landmark papers included those by Benichou 

Figure 1. A time line in the significant development of transplantation over the years with focus on the techniques used 
for whole pancreas and islet cell transplantation.
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et al. [20], using the Collins-Terasaki solution, and de Gruyl et al. [21] using cryoprecipitated 
plasma perfusion preservation of duct-ligated pancreatic allografts, along with Wall et al. [22] 

using similar plasma-like solution. This led directly to great improvements in pancreas and 
liver preservation and allowed organ sharing amongst transplant centers, although the pres-
ervation period was still limited to less than 8 hours.

The development of University of Wisconsin (UW) solution for organ preservation by Belzer, 
Jamieson, and Kalayoglu in the 1980s was a game changer in static organ preservation for 
transplantation [23]. This new flushout solution for preservation of the pancreas was tested 
in the dog model of segmental pancreas autotransplantation. The solution has an osmolality 
of 320 mOsm/L (K+ = 120 mM, Na + = 30 mM), and contains lactobionate, and raffinose as 
impermeants. The role of hydroxyethyl starch (HES), the colloid component of UW solution, 
was shown to be particularly important for pancreas preservation, in comparison to the liver 
and kidney [24]. UW perfusate solution preservation almost tripled the time of safe preserva-
tion of the various organs, including the pancreas, making national sharing of most organs a 
viable and practical process [25].

However, despite significant success the preservation or extended preservation of the pan-
creas still required further refinement, and significant research using animal models of static 
perfusion were pursued, in particular for use in islet cell transplantation. Along with perfusion 
fluids a number of standardly used retrieval techniques became more readily adopted [19]. 
However, until 1981 transplantation of the extra-renal organs was an unusual event such that 
the focus of perfusion only really focused on kidneys. By the mid-1980s, it became apparent 
that multiple organs would start to become transplanted in earnest, with liver, pancreas and 
thoracic organ transplant procedures becoming more widely accepted. A safe and effective 
method for multi-organ procurement and preservation was required by which the abdominal 
organs, kidneys, liver, and pancreas, could all be suitably retrieved using the same solution. At 
this stage Starzl and colleagues published an in-depth method on their “flexible procedure for 
multiple cadaveric organ procurement” [26], which was adopted by many centers worldwide.

However, even at this point the pancreas was often over-looked with the focus on the kidneys 
and liver as the principal organs to be retrieved. Starzl’s publication stated “If the whole pancreas 

is transplanted as we recommend, the combination of liver and pancreas removal is incompatible” and it 
was often the case when surgical teams were procuring the liver and pancreas together that there 
were issues relating to the suitable separation of their vasculature [27]. At this time, our own sur-
gical team also retrieved the pancreas with the liver, but always removed liver to the back-table 
before the pancreas and kidneys. The major perceived reason for this was the need for the life-
saving liver to take priority. Furthermore, as the portal vein and the branches of the celiac trunk, 
drain or supply both organs, preference was given to sacrificing the pancreas’ vessels instead of 
the liver. It was a number of years before this routine surgical practice would change.

Whole organ research utilized canine models as the dog pancreas is more anatomically similar 
to humans in comparison to the tri-lobed porcine pancreas. These models allowed replication of 
the clinical situation and further refinement of the retrieval and transplant procedures [28, 29].  
From these came the widespread implementation of newer perfusion fluids such as UW 
solution, and the utilization of vascular extension grafts to the pancreatic vasculature helped 
resolve the situation of shortened pancreatic inflow and outflow conduits due to preference to 
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the liver in combined retrievals [30]. The other major change to the procedure was the adop-
tion of an en bloc liver pancreas retrieval technique, where both organs were rapidly removed 
in a bloodless field post perfusion, then separated on the back-table. Furthermore, the sharing 
of organs from a common donor by recipient teams from different units became routine by the 
early-1990s, in particular due to the use of UW solution, which had clearly been shown to be 
a real advantage in pancreas retrieval both experimentally and clinically [31].

In the 1990’s the focus on research and advances relating to the retrieval process started to 
shift, with attention once again shifting to the perfusate solutions, which were thought to 
be especially impactful for islet cell transplantation. A number of groups also investigated 
additives to the perfusate solutions such as the use of antibodies to reduce inflammation and 
further improve graft outcomes, although this was met with limited success [32]. In the 2000’s 
it became generally accepted this was achieved via cannulation of the aorta alone, with or 
without additional access to the portal venous system with variations that have been seen 
specifically in relation to multiorgan retrieval where some groups chose to perform ‘dual’ 
perfusion technique which are all discussed in greater detail later in this chapter [33, 34].

3. Use of the pancreas for whole organ or cellular transplantation—

donor selection

Underpinning the entire transplantation process, regardless of whether the donor is for whole 
pancreas or islet cell transplantation, is appropriate donor selection such that the donor organ 
is of a suitable size and quality to allow for use in either type of therapy. In order to be 
utilized in clinical transplantation, it is imperative that the donor be appropriately screened 
to ensure the organ to be retrieved is free from any disease that may subsequently man-
ifest in the donor, including cancer, and infections with viruses, bacteria, fungi, or prions 
[9]. It is paramount that we avoid the more commonly occurring diseases when screening 
the donor before accepting the pancreas for organ donor retrieval and subsequent clinical 
transplantation. Infectious risk factors depend on the history of patient, any underlying dis-
ease of the organ donor, and the immunosuppressive treatment administered to the recipient 
[35]. Transmission of most pathogens is possible, but their frequency varies according to the 
endemic population from the transplanted organ, the selected immunosuppressive therapy 
and prophylaxis utilized in the recipient, and also at the donor procedure [36]. Obviously, 
there are many more variables with regards to organ donor selection criteria, and these will 
be discussed in more detail in the following sections.

4. Pancreas retrieval

4.1. Surgical techniques

Pancreas retrieval for both whole organ and cellular transplantation necessitates meticulous 
surgical technique. In comparison to the liver and kidneys, the pancreas is more commonly 
damaged at retrieval, which subsequently results in non-utilization of a significant proportion 
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of procured pancreata [37]. The organ must be procured without any parenchymal and/or 
capsular breach, and its arterial inflow and venous outflow vessels must be clearly identified 
(tagged) and maintained for subsequent back-table reconstruction when used for whole pan-
creas [38]. The extent of organ and vascular dissection depends upon whether the retrieval 
is from a brain-dead (DBD) or circulatory death (DCD) donor; a large proportion of pan-
creas dissection can be undertaken in the warm phase for DBD donors, whilst pursuit of the 
DCD pathway necessitates wholly cold-phase dissection, which is potentially more difficult 
as appropriate anatomy is harder to identify.

4.1.1. Anatomical considerations

The pancreas is situated in the retroperitoneum, nestled within the curvature of the duode-
num. Important relations are both kidneys posteriorly, the spleen laterally and attached to 
the pancreas via its pedicle contained within the lienorenal ligament, the superior mesenteric 
vessels, bile duct, and portal vein in the region of the pancreatic head/neck, the inferior vena 
cava (IVC) deep to the head and portal vein, and the aorta, left suprarenal gland and left 
renal vein deep to the body. Pancreatic blood supply is primarily derived from the celiac 
artery in origin via the splenic and superior mesenteric arteries (via the inferior pancreatico-
duodenal artery), and also the gastroduodenal artery (via the superior pancreaticoduodenal 
artery). The celiac trunk gives off the splenic artery, which emerges at the upper pancreatic 
border and runs along this border in a tortuous fashion until turning towards the splenic 
hilum within the lienorenal ligament. The superior mesenteric artery (SMA) emerges from 
the aorta inferior to the celiac trunk, and is directed inferiorly on the posterior aspect of the 
pancreatic neck, to then lie on the uncinate process and then the 3rd part of the duodenum 
prior to entering the root of the mesentery. Venous drainage occurs via the splenic vein for a 
large part of the pancreas, whilst the superior and inferior pancreaticoduodenal veins drain 
the head into the superior mesenteric vein (SMV) and portal vein confluence. It is the shared 
vasculature of the pancreas with the liver that often causes retrieval issues as the origin of the 
splenic artery is from the celiac, and the outflow of the splenic vein is through the portal vein, 
necessitating delicate surgical dissection and care in separation to ensure shared and usable 
vasculature for both organs [39].

4.1.2. DBD retrievals—pancreas-specific considerations

Pancreas retrieval in the DBD donor is a controlled process that allows significant preliminary 
organ and vascular pedicle dissection. The Cattell-Braasch maneuver is utilized to expose the 
aorta and IVC distally, with the proximal extent of dissection limited by the SMA overlying the 
left renal vein; this maneuver will incorporate mobilization of the small bowel mesentery and 
pancreatic head/duodenum [40]. Our approach to exposure and dissection of the remaining 
pancreas [41] is to access the lesser sac by mobilization of the greater curvature of the stomach; 
the greater omentum is detached at its origin using ultrasonic shears (Harmonic Scalpel) as 
per Figure 2. The short gastric vessels are also detached using this method at the upper por-
tion of the greater curvature. The splenic flexure of the large bowel can thence be mobilized 
onto the lower pole of the spleen. Once the spleen is free of its surrounding attachments, it can 
be lifted and used as a handle to mobilize the tail and body of the pancreas without directly 
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handling the pancreas itself. The Harmonic Scalpel is also very useful in the dissection of the 
superior and inferior pancreatic borders, particularly the relatively vascular splenic flexure of 
the colon. The posterior surface of the pancreas can be mobilized with standard electrocautery 
in a relatively bloodless plane. The SMA/SMV pedicle inferior to the pancreas needs to be skel-
etonized such that it can be divided using a vascular stapler prior to pancreas removal in the 
cold phase. Superiorly, the bile duct is ligated and transected proximal to the point of ligation; 
residual bile is flushed out its open proximal end using saline instilled into the gallbladder. We 
will also free attachments around the gastroduodenal junction and duodenojejunal flexure, 
which are then identified with circumferential vessel loops for stapled division later in the 
cold phase. The inferior mesenteric vein is ligated in situ post perfusion as subsequent retrac-
tion of the divided vessel may make it difficult to identify on the back-table. Diluted povidone-
iodine solution is instilled into the duodenum via a nasogastric tube as a decontamination 
step, and is subsequently removed through the same route. Some authors report concerns 
with subsequent duodenal mucosal toxicity related to instillation of povidone-iodine, and 

Figure 2. The harmonic scalpels utilization during pancreas procurement. (A) Mobilization of the greater curvature 
of the stomach, (B) creation of the superior mesenteric pedicle (cold phase), and back-table separation of (C) the liver-
pancreas block, and (D) the pancreas and spleen.
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suggest additional back-table flushing of the duodenum with an alternate solution [42, 43]. 
Alternatively, duodenal decontamination can be completed using an antibiotic solution, such 
as amphotericin [40]. However, the most important factor is to utilize a decontamination pro-
cedure to reduce the potential risk of cross infection to the recipient. Our own unit has utilized 
povidone-iodine solution instilled into the duodenum via a nasogastric tube as a decontami-
nation step in more than 500 SPK transplants at our own center with no duodenal mucosal 
toxicity identified [44]. In the cold phase the duodenum is then divided above and below the 
pancreatic head with a linear cutting stapler, after carefully withdrawing the nasogastric tube 
from the duodenum into the body of the stomach. Any remaining superior mesenteric pedicle 
dissection is also completed, and a vascular (cutting) stapler is utilized to divide this pedicle. It 
is of paramount importance that the pancreas is not injured during this step as this will cause 
serious issues in both whole organ and islet cell transplantation. Furthermore, if the mesen-
teric pedicle is divided too close to the pancreas, or includes part of the uncinate process, there 
is a risk that blood supply to the pancreatic head via the inferior pancreaticoduodenal branch 
of the SMA will be compromised, creating a significant problem for whole organ transplanta-
tion [40, 45, 46]. Additionally, for the whole organ transplant an arterial and venous conduit 
should be retrieved for back-table pancreatic vascular reconstruction. This usually consists of 
a segment of the external iliac vein for use as a portal vein extension graft if required, and the 
common iliac artery bifurcation, including a length of the internal and external iliac arteries, to 
fashion a Y-graft connecting the native SMA and splenic artery. It is essential that the common 
iliac bifurcation is not damaged during this process [45]. Like a number of other major units 
our center preferentially retrieves the pancreas en bloc with the liver, with separation of both 
organs performed on the back-table (see below) [47].

4.1.3. DCD retrievals

DCD pancreas retrieval is technically feasible, and can achieve excellent outcomes in selected 
donors certainly in the whole organ arena (see Outcomes, below). In contrast to DBD pro-
curement, the first step in all DCD retrievals after a rapid laparotomy is cannulation and cold 
perfusion via the aorta [48, 49]. Venous venting is conducted via the IVC. Alternatively, if 
local laws allow, an in situ flush can be achieved using femoral cannulae inserted prior to the 
withdrawal of life support [49, 50]. Ante-mortem interventions including heparinization have 
been shown to also provide significant improvements to pancreas retrieval outcomes in the 
DCD setting [51]. Standard pancreas retrieval can then be undertaken as described for DBD 
donors, although donor hemostasis is no longer a concern and therefore sharp dissection is 
commonly utilized. The use of energy devices such as the Harmonic Scalpel at this stage may 
help minimize recipient bleeding however, as described in the DBD setting.

4.1.4. Pancreas retrieval and multi-organ donors

Pancreas retrieval is almost never undertaken in isolation, but rather it is usually procured 
in the context of a multi-organ retrieval, often in the presence of multiple retrieval teams. 
Meticulous retrieval technique therefore needs to be maintained and balanced in the pres-
ence of these competing factors, especially in the presence of concomitant liver procurement, 
which is still given preference owing to the critical requirement of liver transplant recipients. 
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Pancreas-alone donors are uncommon in this day and age due to developments in procure-
ment and preservation techniques. Some authors raised concerns that combined liver-pan-
creas retrieval, in contrast to pancreas retrieval alone, resulted in significant “flush” injury to 
the pancreas owing to a higher volume of perfusion solution and the utilization of dual aorto-
portal cannulation in the combined donors [52]. However, other studies clearly demonstrated 
that multi-organ retrieval, including combined liver-pancreas retrieval, was not detrimental 
to pancreas transplantation outcomes [53–58]. Another factor that previously precluded com-
bined liver-pancreas procurement was aberrant hepatic arterial anatomy, in particular the 
presence of an aberrant or accessory right hepatic artery originating from the superior mes-
enteric artery [58]. Abandoning retrieval of the pancreas due to this situation is now rare, as 
a preserved length of the right hepatic artery originating from the SMA stump can effectively 
be anastomosed to the GDA as part of a back-table reconstructive procedure [45, 46]. It is only 
when the right hepatic artery is within the substance of the pancreas that whole pancreas 
retrieval should be precluded in favor of the liver [59] but the pancreas can still be retrieved 
for islet cell isolation as the pancreas can still be readily perfused, and on the back table the 
vessels readily separated, including if necessary taking them from the body of the pancreas 
[9]. However, if this is undertaken then care should be taken to not damage the parenchyma of 
the pancreas as this makes the distension of the pancreas with collagenase for digestion more 
difficult [9]. Over the last 25 years and more than 1000 retrievals the authors have never found 
any anatomical vascular anomaly to prevent an en bloc liver-pancreas retrieval, although this 
is cited as a common reason to decline pancreas retrieval worldwide.

4.1.5. Back-table separation of the liver-pancreas block and further back-table preparation of the 

pancreas

The combined liver-pancreas block is taken to the back-table for separation. The aortic seg-
ment is divided such that the proximal portion of the SMA remains with the pancreas, whilst 
the celiac axis remains in continuity with the liver. Superior to the pancreatic head, the portal 
vein is divided approximately 1 cm from the pancreas, whilst the splenic artery is divided 
closer to its emergence from the celiac axis [45, 46]. The GDA is ligated and divided prior to 
entering the pancreas; a longer length remains with the liver. The splenic artery and portal 
vein associated with the pancreas should be marked with a prolene suture to facilitate iden-
tification at the transplant center. The spleen is also routinely removed at the donor hospital, 
in addition to skeletonization of the pancreas prior to transportation. The Harmonic Scalpel 
is once again a useful tool that facilitates all pancreas-related back-table work if the graft is to 
be used for whole pancreas transplantation [41]. Limited back-table perfusion of the pancreas 
with UW solution is employed to ensure no blood is left within the organ or its vessels, whilst 
minimizing the risk of graft pancreatitis or edema.

In pancreas retrievals for islet cell isolation, the author’s use a similar en bloc technique, with 
careful mobilization of the pancreas prior to aortic cannulation as per Figure 3. However, there 
is no need for meticulous hemostasis post perfusion and it is not necessary to remove the bulk 
of the tissues as this can be performed at the islet isolation facility. At the isolation center, the 
duodenum, spleen, and connective, extracapsular and vascular tissues are removed from the 
pancreas prior to it being cannulated to allow infusion of the digestive collagenase enzyme for 
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Figure 3. Procurement of the DBD pancreas. (A) Skeletonization of the pancreas, using the spleen as a handle, (B) stapled 
division of the superior mesenteric pedicle, (C) liver and pancreas ready for en bloc removal, (D) division of the aorta, 
(E) pancreas appearance after back-table preparation (n.b. Portal vein and superior mesenteric artery), and (F) back-table 
packing of iliac conduits in preservation solution.
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islet cell isolation [9]. As such there is also no need for preservation of pancreas vasculature, 
which can be given wholly to the liver when separated on the back-table.

4.1.6. Pancreatic inspection and graft assessment

The pancreas must be closely inspected during the retrieval process, and any concerns 
regarding organ quality and/or integrity should be fully conveyed to the implanting sur-
geon. Graft assessment should include qualities inherent to the donor pancreas, in addition 
to any retrieval-related damage, and should be made both in situ and on the back-table as 
per Figure 3. The pancreas should be assessed for parenchymal damage, capsular breach, 
and/or hematoma(s). Furthermore, other important factors that may preclude further trans-
plantation individually or in combination should be identified, including fibrosis, mass(es), 
high intra-parenchymal fat content, calcification, edema, and/or significantly diseased arter-
ies [40, 46, 59]. It is important to note that much of this assessment is highly subjective, and an 
“acceptable” pancreatic appearance and/or texture will vary from center-to-center. Obviously 
some of the co-factors such as high intra-parenchymal fat content, calcification, edema, and/
or significantly diseased arteries do not preclude the pancreas from being used for cellular 
transplantation. As an example, high intra-parenchymal fat content has been shown to be an 
advantage when performing islet isolation. Additionally, calcification, edema, and/or signifi-
cantly diseased arteries do not affect the pancreas when used for islet cell isolation as all blood 
vessels and extraneous tissues are stripped from the pancreas prior to its use. The pancreas 
should not be discarded without direct consultation with the recipient team and exploration 
of its use for cellular transplantation if precluded from whole organ transplantation [9].

4.1.7. Packaging the organ for transport

Following perfusion, back-table dissection, and final inspection, the pancreas can then be 
packed into a suitable transport container along with perfusate solution to ensure ongoing 
exposure to cold preservation solution. Our unit uses the sterile triple plastic bag technique 
whereby the organ and a suitable volume of organ perfusion fluid is instilled into the first 
sterile plastic bag, without dilution from iced slush. All air is removed from the bag, prior to 
sealing it with a zip-tie or heavy tie. This bag is then placed inside a second sterile plastic bag 
filled with iced slush, ensuring close and adequate cooling of the perfusate-filled inner bag. 
These two bags are then placed inside a third sterile plastic bag that is securely sealed, double 
tied, and appropriately labeled to identify the organ and contents of the bags. Additional ves-
sels retrieved for back-table reconstruction of the whole pancreas may also be packed into the 
triple sterile plastic bag set with the pancreas, or alternatively are placed inside a sterile vessel 
jar filled with preservation solution as per Figure 3, which is then double-bagged in sterile 
plastic bags, the first of which contains iced slush. The sealed pancreas and vessels are thence 
transported in a suitable, insulated iced shipping container. The container is labeled with its 
contents along with the contact details for both the donor and recipient coordinators.

4.2. In situ perfusion and cold static preservation

The function of in situ perfusion of the pancreas, as with other organs, is to achieve rapid 
removal of residual blood, whilst simultaneously cooling the organ and exposing it to preser-
vation fluid media for subsequent cold static storage (CS).
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4.2.1. Perfusion route

In order to achieve adequate in situ pancreatic perfusion during abdominal organ perfusion 
as a whole, the aorta must be securely cannulated and flushed using pressure such that 
perfusion media can flow into the pancreas via the superior mesenteric, gastroduodenal, 
and splenic arteries. Once perfusion fluid has traversed the pancreas, it must be allowed to 
exit the donor’s vasculature via the systemic and/or portal routes to prevent graft edema. 
Aortic-only perfusion is routinely performed by our center, and subsequent venous vent-
ing is usually undertaken via the IVC in the thorax. In the event that dual aorto-portal 
perfusion is employed for combined liver-pancreas retrievals, portal venous access via an 
inferior mesenteric cannula can impede pancreatic outflow, and reduce the physiologic 
arterial-portal pressure difference that is required for pancreatic perfusion/flow [42, 60]. As 
such, in these cases, the portal vein may instead be accessed after dividing it superior to the 
pancreas, thereby also allowing unobstructed pancreatic venous drainage via the proximal 
aspect of the transected portal vein [60, 61]. A further back-table flush of the pancreas at the 
donor center is sometimes conducted via the splenic artery and SMA, although this step 
may be omitted [45, 62–65]. Evidence for or against either approach is currently lacking in 
both the case of whole pancreas and cellular transplantation. But preference in the cellular 
setting appears to favor not having any over-perfusion or edema as this can impede and 
dilute the infusion of the collagenase used for digestion of the pancreas in the isolation 
process [66].

4.2.2. Perfusion fluid types

In general, the same final fluid employed for the final in situ flush of the pancreas is then uti-
lized for preservation of the organ in a bag of cold preservation fluid (CS). The preservation 
fluid utilized must maintain the organ at a hypothermic temperature (0–4°C), whilst simul-
taneously ameliorating the consequences of cold ischemia and prolonged organ immersion 
in fluid. As such, cold organ preservation fluids should ideally have the following properties 
that aim to minimize and/or reverse cellular and subcellular processes occurring within the 
pancreas during CS:

• Disrupted ionic pumps and ion accumulation and/or depletion, with subsequent down-
stream effects;

• Mitochondrial dysfunction, including reversal of the electron transport chain, and succi-
nate accumulation;

• Altered redox potentials (RP);

• Cellular edema;

• Acidosis;

• Accumulation of reactive oxygen species (ROS);

• Adenosine triphosphate (ATP) depletion; and,

• Disruption in glycolytic pathways [67–69].
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There are multiple preservation fluids currently in existence. These can be broadly classified 
as those that are intracellular and extracellular/intermediate in nature, based largely upon 
the solution’s potassium content, or low viscosity compared to high viscosity solutions [70]. 
Common components include colloid and/or impermeants to counteract cellular edema, anti-
oxidants for protection against ROS generation, ATP precursors to allow replenishment upon 
reperfusion, and buffers to retard the acidosis attendant with organ ischemia [70].

University of Wisconsin (UW) solution remains the most popular pancreatic preservation 
fluid, and was initially developed specifically for this purpose [71]. It is an intracellular solu-
tion with a high potassium content and high viscosity as it contains hydroxyethyl starch, 
a particularly important component for pancreas preservation [24]. UW contains other 
components that fulfill many ideal criteria that should be exhibited by preservation fluids, 
including the addition of impermeants such as raffinose, the ATP precursor adenosine, and 
anti-oxidants such as allopurinol. [68] Histidine-tryptophan-ketoglutarate (HTK) is another 
commonly utilized preservation fluid for the pancreas. In contrast to UW, HTK it is an “inter-
mediate” solution with a significantly lower potassium and sodium concentration, thereby 
in effect preventing ongoing organ metabolism. HTK also has low viscosity, theoretically 
allowing higher flow rates, and the histidine component of HTK provides it with significant 
buffering capacity [68, 70]. The next most commonly studied and clinically utilized pancreas 
perfusion and preservation fluid is Celsior, which has similar potassium content to HTK in 
addition to containing histidine as a buffer. It differs from HTK in that it has much higher 
sodium content; furthermore, it incorporates some of the advantageous constituents of UW, 
including similar impermeants and one shared anti-oxidant [68, 70]. Most recently, the use of 
Institut Georges Lopez (IGL-1) solution has been reported in pancreatic transplantation [72]. 
This solution has similar constituents to UW, except the sodium and potassium concentra-
tions are reversed such that it more closely resembles the extra-cellular environment [68]. 
A number of other more recently developed perfusion fluids have shown good effect in the 
preservation of pancreata for islet cell transplantation in particular the ET-Kyoto perfusion 
fluid. This fluid has a high sodium:low potassium ratio, and contains trehalose to protect the 
cell membrane against hypothermia and the nitric oxide donor nitroglycerin that facilitates 
vasodilatation [73].

National guidelines and/or protocols differ with respect to recommended perfusion and pres-
ervation fluids for the pancreas [45, 60, 74, 75]. UW and HTK solutions are the two most 
frequently recommended solutions for pancreas retrieval by such guidelines, although their 
utilization and volumes vary significantly. UK guidelines stipulate that in situ UW perfusion 
must be undertaken for pancreas retrieval, whilst Eurotransplant, German, and Australia/
New Zealand guidelines allow for either UW or HTK. Furthermore, none of these guidelines 
preclude dual perfusion when the pancreas is being retrieved, although German standards 
stipulate portal venous perfusion via a catheter inserted directly into the portal vein above 
the pancreas/duodenum [45, 60, 74, 75]. The use of Celsior or IGL-1 solution has not yet been 
incorporated into major National or Regional guidelines, although both have been employed 
in the clinical context [64, 65, 72, 76].
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A “pre-flush” is defined as a crystalloid fluid, such as Hartmann’s solution, that is perfused 
in situ prior to the final flush/preservation fluid, such as UW. The pre-flush can be employed 
safely in pancreatic procurement, although it is not commonly utilized. The function of this 
pre-flush in the context of pancreas procurement is to potentially (1) reduce the amount of 
UW required, thereby reducing retrieval costs, and (2) to clear all blood from the vasculature 
such that any residual blood does not aggregate with the hydroxyethyl starch in UW [77, 78].

UW is traditionally perfused in much lower volumes in comparison to HTK, and this is also 
reflected in the various pancreas retrieval guidelines in existence. This is largely related to 
the higher viscosity of UW, in addition to the larger volume and time for HTK perfusion to 
achieve equilibration of electrolyte content with the extracellular milieu [79, 80]. Australian 
guidelines recommend a 2–4 L crystalloid/low viscosity solution in situ pre-flush, followed 
by a UW flush of at least 1–2 L; a volume range for HTK is not specified [45]. In contrast, 
UK guidelines state a UW flush of 50–70 ml/kg should be employed via the aorta, whilst 
Eurotransplant allows for 50–100 ml/kg UW or 150–300 ml/kg HTK [74, 75]. Published reports 
may deviate from this; perfusion volumes utilized in aortic-only perfusion range from 0.8–
5.6 L, 4.9–9.7 L, and 0.8–7.9 L for UW, HTK, and Celsior respectively [81].

4.2.3. Additive(s) to perfusate

Heparin is a standard additive to the in situ perfusion fluid during DCD organ retrievals, includ-
ing for the pancreas. Additionally, thrombolytics such as streptokinase or tissue plasminogen 
activator (tPA) can be added to the in situ perfusion fluid, or alternatively our approach is to 
directly inject tPA into the aorta before commencement of the cold in situ flush; the aim of this 
is to achieve a higher quality vascular flush through the clearance of microthrombi [82–84]. 
However no comparative evidence exists for or against the use of thrombolytics in DCD pan-
creas retrieval, although there is certainly enthusiasm for this approach [83, 85].

4.2.4. Two-layer method

Great focus has remained on improving the quality of pancreas transport to the islet trans-
plant centers, including novel ways to provide oxygen rich media to the graft whilst in cold 
storage during shipping. In late 1988 Kuroda et al. was the first to report the use of the Two-
Layer Method (TLM) for shipping of the pancreas prior to islet cell isolation [86]. The TLM 
uses a perfluorochemical (PFC) and the organ perfusion fluid; initially Euro-Collins’ solu-
tion was used but was replaced by UW solution. The benefits of the use of the PFC are due 
to it being a biologically inert liquid that acts as an oxygen-supplying media. A pancreas 
preserved using the TLM is theoretically oxygenated through the PFC and substrates are 
supplied by the UW solution. This allows the pancreas preserved using the TLM to generate 
adenosine triphosphate during storage, prolonging the preservation time [87]. Strong debate 
still remains over its benefits, if any, when compared to the use of UW solution during CS 
[88, 89] and a recent publication of guidelines recommended against the use of the TLM for 
preservation of the pancreas preceding islet isolation [85].
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5. Outcomes

5.1. Whole organ pancreas transplant outcomes

Vascularized pancreas transplantation outcomes have improved considerably over time. 
Although changes to immunosuppression and post-transplantation care can partly account 
for this, advances in retrieval surgery and organ preservation, in addition to better donor 
selection, are significant contributors [90, 91]. When exploring pancreas transplantation out-
comes, it is paramount to account for the type of transplant performed, as these are associ-
ated with differential graft success and survival rates. More specifically, outcomes must be 
considered based on whether a simultaneous pancreas-kidney (SPK), pancreas after kidney 
(PAK) transplant, or pancreas transplant alone (PTA) was performed. An exploration of gen-
eral pancreas transplantation outcomes is beyond the scope of this chapter, as the focus is on 
the specific impact of retrieval and preservation practices. Overviews investigating trends 
and recipient outcomes following pancreas transplantation have been published by others, 
including Dean et al., and Gruessner et al. [90–94]. In brief, the current expected 5-year graft 
and patient survival rates for pancreas (SPK) transplantation range from 73 to 82% and 89 
to 93%, respectively, in the US, UK, Eurotransplant region, and Australia/New Zealand [91, 
94–96]. Outcome differences are seen between SPKs, which have historically provided bet-
ter results, and PTAs and PAKs, due to important variations in the type(s) of recipients for 
each transplant type, technical differences in the transplantation procedure, and a differential 
ability to diagnose and treat rejection episodes [91]. SPK transplantation is by far the most 
commonly performed type of pancreas transplant but islet cell transplantation has also seen a 
great increase in acceptance and success.

5.2. Islet cell transplant outcomes

Like its forebear, islet cell transplantation outcomes have improved considerably over time. 
The most impactful change was seen with advances in immunosuppression, clearly shown 
by the success of the Edmonton trial [97], one that revolutionized the progress of the cellular 
transplant. Other factors have also continued to impact the field, including post-transplanta-
tion care, advances in retrieval surgery and organ preservation, in addition to better donor 
selection. In brief, the most recent presentation from the Collaborative Islet transplant registry 
(CITR), presented the combined world islet cell transplant data where they reported that over 
1055 allogeneic islet transplants have now been reported by 50 islet transplantation centers in 
Australia, Europe, North America, and Asia. Of these cases, islet transplant alone (ITA) was 
the most frequent procedure (n = 858) followed by islet after kidney (IAK) and simultaneous 
islet and kidney transplantation (SIK) (n = 197) [98]. More recently, according to outcomes 
of the Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by 
Severe Hypoglycemia, the primary end point of HbA1c < 7.0% was achieved by 87.5% of sub-
jects at 1 year and by 71% at 2 years. The median HbA1c level was 5.6% at both 1 and 2 years. 
Hypoglycemia awareness was restored, with highly significant improvements in Clarke and 
HYPO scores (P > 0.0001). No study-related deaths or disabilities occurred [99]. This trial 
clearly demonstrated the significant improvements achieved in the outcomes of islet cell 
transplantation and its impact on those patients suffering from hypoglycemic unawareness.
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5.3. The impact of procurement practices and techniques

Pancreas procurement techniques can significantly impact subsequent transplantation out-
comes, and can also prove the difference between organ utilization and discard. In particular, 
there is ample evidence that factors such as en bloc retrieval, retrieval technique and graft 
handling, type(s) of instruments utilized, and perfusion routes are all important determi-
nants of graft function and transplant-related morbidity. Ensuring that pancreas retrieval is 
performed by an experienced pancreatic transplant surgeon can significantly minimize such 
retrieval-related complications and risks [100].

Pancreatic damage during retrieval is not uncommon, and may deem the organ unusable 
certainly for whole organ transplant. Although the rates are different between centers and 
of course depends upon the level of training of the surgeons performing the retrievals, a 
large UK registry analysis showed a greater than 50% rate of surgical damage in retrieved 
pancreata; furthermore, approximately 10% of grafts were subsequently discarded due to 
damage sustained at retrieval in this analysis [37]. This was further seen as a significant loss 
as the grafts were also not utilized for islet cell transplantation due to extended cold ischemic 
times as a result of ongoing referrals. Within the same series, parenchymal and/or vascular 
(arterial) damage at procurement contributed to significantly higher rates of subsequent graft 
loss if the pancreas proceeded to transplantation [37]. In order to minimize surgical retrieval 
damage it is best to ensure that the staff performing the surgery are at a more senior level, and 
therefore our unit always sends a senior experienced surgeon to all pancreas retrieval surger-
ies to ensure adequate training of junior staff and optimize graft quality.

Graft thrombosis is the most important technical cause of whole organ pancreatic allograft 
loss. Pancreas retrieval and surgical technique is a significant etiologic factor in the incidence 
of graft thrombosis [101–104]. Graft pancreatitis, which in itself is a significant risk factor for 
graft thrombosis, is another potentially catastrophic complication associated with morbidity 
and graft loss that is partly attributable to retrieval technique [100]. Excessive graft handling 
and poor retrieval surgical technique, including damage to the inferior pancreaticoduodenal 
artery, are commonly accepted causes of graft pancreatitis in the recipient. [100] The same 
contributing factors also have an impact on the organs when they are used for islet cell isola-
tion [9].

En bloc procurement of the liver and pancreas is associated with better recipient out-
comes owing to faster organ retrieval and therefore shorter warm ischemia times [58, 100]. 
Interestingly, in the aforementioned UK registry analysis between 2008 and 2012, although 
the vast majority of liver and pancreas retrievals were not performed en bloc, there was a trend 
favoring the en bloc approach with respect to reduced pancreatic retrieval injury [37].

In situ perfusion routes, in particular the utilization of dual aorto-portal perfusion in prefer-
ence to aortic-only perfusion, can impact both whole organ and cellular allograft outcomes. 
Dual perfusion is potentially associated with increased retrieval-related pancreatic injury 
through a combination of flush injury (increased perfusion volumes), and/or an obstruction 
of pancreatic portal venous outflow secondary to catheter placement within the inferior or 
superior mesenteric veins [52, 58]. This ultimately impacts on the pancreas that is retrieved for 
whole pancreas or cellular transplantation as it can cause a significant increase in edema, and 
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may be associated with a higher rate of graft pancreatitis in whole organ, and poorer isolation 
results due to collagenase dilution in the islet isolation process. Importantly, an aortic-only 
perfusion technique does not seem to compromise hepatic allograft outcomes, especially in 
the standard criteria DBD donors from which pancreata are usually retrieved, and therefore 
should be considered by retrieval surgeons in these circumstances especially in centers that 
retrieve grafts for both whole and cellular transplantation [34, 58].

Furthermore, the specific instrument-type employed for pancreatic dissection is an important 
determinant of the amount of pancreatic bleeding upon reperfusion in the recipient [46]. We 
have shown that ultrasonic shear (e.g. Harmonic Scalpel) utilization during pancreas retrieval 
allows the sealing of peri-pancreatic vessels that are otherwise easily missed, thereby con-
tributing to less bleeding and a reduced blood transfusion requirement after transplantation 
within the recipient [41].

5.4. The impact of perfusion and preservation fluids

Pancreas preservation by cold storage using University of Wisconsin solution has been the 
mainstay method used for pancreas transplantation over the past two decades. Other solu-
tions, such as HTK, Celsior, and SCOT 15, struggled to demonstrate any advantage for short-
term preservation periods. But the advent of clinical islet transplantation and the larger use of 
controlled DBD donors have prompted the transplantation community to develop methods 
for increasing pancreas graft quality while preventing ischemic reperfusion damage espe-
cially in the cellular arena. It has been thought that oxygenation by 1- or 2-layer methods 
during pancreas preservation, as well as the use of perfluorocarbons, may increase islet yield. 
Based on the former methods, there is a renewed interest in machine perfusion and oxygen-
ation in pancreas preservation for pancreas transplantation and islet cell preparation [105].

A recent systematic review and meta-analysis by our group compared the outcomes of 
whole organ pancreas transplantation based on the in situ perfusion and subsequent pres-
ervation fluid utilized (UW, HTK, or Celsior) [81]. Ischemia-reperfusion injury of the pan-
creas, as reflected by post-operative peak lipase levels, was significantly lower when UW was 
employed as a perfusion/preservation fluid in comparison to HTK, but there was no signifi-
cant difference in peak amylase. This pancreatic ischemia-reperfusion injury may translate to 
lower clinical graft pancreatitis rates when UW is used in comparison to HTK, although this 
is not a universal finding [106]. No significant disparity was observed in biochemical injury 
markers or graft pancreatitis rates between UW and Celsior [81].

As discussed above, post-transplantation graft thrombosis is a significant cause of graft loss. 
Thrombotic graft loss rates do not differ based on whether UW, HTK, or Celsior is used for in 

situ perfusion and preservation of the pancreas [81]. Furthermore, cumulative graft survival 
after first post-transplantation month does not favor UW over HTK, although a distinct trend 
favoring UW emerges at the 1-year mark [81, 106, 107]. A US registry analysis provided fur-
ther evidence for this, showing a significant association between HTK perfusion/preservation 
and graft loss, in comparison to UW [108]. In comparison, the use of Celsior is associated with 
similar 1-year graft survival rates to UW [64, 76].
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The comparative utility of each preservation fluid must also be considered in the context of 
additional donor and transplant-related factors. One important consideration when consid-
ering any possible superior preservation effects of UW is the expected pancreatic graft cold 
ischemic time (CIT). UW may especially be beneficial when CIT is greater than or equal to 
12 hours [106, 108]. Furthermore, as already mentioned previously, pancreas retrieval is usu-
ally undertaken in the multi-organ donor setting. The perfusion/preservation fluid utilized 
must therefore not compromise any abdominal organ additionally procured, especially the 
liver. There is conflicting evidence regarding the relative efficacy of UW, HTK, Celsior, and 
IGL-1 for liver preservation. Some authors suggest that HTK results in inferior graft survival 
in comparison to UW, whilst others have reported similar survival but a reduction in post-
liver transplantation biliary strictures when HTK is utilized [109, 110]. Overall, current cumu-
lative evidence does not suggest a significant difference between these four fluids, and further 
research in this area is required [34].

5.5. Donation after circulatory death (DCD) vs. donation after brain death (DBD) 

transplantation and the importance of donor selection

With careful selection of donors, excellent whole organ pancreatic transplantation outcomes 
can be obtained even after DCD transplantation. The Pancreas Donor Risk Index (PDRI) is 
a tool that incorporates donor and preservation-related risk factors, including DCD donors, 
prolonged preservation time, and high body mass index (BMI), in a risk model for subsequent 
graft failure [111]. This model has been utilized in both the North American and European 
settings [111, 112]. It is important to note however that such models must not be used in 
isolation, and donor pancreata with one or more risk factors, including DCD donors, can 
still be used to achieve good outcomes. Indeed, our center’s first DCD pancreas transplant 
was in 2007, and has been followed by a further six DCD pancreas transplants, all display-
ing good long-term graft function [84, 113]. Meta-analyses have shown equivalent graft and 
patient survival when comparing DBD and DCD pancreatic transplantation, although graft 
thrombosis rates are higher when DCD grafts are used [51, 114]. Importantly, this higher 
graft thrombosis rate can be abrogated when donor therapies such as systemic ante-mortem 
heparin administration are applied [51]. The use of younger donors, with a lower BMI, and 
low warm ischemic times, has contributed to the success of DCD whole organ pancreas trans-
plantation [84, 115].

There has, however, been more reserved interest in DCD in pancreas for cellular transplan-
tation as the perceived ischemic insult appears to have a much greater effect on the iso-
lated islets for cellular transplantation than when the whole pancreas is transplanted. This 
is largely because the entire reserve of islets remains intact in the whole organ graft rather 
than being removed, and a smaller proportion is transplanted in the cellular graft [66, 99]. 
However, a number of encouraging studies have shown varying success. Albeit from a more 
advantageous DCD setting allowing earlier intervention including cannulation of the donor 
and antemortem heparin administration, which has, been shown to be a distinct advantage in 
this setting [51]. One such report from the Japanese Islet Registry reported their findings from 
65 DCD islet isolations performed for 34 transplantations in 18 patients with T1DM. Despite 
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the fact that all recipients remained free of severe hypoglycemia, only three patients achieved 
insulin independence for 14, 79, and 215 days. HbA1c levels and requirement of exogenous 
insulin were significantly improved in all patients [116]. In the more traditional DCD set-
ting the Edmonton group have recently reported their findings comparing islet isolations 
from 15 DCD and 418 DBD donors performed between September 2008 and September 2014. 
Compared to DBD, pancreata from DCD were procured locally and donors required less 
vasopressive support (P < 0.001 and P = 0.023, respectively), but the other variables were 
similar between groups. The metabolic function was similar between DBD and DCD, as well 
as the mean decrease in insulin requirement at 1-month post-transplantation (DBD: 64.82%; 
DCD: 60.17% reduction, P = 0.517). These results support the broader use of DCD pancreata 
for islet isolation. However, a much larger DCD islet experience will be required to truly 
determine non-inferiority of both short and long-term outcomes [117].

6. Future perspectives

There has been considerable interest regarding the utility and advantages of dynamic pres-
ervation methods in comparison to CS alone for organs such as the liver, kidneys, heart, and 
lungs. The pancreas has not remained immune to attempts adapting such techniques during 
the post-procurement phase, although their current clinical success remains limited. Non-
static methods of preservation can potentially:

• Reduce graft discard by allowing more accurate graft assessment after retrieval in compari-
son to current methods, which are largely subjective; and

• Improve organ quality by reducing ischemia-reperfusion-related damage, including by the 
targeted delivery of pharmacotherapies aimed against ischemia-reperfusion injury, and 
also gene therapies and stem cells, into the pancreas.

6.1. Machine perfusion

Machine (ex vivo) perfusion (MP) entails cannulation and mechanical perfusion of the pan-
creas via its inflow vessels; perfusion fluid is re-circulated through the circuit for the duration 
of perfusion. Broadly, MP can be hypothermic, subnormothermic or normothermic, pulsatile 
or non-pulsatile, and continuous or for a limited proportion of the preservation/transport 
phase (e.g. pre-implantation). Current pancreatic MP work is lacking in the sphere of clinical 
transplantation, and is limited to pre-clinical animal and discarded human pancreas studies; 
only the latter will be the focus of this section, with experimental animal work summarized 
in detail elsewhere [118–120].

There are certain pancreas-specific issues that need to be considered with respect to MP that 
do not apply to other organs such as the kidney. Most importantly, the pancreas is a low-flow 
organ, and even relatively low pressures in a MP setup can result in significant graft edema 
and weight gain [121]. Furthermore, higher perfusion pressures can contribute to vascular 
thrombosis secondary to endothelial damage [120]. However, especially if MP is undertaken 
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at normal body temperature (normothermic), such risks must then be balanced against the 
need for adequate perfusion to sustain normal aerobic metabolism. An additional challenge 
during pancreatic MP is the need to adequately and safely account for the organ’s exocrine 
output, which is stimulated during normothermic perfusion [122].

As a result of these issues, most pancreatic MP studies have been conducted in the field of 
islet cell transplantation rather than the whole pancreas [120, 123]. Graft edema, is disad-
vantageous for both whole organ and cellular transplantation. However some groups have 
studied its use as it theoretically facilitates the enzymatic digestion of pancreatic acinar tissue 
[124]. Hypothermic MP can potentially be employed to increase human islet yield, viability, 
and insulin secretion despite an extended CIT (> 12 hours), possibly increasing the number 
of pancreata that can be used for successful islet isolation [125]. Cases of human islet trans-
plantation following MP are yet to be published, however. Whole organ pancreas MP has 
been investigated in the context of extended criteria organs that were not utilized for human 
transplantation. Some authors have shown 6 hours of oxygenated hypothermic MP using UW 
machine perfusion solution increases the ATP content of DCD pancreata to reach a level that 
is similar to DBD pancreata at baseline [126]. Graft edema can be kept to a minimum if low 
pressure hypothermic MP is utilized, even for as long as 24 hours [127]. Subsequent ex vivo 

normothermic perfusion can be used to simulate reperfusion at transplantation after initial 
hypothermic MP, and has been shown to demonstrate adequate insulin secretion by such 
pancreata [128].

Normothermic MP is an attractive alternative for whole pancreas preservation, and likely pro-
vides better graft viability assessment than hypothermic perfusion. Both endocrine and exo-
crine graft function can be assessed during perfusion by measuring C-peptide and/or insulin 
secretion and stimulation in response to glucose, and amylase and lipase release, respectively 
[122, 129]. Blood flow and resistance parameters can also be assessed using this technique, 
although this is also possible with hypothermic MP. However it is important to note that no 
defined cut-offs or validated protocols for human transplantation have been developed, and 
will require significantly more pre-clinical work.

6.2. Persufflation

Persufflation is a technique in which the pancreas is directly perfused with a humidified gas 
such as oxygen via the SMA and/or splenic arteries. Non-utilized human DBD pancreata have 
been perfused by this method, and subsequent graft assessment showed an increase in pan-
creatic ATP levels [130]. Porcine data from the same group showed significantly improved 
pancreatic histology after 24 hours of persufflation in comparison to utilization of the TLM 
[131]. Islet isolation after 24 hours of persufflation, including in human pancreata, is likely 
increased, compared to other methods such as the TLM [132]. This was confirmed in a later 
study, whereby islets of sufficient quantity and quality for transplantation were isolated 
from all five human pancreata that underwent persufflation using 40% humidified oxygen 
perfused at 10–25 mmHg [133]. Similar to MP however, pancreas persufflation has not yet 
been followed by clinical islet and/or whole organ pancreas transplantation although some 
research is now underway by a limited number of groups.
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6.3. Normothermic regional perfusion

Normothermic Regional Perfusion (NRP) of the abdomen was initially utilized in Spain in the 
uncontrolled DCD setting, and has since been utilized in the controlled DCD setting in other 
European countries and Asia [134–138]. The donor’s systemic arterial and venous systems are 
rapidly cannulated, and an ex vivo pump/oxygenator system is used to maintain an effective 
artificial circulation of the abdominal viscera. Cerebral and thoracic perfusion is avoided by 
clamping the supra-celiac aorta. This system reduces the organ’s warm ischemic insult, and 
proposed benefits include facilitation of a more effective subsequent in situ cold flush, ATP 
replenishment, and reduced oxidative stress [139]. Current experience for NRP exists mainly in 
the sphere of kidney and liver transplantation. However, utilization of this technique for DCD 
pancreas preservation and transplantation is appealing, especially because DCD pancreata can 
have sustained, long-term graft function (as discussed above). Within the UK, five pancreata 
have been procured after initial NRP, resulting in two SPK transplants and one islet cell trans-
plantation [136]. In Spain, one NRP pancreas has been transplanted in the context of a con-
trolled DCD donor [140]. Future studies are required to more effectively classify evidence for 
this strategy, and define its comparative role or efficacy with respect to MP. In the DCD setting, 
NRP may prove to be a more feasible strategy than MP owing to the aforementioned difficulties 
of maintaining a pancreas on an ex vivo machine circuit, although no direct comparisons exist 
between the two methods.

7. Conclusions

This chapter outlines the numerous advances that have occurred over the past few decades in 
pancreas retrieval techniques for both whole organ and cellular transplantation. It clearly dem-
onstrates the improved outcomes in both whole pancreas and islet cell transplantation from 
significant improvements to organ donor selection and management, and organ perfusion and 
retrieval surgery. We have seen insulin independence rates for more than 10 years post-trans-
plant in both settings with minimal complications. Whole organ transplantation is obviously 
now a well-accepted clinical therapy for many patients worldwide. However, islet transplanta-
tion still has limited application to the broader population of patients with T1D due to its reliance 
on the availability of cadaveric donors and selection, isolation results and transplant engraft-
ment, the side effects of immunosuppression and issues associated with the requirement for life-
long immunosuppression. The future holds many interesting potential new therapies that may 
or may not yield appropriate and safe methods for treatment of type 1 diabetes. From what has 
been outlined in this chapter we can see that outcomes for patients have improved significantly. 
If, unfortunately, patients cannot be treated prior to the advent of their type 1 diabetes then they 
can still be treated by transplantation. Moving forward, researchers and clinicians have numer-
ous fronts and multiple strategies arising at different stages of development in which to be able to 
offer patients treatments tailored to them and their disease. In the foreseeable future, transplanta-
tion and in particular the focus on organ retrieval and organ preservation will play a significant 
role in further improving outcomes, particularly with newer technologies such as machine per-
fusion and normothermic regional perfusion. Such technologies are hoped to increase both the 
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number of suitable whole pancreata, as well as their quality, which will simultaneously lead to 
improved islet cell numbers and function in the cell therapy sphere of Diabetes care.
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Optimal Culture Methods and Microbial
Contamination During Kidney Ex Vivo
Normothermic Perfusion
Sara Shahrestani, MD,1,2,3 Ahmer Hameed, MBBS,1,2,3 Kerry Hitos, PhD,2,4 Henry Pleass, MD,1,2,3

and Wayne J. Hawthorne, MD, PhD1,2,3,5
W“Microbial contamination during kidney ex vivo

e read with particular interest the article entitled

normothermic perfusion.”1 In light of organ donation short-
ages, the utilization of ex vivo normothermic perfusion (EVNP)
of the kidney has significant potential to reduce graft discard
rates while simultaneously enhancing recipient outcomes.2-3

Ex vivo normothermic perfusion presents challenges,
including the potential to introduce contaminants into the
donor organ perfusion fluid. The authors examined the mi-
crobial growth rates and in both cold and warm perfusion
solutions in a small sample of organs that were subsequently
transplanted. The authors' comment “Two cold organ trans-
port fluid cultures had positive growth, butwith no consistency
of the organisms grown from the EVNPperfusate.”At our cen-
ter, we have likewise found low rates of positive culture at a
rate of 16.0% (N = 19/119) with direct plate culture from cold
transport perfusate fluid of kidneys. However, by using
BACTEC (tryptic soy broth enriched liquid media and radio-
metric assessment of bacterial growth, Becton Dickinson
[BD], Sparks, MD) culture methods, the positive culture rate
was in fact much higher at around 54.1% (N = 33/61).

Standard antimicrobial prophylaxis in kidney transplants
consisted of IV cephazolin for 48 hours and oral trimethoprim/
 Health, Inc. All rights reserved.
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sulfamethoxazole daily. Pancreas-kidney recipients received
100 mg of fluconazole daily for 5 days, 500 mg thrice daily
of metronidazole and 1 g thrice daily of amoxicillin for
4 days. All positive cultures were communicated to the ne-
phrologist on duty, who then assessed whether the standard
antimicrobial prophylaxis was sufficient, or based on sensi-
tivities, whether an additional antimicrobial was necessary.

Overall, 96 patients from 286 kidney and pancreas-kidney
recipients (33.6%) had a wound infection or collection that
cultured 1 or more distinct organisms. This consisted of 77
(80%) superficial wound infections (wound/skin infections)
and 19 (19.7%) deep infections (intra-abdominal perigraft
collections). Wound infections were typically treated with
a combination of antimicrobial therapy and debridement,
whereas deeper collections required aspiration for targeted
antimicrobial therapy. An increased rate of enteric flora con-
tamination in simultaneous pancreas and kidney transplants
(26%) relative to kidney alone (9%, P = 0.03) may drive the
increased risk of wound infection in this group, (odds ratio
[OR], 44.37; 95% confidence interval [CI], 5.02-391.93;
P = 0.001). Importantly, we found that when BACTEC was
utilized in both kidney and kidney-pancreas recipients to
identify the type of microbiological growth, the risk of re-
cipient wound infection at the surgical site was signifi-
cantly reduced (adjusted OR, 0.24; 95% CI, 0.07-0.86;
P = 0.029). When standard culture was used, the odds of in-
fection were higher (adjustedOR, 4.02; 95%CI, 1.09-14.84;
P = 0.037), and authors speculate that this association is
likely due to the poorer identification of potential infection.
A systematic review and meta-analysis of culture-positive
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perfusion fluid found that recipient infection was far less
likely when appropriate prophylaxis was given.4 A study of
liver transplants likewise found that infection occurred far
less frequently (3.8% vs 43%, P < 0.005) in recipients with
appropriate prophylaxis against the organisms in the
perfusion fluid.5

We would recommend BACTEC for microbial culture of
organ perfusion media and read with interest future works
examining culture results from warm and cold perfusion me-
dia. Using BACTEC culture results to guide antimicrobial
prophylaxis and treatment can have a significant effect on re-
ducing recipient wound complications. As the use of EVNP
increases, we hope future work will clarify these practices
such that there is increased provision of optimal organs while
minimizing procedural morbidity in transplant recipients.
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Abstract

Background: Dual kidney transplantation (DKT) was developed to improve outcomes 

from transplantation of extended criteria donors (ECD). This study examined which 

surgical techniques have been reported for DKT and whether any technique had supe-

rior patient and graft survival.

Method: Electronic databases were searched for published studies mapping to MESH 

terms: “kidney or renal” AND “transplan*” AND “dual or double.” Single case reports, 

studies of patients less than 18 years old, studies which did not describe the surgical 

technique, and studies that did not report patient or graft survival were excluded.

Results: Fifteen reports of 434 DKT recipients were identified. Three techniques were 

described: bilateral placement; unilateral placement with separate anastomoses; and 

unilateral placement with patch anastomoses. Patient survival across all three tech-

niques was over 95% at 1 year, and graft survival was also similar at over 90%. Rates 

of delayed graft function were between 20% and 30% across all techniques.

Conclusion: The three techniques have equivalent delayed graft function as well as 

patient and graft survival rates. This is an encouraging result as it means that the sur-

geon can choose to use the technique which is most appropriate for their own skills 

and for the patient.

K E Y W O R D S

dual kidney transplant, kidny transplantation, renal transplantation

1  | INTRODUCTION

Chronic kidney disease is an increasingly prevalent condition, affecting 

up to 16% of the adult population in several continents.1 However, the 

number of organ donors across the world has remained relatively stag-

nant, further increasing the discrepancy between supply and demand.2 

To address the challenge of organ donation shortages, extended cri-

teria donors (ECD) are increasingly utilized, particularly in kidney 

transplantation.3 Extended criteria donors are defined by the United 

Network for Organ Sharing (UNOS) as donors aged over 60 or donors 

older than 50 with any two of the following: hypertension; cerebro-

vascular cause of brain death; or elevated terminal creatinine.3 There 

is a known and well- demonstrated negative effect of age- related low 

nephron mass, particularly in extended criteria donors, which in turn 

leads to higher rates of delayed graft function and lower graft survival.4

To address the issue of low nephron mass, the transplantation of 

two kidneys from a marginal donor to one recipient, known as dual 

kidney transplantation (DKT), has been proposed as an alternative to 

single kidney transplant from extended criteria donors.3 DKT has been 

shown to be effective when appropriate donors and recipients are cho-

sen. Although DKT may involve greater anesthetic and surgical risk, it is 

associated with significantly higher rates of immediate graft function, 

especially when kidneys are acquired from extended criteria donors.5

What is not yet clear is the ideal surgical technique to perform a 

DKT. As dual kidney transplant becomes increasingly common with the 

utilization of more organs from extended criteria donors, it is important 
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for surgeons to be aware of the different operative approaches. The 

aim of this systematic review was to examine which techniques of dual 

kidney transplant are being performed, and whether any one of these 

is superior in terms of patient and graft survival. We also examined 

the rates of delayed graft function and surgical complications. Our hy-

potheses were as follows: That there would be three different surgical 

approached to the performance of dual renal transplant, and that none 

of the approaches would be demonstrably superior to the others.

2  | METHODS

This systematic review was performed by the investigators and re-

ported in adherence to the Moose Guidelines for Meta- Analyses and 

Systematic Reviews of Observational Studies.6

2.1 | Search strategy

The search strategy followed guidelines outlined in the Cochrane 

Handbook for Systematic Reviews of Interventions.7

Electronic databases were searched, including MEDLINE via 

PubMed and EMBASE from January 1995 to July 2016, for published 

studies using the following search script, mapping to MESH terms: “kid-

ney or renal” AND “transplan*” AND “dual or double.” Two independent 

reviewers (AC and SS) reviewed full- text articles and any discrepancies 

were resolved via discussion. Once a study was selected for inclusion, 

its reference list was hand searched to identify further studies that 

could be of relevance. The search strategy is outlined in Figure 1.

2.2 | Inclusion and exclusion criteria

All studies examining outcomes from dual kidney transplants were 

examined. No randomized controlled trials have been performed. All 

donor types were included. All studies reported the method of surgi-

cal technique employed in performing DKT. If it was not clear which 

technique was used, an effort was made to contact the study author/s 

and clarify this. All studies reported transplant outcomes either alone 

or in comparison with single kidney transplant outcomes. Only studies 

that were reported in English were included.

Studies that did not describe the surgical technique that was used, 

studies performed in patients less than 18 years old, studies that did 

not describe patient and/or graft survival, and single case reports were 

excluded.

2.3 | Bias appraisal

We assessed the potential for bias in included studies using the 

Newcastle- Ottowa Quality Assessment Scale for Cohort Studies.8

2.4 | Data abstraction and outcomes

Each study was reviewed, and data were extracted into a prede-

termined template. The following data were extracted from each 

article: author name and year, country, study period, study type, 

single vs multicenter, number of patients, mean and median follow-

 up period, donor subtype, donor age, donor comorbidities, graft 

appearance, biopsy and biopsy score, cold ischemic time, warm 

ischemic time, surgical technique, operative time, recipient age, 

recipient comorbidities, recipient time on dialysis, peri- operative 

mortality, delayed graft function, length of hospitalization, creati-

nine level at follow- up, graft survival at 1 and 2 years, and patient 

survival at 1 and 2 years.

2.5 | Data analysis

Formal meta- analyses could not be performed due to significant 

study heterogeneity. Semi- quantitative summary statistics were for-

mulated for primary and secondary outcomes of interest after their 

tabulation.

3  | RESULTS

3.1 | Study characteristics

We identified 15 reports for inclusion, of 434 DKT recipients 

(Figure 1). The number of DKT recipients per study ranged from 9 to 

100; characteristics of these studies are provided in Tables 1-3.

3.2 | Surgical technique

Three different surgical techniques used to perform DKT were 

identified: bilateral placement, unilateral placement with separate 

anastomoses, and unilateral placement with patch anastomoses. 

We will briefly outline these three methods before comparing the 

outcomes from each. In the bilateral placement of DKT, separate 

incisions are used in each iliac fossa to place kidneys separately 

on both sides. Anastomoses to the iliac vessels are performed 

separately on either side. In the unilateral placement with sepa-

rate anastomoses, only one incision in the iliac fossa is made, and 

kidneys are anastomosed to the iliac vessels on one side in turn. In 

unilateral placement with single patch anastomosis, the renal ar-

tery and vein from each kidney are anastomosed during back table 

preparation allowing for a single incision in one iliac fossa and sin-

gle anastomoses with iliac vessels as in single kidney transplant. 

Further details of these techniques, as well as the outcomes of the 

individual papers, are discussed below.

3.3 | Bilateral placement

Ten studies examined outcomes of patients who had bilateral place-

ment of their kidney transplants: four cohort studies, five case- control 

studies, and one case series. There were a total of 266 patients with 

a mean donor age of 67.7 and mean recipient age of 60.5. An illustra-

tion of the technique is provided in Figure 2. Andres, Lee, Remuzzi, 

Johnson, Moore, and D’Arcy performed end- to- side anastomoses to 

the iliac vessels, but did not specify to exactly which vessel although 
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it seemed to be a mixture of common, external, and occasionally in-

ternal iliac artery and vein.5,9-13 Andres, D’Arcy, Moore, Johnson, and 

Lee performed bilateral ureterocystostomies.5,9-11,13 Remuzzi did not 

specify how the urinary reconstruction was performed.12 De Serres, 

Timsit, and Lee used the external iliac vessels, and De Serres and 

Lee performed extravesical ureteroneocystostomies, whereas Timsit 

performed pyeloureterostomy.3,14,15 Rigotti did not specify to which 

vessels the renal artery and vein were anastomosed, nor were details 

regarding the urinary reconstruction provided.16

3.4 | Unilateral placement with separate 
anastomoses

Four studies looked at the results of unilateral placement using two 

separate anastomoses. One was a cohort study, one was a case con-

trol, and the other two were case series. There were a total of 146 

patients with a mean donor age of 71.5 and mean recipient age of 

63.2. An illustration of the technique is provided in Figure 3. In the 

Timset, Veroux, and Ekser studies, one kidney had anastomoses to 

F IGURE  1 Flow chart of search strategy

potentially relevant studies identified; 

titles and abstracts reviewed (n=2502)

records of duplicates removed 

(n=115)

articles reviewed (n=175)

studies excluded by title and abstract 

review (n=2327)

full-text articles assessed for eligibility 

(n=60)

full-text articles excluded, with reasons 

(n=48)

did not stipulate the operative technique 

used n= 43

repetition of previously published data n=3

case report only n=2

Additional studies identified for inclusion 

following manual reference search (n=3)

Studies included in systematic review (n=12)
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the common iliac artery and inferior vena cava, and the second kid-

ney was anastomosed to the external iliac artery and vein.4,14,17 The 

preference for Gaber’s group was to place the superior kidney above 

the true pelvis and anastomose the artery to the internal iliac artery, 

but the distal common and external were also used.18 The first kid-

ney’s venous anastomosis was to the common iliac vein, and the 

second kidney was anastomosed to the external iliac vessels.18 Ekser 

and Veroux both placed the right kidney superiorly as its vein can be 

lengthened by a segment of IVC.4,17 Timsit performed a ureteroneo-

cystostomy with the ureter of the lower graft, whereas both Veroux 

and Gaber performed a conjoined technique and Ekser performed 

separate ureteroneocystostomies.4,14,17,18

TABLE  2 Unilateral placement with separate anastomoses

Study Years

Number of 
recipients Donor type

Average donor 
age (y)

Average recipient 
age (y) CIT mean (h) SWIT

Operative Time 
(min)

Graft thrombosis Delayed graft 
function rate Pt survival 1 y Pt survival 2 y Graft survival 1 y

Graft 

Timsit “Single Graft Loss”14 2004- 2007 14 ECD 76.5 69.4 Not stated

Veroux M “Monolateral 

Dual Kidney”17

2002- 2006 23 ECD 66 66 19.6

Ekser “Technical Aspects”4 2003- 2009 100 ECD 72.1±5.7 61.7±5.6 15.9±2.9  

(2nd graft)

Gaber “Ipsilateral 

Placement”18

(published 2007) 9 ECD Not stated Not stated Not stated

Summary 146 71.5a 63.2a

aContributing data incomplete.

TABLE  3 Unilateral placement with patch anastomoses

Study Years

Number of 
recipients Donor type

Average donor 
age (y)

Average recipient 
age (y)

CIT mean  
(h) SWIT (min)

Operative time 
(min)

Graft Delayed graft 
function rate Pt survival 1 y Pt survival 2 y Graft survival 1 y

Graft survival 

Ngheim “Simultaneous 

Double”19

1999- 2005 12 ECD 72.2 Not stated 26.5

Veroux P20 2002- 2007 10 ECD 73.2 55.6 22.4

Summary 22 72.7

aAs Ngheim stated that the operation could be done in “less than 180 min,” the figure of 180 min was used to calculate the overall average surgical  

time for this technique.

TABLE  1 Bilateral placement

Study Years

Number of 
recipients Donor type

Average 
donor age (y)

Average 
recipient age CIT mean (h) SWIT (per graft) Operative time (min)

Graft thrombosis Delayed graft 
function rate Pt survival 1 y Pt survival 2 y Graft survival 1 y

Graft survival 

Andres “Double versus 

Single”9

1996- 1998 21 ECD 75±7 60±5 y 22±4 Not stated

De Serres “Dual Kidney”3 1999- 2007 63 ECD 69±8 60±9 23.1±4.5 (2nd) Not stated

D’Arcy “Dual Kidney”13 2001- 2008 24 ECD 60.6 60.6 17.9 (1st) 45.6 min

Lee CM “Dual Kidney”10 1995- 1998 41 ECD 59±12 58±11 19±8 36±9

Remuzzi “Early 

Experience”12

1996- 1998 24 ECD 68.7±6.8 59.4±9.9 20.3±0.3 22

Timsit “Single Graft Loss”14 2004- 2007 41 ECD 76.5 69.4 Not stated Not stated

Moore “Dual Kidney”5 2001- 2006 16 ECD 65±8 49±7 22.3 (1st) 23.8 (2nd) Not stated

Lee RS “Intermediate 

Outcomes”15

1996- 1998 10 8 ECD 2 not 58.6±13.1 54.5±9.1 23.1±6.2 42.3±5.1

Johnson “Double adult 

renal”11

1994- 1996 9 ECD 62.7±3.4 Not stated 23.2±2.8 Not stated

Rigotti “Short Term 

Outcome” 16

1999- 2001 16 ECD 72±5 63±3 16 (1st) 18 (2nd) Not stated

Summary 266 67.67 60.51b

aThree of these patients died. The grafts were still functioning at the time of death.
bContributing data incomplete.
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3.5 | Unilateral placement with patch anastomoses

Only two studies, both case series, looked at unilateral placement 

using a single patch- Ngheim “simultaneous” and Veroux “two as 

one.”19,20 The total number of patients was 22 with a mean donor 

age of 72.7. The mean recipient age in Veroux’s study was 55.6, and 

this information is not provided in Ngheim’s study. The surgical tech-

nique involved extensive back table preparation of the kidneys and is 

illustrated in Figure 4. Ngheim shortened the left renal vein by 3 cm 

and then reimplanted it on the IVC attached to the right renal vein 

(unless the IVC was not available, in which case they reimplanted the 

right end- to- side on the left and used the left as a common outflow). 

TABLE  2 

Study
Number of Average donor 

age (y)
Average recipient 
age (y) CIT mean (h) SWIT

Operative Time 
(min)

Graft thrombosis 
rate

Delayed graft 
function rate Pt survival 1 y Pt survival 2 y Graft survival 1 y

Graft 
survival 2 y

Not stated Not stated 5 of 28 grafts (18%) 0% Not stated Not stated 82% Not stated

Not stated 192 min 

(160- 260)

Not stated 13.3% 100% 100% 100% 96%

Not stated 260±35 1 of 200 grafts 

(0.5%)

31% Not stated 96% (at 3 y) Not stated 91% (at 3 y)

Not stated 219±26 min 1 of 18 grafts (5.6%) Not stated Not done Not stated 94% Not stated

245a 7 of 246 grafts 

(2.8%)a
24.8%a 96.7%a 91.3%a

TABLE  3 

Study
Number of Average donor 

age (y)
Average recipient 
age (y)

CIT mean 
(h) SWIT (min)

Operative time 
(min)

Graft 
thrombosis rate

Delayed graft 
function rate Pt survival 1 y Pt survival 2 y Graft survival 1 y

Graft survival 
2 y

Not stated “less than 

<180 min”a

1 of 24 (4%) 27% Not stated Not stated 96% Not stated

Not stated 160±45 min 0 of 20 (0%) 20% 100% 90% Not stated 90%

171 2.27% 23.8%

TABLE  1 

Study
Number of Average 

donor age (y)
Average 
recipient age CIT mean (h) SWIT (per graft) Operative time (min)

Graft thrombosis 
rate

Delayed graft 
function rate Pt survival 1 y Pt survival 2 y Graft survival 1 y

Graft survival 
2 y

Not stated 5 of 42 grafts 

(11.9%)

19% 100% Not stated 95% Not stated

275±80 8 of 126 grafts (6%) 27% 100% Not stated 94% Not stated

371 (range 165- 720) 3 of 48 grafts (6.3%) 33% Not stated 88% Not stated 84%

Not stated Not stated 24% 98% 86% 89% 77%

Not stated 0 of 48 grafts (0%) 20.8% 100% (at 3/12) Not stated 100% (at 3/12) Not stated

Not stated 4 of 82 grafts (4.9%) 0% Not stated Not stated Not stated Not stated

345±51 2 of 32 grafts (6.3%) 13% Not stated 100% Not stated 81%

Not stated 0 of 20 grafts (0%) 10% 70% Not stated 100%a Not stated

Not stated Not stated 11% 100% (at 6/12) Not stated 100% (at 6/12) Not stated

360 Not stated 44% 100% Not stated 93% Not stated

315b 22 of 398 (5.5%)b 20.7% 97.3%b 93%b
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Veroux incorporated IVC into the right renal vein so that both veins 

were the same length and then sutured them together to create a sin-

gle lumen. Both groups created the arterial patch by suturing the renal 

artery aortic patches together (Ngheim placed one superior to the 

other, Veroux had them on the same plane). Ngheim anastomosed the 

renal vein patch to the external iliac vein and the aortic patch to the 

external iliac artery. Veroux’s venous anastomosis was to the common 

iliac vein, and the arterial anastomosis was to the external iliac artery. 

Both groups sutured the two ureters together and then performed a 

single ureteroneocystostomy.

3.6 | Patient survival—comparison between the  
techniques

Analysis of these data is limited by the disparate reporting across the 

studies—not all studies reported both patient and graft survival, and 

where they were reported, they were not always reported at the same 

time point. With this limitation in mind, the overall 1- year patient sur-

vival within the bilateral group was 97.3%. Within the unilateral place-

ment with separate anastomoses studies, overall 2- year patient survival 

was 96.7%. It should be noted that Timsit’s paper included two groups 

of patients with different surgical techniques for whom survival was 

not separately calculated and was 98.1% overall at 1 year.14 One of 

the two studies of patients with unilateral placement and patch anasto-

moses reported patient survival (100% at 1 year and 90% at 1 years—

Veroux).20 There was one clear outlier in terms of 1- year survival: Lee 

reported 70% patient survival, due to the death of three patients from 

pneumonia, congestive heart failure, and complications of diabetes.15

3.7 | Graft survival—comparison between the  
techniques

The overall graft survival within the bilateral group at 1 year was 93%; 

within the unilateral with separate anastomoses was 91.3%; and for 

F IGURE  4 Unilateral placement with patch anastomoses

F IGURE  2 Bilateral placement

F IGURE  3 Unilateral placement with separate anastomoses



     |  7 of 8COCCO et al.

the unilateral with patch anastomoses groups was 96% at 1 year in 

Ngheim’s study and 90% at 1 years in Veroux’s study.19,20 Specific 

surgical complications leading to graft loss are discussed below.

3.8 | Operative time, graft function, and surgical 
complications

Once again, analysis of the operative time across the different tech-

niques is limited by lack of information provided within some studies. 

The results of each study are outlined in Tables 1-3 below. The overall 

mean operative time for bilateral placement was 315 minutes (with a 

range of mean operating times of 275- 371 minutes). The overall mean 

operative time for unilateral placement with separate anastomoses 

was 245 minutes (with the studies having a mean time from 192 to 

260 minutes).

Unilateral placement with patch anastomoses took an overall 

mean time of 171 minutes. The back table time for unilateral place-

ment with patch anastomoses was reported as 60 minutes by Ngheim, 

while Veroux reported it resulted in a “longer bench time” but did not 

state exactly how long.19,20

Despite the difference between these operative times, the inci-

dence of delayed graft function (defined as a need for post- operative 

dialysis) was broadly similar across the groups (see Tables 1-3). The 

overall delayed graft function rate was 20.7% in the bilateral place-

ment group, 24.8% in the unilateral with separate anastomoses group 

and 23.8% in the unilateral patch anastomosis group. The graft throm-

bosis rates were 5.5% in the bilateral placement group, 2.8% in the 

unilateral separate anastomoses group, and 2.27% in the unilateral 

patch anastomosis group.

A number of patients lost a single graft but did not require dialy-

sis: This was particularly striking in Timsit’s paper, as in the unilateral 

placement group 5 grafts of a total of 28 were explanted due to throm-

bosis, but none of those patients required a return to dialysis.14 In the 

bilateral placement group within that paper, four of 82 grafts were lost 

due to thrombosis, but again no one required a return to dialysis.10 

One patient in Ngheim’s series of performing a patch anastomosis had 

a thrombosis of the renal vein of the medial kidney, and the authors 

felt that this was likely because the vein had been left too long.19 None 

of the patients in the other patch anastomosis study—Veroux—had 

thrombosis.20 Apart from graft thrombosis (with or without graft loss), 

the most commonly reported complications were wound dehiscense, 

hematoma, urinary fistula, and lymphocoele.

3.9 | Decision to perform dual renal transplant (DKT)

All but one of the centers only performed dual renal transplant (rather 

than single transplant) when the organs were from an extended crite-

ria donor, and most of the organs had been rejected for use as a single 

transplant by other centers. Two of the 10 donors whose kidneys were 

used in a DKT in Lee’s study did not fit an ECD definition.15 Andres, 

Remuzzi, Johnson, D’Arcy, Veroux M, Gaber, Moore, and Veroux P 

all used a biopsy score to determine dual allocation.5,9,11-13,17,18,20 

Ekser4 used a biopsy score if the patient had elevated creatinine, 

hypertension, or diabetes as well as being over 60. Timsit14 used the 

donor’s terminal eGFR to determine allocation as single, dual, or dis-

card. De Serres3 transplanted all kidneys from patients >75 as dual 

kidneys, and all of the kidneys from <75 year old donors had been 

rejected by all other centers for single transplant. Lee, Rigotti, and 

Ngheim all seem to have performed a dual transplant based on ECD 

status alone.10,16,19

4  | DISCUSSION

The results of this systematic review support the view that DKT is 

a safe and feasible option for expanded organ donation criteria. The 

small number of patients in all of these studies, but especially in the 

studies examining outcomes in patients who had transplanted kidneys 

placed unilaterally, makes it difficult to draw conclusions regarding 

the superiority of one technique. Unfortunately, a recently published 

study which included 200 patients could not be included as neither 

patient nor graft survival was reported according to the type of surgi-

cal technique used, and an attempt to gain further information from 

the corresponding author was unsuccessful.21

All three techniques appear to have broadly similar patient and 

graft survival, but as noted above, the lack of consistent outcome 

reporting has made it difficult to draw any definite conclusions. The 

obvious difference between the techniques is the operative time: 

Unilateral placement is approximately 1 hour shorter than bilateral 

placement. The initial assumption might be that this shortening of 

operative time was offset by a longer back table preparation—and 

therefore a longer cold ischemic time—but this does not appear to be 

the case, although inconsistency of data reporting in this regard again 

made interpretation difficult. Intuitively, the shorter operating time 

would also lead to improved patient and graft outcomes, but this is 

not reflected in the current data.

There are a few advantages and disadvantages of bilateral vs uni-

lateral placement. If kidneys are placed bilaterally, then both sides are 

scarred and access for re- operation becomes more difficult. On the 

other hand, if the patient has a narrow pelvis, bilateral placement may 

appear advantageous because it is easier to fit both kidneys in the 

space available. At the University Hospital in Madrid, unit practice is to 

place the grafts bilaterally so that it is easy to access the vessels; there 

is enough space; and if a surgical complication does occur, it does not 

impact on the other graft.22 (Medina- Polo [josemedinapolo@movistar.

es], email, July 26, 2016). By way of contrast, in Rigotti’s recently pub-

lished review of 200 dual kidney transplants, it is stated that a major 

impetus behind the move from bilateral placement to unilateral place-

ment with separate anastomoses was driven by reduced operating 

time, faster patient recovery, and the ability to leave the contralateral 

iliac fossa untouched in case of a need for retransplant.21

While a number of different methods of anastomosis were pre-

sented, there is one possible method which has not been discussed: 

to perform an en bloc dual transplant using the IVC and aorta, as is 

commonly performed in pediatrics. No cohort studies or case series 

using this technique have been reported in adults. Our experience is 

mailto:josemedinapolo@movistar.es
mailto:josemedinapolo@movistar.es
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that the aorta of extended criteria donors is often heavily calcified and 

may have dissected, which makes the arterial anastomosis technically 

difficult and increases the risk of graft thrombosis.

The focus of this study was on the technical aspects of performing 

dual kidney transplants. The excellent results, in terms of both graft 

and patient survival, raise questions as to whether these organs could 

have been transplanted singly (and thereby increased the available 

organ pool), rather than having been allocated to a single patient. This 

was especially obvious when the number of grafts lost is compared to 

the number of patients requiring return to dialysis—most patients who 

lost a single graft did not return to dialysis, so presumably they only 

required one (rather than two) kidneys.

From this analysis, the three differing techniques have equivalent de-

layed graft function as well as patient and graft survival rates, although 

operative time appears shorter when a unilateral incision is employed. This 

is an encouraging result as it means that the surgeon can choose to use the 

technique which is most appropriate for their own skills and for the patient.

This study has a number of limitations. The first is that the data 

provided in the individual studies were sometimes incomplete or ab-

sent, and conclusions could only be drawn from the data that were 

provided. Not all surgical complications (for example, graft thrombosis, 

surgical site infection, and lymphocoele) were reported by all centers, 

and outcomes such as patient and graft survival were not recorded at 

uniform time points. Likewise, it was not always clear why a particular 

technique of transplant was utilized, and therefore, it was not possible 

to draw conclusions regarding the superiority of one technique over 

another for a particular patient population (atherosclerosis, high BMI, 

and so forth). The second is that the number of studies (and there-

fore patients) evaluating the three techniques was different, with far 

more patients have bilateral placement rather than either technique of 

unilateral placement, and this made it difficult to draw conclusions re-

garding possible superiority of the less commonly utilized techniques.
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