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Abstract

Active matter consists of self-propelled particles whose interactions give rise to co-
herent collective motion. Well-known examples include schools of fish, flocks of
birds, swarms of insects and herds of ungulates. On the micro-scale, cells, enzymes
and bacteria also move collectively as active matter, inspiring engineering of arti-
ficial materials and devices. These diverse systems exhibit similar collective be-
haviours, including gathering, alignment and quick propagation of perturbations,
which emerge from relatively simple local interactions. This phenomenon is known
as self-organisation and is observed in active matter as well as in many other com-
plex collective phenomena, including urban agglomeration, financial crises, ecosys-
tems dynamics and technological cascading failures. Some open challenges in the
study of self-organisation include (a) how the information processing across the
collective and over time gives rise to emergent behaviour, (b) how to identify the
regimes in which different collective behaviours exist and their phase transitions,
and (c) how to quantify the thermodynamics associated with these phenomena. This
thesis aims to investigate these topics in the context of active matter, while building
a rigorous theoretical framework. Specifically, this thesis provides three main contri-
butions. Firstly, the question of how to formally measure information transfer across
the collective is addressed and applied to a real system, i.e., a school of fish. Sec-
ondly, general relations between statistical mechanical and thermodynamical quan-
tities are analytically derived and applied to a model of active matter, resulting in
the formulation of the concept of “thermodynamic efficiency of computation during
collective motion”. This concept is then extended to the domain of urban dynamics.
Thirdly, this thesis provides a rigorous quantification of the non-equilibrium entropy
production associated with the collective motion of active Brownian particles.

HTTPS://SYDNEY.EDU.AU
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2 Chapter 1. Introduction

1.1 Scope

Collective behaviour is a pervasive phenomenon that can be observed in a wide
range of systems. Aggregation in groups, for instance, is common in many animal
species, offering several benefits such as shelter, anti-predator vigilance, more effi-
cient foraging strategies, easier access to mates and division of labor [Krause and
Ruxton, 2002]. Social and economical systems, which include the formation of cities,
markets, institutions and several other organisations, are examples of collective be-
haviour involving people [Batty, 2013]. This phenomenon is also abundant in the
microscopic world, where cells can collectively function as organs. One of the most
notable examples is the brain, where billions of neurons form networks that are ca-
pable of processing information [Gong and Van Leeuwen, 2009].

Remarkably, complex collective behaviour often self-organises from simple inter-
actions among individual components, without requiring any form of centralised
control [Mitchell, 2009]. This is a crucial characteristic for understanding collective
behaviour in social and biological systems, which also has important implications in
the design of new artificial systems [Sayama, 2010; Ulieru and Doursat, 2011; Dour-
sat et al., 2012]. Not surprisingly, self-organisation has excited the curiosity of many
researchers in different field of science and engineering, who are attempting to shed
light on the underlying mechanisms governing this powerful, decentralised phe-
nomenon [Popkin, 2016]. This thesis is part of this multi-disciplinary effort. Specifi-
cally, it is concerned with one of the most striking examples of collective behaviour:
the coherent motion of groups of self-propelled particles (e.g., animals, cells, or even
artificial devices) that produces dynamically ordered collective (global) structures.
This phenomenon, observed in several physical, chemical as well as biological sys-
tems, is typically referred to as collective motion, while the systems themselves are
typically referred to as active matter.

In the last three decades, collective motion has become a well-stablished, cross-
disciplinary topic. The study of collective motion has potential implications in many
areas [Vicsek and Zafeiris, 2012], ranging from understanding how groups of ani-
mals (e.g., birds, fish, insects, etc.) coordinate their movement, to modelling and
predicting the migration of cell and bacteria, and even to engineering new mate-
rials, nano- and micro-robotics for healthcare, and autonomous vehicles. Across all
these diverse areas, a key objective is the development of a rigorous, unifying theory
of collective motion that bridges between local interactions and global dynamics. At
present, no comprehensive theory has been proposed and several theoretical chal-
lenges need to be addressed in order to make important steps forwards in this field.

There is a growing understanding that distributed information processing, and
especially information propagation, plays a central role in self-organisation [Couzin,
2007; Prokopenko et al., 2009; Wang et al., 2012; Prokopenko, 2013; Walker and
Davies, 2013] . One of the main challenges in collective motion is the quantifica-
tion of information processing, which is typically stochastic, noisy and continuous,
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and therefore hard to detect and measure precisely. The development of dynami-
cal models has helped to reveal important aspects of the self-organisation of collec-
tive motion. It has been shown, for example, that in many systems different global
motion patterns can emerge, or vanish, according to the variation of some factors
affecting the behaviour of the particles. A second, well-known challenge is the con-
struction of the phase space of such collective motion patterns. Non-trivial global
dynamics of the system is enabled by particles’ self-propulsion, which requires the
expenditure of energy [Ramaswamy, 2017]. Systems where energy is constantly sup-
plied and dissipated are said to be thermodynamically out-of-equilibrium, and are
notably challenging to study [Seifert, 2012]. The thermodynamical costs of collec-
tive motion are becoming a topic of interest, especially when the performance of
microscopic synthetic systems are studied [Bechinger et al., 2016].

1.2 Objectives

This thesis aims at advancing the study of collective motion, by providing contribu-
tions in specific topics related to the aforementioned challenges. The following are
the main objectives of this thesis.

Measuring dynamics of information flow

The role of information processing in the emergence of collective motion has been
long investigated. Some researchers have studied the propagation of information
in the form of directional changes cascade [Nagy et al., 2010; Cavagna et al., 2013;
Attanasi et al., 2014], while other have been identified motion correlations across
the collective [Potts, 1984; Procaccini et al., 2011; Herbert-Read et al., 2015]. De-
spite dealing specifically with the concept of information, these pioneer studies did
not quantify it by means of rigorous information-theoretic tools. Instead of directly
quantifying the propagation of information, they measured other aspects of the sys-
tems, which were hypothesised to imply information propagation. This approach
might be misleading, or not reveal the complete picture. One of the objectives of this
thesis is to propose an information-theoretic framework for measuring information
propagation, and especially its dynamics in time and across the collective.

Relating self-organisation and thermodynamic quantities

Many models of collective motion have been developed, which are capable of repro-
ducing the salient features of the global behaviour of real systems. Typically, these
models exhibit kinetic phase transitions, the critical points of which have been lo-
calised resulting in detailed phase diagrams [Vicsek et al., 1995; Chaté et al., 2008].
However, the physical meaning of ‘varying the parameters’ that drive the systems
across a transition has not been much investigated. One of the objectives of this
thesis is to propose a framework for characterising the variation of parameters in
terms of thermodynamical concepts, such as the required work and the variation of
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internal energy of the system. This is expected to have implication in the study and
design physical, rather than just simulated, active matter systems.

Quantifying entropy production in active matter

A crucial feature of active matter, without which most complex behaviour would not
be attainable, is to be thermodynamically out-of-equilibrium. Despite being a well-
known feature [Marchetti et al., 2013; Bechinger et al., 2016; Ramaswamy, 2017], the
non-equilibrium character of active matter lacks a precise, thermodynamic descrip-
tion. Non-equilibrium thermodynamics has always been challenging, but new ap-
proaches have been developed in the last three decades [Seifert, 2012]. Recently, few
attempts to measure the entropy production of active matter have been made [Fodor
et al., 2016; Nardini et al., 2017; Mandal et al., 2017], but conflicting results have been
obtained and several important aspects pointed out [Shankar and Marchetti, 2018].
A main objective of this thesis is to further develop the thermodynamic description
of collective motion in active matter, with particular focus on phase transitions and
critical regimes.

Extension to other collective phenomena

Collective motion shares many of its aspects with other collective phenomena. Many
ideas utilised to study collective motion are adopted from wider disciplines, such as
complex systems science and statistical mechanics, and have been applied to study
similar phenomena. A secondary objective is to explore to what extent the theoretical
frameworks developed within this thesis can be utilised to study other collective
phenomena.

The central thesis, thus, can be summarised as follows. The role of information pro-
cessing in shaping self-organisation of collective motion is undoubtedly related to
the underlying physical fluxes. These fluxes typically differ across distinct phases
and critical regimes of collective dynamics exhibited by active matter. We aim,
therefore, to explicitly characterise and quantify the information dynamics and the
underlying thermodynamics that reveal the key phase transitions observed in self-
organising active matter. This should allow us to compare different scenarios in
terms of salient information-theoretic and thermodynamic quantities, as well as in
terms of their thermodynamic efficiency, contributing to the formation of a unifying
framework.

1.3 The four studies

The overall objectives of this project have been addressed in four self-contained stud-
ies which build up and exemplify a unifying framework. Each study is presented
separately within this thesis, as four distinct research articles. Three of these studies
directly investigate collective motion phenomena, with focus on some of the most
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important problems in the field. Another study applies some of the concepts devel-
oped in this thesis for collective motion to a different kind of collective phenomena,
i.e., urban dynamics. Additionally, this thesis discusses the connections between the
four studies, aiming at proposing (elements of) a theoretical framework for studying
collective phenomena. What follows is a brief overview of the four studies.

Informative and misinformative interactions in a school of fish

This first study focusses on the well-known issue of quantifying the distributed in-
formation processing underlying collective dynamics of real systems. In particular,
this study investigates the dynamics of information transfer in a school of fish un-
dergoing collective directional changes in a controlled environment.

More precisely, the transfer entropy, an information-theoretic measure, is used in
order to quantify predictive information flows across the school, quantifying how
much the information contained in the directional changes of one fish can be used
to predict the next move of another fish. Such predictive information flows are mea-
sured locally in space and time, revealing both positive and negative information
transfer during the collective moves. To our knowledge, the existence of negative
(or misinformative) flows during collective motion has never been hypothesised,
and in this study they are detected for the first time. This highlights the effective-
ness of transfer entropy and, in general, of the information dynamics framework in
disclosing intricacies of distributed information processing that would otherwise re-
main ignored if naive techniques, e.g., simple correlation analyses, were to be used.

The study also identifies spatial patterns associated with the information and
misinformation flows. The identification of motives of spatial interactions underly-
ing the propagation of directional changes is an important problem in the field of
collective motion, which has been approached by several researchers but has been
lacking a general solution.

This study [Crosato et al., 2018b] was published in the journal Swarm Intelli-
gence, and is presented in this thesis in Chap. 3.

Thermodynamics and computation during collective motion

This study investigates kinetic phase transitions, well-known phenomena in col-
lective motion that can be observed in several systems of self-propelled particles.
Rather than observing a biological system, this second study systematically exam-
ines the behaviour of a widely used dynamical model of collective motion.

The model is known to exhibit a first order phase transition: when the align-
ment strength between particles increases beyond a critical point, the system self-
organises into a polarised configuration, in which particles face a common average
direction. The aim of the study is to analyse such phase transition as a thermody-
namic phenomenon, in which ordered motion is achieved at the expense of work
done on the system and in presence of energy changes.
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While thermodynamical quantities can well describe physical properties of the
system, computational aspects of the system are better captured by information-
theoretic quantities. Crucially, this work relates changes in thermodynamic quan-
tities, i.e., work and internal energy, to changes in information-theoretic quantities,
i.e., the configuration entropy and the Fisher information. The identified relations
are used to propose and formulate the concept of “thermodynamic efficiency of com-
putation”, as the ratio of reduction of entropy to the expenditure of work. The re-
lationships between information processing and its thermodynamic costs are cru-
cial for complex systems, which often need to perform their computation efficiently
[Lizier et al., 2012; Kempes et al., 2017; Kolchinsky and Wolpert, 2017].

This study [Crosato et al., 2018d] was published in the journal Physical Review
E, and is presented in this thesis in Chap. 4.

Critical dynamics and thermodynamics of urban transformations

This study applies the methods developed in Chap. 4 to a different area: urban dy-
namics. Specifically, this work presents a statistical mechanical model of the income
flow within the population of Greater Sydney, given constraints of the daily com-
mute of people between their residence suburbs to the employment areas, as well as
data on rent and services available per suburb.

The study identifies a phase transition between dispersed and polycentric phases,
which is induced by the variation of a parameter controlling how much value peo-
ple attribute to suburbs, with respect to their ‘attractiveness’. Critical regimes are
characterised thermodynamically by use of the techniques developed in the second
study (Chap. 4). In particular, the adaptation of the concept of thermodynamics of
computation leads to the definition of an analogous concept: “the thermodynamic
efficiency of urban transformations”.

This study [Crosato et al., 2018c] was published in the journal Royal Society Open
Science, and is presented in this thesis in Chap. 5.

Entropy production during collective motion of active Brownian particles

Recently, researchers have begun to investigate the non-equilibrium character of ac-
tive matter from the point of view of statistical thermodynamics. Initial attempts to
quantify the entropy production during the collective motion of self-propelled par-
ticles have only focussed on systems described by over-damped dynamics [Fodor
et al., 2016; Mandal et al., 2017], missing crucial ‘hidden’ components of the en-
tropy production [Shankar and Marchetti, 2018]. Moreover, these studied have only
considered particles with excluded volume interactions, while effect of alignment
interactions on the entropy production has not been studied.

This study provides a quantification of the entropy production in a system of ac-
tive Brownian particles (ABPs) described by under-damped dynamics, where parti-
cles interact via volume exclusion as well as alignment. The complete phase diagram
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of the system with respect to parameters determining the persistence of the particles’
motion and the strength of the alignment is built, identifying a disordered phase, a
phase characterised by phase separation, and a phase exhibiting both alignment and
phase separation. In order to characterise each of the identified phases thermody-
namically, the expected entropy production rate of the system at (non-equilibrium)
steady-state is quantified at different values of control parameters. Moreover, the en-
tropy production rate attributed to individual particles is contrasted to its position
and orientation within the group, revealing distinct entropy production signatures
for different active matter states, e.g., ‘solid’, ‘gas’ and oriented ‘flocks’.

This study [Crosato et al., 2018a] is presented in Chap. 6 and is ready for submis-
sion to a peer-reviewed journal.

1.4 Structure of this thesis

The remainder of this thesis is organised as follows.
Chap. 2 provides the background for this project and describes the theoretical

framework. Firstly, the concept of collective motion is introduced in Sec. 2.1, high-
lighting the main topics and providing some of the most important literature. This is
followed by the presentation, in Sec. 2.2, of the perspective adopted in this thesis to
study collective motion. This includes the introduction of concepts such as complex
systems science, self-organisation, criticality, dynamical models, statistical mechan-
ics and thermodynamics. Finally, the theoretical framework used in this thesis is
described in 2.3 and includes notions of information theory, information dynamics,
information geometry as well as stochastic thermodynamics.

The research articles are provided in Chap. 3 to 6. Specifically, the study “Infor-
mative and misinformative interactions in a school of fish” is provided in Chap. 3,
the study “Thermodynamics and computation during collective motion near criti-
cality” is provided in Chap. 4, the study “On critical dynamics and thermodynamic
efficiency of urban transformations” is provided in Chap. 5, and the study “Entropy
production during collective motion of active Brownian particles undergoing phase
separation and alignment” is provided in Chap. 6.

Chap. 7 concludes the thesis, discussing the overall theoretical approach com-
posed of the four studies and their interconnections.
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2.1 Collective motion

Collective motion is the coherent movement of many self-propelled particles [Vicsek
and Zafeiris, 2012]. Self-propulsion makes the particles ‘active’, indicating that their
motion is self-driven rather than externally imposed. From this comes the term ac-
tive matter [Marchetti et al., 2013; Bechinger et al., 2016; Ramaswamy, 2017], which is
typically used to refer to systems of self-propelled particles. Collective motion is one
of the most recognisable features of life, with examples that include animal moving
in groups, bacterias forming colonies, migrating cells and many others. However,
this phenomenon is not limited to biological systems. Collective motion is also ob-
served in many physical and chemical systems, and it can be engineered in artificial
devices and materials. The study of collective motion has indeed established as a
growing multidisciplinary area [Popkin, 2016].

Researchers from different fields of science and engineering have investigated
this intriguing phenomenon, and have raised several interesting questions. How do
the particles self-propel? How do they interact? Do similar self-propulsion mecha-
nisms and/or interactions correspond to analogous global patters of motion, such as
orientational order, swirls and clustering? How does decision making among par-
ticles work, and can we predict it? When collective motion doesn’t happen? Are
there specific conditions, such as particular density or energy levels, that are neces-
sary for collective motion? What are the thermodynamic costs of this phenomenon?
The next sections review some of the most important studies of collective motion,
highlighting the main research questions and experimental observations. The stud-
ies are presented in three categories depending on the nature of systems: (1) animal
groups, including humans, (2) microscopic biological systems and (3) artificial, non-
living systems.

2.1.1 Collective motion of animal groups

Aggregations of animals are probably the most eye-catching examples of active mat-
ter. Well-known examples are flocks of birds [Lissaman and Shollenberger, 1970;
May, 1979], schools of fish [Pitcher, 1983; Parrish et al., 2002], swarms of insects [Got-
wald Jr, 1995; Buhl et al., 2006; Fourcassié et al., 2010], herds of ungulates [Ginelli
et al., 2015] as well as human crowds [Moussaïd et al., 2011].

Many aspects of the aggregation and collective motion of animal groups have
been studied. For instance, the requirements for the formation of collective motion,
e.g., in terms of the minimum amount of individuals or of the minimum density,
have been investigated. Beekman et al., 2001 has proposed a model relating the
number of ants walking to a food source and the size of the colony. The model pre-
dicted that the formation of trail-based foraging requires the colony size to exceed a
critical threshold. High density was also observed to be crucial for the formation of
vortex motions in swarms of Daphnia [Ordemann et al., 2003]. Individual Daphnia
can develop a circular motion, independently from the other individuals. At high
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densities, however, if a direction is on average more pronounced, the water drag
generates a positive feedback that cause more and more Daphnia to move in the
same direction. Developing models that can predict critical thresholds for the for-
mation of collective motion is fundamental for understanding, and predicting, this
phenomenon. The identification of critical thresholds for the formation of collective
motion is an important aspect of the studies in Chap. 4 and Chap. 6.

Substantial interest has been given to the study of the propagation of directional
motion across groups, which many authors refer to as ‘information flow’. Nagy et
al., 2010 tracked the trajectories of pigeons flying in flocks using GPS devices, and
analysed them using a set of correlation functions. Their findings revealed time
delayed correlations in the trajectories of pigeons pairs, which suggest a clear dom-
inance hierarchy between birds. The authors also pointed out that birds respond
more quickly to other birds on their left, and speculated that information may be
preferentially processed by the left-eye/right-hemispheric system. The propagation
of direction changes in large flocks of starlings has been studied by Cavagna et al.,
2013b, who observed a dynamical information flow from the boundary to the centre
of the group, which they also measured in terms of correlation across the birds direc-
tions. Birds can sometimes modify their position within the group, therefore chang-
ing the individuals with which they directly interact. Interestingly, is was shown
that this increases the efficiency at which information is propagated throughout the
group [Cavagna et al., 2013a]. It has also been observed that small perturbations
can propagate in a wave-like manner [Potts, 1984; Herbert-Read et al., 2015]. Pro-
caccini et al., 2011 studied flocks of starlings under predation by peregrine falcons,
and found that waves propagate away from the position at a velocity higher than
the velocity of the flock.

Many researchers have attempted to infer physical interaction rules associated
with the propagation of information. Katz et al., 2011 used experimental data on
schools of golden shiners to identify mean reaction of fish to the position and veloc-
ity of its neighbours. Their findings suggest that the speeding force depends on the
front-back distance among fish, while the turning force depends on their distance to
the side. The work by Gautrais et al., 2012 suggests that fish turning speed is affected
by both position and orientation of neighbouring individuals. The role of spatial po-
sition has been investigated in individual-to-individual interactions among Mormon
crickets [Bazazi et al., 2010]. It was shown that crickets are more likely to approach
other stationary individuals that are side-on to the motion direction. Other stud-
ies have attempted to reveal interaction networks within groups. Nagy et al., 2013
investigated leader-follower relations in pigeons, and revealed hierarchically struc-
tured networks of directed interactions. The authors observed that such leadership
hierarchy is distinct from the dominance hierarchy. Rosenthal et al., 2015 tracked the
positions and body postures of a school of approximately 150 fish and, by calculating
their visual fields, they were able to inferred a functional mapping between sensory
input motor response. The study found that the networks by which information
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propagates are complex, weighted and directed.
These excellent studies laid the groundwork for considerations of the underly-

ing mechanisms that interpret collective motion in terms of information processing.
However, these works do not formally define information propagation, which is
simply treated as an implicit aspect of the propagation of directional motion. The de-
scription of information propagation according to a rigorous information-theoretic
framework is very important, since the relation between information transfer and di-
rectional correlations might be more intricate than expected. Do strong correlations
imply more information transfer? Can the transfer be misinformative, meaning that
observing an individual makes the prediction of the next move of another individ-
ual even less predictable? Are there characteristic motifs of spatial conditions, such
as particular relative position or orientation, and information/misinformation trans-
fer? Wang et al., 2012 were the first to propose an information-theoretic approach for
the characterisation of information cascades and collective memory within swarms.
Interestingly, the authors revealed that spatial position is related to its informa-
tion processing role. Information flow was also recently investigated information-
theoretically in bats [Orange and Abaid, 2015], soldier crabs [Tomaru et al., 2016],
fish [Butail et al., 2014; Hu et al., 2015; Ward et al., 2018] and insects [Lord et al.,
2016]. The direction suggested by Wang et al., 2012 is expanded in the study pre-
sented in this thesis in Chap. 3.

Another interesting aspect of the collective motion of animal groups is decision
making, and in particular the phenomena of leadership and quorum sensing. For
example, Ward et al., 2008 have observed that fish perform particular behaviour
when they receive stimuli from a minimum number of other individuals. In human
crowds, it was found that a small informed minority can guide a large group of
uninformed individuals to a destination, without using verbal communication or
signalling [Dyer et al., 2008; Dyer et al., 2009]. Interestingly, the study showed that
when conflicting directional information was provided to members of the group, the
time needed to reach the destination did not increase much, indicating the presence
of very efficient decision making mechanisms.

The study of decision making in human crowds, as well as in many other groups,
can also benefit from the development of an information-theoretic framework for the
quantification of information transfer. Such approach, for example, would be capa-
ble of quantify and compare the amount of information transfer across individuals,
as well as distinguishing misinformative interactions, which might be relevant for
decision making.

2.1.2 Microscopic collective motion in biological systems

Collective motion is an important aspect of cells migration, a phenomenon that is
observed, during morphogenesis, wound healing and tumor dissemination [Friedl
et al., 2004; Rørth, 2007]. The cell-to-cell interactions that enable coherent movement
typically involve chemical signals and adhesion. For instance, cells adhesion can
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group dispersed cells together, while cell-cell communication can produce front-rear
asymmetry that lead to alignment. Collectively migrating cells can be arranged in
two-dimensional sheets, e.g., an epithelial layer migrating across substrate, as well
as three-dimensional formations, e.g., neural crest migration [Friedl et al., 2004].

Haas and Gilmour, 2006 studied the collective migration of cells during the mor-
phogenesis of zebrafish, showing that a small number of guidance cells are capable
of generating polarised chemotaxis effects on a large number of mutant cells, driv-
ing them towards right directions for tissue formation. Szabo et al., 2006 investi-
gated the collective migration of keratocytes cells and identified a transition, driven
by the variation of the cells density, from a disordered phase with no clear global
orientation to a phase characterised by directed motion. The authors observed the
emergence of complex spatial structure which include clusters and whirls. In vitro
experiments involving hundreds of thousands cells have shown that increasing cells’
directional persistence (e.g., by using an activity inhibitor) can results in faster cell
segregation and more extensive patterns formation [Méhes et al., 2012].

At high densities, bacteria are also known to give rise to collective motion, typ-
ically induced by chemotaxis, hydrodynamic effects and excluded volume interac-
tions, and to form many patterns and structures [Fujikawa and Matsushita, 1989].
Sokolov et al., 2009 studied the formation of convective motion of suspensions of
swimming aerobic bacteria in films of adjustable thickness. Their experimental ob-
servations show that when the thickness of the film exceeds a critical threshold, bac-
terial switch from quasi-two-dimensional collective swimming to three-dimensional
turbulent motion. Colonies of gliding bacterial cells confined to a monolayer have
been shown been shown to form large moving clusters at high packing fraction [Pe-
ruani et al., 2012]. Bacteria within the clusters were observed to align and to arrange
in a head-to-tail manner, therefore giving rise to polarised collective motion. It was
also observed that two clusters typically fuse after a collision, while splitting rarely
occurs. Enzymes can also exhibit collective motion. Recently, for example, enzymes
have been shown to assemble into metabolons when they participate in reaction cas-
cades, as a result of chemotaxis [Zhao et al., 2018].

All these microscopic systems are very interesting from the perspective of stochas-
tic thermodynamics, the branch of statistical mechanics that is concerned with the
study of the thermodynamics of small systems. Researchers in this field are inter-
ested in understanding the dynamics of quantities such as energy, work and heat
at the level of individual fluctuating trajectories [Sekimoto, 2010; Jarzynski, 2011;
Seifert, 2012]. Under the framework of statistical thermodynamics, recent work has
investigated the irreversibility of the trajectories of individual particles, and calcu-
lated the associated entropy production rate [Shankar and Marchetti, 2018]. But how
does collective motion affect the entropy production in systems composed of many
interacting particles? Some studies have begun to investigate the entropy produc-
tion in simulated systems where particles interact via excluded volume [Fodor et al.,
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2016; Mandal et al., 2017], and whose behaviour closely resembles the aforemen-
tioned systems of cells and bacteria. A thermodynamic description of these systems
is crucial for understanding their energy dissipation and, ultimately, their function-
ing and limitations. Stimulated by the studies of Fodor et al., 2016 and Mandal et
al., 2017, this thesis provides an analysis of the entropy production during collective
motion which also includes alignment interactions (see Chap 6).

2.1.3 Collective motion of non-living systems

Inspired by the functionalities of cells and tissues, researchers are now trying to
create new materials made of artificial active components. Engineered active matter
provides hope to address several challenges in health care, holding the promise of
performing tasks such as transport, sensing, and drug delivery [Bechinger et al.,
2016]. Additionally, simplified and controlled in vitro systems provide a very useful
tool for studying more complex biological systems [Needleman and Dogic, 2017].

Cells’ self-propulsion is determined by the motion of thousands of nanoscopic
protein-based machine in the cytoskeleton, called molecular motors, that transform
chemical energy into mechanical motion. Artificial self-propelled particles can be
assembled out of component of the cytoskeleton [Bechinger et al., 2016], and have
been observed to collectively produce dynamic structures. For example, a system
of molecular motors attached to microtubules has been constructed [Ndlec et al.,
1997; Nédélec et al., 2001]. In presence of ATP, the motors move towards one of
the ends of the microtubule, forming a dynamic crosslinks between microtubules.
When confined in glass chambers, the microtubules are observed to form complex
structures, such as asters and vortices. Moreover, in an unconfined geometry, asters
and vortices can organise into larger-scale patterns. At low concentrations of motors,
the authors observed the formation of a lattice of vortices, while for slightly higher
concentrations they observed a lattices of asters. At even higher concentrations, the
microtubules are shown to form bundles. Similarly, Köhler et al., 2011 showed that a
synthetic active gel made of actin filaments and molecular motors exhibits structure
formation, characterised by a broad distribution of cluster sizes.

Other active particles have been created entirely from synthesised components.
These includes the well-known Janus swimmers, particles with two faces coated
with thin layers of different catalytic materials [Bechinger et al., 2016]. Tempera-
ture and chemical gradients can form along the particle, due to the different coating,
leading to self-phoretic motion. Janus particles with no alignment interactions have
been experimentally observed to phase separate at high self-propulsion speed and
density [Ibele et al., 2009; Theurkauff et al., 2012; Buttinoni et al., 2013], exclusively
because of excluded volume interactions. The systems divide into low density areas,
where particles are in a dilute gas phase, and high density areas, where particles are
in a dense liquid/solid phase. Bricard et al., 2013 demonstrated that hydrodynamic
interactions among particles can cause the particles to align, promoting the forma-
tion of collective motion. Specifically, the authors showed the transition to polarised
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motion in a system of millions of particles, triggered by increasing the density above
a critical value. Palacci et al., 2013 showed that a systems of light activated colloidal
particles with phoretic attraction can form ‘living crystals’, which actively translate,
rotate, join and split.

Blair et al., 2003 showed that vibrated granular rods, i.e., elongated particles
driven into motion by external vibration, can display nematic order and swirling.
When the rods are vibrated vertically inside a container, they are set into motion
due to collisions with the bottom boundary. It is appropriate to regard these parti-
cles as self-propelling since the direction of motion is determined by the orientation
of the particles, rather than by an external field. For sufficiently large packing frac-
tions, the particles form tend to align vertically and form vortex motion. When the
container is vibrated horizontally, the rods tend to align vertically, but vortices are
not observed. It was also shown that the shape of the rods influence the formation
of global structures. When vibrated vertically in a quasi-two-dimensional confine-
ments, tapered particles tend to form nematic order, while cylindrical particles with
flat tips exhibit tetratic order[Narayan et al., 2006]. Clear non-equilibrium phenom-
ena were observed, including the persistent rotation of the formed structures. Ku-
mar et al., 2014 studied a system of millimetre-sized tapered rods in a medium of
spherical, non-motile beads in contact with a vibrated surface. Such medium en-
hances hydrodynamic interactions among the tapered rods. At high concentrations
of beads, the hydrodynamic interactions trigger the formation of aligned motion of
the rods, which results in their circular motion around the container.

In all these systems, out-of-equilibrium structures form, and are sustained, by the
particles’ self-propulsion, which requires the constant injection of energy. In the sys-
tem of molecular motors and microtubules [Ndlec et al., 1997; Nédélec et al., 2001],
for example, particles get energy from ATP, which is supplied in the environment.
In the work by Palacci et al., 2013, colloidal particles were set into motion by light,
while in case of rods, energy is supplied to the system in the form of vibrations.
The precise quantification of energy and work is crucial for the design of artificial
active matter. However, the behaviour of active matter is typically better explained
in terms of information processing. It would, therefore, be very useful to relate ther-
modynamical quantities to computational aspects of collective motion. This thesis,
for example, investigates the thermodynamic efficiency of the formation of collective
motion, i.e., the ratio of the order gained within the system, measured information-
theoretically, to the associated expenditure of physical work (see Chap. 4).

On a much larger scale, groups of robots can be engineered to perform collective
tasks. When such tasks are complex, distributed systems can be more effective, and
sometimes much easier to design, than centralised solutions [Sayama, 2010; Ulieru
and Doursat, 2011; Doursat et al., 2012]. The design and study of systems composed
of a large number of (typically simple) robots that perform tasks in a decentralised
fashion is called swarm robotics. Systems of terrestrial and aerial robots that exhibit
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collective motion have been engineered [Vicsek and Zafeiris, 2012], and have po-
tential applications in autonomous exploration and surveillance. Inspired by the
collective behaviour of insects, swarms of robots have been designed that can collec-
tively build structures and use stigmergy to cooperatively find a path to a resource
[Bonabeau et al., 1999]. The theoretical frameworks provided in this thesis can po-
tentially be applied to the design of robotic systems, offering, for instance, meth-
ods to quantify the dynamics of distributed information processing across robots
information-theoretically (see Chap 3).
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2.2 Unifying perspective on self-organisation

In this thesis, the study of collective motion in active matter is approached from the
perspective of complex systems science. This discipline in concerned with the study
of systems made of a large number of similar components, whose interactions result
in non-trivial global behaviour that typically involves intricate non-linear dynam-
ics [Sayama, 2015]. Interest in complex systems stems from their abundancy and
from some intriguing characteristics that these systems possess, including robust-
ness, adaptability and scalability. These features are desired in many natural and
artificial systems, and thus their understanding is highly valuable for both science
and engineering [Mitchell, 2009].

2.2.1 Complex systems and self-organisation

A key aspect of complex systems is self-organisation. According to Haken and Ju-
marie, 2006, a system is self-organising if it obtains spatial, temporal, or functional
structure in absence of specific external interference, i.e., the structure or functioning
is not impressed on the system; rather, the system is acted upon from the outside in
a non-specific fashion. Bonabeau et al., 1997 and Camazine et al., 2003 describe self-
organisation as the process through which global patterns emerge in a system solely
from the interactions among its components. The authors also highlight that the
rules specifying the interactions are executed using only local information, without
reference to the global pattern. Based on these definitions, in this thesis we describe
self-organisation as a process (a) through which the system’s organisation increases
dynamically over a time period; (b) where such gain of organisation manifests as
the formation of global structure or behaviour (c) and is the result of the interactions
among the individual components, (d) which do no have knowledge of the global
state of the system, instead they only posses local information.

Kauffman, 2000 suggested that self-organisation occurs through the generation
of constraints in the release of energy, which allows such energy to be channeled
to perform useful work for the system. This work can then be used to build even
more efficient constraints and so on. Adopting this view, one can consider guid-
ing the self-organisation process by controlling the constraints, in order to obtain
desired structures or functioning. This practice is typically referred to as guided self-
organisation [Prokopenko, 2013].

Self-organising systems are found across several different fields [Prokopenko,
2013]. In biology, for example, short distance cell-to-cell communication can trig-
ger pattern formation (e.g., stripes and spots) in developing tissues, while networks
of neurons are known to produce spatio-temporal patterns of spikes. Natural self-
organised phenomena include forest fires, where the burning of a tree generates
high temperature that can set the adjacent trees of fire. An example of self-organised
phenomena that involves humans is traffic, where the slowdown of a car gets propa-
gated backwards, causing other cars to reduce their speed and eventually jam. Social
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and economical phenomena such as segregation, urban growth and price formation
also self-organise out of local interactions between people, households and firms.
Crucially, all the active matter systems mentioned in Sec. 2.1 are instances of this
phenomenon.

Self-organisation is sometimes associated to the creation of global order within a
system, starting from an original phase of disorder. This interpretation is motivated
by observation, in many cases, of a clear symmetry breaking, e.g., the formation of
polarised collective motion from an initial phase in which the particles’ directions
are uncorrelated. Yet, complex systems are typically described as involving both
elements of order and disorder, being neither completely regular nor completely
random [Sayama, 2015]. For example, flocks of birds combine elements of coherence
and perturbed motion [Procaccini et al., 2011; Cavagna et al., 2013a]. The regime
between order and disorder is sometimes referred to as the ‘edge of chaos’, and has
been shown to possess interesting features [Kauffman, 1993]. A more useful inter-
pretation of complexity is based on the system’s predictability. Completely regular,
perfectly structured systems are easy to predict. Totally random systems might be
impossible to predict at the individual level, however, the prediction of their average
behaviour can be trivial. On the contrary, the prediction of the behaviour of complex
systems, both at the individual and at the global scale, is possible but non-trivial.

The main challenge in the study of self-organisation is to understand the rela-
tionship between local interactions and global emergent behaviour, and the ultimate
goal is the creation of a general theory of this phenomenon [Couzin, 2007]. Re-
searchers from many areas of science and engineering investigate self-organisation
using various theoretical tools that include dynamical systems theory, information
theory, statistical mechanics, thermodynamics and computer simulations (or agent-
based modelling).

2.2.2 Criticality and phase transitions

Complex systems may require a huge amount of variables in order to describe their
exact behaviour. In many cases, however, only a small subset of these parameters
are necessary to broadly understand the rich macroscopic behaviour. In fact, in
many systems one can identify a few control parameters, the variation of which drives
macroscopic changes in the global behaviour. Such changes are usually reflected in
the alteration of order parameters, which provide measures of the symmetry breaking
within the system [Ebeling and Sokolov, 2005].

The idea that only small subsets of variables are necessary to understand the
macroscopic behaviour of systems from their microscopic description is at the core
of the universality of self-organisation across different systems. A common feature
of many self-organising systems is that the transitions between ordered and dis-
ordered configurations can be abrupt, i.e., small changes in the control parameter
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might have negligible effect on the system until a critical point is reached, the cross-
ing of which triggers a sudden change in the global configuration, reflected in the
order parameters. These phenomena are called phase transitions.

Phase transitions are well-known phenomena in active matter, and have been
widely studied. In this thesis, in the studies in Chap. 4 and Chap. 6, models of collec-
tive motion are shown to exhibit a disordered isotropic phase, with no global polari-
sation of the particles’ heading, and an ordered phase characterised by a net polarisa-
tion. The study presented in Chap. 6 also involves another kind of phase transition,
called mobility-induced phase separation (MIPS) [Cates and Tailleur, 2015], during
which particles’ self-propulsion, in combination with volume exclusion, make the
system split between dense (liquid-like or solid-like) and sparse (gas-like) areas. An-
other phase transition is presented in the study of Greater Sydney’s urban dynamics
in Chap. 5, and involves a dispersed sprawl of the population in contrast with a
poly-centric settlement.

Phase transitions are typically classified according with the lowest derivative of
the order parameter that is discontinuous [Kondepudi and Prigogine, 2014]. For in-
stance, first order phase transitions, which include all solid-liquid-gas transitions of
matter, exhibit a discontinuity in the order parameter itself. second order phase tran-
sitions, such as the magnetisation of ferromagnetic materials, are continuous in the
order parameter but discontinuous in its derivative. The specific value of the con-
trol parameter at which a phase transition occurs is called the critical point. Critical
points are obviously important, due to the effects that their crossing would generate
on the system. Moreover, critical points implicate the coexistence of the two phases
of the system [Sethna, 2006]. Such coexistence can results in the formation of com-
plex behaviour and patters in the system, and is associated with the aforementioned
concept of edge of chaos.

2.2.3 Dynamical models and simulations

A common approach to the study of complex systems involves the use of dynamical
models to describe the behaviour of the individual components and their interac-
tions. As complex dynamics are typically non-linear, often these models do not have
a trivial solution explaining the global behaviour. However, the greatest benefit of
using dynamical models is that they can be implemented in a computer, and simu-
lated in order to measure emergent global behaviour [Sayama, 2015].

Several dynamical models of collective motion have been developed [Vicsek et
al., 1995; Toner and Tu, 1995; Grégoire and Chaté, 2004]. Here, as an example, we
introduce one that generalises many well-known models. Let us assume there are
N particles and denote the position and heading of each particle a as, respectively,
ra and θa. The particles self-propulsion force FP

(
θa
)

moves particles in the direction
of their heading. Moreover, particles interact with each other locally, for a given
definition of locality (e.g., nearest neighbourhood). Let us assume there are two
kinds of forces that make particles interact: a potential force FU

(
rab
)
, which moves



22 Chapter 2. Background and framework

particles closer to or away from each other depending on their relative position, and
an alignment torque FT

(
rab, θab

)
that makes particles’ heading converge. Finally,

random perturbations ηa and µa are introduced, which affect position and heading.
A simple dynamical model of this system, discrete in time n, is the following:

ra(n + 1) = ra(n) + ∑
b∈N U

FU
(
rab(n)

)
+ ∑

b∈N P
FP
(
θa(n)

)
+ ηa(n) (2.1)

θa(n + 1) = θa(n) + ∑
b∈N T

FT
(
rab(n), θab(n)

)
+ µa(n), (2.2)

where rab = ra − rb, θab = θa − θb and N U , N P and N T are sets of particles defined
according with the locality criteria. Abstract models like this, including the famous
model of [Vicsek et al., 1995], have been extensively used in collective motion, for
instance in modelling flocks [Chaté et al., 2008] and groups of cells [Drongelen et al.,
2015]. A model of this kind, proposed by Grégoire and Chaté, 2004, is used in this
thesis in the study presented in Chap. 4.

When a detailed thermodynamical analysis is required, such as the one presented
in Chap. 6, a description of the system that involves stochastic differential equations
is needed. An example is the following:

dri
a = ∑

b∈N U
−∂U(rab)

∂ri
a

dt + P(θa)
idt + dWri

a (2.3)

dθa = T (rab, θab)dt + dWθa , (2.4)

where U(rab), P(θa) and T (rab, θab) are differentiable functions that approximate,
respectively, the potential interactions, the self-propulsion and the torque interac-
tions, i is a spatial dimension and Wri

a
and Wθa are uncorrelated Wiener processes

[Gardiner, 2009], such that 〈dWri
a
dWθa〉 = 0, 〈dWθa dWθb〉 = δabdt and 〈dWri

a
dWrj

b
〉 =

δijδabdt (here δ is the Dirac delta function).

2.2.4 Statistical mechanics and maximum entropy models

Dynamical models and their simulations are very useful tool, however, they do not
provide a theory for the emergence of global behaviour. This has been a limitation
for many researchers, who are aiming at understanding collective motion in a rigor-
ous way, similarly to how the behaviour of idealised gasses is understood in physics
[Popkin, 2016]. For this purpose, a more rigorous theoretical framework is required,
which is capable of providing a bridge between microscopic and macroscopic de-
scriptions, and statistical mechanics is an obvious candidate.

Based on probability theory, statistical mechanics was very successful in explain-
ing the thermodynamic behaviour of large systems of non-interacting particles in
the equilibrium state [Sethna, 2006; Kondepudi and Prigogine, 2014]. The introduc-
tion of the principle of maximum entropy by Jaynes, 1957 allowed the application of
statistical mechanical concepts in diverse domains, independently of any physical
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argument. Entropy, described in the next section, is proportional to the number
of microscopic states that are consistent with the global quantities observed in the
macroscopic configuration of a system. The principle of maximum entropy states
that, among all the probability distributions of the microscopic variables that are
consistent with the macroscopic observations, the least biased one is that with the
maximal entropy. Maximum entropy models can be formulated to describe such
least biased probability distribution.

Bialek et al., 2012 utilised a maximum entropy model to develop a statistical me-
chanical theory of flocking phenomena. The resulting maximum entropy distribu-
tion, consistent with the directional correlations estimated from experimental data
on large flocks of starlings, is the following:

P({sa}) =
1

Z({Jab})
exp

(
1
2

N

∑
a=1

N

∑
b=1

Jab(sa · sb)

)
, (2.5)

where sa is the normalised velocity of particle a, N is the total number of particles,
each parameter Jab corresponds to a measurement of directional correlation Cab and
Z({Jab}) is the partition function. Importantly, this statistical mechanical description
was shown capable of producing quantitative predictions of collective phenomena,
including the emergence of pairwise and four-body correlations.

Bialek’s model is consistent with the dynamical model of collective motion used
in this thesis in Chap. 4. Moreover, an analogous maximum entropy model is used
in this thesis in order to describe the income flow distribution within Greater Sydney
(see Chap. 5).

2.2.5 Thermodynamics and non-equilibrium systems

Thermodynamics is the branch of physics concerned with the study of the transfer
and transformation of energy, in particular in the forms of thermal heat and mechan-
ical work [Kondepudi and Prigogine, 2014].

Introduced by pioneers such as Sadi Carnot during the conception of the steam
engine in the early nineteenth century, thermodynamics is mostly known for its first
and the second laws, later summarised by Rudolf Clausius [Ebeling and Sokolov,
2005]. The first law of thermodynamics, or the law of conservation of energy, states
that energy cannot be created nor destroyed, it can only be converted to other forms,
or transferred to other systems. As a direct consequence, energy is conserved in
an isolated system. The second law of thermodynamics involves the concept of en-
tropy, as the measure of the energy in the system per unit temperature that cannot
be utilised to perform mechanical work. The second law states that entropy can
be created, but is never destroyed, therefore heat cannot be entirely converted into
mechanical work.

Isolated systems reach an equilibrium state in which the entropy is maximal.
In this state, statistical mechanics can be used for describing the probability of a
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microscopic state ω given its energy εω. This is the famous Boltzmann distribution:

P(ω) =
e−εω/kbT

∑M
ν=1 e−εν/kbT

, (2.6)

where T is the temperature, M is the number of possible states and kb is the Boltz-
mann constant. Notice, that maximum entropy probability distribution of flocking
velocities in Eq. (2.5) is an instance of the Boltzmann distribution. The main limita-
tion of the maximum entropy principle is that it relies on the assumption of thermal
equilibrium and, therefore, can only be applied to systems in a stationary state. In
some particular settings, for example in the study of collective motion described in
Chap. 4, the steady state assumption can be made. In more realistic scenarios, when
the dynamics of the observed system are reasonably stable (as for Bialek et al., 2012),
the assumption of thermal equilibrium can be used as a simplification for studying
emergent phenomena.

In general, however, active matter is characterised by non-equilibrium dynamics:
particles absorb energy from the environment and transform it into directed motion,
and in doing so they break microscopic detailed balance [Ramaswamy, 2017]. Non-
equilibrium statistical mechanics is far from being as developed as its equilibrium
counterpart. Nevertheless, over the last thirty years new theoretical frameworks
have revealed laws that hold for non-equilibrium systems, allowing the study of
some of their thermodynamics [Seifert, 2012]. One of the problem this thesis is con-
cerned with, specifically in the study presented in Chap. 6, is the quantification of
the entropy production rate of active matter during non-equilibrium dynamics that
involve orientational phase transitions as well as MIPS.
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2.3 The theoretical framework

This section outlines some key theoretical concepts and measures used in this thesis,
and discusses their application to complex systems. Firstly, we present information
theory and the concept of Shannon entropy, as a general approach for quantifying
information. Secondly, we describe the framework of information dynamics, high-
lighting the importance of detecting how information propagates in time within a
system’s components. Particular focus is dedicated to the transfer entropy, a mea-
sure of information transfer that has been used in this thesis, in particular in the
study presented in Chap. 3. Thirdly, we describe the subject of information geom-
etry and present one of its key measures, the Fisher information, that was used in
this thesis to characterise phase transitions in collective motion (see the study in
Chap. 4) as well as in urban dynamics (see the study in Chap. 5). Lastly, we ex-
plain the concepts of statistical thermodynamics and entropy production, used in
the study described in Chap. 6, contextualising them within the scope of collective
motion.

2.3.1 Shannon entropy and information theory

The field of information theory originated in the 1940s with the work of Shannon, 1948,
who introduced this theoretical framework while working on the problem of infor-
mation encoding in communication channels. The central quantity is the Shannon
entropy, which represents the minimal expected number of bits required to encode a
message without loss of information [Cover and Thomas, 2012; MacKay, 2003].

In general, the (Shannon) entropy is a measure of information content, quanti-
fied as the uncertainty associated with a random variable. Let us consider a random
variable X, its alphabet αx, and the probability distribution function P(x) defined for
all possible outcomes x of X. The entropy h(x) of a single outcome x of X is defined
as:

h(x) = log
1

P(x)
= − log P(x), (2.7)

where 1
P(x) represents the ‘surprisal’ associated with the observation the specific out-

come x. In other words, h(x) represents a priori uncertainty about x. Unless other-
wise specified, the base of the logarithm is 2, meaning that the unit of measure of the
entropy is the bit. Whether the natural logarithm is used instead, the unit of measure
will be the nat. The entropy of the entire variable X is then defined as the average
uncertainty of all the possible outcomes x of X:

H(X) = − ∑
x∈αx

P(x) log P(x). (2.8)

It is worth noting that lower-case symbols are typically used for single (or local)
measures, e.g., h(x), while upper-case symbols are used for average measures, e.g.,
H(X). This convention will be used throughout this thesis.
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Reductions in entropy provide a general, and at the same time rigorous quan-
tification of the information ‘acquired’ by an observer about the phenomenon being
observed. The main two reasons for this are (a) that Shannon entropy is model-free,
i.e., it only requires access to the probability distributions of the variables involved,
and (b) that it is capable of capturing non-linear relationships. These characteristics
make the entropy the best candidate for quantifying information that is not semantic
but rather stochastic, noisy and/or embedded in physical and spatial interactions,
a typical scenario in most complex systems. Information theory has indeed become
one of the most successful frameworks in the study of complex systems [Adami,
2002; Prokopenko et al., 2009; Walker and Davies, 2013]. For example, aspects of
information processing can be quantified using Shannon entropy and other mea-
sures derived from it, including information dynamics, as is described in Sec. 2.3.2.
Sec. 2.3.3 and Sec. 2.3.4 show how concepts derived from information theory can be
utilised for thermodynamic treatments, which include the study of phase transitions,
critical regimes and entropy production.

Before proceeding further, it is useful to introduce two more fundamental con-
cepts: the joint entropy and the conditional entropy. The local and average joint entropy
are defined as

h(x, y) = − log P(x, y) (2.9)

and
H(x, y) = − ∑

x∈ax

∑
y∈ay

P(x, y) log P(x, y), (2.10)

where a second random variable Y is introduced and P(x, y) is the joint probability
of the measurements x and y. The joint entropy represents the uncertainty associated
with observing two variables together, and can be generalised to any number of
variables. Similarly, the local and average conditional entropy are defined as:

h(x|y) = h(x, y)− h(y) (2.11)

and
H(X|Y) = H(X, Y)− H(Y). (2.12)

The conditional entropy represents the uncertainty associated with observing a ran-
dom variable having a priori knowledge of another variable. It also can be gener-
alised to any number of variables.

2.3.2 Transfer entropy and information dynamics

The concept of computation has become widely used in field of complex systems
[Mitchell, 2009], to the point that self-organisation mechanisms have started to be
understood as distributed information processes [Lizier et al., 2008; Lizier et al.,
2010; Lizier et al., 2012]. For example, interactions between the components of a
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system can be seen as communication, the state of a component as memory, and the
system as a whole as computing its next state via a distributed computation.

Information processing is typically analysed distinguishing three fundamental
components: information storage, transfer and modification. Many artificial systems,
including the computers that we daily use, are designed keeping these three compo-
nent separated, and their interactions can be well understood. In the case of complex
systems, however, the distinction between storage, transfer and modification is more
blurred, and their interactions are much more intricate. Nonetheless, given its im-
portance, information processing have been vastly investigated in complex systems.
Recently, for instance, much attention has been given to the study of the dynam-
ics of these fundamental components, i.e., how information storage, transfer, and
modification unfold in time and across the components of a system. The theoret-
ical framework adopted for this kind of studies is referred as information dynamics
[Lizier, 2013], and includes several different entropic measures, the most important
of which, in the context of this thesis, is the transfer entropy. As the name suggests,
this measure is related to the transfer component of information processing, and has
been utilised to investigate emergent local structures and behavioural changes in
complex systems [Lizier et al., 2008; Wang et al., 2012; Boedecker et al., 2012; Barnett
et al., 2013].

Before describing the transfer entropy in detail, it is necessary to introduce the
measure from which it is derived: the mutual information. The mutual informa-
tion between two random variables X and Y is defined [Cover and Thomas, 2012;
MacKay, 2003] as

I(X; Y) = H(X) + H(Y)− H(X, Y)

= H(X)− H(X|Y) = H(Y)− H(Y|X)

= ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

(2.13)

H(X) H(Y)

I(X;Y)H(X|Y) H(Y|X)

H(X,Y)

FIGURE 2.1: A Venn diagram showing the mutual information be-
tween two random variables X and Y and its relationships with the

joint and conditional entropies of the same variables.
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It represents the average reduction of uncertainty about X that is gained from know-
ing the probabilities of the values of Y, or vice versa. An intuitive Venn diagram,
illustrating the mutual information between two random variables and its relation-
ships with the joint and conditional entropies, is shown in Fig. 2.1. Mutual informa-
tion can also be interpreted as a measure if dependence between the two random
variables: I(X; Y) = 0 means that the two variables are independent, while pos-
itive values indicate that (and how much) X and Y are statistically dependent on
each other. Mutual information has been often used in complex systems, mostly as
a measure of complexity and for characterising order-chaos phase transitions [Lang-
ton, 1990; Tononi et al., 1994; Adami, 2002; Mathis et al., 2017].

The local mutual information is

i(x; y) = log
p(x, y)

p(x)p(y)
. (2.14)

While the mutual information is on average non-negative, local values can be nega-
tive. Negative values of the local mutual information indicate that knowing a real-
isation of x of X is misinformative for predicting the outcome y of Y, i.e., knowing x
increases the uncertainty associated with y.

The local and average conditional mutual informations between X and Y given a
third random variable Z are also defined:

i(x; y|z) = log
p(x, y, z)

p(x|y, z)p(x|z) (2.15)

and
I(X; Y|Z) = ∑

x,y,z
log

p(x, y, z)
p(x|y, z)p(x|z) . (2.16)

The conditional mutual information represents the shared information between X
and Y that is not contained in Z, and it can smaller, equal or even larger than its
non-conditional counterpart.

Instead of two random variables X and Y, let us now consider two time-series
defined over a discrete time n. Let us call these time-series S, as for source, and D, as
for destination. Let us also consider Dn, the current state of the destination, and Sn−l ,
the previous state of the source having chosen a positive integer number l. Finally,
let us define the destination’s past Dn−1

(k,τ) = {Dn−1−jτ}, for j = {0, 1, . . . , k− 1},
for arbitrary positive integer numbers k and τ. A schematic representation of these
quantities, for specific values of l, k and τ is given in Fig. 2.2. We now have all the
ingredients to describe the local transfer entropy [Lizier et al., 2008; Lizier, 2014] at
time n as the mutual information between the current state of the destination and
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FIGURE 2.2: An example of source and destination processes high-
lighting the current state of the destination, Dn, the previous state of
the source, Sn−l , and the destination’s past, Dn−1

(k,τ). In this example
l = 3, k = 4 and τ = 1.

the previous state of source, conditional on the destination’s past:

tS→D(n, l, k, τ) = i
(

Sn−l ; Dn|Dn−1
(k,τ)

)

= p
(

Sn−l , Dn, Dn−1
(k,τ)

)
log

p
(

Dn|Dn−1
(k,τ), Sn−l

)

p
(

Dn|Dn−1
(k,τ)

) .
(2.17)

The local transfer entropy captures the transfer of uncertainty reduction, or predic-
tive information flow, from the source process to the destination process, at a spe-
cific time. The average transfer entropy TS→D(l, k, τ) was originally introduced by
Schreiber, 2000 as the average of the local transfer entropies.

Rather than a static measure of correlations, the transfer entropy is a dynamic
measure, associated with state transitions of the destination process. Moreover, the
transfer entropy is also asymmetric in S and D, i.e., it captures directional relation-
ships between the two processes. As for the mutual information, local values of
transfer entropy can be negative, while its average is non-negative. Negative values
of local transfer entropy signify that the previous state of the source is misinforma-
tive about the current state of the destination. The capability of local transfer entropy
to capture misinformation was crucial for distinguishing between positive and neg-
ative information flows within a school of fish, as explained in Chap. 3.

It is also worth clarifying that transfer entropy does not quantify the causal effect
of the source on the target. This measure quantifies the information that an observer
gains from the source process that can be used to predict the next state of the des-
tination process, in a purely probabilistic setting and without any claim on the un-
derlying mechanisms through which the two processes interact. Many researchers
may be interested in causality, but the concept of predictive information transfer can
reveal aspects about the local structures and behaviours that causal effect may not
[Lizier and Prokopenko, 2010]. In order to highlight the distinction between causal
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and predictive information, in this thesis (and in particular in the study presented in
Chap. 3) we will refer to values of transfer entropy as measurements of “predictive
information flow”.

2.3.3 Fisher information and information geometry

Developed by Amari in the 1980s, information geometry investigates the differen-
tial geometric structure of families of probability distribution [Amari and Nagaoka,
2007]. A family of probability distributions is viewed as a manifold, and the param-
eters that characterise the family as the coordinate system. This Riemannian space
has a metric that reflects the characteristics of the probability distribution, and infor-
mation geometry provides a geometric tool for studying the affinities between this
metric and the probability distributions. Information geometry has applications in
several fields, including machine learning and signal processing [Ay et al., 2017].

A key measure in information geometry is the Fisher information [Fisher, 1922],
which quantifies the amount of information that a random variable X carries about
an unknown parameter θ. Specifically, the Fisher information matrix is defined for
multiple parameters θ = {θ1, θ2, . . . , θM} as

Fnm(θ) = E
[(

∂ ln P(x|θ)
∂θm

)(
∂ ln P(x|θ)

∂θm

) ∣∣∣∣θ
]

, (2.18)

where E(w) is the expected value of w and P(x|θ) is the probability of the realisation
x of X knowing θ. The Fisher information matrix represents the sensitivity of the
probability distribution to changes in the control parameters θ.

Importantly for this thesis, and in particular for the studies in Chap. 4 and Chap. 5,
the meaning of the Fisher information for physical systems has been investigated in
terms of thermodynamics and statistical mechanics. A system in a stationary state is
described by the Gibbs measure

p(x|θ) = 1
Z(θ)

e−βH(x,θ) =
1

Z(θ)
e−∑m θmXm(x), (2.19)

where β is the inverse temperature, H(x, θ) is the Hamiltonian defining the total en-
ergy at state x, θm are thermodynamic variables (pressure, magnetic field, chemical
potential, etc.) and Z(θ) is the partition function [Brody and Rivier, 1995; Crooks,
2007]. At temperature T, such system is characterised by the Gibbs free energy
G(T, θm) = U(S, φm) − TS − φmθm, where U(S, φm) is the internal energy, S is the
configuration entropy and φm is an order parameter. The Fisher information was
shown to quantify the fluctuations about equilibrium in the collective variables Xm

and Xn and to be proportional to the derivatives of the corresponding order param-
eters with respect to the collective variables [Crooks, 2011; Prokopenko et al., 2011]:

Fnm(θ) =
〈
(Xm(x)− 〈Xm〉)(Xn(x)− 〈Xn〉)

〉
= β

∂φm

∂θn
(2.20)
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The Fisher information was also shown to be equivalent to the metric tensor,

Fnm(θ) = gnm(θ) =
∂2ψ

∂θm∂θn
, (2.21)

where ψ = ln Z = −βG is the free entropy [Brody and Rivier, 1995; Brody and Ritz,
2003; Janke et al., 2004; Crooks, 2007]. In other words, the Fisher information is
proportional to the curvature of the free energy with respect to the control param-
eters. Moreover, it has been argued that the difference between curvatures of the
configuration entropy and the free entropy (i.e., the Fisher information) is related
to a ‘computational balance’ between uncertainty and sensitivity [Prokopenko and
Einav, 2015]. In the study presented in Chap. 4, this relationships are extended to
incorporate the curvature of the other two fundamental quantities in thermodynam-
ics: the internal energy of the system U and the work required to vary the control
parameters.

2.3.4 Entropy production and stochastic thermodynamics

Stochastic thermodynamics is the branch of statistical mechanics that investigates
the non-equilibrium dynamics of microscopic systems. More specifically, stochastic
thermodynamics studies quantities such as work, head and entropy production in
small driven systems, at the scale of individual fluctuating trajectories [Sekimoto,
2010; Jarzynski, 2011]. Examples of such systems include biopolymers, enzymes
and molecular motors [Seifert, 2012], as well as many of the biological and synthetic
microscopic particles seen in Sec. 2.1.2 and Sec. 2.1.3, which are typically embedded
in aqueous mediums.

Let us consider a system and its environment, e.g., the medium. The Gibbs en-
tropy of the system is defined over its micro-states ω as Ssys = −kb ∑ω P(ω) ln P(ω),
where P(ω) is the probability of ω occurring during the systems fluctuations and kb

is the Boltzmann constant. The entropy production in the system ∆Ssys is equal to
the changes in the Gibbs entropy over the dynamical variables that describe it. The
entropy production in the environment ∆Smed consists of the exported heat, scaled
by the inverse environmental temperature. Therefor, the total entropy production
in the system and the environment is ∆Stot = ∆Ssys + ∆Smed and, according to the
second law of thermodynamics, ∆Stot ≥ 0.

In the formalism of stochastic thermodynamics, the entropy production is used
as a measure of dynamical irreversibility, and become thermodynamically meaning-
ful when scaled by kb. Let us describe the state of the system with X, and consider
an interval of time t over which individual realisations of the system ~X = {X(t)|t ∈
[t0, τ]} are defined. Let us also define the reversal path ~X† = {X†(t)|t ∈ [t0, τ]}
and X†(t) = εX(τ + t0 − t) where ε is a time reversal operation [Spinney and Ford,
2012b]. The total entropy production generated over an interval of time t ∈ [t0, τ]
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can be written as:

∆Stot = ln
P(~X)

P†(~X†)
= DKL

(
P(~X) ‖ P†(~X†)

)
, (2.22)

where P(~X) and P†(~X†) are, respectively, the probability densities of the forward
and reversal paths, and DKL(P(~X) ‖ P†(~X†)) is the Kullback-Leibler divergence,
or relative entropy, measuring the difference between P(~X) and P†(~X†). Therefore,
the total entropy production is the log ratio of the likelihood of a trajectory to its time
reverse under the dynamics that describe the system.

For many-body systems, such as active matter, estimating the probability distri-
bution function of the state of the whole system is generally infeasible, due to the
large number of variables needed in order to describe the system. However, when
a system is described by stochastic differential equations, the expressions for ∆Smed

can be determined in terms of knowledge of the trajectories only [Spinney and Ford,
2012a] (see Chap. 6 for more details). Crucially, in the steady state the expected
entropy production in the system 〈∆Ssys〉 vanishes, leaving 〈∆Stot〉 = 〈∆Smed〉 and
therefore allowing the calculation of the total entropy production. This approach has
been used to investigate the entropy production associated to the collective motion
of active matter [Fodor et al., 2016; Mandal et al., 2017], and in particular the phe-
nomenon of MIPS. In Chap. 6, this method is utilised in order to study a system of
active Brownian particles that interact via volume exclusion and alignment. The sys-
tem exhibit MIPS as well as global orientational order, and both these phenomena
are shown to affect the entropy production.
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1 Introduction

Collective motion is one of the most striking examples of aggregated coherent behaviour in
animal groups, dynamically self-organising out of local interactions between individuals. It
is observed in different animal species, such as schools of fish (Parrish et al. 2002; Sumpter
et al. 2008), flocks of birds (Lissaman and Shollenberger 1970; May 1979; Ballerini et al.
2008; Bialek et al. 2012), colonies of insects (Buhl et al. 2006; Fourcassié et al. 2010; Buhl
et al. 2010; Attanasi et al. 2014b; Buhl and Rogers 2016) and herds of ungulates (Ginelli et al.
2015). There is an emerging understanding that information plays a dynamic role in such a
coordination (Sumpter et al. 2008), and that distributed information processing is a specific
mechanism that endows the groupwith collective computational capabilities (Bonabeau et al.
1999; Couzin 2009; Albantakis et al. 2014).

Information transfer is of particular relevance for collective behaviour, where it has been
observed that small perturbations cascade through an entire group in a wave-like man-
ner (Potts 1984; Procaccini et al. 2011; Herbert-Read et al. 2015; Attanasi et al. 2015),
with these cascades conjectured to embody information transfer (Sumpter et al. 2008). This
phenomenon is related to underlying causal interactions, and a common goal is to infer phys-
ical interaction rules directly from experimental data (Katz et al. 2011; Gautrais et al. 2012;
Herbert-Read et al. 2011) and measure correlations within a collective.

Nagy et al. (2010) used a variety of correlation functions to measure directional depen-
dencies between the velocities of pairs of pigeons flying in flocks of up to 10 individuals,
extended to 30 in Nagy et al. (2013), reconstructing the leadership network of the flock.
As has been shown, this network does not correspond to the dominance hierarchy between
birds (Nagy et al. 2013). Information transfer has been extensively studied in flocks of star-
lings, by observing the propagation of direction changes across the flocks (Cavagna et al.
2013b, a; Attanasi et al. 2014a). More recently, Rosenthal et al. (2015) attempted to deter-
mine a communication structure of a school of fish during its collective evasion manoeuvres
manifested through cascades of behavioural change. A functional mapping between sensory
inputs and motor responses was inferred by tracking fish position and body posture, and
calculating visual fields.

The main scientific question we address is how to identify and quantify information pro-
cessing during decision-making in groups (Giardina 2008; Attanasi et al. 2014a), exacerbated
by misinformative and noisy data. In trying to obtain such understanding, it is impor-
tant to develop predictive models of information propagation among individuals, including
behavioural cascades. Specifically, we aim to reveal how information propagates within
a group and affects collective decisions (e.g., choosing a common travelling direction).
This would provide an objective way to use such information for predictive modelling of
behavioural reactions in response to various inputs.

Rather than consider semantic or pragmatic information, many contemporary studies
employ rigorous information-theoretic measures that quantify information as uncertainty
reduction, following Shannon (Cover and Thomas 2006), in order to deal with the stochastic,
continuous and noisy nature of intrinsic information processing in natural systems (Feldman
et al. 2008). Distributed information processing is typically dissected into three primitive
functions: the transmission, storage and modification of information (Langton 1990). Infor-
mation dynamics is a recent framework characterising and measuring each of the primitives
information-theoretically (Lizier et al. 2014; Lizier 2013). In viewing the state update dynam-
ics of a random process as an information processing event, this framework performs an
information regression in accounting for where the information to predict that state update
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can be found by an observer, first identifying predictive information from the past of the pro-
cess as information storage, then predictive information from other sources as information
transfer (including both pairwise transfer from single sources, and higher-order transfers due
to multivariate effects). The framework has been applied to modelling collective behaviour
in several complex systems, such as Cellular Automata (Lizier et al. 2008, 2010, 2012),
Ising spin models (Barnett et al. 2013), Genetic Regulatory Networks and other biological
networks (Lizier et al. 2011b; Prokopenko et al. 2011; Faes and Porta 2014), and neural
information processing (Gómez et al. 2014; Wibral et al. 2015).

This study proposes a domain-independent, information-theoretic approach to detecting
and quantifying individual-level dynamics of information transfer in animal groups using
this framework. This approach is based on transfer entropy (Schreiber 2000), an information-
theoretic measure that quantifies the directed and time-asymmetric predictive effect of one
random process on another. We aim to characterise the dynamics of how information transfer
is conducted in space and timewithin a biological school of fish (Hemigrammus rhodostomus
or rummy-nose tetras, Fig. 1a). Using transfer entropy allows us to consider specifically the
information dynamics during collective decision-making, identifying predictive information
flows and their spatial patterns, complementing our parallel study which used correlation
analysis to identify influential neighbours (Jiang et al. 2017).

We stress that the predictive information transfer should be considered from the observer
perspective, that is, it is the observer that gains (or loses) predictability about a fish motion,
having observed another fish. In other words, notwithstanding possible influences among
the fish that could potentially be reflected in their information dynamics, our quantitative
analysis focuses on the information flow within the school which is detectable by an external
observer, captured by the transfer entropy. Thismeans that, wheneverwe quantify a predictive
information flow based on a source fish about a destination fish, we attribute the change
of predictability (uncertainty) to a third party, be it another fish in the school, a predator
approaching the school or an independent experimentalist. To improve readability, we refer to
flowor transfer from a source fish to a destination fish. Importantly, this predictive information
flow may or may not account for the causal information flow affecting the source and the
destination (Ay and Polani 2008; Lizier and Prokopenko 2010)—however it does typically
indicate presence of causality, either within the considered pair or from some common cause.

We focus on collective direction changes, i.e., collective U-turns, during which the direc-
tional changes of individuals progress in a rapid cascade, at the end of which a coherent
motion is re-established within the school. Sets of different U-turns are comparable across
experiments under the same conditions, permitting a statistically significant analysis involv-
ing an entire set of U-turns.

By looking at the pointwise or local values of transfer entropy over time, rather than at
its average values, we are not only able to detect information transfer, but also to observe
its dynamics over time and across the school. We demonstrate that information is indeed
constantly flowing within the school, and identify the source-destination lag where predic-
tive information flow is maximised (which has an interpretation as an observer-detectable
reaction time to other fish). The information flow is observed to peak during collective direc-
tional changes, where there is a typical “cascade” of predictive gains and losses to be made
by observers of these pairwise information interactions. Specifically, we identify two distinct
predictive information flows: (i) an “informative” flow, characterised by positive local values
of transfer entropy, from fish that have already changed direction to fish that are turning, and
(ii) a “misinformative” flow, characterised by negative local values of transfer entropy, from
fish that have not changed direction yet to the fish that are turning. Finally, we identify spa-
tial patterns coupled with the temporal transfer entropy, which we call spatio-informational
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motifs. These motifs reveal spatial dependencies between the source of information and its
destination, which shape the directed pairwise interactions underlying the informative and
misinformative flows. The strong distinction revealed by our quantitative analysis between
informative and misinformative flows is expected to have an impact on modelling and under-
standing the dynamics of collective animal motion.

2 Information-theoretic measures for collective motion

The study of Wang et al. (2012) introduced the use of transfer entropy to investigations
of collective motion. This work quantitatively verified the hypothesis that information cas-
cades within an (artificial) swarm can be spatiotemporally revealed by conditional transfer
entropy (Lizier et al. 2008, 2010) and thus correspond to communications, while the collec-
tive memory can be captured by active information storage (Lizier et al. 2012).

Richardson et al. (2013) applied related variants of conditional mutual information, a
measure of non-linear dependence between two random variables, to identify dynamical
coupling between the trajectories of foraging meerkats. Transfer entropy has also been used
to study the response of schools of zebrafish to a robotic replica of the animal (Butail et al.
2014; Ladu et al. 2015), and to infer leadership in pairs of bats (Orange and Abaid 2015) and
simulated zebrafish (Butail et al. 2016). Lord et al. (2016) also posed the question of identi-
fying individual animals which are directly interacting with other individuals, in a swarm of
insects (Chironomus riparius). Their approach used conditional mutual information (called
“causation entropy” although it does not directly measure causality (Lizier and Prokopenko
2010)), inferring “information flows” within the swarm over moving windows of time.

Unlike the study of Wang et al. (2012), the above studies quantified average dependencies
over time rather than local dependencies at specific time points; for example, leadership
relationships in general rather than their (local) dynamics over time. Local versions of transfer
entropy and active information storage have been used to measure pairwise correlations in a
“swarm” of soldier crabs, finding that decision-making is affected by the group size (Tomaru
et al. 2016). Statistical significance was not reported, presumably due to a small sample size.
Similar techniques were used to construct interaction networks within teams of simulated
RoboCup agents (Cliff et al. 2017).

In this study,we focus on local (or pointwise) transfer entropy (Schreiber 2000; Lizier et al.
2008; Lizier 2014b) for specific samples of time series processes of fishmotion, which allows
us to reconstruct the dynamics of information flows over time. Local transfer entropy (Lizier
et al. 2008), captures information flow from the realisation of a source variable Y to a
destination variable X at time n. As described in Sect. 5, local transfer entropy is defined as
the information provided by the source yn−v = {yn−v, yn−v−1, . . . , yn−v−l+1}, where v is a
time delay and l is the history length, about the destination xn in the context of the past of
the destination xn−1 = {xn−1, xn−2, . . . , xn−k}, with a history length k:

ty→x (n, v) = log2
p(xn |xn−1, yn−v)

p(xn |xn−1)
. (1)

Importantly, local values of transfer entropy can be negative, while the average transfer
entropy is non-negative. Negative values of the local transfer entropies indicate that the
source ismisinformative about the next state of the destination (i.e., it increases uncertainty).
Previous studies that used averagemeasures over sliding time windows in order to investigate
how information transfer varies over time (Richardson et al. 2013; Lord et al. 2016) cannot
detect misinformation because they measure average but not local values.
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As an observational measure, transfer entropy does not measure causal effect of the source
on the target; this can only be established using interventional measures (Ay and Polani 2008;
Lizier and Prokopenko 2010; Chicharro and Ledberg 2012; Smirnov 2013). Rather, transfer
entropy measures the predictive information gained from a source variable about the state
transition in a target, which may be viewed as information transfer when measured on an
underlying causal interaction (Lizier and Prokopenko 2010). It should be noted that while
some researchers may be initially more interested in causality, the concept of information
transfer reveals much about the dynamics that causal effect does not (Lizier and Prokopenko
2010), in particular being associated with emergent local structure in dynamics in complex
systems (Lizier et al. 2008; Wang et al. 2012) and with changes in behaviour, state or regime
(Boedecker et al. 2012; Barnett et al. 2013), as well as revealing the misinformative inter-
actions described above. As a particular example, local transfer entropy spatiotemporally
highlights emergent glider entities in cellular automata (Lizier et al. 2008), which are ana-
logues of cascading turning waves in swarms (also highlighted by transfer entropy (Wang
et al. 2012)), while local measures of causality do not differentiate these from the background
dynamics (Lizier and Prokopenko 2010).

In general, to understand the processes that govern collective behaviour in animal groups, it
is important to disentangle the interactions between fish, how these interactions are combined
and how interrelated are the individual behaviours. This can be achievedmuchmore easily by
investigating collective behaviour in small groups of individuals. Suchmethodology (Gautrais
et al. 2012; Weitz et al. 2012) has been successfully applied to studies of the individual-level
interactions involved in several examples of collective animal behaviour: aggregation in
cockroaches (Jeanson et al. 2004, 2005), division of labour, corpse aggregation and nest
building in ant colonies (Theraulaz et al. 2002a, b; Khuong et al. 2016), collective motion
in groups of pelagic fish (Gautrais et al. 2012; Weitz et al. 2012) and collective motion in
human groups (Moussaïd et al. 2009, 2011). Although for schools of minnows (Phoxinus
phoxinus), two fish schools are qualitatively different from schools containing three or more,
the effects seem to level off by the time the school reaches a size of six individuals (Partridge
1980). Collective behaviour, as well as a stereotypical “phase transition”, when an increase
in density leads to the onset of directional collective motion, have also been detected in small
groups of six glass prawns (Paratya australiensis) (Mann et al. 2012). Furthermore, at such
intermediate group sizes, it has been observed that multiple fish interactions could often be
faithfully factorised into pair interactions in one particular species of fish (Gautrais et al.
2012). The rationale for choosing a limited number of fish is also strengthened by the fact
that it allowed us to quantify both the dynamics of collective decisions at the group level
and the predictive information flow, while preserving the coordination of swimming in this
species that exhibits strong schooling behaviour.

In our study, we investigated information transfer within a school of fish during specific
collective direction changes, i.e., U-turns, in which the school collectively reverses its direc-
tion. Groups of five fish were placed in a ring-shaped tank (Fig. 1b), a design conceived to
constrain fish swimming circularly, with the possibility of undergoingU-turns spontaneously,
without any obstacles or external factors. A similar well-controlled environment has been
previously successfully used in studies of groups of locusts (Buhl et al. 2006), enabling a large
number of replicates which for obvious reasons cannot be done in a natural environment. The
choice of a small and cohesive group allows us to focus on pairwise interactions in the context
of collective motion, while studies of larger and less cohesive groups could reveal dominance
hierarchies and leader-follower relationships, as well as social influence in groups.

In many species of fish, sudden collective changes of the state of a school may happen
without external cause as a consequence of stochastic effects (Tunstrøm et al. 2013). In these
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cases, local behavioural changes of a single individual can lead to large transitions between
collective states of the school, such as between the schooling and milling states (Calovi et al.
2015). Determining how fluctuations in individual behaviour, for instance in heading direc-
tion, propagate within a group is a key to understanding transitions between collective states
in fish schools and in animal groups in general. In our setup, fish swim in a highly synchro-
nised and polarised manner, and can only head in two directions, clockwise or anticlockwise,
regularly switching from one to the other. Our work thus also allows us to analyse in groups
how individual U-turns occur, propagate through the group, and ultimately lead to collective
U-turns. A total of 455 U-turns have been observed during 10 trials of 1h duration each.

We computed local transfer entropy between each (directed) pair of fish from time series
obtained from fish heading. Specifically, the destination process X was defined as the direc-
tional change of the destination fish, while the source process Y was defined as the relative
heading of the destination fish with respect to the source fish (see Sect. 5). This allowed us
to capture the influence of the source-destination fish alignment on the directional changes
of the destination. Such influence is usually delayed in time and we estimated the optimal
delay [maximising ⟨ty→x (n, v)⟩n (Wibral et al. 2013), see Sect. 5] at v = 6, corresponding
to 0.12 s. The relative heading is not the only aspect of fish motion and other components
can be considered, such as speed and acceleration. Moreover, a heading change in the desti-
nation fish could be related to many aspects of the source fish motion other than the heading
difference between the two fish. However, in this study, we focus on the relative heading,
which we believe is one of the most relevant features to explore in our controlled setup. In
order to simplify our terminology, in the remainder of the text, we shall refer to this partial
information flow, based on relative heading, as the information flow. It is important to clarify
that large direction changes do not imply high values of transfer entropy, even while such
measure is based on the heading. Large direction changes (where they are rare events) may
have more capacity for information flow; however, there is not necessarily large information
flow at these events unless the source fish are predictive of their occurrence.

3 Results

3.1 Information flows during U-turns

In order to represent the school’s orientation around the tank, we define its polarisation as
its circumferential velocity component, so that it is positive when the school is swimming
clockwise and negative when it is swimming anticlockwise (see Sect. 5). The better the
school’s average heading is aligned with an ideal circular trajectory around the tank, the
higher is the intensity of the polarisation. When the school is facing one of the tank’s walls,
for example in the middle of a U-turn, the polarisation is zero, and the polarisation flips
sign during U-turns. Polarisation allows us to map local values of transfer entropy onto the
progression of the collective U-turns.

The analyses of transfer entropy over time reveal that the measure clearly diverges from
its baseline in the vicinity of U-turns, as shown in the representative U-turn in Fig. 1c (Sup-
plementary Figure S1 shows a longer time interval during which several U-turns can be
observed). The figure shows that during regular circular motion, when the school’s polari-
sation is highly pronounced, transfer entropy is low. As the polarisation approaches zero the
intensity of transfer entropy grows, peaking near the middle of a U-turn, when polarisation
switches its sign.
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(a)

(b)

(c)

Fig. 1 Transfer entropy within the school during a U-turn. a Is a photo of a spontaneous U-turn initiated
by a single fish in a group of five Hemigrammus rhodostomus fish. b Shows the experimental ring-shaped
tank. c Plots the school’s polarisation during a U-turn and the detected transfer entropy over a time interval
of approximately 6 s. The purple line represents the school’s polarisation, while dots represent local values of
transfer entropy between all directed pairs of fish: red dots represent positive transfer entropy and blue dots
represent negative transfer entropy. Time is discretised in steps of length 0.02 s and for each time step 20
points of these local measures are plotted, for the 20 directed pairs formed out of 5 fish. The yellow lines in the
inset are the thresholds for considering a value of transfer entropy statistically different from zero (p < 0.05
before false discovery rate correction, see Sect. 5). Grey dots between these lines represent values that are not
statistically different from zero. Credits to David Villa ScienceImage/CBI/CNRS, Toulouse, 2015, for a, b
(Color figure online)

We clarify that the aim here is not to establish transfer entropy as an alternative to polarisa-
tion for detecting turn; rather, our aim is to use polarisation to describe the overall progression
of the collective U-turns and then to use transfer entropy to investigate the underlying infor-
mation flows in the dynamics of such turns. Indeed, transfer entropy is found to be statistically
different from zero at many points outside of the U-turns (see Supplementary Figure S1),
although the largest values and most concentrated regions of these are during the U-turns.
This indicates that information transfer, based on the heading direction’s change, occurs
even when fish school together without changing direction; we know that the fish are not
executing precisely uniform motion during these in-between periods, and so interpret these
small amounts of information transfer as sufficiently underpinning the dynamics of the group
maintaining its collective heading. We would like to also point out that information process-
ing during the aligned motion mostly corresponds to the information storage, which can be
detected using other information-theoretic measures (Lizier et al. 2012), while only a low
information transfer is needed to maintain the alignment.

We also see in Fig. 1c that both positive and negative values of transfer entropy are detected.
In order to understand the role of the positive and negative information flows during collective
motion, in the next section, we show the dynamics of transfer entropy for individual pairwise
interactions.

3.2 Informative and misinformative flows

Our analysis revealed a clear relationship between positive and negative values of transfer
entropy and the sequence of individual fish turning, which is illustrated in Fig. 2. Figure 2a
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Positive and negative information flows during a U-turn. a Shows the trajectories of the five fish during
the U-turn shown in c. The two black lines are the inner and the outer walls of the tank, and each of the five
trajectories coloured in different shades of purple correspond to a different fish: from darkest purple for the
first fish turning (Fish 1), to the lightest purple for the last (Fish 5). The total time interval is approximately
2 s, during which all fish turn from swimming anticlockwise to clockwise. d Depicts the polarisations of
the five fish, showing the temporal sequence of fish turns. b Shows the fish trajectories again, but this time
indicates the value of the incoming local transfer entropy to each fish as a destination, averaged over the
other four fish as sources. The colour of each trajectory changes as the fish turn: strong red indicates intense
positive transfer entropy; strong blue indicates intense negative transfer entropy; intermediate grey indicates
that transfer entropy is close to zero. e Is obtained analogously to b, but the polarisations of the individual fish
are shown rather than their trajectories. c, f mirror b, e, but where the direction of the transfer entropy has been
inverted: the colour of each trajectory or polarisation now indicates the value of the outgoing local transfer
entropy from each fish as a source, averaged over the other four fish as destinations (Color figure online)

shows the trajectories of individual fish during the same U-turn depicted in Fig. 1c. These
trajectories are retraced in Fig. 2d in terms of polarisation of each fish. It is quite clear that
there is a well-defined sequence of individual U-turns during the collective U-turn.Moreover,
Fig. 2 shows how the transfer entropymaps onto the fish trajectories, both from the fishwhose
trajectory is traced as a source to the other four fish—i.e., outgoing transfer entropy—and,
vice versa, from the other four fish to the traced one as a destination—i.e., incoming transfer
entropy.

The incoming transfer entropy clearly peaks during the destination fish’s individual turns
and its local values averaged over all sources go from negative, for the first (destination)
fish that turns, to positive for the last fish turning (Fig. 2b, e). In the opposite direction, the
outgoing transfer entropy (averaged over all destinations) displays negative peaks only before
the source fish has turned, and positive peaks only afterwards (Fig. 2c, f). Figure 2 suggests
that predictive information transfer intensifies only when a destination fish is turning, with
this transfer being informative from source fish that have already turned and misinformative
from source fish that have not turned yet.

This phenomenon can be observed very clearly in Fig. 3a, b, which show the transfer
entropy in both directions for a single fish (the second fish turning in Figs. 1 and 2). One
positive peak of incoming transfer entropy (indicating informative flow) and three negative
ones (misinformative flows) are detected when this fish, as a destination, is undergoing the
U-turn (Fig. 3a). No other peaks are detected for this fish as a destination. On the other hand,
one negative peak of outgoing transfer entropy is detected before the fish, this time as a
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(a) (b)

(c) (d)

Fig. 3 a Shows the polarisation of the second fish turning, together with the incoming transfer entropy to that
fish as the destination, with the other four fish as the sources: red dots represent positive values and blue dots
represent negative values. bMirrors a, but with the outgoing transfer entropy from that fish as the source, and
the other four fish as destinations. In c, each purple line corresponds to a fish, with the shade again reflecting
the order in which the fish turn (darkest for first fish to turn, and lightest for the last). Now however (in c), rather
than corresponding to a single U-turn event, the incoming local transfer entropy (to each fish as a destination,
averaged over the other four fish as sources) is averaged over all 455 observed U-turns and is shown as a
function of time. The horizontal axis is the relative time of the U-turns, with zero being the time when the
average polarisation of the school changes sign. d Mirrors c, but where the direction of the transfer entropy
has been inverted (showing outgoing transfer from each fish in turning order) (Color figure online)

source, has turned, and three positive peaks are detected after the fish has turned (Fig. 3b).
These four peaks occur respectively when the first, the third, the fourth and the fifth fish
undergo the U-turn, as is evident by comparing Figs. 2d, 3b. A movie of the fish undergoing
this specific U-turn is provided in Supplementary Video S1, while a detailed reconstruction
of the U-turn, showing the dynamics of transfer entropy over time for each directed pair of
fish, is provided in Supplementary Video S2.

In order to demonstrate that the phenomenon described here holds for U-turns in general,
and not only for the representative one shown in Fig. 2, we performed an aggregated analysis
of all 455 U-turns observed during the experiment. Since the order in which fish turn is not
the same in every U-turn, in this analysis, we refer not to single fish as individuals, but rather
to fish in the order in which they turn. Thus, when we refer, for instance, to “the first fish
that turns”, we may be pointing to a different fish at each U-turn. It is worth noting that, in
general, multiple fish can turn at the same time during a U-turn, but averaging over all U-turn
events allows us to statistically order turning events, as shown in Fig. 3c, d.

The aggregated results are presented in Fig. 3c, d. Figure 3c shows that incoming transfer
entropy peaks for each fish in turning order and gradually grows, from a minimum negative
peak corresponding to the first fish turning, to a maximum positive peak corresponding to
the last fish turning. Vice versa, Fig. 3d shows that outgoing transfer entropy peaks only
positively for the first fish turning, which is an informative source about all other fish turning
afterwards. For the last fish that turns the peak is negative, since this fish is misinformative
about all other fish that have already turned. The second, third and fourth fish present both a
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negative and a positive peak. The intensity of the negative peaks increases from the second
fish to the fourth, while the intensity of the positive peak decreases.

In general, the source fish is informative about all destination fish turning after it and
misinformative about any destination fish turning before it. This is because the prior turn of
a source helps the observer to predict the later turn of the destination, whereas examining
a source which has not turned yet itself is actively unhelpful (misinformative) in predicting
the occurrence of such a turn. This also explains why, for a source, the negative peaks come
before positives.

The sequential cascade-like dynamics of information flow suggests that the strongest
sources of predictive information transfer are fish that have already turned. Moreover, our
analyses reveal that once a fish has performed a U-turn, its behaviour in general ceases to be
predictable based on the behaviour of other fish that swim in opposite direction (in fact such
fish would provide misinformative predictions). This suggests an asymmetry of predictive
information flows from and to an individual fish during U-turns.

3.3 Spatial motifs of information transfer

It is reasonable to assume that predictive information transfer in a school of fish results
from spatial interactions among individuals. We investigated the role of pairwise spatial
interactions in carrying the positive and negative information flows that we detected in the
previous section, looking for spatial patterns of information and misinformation transfer.

In particular, we established the statistics of the relative position and heading of the
destination fish relative to the source fish, at times when the transfer entropy from the source
to the destination is more intense. For this purpose, we used radial diagrams (see Fig. 4)
representing the relative data in terms of transfer entropy, focusing separately on their positive
(informative) and negative (misinformative) values. In each diagram, we aggregate data from
all 455 U-turns and all pairs. The diagrams show clear spatial patterns coupled with the
transfer entropy, which we call spatio-informational motifs.

We see that positive information transfer is on average more intense from source fish to:
(a) other fish positioned behind them (Fig. 4a, left), and (b) to fish with headings closer to
perpendicular rather than parallel to them (Fig. 4a, right). We know from Figs. 2 and 3 that
positive transfer entropy is detected from source fish that have already turned to destination
fish that are turning. Thus, Fig. 4a suggests that a source ismore informative about destination
fish that are left behind it after a turn, most intensely when the destination fish are executing
their own turning manoeuvre to follow the source. Directional relationships from individuals
in front towards others that follow were observed in previous works on birds (Nagy et al.
2010), bats (Orange and Abaid 2015) and fish (Katz et al. 2011; Herbert-Read et al. 2011;
Rosenthal et al. 2015).

For negative information transfer (Fig. 4b), we see a different spatio-informational motif.
Negative information transfer is on average more intense to fish generally positioned at the
side andwith opposite heading. This aligns with Figs. 2 and 3 in that negative transfer entropy
typically flows from fish that have not turned yet to those which are turning.

In summary, transfer entropy has a clear spatial signature, showing that the spatio-
informational dependencies in the studied school of fish are not random but reflect specific
interactions.
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Fig. 4 Spatio-informational motifs. Each diagram is a circle centred on a source fish with zero heading,
providing a reference. In each diagram, space is divided into 60 angular sectors measuring 6◦. Within each
circle, we group all pairwise samples from all 455 U-turns such that the source fish is placed in the centre and
the destination fish is placed within the circle in one of the sectors. The left circles in a, b aggregate the relative
positions of destination fish, while the right circles aggregate the relative headings of destination fish. The
value of each radial sector (for both position and heading) represents the average of the corresponding values
of either positive (a) of negative (b) transfer entropy. For example, the value in each sector of the left diagram
of a represents the average positive transfer entropy for a destination fish, given it has relative position in that
sector with respect to the source fish: all positive values of transfer entropy corresponding to each sector are
summed and divided by the total number of values corresponding to that sector. The value in each sector of the
right diagram of a represents the average positive transfer entropy for a destination fish, given that its heading
diverges from the one of the source by an angle in that sector. b Mirrors a this negative transfer entropy. The
source fish data are taken from the time points corresponding to the time delay v with respect to the source

4 Discussion

Information transferwithin animal groups during collectivemotion is hard to quantify because
of implicit and distributed communication channels with delayed and long-ranged effects,
selective attention (Riley and Leith 1976) and other species-specific cognitive processes.
Here, we presented a rigorous framework for detecting and measuring predictive informa-
tion flows during collective motion, by attending to the dynamic statistical dependence of
directional changes in destination fish on relative heading of sources. This predictive infor-
mation flow should be interpreted as a change (gain or loss) in predictability obtained by an
observer. Importantly, the information-theoretic nature of the measure means that it is appli-
cable to other stochastic interactions; more stochastic dynamics would require more data and
suitable video capture resolution to identify the salient flows. Furthermore, one may consider
methods of statistical mechanics and information thermodynamics in studies of collective
motion distributed over large systems (Bialek et al. 2012; Crosato et al. 2018).

We studiedHemigrammus rhodostomusfish placed in a ring-shaped tankwhich effectively
only allowed the fish to move straight ahead or turn back to perform a U-turn. The individual
trajectories of the fish were recorded for hundreds of collective U-turns, enabling us to
perform a statistically significant information-theoretical analysis for multiple pairs of source
and destination fish. The experimental setup used in this study has been chosen to focus on
collective U-turns, but the information flow analysis has been applied in other situations
with more complex collective behaviour, e.g., general swarming behaviour with different
constraints (Wang et al. 2012;Miller et al. 2014; Tomaru et al. 2016), and swarming behaviour
with leaders (Sun et al. 2014; Orange and Abaid 2015).

Transfer entropy was used in detecting pairwise time delayed dependencies within the
school. By observing the local dynamics of this measure, we demonstrated that predictive
information flows intensify during collective direction changes—i.e., the U-turns—a hypoth-
esis that until now was not verified in a real biological system. Furthermore, we identified
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two distinct predictive information flows within the school: an informative flow from fish
that have already preformed the U-turn to fish that are turning, and a misinformative flow
from fish that have not preformed the U-turn yet to the fish that are turning.

We also explored the role of spatial dynamics in generating the influential interactions
that carry the information flows, another well-known problem. In doing so, we mapped the
detected values of transfer entropy against each fish’s relative position and heading, iden-
tifying clear spatio-informational motifs. Importantly, the positive and negative predictive
information flows were shown to be associated with specific spatial signatures of source
and destination fish. For example, positive information flow is detected when the source fish
is in front of the destination, similarly to what was already observed in previous works on
animals (Nagy et al. 2010; Katz et al. 2011; Herbert-Read et al. 2011; Rosenthal et al. 2015;
Orange and Abaid 2015). The identified sequential cascade-like dynamics of information
flow is well-pronounced, suggesting that this pattern will be retained in larger schools—this
however remains a subject of future research.

In a previous work, the analysis of short-term directional correlations between fish on the
same experimental data has shown that, when the group changes direction, individual fish
respond to a limited number of influential neighbours, typically one or two which are not
necessarily the closest ones (Jiang et al. 2017). Moreover, fish continuously change who they
are interacting with. In this study, using a complementary approach, we show that a fish that
has just made a U-turn may also decide to ignore the input of other fish moving in opposite
direction (which is shown by the misinformation flow). A fish can thus choose to move in
the opposite direction of the majority. This suggests that the behavioural tendency of a fish
to align in the direction of the majority of its neighbours, which is a manifestation of social
conformity and implemented in most models of collective motion, can be “shut down” for
some time. When these events occur, a fish can temporary take the lead of a group thanks
to the behavioural contagion. Our analysis provides a way to create a quantitative model
for predictive information flow between fish and thus brings a better understanding of the
processes underlying collective decisions in fish groups and animal groups in general.

Local transfer entropy as it was applied in this study reveals the dynamics of pairwise
information transfer. It is well known that multivariate extensions to the transfer entropy,
e.g., conditioning on other information sources, can be useful in terms of eliminating redun-
dant pairwise relationships while also capturing higher-order relationships beyond pairwise
(i.e. synergies) (Lizier et al. 2008, 2010; Lizier and Prokopenko 2010; Vakorin et al. 2009;
Williams and Beer 2011; James et al. 2016), and as such the identification of effective neigh-
bourhoods cannot be accurately inferred using pairwise relationships alone. Transfer entropy
comprises both (i) a unique component from the source, and (ii) a synergistic component
from the source in the context of the target, as has been clarified by Williams and Beer
(2011), among others. While we can learn more by measuring these components separately
(for which well accepted measures have not yet been developed), both capture important
aspects of the concept of information transfer. Thus, we argue that focussing on the unique
component alone would not align with the popularly understood concept of information
transfer. Improvements are possible by adapting algorithms for deciding when to include
higher-order multivariate transfer entropies (and which variables to condition on), developed
to study effective networks in brain imaging data sets (Lizier and Rubinov 2012; Faes et al.
2011; Marinazzo et al. 2012; Stramaglia et al. 2012), to collective animal behaviour, as such
methods can eliminate redundant connections and detect synergistic effects. Whether or not
such algorithms will prove useful for swarm dynamics is an open research question, with
conflicting findings that first suggest that multiple fish interactions could be faithfully fac-
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torised into simply pair interactions in one species (Gautrais et al. 2012) but conversely that
this may not necessarily generalise (Katz et al. 2011).

In any case, such adaptations to capture multivariate effects will be non-trivial, as it
must handle the short-term and dynamic structure of interactions across the collective. Early
attempts have been made using (a similar measure to) conditional TE—on average over time
windows—in collectives under such algorithms (Lord et al. 2016); however, it remains to be
seen what such measures reveal about the collective dynamics on a local scale.

In summary, we have proposed a novel information-theoretic framework for studying
the dynamics of information transfer in collective motion and applied it to a school of fish,
withoutmaking any specific assumptions on fish behavioural traits and/or rules of interaction.
This framework can be applied to studies of other biological collective phenomena, such as
swarming and flocking, artificial multi-agent systems and active matter in general.

5 Methods

A general scheme of the methodology from the animal experimentation to the analysis of the
information flows is provided in Fig. 5.

5.1 Experimental procedures

A group of 70 Hemigrammus rhodostomus (rummy-nose tetras) were purchased from Ama-
zonie Labège (http://www.amazonie.com) in Toulouse, France. Fish were kept in 150 L
aquariums on a 12:12 h, dark/light photoperiod, at 27.7 ◦C(± 0.5 ◦C) and were fed ad libi-
tum with fish flakes. Body lengths of the fish used in these experiments were on average 31
mm (± 2.5 mm). This species was chosen because it exhibits a strong schooling behaviour
and it is very easy to handle in controlled conditions (Jiang et al. 2017; Lecheval et al. 2017).
Moreover, individuals perform a burst-and-coast type of swimming that involves sharp direc-
tional changes, which implies a series of separate behavioural decisions in time and space.
It is likely that an information-theoretic analysis would be able to better temporally resolve
information flows associated with these transitions, as compared to more continuous dynam-
ics [such as exhibited by Khulia mugil (Gautrais et al. 2012)].1 Further, when swimming in
a ring-shaped tank, schools of rummy-nose tetra hardly ever split despite collective U-turns,
because of their social interactions relying on attraction and alignment (Calovi et al. 2018).

The experimental tank measured 120× 120 cm was made of glass and set on top of a box
to isolate fish from vibrations. The setup, placed in a chamber made by four opaque white
curtains, was surrounded by four LED light panels giving an isotropic lighting. A ring-shaped
tank made from two tanks (an outer wall of radius 35 cm and an inner wall, a cone of radius
25 cm at the bottom; both shaping a corridor of 10 cm) was set inside the experimental tank
filled with 7 cm of water of controlled quality (50% of water purified by reverse osmosis and
50% of water treated by activated carbon) heated at 28.1 ◦C(± 0.7 ◦C). The conic shape of
the inner wall has been chosen to avoid the occlusion on videos of fish swimming too close
to the inner wall that would occur with straight walls.

Five fishwere randomly sampled from their breeding tank for each trial. Fishwere ensured
to be used only in one experiment per day at most. Fish were left for 10 min to habituate

1 With that said, we have also shown that techniques employed in this study are also successful in identifying
information flows in groups with smoother motion dynamics (Wang et al. 2012; Miller et al. 2014).
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before the start of the trial. A trial consisted of 1 h of fish swimming freely (i.e. without any
external perturbation).

5.2 Data extraction and pre-processing

Fish trajectories were recorded by a Sony HandyCam HD camera filming from above the
setup at 50Hz (50 frames per second) in HDTV resolution (1920 × 1080p). Videos were
converted from MTS to AVI files with the command-line tool FFmpeg 2.4.3. Positions of
fish on each frame were tracked with the tracking software idTracker 2.1 (Pérez-Escudero
et al. 2014).

When possible, missing positions of fish have been manually corrected, only during the
collective U-turn events detected by the sign changes of polarisation of the fish groups.
The corrections have involved manual tracking of fish misidentified by idTracker as well as
interpolation or merging of positions in the cases where only one fish was detected instead of
several because they were swimming too close from each other for a long time. All sequences
less or equal than 50 consecutive missing positions were interpolated. Larger sequence of
missing values have been checked by eye to check whether interpolating was reasonable or
not—if not, merging positions with closest neighbours was considered. All tracked positions
have beenmonitored by eye during all U-turn events tomake sure that anymanual corrections
improved the quality of the data set of positions. The entire process of manual changes and
eye checking required three weeks. No U-turns were omitted from the analysis.

Time series of positions has been converted from pixels to metres, and the origin of the
coordinate system O(0, 0) has been set to the centre of the ring-shaped tank. The resulting
data set contains 9273720 data points (1854744 for each fish) from all the ten trials. Velocity
was numerically derived from position using the symmetric difference quotient two-point
estimation (Larson 1983). Heading was then computed as the four-quadrant inverse tangent
of velocity and used to compute transfer entropy.

5.3 Polarisation

The polarisation is used to represent the orientation of a fish or of the whole school around the
tank, which can be clockwise or anticlockwise, and is defined as the circumferential velocity
component of the velocity a fish or of the whole school. Let Z and Ż be the two-dimensional
position and normalised velocity of a fish, defined as Cartesian vectors with the centre of
the tank being the origin—in case of the whole school, Z and Ż are averaged over all fish.
The fish direction along an ideal circular clockwise rotation is described by a unit vector
z = ω×Z

|ω×Z | , where ω is a vector orthogonal to plane of the rotation, chosen using the left-hand
rule. In other words, z is the azimuthal unit vector of the fish heading θ .

The polarisation is defined as Ż ·z, so that it is positivewhen the fish is swimming clockwise
and negative when it is swimming anticlockwise. Also, the better Ż is aligned with z or −z,
the higher is the intensity of the polarisation. On the contrary, as Ż deviates from z or −z,
the polarisation decreases and eventually reaches zero when Ż and z are orthogonal. As a
consequence, during a U-turn, the intensity of the polarisation decreases and becomes zero
at least once, before it increases again with the opposite sign.

5.4 Local transfer entropy

Transfer entropy (Schreiber 2000) is defined in terms of Shannon entropy, a fundamentalmea-
sure in information theory (Cover andThomas 2006) that quantifies the uncertainty of random
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7

Fig. 5 General scheme of the methodology. For each of the 10 trials of the experiment, 5 fish were randomly
chosen and placed in the ring-shaped tank, where they were let swimming free for 1 h while being recorded.
The position of the fish over time was tracked from the produced videos, and the heading extracted from the
position. Once all time series of fish heading were created, for each fish and during all trials, they were used in
order to optimise the embedding parameters and the lag between source and destination fish. The conditional
probability distributions involved in the computation of transfer entropy were then estimated using the heading
time series of all trials. Subsequently, the local values of transfer entropy at each time step were calculated for
each trial, as well as their statistical significance. Finally, local values of transfer entropy around every U-turns
were aggregated in order to perform the analyses presented in Sects. 3.2 and 3.3

variables. Shannon entropy of a random variable X is H(X) = − ∑
x∈X p(x) log2 p(x),

where p(x) is the probability of a specific instance x of X . H(X) can be interpreted
as the minimal expected number of bits required to encode a value of X without los-
ing information. The joint Shannon entropy between two random variables X and Y is
H(X, Y ) = −∑

x∈X
∑

y∈Y p(x, y) log2 p(x, y), where p(x, y) is the joint probability of
instances x of X and y of Y . This quantity allows the definition of conditional Shannon
entropy as H(X |Y ) = H(X, Y )− H(X), which represents the uncertainty of X knowing Y .

In this study, we are interested in local (or pointwise) transfer entropy (Fano 1961; Lizier
2014b) for specific instances of time series processes of fish motion, which allows us to
reconstruct the dynamics of information flows over time. Shannon information content of an
instance xn of process X at time n is defined as h(xn) = − log2 p(xn). The quantity h(xn) is
the information content attributed to the specific instance xn , or the information required to
encode or predict that specific value. Conditional Shannon information content of an instance
xn of process X given an instance yn of process Y is defined as h(xn |yn) = h(xn, yn)−h(xn).

Local transfer entropy is defined as the information provided by the source yn−v =
{yn−v, yn−v−1, . . . , yn−v−l+1}, where v is a time delay and l is the history length, about the
destination xn in the context of the past of the destination xn−1 = {xn−1, xn−2, . . . , xn−k},
with a history length k:

123

54 Chapter 3. Informative and misinformative interactions in a school of fish



298 Swarm Intell (2018) 12:283–305

ty→x (n, v) = h(xn |xn−1) − h(xn |xn−1, yn−v)

= log2
p(xn |xn−1, yn−v)

p(xn |xn−1)
.

(2)

Transfer entropy TY→X (v) is the average of the local transfer entropies ty→x (n, v) over
samples (or over n under a stationary assumption). The transfer entropy is asymmetric in Y
and X and is also a dynamic measure (rather than a static measure of correlations) since it
measures information in state transitions of the destination.

In order to compute transfer entropy here, the source variable Y and destination variable
X are defined in terms of the fish heading. Specifically, X is the first-order divided difference
(Newton’s difference quotient) of the destination fish heading, while Y is the difference
between the two fish headings at the same time. Let θS and θD be, respectively, the heading
time series of the source and the destination fish. We then construct variables X and Y as
follows, for all time points n (cf. Fig. 6 for an illustration of the headings involved):

xn = θD
n − θD

n−1, (3)

yn = θD
n − θ S

n . (4)

Thus, yn represents the relative heading of the destination fish with respect to the source
fish, while xn represents the directional change of the destination fish. The variables were
so defined in order to capture directional changes of the destination fish in relation to its
alignment with the source fish, which is considered an important component of movement
updates in swarm models (Reynolds 1987).

Given the definition of the variables (3) and (4), we computed local transfer entropy
ty→x (n, v) using Eq. (2), where v was determined as described in Sect. 5.5 that follows. The
past state xn−1 of the destination in transfer entropy was defined as a vector of an embedding
space of dimensionality k and delay τ , with xn−1 = {xn−1− jτ }, for j = {0, 1, . . . , k − 1}.
Finding optimal values for k and τ is also described in Sect. 5.5. The state of the source
process yn−v was also defined as a vector of an embedding space whose dimensionality
l and delay τ ′ were similarly optimised. The local transfer entropy ty→x (n, v) computed
on these variables therefore tells us how much information (l time steps of) the heading
of the destination relative to the source adds to our knowledge of the directional change in
the destination (some v time steps later), in the context of k past directional changes of the
destination.We note that while turning dynamics of the destinationmay containmore entropy
(as rare events), there will only be higher transfer entropy at these events if the source fish is
able to add to the prediction of such dynamics.

Computing transfer entropy requires knowledge of the probabilities of xn and yn defined
in (3) and (4). These are not known a priori, but the measures can be estimated from the data
samples using existing techniques. In this study, this was accomplished by modelling the
probability distribution function as a multivariate Gaussian distribution (making the transfer
entropy proportional to the Granger causality (Barnett et al. 2009)). This technique is the
simplest first-order estimation available and well applied for transfer entropy (Marinazzo
et al. 2012). We used the JIDT software implementation (Lizier 2014a).

Also, we assume stationarity of behaviour and homogeneity across the fish, such that
we can pool together all pairwise samples from all time steps, for all trials, maximising the
number of samples available for the calculation of each measure. For performance efficiency,
we make calculations of the local measures using 10 separate sub-sampled sets (sub-sampled
evenly across the trials), then recombine into a single resultant information-theoretic data
set.
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Fig. 6 Illustration of the
headings from which the source
and destination variables are
constructed

5.5 Parameter optimisation

The embedding dimensionality and delay for the source and the past state of the destination
need to be appropriately chosen in order to optimise the quality of transfer entropy. The
combination (k, τ ) for the past state of the destination, as well as the combination (l, τ ′) for
the source, have been optimised separately by minimising the global self-prediction error,
as described in Ragwitz and Kantz (2002) and Wibral et al. (2014). In the case of Markov
processes, the optimal dimensionality of the embedding is the order of the process. Lower
dimensions do not provide the same amount of predictive information, while higher dimen-
sions add redundancy that weaken the prediction. For non-Markov processes, the algorithm
selects the highest dimensionality found to contribute to self-prediction of the destination
while still being supported by the finite amount of data that we have. Values of the dimension-
ality between 1 and 10 have been explored in combination with values of the delay between
1 and 5. The optimal combinations were found to be the same for both the source and the
past of the destination: k = l = 3, τ = τ ′ = 1.

The lag v was also optimised. This was done by maximising the average transfer entropy
(after the optimisation of k, τ , l and τ ′) as per the technique of Wibral et al. (2013), Faes
et al. (2014) used in, e.g., Razak and Jensen (2014), Materassi et al. (2014), Dimitriadis et al.
(2016) and Khadem et al. (2016), over lags between 0.02 and 1 s, at time steps of 0.02 s.
The average transfer entropy was observed to grow and reach a local maximum at v = 6
(0.12 s), and then decrease for higher values (see Fig. 7). This result might have a biological
interpretation: it is plausible that the response to behaviour of the other fish is delayed by
both a communication and a reaction times, which would both be included in this lag.

5.6 Statistical significance of estimates of local transfer entropy

Theoretically, transfer entropy between two independent variables is zero. However, a
non-zero bias (and a variance of estimates around that bias) is likely to be observed when,
as in this study, transfer entropy is numerically estimated from a finite number of samples.
This leads to the problem of determining whether a non-zero estimated value represents a
real relationship between two variables, or is otherwise not statistically significant (Wibral
et al. 2014).

There are known statistical significance tests for the average transfer entropy (Vicente
et al. 2011; Lizier et al. 2011a; Lizier 2014a), involving comparing the measured value to
a null hypothesis that there was no (directed) relationship between the variables. For an
average transfer entropy estimated from N samples, one surrogate measurement is con-
structed by resampling the corresponding yn−v for each of the N samples of {xn, xn−1} and
then computing the average transfer entropy over these new surrogate samples. This process
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Fig. 7 Time lag optimisation. The red line represents the average transfer entropy (with k = l = 3, τ = τ ′ =
1) over all samples, as a function of the time delay between the source variable and the destination variable,
for time delays between 0.02 and 1 s (1–50 time cycles) (Color figure online)

retains p(xn |xn−1) and p(yn−v), but not p(xn |yn−v, xn−1). Many surrogate measurements
are repeated so as to construct a surrogate distribution under this null hypothesis of no directed
relationship, and the transfer entropy estimate can then be compared in a statistical test against
this distribution. For the average transfer entropymeasured via the linear-Gaussian estimator,
it is known that analytically the surrogates (in nats, and multiplied by 2× N ) asymptotically
follow a χ2 distribution with l degrees of freedom (Geweke 1982; Barnett and Bossomaier
2012).We use this distribution to confirm that the transfer entropy at the selected lag of 0.12 s
(and indeed all lags tested) is statistically significant compared to the null distribution (at
p < 0.05 plus a Bonferroni correction for the multiple comparisons across the 50 candidate
lags).

Next, we introduce an extension of these methods in order to assess the statistical sig-
nificance of the local values. This simply involves constructing surrogate transfer entropy
measurements as before, however this time retaining the local values within those surrogate
measurements and building a distribution of those surrogates. Measured local values are then
statistically tested against this null distribution of local surrogates to assess their statistical
significance.

We generated ten times as many surrogate local values as the number of actual local esti-
mates, with a total of approximately 371 million local surrogates. This large set of surrogate
local values was used to estimate p values of actual local values of the transfer entropy. If p
value is sufficiently small, then the test fails and the value of the transfer entropy is considered
significant (the value represents an actual relationship). The Benjamini and Hochberg (1995)
procedure was used to select the p value cutoff while controlling for the false discovery rate
under (N ) multiple comparisons.
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Supplementary Figure S1. Transfer entropy within the school during several U-turns. The figure plots the school’s
polarisation during a U-turn and the detected transfer entropy over a time interval of approximately 35 seconds. The purple line
represents the school’s polarisation, while dots represent local values of transfer entropy between all directed pairs of fish: red
dots represent positive transfer entropy and blue dots represent negative transfer entropy. Time is discretised in steps of length
0.02 seconds and for each time step 20 points of these local measures are plotted, for the 20 directed pairs formed out of 5 fish.
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Supplementary Video S1. Fish undergoing the representative U-turn. The movie shows five Hemigrammus rhodostomus
swimming in the ring-shaped tank for approximately 6 seconds, during which they undergo the U-turn presented in the main
article.

The movie is available at: https://www.dropbox.com/s/bhvsusc3pz64k38/U-turn-real.mp4?dl=0.
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Supplementary Video S2. Animation of the representative U-turn showing transfer entropy dynamics. The movie
shows an animation of the representative U-turn over a time interval of approximately 2 seconds. On the top-left is the
ring-shaped tank with the five fish, represented by arrows of different shades of purple. On the bottom is the transfer entropy
between any directed pair of fish over the time interval: red dots represent positive transfer entropy and blued dots represent
negative transfer entropy. Time is discretised in steps of length 0.02 seconds and for each time step 20 points of transfer entropy
are plotted, for the 20 directed pairs that can be formed out of 5 fish. On the top-right is the network of transient neighbours
changing over time. Each node represents a fish and each directed edge entering a node indicates the transfer entropy to that
fish from the other four (the source fish is easily identifiable from the angle of the edges). The colour of the edges changes
during the U-turn: strong red indicates intense positive transfer entropy; strong blue indicates intense negative transfer entropy;
intermediate grey indicates that transfer entropy is close to zero.

The movie is available at: https://www.dropbox.com/s/qwj2pzzlsqw173m/U-turn-TEL.avi?dl=0.
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Thermodynamics and computation during collective motion near criticality
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We study self-organization of collective motion as a thermodynamic phenomenon in the context of the first
law of thermodynamics. It is expected that the coherent ordered motion typically self-organises in the presence
of changes in the (generalized) internal energy and of (generalized) work done on, or extracted from, the system.
We aim to explicitly quantify changes in these two quantities in a system of simulated self-propelled particles
and contrast them with changes in the system’s configuration entropy. In doing so, we adapt a thermodynamic
formulation of the curvatures of the internal energy and the work, with respect to two parameters that control
the particles’ alignment. This allows us to systematically investigate the behavior of the system by varying the
two control parameters to drive the system across a kinetic phase transition. Our results identify critical regimes
and show that during the phase transition, where the configuration entropy of the system decreases, the rates
of change of the work and of the internal energy also decrease, while their curvatures diverge. Importantly, the
reduction of entropy achieved through expenditure of work is shown to peak at criticality. We relate this both
to a thermodynamic efficiency and the significance of the increased order with respect to a computational path.
Additionally, this study provides an information-geometric interpretation of the curvature of the internal energy
as the difference between two curvatures: the curvature of the free entropy, captured by the Fisher information,
and the curvature of the configuration entropy.

DOI: 10.1103/PhysRevE.97.012120

I. INTRODUCTION

Collective motion involves self-organization of coherent
movement in a system of self-propelled particles and is a
pervasive phenomenon observed in many biological, chemical,
and physical systems [1]. Collective motion has been studied
in animals (e.g., flocks of birds [2], schools of fish [3], and
colonies of insects [4]), in bacteria [5], in tissue cells [6],
in moving biomolecules [7], and even in nonliving systems
such as autonomous micromotors [8]. Despite their diversity,
these systems can exhibit similar motion patterns, such as
orientated aggregations, stationary clusters, and swirls [1]. A
crucial characteristic that distinguishes collective motion from
other kinds of coordinated motion is that complex patterns can
self-organize from simple local interactions among individual
particles, without requiring any global control or leading roles
[9] but involving information cascades [10,11]. Nevertheless,
systems of self-propelled particles can display remarkable
dynamic coordination during collective motion, as well as
other interesting features, such as scalability, response to the
environment, and reconfiguration after external intrusions.

The ubiquity of collective motion, and its similarity across
different systems, suggest the existence of underlying uni-
versal principles, the investigation of which has become a
well-established, cross-disciplinary pursuit. The formulation
of general laws bridging local interactions and group-level
properties is one of the main challenges for defining a unified
theory of collective motion [12].

*emanuele.crosato@sydney.edu.au; also at CSIRO Data61, P. O.
Box 76, Epping, NSW 1710, Australia.

A first step towards this goal was the conception of dynam-
ical models [13–16]. Vicsek et al. [13] introduced a dynamical
model of collective motion inspired by ferromagnetism, in
which particles assume the average direction of motion of other
particles in its neighborhood (similarly to magnetization),
with some random perturbation (similarly to temperature).
The authors simulated the motion for gradually decreasing
random perturbation and observed a kinetic phase transition
between a disorderly moving phase and a phase with coherent
(oriented) motion, the critical point of which was localized
using a suitable order parameter. Several studies have followed
Vicsek’s intuition, and extensions of the model have been
proposed. Grégoire and Chaté [16], for example, studied the
effect of several control parameters on the collective behavior
of a modified version of Vicsek’s model, which adds a cohesion
component to the motion rules. The authors confirmed the
existence of the kinetic phase transition and, by varying the
strength of the additional cohesion component, observed three
more phases: a “gas,” a “liquid,” and a “solid” phase, also
separated by phase transitions.

More recently, Bialek et al. [17–19] provided a statistical
mechanical model for the propagation of directional order
throughout flocks. On the hypothesis that flocks have sta-
tistically stationary states, the authors calculated the maxi-
mum entropy distribution [20] of birds’ normalized velocities,
consistent with the average pairwise directional correlation
experimentally observed from the field data (i.e., large flocks of
Sturnus vulgarishas [21–23]). Bialek’s statistical mechanical
description provides a formal theoretical framework to make
quantitative predictions of emergent collective phenomena. For
instance, the model was shown to be capable of predicting the

2470-0045/2018/97(1)/012120(14) 012120-1 ©2018 American Physical Society
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existence of pairwise correlations on all length scales, as well
as four-body correlations [17]. The model was also shown to
be capable of predicting the flight directions of birds in the
interior of the flock, given the directions of the birds on the
border.

Despite this fundamental contribution, current statistical
mechanical approaches to collective motion do not explicitly
incorporate thermodynamic quantities such as free entropy and
work, dynamics of which are especially important during phase
transitions. In this article we aim to investigate this quantities
in the dynamical model of collective motion proposed by
Grégoire and Chaté [16], which undergoes a kinetic phase
transition over parameters that control the particles’ alignment:
from a “disordered motion” phase, in which particles keep
changing direction but occupy a fairly stable collective space,
to a “coherent motion” phase, in which particles cohesively
move towards a common direction. The control parameters that
we consider are the alignment strength among particles and the
number of nearest neighbors affecting a particle’s alignment.
A quasistatic process is considered, during which these two
control parameters are varied infinitesimally slowly, driving
the system across the phase transition while thermodynamic
equilibrium is maintained. The dynamics of fundamental
thermodynamical quantities, such as the generalized work,
heat and energy, are investigated over the quasistatic process,
in the context of the first law of thermodynamics.

The choice of a quasistatic protocol allows the application
of our theoretical framework, which requires the system to be
in a steady state. Moreover, the results obtained considering
a quasistatic protocol can be meaningfully interpreted in the
context of the second law of thermodynamics to get useful
insights into more realistic processes. For instance, the work
done on the system in the quasistatic limit is a lower bound for
the work that would be done on the system using a protocol in
which the control parameter is varied faster.

In this study, we use a method that allows us to give a
statistical mechanical interpretation of the curvatures of the
generalized work and of the generalized internal energy of
the system with respect to the control parameter. Such method
exploits the relationship between these two curvatures and two
information-theoretic quantities, the configuration entropy and
the Fisher information (a measure of the information that an
observed variable carries about the parameter), which can be
numerically estimated by simulating the system using different
values of the control parameters.

We also provide two information-geometric expressions
of the curvature of the internal energy and related quantities
with respect to the control parameter. On the one hand,
the curvature of the internal energy is proportional to the
difference between two curvatures: the curvature of the free
entropy, captured by the Fisher information, and the curvature
of the configuration entropy. This expression highlights a
“computational balance” present in distributed computational
processes, of which collective motion is an example. Such
balance relates the sensitivity of the system to changes in
control parameter (captured by the Fisher information) and the
system’s uncertainty (captured by the configuration entropy).
This enhances the view of the “thermodynamic balance,”
reflected by the first law in the context of quasistatic processes,
between the configuration entropy of the system, its internal

energy and the work done on, or extracted from, the system.
On the other hand, we derive another quantity as the sum of
the Fisher information and the curvature of the configuration
entropy.

Our computational results show that, in the simulated
system of particles during collective motion, the rates of change
of the generalized work and of the generalized internal energy
decrease with the control parameters, whenever the system
of self-propelled particles begins to move more coherently.
This dynamic is particularly steep near criticality, where the
curvatures of these quantities with respect to the control
parameters are shown to diverge. The configuration entropy
of the system is shown to decrease during the phase transition
as the system self-organizes into a more ordered phase. The
thermodynamic perspective adopted in this study allows us to
define a notion of thermodynamic efficiency of computation as
a ratio of entropy changes to the required work. In addition, we
propose an interpretation of this work rate as a distance along a
computational path implied by the control parameter, measured
in terms of the cumulative sensitivity to the changes in the
control parameter. Specifically, our results suggest that the
reduction of the configuration entropy, indicating the increase
in the internal order within the considered collective motion,
is most significant at criticality.

In addition to these main results, this paper confirms and
quantifies critical dynamics in statistical mechanical models
of collective motion, which were previously observed in
dynamical models [13,16]. Moreover, it is shown that the
Fisher information diverges at criticality and can therefore be
used to build a phase diagram of the dynamics of the system.

The remainder of this article is structured as follows.
Section II provides the technical preliminaries necessary for
understanding the role of the Fisher information in physical
systems, the information-geometrical interpretation of the
studied curvatures, the quasistatic protocol that we consider
and the dynamical model of collective motion. Section III
presents our statistical mechanical formulation of the curva-
tures of the generalized work and internal energy, and the
computational results of simulated collective motion. The
results are discussed in Sec. IV, where our conclusions are
also provided.

II. TECHNICAL PRELIMINARIES

A. Fisher information and physical systems

The Fisher information [24] is a known quantity in statistics
and information theory. It measures the amount of information
that an observable random variableX carries about an unknown
parameter θ . For many parameters θ = [θ1,θ2, . . . ,θM ]T , the
Fisher information matrix is defined as

Fmn(θ ) = E

{[
∂ ln p(x|θ )

∂θm

][
∂ ln p(x|θ )

∂θn

]∣∣∣∣θ
}
, (1)

where p(x|θ ) is the probability of the realization x of X given
the parameters θ and the function E(y) is the expected value
of y.

In recent years, the meaning of the Fisher information for
physical systems has been investigated in thermodynamical
and statistical mechanical terms [25–32]. Let us consider a
physical system, described by the state functions Xm(x) over
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the configuration space. The probability of the states of the
system, in a stationary state, is given by the Gibbs measure:

p(x|θ ) = 1

Z(θ )
e−βH (x,θ) = 1

Z(θ )
e− ∑

m θmXm(x), (2)

where β = 1/kbT is the inverse temperature T (kb being
the Boltzmann constant), the Hamiltonian H (x,θ ) defines
the total energy at state x, θm are thermodynamic variables
(pressure, magnetic field, chemical potential, etc.), and Z(θ ) is
the partition function [25,28]. The Gibbs free energy of such
system is

G(T ,θm) = U (S,φm) − T S − φmθm, (3)

where U is the internal energy of the system, S is the
configuration entropy, and φm is an order parameter. For a
physical system described by the Gibbs measure in Eq. (2),
the Fisher information measures the size of the fluctuations
about equilibrium in the collective variables Xm and Xn and is
related to the derivatives of the corresponding order parameters
with respect to the collective variables [29,30]:

Fmn(θ ) = 〈(Xm(x) − 〈Xm〉)(Xn(x) − 〈Xn〉)〉 = β
∂φm

∂θn

, (4)

where the angle brackets represent average values over the
ensemble.

Fisher information has been related to entropy production
[33] and also used as a variational principle to derive funda-
mental thermodynamic laws [34,35] or for predicting modeling
[31].

B. Interpretation of entropic curvatures

It has also been shown [25–28] that the Fisher information
is equivalent to the thermodynamic metric tensor:

Fmn(θ ) = gmn(θ ) = ∂2ψ

∂θm∂θn

, (5)

where ψ = ln Z = −βG is the free entropy (for isothermal
systems, ψ is proportional to the free energy). In other words,
the Fisher information is the curvature of the free entropy
(ln Z). This reveals the information-geometrical meaning of
the Fisher information as a Riemannian metric (more precisely,
the Fisher-Rao metric) for the manifold of thermodynamic
states, providing a measure of distance between thermody-
namic states. Thus, information-geometrically, the Fisher in-
formation can be interpreted as an average uncertainty density
on a statistical manifold, proportional to the volume of geodesic
balls [36].

This study provides thermodynamical interpretations for
curvatures, focusing specifically on quantities that can be
computed numerically from the probability distribution of the
observed variables, such as the configuration entropy S of the
system. In particular, we propose the curvatures

d2(S)±

dθ2
≡ d2S

dθ2
± F (θ ) (6)

as the central quantities of interest (notice that a single control
parameter θ is now used). Therefore, the quantity d2(S)±/dθ2

is either the sum of, or the difference between, average

statistical uncertainties (i.e., the volumes of geodesic balls)
attributed to the free entropy and to the configuration entropy.

In order to interpret these information-geometric, static,
quantities in terms of traditional thermodynamic quantities
(e.g., heat and work, defined dynamically) we must give
meaning to the notion of a change with respect to the control
parameter, θ , i.e., we must define the process or protocol. By
protocol we mean a defined evolution of the control parameter
in time, i.e., θ (t), which drives the system between different
states and in doing so incurs changes in heat, work, etc. By
establishing such a protocol we can give physical meaning
to integrals of the curvatures (S)±, such that d(S)±/dθ can
be readily interpreted as a change in (S)± under the action
of the protocol. It is of critical importance to recognize that
the nature of the protocol determines the physical behavior of
the quantity (S)±, i.e., its decomposition into heat and work.
The most natural example is a quasistatic protocol, which we
discuss next, though note that less conventional alternatives
can be designed (as will be discussed in Sec. IV).

C. Quasistatic protocols

A quasistatic protocol is an idealized driving process carried
out over an infinite amount of time, such that we can consider
the system to be in equilibrium throughout the process. For
instance, a linear quasistatic protocol taking the system from
a distribution characterized by θ1 to θ2, would be given by the
limit

θ (t) = lim
τ→∞ θ1 + t

τ
(θ2 − θ1). (7)

Since the system is always in equilibrium, the total entropy
production of the universe (the system and the environment)
is zero, and therefore any change in the configuration entropy
due to the driving process is identically matched by a flow of
heat that manifests as entropy change in the environment:

dS

dθ
= d〈βQgen〉

dθ
, (8)

where a sign convention dictates that Qgen is the generalized
heat flow from the environment to the system. Here the
subscript indicates a generalized heat in the sense of Jaynes
[20], such that we can consider

〈Ugen〉 = U (S,φ) − φθ (9)

and the generalized first law holds �〈Ugen〉 = �〈Qgen〉 +
�〈Wgen〉, where Wgen is the generalized work. Equation (8)
leads to a formulation of the first law of thermodynamics, in
case of a quasistatic processes, as

d〈βUgen〉
dθ

= dS

dθ
+ d〈βWgen〉

dθ
. (10)

It is worth noting that, according to the second law of
thermodynamics, a change in the free energy of the system
requires a greater or equal amount of work to be done on the
system, which is �〈Wgen〉 � �G. In the quasistatic limit the
work required is exactly the change in the free energy, therefore
�〈Wgen〉 = �G. In other words, the total work performed on
the system (which can be calculated by integrating the infinites-
imal work changes over a range of the control parameter) is
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a lower bound for the work that would be performed on the
system if we were not considering the quasistatic limit.

This methodology is very general, provided a Gibbs form
can be postulated and a probability distribution can be es-
timated. However, in this study we focus on a system of
self-propelled particles during collective motion, driven across
a phase transition by a quasistatic protocol acting on two
parameters that control the particles’ alignment. The model of
collective motion that we adopted is presented in the following
section.

D. Dynamical and statistical mechanical models of
collective motion

We consider the model of collective motion proposed
by Grégoire and Chaté [16]. Let us have N self-propelled
particles. At time t , each particle i = {1,2, . . . ,N} has position
xi(t) and velocity vi(t). The time evolution of position and
velocity is given by the following rules:

xi(t + 1) = xi(t) + vi(t), (11)

vi(t + 1) = v0	

⎡

⎣a
∑

j∈ni
c

vj (t) + b
∑

j∈ni
c

fij + ncηi

⎤

⎦. (12)

The normalization operator 	(y) = y/|y| keeps the particles’
speed constant, i.e., |vi(t)| = v0 at every time t . The argument
of the normalization operator is the sum of three velocity
components: From left to right, we have an alignment, a
cohesion, and a perturbation components. The alignment
component for particle i is the sum of the velocities of its
nearest neighborhood j ∈ ni

c of fixed size nc (i.e., ni
c includes

the nc particles with the smallest Euclidean distance from i

and is updated at each time step). The cohesion component
is the sum of the cohesion forces fij between particle i and
its neighbors. The parameters a and b are, respectively, the
weights of the alignment and the cohesion components. The
perturbation is introduced by means of a random unit vector
ηi and is weighted by the fixed number of nearest neighbors
nc of each particle.

The forces fij are functions of the distances rij:

fij(rij < rb) = −∞ · eij,

fij(rb � rij < ra) = 1
4 · rij − re

ra − re

eij,

fij(ra � rij < r0) = eij,

(13)

where rb, re, ra , and r0 are distance parameters (with rb < re <

ra < r0) and eij is the unit vector in the direction from xi(t) to
xj (t) at time t . When the distance rij between two particles
is within a “repulsion” limit rb, particle i moves away from
particle j , towards the opposite direction of eij. When rij is
between the limits ra and rb, particle i adjusts its velocity in
order to maintain an intermediate “equilibrium” distance re

from j (re is typically the average between ra and rb). When
the distance rij is larger than ra , but smaller than r0, particle
i modifies its velocity in order to get closer to j . If particle i

is farther than r0 from j , then j does not affect the cohesion
component of the velocity of i.

Collective motion can also be modelled using statistical
mechanics, for example, by providing a formulation for the
probability distribution of the velocities vi . Bialek et al. [17]
defined a statistical mechanics model of collective motion that
can describe flocking phenomena, including the dynamics in
the model by Grégoire and Chaté [16]. In its more general
version, which does not take into consideration whether the
particles are in the inner or outer region of the group, the
statistical mechanical model is the following:

p(vi |J,nc) = 1

Z(J,nc)
exp

⎡

⎣J

2

N∑

i=1

∑

j∈ni
c

vi · vj

⎤

⎦, (14)

where Z is the partition function and J = v0a/nc represents
the alignment strength between particles. Crucially, such
model has plausible dynamics that allows the system to relax
towards, and fluctuate around, an equilibrium, which is analo-
gous to many dynamical models: particles move according to
a weighted sum of neighbors’ direction while being affected
by a random perturbation.

III. METHOD AND RESULTS

A. Relating information-theoretic and thermodynamic
quantities in the quasistatic limit

Based on the relations presented in Secs. II A, II B, and II C,
we use Eqs. (3), (5), and (9) to obtain

F (θ ) = −d2〈βUgen〉
dθ2

+ d2S

dθ2
, (15)

which then leads to the definition of

d2(S)−

dθ2
≡ d2S

dθ2
− F (θ ) = d2〈βUgen〉

dθ2
. (16)

This expression, which is a key result of our study, makes
it evident that the second derivative of the internal energy
scaled by β (expressed on the right-hand side) is proportional
to the difference between two curvatures: the curvature of
the free entropy, captured by the Fisher information, and the
curvature of the configuration entropy. It is important to note
that Equation (15) holds in general, since Ugen is related, only,
to the stationary distribution given by the Gibbs measure.

However, the decomposition of Ugen into Qgen and Wgen

(β = 1) depends on the protocol. Here we explicitly relate the
Fisher information and the generalized work, energy, and heat
in systems driven by quasistatic protocols. In the quasistatic
limit, we show how the Fisher information can be related
to the second derivative of the generalized work. By further
differentiating the first law for quasistatic processes in Eq. (10)
over the control parameter and by expressing it for the work
term, we obtain

d2〈βWgen〉
dθ2

= d2〈βUgen〉
dθ2

− d2S

dθ2
, (17)

which, by comparison with Eq. (15), leads to another important
result:

F (θ ) = −d2〈βWgen〉
dθ2

. (18)
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In Eq. (18), the Fisher information has an information-
geometric meaning at given values of θ , while we have no
physical interpretation for 〈Wgen(θ )〉 unless we also specify a
protocol and a path θ0 → θ . If we assume that θ increases, and
thus θ > θ0, then we have

∫ θ

θ0
F (θ ′)dθ ′ = −

∫ θ

θ0

d2〈βWgen〉
d(θ ′)2

dθ ′

= −d〈βWgen〉
dθ

+ c(θ0). (19)

The value of c(θ0) can be determined by identifying the value
of the control parameter θ∗, for which small changes incur no
work, i.e.,

d〈βWgen〉
dθ

∣∣∣∣
θ=θ∗

= 0, (20)

where we call θ∗ the zero-response point. Consequently, we
may write

d〈βWgen〉
dθ

= −
∫ θ

θ∗
F (θ ′)dθ ′. (21)

In many systems the value of θ∗ has a particular significance
computationally, as will be demonstrated in Sec. III D. Once
θ∗ is determined, we obtain:

c(θ0) =
∫ θ∗

θ0
F (θ )dθ. (22)

We demonstrate that there is another way to relate the Fisher
information and the curvature of the configuration entropy.
As described in Appendix A, the second derivative of the
configuration entropy S(θ ) = −∑

x p(x|θ ) ln p(x|θ ) over θ ,
can be explicitly taken, leading to our third result

d2(S)+

dθ2
≡ d2S

dθ2
+ F (θ ) = −

∑

x

d2p(x|θ )

dθ2
ln p(x|θ ). (23)

Unlike Eq. (16), which captured the difference between two
curvatures, Eq. (23) captures the sum of two curvatures and
thus reflects a different information-geometric aspect of critical
dynamics during collective motion. Contrasting Eqs. (16) and
(23), the second derivative of 〈βUgen〉 with respect to θ can be
expressed in terms of F (θ ) and (S)+ as

d2〈βUgen〉
dθ2

= d2(S)+

dθ2
− 2F (θm). (24)

In our computational analysis, which are presented in
Sec. III D, we will use Eq. (16), while also showing the profile
of the aggregated curvature in Eq. (23).

Finally, we propose a measure for the thermodynamic effi-
ciency of computation, defined as the reduction in uncertainty
(i.e., the increase in order) from an expenditure of work for a
given value of the control parameter:

η ≡ −dS/dθ

d〈βWgen〉/dθ
= −dS/dθ

∫ θ∗
θ

F (θ ′)dθ ′
, (25)

which can be considered entirely in computational terms as
the ratio of increasing order at θ to the cumulative sensitivity
incurred over a process from θ to the zero-response point θ∗.

B. Simulations and probability distribution of the relative
particle velocity

Computing the Fisher information and the entropy of a
system requires the knowledge of the probability distribution
p(x|θ ) of the random variable, given the control parameters.
For collective motion of simulated self-propelled particles, the
control parameters that we consider are the alignment strength
J between particles and the number of nearest neighbors nc

of each particle, while the random variable that we consider is
the particles’ velocity vi with respect to the group (assuming
that the probability distribution is the same for each particle
in the group). Since in this study we consider a model of col-
lective motion, the probability distribution of the of particles’
velocity can be estimated from the simulation of the system.
Alternatively, one can, for example, follow Bialek et al. [17]
and estimate p(vi |J,nc) from experimental data using Eq. (14).

We simulated the dynamical model [16] in Eqs. (11) and
(12) setting the weight of the alignment component to a =
Jnc/v0 for several different combinations of the parameters J

and nc, with J ranging between 0.001 and 0.2 and nc ranging
between 1 and 30. In every simulation, we used N = 512
particles and the following values of the parameters: rb = 0.2,
re = 0.5, ra = 0.8, r0 = 1, b = 5, and v0 = 0.05. The same
setup of the model was used by Bialek et al. [17] to validate
their statistical mechanical model and corresponds to the liquid
phase identified by Grégoire and Chaté [16]. We performed
100 runs for each combination of J and nc that we considered.
At the beginning of each run, the positions of the particles
were randomly set within a sphere of radius proportional to
the cube root of the number of particles. The initial velocity
of the particles was also randomly chosen. During each run,
the three-dimensional velocities vi of each particles i were
recorded for 100 time steps after a relaxation time of 50 that
allows the system to reach the stationary state.

Running the system over a range of values of the control
parameters, using relatively small changes and allowing for a
relaxation time, not only enabled us to explore the behavior
of the system across the space of the control parameters but
also provided an approximation of a quasistatic protocol. For
example, all runs with the same value of nc and J varying
from an initial to a final value can be considered, altogether,
as a quasistatic process in which a single control parameter, J ,
is varied infinitesimally slowly over time. This approximation
allows us to carry out the thermodynamical analysis described
in Secs. III D.

The simulations (see Supplemental Video 1 [37] for a
demonstration of the dynamics of the system) show that the
model has two different kinetic phases of collective motion, as
Grégoire and Chaté had previously pointed out in their study
[16]. In the disordered motion phase, illustrated in Figure 1(a),
particles keep changing direction but maintain a fairly stable
collective position. This phase corresponds to lower values
of the alignment weight a: In the figure, for example, the
parameter J , which is directly proportional to the alignment
weight, is set to a low value of 0.001, while nc is set to 20. In
the coherent motion phase, illustrated in Figure 1(b), particles
face a common general direction and collectively move along
it. This phase corresponds to higher values of a: In the figure,
the parameter J is increased to 0.2, while nc is again set to 20.
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(a)

(b)

FIG. 1. Two kinetic phases of the model of collective motion.
Each arrow represents a particle with its position and velocity in the
(x,y,z) space. Figure 1(a) is taken from a simulation of the model in
which J = 0.001 and nc = 20, after the relaxation time, and shows
the system in its disordered motion phase. Figure 1(b) is taken from
a simulation in which J = 0.2 and nc = 20, after the relaxation time,
and shows the system in its coherent motion phase.

The case in which nc is fixed at 20 and J varies from 0.001 to
0.2 is used as the main example here and throughout the rest
of the article.

In order to localize the phase transition, Grégoire and Chaté
[16] (as well as Vicsek et al. [13] in a previous model) utilized

FIG. 2. Average normalized velocity of the group over the align-
ment strength J . The horizontal axis represents J from 0 and 0.2, at
steps of 0.001, and the vertical axis represents the average normalized
velocity of the group va = 1

Nv0
| ∑N

i=1 vi | over the simulation time. The
parameter nc is fixed at 20.

the order parameter

va = 1

Nv0

∣∣∣∣∣

N∑

i=1

vi

∣∣∣∣∣, (26)

i.e., the absolute value of the average normalized velocity.
We inspected va in our simulations for different combinations
of the control parameters J and nc. An example is given
in Fig. 2, which shows the average va computed over all
simulations for each value of J from 0.001 to 0.2 and using
a fixed value of nc = 20. The figure clearly reveals the phase
transition: The average normalized velocity grows with the
alignment strength, and the increment is particularly steep
near a critical point, at approximately J = 0.075. A similar
behavior is observed when the alignment strength J is fixed
and we vary the number of nearest neighbors nc.

The probability distribution of the particles’ velocity was
then estimated from the data collected from the simulations.
A possible choice of the random variable is the velocity of
particles with respect to the average velocity over all particles,
as it changes over time. However, the average velocity over all
particles is not a suitable reference for large systems (512 in
our case) in the general liquid phase under consideration. In
fact, even when the group is moving coherently, subgroups of
particles which are far from each other can, at least temporarily,
be oriented towards different directions. A more suitable
choice of the random variable, and the one we made in this
study, is the velocity of a particle with respect to the average
velocity of other particles within a certain neighborhood (such
neighborhood should not be confused with the nc nearest
neighbors). All the results presented in this paper utilize this
choice of the random variable.

In order for their probability distribution to be numerically
estimated, the velocities vi need to be discretized. This was
done by discretizing the polar and azimuthal angles αp and
αa [see Fig. 3(a)] of the velocity into bins measuring 4◦
each. For each combination of J and nc, we estimated the
probabilities p(sk|J,nc) of vi being within the cluster sk , where
k enumerates the combinations of the two bins for αp and αa .
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FIG. 3. Probability distribution of particles’ velocity for different values of J . Figure 3(a) illustrates how a particle’s velocity, with respect
to the average velocity of the particles in its neighborhood, is defined by two spherical coordinates. The orange arrow represents the average
velocity of the neighboring particles. A coordinate system is created so that the average velocity of the neighborhood is the z axis. The vector
vi (blue arrow) is then the velocity of a particle with respect to this coordinate system, which can be expressed by the spherical coordinates
(ρ,αp,αa), where ρ is the radial distance, αp ∈ [−π,π ] is the polar angle and αa ∈ [−π/2,π/2] is the azimuthal angle. Since in the model that
we consider the speed of the particles is constant, αp and αa are sufficient for specifying vi . Figures 3(b)–3(f) show the probability distribution
of the discretized cluster velocity p(sk|J,nc), for increasing values of J from 0.001 to 0.2 and with nc fixed at 20. The horizontal and vertical
axis are used for representing sk and indicate the azimuthal and polar angles, respectively, while p(sk|J,nc) is represented using a color scale,
which varies from dark blue for the lowest values to light yellow for highest values.

The probabilities p(sk|J,nc) were estimated from the velocities
of all the 512 particles, collected over all the 100 simulations
in which the combination of J and nc was used by dividing the
number of recorded velocities within sk by the total number
of recorded velocities. An example is given in Fig. 3, which
shows p(sk|J,nc) for increasing values of J , from 0.001 to
0.2, fixing nc to 20 (see Supplemental Video 2 [37] for the full
change of p(sk|J,nc) over J at steps of 0.001).

For lower values of J between 0.001 and 0.5 [see Figs. 3(b)
and 3(c)], which correspond to the disordered motion phase, the
probability p(sk|J,nc) is distributed almost homogeneously
among all velocity clusters sk , indicating that the particles’ ve-
locity is only very weekly correlated with the average velocity
of their neighbors. Additionally, we can observe that within this
interval of J , the probability distribution changes slowly. On
the contrary, as J increases from 0.05 to 0.1 [see Figs. 3(c) and
3(d)], the probability p(sk|J,nc) intensifies around the velocity
clusters sk that correspond to αp and αa that are closer to 0,
indicating that the velocity of a particle is now more likely to be
aligned with the average velocity of its neighbors. The change
here is abrupt, with the probability distribution for J = 0.1
[Fig. 3(d)] becoming clearly nonuniform. Contrasting Fig. 3
with Fig. 2 we can see that this change happens near the critical
point at 0.075. For higher values of J from 0.1 to 0.2 [see
Figs. 3(d) to 3(f)], which correspond to the coherent motion
phase, the probability p(sk|J,nc) keeps becoming more dense
around αp and αa that are closer to 0, indicating that particles
increasingly intensify their alignment with their neighbors.

These observations are addressed more formally in the
next section, where we show that the Fisher information can
quantify the sensitivity of the probability distribution to the
control parameters.

C. Fisher information and the phase transition

Fisher information allows us to quantify the amount of
information that velocities carry about the control parameters
J and nc. Fisher information over the alignment strength J can

be calculated from the probabilities p(sk|J,nc) estimated from
the simulations, as

F (J,nc) =
∑

k

1

p(sk|J,nc)

[
d p(sk|J,nc)

dJ

]2

, (27)

having fixed the value of nc. Notice that Eq. (27) is equivalent
to Eq. (1), for the case in which only one control parameter is
considered and the random variable is discrete. The derivative
of p(sk|J,nc) over J can be computed numerically using the
symmetric difference quotient two-point estimation.

We computed the Fisher information over J from 0.001
to 0.2, at steps of 0.001, for several fixed values of nc. In
Fig. 4 we show the Fisher information over J for our example
case of nc = 20. We can observe that the Fisher information
is mostly low, except around the critical point of the kinetic

FIG. 4. Fisher information over the parameter J . The horizontal
axis represents J from 0 to 0.2, at steps of 0.001, and the vertical axis
represents the Fisher information F (J,nc), with the parameter nc is
fixed at 20.
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FIG. 5. Phase diagram using maximum Fisher information. The
horizontal axis represents the alignment strength J between particles,
while the vertical axis represents the number of nearest neighbors
nc. Red crosses indicate the values of J that yield to the higher
Fisher information for fixed values of nc from 10 to 30 at steps of
5. Analogously, blue circles indicate the values of nc that yield to
the higher Fisher information, for fixed values of J from 0.05 to 0.2
at steps of 0.25. The yellow dotted line is the function J = v0a/nc,
with a = 30 and v0 = 0.05, which approximates the critical curve
that separates the coherent and disordered motion phases.

phase transition at approximately J = 0.075, where it diverges
positively. Analogous results were obtained using different
fixed values of nc. The Fisher information was similarly
computed over the number of nearest neighbors nc from 1
to 30, at unitary steps, for several fixed values of J between
0.001 and 0.2. An example is shown in Appendix C, where it is
also evident that the Fisher information diverges at the critical
point of the kinetic phase transition.

The divergence of the Fisher information at criticality,
exemplified in a system of self-propelled particles performing
collective motion, allows us to localize the critical points of
the kinetic phase transition in a systematic and generic way,
without relying on a specific order parameter, which may or
may not be defined in general. Thus, this method may be used
to detect phase transitions in cases in which the definition of a
suitable order parameter is problematic.

Having observed that the Fisher information diverges at the
critical point, we can use it to create a phase diagram of the
behavior of the system, over the two control parameters J and
nc. Figure 5 shows the phase diagram that we obtained by
finding, for several fixed values of nc, the corresponding values
of J that yields the maximum Fisher information and, vice
versa, by finding values of nc that yield the maximum Fisher
information for several fixed values of J . We can see that the
critical combinations of J and nc can be approximated by the

FIG. 6. Curvature of the configuration entropy of the system over
J . The horizontal axis represents J from 0 to 0.2, at steps of 0.001, and
the vertical axis represents the curvature of the configuration entropy
of the system S(J,nc), with the parameter nc is fixed at 20.

curve J = v0a/nc where, in this case, a = 30. This should not
come as a surprise since, in the dynamical model used for the
simulation, we set the weight of the alignment component to
a = Jnc/v0. However, the topological nature of the parameter
nc makes this result nontrivial.

D. Thermodynamical analysis of collective motion

As described in Sec. III A, the Fisher information represents
the negative second derivative of the generalized work done
on, or extracted from, the system due to changing the control
parameter in the quasistatic limit. Therefore, Figure 4 also
provides, with opposite sign, the curvature of work with respect
to the alignment strength J (assuming β = 1) for our example
case in which the number of nearest neighbors nc is fixed at 20
and J varies from 0.001 to 0.02. Hence, the second derivative
of work diverges negatively near the critical point.

On the other hand, the second derivative of the internal
energy of the system, over a control parameter, is proportional
to the difference between two curvatures: the second derivative
of the configuration entropy of the system and the Fisher
information (see Eq. (16)). For our system of self-propelled
particles, the configuration entropy can be computed for every
combination of J and nc as

S(J,nc) = −
∑

k

p(sk|J,nc) ln p(sk|J,nc). (28)

The curvature of the configuration entropy was obtained by
numerically computing the second derivative of the S(J,nc)
determined by Eq. (28), over the parameter J , using the sym-
metric difference quotient two-point estimation. The result is
shown in Fig. 6, while the configuration entropy itself is shown
in Appendix B and its first derivative can be seen in Fig. 9(a). It
can be observed that the curvature of the configuration entropy
is also mostly low, except near the critical point at J = 0.075,
where it diverges negatively from the left and positively from
the right, thus exhibiting a discontinuity.

Applying Eq. (16), we can calculate the second derivative
of the internal energy (scaled by β) with respect to J as the
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FIG. 7. Second derivative of the generalized internal energy with
respect to J (β = 1). The horizontal axis represents J from 0 to 0.2,
at steps of 0.001, and the vertical axis represents the second derivative
of the generalized internal energy with respect to J . The parameter
nc is fixed at 20.

difference between the Fisher information in Fig. 4 and the
curvature of the configuration entropy in Fig. 6, that is,

d2〈βUgen〉
dJ 2

= d2S(J,nc)

dJ 2
− F (J,nc), (29)

yielding the result in Fig. 7. It can be observed that the second
derivative of 〈βUgen〉 also diverges at the critical point of the
phase transition. In fact, it changes over J similarly to the sec-
ond derivative of the generalized work (the opposite of the
Fisher information) in Fig. 4.

If we consider the system of self-propelled particles as a
system that performs distributed computation during collective
motion, then Figs. 4, 6, and 7 will reveal a computational
balance between the sensitivity and the uncertainty of the
computation. On the one hand, the sensitivity of the system
to changes in the control parameter is captured by the Fisher
information in Fig. 4. On the other hand, the uncertainty of the
computation is captured by the curvature of the configuration
entropy of the system in Fig. 6. In either the disordered motion
phase or the coherent motion phase, Fig. 7 shows that there is
a balance between the sensitivity and the uncertainty, but it is
clear that this balance is broken at criticality.

The sum of the Fisher information and the curvature of
the configuration entropy was also inspected. For the system
of self-propelled particles, this quantity varying over J is
determined as

d2(S)+

dJ 2
= −

∑

k

d2p(sk|J,nc)

dJ 2
ln p(sk|J,nc) (30)

and is shown in Fig. 8. It can be observed that this quantity
also has a discontinuity at criticality, similarly to the curvature
of the configuration entropy.

The rate of change over J of the generalized work (β = 1)
and the generalized internal energy (β = 1) can be obtained
by numerically integrating the curvatures of these quantities
over J . As explained in Sec. III A, this can only be calculated
if the integration starts from a point where the work rate, or

FIG. 8. Aggregated curvature d2(S)+/dJ 2. The horizontal axis
represents J from 0 to 0.2, at steps of 0.001, and the vertical axis
represents the aggregated curvature. The parameter nc is fixed at 20.

the internal energy rate, with respect to J is known. In our
case, we assert that the zero-response point J ∗ is realized as
J → ∞, since in this region dJ produces no work, because
all the particles are already perfectly aligned. Consequently,
we associate the zero-response point with the state of perfect
order. In our case, we have J ∗ = ∞ and choose J 0 = 0, which,
according to Eq. (22), yields

c(0) =
∫ ∞

0
F (J,nc)dJ (31)

and

d〈βWgen〉
dJ

= −
∫ J

0
F (J ′,nc)dJ ′ + c(0). (32)

Computing c(0) requires a numerical estimation, which we
approximated to have a lower bound, c(0) > 800, for nc = 20.
This is reflected in all plots. The integration was done using the
cumulative trapezoidal numerical integration, and the result is
shown in Fig. 9(a). We can see that the rate of change of the
generalized work (green crosses) decreases with J . Figure 9(a)
also shows the first derivative of the configuration entropy over
J (blue asterisks). As we can see, the configuration entropy
decreases around the critical point, where the system of self-
propelled particles self-organizes in a more ordered phase and
begins to display coherent collective motion.

Importantly, as the alignment strength J increases, the
entropy decreases and the work rate is positive: Generating
order requires work to be expended. Specifically at the critical
point we find that the ratio of generated order to the work rate
peaks, indicating that the maximal thermodynamical efficiency
of computation carried out by the system of self-propelled
particles, that is,

η = −dS(J,nc)/dJ

d〈βWgen〉/dJ
= −dS(J,nc)/dJ∫ ∞

J
F (J ′,nc)dJ ′ (33)

is the highest at criticality [see Fig. 9(b)]. Explicitly, in
computational terms, the maximum thermodynamic efficiency
corresponds to a maximal ratio of generated order to the
sensitivity accumulated over a process running from the
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(a)

(b)

FIG. 9. Rates of change of work, internal energy, and configura-
tion entropy with respect to J , with nc is fixed at 20. In both graphs,
the horizontal axis represents J from 0 to 0.2, at steps of 0.001. The
green crosses in Fig. 9(a) represent the rate of change with respect to
J of the generalized work (β = 1), the red dots represent the rate of
change with respect to J of the generalized internal energy (β = 1),
and the blue asterisks represent the rate of change with respect to J

of the configuration entropy. Figure 9(b) shows the thermodynamic
efficiency of computation η over J .

current state to the state of perfect order (the zero-response
point). Since the Fisher information is always positive, the
denominator

∫ ∞
J

F (J ′)dJ ′ can be interpreted as a measure
of distance, along the trajectories of J , from the perfectly
ordered state. Thus, it scales the increase in order as the
control parameter changes. For example, achieving one bit of
uncertainty reduction near the state of perfect order is much
more significant than achieving one bit of uncertainty reduction
in a largely disordered state. This means that at criticality, the
reduction of uncertainty is the most significant, reflected in the
highest thermodynamic efficiency of computation.

A similar analysis was conducted for the case in which the
alignment strength J is fixed and the parameter nc changes.
The results are presented in Appendix C.

IV. DISCUSSION AND CONCLUSIONS

In this study we presented a theoretical framework for
measuring fundamental thermodynamical quantities, such as
the generalized heat, work, and energy, in systems driven
by quasistatic protocols. Importantly, such framework relates
these thermodynamical quantities to information-theoretic
ones and specifically to the configuration entropy and the
Fisher information. We applied the framework to a system of
simulated self-propelled particles during collective motion and
studied the (generalized) internal energy and work done on, or
extracted from, the system as it goes through a kinetic phase
transition.

The model of collective motion that we considered is the one
proposed by Grégoire and Chaté [16], which is known to have
a kinetic phase transition over control parameters influencing
the particles’ alignment: from a disordered motion phase, in
which particles maintain a fairly stable collective position, to
a coherent motion phase, in which particles cohesively move
towards a common direction. We have considered two control
parameters, i.e., the alignment strength between particles and
the number of nearest neighbors influencing the particles’
alignment, within intervals in which the kinetic phase transition
is observed. In order to approximate a quasistatic protocol,
we simulated the system for chosen values of the control
parameters, under the assumption that the system reaches a
stationary state after a certain relaxation time, and we repeated
the experiments for different values of the control parameters.
We also used the data collected with the simulations to
numerically estimate the probability distribution of the velocity
of the particles at different values of the control parameters.

Our approach involves a statistical mechanical formulation
of the second derivatives of the generalized internal energy
and the generalized work with respect to the control param-
eters, based on relationships between these quantities and
two other quantities, the Fisher information and the curvature
of the configuration entropy, which can be calculated from
the probability distribution of the velocities. Additionally, our
method provides an information-geometric interpretation of
the curvature of the internal energy of the system (scaled by
β) as the difference between two curvatures: the curvature of
the free entropy, captured by the Fisher information, and the
curvature of the configuration entropy [Eq. (16)]. Another ex-
pression [Eq. (23)], also interpreted information-geometrically
as an aggregated curvature, is given for the sum of the Fisher
information and the curvature of the configuration entropy of
the system.

The expression representing the difference between curva-
tures [Eq. (16)] highlights the computational balance between
the sensitivity of the computation, captured by the Fisher
information, and the uncertainty of the computation, captured
by the configuration entropy, that is performed by the system
of self-propelled particles during collective motion. Our nu-
merical results show that such balance is stressed at criticality,
where the curvatures with respect of the control parameters
of the generalized work and the generalized internal energy,
as well as the curvature of the configuration entropy of the
system, diverge. The rates of change of the generalized work
and the generalized internal energy over the control parameters
were estimated from the curvatures of these quantities, using
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numerical integration. The results show that during the kinetic
phase transition, when the configuration entropy of the system
decreases very rapidly, both the rate of change of the work and
the internal energy decrease dramatically.

Our results support the view that flocking behavior, which
combines coherence and responsiveness to external pertur-
bations (e.g., predatory attacks), exhibits criticality in the
statistical mechanical sense [17,18,38,39]. Moreover, our re-
sults suggest that the highest thermodynamic efficiency of
computation η, relating the reduction of the configuration
entropy to the required work rate, is achieved at criticality.
We have also shown that this quantity can be interpreted as a
significance of entropy reduction with respect to the distance
along a computational path to a perfectly ordered state, where
the distance is understood to mean the cumulative sensitivity
captured by the integral of the Fisher information.

When applying the proposed theoretical framework, it is
crucial to imbue the derivative with respect to the control
parameter with physical meaning. In this study, we have
considered the most natural case of a quasistatic protocol;
however, less conventional alternatives can be constructed. For
instance, one can think of a feedback process, in which the
protocol is changed in response to measurements of the process
[40–42]. If the measurements gain equal or more information
than the free energy change, then the measurement can be
used to change the protocol so that zero work is performed
(or extracted) on changing the control parameter. Because of
the first law of thermodynamics, if no work is done, then
�〈Ugen〉 = �〈Qgen〉, which, following Eq. (29) or (16), leads
to:

d2(S)−

dJ 2
= d2〈βQgen〉

dJ 2
= d2S(J,nc)

dJ 2
− F (J,nc). (34)

Thus, the thermodynamic interpretation of d2(S)−/dJ 2, pro-
vided by Eq. (16), changes: It is no longer the curvature of the
generalized internal energy of the system (scaled by β). It is
instead the curvature of the heat (scaled by β), which can be
interpreted as the rate of change of the entropy flux �J from
the system to the environment [32,43]:

�J =
∫

d2〈βQgen〉
dJ 2

dJ. (35)

If we assume that the whole system, which includes the
self-propelled particles as well as the environment, is isolated,
then its total entropy production �J is the difference between
the rate of change of the configuration entropy of the system of
self-propelled particles and the entropy flux to the environment
(given the sign convention):

�J = dS(J,nc)

dJ
− �J . (36)

In light of this relationship, integrating Eq. (34) leads to the
interpretation of the Fisher information as the rate of change
of the total entropy production with respect to the control
parameter:

�J =
∫

F (J,nc)d(J ). (37)

Hence, if we look again at Fig. 9(a), but this time considering
the feedback process, it is clear that increasing J would

lead to a negative spike in total entropy production because
the information has been used to reduce the work done on
the system, thus decreasing irreversibility. In contrast, for
decreasing J a positive spike would be observed because
the information is being used counterproductively to extract
zero work when positive work could be extracted, increasing
irreversibility. Interestingly, the ratio of the rate of change of
the configuration entropy of the system to the total entropy
production [see Fig. 9(b)] would be highest at criticality.

Total entropy production and entropy flux have been studied
in a variety of systems, including the majority-vote model [44],
copolymerization processes [45], a population model [46],
interacting lattice gas [47], and the Ising model [48,49], among
others. All these studies have identified phase transitions over
some control parameter (for instance, the temperature and the
coupling constant were chosen as control parameters in the
Ising model [48,49]). The theoretical framework proposed in
this study could be applied to a range of processes in which it
can be assumed that no work is done on, or extracted from, the
system.

In addition to our main results, we have also shown that the
critical points of the kinetic phase transition are captured by
the divergence of the Fisher information. This allowed us to
use this measure to construct a phase diagram of the dynamics
of the system for different combinations of the two control
parameters considered, showing the critical regime separating
the coherent and disordered motion phases.

Broadly, our results contribute to “information thermody-
namics,” an emerging field exploring relationships between
information processing and its thermodynamic costs [50–58].
These relationships are of particular interest for complex
systems which need to perform their distributed computation
efficiently [59–63]. We hope that our work would contribute
towards a unified theory of collective motion drawing on statis-
tical mechanics and information thermodynamics, applicable
to diverse collective motion phenomena including active matter
[64,65].
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APPENDIX A: DERIVATION OF THE CURVATURE OF
THE SYSTEM’S ENTROPY

The Fisher information F (θ ) can be related to the second
derivative of the configuration entropy S(θ ) as follows. The
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first derivative of S(θ ) over θ is

dS

dθ
= −

∑

x

d(p(x|θ ) ln p(x|θ ))

dθ

= −
∑

x

[
d p(x|θ )

dθ
ln p(x|θ ) + d p(x|θ )

dθ

]

= −
∑

x

d p(x|θ )

dθ
ln p(x|θ ) −

∑

x

d p(x|θ )

dθ

= −
∑

x

d p(x|θ )

dθ
ln p(x|θ ) − d

∑
x p(x|θ )

dθ

= −
∑

x

d p(x|θ )

dθ
ln p(x|θ ). (A1)

The second derivative S(θ ) over θ is

d2S

dθ2
= −

∑

x

d
[

d p(x|θ)
dθ

ln p(x|θ )
]

dθ

= −
∑

x

d2 p(x|θ )

dθ2
ln p(x|θ )

−
∑

x

1

p(x|θ )

[
d p(x|θ )

dθ

]2

= −
∑

x

d2 p(x|θ )

dθ2
ln p(x|θ ) − F (θ ). (A2)

Comparing Equation (A2) with the definition of d2(S)+
dθ2 given

by Eq. (23), that is,

d2(S)+

dθ2
≡ d2S

dθ2
+ F (θ ), (A3)

yields:

d2(S)+

dθ2
= −

∑

x

d2p(x|θ )

dθ2
ln p(x|θ ). (A4)

FIG. 10. Entropy of the system over J . The horizontal axis
represents J from 0 to 0.2, at steps of 0.001, and the vertical axis
represents the entropy of the system S(J,nc), with the parameter nc

is fixed at 20.

FIG. 11. Fisher information over nc. The horizontal axis repre-
sents nc from 1 to 30, and the vertical axis represents the Fisher
information Fnc

(J,nc), with the parameter J is fixed at 0.1.

APPENDIX B: CONFIGURATION ENTROPY OVER THE
ALIGNMENT STRENGTH

Figure 10 shows that the configuration entropy of the system
decreases withJ , as the group becomes more polarized towards
a flocking direction, with the drop being particularly steep in
the proximity of the critical point.

APPENDIX C: ENTROPY PRODUCTION AND FLUX OVER
THE NUMBER OF NEAREST NEIGHBORS

The thermodynamical analysis in Sec. III D has also been
carried out changing the control parameter nc (the number
of nearest neighbors affecting the alignment component of

FIG. 12. Rates of change of work, internal energy, and configu-
ration entropy with respect to nc with J is fixed at 0.1. The horizontal
axis represents nc from 1 to 30. The green crosses represent the rate
of change with respect to nc of the generalized work (β = 1), the red
dots represent the rate of change with respect to nc of the generalized
internal energy (β = 1), and the blue asterisks represent the rate of
change with respect to nc of the configuration entropy.
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particles motion), while fixing the control parameter J (the
alignment strength). Analogous results to varying J while
fixing nc have been obtained, some of which are shown in this
appendix. Figure 11 shows that the Fisher information, which
also represents the opposite of the curvature of the generalized
work (scaled by β) with respect to the number of neighbors,
diverges at the critical point nc = 15. Figure 12 shows the rates
of change with respect to the number of nearest neighbors of

the generalized work (β = 1), the generalized internal energy
(β = 1), and the configuration entropy. Computing c(nc = 1)
requires a numerical estimation, which we approximated to
have a lower bound c(1) > 5 for J = 0.1. The rates of change
of work and internal energy decrease with nc, and the drop
is particularly steep at criticality. The rate of change of the
configuration entropy is instead generally low, apart from near
the critical point, where it drops.

[1] T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep. 517, 71
(2012).

[2] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani,
I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M.
Viale, and V. Zdravkovic, Interaction ruling animal collective
behavior depends on topological rather than metric distance:
Evidence from a field study, Proc. Natl. Acad. Sci. USA 105,
1232 (2008).

[3] J. K. Parrish, S. V. Viscido, and D. Grunbaum, Self-organized
fish schools: An examination of emergent properties, Biol. Bull.
202, 296 (2002).

[4] J. Buhl, D. J. T. Sumpter, I. Couzin, J. J. Hale, E. Despland,
E. R. Miller, and S. J. Simpson, From disorder to order in
marching locusts, Science 312, 1402 (2006).

[5] A. Sokolov, R. E. Goldstein, F. I. Feldchtein, and I. S. Aranson,
Enhanced mixing and spatial instability in concentrated bacterial
suspensions, Phys. Rev. E 80, 031903 (2009).

[6] B. Szabo, G. J. Szöllösi, B. Gönci, Z. Jurányi, D. Selmeczi,
and T. Vicsek, Phase transition in the collective migration of
tissue cells: Experiment and model, Phys. Rev. E 74, 061908
(2006).

[7] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch,
Polar patterns of driven filaments, Nature 467, 73 (2010).

[8] M. Ibele, T. E. Mallouk, and A. Sen, Schooling behavior of light-
powered autonomous micromotors in water, Angew. Chem. Int.
Ed. 48, 3308 (2009).

[9] S. Camazine, Self-Organization in Biological Systems, Princeton
Studies in Complexity (Princeton University Press, Princeton,
NJ, 2001).

[10] I. D. Couzin, Collective minds, Nature 445, 715 (2007).
[11] X. R. Wang, J. M. Miller, J. T. Lizier, M. Prokopenko, and L. F.

Rossi, Quantifying and tracing information cascades in swarms,
Plos One 7, e40084 (2012).

[12] I. D. Couzin, Collective cognition in animal groups,
Trends Cognit. Sci. 13, 36–43 (2009).

[13] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
Novel Type of Phase Transition in a System of Self-Driven
Particles, Phys. Rev. Lett. 75, 1226 (1995).

[14] J. Toner and Y. Tu, Long-range Order in a Two-Dimensional
Dynamical XY Model: How Birds Fly Together, Phys. Rev. Lett.
75, 4326 (1995).

[15] J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative
theory of flocking, Phys. Rev. E 58, 4828 (1998).

[16] G. Grégoire and H. Chaté, Onset of Collective and Cohesive
Motion, Phys. Rev. Lett. 92, 025702 (2004).

[17] W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri, M.
Viale, and A. M. Walczak, Statistical mechanics for natural
flocks of birds, Proc. Natl. Acad. Sci. USA 109, 4786 (2012).

[18] W. Bialek, A. Cavagna, I. Giardina, T. Mora, O. Pohl, E. Silvestri,
M. Viale, and A. M. Walczak, Social interactions dominate speed
control in poising natural flocks near criticality, Proc. Natl. Acad.
Sci. USA 111, 7212 (2014).

[19] M. Castellana, W. Bialek, A. Cavagna, and I. Giardina, Entropic
effects in a nonequilibrium system: Flocks of birds, Phys. Rev.
E 93, 052416 (2016).

[20] E. T. Jaynes, Information theory and statistical mechanics,
Phys. Rev. 106, 620 (1957).

[21] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani,
I. Giardina, A. Orlandi, G. Parisi, A. Procaccini, M. Viale,
and V. Zdravkovic, Empirical investigation of starling flocks: A
benchmark study in collective animal behaviour, Anim. Behav.
76, 201 (2008).

[22] A. Cavagna, I. Giardina, A. Orlandi, G. Parisi, A. Procaccini, M.
Viale, and V. Zdravkovic, The STARFLAG handbook on collec-
tive animal behaviour: 1. Empirical methods, Anim. Behav. 76,
217 (2008).

[23] A. Cavagna, I. Giardina, A. Orlandi, G. Parisi, and A. Procaccini,
The STARFLAG handbook on collective animal behaviour: 2.
Three-dimensional analysis, Anim. Behav. 76, 237 (2008).

[24] R. A. Fisher, On the mathematical foundations of theoretical
statistics, Philos. Trans. R. Soc. London A 222, 309 (1922).

[25] D. C. Brody and N. Rivier, Geometrical aspects of statistical
mechanics, Phys. Rev. E 51, 1006 (1995).

[26] D. C. Brody and A. Ritz, Information geometry of finite Ising
models, J. Geom. Phys. 47, 207 (2003).

[27] W. Janke, D. A. Johnston, and R. Kenna, Information geometry
and phase transitions, Physica A 336, 181 (2004).

[28] G. E. Crooks, Measuring Thermodynamic Length, Phys. Rev.
Lett. 99, 100602 (2007).

[29] G. E. Crooks, Fisher Information and Statistical Mechanics,
Tech. Rep. (2011).

[30] M. Prokopenko, J. T. Lizier, O. Obst, and X. R. Wang, Relating
Fisher information to order parameters, Phys. Rev. E 84, 041116
(2011).

[31] B. B. Machta, R. Chachra, M. K. Transtrum, and J. P. Sethna,
Parameter space compression underlies emergent theories and
predictive models, Science 342, 604 (2013).

[32] M. Prokopenko and I. Einav, Information thermodynamics
of near-equilibrium computation, Phys. Rev. E 91, 062143
(2015).

[33] A. Plastino, A. R. Plastino, and H. G. Miller, On the relation-
ship between the Fisher-Frieden-Soffer arrow of time, and the
behaviour of the boltzmann and kullback entropies, Phys. Lett.
A 235, 129 (1997).

[34] B. R. Frieden, Fisher information and uncertainty complemen-
tarity, Phys. Lett. A 169, 123 (1992).

012120-13

80 Chapter 4. Thermodynamics and computation during collective motion



EMANUELE CROSATO et al. PHYSICAL REVIEW E 97, 012120 (2018)

[35] B. R. Frieden, A. Plastino, A. R. Plastino, and B. H. Soffer,
Fisher-based thermodynamics: Its Legendre transform and con-
cavity properties, Phys. Rev. E 60, 48 (1999).

[36] D. Petz, Covariance and Fisher information in quantum mechan-
ics, J. Phys. A 35, 929 (2002).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.97.012120 for videos of the dynamics of the
system and the probability distribution.

[38] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F.
Stefanini, and M. Viale, Scale-free correlations in starling flocks,
Proc. Natl. Acad. Sci. USA 107, 11865 (2010).

[39] T. Mora and W. Bialek, Are biological systems poised at
criticality? J. Stat. Phys. 144, 268 (2011).

[40] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, Ex-
perimental demonstration of information-to-energy conversion
and validation of the generalized jarzynski equality, Nat. Phys.
6, 988 (2010).

[41] T. Sagawa and M. Ueda, Generalized Jarzynski Equality Under
Nonequilibrium Feedback Control, Phys. Rev. Lett. 104, 090602
(2010).

[42] T. Sagawa and M. Ueda, Nonequilibrium Thermodynamics of
Feedback Control, Phys. Rev. E 85, 021104 (2012).

[43] R. K. Niven, Minimization of a free-energy-like potential for
non-equilibrium flow systems at steady state, Philos. Trans. R.
Soc. B 365, 1323 (2010).

[44] L. Crochik and T. Tomé, Entropy production in the majority-vote
model, Phys. Rev. E 72, 057103 (2005).

[45] D. Andrieux and P. Gaspard, Nonequilibrium generation of
information in copolymerization processes, Proc. Natl. Acad.
Sci. USA 105, 9516 (2008).

[46] B. Andrae, J. Cremer, T. Reichenbach, and E. Frey, Entropy
production of cyclic population dynamics, Phys. Rev. Lett. 104,
218102 (2010).

[47] T. Tomé and M. J. de Oliveira, Entropy production in nonequilib-
rium systems at stationary states, Phys. Rev. Lett. 108, 020601
(2012).

[48] M. J. de Oliveira, Irreversible models with Boltzmann–Gibbs
probability distribution and entropy production, J. Stat. Mech.:
Theory Exp. (2011) P12012.

[49] Y. Zhang and A. C. Barato, Critical behavior of entropy pro-
duction and learning rate: Ising model with an oscillating field,
J. Stat. Mech.: Theory Exp. (2016) 113207.

[50] M. Esposito and C. Van den Broeck, Second law and Lan-
dauer principle far from equilibrium, Europhys. Lett. 95, 40004
(2011).

[51] S. Deffner and C. Jarzynski, Information processing and the
second law of thermodynamics: An inclusive, Hamiltonian
approach, Phys. Rev. X 3, 041003 (2013).

[52] A. C. Barato, D. Hartich, and U. Seifert, Efficiency of
cellular information processing, New J. Phys. 16, 103024
(2014).

[53] J. M. Horowitz and H. Sandberg, Second-law-like inequalities
with information and their interpretations, New J. Phys. 16,
125007 (2014).

[54] J. M. Horowitz and M. Esposito, Thermodynamics with contin-
uous information flow, Phys. Rev. X 4, 031015 (2014).

[55] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermody-
namics of information, Nat. Phys. 11, 131 (2015).

[56] M. Prokopenko, L. Barnett, M. Harré, J. T. Lizier, O. Obst, and
X. R. Wang, Fisher transfer entropy: Quantifying the gain in
transient sensitivity, Proc. R. Soc. A 471, 20150610 (2015).

[57] R. E. Spinney, J. T. Lizier, and M. Prokopenko, Transfer entropy
in physical systems and the arrow of time, Phys. Rev. E 94,
022135 (2016).

[58] R. E. Spinney, M. Prokopenko, and J. T. Lizier, Transfer entropy
in continuous time, with applications to jump and neural spiking
processes, Phys. Rev. E 95, 032319 (2017).

[59] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, Coherent
information structure in complex computation, Theory Biosci.
131, 193 (2012).

[60] M. Prokopenko, J. T. Lizier, and D. C. Price, On thermo-
dynamic interpretation of transfer entropy, Entropy 15, 524
(2013).

[61] M. Prokopenko and J. T. Lizier, Transfer entropy and transient
limits of computation, Sci. Rep. 4, 5394 (2014).

[62] A. Kolchinsky and D. H. Wolpert, Dependence of dissipation on
the initial distribution over states, J. Stat. Mech. (2017) 083202.

[63] C. P. Kempes, D. Wolpert, Z. Cohen, and J. Pérez-Mercader,
The thermodynamic efficiency of computations made in cells
across the range of life, Phil. Trans. R. Soc. A 375, 20160343
(2017).

[64] G. Popkin, The physics of life, Nature 529, 16 (2016).
[65] R. Di Leonardo, Active colloids: Controlled collective motions,

Nat. Mater. 15, 1057 (2016).

012120-14

Chapter 4. Thermodynamics and computation during collective motion 81





83

Chapter 5

Critical dynamics and
thermodynamics of urban
transformations



rsos.royalsocietypublishing.org

Research
Cite this article: Crosato E, Nigmatullin R,
Prokopenko M. 2018 On critical dynamics and
thermodynamic efficiency of urban
transformations. R. Soc. open sci. 5: 180863.
http://dx.doi.org/10.1098/rsos.180863

Received: 8 June 2018
Accepted: 13 September 2018

Subject Category:
Physics

Subject Areas:
complexity

Keywords:
urban modelling, thermodynamic efficiency,
maximum entropy principle, phase transitions,
criticality, Fisher information

Author for correspondence:
Emanuele Crosato
e-mail: emanuele.crosato@sydney.edu.au

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.figshare.
c.4252601.

On critical dynamics and
thermodynamic efficiency
of urban transformations
Emanuele Crosato1,2, Ramil Nigmatullin1

and Mikhail Prokopenko1

1Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering
and IT, The University of Sydney, Sydney, New South Wales 2006, Australia
2CSIRO Data61, PO Box 76, Epping, New South Wales 1710, Australia

EC, 0000-0002-7629-774X; RN, 0000-0003-2577-6561;
MP, 0000-0002-4215-0344

Urban transformations within large and growing metropolitan
areas often generate critical dynamics affecting social
interactions, transport connectivity and income flow
distribution. We develop a statistical–mechanical model of
urban transformations, exemplified for Greater Sydney, and
derive a thermodynamic description highlighting critical
regimes. We consider urban dynamics at two time scales: fast
dynamics for the distribution of population and income,
modelled via the maximum entropy principle, and slower
dynamics evolving the urban structure under spatially
distributed competition. We identify phase transitions between
dispersed and polycentric phases, induced by varying the social
disposition—a factor balancing the suburbs’ attractiveness—in
contrast with the travel impedance. Using the Fisher information,
we identify critical thresholds and quantify the thermodynamic
cost of urban transformation, as the minimal work required to
vary the underlying parameter. Finally, we introduce the notion
of thermodynamic efficiency of urban transformation, as the ratio of
the order gained during a change to the amount of required
work, showing that this measure is maximized at criticality.

1. Introduction
A city is quintessentially a complex system consisting of multiple
interacting agents such as individual residents, employment
centres and transport infrastructure [1,2]. The complexity
manifests itself through diverse spatial organizations:
monocentric cities where most of the economic activity takes
place at the CBD [3], polycentric cities with multiple subcentres
(or ‘edge’ cities) [4–6] and dispersed sprawl (or ‘edgeless’) cities
[7]. Moreover, cities can undergo transitions in their urban

& 2018 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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structures. Driving such transitions are changes in the factors determining economies and diseconomies
of agglomeration for both firms and residents [8–11].

While urban dynamics have been extensively studied in the past, a unified framework centred on
thermodynamics of urban transformations has not been yet developed (see [12]). In particular, the
analysis and modelling of urban transformations as phase transitions, defined in a rigorous
thermodynamic setting, remains an open challenge, despite recent attempts in spatial economics over
short time scales [11]. This paper aims to refocus the research field on Urban Thermodynamics,
considering critical phenomena including phase transitions in a principled way, based on the
underlying thermodynamic concepts (energy potentials, entropy, order parameters, etc.), for both
equilibrium and non-equilibrium scenarios. This approach will enable systematic calibrations of such
thermodynamic models with real-world data and scenarios at different overlapping time scales.

We develop a statistical–mechanical model displaying phase transitions, using the maximum
entropy principle in a dynamic setting, and define the thermodynamic efficiency of urban
transformations. The model is calibrated to Greater Sydney Census data and is shown to exhibit a
phase transition between a monocentric dispersed and polycentric clustered urban forms. This phase
transition is induced by the variation of the attractiveness of the residential neighbourhoods,
measured by the density of local services, given the transportation cost. While quantitative studies of
urban transformation typically focus on statistical analysis of spatial evolution of cities [13–17], the
thermodynamic approach developed in this paper enables a rigorous analysis of critical dynamics in a
wide class of urban systems, as well as quantitative explorations of diverse ‘what-if’ scenarios with
respect to a generic and precise efficiency measure.

Our model is based on the Boltzmann–Lotka–Volterra (BLV) method [18–21]. The BLV models
involve two components: a fast equilibration, ‘Boltzmann’, component and a slow dynamic, ‘Lotka–
Volterra’, component. The Boltzmann component applies maximum entropy principle to derive the
static flow patterns of commodities and residents consistent with given spatial distributions [22]. The
Lotka–Volterra component evolves the spatial distribution and the flow pattern of a commodity
according to generalized Lotka–Volterra equations for spatially distributed competitors. In our model
of Greater Sydney the Lotka–Volterra equations make suburbs compete for local services, and
suburbs with more services become more attractive residential places. The resultant urban dynamics
exhibit critical regimes, interpreted as urban phase transitions, where a small variation in suitably
chosen (control) parameters changes the global outcomes measured via specific aggregated quantities
(order parameters). This is in line with the idea that, despite the complexity of urban system, only few
parameters may be necessary to understand drastic macroscopic changes [23].

The maximum entropy method [24] has been applied to a variety of collective phenomena [25,26] and
urban modelling [22], suggesting a formal analogy between urban and thermodynamic systems [27–29].
In studying transformations in the Greater Sydney region as thermodynamic phenomena, we construct
the corresponding phase diagram with respect to suitably chosen control parameters. In doing so we use
the Fisher information, which measures the sensitivity of a probability distribution to the change in the
control parameter, and diverges at critical points [30–34].

Our analysis further deepens the analogy between urban science and thermodynamics, using a clear
thermodynamic interpretation of the Fisher information as the second derivative of free entropy.
Specifically, we investigate the minimum work required to vary a control parameter and trace
configuration entropy and internal energy, according with the first law of thermodynamics. The
thermodynamic work is defined via Fisher information and thus can be computed solely based on
probability distributions estimated from available data. Finally, we introduce the concept of
thermodynamic efficiency of urban transformation as the ratio of the order gained during a change to the
required work, and demonstrate that it is maximized at criticality for our case study.

2. Material and methods
2.1. Overview of the model
In our model, the population commutes between home and work place. The number of people
commuting between employment areas i and residence areas j is given by the travel-to-work matrix Tij.
Commuting trips have an associated cost Cij, e.g. travelling expenses, time or distance. Cij represents
the structure of the transport network, which may include the roads as well as different types of
public transport. Employment areas are characterized by the average income Ii earned by the
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employees that, in combination with the travel-to-work matrix, provides the flow of income Yij ¼ TijIi.
Residence areas are instead characterized by the average rent Rj, and the amount of services Sj (the
data used in modelling Greater Sydney is described in electronic supplementary material, §1).

We develop a BLV model for the predicted income flow Yij in contrast with the actual income flow Yij

obtained from the Census. The number of jobs available in each employment area is assumed to remain
fixed, and therefore the income flowing out of each area is also fixed: Yout

i ¼
P

j Yij. On the contrary, the
population is allowed to redistribute among the suburbs. The services Sj and the population
Pj ¼

P
i (Yij=Ii) determine the attractiveness Aj of a suburb, which defines people’s preference to live in,

and therefore bring their income to j. When deciding where to settle, people consider the utility of
living in attractive suburbs as well as the cost of commuting to work. In our model, this trade-off is
controlled by two parameters, a and g, which define, respectively, how much value is attributed to
suburbs with respect to their attractiveness (social disposition) and how much discomfort is attributed
to commuting trips with respect to costs (travel impedance).

The model further allows the urban services Sj (and therefore the attractiveness Aj) to evolve, with
these dynamics being slower than the resettling of people. When Yij units of income are moved from
employment areas i to residence areas j, part of it is spent on the rent Rj while the remainder can be
spent on the services in j. Lotka–Volterra dynamics make suburbs compete for the services: if the
income that can be spent in a suburb is higher than the cost of running the services in that suburb,
these services of will grow, otherwise they will decrease. Every time Sj is updated, Yij is recomputed
using the maximum entropy principle, until an equilibrium is reached such that the income spent on
services matches their running cost. This results in a converging sequence of income flow matrices
from an initial Y0

ij to a final Y"ij.

2.2. The Boltzmann component
The Boltzmann component of the model, informed by the maximum entropy principle, determines the
least biased flow-of-income matrix Yij which satisfies the constraints on the income that employment
areas can produce, the attractiveness of the residence areas and the cost of travelling. Such flow of
income is the one that maximizes the entropy

H(Yij) ¼ #
X

i

X

j
Yij logYij, (2:1)

for normalized Yij, subject to the constraints:

X

j
Yij ¼ Yout

i , (2:2)

X

i

X

j
YijAj ¼ Atot (2:3)

and
X

i

X

j
YijCij ¼ Ctot: (2:4)

The constraint in (2.2) fix the total income flowing out of the employment area i and towards all
residence areas j. The constraint in (2.3) sets the total utility Atot that people obtain by living in
areas j with attractiveness Aj. Our assumption is that people prefer to live in areas that are more
populated, unless the population exceeds a saturation limit. We also assume that people prefer areas
where more services are available. Therefore, we define the attractiveness of a residence area as Aj ¼
log( f(Pj) Sj), where f(Pj) is a function that assigns a score based on the population. The population
score f (Pj) increases linearly with the population Pj, until it reaches a point of saturation P*, after
which additional population makes the score decrease at a certain rate v, i.e. f(Pj) ¼ Pj if Pj $ P* and
f (Pj) ¼ Pj 2 v(Pj 2 P*) if Pj . P*. We set v ¼ 1.1 and estimated the point of saturation at 11 000 based
on the observation that only four suburbs in Greater Sydney, which are much more populated than
the others, have a population that exceeds this value. Finally, constraint (2.4) sets the total cost Ctot of
commuting between employment and residence areas.

The maximum entropy solution to this problem is

Yij ¼
Y"i eaAj# gCij

Zi
, (2:5)
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where Zi ¼
P

j eaAj# gCij are balancing factors. The parameters a and g are the Lagrangian multipliers
corresponding to the constraints in (2.3) and (2.4), and representing social disposition and impedance
to travel, respectively.

We calibrate our model by identifying the optimal values â and ĝ that agree with the initial output Y0
ij

best matching the actual flow of income Yij given by Census (see electronic supplementary material, §2).
The evolution of the services is then modelled yielding a prediction Y"ij within Greater Sydney.

2.3. The Lotka – Volterra component
The Lotka–Volterra component of the model is given by the following dynamics for the services Sj over
time t:

dSj

dt
¼ e(Yin

j # RjPj # KSj), (2:6)

where Yin
j ¼

P
i Yij is the total income flowing into the suburb j from all employment areas i, e defines

the size of the changes and K is a conversion factor such that KSj is the cost of running services Sj.
According to (2.6), if the remaining income Yin

j # RjPj (analogous to discretionary income, which also
subtracts taxes) flowing into the suburb is sufficient to compensate for the running costs of the
services KSj, then the services will grow, otherwise they will decrease. Since the attractiveness Aj is
defined in terms of the services Sj, the former quantity also evolves.

2.4. Fisher information and thermodynamic efficiency
Following a recently established relationship [34], the rate of change of the thermodynamic work can be
determined using the Fisher information (see electronic supplementary material, §3):

dhbWgeni
da

¼ #
ða

a0

F(a0) da0 þ c(a0), (2:7)

where the Fisher information was calculated over the parameter a (fixing the parameter g) as

F(a) ;
X

i

X

j
Y"ij

d logY"ij
da

 !2

¼
X

i

X

j

1
Y"ij

dY"ij
da

" #2

, (2:8)

for the maximum entropy solution Y"ij.
Finally, we define the thermodynamic efficiency of urban transformation, for a given value of a, as

the reduction of entropy from the expenditure of work:

h ;
# dH(Yij)=da
dhbWgeni=da

: (2:9)

This quantity corresponds to a change da and hence relates to a transformation. This approach is
motivated by the notion of thermodynamic efficiency of computation [34].

3. Results
3.1. Abrupt urban transformations
We explore the model predictions Y"ij over a range of values of the control parameters around their
optimal values â and ĝ. We then compute the entropy H(Y"ij) for the considered points within the
phase diagram, tracing how the income distribution changes with respect to the control parameters.
We observe that, while the entropy varies mostly linearly with respect to g, it changes much
more abruptly with the changes in a (see electronic supplementary material, §4), indicating a phase
transition.

However, in order to rigorously localize the abrupt change in the dynamics of income flow with
respect to a, we fix g at the optimal value ĝ and compute the Fisher information over the phase space
of a. The result is shown in figure 1, which shows that the Fisher information peaks at ~a ¼ 0:51. This
indicates that there is indeed a second-order phase transition in the space of a, the critical point ~a of
which is identified by the maximum value of the Fisher information, in line with the approach
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established in [31,34,35]. Figure 1 also shows â ¼ 0:43 that best matches Sydney-2011 Census data, which
is lower than the critical value ~a but nevertheless is in the proximity of the phase transition, being located
in the region where the Fisher information undergoes a rapid growth.

These results show that changes in the social disposition, away from its current value â, would
significantly and abruptly change the flow distribution of income within Greater Sydney. This has an
immediate effect on the spatial distribution of the population, driving an urban transformation from
the sprawling phase to the polycentric phase. Figure 2 shows the predicted population of Greater
Sydney at fixed ĝ and four different values of a: (a) a low value, far before the critical point, (b) the
best match with the Sydney-2011 Census data â, (c) the critical point ~a and (d) a high value beyond
the critical point. Since the average income Ii in the employment areas i does not change, the
population of each suburb j is directly obtained from the flow of income Y"ij predicted by the model.

For the low value of a (figure 2a), corresponding to the sprawling urban phase, the model shows a
quite homogeneous distribution of the population, with the areas around the City of Sydney and other
major urban areas being only slightly more populated than the other surrounding areas. As we move to â

(figure 2b), the population aggregates around the major urban areas, although the City of Sydney seems
to be the only highly populated area. We note that this is the predicted population of Greater Sydney
corresponding to the actual value of social disposition matching the Census data. At the critical point
~a (figure 2c), all the major urban areas become clearly more highly populated than the surrounding
areas, and Greater Sydney starts to display a polycentric aggregation. Finally, this polycentric
aggregation becomes more pronounced in the polycentric urban phase, represented by the high value
of a (figure 2d ): the areas of the City of Sydney, Parramatta, Penrith, Campbelltown and Gosford are
clearly identifiable by a higher population compared with the surrounding.

Sydney-2011 profile, lying within the sprawling phase but near the phase transition, displays features
of a polycentric metropolis, which accentuate beyond the critical point. However, the dynamics of the
polycentric phase are not steady (cf. figure 1 for a . ~a), and so the transformations may suffer from
tangible fluctuations and loss of predictability in social dynamics. In fact, a secondary transformation is
captured by the secondary local peak of the Fisher information, around a ¼ 0.68 (figure 1) and
corresponding to notable population decline in the suburbs north of Gosford (see electronic
supplementary material, Movie S1). ‘Double percolation’ phase transitions have been observed in
clustered complex networks with spatio-temporal dynamics [36], and multiple peaks detected by the
Fisher information may relate to this phenomenon, given the clustered connectivity of urban aggregations.

3.2. Deepening the thermodynamic analogy
An important consideration in making a thermodynamic analogy is a choice of the protocol according to
which the control parameters are varied, so that the corresponding changes in the required work, energy

0.1 0.2 0.3 0.4
a

F
 (a

)

0.5 0.6 0.70

5

10

15

20

25

Figure 1. Fisher information over a, ranging from 0.001 to 0.751 with steps of 0.01, with ĝ ¼ 0:15 (best match). The horizontal
axis represents the values of a, while the vertical axis represents the Fisher information of the flow or income Y"ij . The red vertical
bar indicates the value â ¼ 0:43 for which Y0

ij best matches the Sydney-2011 Census data, while the peak is at ~a ¼ 0:51. Note
the second local peak at a ¼ 0.68.
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and configuration entropy, as well as symmetry breaking [37], can be traced. Specifically, we consider a
quasi-static protocol varying a, at the expenditure of some required work, and driving changes from the
sprawling urban phase to the polycentric phase, across the phase transition. For a quasi-static protocol,
the required work is minimal, i.e. the work matches the free energy of the system.

It has been recently shown that for quasi-static processes the second derivative of the generalized work
Wgen with respect to a control parameter is proportional to the negative of the Fisher information [34]. We
refer to generalized work in the sense of Jaynes [24] (for more details about generalized quantities and
their relationship with the Fisher information, see electronic supplementary material, §3). Given this
relationship, we obtain the rate of change of the work with respect to a by numerically integrating the
negative of the Fisher information in figure 1. The result is shown in figure 3a, demonstrating that
the rate of change of the work decreases with a, with this change becoming more pronounced in the
proximity of the optimal value â, being steepest around the critical point ~a.

Figure 3a also shows the rate of change of the internal energy of the system Ugen. This quantity is
obtained from the rates of change of the work Wgen and the configuration entropy H(Yij)—according
to the first law of thermodynamics (in the case of quasi-static processes) a change in the internal
energy corresponds to the sum of the changes in entropy and work: DhUgeni ¼ DhWgeni þ DH(Yij),
where the angle brackets represent average values over the ensemble. The rate of change of the
internal energy decreases with a similar to the rate of change of the work. The difference between
the two rates of change (i.e. the rate of change of the entropy) is larger around the critical point,
when the flow of income exhibits a tendency towards the polycentric phase.

a = 0.09 a = 0.43

a = 0.51 a = 0.71

(a)

(c) (d )

(b)

Figure 2. The predicted population of Greater Sydney. The region is partitioned into the 270 residence areas, which are coloured
based on their population. The grey areas represent national reserves and parks, Kingsford Smith airport and Port Botany, which
are not considered as residence areas. (a) Predicted population with a ¼ 0.09, corresponding to the sprawling urban phase. (b)
Predicted population with â ¼ 0:43, corresponding to the best match with Sydney-2011 Census data. (c) Predicted population with
~a ¼ 0:51, corresponding to the critical regime. (d) Predicted population with a ¼ 0.71, corresponding to the polycentric urban
phase.
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The thermodynamic efficiency of urban transformations for Greater Sydney, h, is shown in figure 3b.
It can be seen that h is very low in the sprawling phase, increases towards the phase transition and then
tends to slowly decrease, while also exhibiting the secondary local peak. This ratio is in a mid-range
for the value â corresponding to Sydney-2011 Census data. It is also evident that the social
disposition estimated from the Sydney-2011 data characterizes the sprawling phase, distinct from the
polycentric phase.

4. Discussion
The transition of cities between different patterns of urban settlement (dispersed, monocentric,
polycentric, etc.) has become a central problem in urban planning. In this study we investigated the
urban dynamics from a statistical mechanical viewpoint, deriving a thermodynamic description and
applying it to a case study of Greater Sydney. This approach complements the maximum entropy
principle with dynamics of evolving urban structures at different time scales, identifies phase
transitions using Fisher information and quantifies the thermodynamic efficiency of urban
transformations.

The model has been calibrated to Census data and geospatial datasets and exhibits a clear phase
transition between a dispersed configuration, in which the population settles homogeneously within
Greater Sydney, and a polycentric configuration, in which the population aggregates in a few highly
populated urban clusters. Two salient quantities are represented by the attractiveness of suburbs, in
terms of services available to the population, and the commuting costs. The phase transition was
shown to be induced by the control parameter accounting for social disposition—a factor balancing
the suburbs’ attractiveness—rather than the parameter tracking travel impedance.

A recent plan by the Greater Sydney Commission [38] envisaged a tripartite Greater Sydney region,
with a western parkland city, a central river city around greater Parramatta and an eastern harbour city.
Under the assumptions used in this study, such a tripartite arrangement is possible only under a narrow
set of constraints and lies in the polycentric urban phase, separated from the current sprawling phase by
a phase transition. Thus, a major urban transformation is likely to pass through a critical regime with its
inherent fluctuations and loss of predictability in social dynamics. Nevertheless, a set of policies
informed by a quantitative approach may steer this transformation exploiting the resultant gain in
efficiency. A wide class of other urban scenarios may also be considered within the proposed
approach, in which the concise thermodynamic descriptions are derived purely based on probability
distributions estimated from available data.

Data accessibility. This study uses the 2011 Australian Census data on population demographics and mobility in
calibrating a model of urban dynamics. The Australia’s 16th Census of Population and Housing was conducted on
9 August 2011, and the data from the 2011 Census are available through the following page: http://abs.gov.au/
websitedbs/censushome.nsf/home/historicaldata2011. The Australia Bureau of Statistics also provides the geospatial
data of Greater Sydney, which is available through the following pages: http://www.abs.gov.au/AUSSTATS/
abs@.nsf/DetailsPage/1270.0.55.001July%202011 and http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/
8000.0August%202011?OpenDocument.
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Figure 3. (a) The rates of change of the work Wgen (green line) and the internal energy Ugen (red line). (b) The thermodynamic
efficiency of urban transformation, h, defined as the order-to-work ratio. In both graphs the vertical lines represent the values of the
control parameter â (red line), which best matches the Sydney-2011 Census data, and ~a (blue line), the critical value.
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1 Greater Sydney and data sources
Greater Sydney is an urban area covering more that 12,000 square kilometres, delimited in all directions by either the Pacific
Ocean or by the several surrounding national parks. It includes the City of Sydney as well as other urban agglomerations
such as Parramatta, Penrith, Campbelltown and Gosford, for a total population of approximately 5 million (see Fig. S1(a)).
According to 2011 Census data, the working population of Greater Sydney is 1.8 million. People daily commute between
residence areas (or suburbs), where they live, and employment areas, where they work. The territory is partitioned into
270 residence areas and 2,156 employment areas. The data used for this study was provided by the Australian Bureau of
Statistics. This includes the geospatial data of the areas of employment and residence, as well as the Census data for year
2011.

The employment areas are defined by the standard Destination Zone (DZN), which was designed by the New South
Wales transport authority in order to spatially classify employment places, with the purpose of analysing commuting data
and developing transport policies. The standard Statistical Area Level 2 (SA2), as defined by the Australian Statistical
Geography Standard, was used for the residence areas. Geographical areas of level SA2 represent small communities that
closely interact socially and economically. The population of these areas can vary from 3,000 to 25,000 individuals, with
an average population of 10,000 individuals. A satellite map showing the DZN and SA2 areas partitioning Greater Sydney
is provided Fig. S1(b-d).

The Census data for year 2011 was geographically classified by the Australian Bureau of Statistics in accordance with
the both geographical areas DZN and SA2, and included the travel-to-work matrix Tij , the average weekly income Ii and
the average weekly rent Rj , for all DZN areas i and SA2 areas j. The Census data also included the amount of people who
work in food retailing stores (including supermarkets, grocery stores, meat and fish stores, fruit and vegetables stores and
liquor stores) that are located in specific SA2 areas. This data was utilised to estimate the amount of goods, matching the
services Sj available in each residence area.

The cost of travelling Cij was estimated as the Euclidean distance between the centres of the employment and residence
areas. An alternative approach would be to calculate the time of travelling using, for example, Google Maps or Open-
StreetMap data. However, in this case one needs to assemble a dataset with several Sydney transport networks (bus, rail
and ferry), in addition to the road networks. While the latter data are publicly available (e.g., OpenStreetMaps), the former
is not. Furthermore, the network connectivity needs to be augmented with price of the corresponding travels, as well as
individual preferences reflected in travel pattern data (such as Opal cards). A simpler solution based on Euclidean distances
appears to be less biased than a more sophisticated but incomplete approach.
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(a) (b)

(c) (d)

Figure S1: (a) Satellite image of Greater Sydney (TerraColor imagery by Earthstar Geographics LLC). The satellite image
showing the areas of residence (b), according with the standard SA2, and the areas of employment (c), according with the
standard DZN. (d) A magnification showing the employment areas of the City of Sydney, including City Business District
(CBD).

In summary, the constraints used in Eq. (2) and Eq. (3) of the Boltzmann component are produced from the Census
data, given the definition of attractiveness Aj = log(f(Pj) Sj) in terms of the population Pj and the services Sj , while the
constraint used in Eq. (4) is produced by the geospatial data.
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2 Calibration of the model
The model was calibrated by identifying the optimal values α̂ and γ̂ for which the output Y0

ij best matches the actual flow of
income Yij of Sydney-2011. The difference between actual and predicted flow of income was estimated as the sum of (the
absolute values of) the differences between all values of the matrices Y0

ij and Yij , which is e(Y0
ij) =

∑
i

∑
j

∣∣Y0
ij − Y ij

∣∣.
The result is shown in Fig. S2.

Figure S2: Calibration of the parameters α and γ. The horizontal axes represent values of α and γ within the considered
ranges, while the vertical axis represents the difference between the income flow Y0

ij produced by the model and the actual
income flow Yij given by Sydney-2011 Census data, calculated as e(Y0

ij) =
∑
i

∑
j

∣∣Y0
ij − Y ij

∣∣. The red dot represents
the optimal values α̂ and γ̂.

3 Thermodynamic analysis
Let us consider the state functions Xm(x) that describe a physical system over its configurations x. In a stationary state, the
Gibbs measure defines the probability of the states of the system:

p(x|θ) = 1

Z(θ)
e−βH(x,θ) =

1

Z(θ)
e−

∑
m θmXm(x), (1)

where θm are thermodynamic variables, β = 1/kbT is the inverse temperature T (kb is the Boltzmann constant), H(x, θ) is
the Hamiltonian defining the total energy at state x, and Z(θ) is the partition function [1, 2]. The Gibbs free energy of such
system is:

G(T, θm) = U(S, φm)− TS − φmθm, (2)

where U is the internal energy of the system, S is the configuration entropy and φm is an order parameter. Let us also
consider the generalised internal energy Ugen in the sense of Jaynes [3], such that

〈βUgen〉 = U(S, φm)− φmθm, (3)

where the angle brackets represent average values over the ensemble. The generalised first law holds 〈βUgen〉 = 〈βQgen〉+
〈βWgen〉, where Qgen and Wgen are, respectively, the generalised heat and the generalised work.

The Fisher information [4] measures the amount of information that an observable random variable X carries about an
unknown parameters θ = [θ1, θ2, . . . , θM ]T . If p(x|θ) is the probability of the realisation x of X given the parameters θ,
the Fisher information matrix is defined as

Fmn(θ) = E

[(
∂ ln p(x|θ)
∂θm

)(
∂ ln p(x|θ)

∂θn

)∣∣∣∣∣θ
]
, (4)
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where the function E(y) is the expected value of y. For a physical system described by the Gibbs measure in (1), the
Fisher information has several physical interpretations, e.g., it is equivalent to the thermodynamic metric tensor gmn(θ),
is proportional to the second derivative of the free entropy ψ = lnZ = −βG, and to the derivatives of the corresponding
order parameters with respect to the collective variables [1, 5, 6, 2, 7]:

Fmn(θ) = gmn(θ) =
∂2ψ

∂θm∂θn
= β

∂φm
∂θn

. (5)

Furthermore [8],

F (θ) =
d2S

dθ2
− d2〈βUgen〉

dθ2
. (6)

Under a quasi-static protocol the total entropy production is zero, and therefore any change in the configuration entropy
due to the driving process is matched by the flow of heat to the environment:

dS

dθ
=
d〈βQgen〉

dθ
. (7)

Thus, combining (6) and (7) with the first law of thermodynamics yields another important result for the generalised work
Wgen [8]:

F (θ) = −d
2〈βWgen〉
dθ2

. (8)

4 Entropy and a proxy of order parameter
A higher entropy indicates a more homogeneous distribution of the income to all suburbs, while a lower entropy indicates
a less balanced distribution of the income biased towards one or few suburbs. We observe that the entropy decreases with
both parameters α and γ (see Fig. S3). This behaviour is expected and has a clear interpretation. If the social disposition α
is low, people have modest preference for attractive suburbs and thus settle (and move their income) more homogeneously
within the region, while if α is high people tend to aggregate around the areas with the higher attractiveness. Similarly, if
travel impedance γ is low people are less concerned about high travel costs, and therefore can settle at any distance from
their work place, while if γ is high people prefer to live closer to their employment areas to incur lower commuting costs.

To formalise this intuition, one typically introduces and traces corresponding order parameters. This is however hindered
by an incomplete statistical-mechanical description of the system, and we first illustrate a simpler approach which considers
a proxy of an order parameter. Such a proxy characterises the equilibrium distribution of the services Sj , for different

Figure S3: Entropy of Y∗
ij after the services Sj have evolved to reach an equilibrium. The horizontal axes represent values

of α and γ within the considered ranges, while the vertical axis represents the entropy H(Yij) at corresponding values of α
and γ. The red dot indicates the combination of α̂ and γ̂ for which Y0

ij best matches Sydney-2011 Census data.

4
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Figure S4: The number of suburbs N(Sj > 10) with more than 10 units of services available, after the services Sj have
evolved to reach an equilibrium. The horizontal axes represent values of α and γ within the considered ranges, while the
vertical axis represents N(Sj > 10) at corresponding values of α and γ. The red dot indicates the combination of α̂ and γ̂
for which Y0

ij best matches Sydney-2011 Census data.

values of α and γ, in terms of the number of suburbs in which the amount of available services exceeds a threshold, i.e.,
“services-abundant” suburbs. Fig. S5 shows the number of services-abundant suburbs, that is N(Sj > 10), for different
values of α and γ, after the urban evolution has converged. Again, as with the entropy dynamics, the variation of γ does
not greatly affect the number of services-abundant suburbs. On the contrary, this number displays an abrupt change with
respect to α: for low values of the social disposition all 270 suburbs are services-abundant, but as α increases the number
of services-abundant suburbs reduces quickly past a specific value of α. At high values of social disposition approximately
120 residence areas remain services-abundant.

Fig. S3 and Fig. S5 also show the values α̂ and γ̂ which best matches Sydney-2011 Census data (the red dot on either
the entropy or the N(Sj > 10) surfaces). This value is within a close proximity to the social disposition where the abrupt
change is observed.

5
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5 Animation of the phase transition

Figure S5: Animation of urban transformations within Greater Sydney. The movie shows the income flow within Greater
Sydney as the social disposition increases. The movie also shows the rate of change of the generalised work, generalised
internal energy and configuration entropy with respect to the social disposition, as well as the thermodynamic efficiency of
urban transformations and the Fisher information.

The movie is available at: https://www.dropbox.com/s/t7hz92i8mbv6c1a/Greater%20Sydney.avi?dl=0.
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We study the entropy production rate in a system of active Brownian particles interacting via volume exclu-
sion and alignment, described by under-damped dynamics. Using numerical simulations, we build the phase
diagram of the system and identify three kinetic phases that involve mobility-induced phase separation as well
as global orientational oder. Crucially, the phase transitions are reflected by changes in the expected entropy
production rates at (non-equilibrium) steady-state. Additionally, the expected value of entropy production rate
associated with individual particles is contrasted with their orientation and position within the group, reveal-
ing distinct entropy production signatures for different active matter states, e.g., ‘solid’, ‘gas’ and oriented
‘flocks’. Importantly, interpreting the particles’ heading as an odd or even variable under time-reversal symme-
try is shown to yield different entropy production rates, highlighting the importance of such interpretation in the
thermodynamic treatment of active matter.

I. INTRODUCTION

Active matter consists of self-propelled particles that can
extract energy from the environment and transform it into
directed motion [1–3]. Examples encompass a wide range
of systems, including self-catalytic colloidal suspensions [4],
swimming bacteria [5, 6], migrating cells [7] and even animal
groups [8–10]. Self-propulsion, in combination with volume
exclusion and possibly other interactions among particles, can
give rise to non-trivial collective motion dynamics, such as
gathering, swarming and swirling [11]. These complex be-
haviours are not achievable by matter at thermal equilibrium.
Active matter, in fact, is characteristically out-of-equilibrium:
energy, supplied to each particle to fuel the self-propulsion, is
locally dissipated breaking detailed balance [12].

Minimal models of active particles have been developed.
The main two ones that have been proposed are Active Brow-
nian Particles (ABPs) [13], whose self-propulsion has fixed
magnitude and direction that is subject to direction rotational
noise, and Active Ornstein-Uhlenbeck Particles (AOUPs),
whose self-propulsion is modelled as coloured noise [14].
Dynamical models for the collective motion of many self-
propelled particles have also been developed, the simplest of
which involve two-dimensional self-propelled discs that only
interact via volume exclusion. Despite their simplicity, these
systems can produce rather rich behaviour [15] that resemble
real active matter.

Dynamical models allow the systematic investigation of ki-
netic phase transitions, a well-known phenomenon in active
matter [1–3]. Systems of both ABPs and AOUPs have been
shown to exhibit mobility-induced phase separation (MIPS),
i.e., the system splits between dense ‘liquid’ or ‘solid’ ar-
eas and sparse ‘gas’ areas, for sufficiently high values of
density and/or self-propulsion strength [14–19]. Recently, a
model of ABPs with alignment interactions by Martı́n-Gómez

∗ emanuele.crosato@sydney.edu.au

et al. [20] has been shown to exhibit a phase transition be-
tween disordered and oriented collective motion (or ‘flock-
ing’), along MIPS.

While building phase diagrams for the behaviour of active
matter is a common procedure [18–20], not much research
has been done to describe the non-equilibrium character of
the kinetic phases thermodynamically. Only recently, Fodor
et al. [14] have investigated the entropy production in a sys-
tem of AOUPs, with no alignment interactions, described by
over-damped dynamics. The authors found that, even for high
self-propulsion strength resulting in MIPS, the particles’ dy-
namics still respects detailed balance, suggesting that micro-
scopic non-equilibrium does not survive coarse-graining and
that, in the large scale, MIPS can essentially be understood
as equilibrium phase separation. A later study by Mandal et
al. [21], however, demonstrated that nonzero and positive en-
tropy production is found when a different definition of en-
tropy production along a trajectory is used [22, 23].

Crucially, Shankar et al. [24] have demonstrated that ‘hid-
den’ components of the entropy production can be detected
along the trajectory of either an ABP or an AOUP, when
under-damped dynamics are used to describe the particle. The
authors also highlighted the importance of the interpretation
of the self-propulsion force as an ever or an odd variable under
time-reversal symmetry (TRS), which leads to different ex-
pressions for the entropy production rate. However, the study
only considered free, non-interacting particles.

In this study, we investigate the entropy production rates in
a system of ABPs that interact via volume exclusion as well as
alignment (similarly to [20]). We derive the analytical expres-
sions of the entropy production rates for both an over-damped
and an under-damped models, and for either parity of the par-
ticles’ heading under TRS. For the under-damped dynamics,
the entropy production is shown to depend on the relationship
between the timescales of translational and rotational motion,
which is essential for MIPS.

The under-damped model is simulated numerically using a
large number of particles to produce the phase diagram of the
system at non-equilibrium steady-state. The system is then
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characterised over the different phases in terms of its expected
steady-state entropy production rate, calculated using the de-
rived analytical expressions. We show that different results
are obtained based on the interpretation of the particles’ head-
ing under TRS. Additionally, we map the expected entropy
production rate associated to individual particles with their
heading and position within the group, and identify entropy
production signatures of different active matter states.

II. DYNAMICAL MODEL OF ABPs WITH ALIGNMENT

Let us consider a system of N ABPs of mass m, moment
of intertia I , radiusR and translational and rotational mobility
coefficient γ and γR. Let us also denote the position of each
particle a as ra, and its heading as θa. The self-propulsion
force is modelled as a function of the particles’ heading, given
a propulsion speed v0:

P(θa) = mγv0ê(θa), (1)

where and ê(θa) = [cos(θa), sin(θa)]. The particles interact
via excluded volume and torque interactions that make close
particles align. Excluded volume interactions can be modelled
using a potential function U(r), e.g., a truncated and shifted
Lennard-Jones potential:

U(r)a =





∑
b6=a ε

[(
2R
rab

)12
− 2

(
2R
rab

)6]
+ ε rab ≤ R

0 rab > R
(2)

where ε is the depth of the potential well and rab is the dis-
tance between particles a and b. Alignment interactions are
instead modelled by the following torque function:

T (r, θ)a = −
∑

b 6=a
K sin(θa − θb), (3)

where K is the coupling strength.
The over-damped dynamics of the system are described by

the following stochastic differential equations (SDEs):

drja =
1

mγ
F(r, θ)jadt+

√
2T

mγ
dWrja

, (4)

dθa =
1

IγR
T (r, θ)adt+

√
2T

IγR
dWθa , (5)

where F(r, θ)ja = P(θa)j − ∂rjaU(r)a includes both self-
propulsion and excluded volume interactions, i is the spa-
tial dimension, T is the temperature of the system and
Wrja

and Wθa are uncorrelated Wiener processes, such
that 〈dWrja

dWθa〉 = 0, 〈dWθadWθb〉 = δabdt and
〈dWrja

dWrkb
〉 = δjkδabdt.

When under-damped dynamics are used to describe the sys-
tem, we also need to introduce particles’ momenta through the
translational velocity va and the rotational velocity ωa. The

system is then described by the SDEs:

drja = vjadt, (6)

dvja =− γvjadt+
1

m
F(r, θ)jadt+

√
2Tγ

m
dWvj

a
, (7)

dθa = ωadt, (8)

dωa =− γRωadt+
1

I
T (r, θ)adt+

√
2TγR

I
dWωa

, (9)

where Wvj
a

and Wωa
are also independent Wiener processes.

In order to characterise the configurational change associ-
ated with MIPS we utilise the local (per particle) sixfold bond-
orientational order:

∣∣q6(a)
∣∣ =

∣∣∣∣∣
1

6

∑

b∈Na

ei6αab

∣∣∣∣∣ , (10)

where αab is the angle between ra − ra and an arbitrary axis
andNa are the closest 6 neighbouring particles of a. An order
parameter for the phase separation is therefore provided by
the average bond-orientational order 〈|q6(a)|〉.

An alternative mean of characterising MIPS is through the
local density distribution, where we expect bimodal behaviour
in the case of phase separation. Hence, we can quantify phase
separation using the bimodality coefficient. By considering
the local density Xd, defined as the empirical density within a
radius d, the bimodality coefficient is introduced as

ζ(Xd) =
λ(Xd) + 1

κ(Xd)
, (11)

where λ(Xd) and κ(Xd) are, respectively, the third and and the
fourth standardised moments of the particles’ density (i.e., the
skewness and the kurtosis). The value of ζ(Xd) lies between 0
and 1, with larger values indicative of a bimodal distribution.
As it quantifies the variation in local density, the bimodality
coefficient is a more natural way to identify MIPS. However,
the local bond-orientational order q6(a) allows the character-
isation of single particles configurational order. It should also
be noted that, at very high densities, when the local density
distribution is dominated by a sharp peak at high values of
Xd, single statistics of the distribution are not best placed to
determined the location of transition points, which can be in-
ferred from the qualitative features of the distribution.

The alignment within the system is instead quantified as

ρ(θ) = 〈2 cos2(θa − θ̄)− 1〉, (12)

where θ̄ is the mean heading across all particles.

III. ENTROPY PRODUCTION OF INTERACTING ABPs

In modern formalisms such as stochastic thermodynamics
entropy production can be interpreted as a measure of dynam-
ical irreversibility. Specifically, the total entropy production,
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d〈∆S tot〉
dt

Over-damped Under-damped

TRS-odd heading

N∑

a=1

(
〈T 2(θ, r)a〉
TIγR

+
〈∂θaT (θ, r)a〉

IγR

+
∑

j∈{x,y}

v0
T

〈
∂
r
j
a
U(r)aê

j(θa)
〉)

N∑

a=1

(
γR

T

(
I
〈
ω2
a

〉
− T

)

+
∑

j∈{x,y}

γ

T

(
mv20

2
−m

〈
(vja)2

〉
+ T

))

TRS-even heading

N∑

a=1

(
〈T 2(θ, r)a〉
TIγR

+
〈∂θaT (θ, r)a〉

IγR
+
mγv20
T

−
∑

j∈{x,y}

v0
T

〈
∂
r
j
a
U(r)aê

j(θa)
〉)

N∑

a=1

(
γR

T

(
I
〈
ω2
a

〉
− T

)

+
∑

j∈{x,y}

γ

T

(
m
〈

(vja)2
〉
− T

))

TABLE I. Expected entropy production rate for a system of interacting ABPs at steady state, described by over-damped and under-damped
dynamics, and for odd and even interpretation of the particles’ heading under TRS.

generated over an interval t ∈ [t0, τ ], may be written for indi-
vidual realisations ~Ω = {Ω(t)|t ∈ [t0, τ ]} (where kB = 1 and
Ω = {r,v, θ, ω} is the total state of the system) [25, 26],

∆Stot = ln
P [~Ω]

P †[~Ω†]
. (13)

Here, ~Ω† = {Ω†(t)|t ∈ [t0, τ ]} and Ω†(t) = εΩ(τ + t0 − t)
where ε is a time reversal operation. For stationary, au-
tonomous, and time symmetric dynamics P † = P . Con-
sequently, the entropy production is equal to the log ratio
of the likelihood of a given trajectory against its time re-
verse under the dynamics that describe the system. The to-
tal entropy production obeys an integral fluctuation theorem
〈exp[−∆Stot]〉 = 1 and thus the strict inequality 〈∆Stot〉 ≥ 0
holds by Jensen’s inequality, characterising the second law.

The total entropy production consists of changes in the sys-
tem entropy (equal to the Gibbs entropy over the dynamical
variables) and entropy change in the environment (consisting
of an exported heat scaled by the inverse environmental tem-
perature) . The form of such expressions depends on the na-
ture of the time reversal operation ε since it determines the
appropriate time reversed trajectory [27]. For SDEs, expres-
sions for the total entropy production can be found exactly
given knowledge of the probability density functions over the
variables [22] and expressions for the environmental entropy
production can be determined in terms of knowledge of the
trajectories only. In the steady state, however, the expected
change of Gibbs entropy vanishes and the mean medium en-
tropy production is equal to the mean total entropy produc-
tion allowing empirical calculation of expectations without
the need for solving the associated Fokker-Planck equation.

For systems with multiple degrees of freedom, such as col-
lections of ABPs, individual environmental entropy produc-
tions can be associated with subsets of the dynamical vari-
ables so long as the Wiener processes associated with them are
uncorrelated, with the total environmental entropy production
being equal to their sum. This property, often referred to as bi-
partite dynamics [28], allows us to characterise the mean envi-

ronmental entropy production of individual ABPs in the col-
lective. Utilising the formalism in [22] we derive the entropy
expected medium entropy production for individual ABPs in
the Supplemental Material. The results depend crucially on
the time reversal parity of the particle orientation. For the odd
interpretation using the under-damped dynamics we find the
expected entropy production rate in the medium for particle a
to be

d〈∆Smed
a |Ω〉
dt

=
γR

T

(
I
〈
ω2
a

〉
− T

)
+

∑

j∈{x,y}

γ

T

(
m
〈
(vja − v0ê(θa))2

〉
− T

)
.

(14)
For the even interpretation of the particles’ heading using the
under-damped dynamics we instead have

d〈∆Smed
a |Ω〉
dt

=
γR

T

(
I
〈
ω2
a

〉
− T

)
+

∑

j∈{x,y}

γ

T

(
m
〈
(vja)2

〉
− T

)
.

(15)

The expected medium entropy production of the total system,
and thus the expected total entropy production in the steady
state, is then equal to the sum of such contributions over all
particles.

Using such expressions alongside simplifications that hold
in the steady state we can calculate the mean steady state en-
tropy production for the whole system of interacting ABPs
described by both of the models in Sec. II. These are given in
Table I for odd and even time reversal parity interpretations of
the heading θ, in comparison to Shankar et al. [24] for non-
interacting particles. Details can be found in Supplemental
Material.

Clearly, the choice of such an interpretation and choice
of model effects the implied thermodynamics. Perhaps most
striking is the distinction between parity interpretations where
the difference is most clear in the expressions for the under-
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(a) (b) (c)

K = 0.0007 K = 0.0036 K = 0.0097

(d)

FIG. 1. Summary of the kinetic phases of the system. (a) shows the phase diagram of the behaviour of systems with respect to the density φ
and the rotational mobility coefficient γR, when the torque coupling strength K = 0. (b) shows the phase diagram of the systems with respect
to γR and K, at density φ = 0.4. In both diagrams the error bars indicate the intervals within which the phase transition is observed to occur,
based the simulations. The solid lines are approximations of the critical lines, given the error bars. The red lines represent sections of the phase
diagrams over which Fig.2 provides the expected steady-state entropy production rate. A representative point for each of the three phases are
marked with red crosses over the red line in (b). At each of these points, (c) shows the distribution of the local density Xd (with d = 4.5) while
(d) shows a typical configuration observed during the simulations (the colours represent the heading of the particles).

damped model. In this case, under the even parity interpre-
tation, the entropy production is manifestly a measure of the
deviation away from equipartition expected at thermodynamic
equilibrium in both the translational and rotational degrees
of freedom. In contrast, under the odd parity interpretation
the entropy production arising from the translational variables
is modified such that it quantifies deviation from an effective
equipartition, relative to the instantaneous heading and typical
speed due to the active forcing—seen most clearly in Eq. (14).

The above expressions are quite general. However, in the
absence of alignment, external, and exclusion interactions,
such that T (θ, r) = 0 and ∂rjU(r) = 0, the expressions can
be seen to reduce to those derived for free ABPs in [24] for
both the over-damped and under-damped models. The entropy
productions in the over-damped model, particularly that under
the odd parity interpretation illustrate the well-known prop-

erty that contributions to entropy production are lost through
coarse graining procedures [29]. Such absent terms have been
referred to as ‘anomalous’ [30] or ‘hidden’ and have been pre-
viously implicated in heat transfer where under-damped mod-
els are crucial in order to observe physically plausible entropy
productions [22]. Notably, for the ABPs, the free particle
contributions in the over-damped limit show no dependence
on the the relationship between the timescales of translational
and rotational motion, the primary mechanism for the appear-
ance of MIPS. Therefore to ensure that both qualitative and
quantitative features of the thermodynamics are appropriately
captured, we proceed using the under-damped model.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Average steady-state entropy production over the tree kinetic phases. In (a), (b) and (c) the density φ the density φ = 0.4 and the
alignment strength K = 0. (a) shows the average bimodality coefficient ζ(Xd) (with d = 4.5) at steady-state, over the rotational mobility
coefficient γR. (b) and (c) show the average entropy production rate at steady-state over γR with, respectively, odd and even interpretation
of θ. In (d), (e) and (f) φ = 0.4 and γR = 0.3. (d) shows the average ζ(Xd) and the average alignment coefficient ρ(θa) at steady-state,
over the alignment strength K. (e) and (f) show the average entropy production rate at steady-state over K with, respectively, odd and even
interpretation of θ. The three vertical grey lines in (d), (e) and (f) correspond to the points marked with red crosses in Fig. 1(b).

IV. ENTROPY PRODUCTION AND KINETIC PHASES

We used numerical simulations to explore the behaviour of
the systems over the rotational mobility coefficient γR, the
coupling strength of the alignment K and the particles den-
sity φ. The self-propulsion strength is typically controlled
by varying the Péclet number Pe ∝ v0/

√
DTDR [2], where

DT = T/mγ and DR = T/IγR. Since Pe depends on
many variables that contribute to the entropy production, we
choose to keep T , m and v0 constant, and to vary the self-
propulsion strength only through γR. In our simulations, we
set N = 10000, R = 0.5, v0 = 3, m = I = γ = 1 and
T = 0.02, and we use periodic boundary conditions. We
also use the truncated and shifted Lennard-Jones potential in
Eq. (2) (with ε = 1) for the excluded volume interactions, and
the torque function in Eq. (3) for the alignment interactions.

When only excluded volume interactions are considered
(i.e., K = 0) the system exhibits two phases: a phase in
which particles distribute homogeneously across the space,
and a phase characterised by MIPS (see Fig. 1(a)). For low
values of the density, the transition to MIPS is triggered by
high values of γR. Increasing the density results in lower and
lower critical values of γR, however, this trend is inverted for
densities higher than approximately φ = 0.65. The phase di-
agram in Fig. 1(a) confirms the results in [18, 19].

When alignment interactions are considered, a third kinetic
phase is possible, characterised by both orientational order

and MIPS (see Fig. 1(b)). At density φ = 0.4, for exam-
ple, low values of K do not have much effect on the system,
which behaves similarly to when there are no alignment inter-
actions, i.e., MIPS occurs for γR higher than a critical value.
As K is increased to a point in which alignment interactions
sufficiently reduce the average time required for the two parti-
cles to head away from each other after they collide, MIPS is
interrupted. In this phase, the alignment torque is not strong
enough to keep the particles aligned, however, for even higher
values of K beyond a second critical threshold, the system
starts to exhibit orientational order. In this phase the system
also exhibit MIPS: as the particles gradually align their orien-
tation they also get nearer, and then remain close as they flock
towards a common average direction.

The distribution of the local density Xd at three values of
K corresponding to the three different phases (cf. red crosses
in Fig. 1(b)) is shown Fig. 1(c). The phase with MIPS and
no orientational order is characterised by highly bimodal dis-
tributions, while the phase with no MIPS is characterised by
unimodal distributions. The phase with both MIPS and ori-
entational order is also characterised by (typically less pro-
nounced) bimodal distributions. A typical configuration of the
system at the three values of K is shown in Fig. 1(d), where
the colours represent the particles’ heading.

We now proceed by showing the expected steady-state en-
tropy production rate characterising the three kinetic phases.
Firstly, we focus on the system in absence of alignment in-
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K = 0.0007 K = 0.0036 K = 0.0097

od
d
θ

ev
en
θ

FIG. 3. Expected entropy production rate associated to individual particles. The three configurations previously shown in Fig. 1(d) are here
presented colouring each particle based on its expected entropy production rate (cf. Eq. (14) and Eq. (15)), distinguishing between odd and
even interpretations of the particles’ heading under TRS. The particles in the box (see K = 0.0007, even θ) are shown in Fig 4 with higher
resolution for the entropy production.

(a) (b)

FIG. 4. Expected entropy production rate and defects in the solid
structure. (a) magnifies the box in Fig. 3 (K = 0.0007, even θ),
showing the entropy production of the particles using a different
colour scale, which can capture small differences between low val-
ues of entropy production. (b) shows instead the local sixfold bond-
orientational order |q6| associated to each individual particle, high-
lighting defects across the solid structure.

teractions, at density φ = 0.4, as we vary rotational mobility
coefficient γR (Fig. 2(a) to Fig. 2(c)). As we indicated by the
expressions in Table I, the two interpretations of the particles’

heading under TRS yield very different entropy productions.
For the odd interpretation, the entropy production increases
abruptly at the phase transition, when the average velocity of
the particles drastically decreases because of MIPS. For the
even interpretation, the opposite trend is observed.

We then investigate the effect of the alignment interactions
of the entropy production. Therefor, we set φ = 0.4 and
γR = 0.3, while we vary the alignment strength K (Fig. 2(d)
to Fig. 2(f)). In case of odd parity of the heading, the tran-
sition (at approximately K = 0.002) from MIPS to homoge-
neous particles distribution is reflected by a sudden drop in
the expected entropy production rate. The entropy production
starts to decrease even more as the system begin to exhibit ori-
ented collective motion (at approximately K = 0.006). The
opposite trend is observed for the even interpretation of the
heading under TRS.

Finally, we analyse the entropy production rate associated
with individual particles. A summary of our findings is pro-
vided in Fig. 3, which shows the expected entropy produc-
tion rates of individual particles, calculated using Eq. (14)
and (15), for the three configurations of the system previ-
ously seen in Fig. 1(d). When no global orientational order
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is present (Fig. 3, K = 0.0007 and K = 0.0036), it is clear
that the entropy production is related to the local density of the
particles. This is particularly clear for the phase characterised
by MIPS (and no orientational order) for which, in case of odd
heading, higher entropy production rates are observed in the
solid region and lower entropy production rates are observed
in the gasseous region (the opposite is observed when the even
parity is considered). Defects in the solid structures are also
captured by the entropy production rates, as shown in Fig. 4:
the entropy production associated with particles along the de-
fects is in general higher (for the even interpretation of θ) than
the one of particles in highly ordered regions.

In the phase characterised by both MIPS and orientational
order, the two interpretations of the heading also yield differ-
ent entropy production rates (cf. Fig. 3, K = 0.0097). How-
ever, it is for the even interpretation of the particles’ heading
that we now observe higher entropy production in areas of
high density, where lower entropy production is observed for
the odd interpretation. Moreover, the interplay between align-
ment torque and excluded volume interactions is observed to
generate complex patterns of entropy production.

V. CONCLUSIONS

Recently, there has been a growing interest in the thermo-
dynamics of active matter, and particularly the entropy pro-
duction associated to MIPS has been investigated [14, 21].
Shankar et al. [24] demonstrated the importance of using
under-damped models to quantify entropy production of ac-
tive matter, focussing on free, non-interacting particles. In
this study, we have investigated the entropy production in a
large system of ABPs interacting via volume exclusion and
alignment. We have provided the expressions for the expected
entropy production rate of the system for both an over-damped
and an under-damped description, confirming that the under-
damped description is more suitable for studying the thermo-
dynamics associated to collective motion. Moreover, we have
shown that the interpretation of the particle’s heading as an

odd or an even variable under TRS leads to different expres-
sions of the entropy production rate of interacting particles,
in addition to what was pointed out for non-interacting parti-
cles [24].

The under-damped system was numerically simulated and
shown to exhibit three kinetic phases: a phase characterised
by a homogeneous distribution of the particles’ positions and
orientations, a phase characterised by MIPS and a phase ex-
hibiting both MIPS and global orientational order. Crucially,
the phase transitions were shown to be reflected in changes in
the average entropy production rate at the (non-equilibrium)
steady-state. Additionally, the entropy production rate associ-
ated with individual particles was shown to capture the state
of active matter, e.g., lower entropy production was measured
for particles in solid regions while higher entropy production
was measured in gasseous regions, for the even interpretation
of the particles’ heading. Defects forming in solid structures
were also observed to be reflected in the particles’ entropy
production rate.

Concluding, we hope that this work will contribute to a
better understanding of the thermodynamics of active matter,
particularly in phenomena where kinetic phase transitions and
critical regimes [31] are involved. Formal analogies have been
recently developed [28, 32] between stochastic thermodynam-
ics and information dynamics, a discipline that describes in-
formation processing in complex systems in terms of intrinsic
computation. Future work will aim at exploring such relations
in active matter.
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[5] A. Czirók, M. Matsushita, and T. Vicsek, Physical Review E
63, 031915 (2001).

[6] A. Sokolov, R. E. Goldstein, F. I. Feldchtein, and I. S. Aranson,
Physical Review E 80, 031903 (2009).

[7] B. Szabo, G. Szöllösi, B. Gönci, Z. Jurányi, D. Selmeczi, and
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DERIVATION OF THE ENTROPY PRODUCTIONS

The over-damped and under-damped models presented in the main text involve continuous Markovian dynamics described
by uncorrelated stochastic differential equations (SDEs). The evolution of each coordinate xi ∈ {rxa, rya,vxa ,vya, θa, ωa} can be
expressed in terms of a deterministic component Ai(x, t) and a stochastic component Bi(x, t):

dxi = Ai(x, t)dt+Bi(x, t)dWi, (1)

where Wi is the Wiener process. The deterministic dynamics Ai(x, t) can be further divided into reversible and irreversible
components [1]:

dxi = AREV
i (x, t)dt+AIR

i (x, t)dt+Bi(x, t)dWi. (2)

The diffusion coefficients associated to each coordinate are Di(x, t) = Bi(x, t)
2/2.

Following [2], and noting that there is no multiplicative noise in the models, we have:

d∆Smed =
N∑

a=1

∑

i

AIR
xi

(x)

Di
◦ dxi −

AIR
xi

(x)AREV
xi

(x)

Di
dt (3)

Entropy production in the over-damped model

Let us consider the over-damped model described in the main text:

drja = v0ê
j(θa)dt− ∂rjaU(r)adt+

√
2T

mγ
dWrja

, (4)

dθa =
1

IγR
T (r, θ)adt+

√
2T

IγR
dWθa . (5)

Regardless of the partity of the self-propulsion under TRS, we have AIR
θa

= T (θ, r)a/I , AREV
θa

= 0, Dθa = T/IγR and
Drja

= T/mγ.

Odd self-propulsion

For the odd interpretation of the particles’ heading under TRS, we obtain AIR
rja

= −∂rjaU(r)a/m and AREV
rja

= v0ê
j(θa).

Applying Eq. (3) we obtain:

d∆Smed =
N∑

a=1

(
T (θ, r)a

T
◦ dθa −

∑

j∈{x,y}

(
∂rjaU(r)a

T
◦ drja +

v0ê
j(θa)∂rjaU(r)a

T
dt

))
. (6)
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At the steady-state, assuming 〈dU(r)〉 = 0 and 〈(êj(θa))2〉 = 1/2, we obtain:

d〈∆Smed〉 =
N∑

a=1

(
〈T 2(θ, r)a〉
TIγR

+
〈∂θaT (θ, r)a〉

IγR
+

∑

j∈{x,y}

v0
T

〈
∂rjaU(r)aê

j(θa)
〉)

. (7)

Even self-propulsion

For the even interpretation of the particles’ heading, we obtain AIR
rja

= v0ê
j(θa) − ∂rjaU(r)a/m and AREV

rja
= 0. Applying

Eq. (3), we then obtain:

d∆Smed =
N∑

a=1

(
T (θ, r)a

T
◦ dθa +

∑

j∈{x,y}

v0ê
j(θa)− ∂rjaU(r)a

T
dt

)
. (8)

At the steady-state, assuming 〈dU(r)〉 = 0 and 〈(êj(θa))2〉 = 1/2, we obtain:

d〈∆Smed〉 =
N∑

a=1

(
〈T 2(θ, r)a〉
TIγR

+
〈∂θaT (θ, r)a〉

IγR
+
mγv20
T
−

∑

j∈{x,y}

v0
T

〈
∂rjaU(r)aê

j(θa)
〉)

. (9)

Entropy production in the under-damped model

Let us consider the under-damped model described in the main text:

drja = vjadt, (10)

dvja =− γvjadt+ γv0ê
j(θa)dt− 1

m
∂rjaU(r)adt+

√
2Tγ

m
dWvj

a
, (11)

dθa = ωadt, (12)

dωa =− γRωadt+
1

I
T (r, θ)adt+

√
2TγR

I
dWωa

. (13)

Regardless of the odd or even interpretation of the self-propulsion under TRS, we have AIR
ωa

= −γRωa, AREV
ωa

= T (θ, r)a/I ,
AIR
θa

= 0, AREV
θa

= ωa, AIR
rja

= 0, AREV
rja

= via, Dωa
= TγR/I , Dθa = 0, Dvj

a
= Tγ/m, and Drja

= 0.

Odd self-propulsion

For the odd interpretation of the particles’ heading under TRS, we obtain AIR
vj
a

= −γvia + γv0ê
j(θa) and AREV

vj
a

=

−∂rjaU(r)a/m. Applying Eq. (3) we obtain:

d∆Smed =

N∑

a=1

(
γR

T

(
I
〈
ω2
a

〉
− T

)
+

∑

j∈{x,y}

γ

T

(
m
〈
(vja − v0êj(θa))2

〉
− T

))
. (14)

At steady-state, recognising 〈vja ◦ dvja〉 = 0, 〈ωa ◦ dωa〉 = 0, 〈dU(r)〉 = 0 and 〈(êj(θa))2〉 = 1/2, we obtain:

d〈∆Smed〉 =
N∑

a=1

(
γR

T

(
I
〈
ω2
a

〉
− T

)
+

∑

j∈{x,y}

γ

T

(
mv20

2
−m

〈
(vja)2

〉
+ T

))
. (15)
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Even self-propulsion

For the even interpretation of the particles’ heading, we obtain AIR
vj
a

= −γvia and AREV
vj
a

= γv0ê
j(θa) − ∂rjaU(r)a/m.

Applying Eq. (3), we obtain:

d∆Smed =
N∑

a=1

(
γR

T

(
I
〈
ω2
a

〉
− T

)
+

∑

j∈{x,y}

γ

T

(
m
〈
(vja)2

〉
− T

))
. (16)

[1] H. Risken, in The Fokker-Planck Equation (Springer, 1996) pp. 63–95.
[2] R. E. Spinney and I. J. Ford, Physical Review E 85, 051113 (2012).
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7.1 A unifying framework for collective motion

This thesis investigates the phenomenon of collective motion of self-propelled par-
ticles in a variety of real and simulated active matter systems. Multiple aspects of
active matter are investigated, including the propagation of information during col-
lective directional changes, kinetic phase transitions and critical regimes, and the
thermodynamic costs for the formation of collective motion. What distinguishes
this thesis from other studies of collective motion is the particular focus on issues
that are related to information, and the intention to approach them from rigorous
information-theoretic and thermodynamic perspectives.

In particular, some well-known concepts in collective motion are recasted as en-
tropic quantities. For example, information propagation across particles is typically
investigated using a variety of spatial correlations [Nagy et al., 2010; Cavagna et al.,
2013b; Cavagna et al., 2013a; Procaccini et al., 2011] while, in this thesis, it is quan-
tified information-theoretically, using transfer entropy. Similarly, kinetic phase tran-
sitions in active matter are usually investigated with the help of suitably designed
order parameters [Vicsek et al., 1995; Chaté et al., 2008] while, in this work, they
are also associated to changes in the average configuration entropy of the system.
The sensitivity of the system to changes in the control parameters is also described
information-theoretically and information-geometrically, using Fisher information.

One of the main objectives of this thesis is to relate information-theoretic con-
cepts in collective motion and more tangible, physical aspects of this phenomenon.
For example, the study in Chap. 3 relates positive and negative information flows
across a school of fish to spatial interactions, i.e., the transfer entropy from a fish to
another is mapped to the relative position and heading of the two fish. In Chap. 4,
a model of collective motion is studied in the contest of a physical process, i.e.,
a quasi-static protocol, which drives the system across a kinetic phase transition.
Information-theoretic quantities, such as the configuration entropy of the system
and the Fisher information, are contrasted with thermodynamical quantities such
as internal energy and work. The study of a system of active Brownian particles
in Chap. 6 moves from the analysis of quasi-static processes to the investigation of
non-equilibrium aspects of active matter. Different phases of the system are charac-
terised not only in terms of their associated behaviour [Siebert et al., 2018; Digregorio
et al., 2018; Martín-Gómez et al., 2018], but also thermodynamically, in terms of the
entropy production within the system.

Chap. 3 highlighted the important role of identifying predictive information flows
in understanding collective motion, and the self-organisation of collective dynam-
ics in general. Since self-organisation involves energy and entropy flows, the next
question we set out to answer was how information dynamics in self-organising
collectives can be understood in terms of the underlying physical physical fluxes
[Prokopenko and Lizier, 2014; Prokopenko et al., 2013; Spinney et al., 2016; Spinney
et al., 2018]. This was investigated in Chap. 4, where the precise energy and entropy
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dynamics were traced for different phases and critical regimes of a model of active
matter. These phases and regimes were then contrasted in terms of their thermody-
namic efficiency—a concept introduced in this work. As a result, the underlying in-
formation flows and the corresponding thermodynamic quantities (energy, entropy,
and work) were shown to abruptly change at criticality. This was further studied in
another context, i.e., population dynamics over different time scales (Chap. 5), con-
firming the utility of the thermodynamic efficiency in identifying critical regimes.
Analysis of thermodynamic fluxes which shape collective self-organisation becomes
particularly challenging for non-equilibrium dynamics within active matter. Chap. 6
describes the first step in this direction, focussing on a topical model of active Brown-
ian particles, for which we derived analytical expressions for the entropy production
rate, supported by numerical simulations. This has again allowed me to explicitly
identify different phases and critical regimes of the dynamics. Equipped with these
analytical tools, we can approach a study of the thermodynamic efficiency of active
matter in non-equilibrium settings—this is a subject of future research.

An important feature of the framework developed in this thesis is its generality,
which allows its application to the study of other collective phenomena. For exam-
ple, the study in Chap. 5 demonstrates that the relations between Fisher information,
entropy, energy and work can also be applied to urban dynamics, while Harding et
al., 2018 have applied them to the analysis of the thermodynamic efficiency of conta-
gions. The transfer entropy approach developed in the study of a school of fish can
be applied to the other distributed information processes including, for example,
neural networks [Wibral et al., 2014]. Similarly, the method based on stochastic ther-
modynamics proposed to study the entropy productions in Chap. 6 can be adapted
to other microscopic non-equilibrium collective phenomena [Seifert, 2012].

7.2 Summary of the main results

The objectives of this thesis, presented in Sec. 1.2, have been met in the four studies,
the main results of which are here summarised.

Informative and misinformative interactions in a school of fish

Information propagation is a key aspect of the collective motion in animal groups
which, however, is hard to quantify due to continuous and noisy nature of informa-
tion processing in these natural systems. This study has proposed an information-
theoretical approach, based on the local transfer entropy, to measure information
transfer across the implicit and distributed communication channels of a school of
fish, which are characterised by noise, delay and long-ranged effects.

Hemigrammus rhodostomus fish were placed in a ring-shaped tank, and their
trajectories were recorder during their circular motion, which included occasional
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collective U-turns. Pairwise time-delayed dependencies between the recorded tra-
jectories were analysed using the local transfer entropy, revealing predictive in-
formation flows that intensify during the U-turns. Information propagation dur-
ing collective directional changes has been long hypothesised, but never verified
information-theoretically in a biological system.

Crucially, some misinformative information flows, characterised by negative val-
ues of local transfer entropy, were observed, indicating that observing the heading of
a fish increases the uncertainty associated with the prediction of the next direction of
another fish. Specifically, two distinct predictive information flows were identified
during collective U-turns: an informative flow from fish that have already turned to
fish that are turning, and a misinformative flow from fish that have not turned yet to
the fish that are turning. This produces a sequential cascade of the dynamics of in-
formation flow, observed, but not captured information-theoretically in [Potts, 1984;
Procaccini et al., 2011; Herbert-Read et al., 2015], and also distinguishes between
informative and misinformative transfer.

The role of spatial dynamics in generating the influential interactions that carry
the informative and misinformative information flows was investigated. Local val-
ues of transfer entropy were mapped to the relative heading between fish pairs,
revealing clear spatio-informational motifs. Positive information flow is detected
from a fish to the others positioned behind it (comparably to what was found in
otehr studies including [Nagy et al., 2010; Katz et al., 2011; Rosenthal et al., 2015],
and whose headings are perpendicular rather than parallel to it. Negative informa-
tion flow is instead generally detected from a fish to the others positioned at the side
and with opposite heading.

In this study it is shown that a fish can thus choose to move in the opposite di-
rection of the majority, temporarily suppressing its behavioural tendency to align
with its neighbours. When this happens, transfer entropy reveals that the other fish
are seen as a source of misinformation to an observer. This is an example of how
the information-theoretic approach can provides a better understanding of the pro-
cesses underlying collective decisions in animal groups.

Thermodynamics and computation during collective motion

This study has presented a theoretical framework for quantifying thermodynami-
cal quantities in systems driven by quasi-static protocols, and for relating them to
information-theoretic quantities. It has been shown that the rate of changes of the
generalised work required to vary the control parameters quasi-statically is propor-
tional to the Fisher Information. Additionally, an information-geometric interpreta-
tion of the curvature of the internal energy was provided, as the difference between
two curvatures: the curvature of the free entropy, captured by the Fisher informa-
tion, and the curvature of the configuration entropy. This expression highlights the
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computational balance between the sensitivity and the uncertainty of the computa-
tion which are represented, respectively, by the Fisher information and the configu-
ration entropy.

The framework was applied to the study of quasi-static protocol driving a well-
known model of collective motion [Grégoire and Chaté, 2004] across a kinetic phase
transition from a disordered phase, in which particles maintain a fairly stable col-
lective position but do not align, to a polarised phase, in which particles cohesively
move towards a common direction. The system was simulated for several values
of the control parameters, until it reached a stationary state, in order to numerically
estimate the probability distribution of the velocity of the particles. It was shown
that the critical points of the phase transition are captured by the divergence of the
Fisher information of the velocity distribution with respect to the control parame-
ters. The divergence of the Fisher information was thus used in order to construct
a phase diagram of the behaviour of the system, which was consistent with the one
of Grégoire and Chaté, 2004. This approach to building phase diagrams can come
useful when the definition of a suitable order parameter is hard.

The numerical results showed that the balance between sensitivity and uncer-
tainty of the computation is stressed at criticality, where the curvatures with respect
of the control parameters of work, energy and configuration entropy diverge. This
is in line with several experimental observations that flocking behaviour combines
coherence and responsiveness to external perturbations [Cavagna et al., 2013b; Pro-
caccini et al., 2011]. Moreover, it was shown that the thermodynamic efficiency of
computation, introduced as the ratio of the gain in internal order to the expenditure
of work, was the highest at criticality. In computational terms, the thermodynamic
efficiency corresponds to a ratio of generated order to the sensitivity accumulated
over a process running from the current state to the state of perfect order. Thus, the
maximum efficiency at criticality also indicates that achieving one bit of uncertainty
reduction is the most convenient, in terms of accumulated sensitivity, during phase
transition.

Critical dynamics and thermodynamics of urban transformations

This study has demonstrated the applicability of the theoretical framework devel-
oped in Chap. 4 in the field of urban dynamics. Specifically, the study investigates a
hypothetical phase transition of the urban settlement within Greater Sydney, from a
dispersed configuration, in which the population settles homogeneously, to a poly-
centric configuration, in which the population aggregates in a few highly populated
centres.

A model of income flow between employment areas and residential suburbs was
developed, based on the Boltzmann-Lotka-Volterra (BLV) method [Harris and Wil-
son, 1978; Wilson, 2008]. Slow dynamics, modelled as Lotka-Volterra equations,
govern the evolution of the local services, which determines the attractiveness of
the suburbs. A fast equilibration, modelled using the maximum entropy principle
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(from which comes the name “Boltzmann”), determines the flow of residents, and
their income, from employment to residential places that are consistent with the
distribution of the services. The model, calibrated to Census data and geospatial
datasets, involves two control parameters: the social disposition, balancing the sub-
urbs’ attractiveness, and travel impedance, balancing the discomfort attributed to
commuting trips.

The phase transition, detected using Fisher information, was shown to be in-
duced by the social disposition, and was investigated thermodynamically by con-
sidering a quasi-static protocol for the variation of this control parameter. In partic-
ular, the minimum work required to vary a control parameter was investigated. It
was shown that the ratio of the order gained during a change to the required work,
a concept that we introduced as the thermodynamic efficiency of urban transforma-
tion, is maximised at criticality.

Entropy production during collective motion of active Brownian particles

The thermodynamic treatment of active matter has recently attracted a growing
interest. The entropy production associated with an over-damped model of self-
propelled particles, which interact only via volume exclusion, has been studied by
Fodor et al., 2016 and Mandal et al., 2017, under the framework of statistical ther-
modynamics. A later study by Shankar and Marchetti, 2018 has demonstrated that
important components of the entropy production along the trajectory of free (non
interacting) particles are missed when an over-damped description of the dynam-
ics is used. The authors also pointed out that the interpretation of the particles’
self-propulsion as odd or even under time-reversal symmetry (TRS) yields different
expressions for the entropy production.

The study presented in this thesis has investigated the entropy production in a
system of active Brownian particles that interact through volume exclusion as well as
alignment. Inspired by Shankar and Marchetti, 2018, the analytical expressions for
the expected entropy production rate in the medium (which at steady-state equals
the average total entropy production) are derived, for both under-damped and over-
damped dynamics, and for odd and even interpretation of the particles’ heading un-
der TRS. Such expressions confirm that the choice of over-damped or under-damped
descriptions affects the thermodynamic treatment of the system. Perhaps even more
strikingly, is the effect of the two parity interpretations of the particles’ heading in the
entropy production expressions for under-damped model. Under the even parity
interpretation, the entropy production quantifies the deviation from equipartition
expected at equilibrium, in both the translational and rotational degrees of freedom.
Under the odd parity interpretation, the entropy production associated to the trans-
lational degrees of freedom measures the deviation from an effective equipartition,
relative to the instantaneous self-propulsion force.

The under-damped model is numerically simulated over three control param-
eters, i.e., the particles’ density, the self-propulsion persistence and the alignment
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strength. Three distinct kinetic phases of the systems are identified: a phase in which
particles’ positions and orientations are homogeneously distributed, a phase char-
acterised by MIPS and a phase exhibiting both MIPS and orientational order. The
phase transitions are shown to be reflected in changes of the expected entropy pro-
duction rate, calculated using the derived expressions. Moreover, individual par-
ticles in areas of the system characterised by different states of active matter, e.g.,
‘solid’, ‘gas’ and ‘flocks’, have been shown to be associated to different expected en-
tropy production rates. The entropy production rate has also been shown to capture
defects in the solid structures.

7.3 Future directions

A main problem in the study of collective motion of animal groups is the identifi-
cation of ‘effective’ neighbours, i.e., the individuals that have a direct effect on the
motion of another. Effective neighbourhoods cannot be inferred using only pairwise
relationships in the same way as in Chap. 3, where transfer entropy was applied to
measure pairwise information transfer across a school of fish.

Future research will focus on multivariate extensions to the transfer entropy
which, for example, involve the conditioning of other source fish. Such extensions
may be useful in order to eliminate redundant pairwise relationships and also for
detecting higher-order relationships beyond pairwise [Lizier et al., 2008; Lizier and
Prokopenko, 2010; Lizier et al., 2010; Vakorin et al., 2009; Williams and Beer, 2011].
These modifications are anticipated to be challenging, since they will have to deal
with the short-term and dynamic structure of interactions across the collective. Lord
et al., 2016 has used conditional transfer entropy, averaged over a time-window, to
study effective interactions during insects’ flights, however, the collective dynamics
on the local scale are still to be investigated.

The theoretical framework developed in Chap. 4 was applied to the study of a
model of collective motion [Grégoire and Chaté, 2004]. Future studies will aim at
applying the concepts developed in this study, and in particular the thermodynamic
efficiency of computation, to more realistic systems. Such investigations will reveal
to what extent the developed framework can be used in order to study and design
real active matter. The application of a the framework to the study of models that
are data-driven was demonstrated in Chap. 5, where the urban dynamics of Greater
Sydney were studied. Similarly, the approach developed in Chap. 6 for the quan-
tification of the entropy production in a system of active Brownian particles, will be
applied to analyse systems that involve more intricate interactions which include,
for example, hydrodynamic [Baskaran and Marchetti, 2009; Zöttl and Stark, 2014;
Menzel et al., 2016] and/or electrochemical effects [Yan et al., 2016], as well as a
comparative analysis with respect to thermodynamic efficiency in non-equilibrium
settings. Moreover, formal analogies between stochastic thermodynamics and infor-
mation dynamics have been recently developed Spinney et al., 2016; Spinney et al.,
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2018—future work will aim at exploring such relations in active matter.
In general, future research will aim at improving and extending the information-

theoretic and thermodynamic framework developed in this thesis, which is expected
to have potential applications in better understanding collective motion in natural
systems and in engineering artificial active matter.
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