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Thesis Abstract 
 

Orthopaedic implants are an ever-growing global industry with hundreds of thousands of 

operations performed annually. Titanium alloys are the standard material for load-bearing 

orthopaedic devices because of their biocompatibility and favourable mechanical properties. Despite 

a variety of surgical strategies, a significant number of implants experience post-operative 

complications, such as bacterial-film formation and fibrotic encapsulation, or long-term implant 

loosening due to bone resorption. Biomolecule functionalisation with proteins or peptides is a 

promising approach to create a biologically-active surface that reduces the potential for adverse post-

operative complications and encourages bone formation. The biomolecules commonly utilised for 

enhancing bone formation either increase cell recruitment by simulating the natural extracellular 

matrix or accelerating the bone formation through mineralisation. An optimum functionalisation 

would include multiple active biomolecules so that attachment and mineralisation would be enhanced 

simultaneously. Previously, biomolecule-functionalisation of titanium surfaces was performed 

through physical adsorption, chemical covalent linker molecules, or plasma-based technologies that 

require subsequent wet chemical processing. Few techniques have provided a simple, reproducible, 

and scalable approach to transition from the laboratory into a manufacturing setting. There is 

currently no approach that enables the covalent immobilisation of multiple biomolecules to a surface.  

This thesis explores the application of radical-functionalised plasma polymers films (rPPFs) as 

multifunctional protein biointerfaces for orthopaedics. rPPFs are a dry, plasma deposited coating that 

modifies surfaces for covalent attachment of biomolecules through embedded unpaired electrons. 

The mechanical and biological properties of rPPF coatings were optimised for titanium substrates, and 

the effects of the radical fluxes on surface chemistry and cell behaviour were investigated. Two 

multifunctional protein surfaces were developed and comparatively examined against the component 

proteins for bone formation potential with primary osteoblasts and mesenchymal stem cells. Overall, 



this work shows the versatility of rPPFs and opens a potential avenue for translating multiple 

biomolecule-functionalisation into the manufacturing environment. 
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Chapter 1 – Introduction  
 

 

The subject of biomolecule-functionalisation with applications in orthopaedic devices is examined in 

this chapter. The current materials used for orthopaedic devices and their limitations that drive the 

need for biomolecule-functionalisation are highlighted. The surface properties that govern protein-

surface interactions are explained, before reviewing and discussing the progress in biomolecule-

functionalisation of orthopaedic surfaces performed via adsorption, chemical covalent immobilisation, 

and physical covalent immobilisation. The immobilisation mechanisms for each approach are 

examined, and the strategies are evaluated according to their complexity, efficacy, reproducibility, and 

scalability. Finally, the motivation for the application of radical-functionalised plasma polymer 

coatings for bio-functionalisation of orthopaedic surfaces is outlined. 

 

The chapter is adapted from a manuscript invited for submission at Progress in Materials science 

based on a prior editorial review: ‘A review of biomimetic surface functionalization for bone-

integrating orthopedic implants: Mechanisms, current approaches, and future directions’, by Callum 

Stewart, Behnam Akhavan, Steven G. Wise, and Marcela M. M. Bilek.  

 

1. Literature review 
 

1.1 Biological interactions with orthopaedic implant surfaces 
 

The prevalence of orthopaedic or bone implants has greatly increased worldwide. For example, 

in Australia alone, close to a million total hip and knee replacement operations have been performed 

since 1999, around 10% of which required revision surgeries due to problems associated with poor 

bone integration [1]. Despite strategies such as optimised surgical implant techniques, aseptic surgical 

conditions, and increased postoperative care [2], a significant proportion of implants fail due to poor 
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integration with adjacent bone tissue. Failure to rapidly promote the growth of new bone on their 

surface leaves implants susceptible to encapsulation by fibrotic tissue in a process known as the 

foreign body reaction [3-5], and bacterial colonisation leading to biofilm formation on the implant 

surface [6, 7]. Biofilm formation leads to infections that can often only be eliminated by surgical 

removal of the implant; whilst the presence of fibrotic tissue at the bone-implant interface often 

interferes with implant fixation and function, also often requiring repeat surgical intervention [2, 3]. 

The costs, risks, and patient discomfort of revision surgery provide a compelling need for surface 

modifications that facilitate rapid osseointegration or the growth of new natural bone on and around 

the implant surface. With the increasing number of orthopaedic implants performed annually 

worldwide and the need for longer implant lifetimes as lifespans increase, the need for optimally 

osseointegrating bone implants is becoming more significant. 
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Figure 1.1. A diagrammatic representation of the initial stages of implant osseointegration for non-

functionalised (current orthopaedic implants) and biomolecule functionalised implants. After implantation, the 

implant surface interacts with the biological environment. The surfaces of non-functionalised implants become 

coated in proteins from the environment forming a variable protein layer (as described by the Vroman effect). 

The cellular response to the variable protein layer changes with the composition leading to unfavourable 

immune response, infection, or failure to integrate. Biomolecule-functionalised surfaces produce a defined layer 

of biomolecules for a more controlled biological response leading to improved osseointegration.    

 

Orthopaedic implants are categorised into non-load bearing and load bearing, depending on the 

application of the device. Non-load bearing implants are devices like screws or maxillofacial plates 

that provide structure but do not support weight. The preferred materials for non-load bearing devices 
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are resorbable ceramics chemically similar to bone, such as hydroxyapatite (HA) [8, 9], or 

biodegradable polymers, such as polycaprolactone (PCL) [10-12]. In this case, the role of the implant 

is to facilitate the formation of natural bone that gradually fills the volume of the implanted scaffold 

as it degrades. Load bearing implants, like artificial knees and hips, on the other hand, must be able 

to support the patient’s weight during movement. Materials used for the fabrication of these implants 

must be capable of retaining their shape under significant mechanical forces applied repetitively. 

Polymeric materials are not generally strong enough to support repetitive loading without plastic 

deformation [13]. The exception is polyether (ether ketone) (PEEK) which has mechanical properties 

close to those of natural bone and has found applications in spinal implants [14-17]. Ceramic materials 

do not exhibit the necessary flexibility due to their high degree of ionic bonding [18]. Metallic 

materials, however, demonstrate the required mechanical strength to support physical loading and 

the level of elastic deformation needed to resist failure under cyclic physiological stresses.  

Three metallic alloys have been widely investigated during the development of orthopaedic 

implants over the last century; stainless steel, cobalt chromium (CoCr), and titanium (Ti). Initially 

proposed in the 1940’s [19], Ti and its alloys have been used almost exclusively for the latter half of 

the twentieth century. Numerous Ti alloys have been investigated for the fabrication of bone implants 

and have been thoroughly reviewed elsewhere [20-22]. One of the later developments has been the 

production of porous Ti alloys that show enhanced osseointegration [23], but possess lower 

mechanical strength because the pores act as stress concentrators [24, 25].  

For orthopaedic implants, titanium alloys are superior to stainless steel and CoCr alloys due to 

their lower modulus of elasticity and greater biocompatibility. Titanium alloys have an elastic modulus 

of between 50 - 118 GPa as listed in Table 1.1 [20-22]. This modulus is half that of stainless steel (216 

GPa) and CoCr alloys (240 GPa) but is still 2 to 5 times higher than hard cortical bone (10-30 GPa) [26-

28]. The disparity between the elastic moduli of bone and the implant results in a condition known as 

‘stress shielding’, where the bone is resorbed from around the implant [29-31]. The structure of bone 
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tissue results from the forces experienced by the bone and undergoes a constant formation-

resorption cycle, as dictated by Wolff’s Law [32]. Upon the insertion of a titanium implant, the hard 

bone tissue no longer experiences the necessary mechanotransductive forces for bone formation, 

causing the surrounding hard tissue to be resorbed. The lack of physiological feedback leads to implant 

loosening that requires revision surgery to correct [33].  

Titanium-based alloys are generally well tolerated in vivo [34, 35], whereas, stainless steel and 

CoCr alloys have detrimental effects on surrounding tissue due to the leaching of metallic ions [36-

38]. Fe, Co, and Cr ions are strongly cytotoxic to the surrounding cells, while Ti ions are significantly 

less cytotoxic [39]. These advantages have made titanium-based alloys the dominant material used in 

modern load-bearing orthopaedic implants.  

Table 1.1. Properties of Ti and its alloys applied for the fabrication of bone implants. The values for the 

mechanical properties are obtained from [20] unless otherwise cited. 

Alloy Description Elastic 

modulus 

(GPa) 

Yield strength 

(MPa)  

Tensile strength 

(MPa) 

Biocompatibility 

Commercially 

pure (CP) -Ti  

 

Pure titanium (α – 

phase) first used for the 

fabrication of implants.  

101 – 110  170 – 485  240 – 550 Greater osseointegration 

than SS and CoCr alloys 

Ti-6Al-4V 

Ti 6-4 

Grade 23 

α-β phase Ti alloy with 

higher strength than CP-

Ti  

101 – 110  729 – 847  954 – 976  Similar biocompatibility to 

CP-Ti. Leaching of Al and V 

may induce apoptosis in 

osteoblasts [37, 40]. 

  

Ti-29Nb-13Ta-

4.6Zr  

(TNTz) 

“Gum metal” 

β phase low modulus 

alloy [41] 

50 – 80 [42] 547 – 864  596 – 911  Reduced bone atrophy 

due to stress shielding 

compared with stainless 

steel and Ti-6-4.[43-45]  
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Titanium is biologically inert due to the formation of an unreactive oxide layer with a thickness of 

~ 5 nm on the surface (also referred to as the passive layer) [34, 39, 46, 47]. Although titanium is well 

tolerated in vivo, it fails to actively encourage osseointegration on the cellular level. Once titanium is 

placed inside the body, proteins from the biological environment rapidly adsorb on the implant 

surface to minimise the free energy of the interface [48, 49]. Adsorbing proteins reduce the free 

energy of an interface that is more hydrophobic than the local aqueous environment by unfolding to 

expose their inner hydrophobic regions to the surface and concentrating their hydrophilic domains in 

the aqueous medium. The proteins on the surface may aggregate with or be displaced by proteins 

arriving later, leading to a layer of varying composition and conformation. The adsorbed proteins act 

as markers and signalling agents, governing the interactions between the surface and the biological 

environment [50]. An unstable protein layer containing molecules with non-native conformations 

triggers a foreign body response in which the implant is encapsulated by fibrotic tissue [2, 3]. The 

functionalisation of a titanium implant via the immobilisation of desirable proteins or their bioactive 

fragments in their native conformations is a promising approach to overcome the bioinertness of the 

surface, leading to improved osseointegration. Protein immobilisation cannot eliminate the 

underlying problem of elastic modulus mismatch as the elastic modulus is a bulk material property. 

However, protein immobilisation can reduce the net impact of stress shielding in regions susceptible 

to bone resorption by encouraging more optimal bone integration. 

Protein immobilisation, first performed on glass substrates, stemmed from peptide 

immobilisation. Originating in 1990 [51], a limited number of studies were published prior to the 

2000’s [52]. Protein immobilisation has since become a large field with a variety of processes and 

proteins investigated. The proteins considered for enhancing osseointegration can be categorised into 

two classes: (i) proteins that provide signals stimulating bone formation and (ii) extracellular matrix 

(ECM) proteins that provide adhesion sites for cells. BMP-2, known to stimulate cortical bone 
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formation in surgical procedures [53, 54], has been immobilised on Ti surfaces and found to stimulate 

the proliferation and differentiation of bone marrow stem cells and osteoblast-like cells [55-57]. Cell 

adhesion proteins, including fibronectin, collagen, tropoelastin [58], silk fibroin (SF) [59, 60], and 

sericin [61], are proteins immobilised to facilitate the indirect formation of bone tissue. These proteins 

create ECM adhesion sites allowing osteoblastic cells to attach and initiate the osseointegration 

process. The initial functionalisation investigations utilised simple methods, such as physisorption, for 

the immobilisation of proteins. However, the initially simple processes have developed into intricate 

systems as time progressed [2]. This chapter reviews the fundamentals of surface – protein 

interactions that underpin the techniques used for functionalisation of orthopaedics surfaces.  Protein 

immobilisation techniques applied to orthopaedic surfaces are evaluated with respect to their 

complexity, reproducibility, scalability, and properties of the functionalised surfaces focussing on 

stability and biological efficacy. 

 

1.2 Protein – surface interactions 
 

Protein immobilisation mechanisms on orthopaedic surfaces are governed by a number of 

surface properties which influence the permanence, orientation, and conformation of the immobilised 

proteins. The fundamental properties of a surface that govern protein – surface interactions are 

topology and chemistry. These two properties together determine the surface free energy (SFE) and 

charge, which in turn controls the forces of interaction (hydrophobic/hydrophilic and electrostatic) 

between proteins and the surface, as depicted in Figure 1.2. Therefore, by manipulating the surface 

topology and chemistry, it becomes possible to tune the protein-surface interactions and achieve 

optimal bioactivity.  
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Figure 1.2. A visualisation of the contributing factors affecting the protein-surface interactions as derived from 

the surface chemistry and topology of an implant. 

 

1.2.1 Surface chemistry 
 

The chemical composition of any solid material at its interface with another phase, such as the 

aqueous environment of the human body, is referred to as surface chemistry. The surface chemistry 

determines the distribution of electric dipole moments and charges at the interface, which results in 

electrostatic interactions with proteins in the aqueous environment. The electron distribution within 

the bond determines the electric dipole moment of a chemical bond. Polar molecules are those with 

an electron bond density biased towards the more electronegative atoms (atoms that attract bonding 

electrons), that form net asymmetric positive (+Q or +δ) and negative (-Q or -δ) regions within the 

molecule [62]. Non-polar molecules, in contrast, demonstrate a symmetrical charge distribution, and 

therefore, no net dipole moment. Typical examples of polar and nonpolar molecules containing polar 

bonds are CO and CO2. Both molecules contain polar bonds between the more electronegative O and 

less electronegative C. The C=O molecule has a single polar bond resulting in an asymmetrical 

distribution and, therefore, is a polar molecule; whereas the net charge distribution is symmetrical in 

the case of CO2 (O=C=O), making the molecule overall nonpolar. 
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Surface charge at the interface is derived from the molecular groups that possess a net positive 

or negative charge due to the addition or removal of ionised species, such as a proton (H+). The surface 

charge is thus affected by the environmental pH, i.e. proton concentration [63]. The isoelectric point 

(pI or IEP) of a chemical group is the pH where the group has no net charge in the statistical mean. 

The chemical groups become increasingly deprotonated (negatively charged at pH > pI) or protonated 

(positively charged at pH < pI) as the pH diverges from the pI [63]. For example, at the physiological 

pH 7.4, carboxylic acid groups (COOH) are negatively charged (COO-), while amino (NH2) groups are 

positively charged (NH3
+) [64].  

The surface free energy (SFE) depends on the chemical groups present and whether they are 

charged or have dipole moments. The chemical composition and resulting SFE, therefore, governs how 

the surface interacts with the aqueous biological environment and the proteins within, as 

schematically illustrated in Figure 1.3. The SFE determines the surface affinity with water and is 

typically measured by the water contact angle (WCA). The WCA is determined by the relative strength 

of the adhesive forces between the polar water molecules and the surface on the one hand, and the 

cohesive forces between water molecules on the other hand. A surface is classified as hydrophobic or 

hydrophilic based on WCA >90˚ and WCA <90˚, respectively [65, 66]. Surfaces with higher 

hydrophilicity (and SFE) possess greater adhesive interactions with the polar species in vivo, such as 

water molecules [62]. In addition, electrostatic interactions can assist in attracting and orienting 

proteins based on charged regions in the structure, as demonstrated by the electrophoretic deposition 

of silk fibroin [59, 60]. Proteins demonstrate a tendency to change conformation during interactions 

with surfaces [67]. The protein’s environment changes from liquid to a solid-liquid interface once it 

encounters a solid surface. To accommodate the influences of the surface, the protein refolds from 

its native conformation which corresponds to a low free energy state in aqueous solution, to a new 

conformation to achieve a free energy minimum at the interface. The strongly bound layer of water 

molecules on a hydrophilic surface prevents strong interactions between the protein and the surface, 

allowing the protein to maintain its native conformation [68]. Highly hydrophilic surfaces, therefore, 
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are protein repellent and do not adsorb proteins from aqueous solutions [69, 70]. In contrast, the 

interface of a hydrophobic surface with water presents a significant energy penalty and the system 

will evolve to a lower energy state through the adsorption and unfolding of proteins. In such 

rearrangements, the hydrophobic groups are placed on the surface and the polar hydrophilic groups 

become the interface with the water. The new conformation will be significantly different from the 

native conformation, potentially rendering the protein useless for the desired biological signalling 

[71]. Highly hydrophobic surfaces, therefore, result in the irreversible build-up of non-functional, 

denatured proteins. This phenomenon is referred to as protein fouling and has been reviewed 

elsewhere [72].  

 

 

Figure 1.3. An illustration of protein-surface interactions for given hydrophobicities of smooth (a, b) and 

roughened (c, d) surfaces. The roughening of substrates enhances the pre-existing hydrophobicity. For 

hydrophobic surfaces (a, c) the roughened surface increases the protein adsorption quantity but results in 

protein fouling. Hydrophilic surfaces possess a water layer which impedes protein adsorption but maintains 

native protein conformation (b). Enhancement by roughening (d) produces a non-fouling surface due to the 

increased water attraction preventing protein adsorption.  
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1.2.2 Surface topology and roughness 
 

Surface topology is defined as the physical roughness and morphology of the interface. 

Roughness is the height variation from the statistical mean across the interface and is reported as the 

average roughness (Ra) or root mean square roughness (RRMS), while, morphology is the form the 

roughness takes, e.g. pores, grooves, or random formations. The process of altering the surface 

topology towards roughness and inducing morphological changes is referred to as roughening and can 

be performed through multiple means, e.g. grit blasting, acid etching, or plasma treatment [73]. 

Roughening processes increase the effective surface area at the interface, multiplying the quantity of 

chemical groups accessible to the contacting fluid, which in turn, enhances the pre-existing 

hydrophobicity/hydrophilicity of the interface. Accordingly, polymeric materials have been shown to 

become more hydrophobic as the surface roughness increases [74], whereas metallic surfaces 

experience an increase in hydrophilicity [66] (Figure 1.3). 

The types of interactions that determine implant biocompatibility have been shown to occur at 

different roughness scales [75-77]. The micron-scale improves mechanical interlocking [78], the 

submicron scale affects cellular activity [75, 76, 78], and protein interactions are influenced by the 

nanoscale morphology [79-81]. Proteins of different molecular sizes, charges, and surface affinities 

will interact differently with identical nanoscale topologies. [82]. The effect of surface roughness on 

protein adsorption has been investigated only for a limited number of proteins. Nanoscale surface 

topology accommodates protein attachment greater than could be accounted for by an increase in 

the surface area alone, and the mechanism is believed to be through protein conformational changes 

[79, 80]. It has also been shown that roughening on the submicron scale will affect the attachment of 

proteins based on the interactions between the individual protein and the enhanced 

hydrophobic/hydrophilic nature of the surface [83]. Surface roughening has been incorporated into 

current titanium orthopaedic devices to take advantage of the increase in biological interactions it 

affords. 
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1.3 Protein immobilisation approaches 
 

Protein immobilisation on an orthopaedic surface allows greater control over the biological 

interactions between the implant and the body. Several methodologies have been investigated since 

the inception of protein functionalisation for orthopaedics. The following section reviews the 

mechanisms of methodologies investigated and evaluates their complexity, reproducibility, and 

scalability. The properties of the functionalised surfaces, specifically their stability and biological 

efficacy, are also discussed. Titanium-based alloys are the standard for orthopaedic implants, and as 

such, the body of work on protein immobilisation methodologies for orthopaedic applications are 

focussed on titanium substrates. Immobilisation techniques that have been applied to PEEK are also 

addressed due to its potential to replace titanium in some orthopaedic devices. 

  

1.3.1 Physical Adsorption 
 

Physical adsorption, also referred to as physisorption, is the simplest method to immobilise 

proteins on substrates. It utilises hydrophobic and electrostatic interactions to non-covalently attach 

proteins to the surface. The adsorption of proteins occurs whenever a surface is placed in contact with 

a protein-containing medium, whether intentionally through incubation in a specific protein solution, 

e.g. BMP-2 in buffer solution, or unintentionally through exposure to serum-containing cell media or 

an in vivo physiological environment. The unintentional adsorption of serum proteins is usually 

neglected in the case of cellular studies, despite the fact it always occurs. The literature suggests that 

surface pretreatment of metals via acid or alkali solutions (e.g. HNO3 or NaOH) or treatment through 

electrochemical methods [84-86], primarily used for cleaning, are beneficial for cell attachment. This 

improvement is due to the increased hydrophilicity resulting from polar groups formed at the protein 

– surface interface. The increased hydrophilicity allows adsorbed protein molecules to retain native-

like conformations. The beneficial effects of pretreatment are also likely to be related, in part, to the 
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increase in available surface area due to a change in nanoscale topology. Similar advantages can be 

achieved on polymers, such as PEEK, using chemical modifications that introduce COOH and OH 

groups [87, 88]. The physisorption process is also utilised for the intentional attachment of selected 

proteins to influence the biological response. The pre-treated substrates are immersed in a protein 

solution for a given time before being transferred into the biological environment. Currently, research 

is focused primarily on the adsorption of proteins onto porous alloys and other porous structures, 

usually with a view to achieving controlled protein release rather than permanent immobilisation [89, 

90]. 

The main advantage of non-covalent protein immobilisation is the simplicity of the process, 

making it attractive for manufacturing [91]. However, the non-covalent nature of adsorption presents 

a number of disadvantages including low effective protein concentrations, protein denaturing, and 

unfolding. The effective concentration of a protein is the quantity that interacts with the physiological 

environment per unit of area. Physisorption does not usually perform well in this respect because 

attachment strength is low on hydrophilic surfaces; while proteins tend to unfold and spread on 

hydrophobic surfaces where the forces of interaction are strongest [68, 71]. 

Two chemical modification strategies have been developed for the adsorption process in an 

attempt to address the issues of low effective protein attachment, steric effects, and denaturing. The 

first strategy is the substitution of buffer solutions with hydrogels to deposit proteins. The desired 

protein is loaded into a hydrogel, the substrate is immersed and then removed to be air dried [2]. This 

approach increases protein deposition and retention on an interface and overcomes protein 

denaturing through enclosure within the hydrophilic environment of the hydrogel [92]. However, once 

placed within the aqueous environment, the hydrogel rehydrates and swells allowing the proteins to 

become displaced from the hydrogel via diffusion or hydrogel erosion, depending on the size ratio 

between the hydrogel pores and the protein [93]. Hydrogels are not widely utilised in orthopaedic 

devices for protein immobilisation due to the potential for mechanical removal. They have, however, 
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become popular in tissue engineering scaffolds and for drug and protein release applications [94-97]. 

The application of hydrogels for biomolecule delivery and release has been reviewed elsewhere [98, 

99].  

The second strategy aiming to improve the performance of adsorption-based processes is the 

introduction of alternative chemical groups on the substrate, resulting in Chemisorption (adsorption 

through the formation of temporary chemical bonds). Surfaces presenting hydroxyl groups, such as 

titanium, can be modified using a process known as tresylation. In this process, schematically depicted 

in Figure 1.4, trifluoromethane sulfonyl (Tresyl) chloride molecules are chemisorbed to the hydroxyl 

groups on the surface. Tresyl molecules (SO2CH2CF3) are attached to the surface through ionic 

chemical bonding between the terminal sulphur and a surface hydroxyl [100-103]. During the protein 

immobilisation process, the tresyl group acts as a molecular guide being displaced via nucleophilic 

substitution by the incoming protein resulting in a strong electrostatic bond between the positive 

amine of a protein and the negative surface hydroxyl.  

 

 

Figure 1.4. Protein chemisorption via tresylation. Step 1: The tresyl groups attach to the substrate and release 

Cl, forming a temporary O-S bond. Step 2: The incoming protein undergoes SN2 nucleophilic substitution via an 

amino group, disrupting the O-S bond. Step 3: Protein is chemisorbed to the surface through an O-N bond. 
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Hayakawa et al. have demonstrated that the concentration of protein adsorbed to a tresylated 

substrate is greatly increased over a non-treated surface. The ionic bonding forms a more rigid protein 

layer that is less susceptible to protein desorption [104-107] and surfaces functionalised with proteins 

via tresylation have indicated a beneficial response both in vitro [108] and in vivo [109, 110]. However, 

the reversibility of this form of bonding leads to three disadvantages. Firstly, Tresyl groups can be 

removed through hydrolysis at the S-O bond [102, 103] potentially reducing the number of binding 

sites for protein immobilisation. Secondly, care must be taken to avoid the presence of other 

nucleophilic groups during protein incubation, as they would compete with the protein in the 

substitution reaction [105, 106]. Finally, adsorbed proteins could potentially be replaced in vitro/vivo 

by proteins with higher affinities in a similar nucleophilic substitution.   

While each adsorption approach has particular strengths, a major disadvantage of all physical and 

chemical adsorption processes is that proteins are susceptible to competitive replacement, also 

known as the Vroman effect (depicted in Figure 1.5). Vroman et al. [111] noted that clean surfaces 

placed in contact with blood first adsorb a layer of low molecular weight proteins present in high 

concentrations, such as albumin. The adsorbed proteins are replaced over time by higher molecular 

weight proteins, such as fibrinogen, which have a greater affinity for the surface. Although the process 

of the Vroman effect is not fully understood, the formation of a transitional protein complex that 

rotates to release the originally adsorbed protein has been observed [112]. Physisorbed protein layers 

would be expected to experience similar displacement through competition with other proteins in a 

physiological environment. The likelihood of displacement is a function of relative protein 

concentrations and surface affinities [113, 114]. The primary application of physisorbed protein layers 

has, therefore, focussed on applications requiring protein release.   

 



Page 34 of 214 
 

 

Figure 1.5. Protein adsorption to substrates via physical forces, scaffold entrapment through hydrogels, and 

tresylation. Substrates adsorbing protein via physical forces rely on electrostatic and hydrophobic interactions. 

The effectiveness will vary depending on the surface chemistry and topology. The adsorbed proteins are readily 

displaced in the medium through interactions with environmental proteins. Protein entrapment within 

hydrogels increases protein quantity. However, hydrogels experience degradation and swelling in medium, 

resulting in the exchange of proteins. Tresylated substrates attach protein through nucleophilic substitution, 

producing a strong, non-covalent bond between the protein and substrate. The proteins are still susceptible to 

displacement via nucleophilic substitution and desorption. 

 

1.3.2 Covalent immobilisation via chemical methods 
 

The inability of adsorption processes to permanently attach proteins to an orthopaedic surface 

highlighted the need for an alternative approach to protein functionalisation. For permanent 

attachment to occur, the surface chemistry of both metallic and polymeric substrates must be altered 

to facilitate covalent reactions between the surface and the desired protein. The covalent attachment 

can be achieved either directly via surface functional groups or indirectly through a separate linker 

molecule that mediates the binding between the substrate and the desired protein.  
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1.3.2.1 Direct Chemical immobilisation 

 

PEEK substrates have demonstrated the potential to be chemically modified to allow direct 

covalent protein immobilisation. Chemical modifications must be performed before proteins can be 

covalently bonded to the surface due to PEEK’s chemical inertness [115]. Hydroxyl functionalisation 

(PEEK-OH) is the first step for all the chemical modification reactions. The untreated PEEK is refluxed 

in dimethyl sulfoxide (DMSO) and sodium borohydride (NaBH4) at 120˚C for 3 hours and subsequently 

washed with water, acid, and alcohol [87, 115]. The PEEK-OH can be further reacted to produce other 

surface functional groups such as amines [115], isocyanates [87], and carboxyl groups [116]. 

Isocyanate (NCO) functionalised PEEK is synthesised by further treating PEEK-OH with hexamethylene 

diisocyanate and diazabicyclooctane in toluene for three days. PEEK polymers functionalised with NCO 

are able to directly bind proteins covalently through a nucleophilic addition mechanism [87]. PEEK-

NCO can be further hydrolysed with NaOH and dioxane to bear amine groups. PEEK has also been 

functionalised with carboxylic acids and aldehyde groups. To produce carboxylic acid or aldehyde 

groups, the surface must be reacted with methylhydroquinone to form methylated PEEK (MePEEK). 

After bromination under UV light, the aldehyde functionalisation is formed through dehydration [116]. 

The aldehyde groups are then treated with sodium chlorite solutions to achieve oxidation to carboxylic 

acids as mild oxidative conditions are needed. The potential of chemically functionalised PEEK for the 

covalent attachment of biomolecules has not yet been explored for biomedical applications. This 

might be due to the complexity of the reactions and difficulties in scaling the process to apply to the 

3D structures used in implantable devices. Nevertheless, the carboxylic acid and aldehyde groups 

presented at the chemically modified PEEK surface can be used to covalently tether biomolecules to 

the surface through subsequent chemical reactions. 
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1.3.2.2 Chemical linker-mediated immobilisation 

 

Both PEEK and titanium have been functionalised with biomolecules through linker-mediated 

immobilisation. Chemical linkers represent the most common method used for covalent 

immobilisation on titanium surfaces to date as opposed to direct chemical functionalisation 

potenitally due to reaction time and complex chemistry outlined in section 1.3.2.1(see Figure 1.6). A 

pre-treatment step is required to expose the native oxide layer terminated by hydroxyl groups for the 

covalent attachment of the linker molecules via dehydration/condensation reactions [57, 117]. Linker 

molecules are generally carbon chain molecules either synthetic, like silane and polyethylene glycol 

(PEG), or biologically derived, like heparin, dopamine, and chitosan. 
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Figure 1.6. A schematic of protein immobilisation via direct and linker-mediated covalent chemical attachment. 

Linker-mediated covalent immobilisation has been performed on Ti and PEEK substrates. Direct chemical 

immobilisation has been performed on PEEK only. Direct chemical immobilisation starts with a hydroxylated 

surface (step 1) and undergoes sequential chemical reactions to produce a reactive chemical functional group 

(step 2). Linker-mediated chemical immobilisation also starts with a hydroxylated substrate. The linker 
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molecules are added and undergo a condensation reaction with the hydroxyl groups and attach to the surface 

(step 2). The surfaces functionalised with chemical groups are exposed to the desired protein solution and 

treated with the required chemicals for immobilisation, e.g. EDC/NHS (step 3). Chemical covalent immobilisation 

has been shown to prevent protein displacement in the medium. 

 

The two most commonly used synthetic linker molecules for protein immobilisation in 

orthopaedics are silane and PEG. Silanisation of orthopaedic substrates, first reported in 1995, has 

become the most widely applied method for the immobilisation of proteins and is still currently in use 

[118-120]. Alkylsilane linkers attach to hydroxylated substrates via a condensation reaction between 

the head groups of the alkylsilane and the OH groups on the surface, resulting in an O-Si bond, as 

shown in Figure 1.7. Alkylsilane compounds are chemically versatile with many variations having been 

developed over the last two decades to provide further functionalisation. These variants are classified 

by the functional groups used to immobilise biomolecules, located either on the head groups or the 

alkyl tail: Aminosilanes (containing primary or secondary amines), glycidoxysilanes (containing an 

epoxide group), and mercaptosilanes (containing a thiol functional group) [121]. An initial in vivo study 

by Voggenreiter et al. [122] demonstrated covalent immobilisation and retention of BMP-2 biological 

activity through silanisation. The histological analysis showed new bone formation on the 150-200 ng 

BMP-2 immobilised substrates was equal to that formed in the presence of 1 μg solubilised BMP-2 

(Figure 1.8) [122]. Silanes have also been used to immobilised type I collagen [123] and a branched 

adhesion biomolecule [124] both inducing a significant improvement in osseoconduction and 

osseointegration in vivo.  
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Figure 1.7. An outline of surface functionalisation with the chemical linkers silane and PEG, examining an 

individual molecule. Step 1: the hydroxylated substrate is exposed to the linkers in solution. Step 2: Silane linkers 

undergo a condensation reaction with the surface hydroxyl groups, releasing H3COH, to form Si-O bonds. PEG 

will attach to the surface either via a condensation reaction, releasing water, or electrostatic attraction. The type 

of surface bonding is derived by the available surface charges, thus, condensation reactions can be preferentially 

increased by a strongly basic pH or through the use of electrodeposition [125-127]. The presence of multiple 

linker molecules will result in cross-linking of self-assembled monolayers. Step 3: The desired protein is attached 

to the surface via the chemical functional group on the linker, i.e. carbodiimide, Schiff-base, or disulphide. 
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Figure 1.8. a) A graphical representation of the examined histological parameters; bone volume, bone surface, 

trabecular number, implant-bone area, osteoid area, eroded perimeter and osteoid perimeter, for the titanium 

control (red), 150-200 ng BMP-2 coated implant (green), and 1 μg free-solution BMP-2 (blue). 

Microphotographical comparison of stained implant preparations implanted with soluble free (b) and chemically 

immobilised (c) rhBMP-2. The histological information demonstrated equal bond formation under both 

conditions, proving that smaller quantities of BMP-2 can be surface immobilised to produce the same biological 

effect. Reprinted with permission from [122]. 

 



Page 41 of 214 
 

PEGylation of orthopaedic substrates has previously been used to immobilise proteins but the 

main focus of the last decade has moved towards utilising PEG’s highly hydrophilic nature to improve 

the antifouling properties of surfaces [128-130]. The standard approach to surface PEGylation makes 

use of the pre-existing hydroxyl terminals to chemisorb the PEG molecules to the substrate, as 

schematically illustrated in Figure 1.7. Recently, terminally modified PEG molecules have been used 

in place of unmodified PEG for immersion and electrodeposition relying on the presence of 

electrostatic interactions between the selected terminal groups and the hydroxylated surface [131]. 

Amine- (NH2
 – PEG- NH2) and carboxyl- (COOH–PEG-NH2) functionalised PEG are used for protein 

immobilisation via carbodiimide reactions. These modified PEG molecules are used either individually 

or together with a co-linker, such as an alkylsilane, to immobilise biomolecules [132, 133]. Further 

exploration of PEGylation can be found within [92].   

Recently, research focus has shifted from silane and PEG towards other biologically - derived 

linkers that have individual biofunctionality. In theory, the use of such molecules would provide a 

beneficial effect from unconjugated regions in addition to the immobilised proteins, as chemical 

linkers do not always provide 100% surface immobilisation. The biologically active molecules widely 

used as linkers include; dopamine (DOPA)  [134, 135], chitosan [136], and heparin (HEP) [137-139]. 

These molecules have been investigated both as individual and copolymer linkers. The deposition of 

these biomolecules on substrates predominantly occurs through immersion reactions, as listed in 

Table 1.2, requiring at least 12 hours to initiate the protein immobilisation.  

Dopamine which shows activity in extracellular matrix (ECM) signalling, is a strong mineralisation 

inducer [134] and has been used to immobilise a number of proteins since the early 2000’s  [134, 135, 

140-144]. Chitosan is a recently discovered biopolymer that has been used in biochemical linker 

immobilisation due to its antibacterial properties [136, 145-147]. First published by Dodane et al., this 

biopolymer is extracted from exoskeletal structures of arthropods, i.e. crustaceans, as well as fungi 

and insects [148]. Carboxymethyl-functionalised chitosan is commonly used for orthopaedic 
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applications relying on the presence of COOH groups for carbodiimide reactions. This variation has 

also been used for tissue engineering scaffolds [98, 148, 149] and nanomaterials [150]. DOPA and 

chitosan attachment utilises condensation reactions with the hydroxyl-functionalised surface. 

Chitosan-functionalisation of a substrate requires exposure to the protein solution via immersion or 

electrodeposition (see Table 1.2). The original synthesis method for DOPA was complex, as the 

reactive oxygen catchetol side chains had to be protected from oxidation and cross-linking when 

applied as a self-assembled monolayer [151]. However, an easier alternative approach has been 

developed, requiring an overnight immersion in a DOPA/HCl - Tris buffer solution [142, 152-154]. The 

Tris buffer attachment process results in crosslinking of dopamine and the formation of an 

interconnected scaffold layer with exposed amine groups [152]. In vivo studies have been performed 

for DOPA functionalised with lovastatin, a bone-forming drug, and bacitracin, an antibiotic. Lovastatin-

functionalised DOPA demonstrated an increased bone formation (as shown in Figure 1.9 below) [155], 

while bacitracin greatly impeded biofilm formation in vivo on the surface of the implant [156]. 

Investigations into in vivo Ti/Chitosan conjugated with biomolecules remains to be performed.  
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Figure 1.9. a) Fluorescence microscopy images of DAPI and F-actin stained MC3T3 cells on pristine, β-CD-DOPA, 

and lovastatin-functionalised Ti at 1, 3, and 7 days. Proliferation rates (b), alkaline phosphatase activity (c), and 

calcium deposition (d) of MC3T3 cells on the investigated surfaces were compared to tissue culture plastic. The 

β-CD-DOPA and lovastatin-functionalised Ti demonstrated a significant increase compared to pristine control, 

with lovastatin-functionalised Ti exhibiting consistently higher activities than the β CD-DOPA. e) Histological 

imaging of Ti screws revealed the formation of lamella bone and bone ingrowth in β-CD-DOPA-, and lovastatin-

functionalised Ti not present in the pristine titanium. Reprinted with permission from [155]. 
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Heparin is an anti-thrombogenic protein originally used in cardiovascular applications for bypass 

circuits, synthetic vascular grafts, and coronary stents [157]. Heparin does not react directly with the 

hydroxylated surface. Instead, it requires an aminated surface to attach via a condensation reaction. 

As such, heparin has been immobilised with other compounds such as DOPA [56] or silane [158] that 

provide an amine terminal. Alternatively, Kim et al. outlined a click chemistry procedure utilising 

propargyl bromide and 2-azidoethanamine for amine-functionalising titanium substrates before 

attaching the heparin [139]. In vitro and in vivo studies of orthopaedic implant surfaces and scaffolds 

have been performed using heparin to immobilise BMP-2 [159-161]. Kim et al. have shown that the 

impermanent nature of the heparin-protein bond allowed the BMP-2 to be released into the biological 

environment which results in greater bone formation than controls in an in vivo dog model (Figure 

1.10)[56].  
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Figure 1.10. a) F-actin and DAPI stained fluorescence images of MG63 cells on Ti (a.a), adsorbed BMP-2 (a.b), 

and BMP-2/heparin/Ti (a.c). b) Cell proliferation of cells grown on the investigated surfaces at 1, 3, and 7 day 

time points as determined by CCK-8 assays. c) The release kinetics of adsorbed BMP-2 on titanium and 

heparin/Ti, respectively. The degree of mineralisation for MG63 cells was determined via alkaline phosphatase 

(ALP) levels (d) and calcium content (e). The BMP-2/Heparin/Ti surface demonstrate statistical increases over 

both the untreated Ti and the adsorbed BMP-2 Ti. In vivo investigations revealed significant increases in bone 

formation for the BMP-2 releasing surfaces, as shown in (f). In descending order: Ti (top row), BMP-2/Ti (middle 

row), and BMP-2/Heparin/Ti (bottom). Analysis of the histological results showed significant increases in bone 

growth in defect areas (g), bone-implant contact (BIC) angle of new bone (h), and bone density between the 

screw threads (i). Reprinted with permission from [56]. 

 

1.3.2.3 The chemistries of protein immobilisation 

  

There are three main types of chemistries utilised for direct and linker-mediated protein 

immobilisation: disulfide, Schiff-base, and carbodiimide reactions. The chemical reactions are outlined 

in Figure 1.11. In each case, the particular functional groups as shown must be present at the surface 

for the immobilisation to proceed. Surfaces functionalised with epoxy groups, although not widely 

applied, have been reported to immobilise proteins via nucleophilic substitution ring opening 

reactions involving the amine groups on the amino acid (AA) side chains [162].  
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Figure 1.11. An outline of the reaction steps for EDC/NHS carbodiimide, Schiff-base, and disulfide reactions 

commonly utilised in biomolecule immobilisation chemistry. EDC/NHS carbodiimide reactions: The desired 

protein, EDC, and NHS are exposed to the substrate in an optimised molar ratio. EDC attaches to the OH of a 

carboxylic acid on the protein (step 1) before being substituted with NHS (step 2). The NHS is replaced with the 

amine group at the surface (step 3) resulting in covalent immobilisation (step 4). Carbodiimide reactions will also 

occur with the locations of the amine and carboxylic acid groups interchanged. Schiff-base reactions: Protein 

amines undergo nucleophilic addition to an aldehyde group on the surface (step 1) forming a temporary imine 

bond (step 2 and 3). The imine can be chemically reduced to form a covalent N-C bond (step 4). Disulfide 

reactions: A sulfuric functional group can form a temporary S-S bond with a cysteine amino acid in the protein 

structure through oxidation. The bond can be reduced in mildly acidic conditions, as often occurs in aqueous 

environments.  

 

Thiol functional groups can be utilised for protein immobilisation through the formation of 

disulphide bonds (R-S-S-R’) with cysteine amino acids. The use of the disulphide chemical process in 

protein immobilisation allows for specific attachment, as cysteine is the only amino acid capable of 

forming disulphide bonds. Mercaptosilane linker molecules can utilise disulphide bonds to attach 
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proteins through the cysteine [163] or undergo sulfo-SMCC linker modification to immobilise proteins 

via carbodiimide reactions [164]. Disulphide bonds are reducible in mildly acidic conditions [165] and, 

therefore, may not provide sufficiently persistent protein functionalisation for use in implantable 

biomedical devices. 

Schiff-base reactions involve the formation of an imine (R/R’-C=N-R”) via nucleophilic substitution 

of an amine group on the double bonded carbon-oxygen (-C=O) of an aldehyde or carboxylic acid, 

resulting in the release of water [166]. This process targets amino acids with nucleophilic amines in 

their structure, such as histidine. Imine bonds are, however, hydrolysable and reduction of the C=N 

bond to a C-N bond is required for permanent immobilisation [165, 166]. Hence, Schiff-base chemistry 

may be useful for delayed release applications. For example, Kim et al. immobilised BMP-2 protein to 

a heparinised surface through Schiff-base chemistry and observed the gradual release of BMP-2 

together with significantly increased mineralisation of MG63 cells [56].  

The most common linker chemistry utilised for protein immobilisation is the carbodiimide 

reaction, which forms an imide bond (R-N=C=N-R’) between amine and carboxylic acids groups. 

Carbodiimide chemistry employs 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-

hydroxysuccinimide (EDC/NHS) or glutaraldehyde (GA) to attach proteins via the positively-charged 

lysine and arginine amino acid or the negatively-charged glutamic and aspartic acids, through surface 

attached carboxyl or amine groups, respectively. The synthetic linker molecules, amino silanes [61, 

103, 167-171], and NH2-PEG and COOH-PEG [133], are typical examples of linkers that immobilise 

proteins through carbodiimide chemistry (Figure 1.11).  

PEEK has been functionalised with Gly-Arg-Gly-Asp (GRGD) peptides through EDC/NHS reactions 

to the 7-Oct-1-enyltrichlorosilane (OETS) linker surface monolayer [117]. Titanium has been 

functionalised with collagen using EDC/NHS with the linkers aminopropyl-triethoxysilane (APS) [120], 

and a two-step attachment process linking (3-Aminopropyl) trimethoxysilane to COOH-PEG [133]. The 

biologically-derived linkers, dopamine and chitosan, almost exclusively utilise EDC/NHS chemistry to 
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covalently immobilise proteins through their presented amine groups. Biomolecules that have been 

immobilised through this chemistry include BMP-2 [136, 142, 172], heparin [56], and collagen [134]. 

EDC/NHS chemistry has also been used to cross-link immobilised collagen to improve the stability of 

the layer [173]. The cross-linking of collagen does not appear to negatively affect cell growth [134].  

EDC/NHS has also proved effective in stabilising self-assembled monolayers (SAMs) by cross-

linking. SAMs rely on physical interactions to produce a layer with well-defined structure and surface 

chemistry [174, 175]. They consist of surfactant molecules containing an alkyl chain tail and a 

functional head group that self-assemble on the substrate to form organised monolayers through 

electrostatic and hydrophobic/hydrophilic interactions [176, 177]. A variety of monolayer coatings can 

be assembled with different functional groups for the structural inclusion of the protein [174], or 

covalent immobilisation through chemical reactions, such as epoxy ring opening [178] and 

carbodiimide chemistry [179]. Covalent attachment of a SAM to a surface offering improved stability 

can be achieved by chemical reactions between the substrate and the contacting region of the 

individual SAM molecules. Such chemical attachment requires appropriate chemical modification of 

the substrate and the external end of the SAM surfactant molecules. Nevertheless, the physical 

interactions underpinning the SAM structure may result in insufficient stability for demanding 

applications such as in implantable biomedical devices. Stabilisation can be achieved through 

EDC/NHS cross-linking of the SAM itself [174, 179].  

 

1.3.2.4 Evaluation of chemical linker-mediated immobilisation approaches 

 

Chemical immobilisation methods successfully mitigate the problems of protein exchange via the 

Vroman effect after implantation, as shown in several in vivo studies [56, 122, 123, 155, 156]. 

However, direct and linker-mediated chemical attachment introduces several issues. The main issues 

arise from process complexity, reaction time, the toxicity of reactants, and the lack of scalability and 

reproducibility. The chemistry behind both direct and linker-mediated chemical immobilisation is 



Page 50 of 214 
 

often complex and time-consuming, with each step of the process needing to be confirmed through 

characterisation. A linker-mediated protein immobilisation process requires a minimum of three 

steps: (i) preparation of the surface to present the required chemical groups (e.g. hydroxylation); (ii) 

reaction of the prepared surface with the linker molecule; and (iii) immobilisation of the protein to 

the linker. The total processing time is typically in the order of days as listed in Table 1.2. Direct 

chemical immobilisation of proteins to PEEK surfaces eliminates the required steps for linker molecule 

surface attachment. However, the chemical modification required to prepare the surface often takes 

longer to perform than the attachment of the linker and protein [115, 116]. The chemical reactions 

involved are sensitive to slight variations in environmental conditions, reactant quantities, and 

handling for each step, which may compound into much larger fluctuations in yield between batches. 

Additional side reactions also occur with each step further reducing the overall yield and 

reproducibility [180].   

The majority of techniques utilised for chemical protein immobilisation are not scalable. Many of 

these techniques have shown success under laboratory conditions by skilled chemists, a situation that 

is not common in manufacturing environments. The chemicals required are potentially hazardous, 

expensive, or currently unavailable to be purchased in the bulk quantities required for manufacturing. 

For example, γ-aminopropyl-triethoxysilane used for silanisation is corrosive and flammable. EDC, 

which appears in multiple linking chemistries, causes skin irritation, eye damage, and organ damage, 

according to the Safety Data Sheet. The use of such chemicals would also require additional safety 

facilities and equipment under work safety regulations and introduces significant hurdles concerning 

waste disposal and regulatory approval.  
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Table 1.2. Protein-functionalisation of titanium surfaces through linker-chemistry methods. A summary of 

deposition processes, synthesis times, investigated proteins, and biological testing.  

 

Linker 

molecule(s) 

Application/ 

deposition processes 

Synthesis Time (excluding 

substrate preparation)  

Proteins 

immobilised  

In vitro/vivo testing  

Silanisation 

[121] 

 

e.g. 

Aminosilanes  

Glycidoxysilanes  

Mercaptosilanes  

1) Immersion  

[61, 103, 167, 168, 

170, 171] 

 

2) Self Assembling 

Monolayer (SAM) 

[179] 

 

1) Immersion: 3 hours [103] to 10 

hours [61] immersion and drying 

overnight   - Followed by the 

required chemistry. 

 

2) SAM: Silane was added and 

allowed to react for 3 hours, 

followed by washing and overnight 

drying. Protein immobilisation was 

then performed (2 hours).  

Collagen [120, 123, 

181, 182] 

 

Bovine Serum 

Albumin (BSA)  

 

Trypsin  

 

A branched 

adhesion 

biomolecule [124] 

 

BMP-2 [57] 

 

Heparin  

 

Bone marrow stem cells 

[57] 

 

Rat Osteoblasts [103] 

 

h-Mesenchymal stem 

cells and in vivo rabbit 

model [120, 123] 

 

PEGylation [92]  

 

1) Individual 

i) Electrodeposition  

ii) Immersion  

 

2) Copolymer 

Conjugated with 

Silanes [133]/ 

Ethyl 3-

Mercaptopropionyl-

Succinic Acid (EMPSA) 

[132] 

1) Individual 

i) 300s for electrodeposition 

excluding the drying step [131]. 

ii) (time) incubation in PEG buffer 

solution 

 

2) Copolymer 

 Step 1: 42 hours for the synthesis of 

silane-PEG-Col. 

Step2: 3 days for the preparation of 

EMPSA conjugated PEG [132] 

Collagen  

 

BMP-2 

HUVEC ECV304 

endothelial cells 

 

Platelets [133]  

Heparinisation  

[138] 

 

1) Individual 

Click reaction [139]  

 

2) Copolymer 

Solution incubation 

with DOPA 

1) Individual 

Amine-functionalisation of 

substrate required for heparin 

attachment, followed by incubation 

in buffer and protein 

immobilisation. 5-6 days [139, 184] 

 

BMP-2 [56] 

 

Lactoferrin [135] 

MG63 Osteosarcoma 

[135]  

 

In vivo Dog model (13 - 

15 kg) [56] 



Page 52 of 214 
 

[56, 135, 138, 139] 

Solution with Collagen 

[183] 

 

2) Copolymer 

Immersion in DOPA solution for 24 

hours, followed by exposure to an 

EDC/NHS/Heparin solution (time 

unspecified). Protein 

immobilisation was then performed 

for 6-24 hours depending on the 

protein. 

Polydopamine 

 

1) Individual  

Tris(hydroxymethyl) 

aminomethane (Tris) –

hydrochloric acid 

solution overnight. 

[134, 152-154] 

 

2) Copolymer 

See Heparinisation  

[56, 135, 138, 139] 

 

1) Individual 

Overnight immersion in DOPA – 

Tris/HCl buffer, followed by protein 

immobilisation.  

 

 

2) Copolymer 

Refer to heparin co-polymerisation 

synthesis time above. 

BMP-2 [142, 172],  

Chitosan [136] 

 

Fibronectin [185] 

 

collagen [134]  

 

RGD peptide and 

nanoparticles [142] 

Rat bone marrow-

derived osteoblast-like 

cells 

 

MC3T3-E1 transformed 

mouse osteoblast-like 

cells 

 

Immortalized human 

mesenchymal 3A6 Cells 

[142] 

Rabbit model [155, 156] 

Chitosan 1) Individual 

Electrodeposition 

[186] 

 

 

2) Copolymer 

Solution with DOPA 

[136, 145-147, 187] 

1) Individual 

Electrodeposition: Stirring in water-

acetic acid solution for 24 hours. 

Deposition for 400 seconds at 10 

V/cm.[186] 

 

2) Copolymer 

DOPA was first deposited overnight 

and allowed to dry. Carboxymethyl 

chitosan was prepared and added in 

EDC/NHS solution for 16 hours, 

followed by protein immobilisation.  

 

 

BMP-2 

 

 

In vitro: 

S. aureus 

 

S.epidermidis  

 

Osteoblasts 

 

Human Mesenchymal 

stem cells (hMSCs) 

[136] 

 

Sarcoma osteogenic 

SaOS-2 [146] 

Self-assembling 

monolayers 

(SAMs) [175] 

1) Electrodeposition 

[176] 

 

2) Incubation and 

Protein inclusion in 

SAM structure [174]  

1) Electrodeposition: 250 - 400 

seconds after 24 hours surface 

preparation [176, 188] 

2) Immersion time depends on the 

monomer used: 

Alkyl Phosphonic Acid (1-5 days) 

[176, 189], Silane (2 days- see 

above) [179]. Protein inclusion in 

SAM requires 4 hours preparation 

plus lyophilisation, followed by 5 

hours deposition [174]. 

 

Bovine serum 

albumin (BSA) 

[179] 

Mesenchymal stem 

cells [179]  
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1.3.3 Covalent immobilisation via dry and plasma methods  
 

Chemical immobilisation proved that it was possible to covalently immobilise proteins to 

orthopaedic substrates, overcoming the unintentional protein release observed in adsorption 

approaches due to the Vroman effect. However, the complexity of the wet chemistry, time 

requirements, batch variability, and waste disposal issues have encouraged the development of dry 

plasma-based approaches to the biological functionalisation of surfaces.  

 

1.3.3.1 Physical surface treatment procedures 

  

A variety of plasma-based processes have been applied for surface engineering of orthopaedic 

implants. These techniques utilise plasma, referred to as the fourth state of matter, to treat the 

surface of the implant. Plasma discharges produce a partially ionised gas comprising of electrons, 

photons, and ionised and neutral species [190]. Plasmas are considered “quasi-neutral” due to an 

overall charge neutrality between electrons and ionised species [191, 192]. However, local regions of 

like-charges can form and influence the random motion of charged species. Electrons, ions, and 

neutral particles undergo collisions and energy transfer, giving rise to a thermodynamic equilibrium. 

Plasmas referred to as “hot plasma” are those where all the electrons, ions, and neutrals are in 

equilibrium, such as in the Sun. Plasmas referred to as “cold plasma” are those where the electrons, 

ions, and neutrals are not in equilibrium. Cold plasmas are typically used for surface modification [193-

195]. As outlined in Figure 1.12, there are two general categories of plasma-based technologies: i) 

non-depositing plasma treatments which implant ionic species into a surface to modify it, e.g. plasma 

immersion ion implantation (PIII or PI3), and ii) depositing plasmas that coat the surface with an 

additional layer of new material. This section will focus on the depositing processes suitable for the 

modification of orthopaedic devices, and the use of the non-depositing technique, plasma immersion 

ion implantation (PIII or PI3), to modify the surfaces of PEEK substrates.  
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There are two plasma enhanced (PE) deposition techniques for coating orthopaedic implants: 

physical vapour deposition (PVD) and chemical vapour deposition (CVD). Physical vapour deposition 

uses physical processes to generate a vapour from a solid or liquid source such as electron or laser 

beam ablations, sputtering, or thermal evaporation. The vapour is transported in vacuo to the 

substrate, where it recondenses into a thin film [196]. PVD is used for the deposition of calcium 

phosphates (CaP)/ hydroxyapatite (HA) coatings for orthopaedic applications and has been applied to 

commercial products [197-199]. CaP and HA layers have not been used for covalent protein 

immobilisation. However, it is possible to immobilise proteins through Schiff-base reactions on 

hydrazine modified calcium phosphonates [200]. The use of CaP as orthopaedic coatings has been 

reviewed elsewhere [201, 202].  

Chemical vapour deposition generates reagent vapours from liquid or gaseous sources and relies 

on chemistry occurring on the substrate surface to form a thin film coating. A substrate is exposed to 

volatile reactant gases under vacuum. The process uses heat as a source of energy, typically between 

600˚C - 1200˚C, to initiate chemical reactions in the gas phase. The condensable chemical species 

deposit on the substrate where they form a thin film [196]. The application of high temperatures 

increases the mobility of species at the interface promoting the formation of an interfacial mixing layer 

between the substrate and the thin film. However, high temperatures restrict the number of suitable 

substrates and coating materials to those with high thermal tolerance [202]. CVD and its variants have 

become increasingly popular for biointerface applications and have been reviewed elsewhere [196, 

202]. 

Plasma enhancement is used to provide additional energy in the PVD and CVD processes. The 

additional energy creates more reactive, excited, or ionised species and is often used to reduce the 

operating temperature. In both processes, the precursor vapour is excited into the plasma state. The 

electrons in the plasma are used as the form of energy input and excite the reactant gases, resulting 

in ionisation, radical fragmentation, and enhanced plasma phase chemistry. Plasma enhanced physical 
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vapour deposition (PEPVD) has been used to deposit CaP layers onto orthopaedics [203-205]. 

However, these layers have not been used for protein immobilisation. The processes and applications 

of PEPVD have been reviewed elsewhere [206].  

PECVD is used to produce plasma polymer interlayers commonly used for biointerfaces [196, 

207].  A nano-thin layer of coating, comprising primarily of carbon, is deposited on any substrate 

exposed to the plasma. Highly cross-linked polymer structures are formed through a radical 

fragmentation-recombination process [193]. The PECVD process is versatile, allowing the production 

of coatings with a range of surface chemistries, SFEs, and charge by tuning the precursor gas 

composition and deposition parameters, such as precursor gas pressure and energy coupled into the 

plasma. The carbon-based thin film interlayers are typically biocompatible and functionalisable with 

subsequent plasma or wet chemical treatments to incorporate additional surface chemical groups 

suitable for protein immobilisation (see Figure 1.12). The surface modification achieved by plasma 

polymerisation is substrate independent [208], and therefore, plasma polymer (PP) interlayers, thin 

films (PPFs), and coatings deposited on substrates other than titanium are also reviewed here as they 

could potentially be applied to orthopaedic materials. Further explanations of PECVD processes and 

mechanisms can be found within [196, 207].  
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Figure 1.12. An outline of plasma processes used for biomolecule immobilisation. Plasmas used for treatments 

are categorised as non-depositing and depositing plasmas. Non-depositing plasmas generate radicals in the 

existing substrate which are then used for covalent biomolecule immobilisation. The depositing plasmas used 

for biomolecule immobilisation focus on the deposition of polymeric thin film coatings. These can then be used 

to immobilise proteins through further wet chemical reactions (chemically functionalised PPFs) or through 

radicals embedded in the coatings (plasma activated coatings). 
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1.3.3.2 Protein immobilisation onto plasma polymer interlayers 

 

Functional molecules can be immobilised on PP films through two approaches: multi-step 

attachment through chemical linkers or direct attachment. Multi-step attachment by means of 

chemical linker molecules is applied through an intermediate wet chemistry step [209-214]. The 

linkers may also include polymer brushes [207, 215]. Direct immobilisation of the biomolecule to the 

PP surface is achieved through radicals and/or surface functional groups present on the coating, 

referred to as “moieties” here [216, 217]. 

 

Multi-step immobilisation on PP films through chemical linkers  

Post-synthesis grafting of functional molecules onto PP films can be performed through chemical 

linkers. The attachment of chemical linkers still requires subsequent wet chemistry steps to covalently 

bind the target proteins, but the use of PP films eliminates the need for substrate pretreatment and 

broadens the range of functionalisable substrates. Surface moieties can also be included as to improve 

the surface chemistry. The first use of post-synthesis linkers for protein immobilisation on PPFs for an 

orthopaedic application was by Puleo et al. [218]. The authors grafted BMP-4 onto an allylamine PP 

(ppAAm) through two chemical modification approaches: (i) a method based on the one-step 

EDC/NHS carbodiimide reactions (as depicted in Figure 1.11); and (ii) a two-step succinic anhydride 

and EDC carbodiimide process utilizing the amine groups on the PP surface (Figure 1.13) [218]. The 

authors proposed that the two-step approach was more effective in binding the test lysosome 

enzyme, and therefore BMP-2, due to the sequential exposure to the cross-linking components. This 

strategy removes the potential for protein-protein cross-linking reactions observed in the one-step 

process. This was demonstrated by the enzymatic activity which showed complete enzyme 

deactivation from the one-step method, while the two-step immobilisation retained 75-80% of the 

enzyme functionality. 
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Figure 1.13. A schematic illustration of the chemical reactions for the 2-Step carbodiimide chemistry. The 2-step 

immobilisation chemistry incorporates succinic anhydride to modify the amine-functionalised surface into a 

carboxyl-functionalised surface before commencing EDC/NHS reactions, as per the traditional 1-step approach 

outlined in Figure 1.11. The process changes the focus of the chemistry from modifying the proteins to modifying 

the surface moieties. The authors report an accompanying increase in biological activity and decrease in protein 

cross-linking. Adapted with permission from [218]. 

 

Following this application of PPFs, the field has developed multiple techniques capable of binding 

proteins. An extensive range of proteins and attachment procedures have been investigated, primarily 

using alkyl (carbon) PP interlayers [209-214]. Briefly, the polymer is deposited on the substrate by 

PECVD. The appropriate moieties on the coatings are then reacted with a chemical linker (e.g. silane 

or PEG), followed by further chemical reactions for protein immobilisation, as described previously in 

Section 3.2. 
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Protein immobilisation via plasma polymer brushes  

Polymeric molecules tethered to the surface to form brush-like structures are referred to as 

polymer brushes. These structures can be synthesised on PP coatings and attached to the substrate 

by means of either chemical reactions in solvents [219] or free radicals (atom transfer radical 

polymerisation) [220, 221]. Simply, a PP film is deposited onto the desired substrate which is then 

exposed to the brush monomer reagent, either as vapour [220, 221] or in solution [219]. Energy to 

promote the reactions is supplied as either heat or UV radiation. Polymer brushes have been 

synthesised primarily to prevent protein adsorption to surfaces as reviewed by Keating [222] and 

Krishnamoorthy [223]. Such structures can also be used for protein release applications [224, 225]. 

Polymer brushes could potentially be used for covalent protein immobilisation if the antifouling end 

groups were replaced by reactive groups such as those used for chemical linker-mediated 

immobilisation. 

 

Direct immobilisation on PP films 

Proteins can also be directly immobilised on plasma polymer coated substrates through covalent 

bonding with reactive functionalities present on the surface, as schematically illustrated in Figure 1.14. 

PP films that present reactive functionalities, such as amine or carboxyl groups, are known in the field 

as “functionalised PPFs” [195]. They have been developed over the last three decades and include 

those functionalised with specific chemical reactive groups and highly-reactive, non-specific radicals.  
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Figure 1.14. An outline of the biomolecule immobilisation procedure for free radical functionalised and 

chemically functionalised plasma polymer thin films (cPPFs). The PPFs are deposited on substrates inside a 

vacuum chamber either by a single or multi-step deposition (step 1). The PPF substrates are removed and 

undergo the required immobilisation procedures (step 2). For cPPFs, this includes wet chemical carbodiimide, 

Schiff-base, or disulfide reactions. For radical-functionalised PPFs (rPPFs), covalent protein coupling is achieved 

by a simple incubation step in the protein-buffer solution.  
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Direct Immobilisation through Specific Chemical Groups  

The inclusion of functional groups or moieties in the surface coating that can be reacted directly 

with groups on the protein facilitates direct covalent immobilisation without the need for a linker 

molecule (Figure 1.14). A variety of moieties have been integrated into plasma polymer coatings for 

this purpose, with the most common being amine [226, 227], carboxyl [228], and aldehyde [229, 230] 

moieties. More recently, epoxy moieties have also been used to achieve covalent coupling of proteins 

to PPF surfaces through ring opening reactions [212]. The chemically functionalised PPs films (cPPFs) 

are produced through single or multi-step deposition procedures before protein immobilisation, as 

listed in Table 1.3. The first stage involves the deposition of a carbon-rich PP thin film. The following 

step(s) may include exposure to vapours (which may be in the form of another plasma) containing 

reactive fragments which form the desired functional groups on the surface. The synthesis of PP 

coatings functionalised with reactive moieties is generally performed at low plasma specific energies 

to avoid extensive fragmentation and thereby retaining the chemical functional group of the precursor 

monomer [231-234]. The plasma specific energy (W/F) is the available energy per unit volume of 

monomer as denoted by the ratio of plasma input power (W) to monomer flow rate (F) [235, 236]. The 

surface functional groups allow for directed protein immobilisation by chemical reactions with specific 

groups on the proteins, such as carboxyl or amine groups.  

Amine and carboxyl moieties are the most studied surface functional groups in the literature. The 

amine and carboxyl moieties are produced through various procedures listed in Table 1.3, with the 

secondary treatments including N2 gas and nitrogen-rich compounds for amine groups and Ar gas with 

carbon-oxygen (alkyl) compounds to obtain carboxyl functional groups. Amine- and carboxyl-

functionalised PP films have been reported to considerably enhance cell attachment and proliferation 

without protein immobilisation via chemical coupling [237-242]. Specific to bone-forming cells, Jung 

et al. compared amine-, carboxyl-, and hydroxyl functionalised PPFs seeded with MC3T3-E1 cells [243]. 

They showed that the amine groups resulted in higher day 4 proliferation, whereas carboxyl groups 
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outperformed amine groups by day 7, as shown in Figure 1.15. It was proposed that the amino groups 

enhanced cellular adhesion, but the negatively charged carboxyl groups enhanced cell proliferation.  

 

 

Figure 1.15. Proliferation (a) and alkaline phosphatase production (b) of MC3T3-E1 osteoblast-like cells on tissue 

culture plastic (Control), smooth Ti (CP-Ti), roughened (SLA), and PPFs functionalised with COOH, NH2, and OH. 

Proliferation results showed an increase in cell number on COOH and NH2 coatings at all time points, while ALP 

production was found to be approximately equal, suggesting no significant increases in mineralisation. Reprinted 

with permission from [243]. 
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Liu et al. observed increased mineralisation in adipose-derived stem cells deposited on amine-

functionalised PPs, due to the upregulation of osteoblast-specific markers and positive surface charge 

[244]. It is generally accepted that such improvements in cell behaviour on surfaces are mediated by 

surface adsorbed proteins from the medium [50]. Both carboxyl and amine groups acquire surface 

charge in the medium and therefore enhance the surface hydrophilicity, which in turn results in better 

retention of the native conformation of adsorbed proteins (as outlined in Section 2). The ability to 

preserve native protein conformations is also essential for surfaces used for covalent immobilisation 

of proteins. Covalent protein immobilisation on amine- and carboxyl-functionalised surfaces require 

the use of EDC/NHS chemistry to form carbodiimide bonds [214]. Heller et al. used an amine-

functionalised PP film deposited from allylamine to compare the cellular response of human 

osteoblasts (HOBs) and umbilical cord cells (HUVACs) to fibrinogen, collagen, laminin, and osteopontin 

immobilised onto the PP surfaces [214]. Fibrinogen and collagen resulted in significantly higher cell 

coverage for HUVACs and HOBs compared to titanium as shown in Figure 1.16.  
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Figure 1.16. Fibronectin, collagen, laminin, and osteopontin were covalently immobilised to the amine-

functionalised plasma polymer film via EDC/NHS chemistry, as outlined in (a) and Figure 1.11. The cell growth of 

HUVACS (b) and HOBs (c) was fluorescently imaged with calcein-AM. HUVACs demonstrated a distinct 

preference for fibronectin and collagen producing consistently elevated proliferation compared to the untreated 

Ti control (b). The authors attribute the discrepancy between fibronectin, collagen, and laminin to be the 

expression of the RGD adhesion sequence and the absence of the laminin integrin sequence on the HUVACs. 

Osteopontin also possesses this RGD sequence but the concentration may have been insufficient for HUVACs 

stimulation. The authors suggest that the HOBs possess binding sites for both the RGD sequence and the laminin-

integrins thereby explaining increased attachment and proliferation across all functionalised surfaces compared 

to the control (c). Reprinted with permission from [214]. 

 

Aldehyde-functionalised PP films have not been studied as widely as their amine and carboxyl 

counterparts. These functional groups form hydrolysable covalent bonds with the target proteins 

through Schiff-base reactions that can be stabilised through a subsequent reduction reaction [165, 

166, 208]. Aldehyde moieties can be produced by the deposition of aldehyde-containing precursor 

monomers, such as acetylaldehyde, benzylaldehyde [208], and propionaldehyde [245]. Direct protein 

immobilisation to aldehyde-functionalised PP has been achieved with streptavidin [245, 246] and 

heparin [247]. These PPFs have also been used as platforms for the immobilisation of non-fouling [248] 

and antifungal agents [249]. 

The first epoxy-functionalised PP film was developed by Inagaki et al. using allyl glycidyl ether 

monomer through a one-step deposition [250]. Oehr et al. [251] and Tarducci et al. [252] suggested 

that the reactive chemistry of the epoxy rings can be used to immobilise proteins through ring opening 

SN2 reactions [162]. Experimental examination of protein immobilisation was performed by Thierry et 

al. [212], who immobilised lysozyme to an epoxy-functionalised PP film. Further biomolecule 

immobilisation applications, such as DNA probes [253, 254], have been explored but this PPF has not 

been applied to orthopaedics. 
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Table 1.3. Summary of direct immobilisation of proteins on functionalised plasma polymer films 

 

 

Direct immobilisation through non-specific reactive radicals 

Direct immobilisation of proteins by means of radicals can be performed through two techniques 

depending on the substrate: (i) plasma immersion ion implantation (PIII or PI3) for carbon-rich 

substrates such as most polymers [260-264], and (ii) a combination of plasma polymerisation and PIII 

treatment for the fabrication of radical-functionalised PP films on other substrates such as metals and 

ceramics [265-267]. Covalent immobilisation through reactions with radicals following these 

“Functio

nalised” 

PP  

Surface 

groups/moieties 

Polymerisation method 

 

Immobilised 

biomolecules 

In vitro/ vivo testing 

Amine Amine (-NH2) 

Amides (-N-R’/R”) 

Plasma polymerisation of allylamine [243], 

heptylamine [255] 

 

Addition of diamino cyclohexane (DACH)  

[216, 256] 

 

fibrinogen, collagen, 

laminin, osteopontin 

[214] 

 

MC3T3-E1 cells [243] 

Human osteoblast 

(HOB) and umbilical 

cord cells (HUVACs) 

[214] 

Adipose-derived stem 

cells [244] 

Carboxyl COOH   

COx 

 

Plasma polymerisation: 

Deposition of Acrylic acid [236, 243, 257], 

and propanoic acid [255, 258]. 

 

 

Grafting with polyethylene oxide [259] 

Collagen  

 

PtA-AF546 [257] 

MC3T3-E1 cells [243] 

 

 

Aldehyde R-C=O 

 

Plasma polymerisation of Alkyl/allyl 

aldehydes: acetylaldehyde, benzylaldehyde, 

propionaldehyde 

[208, 246, 248] 

ethylbutyraldehyde, capronaldehyde, 

nonylaldehyde [229] 

 

Collagen,  

streptavidin [245, 246],  

heparin [247],  antifungal 

agents [249]] 

 

Epoxy   

 

Plasma polymerisation of allyl glycidyl ether 

[250] 

Lysosome [212] 

 

DNA probes [253, 254] 
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processes is achieved upon contact with biomolecules in buffer solution without the need for chemical 

treatments [264].  

PIII is a non-depositing technique that utilises energetic ions to generate radicals for covalent 

immobilisation of biomolecules [268]. Simply, the substrate is mounted on a negatively biased holder 

inside a reactor and exposed to the plasma. A negative bias of several kV is pulsed as a function of 

time with the resulting electric field repelling electrons and attracting ionic species. This pulsed bias 

forms an ion sheath around the sample holder and implants the ions into the substrate at a depth 

dependent on the bias. A detailed explanation can be found within [217]. This process has been 

investigated extensively for PEEK, with a range of treatment conditions and immobilised biomolecules 

examined [264, 269-271]. The PIII technique has also been used to implant N, C, O, and other elements 

into the surface of titanium [272-276]. This research focussed on titanium surface hardening with 

nitrogen [276, 277] and the addition of antibacterial properties with the implantation of Cu [278]. 

However, this procedure does not allow for direct radical-mediated immobilisation of biomolecules. 

Radical-mediated immobilisation of biomolecules to metallic orthopaedic substrates can be 

performed through radical-functionalised PPFs. 

All PP interlayers contain radicals in the coatings as they are inherent to the fragmentation-

recombination mechanisms of plasma polymerisation [221, 279]. The immobilisation of compounds 

through radicals embedded in PP films has been investigated outside of protein immobilisation, mainly 

focussing on the formation and grafting of polymer brushes for non-fouling applications [220, 221]. 

Covalent immobilisation of proteins through embedded radicals in a PP film was first reported by 

Kondyurin et al. [280] using n-hexane as a precursor. Subsequent work showed that alternative 

carbon-containing precursors, such as acetylene [264], can be used. Radical-functionalised PP films, 

also referred to as plasma activated coatings (PAC), are deposited from carbon-rich monomers while 

the substrate is negatively pulsed biased. The pulsed biasing of the substrate enhances the ion-

bombardment, leading to PP structures with greater concentrations of radicals [58, 281, 282]. These 
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coatings have shown radical retention in aerobic environments for at least 15 days [58] and can still 

contain reactive radicals 4.5 months after deposition [283]. It is also possible to restore radical-

functionality to a polymer film by driving off the oxygen via annealing [283]. The chemistry and 

properties of radical-functionalised PPFs can be tuned by the addition of other reactive gases, such as 

N2, H2, and O2 during deposition [264, 266]. The immobilised biomolecules have also been shown to 

retain their bioactivity after immobilisation and also after freeze-drying [284]. Mechanical analysis of 

the PAC/protein system showed excellent mechanical stability through the formation of a graded 

interface between a stainless-steel substrate and PAC using magnetron sputtering during PAC 

deposition [264, 285]. In the case of carbide forming substrates, such as titanium and zirconium, the 

graded interface is not required due to the formation of covalent bonds between the substrate and 

the PAC layer [286]. Chrzanowski et al. created an adherent polymer layer by ion implanting a thin 

spin-coated polystyrene film on a NiTi substrate [287]. The samples were washed with 5% sodium 

dodecyl sulfate (SDS) (w/v) at 100˚C for 1 hour to evaluate the covalent binding capability of the 

radical-functionalised polymer layer. The radical-functionalised sample demonstrated an initial 

protein attachment of 1782 ± 110.0 ng/cm2 and a 63 ± 7% retention of a fibronectin-osteocalcin fusion 

protein (FN-OCN) post-SDS washing, while the non-functionalised polystyrene control presented an 

initial protein attachment of 880.0 ± 22.2 ng/cm2 and a 21 ± 2% protein retention, as shown in Figure 

1.17. The significant retention of protein on the radical-functionalised substrate indicated covalent 

immobilisation. 
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Figure 1.17. Atomic force microscopy (AFM) assessment of the immobilised FN-OCN protein on radical-

functionalised and non-functionalised polystyrene (PS) coated silicon pre- and post- SDS washing. a) AFM 

topographical images of the unwashed and SDS-washed substrates. The PIII-treated substrates demonstrate a 

higher density of proteins both pre- and post- SDS washing, while the non-functionalised PS retained a 

significantly lower concentration, suggesting non-covalent protein binding. Graphical depictions of the protein 

layer thickness, and thereby, protein quantity is shown in (b and c). The authors state that the radical-

functionalised PS demonstrated minimal changes to the protein layer thickness while a significant removal of 

protein is observed on the non-functionalised PS. Reprinted with permission from [287]. 

 

The authors also showed an increase in MSC differentiation into osteoblasts after 21-days 

through the immobilisation of the fibronectin-osteocalcin fusion protein compared to the bare and 

fibronectin controls. This was demonstrated by the elevated cell density, focal adhesion points (FAK), 

and osteopontin (OPN) as shown in Figure 1.18. More recently, Yeo et al. [58] demonstrated a 

significant increase in osteoblast-like cell proliferation and mineralisation using tropoelastin-

functionalised PAC on zirconium. These works show that radical-functionalised surfaces facilitate 

direct covalent biological functionalisation of a range of orthopaedic implant materials (Figure 1.19). 
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Figure 1.18. Phase contrast and immunostaining images of mesenchymal stem cells (MSCs) on control nickel-

titanium (CON), fibronectin immobilised PAC (FN), and fusion-protein immobilised PAC (FN-OCN). Phase contrast 

images (top row) show a significantly greater attachment of MSCs on the FN-OCN samples compared to FN and 

Control. The immunostaining images on the bottom row demonstrate an increased quantity of focal adhesion 

points (FAK) and osteopontin expression (OPN), indicating more cell differentiation into osteoblasts on the FN-

OCN functionalised substrates. Reprinted with permission from [287]. 
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Figure 1.19. a) PAC deposition and protein immobilisation schematic of tropoelastin (also outlined in Figure 

1.14). The calcium deposition of MG63 cells at 1, 10, 20, and 30 days post-confluence in non-osteogenic (b), and 

osteogenic (c) media was quantified with alizarinRed staining. Significant increases were recorded for substrates 

possessing tropoelastin, with the upregulation of ALP resulting in increased mineralisation at 20 days post-

confluence in (b) and 30 days post-confluence in (c). Reprinted with permission from [58]. 

 

1.3.3.3 Evaluation of physical immobilisation approaches 

 

Physical covalent immobilisation of biomolecules is the most recent approach to orthopaedic 

biomimetic functionalisation and possesses advantages over adsorption and chemical covalent 

immobilisation. The PIII treatment or the deposition of radical-functionalised PP films together with 

the subsequent protein immobilisation step can be performed in a few hours rather than the days 
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required for chemical immobilisation. Radical-functionalised PPFs (rPPFs) covalently immobilise 

biomolecules upon contact providing the strength of covalent attachment with a simple process more 

akin to adsorption. These plasma-based methods are relatively “green” and produce minimal waste 

compared to chemical approaches [288]. Protein immobilisation on conventional chemically 

functionalised PPFs (cPPFs) is not entirely waste-free due to the use of EDC/NHS for carbodiimide 

chemistry or other agents for Schiff-base reduction. The synthesis methods of PPFs can be effectively 

scaled up as PIII, PEPVD, and PECVD methods are extensively used in a range of industrial 

environments [288, 289]. 

The disadvantages of physical covalent immobilisation techniques are primarily associated with 

the capital costs of the power supplies and vacuum systems. The deposition techniques make use of 

volatile chemicals and pressurised gases which require the installation of compliant gas management 

facilities [288]. In a manufacturing context, this is likely to be offset by costs associated with the multi-

step complexity, monitoring, and purification required in wet chemical approaches for covalent 

coupling to ensure compliance with regulatory standards for implantable biomedical devices. 

Ageing of plasma modified surfaces is a potential problem for applications where biomolecules 

are to be immobilised in a separate process after long-term storage. All plasma polymers contain 

radicals and, therefore, undergo radical recombination and autoxidation (reaction with air) [207]. The 

recombination of radicals is the reaction of the radical with an electron accepting molecule. While the 

principle of recombination appears simple, the recombination behaviour can be complex depending 

on the conditions of PP film synthesis [290, 291]. Autoxidation is the oxidation of the PPF due to 

interactions between reactive species at the air-surface interface [207, 292, 293]. This effect is 

greatest over the first few hours and stabilises with time, as shown by dramatic initial changes in 

contact angle and surface oxygen concentration [292]. Polymer chain diffusion can also lead to ageing 

in PP films that are not sufficiently cross-linked to prevent individual polymer chains at the surface 

from diffusing into the bulk [294]. These processes, together, lead to a phenomenon known as 
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‘hydrophobic recovery’ in which high-energy species are removed from the surface leading to an 

increase in the water contact angle [295-298]. These mechanisms are responsible for ageing in radical-

functionalised surfaces resulting in the eventual loss of radicals and hence the capacity for direct 

covalent binding of biomolecules [264]. In addition, cPPFs experience moiety decomposition. Amine 

groups can decompose into amides (R-N-R’) or NOx groups [299, 300] and have been shown to lose 

70% of the initial surface functionalisation over 7 days [240]. Carboxyl and aldehyde groups follow the 

same decomposition route, fragmenting into aldehydes, alcohols, and COx groups. More detailed 

examinations have been published outlining the mechanisms and effects of amine, carboxyl, and 

aldehyde decomposition [208, 216]. The ageing of epoxy-functionalised PPFs has been observed. 

Camporeale et al. present surface group composition of an epoxy-functionalised PP under a series of 

conditions, two of which correspond to a 50-day time lapse [254]. The epoxy surface signal decreased 

from 18% to 9% over 50 days in air. An increase of carbon-oxygen single bonds was observed, 

suggesting the rings underwent opening reactions. The protein bonding ability of rPPFs is dependent 

on the quantity of imbedded radicals migrating to the coating surface to form covalent bonds with 

proteins rather than the presence of specific chemical groups at the interface.   

Implantation of orthopaedic devices is a highly mechanical process and the surface is likely to be 

damaged during the insertion. Scratching of the biofunctionalised surface will locally remove the 

biomolecules regardless of the immobilisation approach used. In the case of biomolecules 

immobilisation on surface coatings, there is an additional risk of delamination of the thin film coating 

following the exposure of the coating-substrate interface to the aqueous medium. Although plasma 

polymerisation is often referred to as a substrate independent process, the structure of the initially 

deposited layers depends on the chemistry of the PP-substrate interface [301-306]. The possibility of 

coating delamination in-vivo highlights the importance of interface engineering to ensure robust 

adhesion of the coating to the substrate.  
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Stability of the biofunctionalised surface in the long term depends on the stability of the protein 

molecules and the strength of the coupling to the surface. Physically immobilised biomolecules will be 

rapidly lost by substitution of molecules from the physiological environment [111, 112]. Covalently 

coupled molecules are susceptible to degradation or bond cleavage over the longer term [307]. The 

timescales for these phenomena will depend on the nature of the biomolecule and the linking 

chemistry used for immobilisation. Biomolecule immobilisation onto coatings may also suffer from 

swelling of the coating after exposure to the aqueous environment. This problem can be mitigated by 

ensuring a high degree of crosslinking within the coating by applying greater plasma input energies 

per unit volume of the precursor monomer [301, 308]. It has recently been shown that formation of a 

highly cross-linked layer close to the substrate provides enhanced stability in aqueous environments 

[309] (Figure 1.20). A limited number of studies report the mechanical and chemical stability of the 

linker layers. Stability studies were performed using pH 7.4 buffer and fluorescent dyes to evaluate 

the retention of adsorbed and covalently immobilised proteins [120, 169]. PP interlayer stability 

reports are more abundant than their linker-mediated counterparts [282, 286, 310-312]. The 

evaluation of stability typically includes exposure of the biofunctionalised substrate to a solution, e.g. 

water or buffer, followed by a surface analysis using techniques such as XPS [312], quartz crystal 

microbalance (QCM) [287], or an enzyme-linked immunosorbent assay (ELISA) [58]. Simulated body 

fluids (SBF) and sodium dodecyl sulfate (SDS or NaDS) have also been used to provide more aggressive 

environments for protein and coating stability assessments [58, 281, 286]. The stability assay time 

frame should be of considerable length given the decades spent in the body, but the majority of 

studies state short exposure times [120, 313-315].  
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Figure 1.20. a) A diagrammatic representation of the gradient approach to enhance stability through cross-

linking and retain chemical functionality. The ageing behaviour of 1 and 2 nm vertical gradient structures and 

non-gradient highly cross-linked or oxygen-rich structures in water at pH ≈ 6.2. Oxygen-to-carbon concentration 

ratio (O/C) of the plasma polymerised structures as a function of time as stored in air (b) and water (c). Water 

contact angle (WCA), are displayed as a function of the storage time in air up to 5000 hours (30 weeks) (d) and 

water up to 10 000 min (1 week) (e). Therefore, by depositing a highly cross-linked initial layer followed by a 

functional, the authors obtained chemical functionality (b, c) while retaining structural stability (d, e). Reprinted 

with permission from [309]. 
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1.4 Project Aims and Thesis Structure 
 

Load bearing titanium orthopaedic implants are mechanically strong and flexible, and well 

tolerated by the body [26-28, 34, 35, 39]. However, a number of short and long term problems still 

exist due to the biological inertness of the surface [3-7] and mechanical mismatch between the 

implant and bone [29-31]. Protein-functionalisation promises a bioactive surface capable of mitigating 

these effects by stimulating bone formation [57, 123, 184, 214], but current wet chemistry approaches 

are difficult to translate from the laboratory into cost-effective manufacturing due to the number of 

reagents and process steps required, as well as the potential for incomplete or side reactions. 

This thesis aims to develop commercially translatable, multifunctional biointerfaces for 

orthopaedic applications utilising radical-functionalised plasma polymer films (rPPFs). rPPFs can be 

deposited onto any substrate and are fabricated through a simple, reproducible, and scalable 

approach to enable protein-functionalisation of orthopaedic devices [264, 288, 289]. Chapter 2 

describes the techniques, including plasma deposition, physical and chemical surface characterisation 

methods, and cell culture assays, employed to investigate the utility of rPPFs for the biological 

functionalisation of titanium-based orthopaedics. The use of rPPFs in orthopaedics requires a coating 

that is mechanically robust, as coating failure (delamination) could have serious consequences. A 

series of coatings with varied N:C ratios in their surface chemistry are examined in Chapter 3 to 

determine the optimal coating conditions. Free radicals have been associated with numerous 

diseases, including osteoarthritis. Chapter 4 investigates the effects of radical flux migrating from the 

rPPFs on the surface chemistry and tests for potential radical-induced cytotoxicity with bone lineage 

cells. The single protein approach to biomolecule-functionalisation has shown some success. 

However, an evaluation of the bone integration process shows that a multifunctional surface is 

required for optimal integration. Fibronectin (FN), osteocalcin (OCN), and a custom osteocalcin-

fibronectin fusion protein (FN-OCN) are optimised for immobilisation on rPPFs, alongside a co-

immobilised ratio of FN and OCN (Chapter 5). The bone-integration potential of the multifunctional 
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and single protein functionalised rPPF surfaces were comparatively evaluated with primary 

osteoblasts and mesenchymal stem cells in Chapter 6. 
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Chapter 2 – Methods and materials 

 

A range of techniques from multiple disciplines were utilised for the synthesis, optimisation, and 

examination of protein-functionalised plasma polymer film (rPPF) biointerfaces. This chapter contains 

the experimental procedures utilised for the synthesis and characterisation of surfaces in multiple 

chapters. The experimental procedures unique to an individual study are presented in the chapter 

describing that study. The experimental protocols described within are subdivided into materials 

preparation and characterisation, cell maintenance and substrate seeding, and microscopy techniques. 

 

2.1 Material preparation and characterisation 
 

2.1.1 Substrate preparation  
 

Titanium – 6% aluminium – 4% vanadium (Ti-6Al-4V or Ti 6-4) was purchased from Firmetal 

(China) in thicknesses of 1 mm and 70 µm. The 1 mm Ti was subsequently cut into 0.8 cm x 0.8 cm 

pieces, referred to as ‘sheets’, prior to being polished. The 70 µm thick titanium was cut to the 

required size, referred to as ‘foils’, and remained unpolished so not to compromise its structural 

integrity. The Ti sheets and foils are collectively referred to as ‘substrates’ when describing processes 

common to both. 

Polishing was performed at the Australian Centre for Microscopy and Microanalysis (ACMM). A 

total of four Ti sheets were carefully affixed per epoxy block with superglue and left to dry overnight. 

The epoxy blocks were inserted into the multi-sample holder before undergoing sanding and polishing 

with a Struers Rotopol-22 polisher and an IntegralPol-25 polisher, respectively. The sanding and 

polishing conditions are listed in Table 2.1. The Rotopol-22 utilised increasingly fine-grained 

sandpaper disks to sand back the surface using water as the lubricant, while the integralPol-25 rotating 

platform with attached abrasive disks utilised lubricants containing fine particulates. Water was used 
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to wash the integralPol-25 platform between runs to prevent cross-contamination between the fine 

polishing lubricants. The sample holder was positioned off-centre relative to the abrasive disk to 

produce the desired surface polishing upon rotation.  

The polished sheets were immersed in acetone overnight to dissolve the super glue before 

washing in fresh acetone for 4-6 x 10 min as required to remove any remaining traces of the glue and 

other organic contaminants from the surface. The Ti sheets were then washed in milliQ water for 2 x 

10 min followed by immersion for 30 min in 35% nitric acid solution. The titanium sheets were then 

washed in 2 x milliQ water for 10 min followed by 2 x 70% ethanol for 10 min. The 70 µm thick titanium 

foils were cut to the required total size for the respective procedures before undergoing the nitric acid 

cleaning protocol described, minus the overnight acetone immersion to remove superglue.   

Table 2-1: RotoPol-22 and IntegralPol-25 sanding and polishing protocols 

RotoPol-22 

ISO/FEPA Grit 

designation (P) (Grit 

size) 

Normal Force 

applied during 

rotation (N)  

Time (min) Rotation speeds of the abrasive 

disks and the sample holder 

(RPM) 

Lubricant 

P 80 / 201 µm grit size 

30 1 

Abrasive disk = 150 

Sample holder rotation = 150  
Water 

50 1 

70 15 

P 120 / 125 µm grit size 70 2 

P 220 / 68 µm grit size 70 1 

P 500 / 30 µm grit size 70 1 

P 1200 / 15 µm grit size 70 1 

IntegralPol-25 

MD Largo – 9 µm grit 

size 

180 10 Abrasive disk = 150  

Sample holder rotation = 150 

Water – based 

diamond solution 

MD Chem - 0.09 µm grit 

size 

180 10 Abrasive disk = 150  

Sample holder rotation = 150 

(Counter rotation) 

OP-S colloidal 

silica 
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2.1.2 Plasma polymer coating deposition  
 

Titanium substrates (foils and sheets, collectively) were coated with radical-functionalised plasma 

polymer films (rPPFs) in the centre chamber of a three-chamber vacuum deposition system, shown 

schematically in Figure 2.1. Capacitively coupled radio-frequency (RF) power, produced by an RF 

generator (13.56 MHz Eni OEM-6) with a matching network (RFPP AM-5), and a DC pulsed substrate 

bias, produced by a RUP-6 DC pulsed voltage source (GBS-Electronik), were delivered to the lid-

mounted RF electrode (10 cm diameter) and the sample mounting plate (10 x 10 cm) inside the 

chamber, respectively. An InfiniiVision oscilloscope (DS-X 3024A, Agilent Technologies) was used to 

monitor the RUP-6 output. The gas flow rates were monitored via Alicat flow controllers and the ‘Flow 

vision’ software (Alicat Scientific, version 1.1.35). The reagent gasses were introduced via a shower-

head gas inlet, and the pressure was monitored by a Pfeiffer SingleGuage pressure gauge. The high 

purity N2, Ar, and C2H2 reagent gasses were obtained from BOC Australia. 

The Ti substrates and internal components of the deposition system were always handled with 

gloves as to prevent contamination with the oil from human skin. The Ti substrates were fixed to the 

sample mounting plate via double-sided conductive carbon or copper tape. The substrates were 

secured by applying gentle pressure with tweezers and the sample mounting plate slowly inverted to 

confirm attachment before being placed inside the chamber. The chamber was evacuated to below 1 

Torr with a screw backup pump (Ebara PDV250). The turbomolecular pump gate valve was then 

opened, and the turbomolecular pump (Edwards NEXT400) was used to evacuate the chamber to a 

base pressure below 5x10-5 Torr.  
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Figure 2.1. A schematic representation of the rPPF vacuum deposition chamber system. Insert: A top down 

view of the deposition chamber. 
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The substrates were plasma cleaned with argon at a gas flow rate of 40 standard cubic centimetres 

per minute (sccm). The turbomolecular pump gate valve was closed once the flow rate was stable to 

produce a working pressure of around 7x10-2 Torr. The pulsed high voltage RUP-6 was activated, and 

the output was adjusted to -500 V, with a frequency of 3 kHz and a pulse width of 20 µs.  An RF forward 

input power of 75 W was applied while the reflected power was minimised using the matching 

network (approximately 10 W). The argon cleaning was performed for 10 min, and the chamber 

returned to base pressure.  

Once the background pressure was reached, the gas flow rates of N2, acetylene, and argon were 

adjusted using the Alicat controllers to obtain the desired N:C ratios. The turbomolecular pump gate 

valve was closed, and the chamber pressure was adjusted to 1.1 x 10-1 Torr via the bypass valve. The 

deposition time was adjusted according to the desired coating thickness and the reagent gas ratios. 

The RUP-6 output remained at 500 V, pulse frequency of 3 kHz, and pulse width of 20 µs and the RF 

power was set to 50 W with a reflected power < 5 W. The timer was started immediately after the RF 

input power was matched. Finer adjustments to the RUP-6 voltage were performed during the 

deposition as necessary. The RF power, RUP-6 voltage, and gas flow were stopped after the required 

time, and the vacuum chamber vented for sample retrieval. 

 

2.1.3 Protein handling 
 

All protein stocks were prepared under sterile conditions to reduce the potential of 

contamination in quantification and cell assays. Fibronectin (FN) and osteocalcin (OCN) lyophilised 

powders were purchased from Sigma Aldrich (F2006 - purity > 85% and O5761 - purity >94%, 

respectively). Fibronectin was made into main stock solutions of 100 μg/mL (2.3 x 10-7 M) and 500 

μg/mL (1.1 x 10-6 M). Osteocalcin stocks were made to 100 μg/mL (1.7 x 10-6 M). The protein stock 

solutions were aliquoted into 1 mL volumes to limit freeze-thaw cycling and stored at -30˚C to extend 
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their lifetime. The FN-OCN fusion protein was supplied by Dr Jun-Hyeog Jang (School of Medicine, Inha 

University, Korea) in a 1000 μg/mL stock (2.5 x 10-5 M). The protein was left in the imidazole buffer 

and stored at 4˚C as instructed.  

To produce a working solution for protein immobilisation or cell assays, the desired protein was 

recovered from storage and equilibrated to 37˚C. The main protein stock was transferred into a sterile 

biological safety cabinet (BSC) as per proper aseptic technique. The required volume of main protein 

stock (V1) was calculated using the dilution equation (Equation 2.1) and added to the PBS to form the 

working solution. Any unused protein removed from the main stock was discarded. 

𝐶1𝑉1 = 𝐶2𝑉2      Equation 2.1 

Where: C1 is the main stock concentration, V1 is the required volume of the main stock, C2 is the 

working solution concentration, and V2 is the desired total working solution volume. 

 

2.1.4 Fibronectin – Osteocalcin fusion protein synthesis 
 

The FN-OCN fusion protein was produced by Jang et al. as previously described [287, 316]. The 

synthesis was initiated via polymerase chain reaction (PCR) amplification of the OCN and FN 

sequences. The OCN forward and reverse primers were 5′-TAGGAGCCCTCACACTCCTC-3 and 5′-

CTGGAGAGGAGCAGAACTGG-3′, respectively. A restriction site was generated using the forward 

primer 5′-AACAGATCTTACCTGTATCAATGGCTGGGA-3, for BglII site, and the reverse primer 5′-

AATGGTACCGACCGGGCCGTAGAAGCGCCG-3′, for KpnI site. The FN sequence was generated with the 

forward and reverse primers, 5′-GGTACCGGTCTTGATTCCCCAACTGG-3′ and 5′- 

AAGCTTTGGTTTGTCAATTTCTGTTCGG-3′, respectively. PCR was conducted over 30 cycles; annealing 

at 55 °C for 1 min; extension at 72 °C for 1 min, and denaturation at 94 °C for 1 min. The amplified PCR 

products were digested using BglII, KpnI and KpnI, HindIII then ligated into pBAD-HisB vector 

(Invitrogen, Carlsbad, CA), giving rise to a pBAD-HisB-FN-OCN. TOP10 cells were cultured at 37˚C 
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overnight in LB medium containing ampicillin after transformation. The bacteria were harvested and 

pelleted by centrifugation at 6000 g for 10 min, lysed in NaCl-Tris-EDTA (STE) buffer, and sonicated. 

The soluble extract was centrifuged at 13,000 g for 2 x 10 min. The supernatant containing the fusion 

protein was then purified by passing through a chromatography column containing a nickel-

nitrilotriacetic acid resin (Invitrogen, Carlsbad, CA) to 90% purity by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) analysis 

 

2.1.5 X-ray Photoelectron Spectroscopy procedure 
  

X-ray photoelectron spectroscopy (XPS) is a surface analysis technique used to measure the 

elemental composition of the surface of a solid material by probing it with high-energy x-ray photons 

[317, 318]. Incident photons of known energy cause electron to be ejected from the atomic orbitals. 

Only electrons within ∼ 10 nm from the surface have sufficient energy to escape the solid (Figure 2.2). 

The energy of the detected electrons is that of the photon minus the energy required to escape the 

atomic orbital and hence it provides information about the chemical identity and the chemical 

bonding of the atom from which the electron originates. The quantity of the ejected electrons is 

recorded as a function of electron kinetic energy loss. Since the incident radiation energy is known, 

the binding energy of the electrons can be determined using the following equation: 

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  𝐸𝑝ℎ𝑜𝑡𝑜𝑛 − (𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 +  𝜙)  Equation 2.2 

Where the Ebinding , or binding energy (BE), of the electron correlates to the energy required to 

eject the electron from the atomic orbital position, Ephoton is the known energy input from the incident 

photons (hν), Ekinetic is the resultant detected energy of the ejected electrons by the detector, and φ is 

the work function of the detector itself. The chemical composition is then determined by comparing 

the resulting electron binding energies and quantities to the known atomic orbitals electron structures 

of the elements. 
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Figure 2.2. X-ray photoelectron spectroscope schematic. Reprinted with permission from [317]. 

 

The surface composition of rPPF-coated foil samples (0.8 cm x 1 cm) were examined using a SPECS 

SAGE spectrometer. The system was equipped with a monochromatic Al Kα (hν = 1486.7 eV) radiation 

source, a hemispherical analyser (PHOIBOS 150), and an MCD9 electron detector. The radiation source 

operated at 200 W (10 kV and 20 mA). The electron take-off angle was 90° with respect to the sample 

surface. The foils were affixed to copper sample holders and loaded into the examination chamber, 

which was evacuated to pressures below 5.0 × 10−8 mbar. The survey spectra were collected in an 

energy range of 0 − 1000 eV at a pass energy of 30 eV and a resolution of 0.5 eV. The resulting spectra 

were then analysed with the CasaXPS software (version 2.3.18PR1.0). 

The spectra were calibrated with reference to the 284.6 eV C1s peak and the peak regions 

isolated with the elemental detection function. The element peaks underwent linear baseline removal 

and area integration to determine the surface composition. The uncertainty associated with the 

elemental composition comes from the manual peak definition and baseline procedure. 

A high-resolution (0.1 eV) C 1s was collected at a pass energy of 20 eV and fitted to determine 

the ratios of different carbon-containing bonds. The peak baseline was subtracted, and the 
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component curves were fitted and added. The full width at half maximum (FWHM) and relative 

position constraints were applied to guide the fitting for the component curves. The predicted envelop 

was compared to the detected peak and the fitted component curves adjusted to obtain the closest 

possible match. An average of multiple ‘optimal’ fit values with uncertainty was reported for the high-

resolution component peaks. 

 

2.1.6 Fourier transform infrared spectroscopy (FTIR) 
 

Fourier-transformed infrared (FTIR) spectroscopy investigates chemical composition by measuring the 

infrared absorbances corresponding to vibrational and rotational oscillations of bonds in compounds 

with dipoles [319]. The Infrared (IR) region is commonly divided into near IR (400 to 10 cm-1), mid-IR 

(4000 to 400 cm-1) and far IR (14000 – 4000 cm-1). The instrumentation in this study utilised attenuated 

total reflectance (ATR) through a germanium crystal to measure the rPPF surface composition. IR light 

is passed through a crystal in physical contact with the surface under conditions creating total internal 

reflection within the crystal. However, at the site of contact, the IR beam partially penetrates into the 

sample in the form of an evanescent (or spatially decaying) wave  [320]. A general schematic for this 

process is shown in Figure 2.3. The specific frequencies corresponding to the excitation energies of 

the bond vibrations in the sample at the interface are absorbed, and the remaining IR frequencies are 

transmitted. 
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Figure 2.3. Schematic diagram of the ATR-FTIR spectrometer. 

 

The FTIR in attenuated total reflectance mode (FTIR-ATR) spectra from the Ti and rPPF samples 

were recorded using a DigiLabFTS7000 FTIR spectrometer fitted with a multibounce ATR accessory 

and a trapezium germanium crystal at an incidence angle of 45˚. The titanium and rPPF- coated foils 

(1.5 cm x 2 cm) were measured at a resolution of 4 cm-1 within the mid-IR range of 4000 – 850 cm-1 

and averaged over 500 scans. Pressure was applied evenly along the foil to ensure a firm crystal-foil 

interfacial contact. The contributions from Ti, CO2, H2O, and the air-crystal interface spectra were 

subtracted from the rPPF spectra using ‘Digilab Resolutions Pro 4.0’ software to leave only 

contributions from the rPPF coating. The spectral subtraction and baseline correction were carefully 

performed as over/under subtracting or incorrect baseline correction can introduce or remove 

spectral peaks. 

 

2.1.7 Contact angle and surface energy measurements 
 

The surface free energy (SFE) and wettability of an interface are important predictors of the 

biological interactions between a surface and the body, as discussed in Chapter 1, and can be 

determined by measuring the contact angles between solutions with different polarities and a surface 

(Figure 2.4). A common approach to calculating the SFE is to measure the contact angles of polar and 
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non-polar solutions and analyse the contact angles with the Owens–Wendt–Rabel–Kaelble (OWRK) 

model. The contact angle of a droplet is a result of the cohesive surface tension and the adhesive 

forces between the solution molecules and the surface. The internal angle produced at the liquid-solid 

interface is calculated from the reciprocal external angle formed by the vapour interfaces, and is 

substituted into Young’s Equation [321, 322]: 

𝛾𝑠𝑣 =  𝛾𝑠𝑙 +  𝛾𝑙𝑣  cos 𝜃     Equation 2.3 

Where: γsv is the surface energy of the solid-gas interface, γsl is the surface energy at the liquid-

solid interface, γlv is the surface energy of the liquid-gas interface, with cos θ being the internal contact 

angle. The OWRK model is used to calculate the γsl based on the polar and dispersive (non-polar) 

components of liquid-solid interface [323]. 

𝛾𝑠𝑙 =  𝛾𝑠𝑣 + 𝛾𝑙𝑣 − 2( √γ𝑠𝑣
𝐷 γ𝑙𝑣

𝐷 + √γ𝑙𝑣
𝑃 γ𝑠𝑣 

𝑃  )     Equation 2.4 

Where the γD and γP refer to the dispersive and polar components of a given surface, respectively. 

To calculate the surface free energy of the substrate (γsv) the accepted surface energy components for 

multiple test liquids are substituted into equation 2.4 and rearranging for γsv.  

 

Figure 2.4. Surface energy components of contact angle droplets. Reprinted with permission [321]. 

 

The surface energy of the PPF was examined using a Kru̎ss DS10 analyser equipped with a CCD 

camera. The contact angles of water (polar) and diiodomethane (non-polar) droplets (5 µL) were 
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measured on rPPF-coated foils. The contact angles were extracted from the captured images using 

the Kru̎ss drop shape analysis software (version 1.90.0.11) and averaged over multiple readings (n = 

5) with the sessile-drop method. The total, dispersive, and polar surface energies were then calculated 

by the Owens–Wendt–Rabel–Kaelble model.  

 

2.1.8 Electron paramagnetic resonance (EPR) spectroscopy 
 

Electron paramagnetic resonance (EPR) spectroscopy, also known as electron spin resonance 

(ESR) spectroscopy, measures unpaired electrons in a process similar to nuclear magnetic resonance 

(NMR) spectroscopy. EPR measures the change in electron magnetic moment (μe) under the presence 

of constant microwave energy and varying external magnetic field strength (B). The unpaired electron 

energy levels are shifted to produce Zeeman splitting [324, 325] according to: 

𝐸
±

1

2

= (±)
1

2
𝑔𝜇𝐵𝐵     Equation 2.5 

Where the energy of a spin state (E ±1/2) is determined by the g-factor, the Bohr magneton (μB), 

and the applied magnetic field (B). The sample is scanned with an increasing magnetic field until the 

constant microwave radiation causes photoelectric excitation of the electron. The positions and 

intensities of the spectral peaks allow for the determination of unpaired electron species and 

quantities. 
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Figure 2.5. A general schematic of an electron paramagnetic resonance spectrometer. Reprinted from [326]. 

 

 The concentration of unpaired electrons in the rPPFs deposited on polystyrene (PS) (25 μm, 

Goodfellow) were examined with a Bruker EMX PremiumX EPR spectrometer at room temperature. 

Polystyrene was used as metallic substrates are not compatible with the EPR detection process. The 

films deposited on PS were considered to be representative of those on titanium as PPFs are known 

to be substrate independent except for interface layers with a thickness less than approximately 10 

nm [286, 291, 327]. The PS control and rPPF – coated PS samples (7 cm x 8 cm) were rolled and inserted 

into quartz NMR tubes. The spectra for each time point (n = 6) were examined with a scan time of 

60.06 s using a centre field of 3513 G, modulation amplitude of 1.998 G, frequency of 100 kHz, and 

microwave frequency and power of 9.83 GHz and 0.025 W, respectively. The resonator detection 

cavity had a minimum signal to noise ratio of 400:1. A weak pitch (WP) control of known radical density 

(∼1 × 1013 spins/cm) was measured in conjunction with each sample set. The resulting spectrum was 

doubly integrated using Origin 8.5 to correlate the known linear radical density for the control within 

the 4 cm cavity to the area under the curve. This relationship was then used to determine the radical 



Page 91 of 214 
 

density of the rPPF samples in the 4 cm x 8 cm examination region. The rPPF radial density was 

normalised to units of spins/cm3. 

 

2.1.9 Atomic force microscopy analysis  
 

Atomic force microscopy is a surface analysis technique that examines the 3D topology of a 

surface [328, 329]. A cantilever of a given shape and sharpness is traced along the surface (x-y plane) 

and the deflection of the tip (z plane) is measured via laser-induced current on the position-sensitive 

detector array (Figure 2.6). The signal is transferred through a feedback system where the laser 

deflection is converted into a physical height measurement. The cantilever tip can be tapped or remain 

stationary as the surface is being scanned. The cantilever tips can be modified with particular shapes, 

sharpness, and chemically-functionalities to investigate specific structures, compositions, or physical 

properties from the micro to nanoscales [328]. AFM can also be performed in aqueous or vacuum 

conditions and can be used for various nanolithography procedures. 

 

 

Figure 2.6. A representative schematic of an atomic force microscope [329]. 
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AFM was performed on Ti substrates to determine if surface topology was altered during the 

nitric acid cleaning or the rPPF deposition processes. The toluene and nitric acid cleaned Ti sheets and 

bare and rPPF-coated foils were examined with a molecular imaging PicoSPM atomic force microscope 

(AFM) at the Australian centre for microscopy and microanalysis (ACMM). The samples were 

examined as close to the preparation as possible to reduce the effects of surface artefact 

contamination (e.g. dust). The individual samples were attached to the sample plate for examination. 

A 0.6 μm sharp microlever (Park Scientific Instruments) was inserted into the probe and the cantilever 

laser was aligned to the tip. A random 30 μm x 30 μm section of the surface was selected, the detection 

and feedback parameters were optimised, and the surface traced for topology and roughness. The 

results were analysed with the ‘WSxM 5.0 Develop 8.5’ software as developed by Horcas et al. [330]. 

 

2.1.10 Enzyme-linked immunosorbent assay detection 
 

Enzyme-linked immunosorbent assay (ELISA) is a biochemical detection method for determining 

protein concentrations based on the specific interactions between antibodies, or immunoglobulins 

(Igs), and unique amino acid sequences in the target proteins [331]. The ELISA methodology in this 

study utilises a primary Ig that binds specifically to the target protein and a complementary secondary 

Ig conjugated with HRP that generates a colourimetric signal via the enzymatic breakdown of a TMB 

liquid substrate. A schematic outline of the ELISA process is shown in Figure 2.7. The samples were 

loaded into individual wells of a tissue culture well plate. Each ELISA test contained a negative bovine 

serum albumin (BSA) (Sigma Aldrich) control surface in triplicate to measure the background signal 

and an unblocked tissue culture plastic positive control surface to confirm successful ELISA detection. 

Each step is preceded by washing in PBS buffer to remove excess reagents. Step 1: Protein-

immobilised and negative control surfaces were incubated in a 5% w/v BSA blocking protein solution 

for 1 hr to block the non-functionalised parts of the surface. Step 2: The surfaces were incubated in 

primary antibody solution (1 hr). Step 3: The substrates were exposed to the secondary antibody 
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conjugated with HRP for 1 hr. Step 4: The samples were transferred to a clean well plate to eliminate 

signal contributions from antibodies adsorbed onto the well plate. The TMB substrate solution was 

added for 30 min. A colourimetric change from clear to blue was produced through the reduction 

reaction between TMB and peroxide catalysed by HRP. An equal volume of 0.2 M sulphuric acid was 

added to stop the reaction and the absorbance was read at 450 nm. 
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Figure 2.7. A schematic outline of the ELISA protein quantification process. 
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2.2 Cell maintenance and handling 
 

2.2.1 Cell media and buffer preparation 
 

Ham’s F12 media (51651C, Sigma Aldrich) was supplemented with fetal bovine serum (FBS) 

(12003C, Invitrogen), and Penicillin-Streptomycin (P.S) (P4333, Sigma Aldrich), were used to make 

complete cell media (c-media) for the Osteosarcoma MG63 tumour cells. The media was prepared in 

under sterile conditions inside a biological safety cabinet (BSC). FBS was heated to 56˚C for 1 hr for 

heat inactivation. Ham’s F12 and P.S were warmed to 37 ˚C. 50 mL of FBS (10% v/v) and 5 mL of 100 

μg/mL P.S (1% v/v) were added to the Ham’s F12 using a fresh pipette for each solution as to prevent 

cross-contamination. A 5 mL aliquot of c-media was transferred into a T25 cm2 cell culture flask 

(Corning) to test for contamination. The c-media was sealed with parafilm and stored in cold 

conditions (refrigerator). The remaining FBS and P.S were aliquoted into 50 mL and 15 mL volumes, 

respectively, and stored at -30 ˚C. 

Primary osteoblasts required a low glucose Dulbecco's Modified Eagle's medium (DMEM) (D5546, 

Sigma Aldrich). Non-osteogenic and osteogenic recipes of completed-DMEM (c-DMEM) were used for 

osteoblast maintenance. Both c-DMEM recipes contained 20% (v/v) FBS (100 mL) and 1% (v/v) P.S. (5 

mL). 50 μg/mL ascorbic acid (vitamin C) was added to the osteogenic media to promote osteoblast 

differentiation.   

Phosphate buffered saline solution without magnesium and calcium (PBS) was purchased from 

Sigma Aldrich (cat.56064C). 9.5 g of PBS powder was dissolved in 1L of deionised or milliQ water. The 

PBS solution was then sterilised by either a standard 2 hr ‘wet run’ autoclave routine or vacuum 

filtration with a 0.22 µm filter bottle-top vacuum filter (Corning). The sterilised PBS was stored under 

cold conditions. 
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2.2.2 MG63 osteosarcoma cell line culturing 
 

MG63 osteosarcoma cells are a permanent malignant cell line derived from a bone tumour. They 

are one of the three common cell lines used for orthopaedic research, along with the human-derived 

Sarcoma Osteogenic (SAOS-2) and the transformed mouse pre-osteoblast MC3T3-E1 cell lines [332].  

MG63 cells were provided by Dr W. Chrzanowski (Pharmacy) and Dr G. Yeo (CPC). A vial of frozen cells 

was retrieved from cryogenic storage in liquid nitrogen, equilibrated to 37˚C, and transferred into a 

15 mL tube with 5 mL of media. The cell suspension was spun down in a centrifuge at 1200 rpm for 5 

min. The supernatant was removed, the cell pellet resuspended in 2 mL of media, and transferred into 

T75 cm2 tissue culture flask (Falcon, Sigma Aldrich) with 20 mL of media.  

The cells were grown until they covered 80-90% of the surface, referred to as 80-90% confluence. 

The cells were washed twice with 5 mL PBS before the addition of 5 mL TrypLE express trypsin solution 

(Thermofisher Scientific). After the cells had detached from the flask (approximately 2-5 min), 5 mL of 

media was added to quench the TrypLE. The cell solution was transferred into a 15 mL tube and spun 

down at 1200 rpm for 5 min. The resulting pellet was resuspended in 2 mL of media and the cell 

concentration was determined via manual counting. 80 μL of 0.4% Trypan blue stain solution was 

transferred into a 1.5 mL Eppendorf tube followed by 20 μL of cell suspension. 10 μL of the mixed 

stained cell solution was transferred into one side of a haemocytometer and examined under a 

microscope. The average cell number per mL was calculated with equation 2.2 using the average cell 

number per square (0.1 µL) from 5 squares of the counting grid (Figure 2.8). Both sides of the 

haemocytometer were used to determine the cell suspension density for cell assays. Cell culture flasks 

containing complete media were then seeded at the required density for continued proliferation.  

Cell concentration (
𝑐𝑒𝑙𝑙

𝑚𝐿
) =  Cell average per 0.1 µL region xTrypan Blue dilution x 10,000   Equation 2.2 
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Figure 2.8. Standard Haemocytometer grid layout labelled with regions sampled for cell counting (A-E) 

 

2.2.3 Primary Osteoblast collection and culturing 
 

Primary osteoblasts were collected from sacrificed 7-week-old C57BL/6 mice following the 

accepted procedure [333, 334] at the Heart Research Institute (HRI). The experiments were conducted 

in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific 

Purposes. All personnel involved in the animal procedures have completed an approved animal care 

and ethics course. The abdomen was washed with ethanol. The femur, tibia, and fibula were cleaned 

and placed in a sterile Petri dish with PBS. The bones were transferred to a tube with 10 mL of 

collagenase II solution (heated to 37˚C) and mixed via shaking for 20 min. The samples were 

transferred to a fresh Petri dish where the epiphyses (ends of the bone) were opened and the marrow 

flushed out. The bone diaphysis (central parts of the bone) were cut into 1-2 mm2 pieces, washed 

several times with PBS, and incubated in 4 mL collagenase II solution at 37˚C. The solution was shaken 

vigorously every 30 min for 2 hr. The bone pieces were rinsed 3 times with media and the supernatant 

discarded. The bone fragments were transferred to a 6-well plate at 20-30 bone pieces per well. Non-

osteogenic media was added and the pieces were left to allow for osteoblast outgrowth. The cells 

typically migrated from the bone pieces after 3-5 days, being careful to avoid over-confluence around 
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the bone pieces, and were ready to be transferred after 11-15 days. The cells were trypsinated at 70 

- 80% confluence and transferred to a larger culture flask for cell expansion (seeding density 60 – 80 x 

104 cells /T175 flask). The OB cell subcultures were monitored through visual examination of the 

cellular morphology and staining with alizarin red. Any subcultures that indicated ingrowth of other 

cell types were discarded. 

 

2.2.4 Substrate seeding 
 

The Ti and rPPF coated 1 mm thick sheets, used for MG63 cell assays, were sterilised with UV light 

for 15 min on either side and transferred into individual wells of a 24-well plate (Corning). MG63 cells 

were suspended and seeded at a density of 10,000 cells/cm2, or 6500 cells per sheet, using a droplet 

seeding method. The droplet (approx. 80 µL) was left on the substrate surface for 2 hr to allow for cell 

attachment [335]. The well was gently filled to 1 mL and examined under a light microscope to 

visualise any cells displaced from the sheets. The samples were incubated at 37˚C and 4% CO2.  

The bare and rPPF-coated titanium foils were used for primary osteoblast investigations. The foils 

were cut to size (0.8 cm x 1 cm) and sterilised with UV light before being transferred into an 8-well 

chamber slide (Nunc®154534, Life technologies). Primary osteoblasts were seeded on foils at 4000 

cells per substrate in 0.4 mL of media, or 5000 cells/cm2. The media was replaced every 3 days. The 

end chamber of each row was seeded as a control to monitor cell health. 

 

2.2.5 Cellular proliferation assays 
 

MG63 cellular proliferation was measured at 1, 3, and 7 days post seeding using three cell assays: 

AlamarBlue (AB) metabolic assay, cell counting kit – 8 (CCK-8) proliferation assay, and cyQUANT DNA 

detection. The three tests were performed under dark conditions to reduce photobleaching and loss 

of signal specificity. Blank samples were run in conjunction with each assay for background 
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subtraction. The results were presented as background subtracted absorbances and proliferation 

ratios of day 1.  

AlamarBlue™ cell viability reagent (DAL1025, Thermofisher Scientific) is a non-toxic resazurin salt 

solution that acts as a cell metabolite, changing from blue resazurin to red resorufin as it is reduced. 

The cell media was removed, and the samples were incubated in 1 mL of AB solution (10% v/v in Ham’s 

F12 media) for 2 hr. After the allotted time, 150 μL aliquots were taken from each sample and the 

absorbance measured at 570 nm.  

The active compound in the CCK-8 proliferation assay is a non-toxic, soluble tetrazolium salt, 

WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, 

monosodium salt) (96992, Sigma Aldrich). The salt undergoes reduction reactions by dehydrogenase 

activities (NADP/NADPH+) within cells to produce a yellow formazan dye. The media was removed 

from the samples and replaced with 500 μL of 10% (v/v) CCK-8 solution. Aliquots from each sample 

were removed after incubation for 3 hr, and the absorbance was measured at 450 nm. 

CyQUANT NF is an endpoint assay that measures DNA quantity. The assay came as a multi-

reagent kit (#96992, Sigma Aldrich) and was mixed per the included instructions. Briefly, 11 mL of 1x 

buffer was made from milliQ water and the 5x Hank’s balanced salt solution (HBSS) concentrate 

provided. Next, a 22 μL aliquot of ‘component A’ DNA-binding dye reagent was added to the buffer (1 

/ 5,000 dilution). The cells were washed with PBS, 500 μL of cyQUANT solution was added to each 

well, and the samples were incubated for 30 min. 150 μL aliquots were removed, and the fluorescence 

was read at 485 nm excitation /530 nm emission. 

The primary osteoblasts were examined with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) endpoint cell assay due to the slow 

proliferation rates of the cells. The MTS assay produces yellow formazan through reaction with 

NADP/NADPH+ like the CCK-8 assay. MTS was made up to 40 mM concentration and frozen into 1 mL 

aliquots. Following cell growth for the allotted time, the media was removed from the samples 
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followed by the addition of 160 µL of non-supplemented DMEM and 40 µL of MTS solution. The 

samples were incubated for 2 hr under dark conditions followed by the transfer of 100 µL of each 

sample into a 96 well plate. The absorbance was read at 490 nm. 

 

2.2.6 Alizarin red mineralisation assays 

 

The mineralisation capacity of the different protein conditions was examined with the AlizarinRed 

stain (ARS), which binds to calcium. ARS was purchased from Sigma Aldrich (#A5533) and the solution 

made up via the standard protocol [155, 336, 337]. 0.7 g of ARS powder was dissolved in 25 mL of 

distilled water. The pH of the solution was measured and adjusted to the final pH range of 4.1-4.3 with 

0.5% (v/v) ammonium hydroxide solution. The solution was made up to 50 mL with distilled water, 

adjusting the pH as required. Phosphoric acid was used to increase the pH if excess ammonium 

hydroxide was added. The final solution was stored in a 50 mL falcon tube and wrapped in aluminium 

foil to prevent light exposure. 

The Ti, rPPF, and protein-functionalised surfaces were prepared as described in Chapters 2 and 

5, and primary osteoblasts were seeded at 10,000 cells per well. The cells were incubated up to 1 

month, and the media was replaced every 3 days. After gentle washing in PBS, the respective samples 

were stained with ARS for 2 hr. The excess was removed, and the samples washed gently before being 

placed into individual Eppendorf tubes. 400 μL of 10% (v/v) acetic acid was added before vortexing 

and heating to 85˚C for 10 min.  The samples were then centrifuged at 16000 g for 15 min, and 50 μL 

of ammonia hydroxide added to each sample. 200 μL aliquots were transferred to a 96 well plate, and 

the absorbance read at 405 nm. 

 

 



Page 101 of 214 
 

2.2.7 Mesenchymal stem cell differentiation 
 

The upregulation of the alkaline phosphatase (ALP) enzyme in mesenchymal stem cells (MSCs) is 

a common approach for detecting osteoblastic differentiation, as MSCs do not produce the enzyme in 

their undifferentiated state. The detection can be performed through a variety of methodologies, such 

as enzyme-linked immunosorbent assays (ELISAs), polymerase chain reactions (PCR), and fluorescence 

imaging [336, 338-340]. ALP production in MSCs was measured via fluorescent microscopy following 

a similar protocol to cell attachment and spreading (Chapter 2).  

MSC harvesting and culturing were performed as described in the standard protocol [341]. Long 

bones were collected from 7-week-old mice and washed with 70% EtOH. The ends of the bone were 

removed as for the primary osteoblast extraction. The bone marrow was flushed out with DMEM 

solution and collected. The marrow solution was resuspended and filtered through a 70 μm cell sieve 

before being transferred to a well plate for culturing. The cells were cultured in complete DMEM 

without ascorbic acid as not to stimulate osteoblast differentiation and the media changed every 3 

days. The cells were expanded to working stocks and closely monitored for differentiation or ingrowth 

of other cell types. MSCs were seeded at 8000 cells/well on the protein-functionalised rPPF surfaces 

in an 8-well chamber slide. The media was changed every 3 days to ensure sufficient nutrients. After 

10 and 20 days, the cells were fixed to the foils with EtOH and washed in 0.1% Triton solution. The 

surfaces were stained with Vector Red Alkaline Phosphatase dye (Vector) and DAPI fluorescent 

mounting media (Agilent). The surfaces were then examined with a Zeiss Axio Imager.Z2 fluorescence 

microscope at 365/560 nm for the ALP dye and 358⁄461 nm for the DAPI. The images were analysed 

with the ‘ImageJ’ software. The degree of differentiation was determined by dividing the total area of 

the Vector Red (µm2) by the number of cells (blue nuclei). 
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2.3 Microscope procedures 
 

2.3.1 Cell preparation for scanning electron microscopy examination  
 

Titanium sheets were prepared for examination with a scanning electron microscope (SEM) to 

visualise the effects of cell growth on the coating integrity. MG63 osteosarcoma cells were grown on 

Ti sheets according to the proliferation protocols (Chapter 2) for 3 days and 7 days. The samples were 

washed with PBS, incubated in a 4% paraformaldehyde (PFA) solution for 1 hr, and stored in PBS buffer 

at 4˚C until visual examination. The SEM imaging was performed at the Australian Centre for 

Microscopy and Microanalysis (ACMM). The samples were immersed for 1 hr in a 1% Osmium 

tetroxide (OsO4) solution for secondary fixation and image contrast and washed with milliQ water. The 

samples were then dehydrated with increasing concentrations of ethanol from 30% to 100% (v/v) for 

3 x 5 min. A pre-made solution of 2% (v/v) hexamethyldisilazane (HDMS) was pipetted onto the sample 

in minimal volumes and any remaining solution was removed after 2 min. The samples were affixed 

to SEM mounting stubs with carbon tape and coated with a 20 nm layer of gold via sputtering (Emiteck 

K550X sputter coater). The samples were imaged with secondary emission detection using a neoscope 

JEOL tabletop SEM at a 10 V electron acceleration and working height of 48 mm. Three samples for 

each condition were examined at multiple sites (minimum n = 5) for each surface.   

 

2.3.2 Fluorescence microscopy for cellular attachment 
 

Cellular attachment after 1 hr was examined via fluorescent staining. Ti foils were cut to 0.8 cm x 

1 cm and sterilised under UV light before being transferred to an 8 well multichannel slide 

(Nunc®154534, Lifetechnologies). Primary osteoblasts and MG63 cells were seeded at the density of 

10,000 or 24,000 cells per well, respectively [171, 342, 343]. After 60 min, the seeding media was 

removed, the foils gently washed with PBS, and the attached cells fixed with 70% ethanol for 10 min. 

The samples were stored in PBS under cold conditions if imaging could not be performed on the same 
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day. After storage as required, the foils were exposed to a 0.1% Triton-x100 (Sigma Aldrich) solution 

for 10 min to remove potential contaminants. The cytoskeleton of the attached cells was stained with 

approximately 200 μL of an actinRED555™ (Invitrogen) solution per well for 10 min; 2 drops of 

actinRED555™ per mL of PBS. The nuclei were stained with 4',6-Diamidino-2-Phenylindole 

dihydrochloride (DAPI) fluorescent mounting media (Agilent) and the cells were placed between two 

glass slides for examination. Direct handling of the surfaces was minimised to reduce artefacts. 

The samples were examined at 540/565nm excitation/emission for actinRED555™ and 

358/461nm for DAPI with a Zeiss Axio Imager.Z2 fluorescence microscope. The magnification and 

fluorescence exposure time were kept constant between samples. The surfaces were examined under 

5x (≈ 4mm2) and 10x (≈ 1 mm2) magnifications. Minor post-capture adjustments were made uniformly 

to the colour intensity of all images using the “best fit” colour adjustment in ‘ZEN Pro’ software (Zeiss).  

The image analysis software “ImageJ” was used to calculate the average cell quantities and sizes. 

The images were split into the red and blue component colours and thresholded for the maximum 

distinction between cells. The image was further processed to fill holes and watershed connected cells. 

The resulting image was analysed for the number of cells and their average area. A minimum size 

limitation of 40 and 20 pixels was applied for cell size (red - cytoskeleton) and cell number (blue - DAPI) 

measurements, respectively, to exclude background artefacts. These results were tabulated and 

averaged over a series of images (n > 9) for the respective samples. A visual representation of the 

image analysis process is outlined in Figure 2.9. 
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Figure 2.9. Pictographic flow of ImageJ analysis process. 
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Chapter 3 – Material optimisation and biological screening 
 

In this chapter, the mechanical and biological properties of radical-functionalised plasma polymer films 

(rPPFs) deposited with nitrogen atomic concentrations ranging from 0 -30%N are investigated. The 

rPPF coated titanium sheets were seeded with MG63 osteosarcoma cells for in vitro examinations of 

coating stability under cellular proliferation conditions. Scanning electron microscopy images 

demonstrated significantly greater robustness on the coatings with higher nitrogen content, with a 

preference towards the 30%N rPPF. Cellular proliferation assays showed little difference between the 

rPPF coatings, with a slight preference for the 20%N over the 30%N. Hence, both the biologically 

favoured 20%N rPPFs and mechanically favoured 30%N rPPFs were selected for further investigations.  

 

3.1 Introduction 
 

The primary requirements for orthopaedic surface coatings are a strong coating-substrate 

interfacial adhesion and coating robustness sufficient to resist the partial or complete removal of the 

coating, referred to as delamination. The products of a delamination event can trigger adverse 

immune reactions similar to that of metallic and ceramic wear [344-348], thereby, reducing the 

effectiveness and lifetime of the implant. Recently, plasma polymer films (PPFs) have garnered great 

interest in biomaterials and biointerfaces applications, such as orthopaedic implants, because of their 

versatile and substrate-independent surface chemistry [208, 243, 244, 253, 254, 349-352]. The 

resistance to delamination of PPFs depends on the initial layer formation and can vary based on the 

mechanical and chemical properties of the underlying substrate [286, 304]. For a constant precursor 

gas composition and other plasma deposition conditions, such as plasma input power, the PPFs can 

have vastly different mechanical adhesion on silica, stainless steel, and titanium. Radical-

functionalised PPFs (rPPFs) have been characterised on silicon wafers [283] and applied to stainless 

steel for cardiovascular stents [353-355], but had not been deposited on titanium before this work 
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[58, 356, 357]. Therefore, a new set of deposition parameters are needed for the deposition of a 

robust rPPF onto titanium surfaces that is capable of resisting delamination.  

Two approaches can be taken to improve the mechanical properties of PPFs: i) The formation of 

graded PPF layers, and ii) the incorporation of nitrogen. Graded layers eliminate a sharp substrate-

film interface prone to failure by creating a region through which the properties of the substrate 

gradually transfer to those of the film. Dramatically improved adhesion has been achieved through 

either compositional grading [264, 285], where the film deposition begins with deposition of the 

underlying metal onto a argon plasma cleaned substrate with the precursors gradually changing to 

the composition of the carbon-based film, or through structural grading [309], where a highly cross-

linked polymer layer is deposited onto the substrate to form a mechanically stiffer and robust 

foundation followed by the less cross-linked soft layers that contain the desired chemical 

functionalities. The graded layers approach is commonly applied to chemically-functionalised PPFs 

(cPPFs) due to the poor interfacial adhesion resulting from the low plasma specific energies used to 

deposit the desired chemical functionalities [231-234]. The second approach for improving the PPF 

mechanical properties is by the incorporation of nitrogen as applied typically to diamond-like carbon 

(DLC) coatings [358-360]. Nitrogen introduces a series of trigonal chemical structures, such as imines, 

amides, imides, and enamines, that possess a lower bonding energy configuration and increase the 

ratio of sp2:sp3 (double: single) bonded carbon [361, 362], improving the elasticity and robustness of 

the coating. The deposition of rPPFs utilises pulse bias voltages applied to the substrate for the 

embedding of radicals in the form of dangling bonds created via enhanced ion bombardment. At the 

initial stages of film growth these energetic ions implant into the substrate producing a small “ion-

stitched” graded layer at the interface that provides strong rPPF adhesion [285]. The energetic 

deposition and extensive cross-linking also results in higher degrees of internal coating stress. The 

incorporation of nitrogen into the structure of rPPFs increases the coating elasticity, reducing stress 

and producing robust rPPF coatings capable of withstanding the abrasive surgical implantation 

procedures. 
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The inclusion of nitrogen groups has also been shown to increase the biological affinity of PPFs 

[237-243]. The nitrogen-containing groups can become protonated under physiological pH conditions 

(pH 7.4), e.g. NH3
+, and increase cell attachment and proliferation [237, 238, 243]. They can also 

increase the mineralisation of bone lineage cells and encourage the osteoblastic differentiation of 

stem cells [243, 244]. In this chapter, rPPF coatings are deposited on titanium surfaces from a variety 

of N2:C2H2 reagent gas ratios. The resulting coatings were examined with bone lineage cells to identify 

the reagent gas ratio that produces the most robust coating and any biological preferences.  

  

3.2 Methods 
 

3.2.1 Substrate preparation and rPPF deposition 
 

Titanium substrates were cleaned with the nitric acid protocol outlined in Chapter 2 and with an 

organic solvent protocol [58, 356, 357]. For nitric acid cleaning, the sheets were washed in acetone 

and water (2 x 10 min each) followed by a 30 min immersion in a 35% nitric acid solution. The sheets 

were then washed with water and ethanol (2 x 10 min each). In the organic solvent protocol, the 

sheets were sonicated for 1 x 10 minutes in 10-15 mL of toluene, acetone, and 70% ethanol (v/v), rPPF 

coatings were deposited on Ti substrates as outlined in Chapter 2. Briefly, the cleaned titanium 

substrates were treated with argon (Ar) plasma for 10 minutes (flow rate = 40 standard cubic 

centimetres per minute (sccm), RF power = 75 W, substrate bias voltage = −500 V, pulse width = 20 

μs, pulse frequency = 3 kHz). The rPPF coatings were then deposited with varying reagent gas ratios. 

The flow rate of argon was kept constant at 15 sccm while the flow rates of acetylene (C2H2) and 

nitrogen (N2) were varied as shown in Table 3.1. The chamber working pressure was adjusted to 0.11 

Torr and the coatings deposited to a thickness of approximately 60 ± 7 nm (RF power = 50 W, substrate 

bias voltage = −500 V, pulse width = 20 μs, pulse frequency = 3 kHz). The chamber was vented, and 

the samples were stored under aerobic conditions. 
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Table 3-1. Plasma deposition gas ratio conditions 

Nitrogen (sccm) Acetylene (sccm) Argon (sccm) Deposition time for 60 

± 7 nm layer (min, sec) 

0 15 15 1 min, 30 sec 

5 10 15 1 min, 44 sec 

10 5 15 2 min, 50 sec 

12.5 2.5 15 6 min, 32 sec 

 

3.2.2  X-ray photoelectron spectroscopy  
 

The surface composition of rPPF coated substrates with varying N:C ratios were examined after 

24 hours, according to the x-ray photoelectron spectroscopy (XPS) protocol outlined in Chapter 2. 

Briefly, the survey spectra were collected in an energy range of 0−1000 eV at a pass energy of 30 eV 

and a resolution of 0.5 eV. High-resolution (0.1 eV) C 1s spectra were collected at a pass energy of 20 

eV. The chamber pressure was below 5.0 × 10−8 mbar. The resulting spectra were then analysed with 

the CasaXPS software. 

 

3.2.3 Cell preparation for scanning electron microscopy examination  
 

Titanium sheets were prepared for examination with a scanning electron microscope (SEM) to 

visualise the effects of cell growth on the coating integrity as outlined in Chapter 2. MG63 

osteosarcoma cells were grown on Ti sheets according to the proliferation protocols (Chapter 2) for 3 

days and 7 days. The samples were washed with PBS, incubated in a 4% paraformaldehyde (PFA) 

solution for 1 hr, and stored in PBS buffer at 4˚C until visual examination. The samples were fixed with 

1% Osmium tetroxide (OsO4) solution then dehydrated with increasing concentrations of ethanol and 

a pre-made solution of 2% (v/v) hexamethyldisilazane (HDMS). The samples were affixed to SEM 

mounting stubs with carbon tape and coated with a 20 nm layer of gold via sputtering (Emiteck K550X 

sputter coater). The samples were imaged with secondary emission detection using a neoscope JEOL 
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tabletop SEM at a 10 V electron acceleration and working height of 48 mm. Three samples for each 

condition were examined at multiple sites (minimum n = 5) for each surface.   

 

3.2.4 Atomic force microscopy analysis  
 

AFM was performed on Ti substrates to determine if surface topology was altered during the 

nitric acid cleaning or the rPPF deposition processes, as described in Chapter 2.1.8. Briefly, the toluene 

and nitric acid cleaned Ti sheets and bare and rPPF-coated foils were prepared as close to the 

examination date as possible and examined with a molecular imaging PicoSPM atomic force 

microscope (AFM). The individual samples were attached to the sample plate, a 0.6 μm sharp 

microlever (Park Scientific Instruments) was inserted into the probe, and the cantilever laser was 

aligned to the tip. A random 30 μm x 30 μm section of the surface was selected, the detection and 

feedback parameters were optimised, and the surface traced for topology and roughness. The results 

were analysed with the ‘WSxM 5.0 Develop 8.5’ software as developed by Horcas et al. [330]. 

 

3.2.5 Cell proliferation assays 
 

The MG63 cellular proliferation was measured with the AlamarBlue (AB), cell counting kit – 8 

(CCK-8), and cyQUANT proliferation assays as per the protocols in Chapter 2. Briefly, the Ti and rPPF 

coated sheets were sterilised with UV light for 15 min per side and transferred into individual wells of 

a 24-well plate (Corning). The MG63 cells were seeded at a density of 10,000 cells/cm2, or 6500 cells 

per sheet, using a droplet seeding method. The droplet was left on the substrate surface for 2 hr to 

allow for cell attachment. The well was gently filled with 1 mL of cell media and placed in the incubator. 

Cellular proliferation was measured at day 1, day 3, and day 7 post seeding. The proliferation assays 

were performed under dark conditions to reduce photobleaching. Blank samples were run in 
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conjunction with each assay for background subtraction. The results were examined as background 

subtracted signal intensity and proliferation ratios compared to day 1. 

 

3.3 Results and Discussion 
 

3.3.1 rPPF deposition parameters and the resulting C:N ratios 
 

The rPPF coatings with varying N2: C2H2 gas ratios were deposited to a thickness of 60 ± 7 nm as 

determined by ellipsometry. The reagent gas ratios and deposition times are shown in Table 3-1. By 

increasing the N2: C2H2 ratio from 0: 15 to 12.5: 2.5, the incorporated nitrogen increased from 0 at% 

to 28 at% while the carbon content decreased from 93 at% to 66 at% (Figure 3.1). The majority 

concentration of carbon is typical for amorphous films deposited from carbon-based monomers that 

have been highly cross-linked through ion bombardment. Nitrogen is incorporated predominantly 

through the radical fragmentation-recombination reactions in the plasma before deposition and can 

also be included through ion implantation mechanisms. The presence of oxygen suggests that the 

rPPF-coatings have undergone autoxidation reactions between carbon-centred radicals and 

atmospheric oxygen [207, 292, 363].  
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Figure 3.1. The atomic composition of rPPF coatings deposited with varying nitrogen and acetylene precursor 

gas ratios.  

 

The C1s high-resolution peaks were curve-fitted with components at binding energies 

corresponding to C−C/C−H (284.6 ± 0.5 eV), C−O/C−N (286.5 ± 0.5 eV), C=O/N−C=O (287.5 ± 0.5 eV), 

and COOH (289 ± 0.5 eV) [309, 353, 364]. The C-H/C-C groups are the dominant component of C 1s 

spectra (red peak at 284.6 eV in figure 3.2). The C-O/C-N components increased relative to the C-H/C-

C components with the N2:C2H2 reagent gas ratios. The C-N/C-O peak fittings, along with the minor 

contributions of the COOH functionalities (green peak at 289 ± 0.5 eV), also illustrated autoxidation of 

the rPPF surfaces through the formation of predominately singly bonded carbon-oxygen groups. The 

organic polar groups formed as autoxidative products are known to be beneficial for cellular 

attachment and proliferation [243]. Overall, the nitrogen content in the rPPF coatings was shown to 

increase proportionally to the N2:C2H2 ratio and these coatings were further examined for robustness 

and biocompatibility. 
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Figure 3.2. High-resolution C1s fitting of rPPFs with increasing nitrogen content after 24 hours of atmospheric 

exposure post deposition. The increase in the C-N/C-O fitted peak (blue) compared to the C-H/C-C fitted peak 

(red) indicates the incorporation of nitrogen roughly proportional to initial reagent gas ratios. The presence of 

the COOH fitted peaks (green) in conjunction with the C-N/C-O peak in the 0%N coating indicates autoxidation 

of the rPPF-coatings. 

 

3.3.2 rPPF robustness in biological environments 
 

To test the mechanical suitability of the varying N:C ratio rPPF coatings in biological 

environments, bare and rPPF coated Ti sheets were seeded with MG63 cells and examined for coating 

failure with a scanning electron microscope at the day 3 and day 7. The day 3 images demonstrated a 
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predominately homogenous cell distributed on the bare Ti surfaces, while all rPPF surfaces produced 

cell clustering. A closer x600 magnification examination showed more pronounced coating swelling 

and creases on the 0%N and 10%N surfaces compared to the 20%N and 30%N surfaces (Figure 3.3). 

The day 7 images showed the formation of cell multilayers across all surfaces. The multilayers 

produced on the Ti surfaces were homogenously distributed while the multilayers on rPPFs resembled 

converging grain boundaries as suggested by the day 3 cell distributions. Cell loss was observed on all 

surfaces due to the preparation procedures. However, coating and cell layer delamination were 

frequently observed on the lower nitrogen rPPF coated surfaces. The higher 20%N and 30%N rPPF 

coated surfaces experienced considerably less cell loss and virtually no coating delamination.  

Overall, the incorporation of nitrogen and the strong adhesion at the rPPF-titanium interface, 

through the formation of titanium carbide bonds [286], resulted in a more robust film for the 20%N 

and 30%N rPPFs, with a slight improvement in the case of the 30%N coating. 
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Figure 3.3. Representative scanning electron microscopy (SEM) images of cell formation and rPPF integrity on 

the varying N% coatings at day 3 and day 7 growth time points compared to titanium. Day 3 x80 magnification 

shows clustered cell growth on all rPPF surfaces. rPPF swelling is visible for the 0%N and 10%N coatings under 

x80 (scale = 200 μm) and x600 (scale = 50 μm) magnifications. Day 7 SEM examination showed coating 

delamination on the 0%N and 10%N rPPFs.
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3.3.3 Surface topology analysis 
 

An increased surface roughness produced through surface modification techniques, such as acid 

and plasma treatments [365], has been shown to produce statistically significant improvements in the 

attachment, proliferation, differentiation, and mineralisation of bone lineage and stem cells over their 

smoother counterparts [76, 243, 366, 367]. Therefore, any potential difference in surface roughness 

produced from the nitric acid cleaning or rPPF deposition must be taken into account to determine if 

any biological preference exists for particular rPPF N:C ratios. The nitric acid and toluene cleaned Ti 

sheets produced a root mean square (RMS) roughness of 32 ± 6 nm and 34 ± 8 nm in a 30 μm x 30 μm 

square, respectively. Both nitric acid (Figure 3.4.a) and toluene (Figure 3.4.b) cleaned sheets showed 

pitting from the manufacturing, and skewness and kurtosis from polishing processes (Figure 3.4 c,d). 

The uncoated and 20%N rPPF-coated Ti foils showed no significant differences in measured roughness, 

with both possessing an RMS roughness between 7-18 nm as measured over 1 µm2. Therefore, surface 

roughness changes through cleaning treatments or coating deposition can be eliminated from 

consideration as contributing factors to the observed differences in cell behaviour. Any observed 

differences can, therefore, be attributed to the effects of the changes in nitrogen incorporation. 
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Figure 3.4. Representative surface topology traces obtained by AFM. The surface traces of polished Ti sheets 

cleaned via the nitric acid protocol (a) and the toluene protocol (b) showed little topological differences between 

the two surfaces. The surface profiles of nitric acid (c) and toluene (d) show similar height variations across the 

surface taking into account the kurtosis. No significant difference was found between the average surface RMS 

roughnesses. 

 

3.3.4 In vitro biological evaluation 
 

The biological compatibility of the varying N:C ratio rPPFs was examined with the AlamarBlue 

(AB), cell counting kit 8 (CCK-8), and cyQUANT NF cell assays. The cellular proliferation followed similar 

trends across the three assays with some deviation based on the targeted compound or detection 

pathway, as shown in Figure 3.5. Coating delamination was occasionally observed on the lower N% 

rPPF samples. 
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The AB absorbances and growth ratios are shown in Figure 3.5.a and Figure 3.5.b, respectively. 

The day 1 assay showed no significant difference between Ti and the rPPFs except for a lower 

absorbance on the 30%N surfaces. The day 3 absorbances again showed no statistically significant 

differences except for an increase on the 10%N rPPF. The day 3 growth ratios had statistically 

significant increases over Ti for the 10 - 30%N rPPFs. The day 7 absorbance results showed reductions 

in signal for the rPPF surfaces but no statistically significant differences in growth rate. Cell number 

determination by CCK-8 assay (Figure 3.5. c,d) showed similar levels of NADPH+ expression across all 

time points for all surfaces. No significant variation was found between the Ti and 0%N - 20%N rPPFs. 

The 30%N rPPFs produced a statistically significant reduction in absorbance signal relative to the bare 

Ti surfaces at the day 3 and day 7 time points. The cell growth rates also showed a lower ratio for the 

30%N rPPF coatings. The CyQUANT assays were used to determine the DNA quantity in each sample 

(Figure 3.5. e, f). The day 1 fluorescence results were equal within uncertainty across all surfaces. The 

day 3 results deviated from the previous assays and showed a reduction of DNA on the 0%N and 30%N 

surfaces relative to the Ti and 10 - 20%N rPPFs. No statistically significant differences in DNA quantity 

were observed by day 7 compared to the titanium surfaces. The MG63 growth rates of the surfaces 

were equivalent within uncertainty across all time points except for a significant increase on day 3 for 

the 10%N rPPF only. 

The coating stability is of primary importance for implantable devices, but the biological 

compatibility must also be examined as to prevent adverse immune responses. The incorporation of 

nitrogen has been shown to increase the biological acceptance through the presence of positively 

charged nitrogen-containing groups at the interface [237-243], and as such, the 20%N and 30%N were 

expected to be the most biologically beneficial. However, the proliferation assays showed that the 

30%N coating produced somewhat lower cell signals than the other surfaces. No significant 

differences in cell growth rates were observed between the 0 - 20%N rPPFs and the 30%N rPPFs. The 

lower cellular proliferation behaviour can be attributed to the lower initial cell attachment compared 

to the other surfaces observed in the day 1 measurements. Overall, by combining the SEM imaging of 
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coating robustness, which showed that only the coatings with over 20% nitrogen content had 

appropriate robustness, and the general biocompatibility observed across all rPPF coatings, the 

biologically favoured 20%N and the mechanically favoured 30%N rPPF coatings were selected for 

continued examination as potential orthopaedic coatings. 
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Figure 3.5. MG63 cell proliferation assay results over one week. AlamarBlue measurements of cell metabolism 

showing the absorbance (a) and proliferation ratio (b) over 7 days. Cell counting kit -8 measurements of the 

NADP/NADPH+ energy production indicating the relative live cell quantities as absorbance (c) and the growth 

rate (d). The DNA quantity was investigated with cyQUANT NF measuring the relative increases in cell mitosis 

shown as fluorescence data (e) and proliferation ratio (f). Mean values (n < 6) are shown. Uncertainties are 

determined by the standard deviations. Statistical significance (p < 0.05) against titanium is shown for day 1 (*), 

day 3 (#), and day 7 ($). No significant trends were found with the exception of a reduction in the cell quantity 

initially attached on the 30%N coating. 
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3.4 Conclusion 
 

A primary requirement for an orthopaedic coating is the ability to resist delamination during the 

surgical implantation process and the extended time in the body. In this chapter, a series of ratios for 

nitrogen: acetylene reagent gases were investigated to determine the precursor gas composition that 

produced robust and biologically compatible rPPF surfaces. The XPS results showed that increasing 

the N2:C2H2 gas ratio resulted in greater surface atomic concentrations of nitrogen. The SEM images 

demonstrated that the 20%N and 30%N rPPF coatings were more mechanically stable than the 0%N 

and 10%N. All rPPF surfaces demonstrated biocompatibility with the 30%N producing less initial cell 

proliferation compared to the 20%N, potentially due to a reduced cell attachment. Overall, the 

biologically favoured 20%N coating and mechanically favoured 30%N coating were selected for further 

examination. 
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Chapter 4: The effect of plasma polymer ageing on rPPF elemental 

composition and cellular activity 
 

 

In this chapter, the potential for radical-induced cytotoxicity originating from rPPF surfaces with high 

radical flux occurring soon after deposition was investigated. The surface properties of rPPFs were 

examined over the course of two weeks, and the changes were shown to be derived from the radical 

decay. rPPF surfaces with low and high radical fluxes showed no cytotoxicity to MG63 osteosarcoma 

cells or primary osteoblasts.  

Results from this chapter have been published in “Cellular responses to radical propagation from ion-

implanted plasma polymer surfaces” by Callum A.C. Stewart, Behnam Akhavan, Miguel Santos, 

JuiChien Hung, Clare L. Hawkins, Shisan Bao, Steven G. Wise, Marcela .M.M. Bilek, 2018, Applied 

Surface Science, https://doi.org/10.1016/j.apsusc.2018.06.111 [343].  

 

4.1 Introduction 
 

Biomolecule-functionalisation has the potential to vastly improve the biocompatibility and 

longevity of implanted medical devices, with significant improvements to patients’ quality of life [368, 

369]. Plasma polymers represent a promising method to bio-functionalise devices on the 

manufacturing scale [288].  Chemical-functionalised and radical-functionalised plasma polymer films, 

(cPPFs and rPPFs, respectively) have been proven to possess reproducible surface chemical 

composition regardless of the substrate chemistry, geometry, and size [286, 308, 353, 370-372] 

allowing for the biomolecule-functionalisation of any underlying surface.  

Both classes of PPFs are affected by a process known as ageing in which the surface chemistry 

changes over time [292, 300]. PPF ageing occurs due to the oxidation of carbon-centred radicals 

(referred to as autoxidation) [207, 292], chemical group oxidation [208, 254], and polymer chain 
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diffusion (hydrophobic recovery) [309, 373]. These ageing phenomena are explained in detail in 

Chapter 1.3.3.3. When relying on surface chemical groups for functionalisation, chemical instability 

from functional group oxidation [208, 212, 216, 240, 253, 254, 299, 300] and hydrophobic recovery 

[309, 373] may limit the applications in practice,  and can greatly impact the long-term functionality 

of cPPFs and cellular interactions [374]. Although strategies have been developed to mitigate 

hydrophobic recovery [375], cPPFs should be used immediately after deposition for best performance 

of biomolecule functionalisation.  

In the case of rPPFs, ageing does not directly affect the ability to immobilise biomolecules 

providing that sufficient reactive radicals are available in the coating structure [264, 355, 356, 376]. 

Biomolecule-functionalisation can be performed immediately after deposition or after various ageing 

periods (e.g. 15 days [58] or up to 4.5 months [283]) with only minimal changes in immobilisation time 

to account for variations in the flux of radicals diffusing to the surface. Hydrophobic recovery occurs 

over time, initially due to the conversion of radicals to polar groups upon reaction with atmospheric 

constituents at the surface. The polar groups possess lower free energy than the radicals they replace, 

and as such, the surface becomes more hydrophobic but stabilises in a mildly hydrophilic state [377]. 

In previous works, the rPPFs were aged to allow for the stabilisation of surface chemistry prior to 

biomolecule functionalisation and use in a biological context.  

The higher concentration of radicals at short ageing times, however, may have adverse biological 

consequences. Radical species are produced naturally as a consequence of cellular metabolism, and 

cells have antioxidative countermeasures to prevent oxidative damage [378, 379]. However, high 

concentrations of radicals are known to be cytotoxic. An imbalance favouring radical species 

production compared to their removal can induce oxidative stress within the cell, which can lead to 

DNA, protein, and lipid damage, dysregulation of signalling cascades, and cell death through apoptosis 

or necrosis [380, 381]. Radical-mediated cellular damage and dysfunction have been implicated in 

ageing and the pathology of numerous diseases, including osteoarthritis and osteoporosis [381, 382]. 
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Therefore, there are concerns about the potential radical-induced cytotoxicity of fresh rPPFs. The high 

flux of radicals emerging from fresh rPPFs may induce oxidative stress in the attached cells, resulting 

in cell death and/or detrimental biological activity. 

This chapter investigates the effects of radical flux and rPPF ageing on cells by comparing cellular 

responses to fresh and aged rPPFs. The surface chemistry, surface energy, and radical density of rPPFs 

were characterised at a series of time points from 15 min. to 2 weeks. Titanium was used as the 

substrate due to its extensive application in biomedical devices [34, 383]. Bone lineage cells, i.e. 

primary mouse osteoblasts and the MG63 bone osteosarcoma cell line, were chosen to reflect the 

prominence of Ti in orthopaedic devices [35, 383, 384]. The time points of 4 hours (fresh) and 11 days 

(aged) post-deposition were selected for cell studies as they represent the earliest possible implant 

time following surface treatment and the ageing conditions for rPPFs used without inducing 

cytotoxicity in prior experiments, respectively [58, 353, 356]. 

 

4.2 Methods 
 

4.2.1 Substrate preparation 
 

rPPF coatings were deposited onto Ti sheets (0.8 mm x 0.8 mm x 1 mm) and foils (70µm 

thickness) as described in Chapter 2. In short, the Ti substrates were cleaned with the nitric acid 

protocol before rPPF deposition. The surfaces were plasma cleaned with Ar for 10 min (Mass flow 

rate = 40 sccm, working pressure = 7 x 10-2 Torr, RF power = 75 W, substrate bias voltage = -500V, 

pulse frequency = 3 kHz, pulse width = 20 µs), followed by coating with 30%N rPPF. The rPPF was 

deposited for 6.5 min with mass flow rates of 2.5 sccm for acetylene, 12.5 sccm for nitrogen, and 15 

sccm for argon. The RF power was 50 W and the working pressure was 0.11 Torr. The rPPF coated 

substrates were stored in air as required. 
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4.2.2 X-ray photoelectron spectroscopy (XPS) 
 

A more comprehensive explanation of the XPS procedure is presented in Chapter 2. Briefly, the 

survey spectra were collected in an energy range of 0−1000 eV at a pass energy of 30 eV and a 

resolution of 0.5 eV. High-resolution (0.1 eV) C 1s spectra were collected at a pass energy of 20 eV. 

Pressures during measurement were below 5.0 × 10−8 mbar. The resulting spectra from the rPPF-

coated samples (0.8 cm x 1 cm) were then analysed with the CasaXPS software (version 2.3.18PR1.0). 

 

4.2.3 Fourier transform infrared spectroscopy (FTIR) 
 

The surface chemistry of the uncoated and rPPF coated Ti sheets was performed via FTIR as 

described in Chapter 2. Briefly, the FTIR spectra of the Ti and rPPF samples were recorded using a 

DigiLabFTS7000 FTIR spectrometer fitted with a multibounce ATR accessory and a trapezium 

germanium crystal at an incidence angle of 45˚. The titanium and rPPF- coated foils (1.5 cm x 2 cm) 

were measured at a resolution of 4 cm-1 within the mid-IR range of 4000 – 850 cm-1 and averaged over 

500 scans. The contributions from Ti, CO2, H2O, and the air-crystal interface spectra were subtracted 

using ‘Digilab Resolutions Pro 4.0’ software. 

 

4.2.4 Contact angle measurements and surface energy calculations 
 

The surface energy was measured as described in chapter 2. Briefly, the contact angles of water 

(polar) and diiodomethane (non-polar) droplets were measured (drop volume ≈ 5 µL). The contact 

angles were measured from captured images (n = 5), and the total, dispersive, and polar surface 

energies were calculated by the Owens–Wendt–Rabel–Kaelble model.  

4.2.5 Electron paramagnetic resonance (EPR) 
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The measurement of the concentration of unpaired electrons in the rPPF coating is described in 

detail in Chapter 2. Briefly, the rPPF was deposited on 25 μm polystyrene (PS) (7 cm x 8 cm). The 

spectra for each time point (n = 6) were examined alongside a weak pitch (WP) control of known 

radical density (∼1 × 1013 spins/cm) for calibration. The radical density of the rPPF samples was 

calculated in spins/cm3. 

 

4.2.6 Cell maintenance and examination 
 

The responses of MG63 cells and primary osteoblasts to extended contact with the bare Ti and 

coated substrates were examined. The cells were collected and maintained using the procedures 

outlined in Chapter 2. The rPPF substrates were prepared and sterilised before cells were seeded onto 

the surface, as per the protocols described there. Cell attachment fluorescent microscopy assays for 

both cell lineages on bare Ti foils, 4 hours (fresh) and 11 days (aged) rPPF surfaces were performed as 

described in Chapter 2. MG63 cell proliferation was examined with AlamarBlue assays at day 1, 3, and 

7 for comparison against previous publications, while, the proliferation of primary osteoblasts was 

examined with the MTS assay because of the slow doubling time of the cells and the consequent need 

to detect subtle proliferation differences. 

 

 

4.3 Results 
 

4.3.1 Surface analyses  
 

The surface chemistry as a function of ageing time was studied using XPS and FTIR spectroscopy. 

The composition of the rPPF, measured by XPS survey elemental scans as a function of ageing time is 

shown in Figure 4.1. The carbon content remained relatively unchanged, fluctuating around 

approximately 70%. Comparing the chemical composition of the fresh sample with that of a sample 
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aged for 14 days highlights the increase in oxygen concentration and the decrease in nitrogen. The 

nitrogen atomic concentration decreased from 24.69% for the as-deposited coating (15 min. after 

deposition) to 19.01% after 14 days of ageing; while the oxygen content increased from 5.96% to 

10.23%. These changes in surface chemistry derive from the well-documented autoxidation processes 

initiated from carbon-centred radicals [207, 292]. It has been shown in previous publications for ion-

implanted polymer substrates [385, 386] as well as rPPF surfaces [353], that nitrogen groups, such as 

the nitrile ions [283, 353], can react with air to form volatiles, e.g. nitroxide gasses (NOx), that diffuse 

out of the polymer [385]. The thermally activated production of nitrogen-containing volatiles during 

ageing could account for the loss of nitrogen over time.  

 

Figure 4.1. Elemental composition of the radical-functionalised PPFs as a function of time determined by XPS. 

The spectral analysis indicates a stable carbon atomic concentration of approximately 70% within error across 

all time points, while the oxygen atomic concentration increased considerably over the 14 days period (6% to 

10%). The corresponding decrease in nitrogen atomic concentration from 25% to 19% suggests the release of 

nitrogen from the rPPF during the oxidative process. The measurement uncertainty shown is derived from 

instrument sensitivity together with the accuracy of integration range selection in the CasaXPS software. 

 

Comparative analysis of curve-fitted high-resolution C1s spectra of the coatings with different 

ageing times, shown in Figure 4.2, further elucidates the variations of oxygen- and nitrogen- 
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containing carbon species. The C-C/C-H, C-N/C-O, N-C=O/C=O, and COOH chemical bond peaks are 

fitted at energies 284.6 ± 0.5, 286.5 ± 0.5, 287.4 ± 0.5 eV, and 289 ± 0.5 eV, respectively [286, 309, 

353]. The proportion of the total carbon counts attributed to each fitted component as a function of 

ageing time is summarised in Table 4.1. The increase in the N-C=O/C=O and COOH components as a 

function of ageing time is in agreement with the increase of atomic oxygen concentration measured 

in the survey spectra (Figure 4.2). The notable increase between the as-deposited and day 14 

conditions reiterates the significant changes to the surface chemistry through autoxidation. 

These element composition changes resemble those observed for cPPFs. The changes observed 

in XPS oxygen after 24 hours is consistent with those observed for ethylene/ ammonia and allylamine 

cPPFs [240, 387], which showed an oxygen increase of approximately 11% along with a nitrogen 

reduction of approximately 5.5% [240]. Amine-containing cPPFs lost up to 70% of the functional NH2 

groups over two weeks, although the total nitrogen content did not vary significantly due to the 

formation of amides and other oxidative products [234, 240]. The loss of nitrogen and autoxidation in 

the rPPF-coatings follow similar overall trends [388].    
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Figure 4.2. C1s XPS spectra recorded after various ageing times: 15 min, 4 h, 24 h, 48 h, 7 days, 11 days, and 14 

days time points. The red, blue, magenta and green lines represent the fitted component peaks: C-C/C-H, C-N/C-

O, N-C=O/C=O, and COOH bond energy spectra. C-C/C-H at 284.6 eV, C-N/C-O at 286.5 eV, N-C=O/C=O at 287.4, 

and COOH at 289.0 [286, 309, 353]. The percentage contributions of the total C 1s peak for each component at 

each time point is shown in Table 4.1. The percentage contribution of the N-C=O/C=O component (magenta) 

increases substantially over time from approximately 1.2% of the total area after 15 min of ageing to almost 10 

% by 14 days. The COOH component (olive/green) drastically increases from 1.1% of the total area after 15 min 

ageing to 2.4% after 14 days. 
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Table 4.1. The percentage concentration of the four fitted peaks to the C1s high-resolution peak. 

Percentage 

contribution 

to C1s peak 

15 min 4 Hr 24 Hr 48 Hr 7 days  11 days  14 days  

       

C-C/C-H 76.3 ± 0.9  66.1 ± 3.3  71.8 ± 0.2 69.7 ± 3.5 66.0 ± 0.7 66.2 ± 0.6 64.4 ± 0.3 

C-N/C-O 21.0 ± 1.6 29.7 ± 1.5  24.9 ± 1.2 25.7 ± 1.5 28.4 ± 1.0 27.3 ± 0.5 24.8 ± 0.5 

N-C=O/C=O 

COOH 

1.2 ± 0.3 

1.1 ± 0.4 

2.7 ± 0.3 

1.5 ± 0.2  

1.6 ± 1.2 

1.5 ± 0.3 

2.1 ± 1.8 

2.4 ± 0.6 

3.5 ± 0.9 

2.1 ± 0.5 

4.3 ± 1.1 

2.2 ± 0.6 

8.4 ± 1.4 

2.4 ± 0.7 

 

 

 

Figure 4.3 presents the FTIR spectra of rPPFs at various times after deposition, recorded over the 

spectral range of 3500 - 1000 cm-1. The broad peak observed in the region 1690 – 1450 cm-1 originates 

from the rPPF [58] and consists of C=O, C=C, C=N, N-H, and potentially also aromatic chemical groups. 

The peaks observed in the 1450 – 1250 cm-1 region derive from C-C, N-O, C-H, NH3
+, and NO3

- group 

vibrations, while C-O and C-N peaks are located in the 1200 – 1000 cm-1 range [58, 283, 389, 390]. The 

fluctuation in baseline signal from 3500 – 2500 cm-1 appears due to the subtraction of water and other 

background components, exacerbated by the differences in signal strengths. A relative increase in the 

intensity of oxygen species in the rPPF is observed when comparing the spectra of the as-deposited 

coatings (15 min.) to those of samples aged for various times (Figure 4.3). The separation of the 

nitrogen and carbon species peaks, observed between 1690 – 1450 cm-1 in the as-deposited spectrum, 

is lost as the rPPF ages. The emergence of peaks in the 1450 – 1250 cm-1 and 1200 – 1000 cm-1 regions 

compared to the as-deposited coating, corresponding to C-O, C-H, and C-C groups, further shows the 

formation of oxygen-containing groups as a function of ageing time.  The increase in oxygen group 

vibrations in the FTIR spectra agrees with the changes in surface chemistry indicated by the XPS data 

(Figure 4.1, 4.2 and Table 4.1). These FTIR spectral changes as a function of time are similar to those 

observed in the ageing of amine- and carboxyl- functionalised cPPFs deposited from ethylene, 

excluding the signature of the specific chemical functional groups [388, 391, 392].  
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Figure 4.3. ATR-FTIR spectra showing rPPFs surface chemistry after ageing times of 15 minutes, 4 hours, 11 days, 

and 14 days. Increasing quantities of oxygen-containing species are observed in the aged coatings, as 

demonstrated by an initial increase in double bonded oxygen groups at 4 hours (1690 – 1450 cm-1) and the 

subsequent increase in singly bonded groups at 11 days (1450 – 1250 cm-1). The labels showing the chemical 

groups are noted at their reported wavenumbers. Three dashed boxes have been used to separate the 1690 – 

1450 cm-1, 1450 – 1250 cm-1, and 1200 – 1000 cm-1 regions. 

 

The varying surface energy (SE) of the rPPFs was monitored via contact angle measurements. The 

water contact angle (WCA) and corresponding SE values are plotted as a function of ageing time in 

Figure 4.5. The WCA increased sharply from the as-deposited 41.5˚ ± 1.0˚ to 56.0˚ ± 1.0˚ at 48 hours, 

after which the WCA plateaued with fluctuations within uncertainty (blue curve in Figure 4.4). The 

diiodomethane contact angle increased continually from the as-deposited 27.0˚ ± 1.5˚ to 40.5˚ ± 0.5˚ 

at day 14. The contact angles for both water and diiodomethane were used to calculate the surface 

energy of the rPPFs. The total SE, shown in red in Figure 4.4, decreased overall as a function of time 

from an as-deposited 66.8 ± 0.5 mN/m2 to 54.5 ± 0.3 mN/m2 at 14 days. The reduction in surface 

energy and resulting decrease in wettability is a well-studied process called hydrophobic recovery, 

and it is also observed for cPPFs [295, 373, 387, 393-395]. The surface energy reduction observed in 

cPPFs is attributed to the oxidation of the chemical-functional groups [208, 240]. Over long time scales 

(t > week), the contact angles of cPPFs and rPPFs stabilise at similar values, however, there are 
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differences in the short time scale (t < week) water contact angle behaviour. In the case of cPPFs, the 

chemical degradation processes of the functional groups may lead to temporary reductions in WCA, 

such as amine functionalities converting to amides and imines [396]. In contrast, rPPFs typically have 

lower initial WCAs compared to cPPFs due to the high fluxes of radicals diffusing to the surface. The 

increases over time in the rPPF WCAs correspond to the energy differences between the strongly 

polar, reactive radicals diffusing to the rPPF surface from within the coating post-deposition and the 

more stable polar groups formed through their autoxidation [270, 354]. Wettability, as measured by 

WCA, has major effects on protein adsorption and subsequent biological response to a surface.  

Dowling et al. [374] demonstrated that MG63 cell line attachment was optimised for WCA in the range 

57˚- 64˚ on both rough and smooth polymeric surfaces. Therefore, the formation of polar groups from 

autoxidation and the transition from a highly hydrophilic to a mildly hydrophilic state suggests that 

the aged rPPF would present a more beneficial surface for cells.  

 

 

Figure 4.4. Surface energy and water contact angle for rPPF deposited on Ti foils as a function of time after 

deposition. The graph demonstrates a decrease in total surface energy corresponding to an increase in water 

contact angle, caused by plasma polymer autoxidation, radical recombination, and polymer chain migration. The 

green lines indicate the 4-hours and 11 days time points selected for cell assays in this study. Error bars 

correspond to standard deviations. 
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The quantification of unpaired electrons associated with radicals within the rPPF was performed 

via EPR. Figure 4.5.a shows the unprocessed spectra of rPPFs after 4 hours (fresh) and 11 days (aged) 

compared to the polystyrene control. The peaks are symmetrical and centred around 3505 G 

consistent with the radicals being predominantly carbon-centred (G-Factor = 2.002). The broadness of 

the peaks could show that there are a variety of carbon-centred radical species within the rPPF [58], 

and may also reflect that the radicals appear at the rPPF surface, which would also cause anisotropic 

spectra. A comparison of the two rPPF spectra shows a 27.1 ± 3.6 % reduction in signal intensity. The 

radical densities for the rPPF conditions calculated, following the double integration of the EPR spectra 

and comparison to the weak pitch (WP) standard, are plotted over 14 days (Figure 4.5.b). The resulting 

curve follows the double exponential decay previously observed for other plasma immersion ion 

implanted polymeric substrates [269, 385, 397]. The rPPFs demonstrate a rapid initial loss of radicals 

between the first reading at approximately 30 minutes and 24 hours, in-keeping with the trend of 

surface oxidation, after which the radical density loss tails-off. 
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Figure 4.5. a) The EPR spectrum of fresh and aged rPPF deposited on polystyrene. Double integration of the 

resulting spectra after background subtraction and scaling to the control, revealed a 27.1 ± 3.6 % loss in unpaired 

radical electrons between the 4 hours and 11 days time points. b) The radical density decay curve fitted to the 

double exponential trend, Y=A0 + A1*exp(-x/t1) + A2*exp(-x/t2) [269].The total radical loss from the initial 

measurement to the 14 days of examination demonstrates an approximately 60% reduction in radical density. 

 

The radical decay kinetics demonstrate a double exponential decay curve; Y=A0 + A1*exp(-x/t1) + 

A2*exp(-x/t2). The coefficients derived from the radical decay curve are A0 = 6.297 ± 0.256 x1017, A1 = 

3.236 ± 0.202 x1017, t1 = 6974 ± 1675, A2 = 9.130 ± 0.699 x1017, and t2= 152.2 ± 18.1; where A1 and A2 

are the multiplying constants, t1 and t2 are the respective time constants. These coefficients align with 

other plasma immersion ion implanted polymeric substrates treated for 240 seconds [269]. Overlaying 
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the data for the fresh and aged conditions, the fresh rPPFs fall into the radical ageing region governed 

by rapid surface oxidation, and hence, possess a higher flux of reactive radicals than the aged rPPF 

which is governed by slower kinetics (lower radical flux). The rPPFs showed a radical density of 1-2 

orders of magnitude greater than conventional cPPFs deposited in the absence of enhanced ion-

bombardment [58, 353, 398]. The significantly increased radical density enables rPPFs to covalently 

immobilise biomolecules even after extended ageing times [283], meaning that the radicals described 

by the slower decay kinetics provided sufficient radical flux to the surface for biomolecule 

functionalisation. The high flux of rapidly decaying autoxidative radicals at early time points 

highlighted the potential for radical-derived cytotoxicity and warranting investigation. 

 

4.3.2 Cellular probing of rPPF surfaces 
 

The response of primary osteoblasts (OBs) (Figure 4.6) and MG63 cells (Figure 4.7) to the two 

rPPF samples aged for 4 hours (fresh) and 11 days (aged), as marked in Figures 4.2-5, were examined. 

These assays were performed to determine if the observed differences in surface chemistry, radical 

density, and surface energy would affect the immediate cell attachment and longer-term 

proliferation. Primary osteoblasts revealed no statistical difference in attached cell quantity between 

the two rPPF surfaces, with the average cell density of 89 ± 26 cells per field of view (x5 magnification) 

for the fresh and 100 ± 17 cells per field of view for aged surfaces, as shown in Figure 4.6.a. The cell 

attachment observed on the aged rPPF surface was significantly greater that of the bare titanium (75 

± 20 cells per field of view). Figure 4.6.b shows that the spreading of the OBs on fresh and aged rPPF 

surfaces, 1209 ± 58 µm2 and 1099 ± 199 µm2 respectively, were significantly larger than that on 

titanium alone, 774 ± 58 µm2. No significant difference was observed between the two rPPF surfaces. 

Representative fluorescence microscopy images of the cell attachment and spreading are presented 

in Figures 4.6.c-e. The elevated cell attachment and spreading observed on fresh and aged rPPFs 
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compared to bare Ti can be attributed to the presence of organic carbon and nitrogen groups, which 

have previously been shown to enhance cellular attachment and proliferation [243]. 

The MTS assay results, as shown in Figure 4.6.f, demonstrated no significant difference between 

the surfaces after 3 days of proliferation. The detected absorption signals for the Ti, fresh, and aged 

rPPF surfaces were 0.79 ± 0.11, 0.70 ± 0.11, and 0.66 ± 0.13, respectively. No significant difference 

was observed between the proliferation results of the two rPPF surfaces with absorbances for the 

fresh and aged surfaces being 1.05 ± 0.05 and 0.99 ± 0.04 for 7 days, 1.16 ± 0.03 and 1.19 ± 0.06 for 

11 days, and 1.31 ± 0.12 and 1.22 ± 0.10 for 14 days, respectively. This behaviour is consistent with 

the attachment and spreading data presented in Figure 4.6.a-b. The Ti absorbances were 1.19 ± 0.09, 

1.32 ± 0.07, and 1.44 ± 0.14 for the 7 days, 11 days, and 14 days time points, respectively. Overall, no 

significant difference was observed between the attachment and spreading or proliferation behaviour 

of the fresh and aged rPPF surfaces. These results indicate that the increased radical flux at the surface 

does not significantly alter cell metabolic activity compared to non-treated surfaces.  
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Figure 4.6. Osteoblast cell attachment (a) and spreading (b) on Ti, fresh rPPF, and aged rPPF. No significant 

difference (n.s.) was observed between the results for the fresh and aged rPPF surfaces. Fluorescence 

microscopy images of OBs stained with actinRED555 (red) and DAPI (blue) at 10x magnifications for Ti (c), fresh 

(d), and aged (e) rPPFs. No significant differences were observed between the two rPPF surfaces for cellular 

proliferation (f).   
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MG63 osteosarcoma cells were used to further probe the attachment and proliferation trends 

observed for the primary osteoblasts. The cell attachment and spreading results are shown in Figure 

4.7. a,b, with representative images for Ti, fresh rPPF, and aged rPPF in Figure 4.7.c-e. The attached 

cell numbers for fresh and aged rPPFs were 652 ± 108 and 742 ± 119 cells per field of view (x5 

magnification), respectively. These values are significantly higher than that of the Ti control (456 ± 116 

cells per field of view). The MG63 cells were significantly more spread on the rPPFs with average cell 

sizes of 696 ± 18 µm 2 and 619 ± 62 µm 2 for the fresh and aged surfaces respectively, compared to the 

Ti control, 489 ± 45 µm2. Again, the cells showed no preference for either the fresh or aged surface 

suggesting that the difference in radical flux between the surfaces does not affect the cellular 

responses.  

The AlamarBlue (AB) proliferation assays (Figure 4.7.f) produced absorbances of 67 ± 10, 98 ± 33, 

and 284 ± 28 for Ti on day 1, 3, and 7, respectively. Fresh rPPFs produced values of 66 ± 9, 95 ± 25, 

and 314 ± 43, while aged rPPFs had absorbances of 80 ± 7, 111 ± 31, and 358 ± 17. No statistical 

difference was observed between the fresh and aged rPPFs as predicted by the attachment and 

spreading. The cells reached confluence by day 7 and commenced mineralisation on all surfaces. 

Significance was seen between the day 7 Ti and aged sheets. This reflects the previously seen increase 

in cell attachment and spreading, given that the proliferation rates were equal across all samples. 

Overall, no significant differences were observed between the rPPF surfaces. Both surfaces increased 

cell affinity, and no radical-induced cytotoxicity was observed. The MG63 assays confirm the results 

observed in the primary osteoblasts; that rPPFs do not demonstrate radical-derived cytotoxicity. 
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Figure 4.7. MG63 Cell attachment and proliferation on untreated Ti, and the fresh and aged rPPF surfaces. The 

average cell number (a) and spreading (b) was increased significantly on the rPPFs compared to the Ti foils, 

where P < 0.05. However, no significance was observed between the rPPF surfaces. The elevated cell number 

can be visually observed by fluorescence microscopy. The images show cells on Ti (c), fresh (d), and aged (e) 

rPPFs. The proliferation as determined by AlamarBlue metabolism assays show a statistically significant increase 

between the aged rPPF compared to Ti sheets, but no significance between the two rPPF conditions (f). 
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4.4 Discussion 
 

Biomolecule-functionalisation utilising radical-functionalised plasma polymers represents a 

promising method of providing biological cues on the surfaces of biomedical devices which is readily 

translatable into manufacturing [288]. The functionalisability of rPPFs is derived from radicals in the 

form of unpaired electrons, whose density is highest immediately after polymerisation. The non-

specific covalent binding of macromolecules upon contact and reaction with emerging radicals allows 

for simple, single-step surface functionalisation with antimicrobial and osteogenic biomolecules [58, 

376]. However, a high flux of radicals in biological systems is known to generate oxidative stress in 

cells, and hence, there is a potential that fresh rPPF surfaces could elicit radical-induced cytotoxicity. 

An investigation of fresh and aged rPPFs with primary osteoblasts and MG63 osteosarcoma cells 

revealed that the higher flux of radicals in the fresh rPPFs produces no detrimental effects on either 

bone lineage cell type. The biocompatibility of the rPPFs was shown to be similar to that of titanium, 

with significant increases in initial cell attachment and spreading observed on both rPPF surfaces 

compared to titanium alone.  

The improvements in attachment and spreading observed on the rPPFs is believed to stem from 

the favourable oxidation and wettability of the coatings, and the lack of cytotoxicity is attributed to 

the inability of radicals to propagate through the biomolecule backbones [399]. When the rPPFs are 

placed in in vitro cell culture medium, the surface becomes coated with biomolecules from the 

medium that are covalently immobilised upon contact via reactions with radicals that have 

propagated to the surface from within the rPPF [264, 269, 386]. The unpaired electrons preferentially 

react with side chain groups [400, 401]. Reactions with the protein backbone may occur at the α-

carbon sites [400], but do not propagate through the peptide bonds along the protein backbone [399]. 

Cells then interact with the surface according to the biomolecules presented and their conformations 

[48, 50]. If the surface is favourable, the cells will establish an extracellular matrix (ECM) for 

proliferation and other biological functions. Should any free products of radical reactions at the 
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protein-surface interface penetrate through the cell wall into the cytoplasm, there are antioxidative 

enzymes, such as superoxide dismutase (SOD) and catalase. These enzymes regulate and remove 

reactive oxygen species and oxidative stress produced through metabolic functions [402]. The results 

demonstrate that the radical fluxes to the surface of freshly prepared rPPFs have minimal negative 

effects on the biological affinity and proliferation of bone lineage cells, suggesting that rPPFs, and 

other radical functionalised PP products [390], are appropriate for biological applications at any ageing 

time. Their ease of functionalisation makes them attractive platforms for the creation of 

simultaneously antibacterial and osteogenic implant surfaces.  

 

4.5 Conclusion 
 

Biomolecule functionalisation of medical devices, especially load bearing orthopaedics, 

represents the potential for vastly improving the quality of life for patients and the longevity of 

implanted biomedical devices through optimal tissue integration. The functionalisation potential of 

radical-functionalised plasma polymer films (rPPFs) was shown to be unaffected by ageing, but 

concerns existed regarding the potential for radical-induced cytotoxicity. The rPPFs were examined 

over 2 weeks of ageing. The potential for radical-induced cytotoxicity due to the higher radical flux of 

the fresh samples was examined with primary osteoblasts and the MG63 cell line. Enhanced cell 

attachment and spreading, as well as proliferation equivalent to titanium, was observed for both cell 

lineages on all rPPFs, regardless of ageing time. The biocompatibility is attributed to the mild 

hydrophilicity of the oxidised surfaces and the retention of native protein conformations. Radical-

induced damage to cells is limited by the inability of radicals to propagate along the peptide backbones 

of immobilised biomolecules. In conclusion, rPPFs demonstrate cellular affinity even when radical 

fluxes through the surface are at their highest. Their inherent ease of biomolecule functionalisation 

suggests a translatable approach for surface engineering of implantable orthopaedic devices. 
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Chapter 5: Quantification of protein-functionalised rPPF surfaces and 

the development of multi-protein interfaces.  
 

This chapter reports the development of radical-functionalised plasma polymer film (rPPF) based 

multifunctional and multi-protein interfaces. Enzyme-linked immunosorbent assays (ELISAs), derived 

from specific peptide sequence detection, were optimised for the proteins of interest and used to 

determine the optimum incubation concentrations for surface functionalisation. The monolayer 

protein solution concentrations for fibronectin, osteocalcin, and the fusion protein containing 

functional fragments of both fibronectin and osteocalcin were determined to be 15 µg/mL. The fraction 

of covalently bonded surface protein was found to be between 60% and 80% of the monolayer ELISA 

signal, depending on the protein. A series of rPPF surfaces co-immobilised with ratios of fibronectin: 

osteocalcin were developed and compared with the fusion protein functionalised surfaces.  

The results from this chapter are reported in “Multifunctional protein-immobilized plasma polymer 

coatings for orthopedic applications.” by Callum A.C. Stewart, Behnam Akhavan, Juichien Hung, Shisan 

Bao, Jun-Hyeog Jang, Steven G Wise, and Marcela M.M. Bilek (Accepted; ACS Biomaterials Science and 

Engineering). 

 

5.1 Introduction 
 

Protein-functionalisation of surfaces stemmed from peptide functionalisation, with only a few 

publications appearing through the early 1990’s [103, 167, 168, 403]. Since then, protein-

functionalisation has expanded into many interdisciplinary fields involving biological and medical 

applications, including titanium-based orthopaedics. Surface immobilisation of proteins and peptides 

through adsorption, chemical covalent linking, or physical covalent methods, allows for the 

bestowment of specific biological functions to titanium orthopaedic surfaces to overcome their 

biologically inert nature. A comprehensive evaluation of these surface immobilisation approaches can 
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be found in Chapter 1.  Protein-functionalisation can reduce the potential for post-operative 

complications that require revision surgeries to correct [1], such as antibiotic-resistant biofilm 

formation [7, 404-406] or fibrotic encapsulation of the implant from negative foreign body reactions 

(FBR) [3-5]. 

The single protein approach to biomolecule functionalisation has shown some success [57, 407, 

408], but a deeper understanding of the osseointegration process reveals that a multifunctional 

protein-coated surface is required. The synergistic combination of biological functionalities would 

allow for increased cellular attachment in conjunction with more rapid bone formation, leading to 

greater osseointegration.  A few avenues have been explored for the multifunctionalisation of 

biointerfaces. One approach investigated the immobilisation of an incomplete monolayer of protein 

onto a biologically-active linker molecule, thereby expressing properties from both the linker molecule 

and the protein [145-147]. Another avenue to multi-functionalisation is the immobilisation of cocktail 

solutions containing multiple proteins onto a single surface through physical adsorption or chemical 

methodologies [316, 409-412]. However, immobilisation from protein cocktails faces the same hurdles 

as immobilisation from single protein solutions, namely displacement by the Vroman effect for 

physically adsorbed proteins or the need to control complicated wet chemical reactions to achieve 

covalent attachment. The ratio of the proteins on the functionalised surface is difficult to control and 

does not reflect that in the solution due to differences in the relative protein surface affinities and 

protein-protein complexing. An alternative approach is to use a series of multiple protein solution 

exposures to achieve a multi-protein functionalised surface, but unfortunately, this approach is not 

feasible for most immobilisation methodologies, due to protein displacement when the layers are 

physically adsorbed, or the potential for reagent incompatibilities and reversible or side reactions in 

chemical linker methodologies. However, the on-contact covalent immobilisation capability of radical-

functionalised plasma polymer films (rPPFs) may enable controllable multi-functionalisation using 

multiple single protein exposures to form successive covalently immobilised partial monolayers.  
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An alternative direction to multi-functionalisation involves the immobilisation of synthetic 

multifunctional biomolecules, known as fusion proteins [316, 411]. Fusion proteins are synthesised 

through recombinant processes to incorporate multiple peptide sequences responsible for various 

cellular interactions into a single protein [413], allowing for surface functionalisation via simpler single 

molecule immobilisation methodologies. A few fusion biomolecules have been utilised for 

orthopaedic applications such as a branched antibacterial/attachment protein [414], a composite 

attachment protein [124, 415], and an attachment/signalling protein (fibronectin/BMP-2 fusion) 

[416].  

In this study, the non-specific bonding capacity of the radical-functionalised plasma polymer films 

(rPPFs) were optimised for the immobilisation of the extracellular matrix (ECM) protein fibronectin 

(FN) (440 kDa), the bone-signalling osteocalcin (OCN) protein (5.9 kDa), and a fusion protein containing 

the FN9,10 domains and the OCN22-49 sequence (FN-OCN/ Fusion protein) (40 kDa) produced by our 

collaborators at Inha University, Korea [287, 316]. For comparison, a co-immobilised FN and OCN 

multi-protein interface was developed through the sequential exposure of the rPPF surface to multiple 

protein solutions. These optimised surfaces were examined for their in vitro osteogenic potency in 

Chapter 6. 

   

5.2  Method 
 

5.2.1 Substrate preparation and analysis 
 

rPPFs were deposited on nitric acid cleaned Ti foils following the procedure and deposition 

conditions for 20%N rPPFs outlined in Chapters 2 and 3. Briefly, the foils were nitric acid cleaned to 

remove surface contaminants. The surface was argon plasma cleaned, and the 20%N rPPF was 

deposited. The rPPF- coated foils were allowed to age for 5 - 7 days before use.  
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Surface characterisation of the 20%N coatings was performed via X-ray photoelectron 

spectroscopy (XPS), contact angle measurements, and electron paramagnetic resonance (EPR) 

spectroscopy following the protocols previously described in Chapter 2. Briefly, the surface 

composition of the rPPF was examined using XPS survey spectrum collected in the energy range of 0 

– 1000 eV with a resolution of 0.5 eV. High-resolution (0.1 eV) C 1s spectra were collected at a pass 

energy of 20 eV. The contact angles of water (polar) and diiodomethane (non-polar) droplets (≈ 50 µl) 

were measured (n = 5). The angles were used to calculate the total, dispersive, and polar surface 

energies via the Owens–Wendt–Rabel–Kaelble (OWRK) model. The radical density of the rPPFs was 

measured via EPR on polystyrene films (7 cm × 7 cm). The EPR spectrometer was calibrated using a 

weak pitch sample (∼1 × 1013 spins/cm) before measuring the rPPF. Ten scans were averaged per 

sample and the radical density calculated per cm3. The surface characterisation of 20%N rPPFs has 

also been previously reported by Martin et al [356]. 

  

5.2.2 Fusion protein synthesis and purification 
 

The FN-OCN fusion protein was produced by Jang et al. as previously described [287, 316] and 

outlined in Chapter 2. Briefly, protein synthesis was initiated via polymerase chain reaction (PCR) 

amplification of the OCN-FN genetic sequence. The amplified PCR products were digested, ligated, 

and transfected into E.coli for overnight expression of the protein. The bacteria were harvested and 

the supernatant collected and purified. The final protein was measured to be approximately 40 kDa 

via western plotting [316].  

 

5.2.3 Proteins, antibodies, and reagents  
 

Antibodies were acquired for the detection of FN, OCN, and FN-OCN proteins. Fibronectin (F2006, 

Sigma Aldrich) was detected with a rabbit-anti-FN primary antibody (F3648, Sigma Aldrich). 
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Osteocalcin (O5761, Sigma Aldrich) was detected using three primary antibodies corresponding to the 

N-terminal, C-terminal, and an internal sequence of the protein. The N-terminal and internal sequence 

were rabbit-derived antibodies (ab14173 and ab93876, respectively), while the C-terminal antibody 

was derived from goat (ab175453). The FN-OCN fusion protein was detected using the OCN internal 

sequence and a rabbit-derived 6x histidine (6His) tag primary antibody (ab125262). The rabbit primary 

antibodies were coupled to a goat-anti-rabbit secondary antibody (ab6721) and the goat-derived 

primary was coupled with a donkey-anti-goat secondary (ab205723) Both secondary antibodies were 

conjugated with horseradish peroxidase (HRP) for colourimetric detection of 3, 3’, 5, 5’, -

tetramethylbenzidine (TMB), purchased as 1-Step™ Ultra TMB - ELISA Substrate (cat. 34022, 

Thermofisher Scientific). 

 

5.2.4 ELISA calibration and protein quantification 
 

5.2.4.1 Calibration 

 

The principles of ELISA detection and the general procedure of the biochemical protein 

quantification technique are explained in Chapter 2. Calibration of each ELISA for the optimal specific 

signal was performed in a 96 well plate. 150 μL of 10 µg/mL protein solution was aliquoted into the 

wells according to the grid setup presented in Figures 5.2.a,b, 5.3.a,b , and 5.4.a,b. The well plate was 

incubated in the protein solution overnight at 4˚C. The protein solution was removed and the wells 

were gently washed with PBS. A BSA solution was added into the protein-incubated and non-

incubated wells for 1 hr at room temperature. Following the removal of BSA, primary Ig dilutions of 

1:1000, 1:2000, 1:5000, and 1:10,000 were dispensed into their corresponding column positions and 

incubated. The primary Ig was replaced with secondary Ig dilutions of 1:10,000, 1:20,000, 1:50,000, 

and 1:100,000 in their corresponding rows. The wells were then incubated with TMB for 30 min and 

the HRP-substrate reaction stopped with 0.2 M H2SO4. The absorbance of the 96 well plate was 

measured at 450 nm. A negative control consisting of TMB and 0.2 M H2SO4 only was measured to 
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account for TMB oxidation in the absence of HRP. The protein-specific signal was calculated by 

background subtraction of the BSA blocked wells from their protein coated counterparts. The signal 

to noise ratio (protein: blocked) was calculated for each condition. 

5.2.4.2 Protein detection and quantification via ELISA 

 

All protein dilutions were done under sterile conditions so as not to contaminate the protein 

stocks for cell culturing. The desired protein was equilibrated to 37˚C and transferred into a sterilised 

Biological safety cabinet (BSC). A series of protein solutions between 1 – 30 μg/mL were diluted from 

the stock solutions according to the dilution equation (Eqn 2.1): 

 

C1V1 = C2V2       Equation 2.1 

 

The 20%N rPPF foils were cut into 0.8 cm x 0.6 cm rectangles and the top right-hand corner was 

removed to indicate coating-side-up orientation. The foils were transferred into a 48 well plate, and 

75 μL of protein solution was deposited on the substrates via droplet deposition. This method was 

chosen to conserve the expensive and limited supplies of osteocalcin and fusion proteins. The foils 

were incubated with the protein solution overnight at 4˚C. The excess protein solution was removed 

the next day and the substrates were gently washed with PBS. The ELISA procedure was carried out 

with the optimised conditions. The absorbance values for each protein solution concentration were 

plotted to produce a titration curve and indicate the solution concentration of protein at which a full 

monolayer was attached to the rPPF.   

To determine the covalently immobilised proportion of protein, bare Ti and rPPF samples were 

incubated overnight in the protein solution concentration that yielded a monolayer. The samples were 

then transferred into an Eppendorf tube containing 1 mL of 5% sodium dodecyl sulphate (SDS) solution 

and incubated at 90˚C for 15 min [58, 354]. SDS is a surfactant that disrupts physical interactions 
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leaving only covalently bonded protein. Pre- and post- SDS washing samples were then examined 

together in ELISAs. The ratio of signals between the background subtracted values indicated the 

relative amount of covalently immobilised protein. 

 

5.3 Results 

5.3.1 Material characterisation 
 

The 20%N rPPF coatings were used for the protein immobilisation and primary cell studies 

(reported in Chapter 6). The rPPF surface chemistry was analysed using XPS, and a typical survey 

spectrum is shown in Figure 5.1.a. The atomic composition was 71 ± 4 % carbon, 20 ± 1 % nitrogen, 

and 9 ± 1 % oxygen. The large concentration of carbon is typical of amorphous carbon deposited from 

carbon-based monomers, such as acetylene, that have been highly cross-linked through ion 

bombardment. The nitrogen was incorporated into the gas mixture to promote sp2 bonding and 

relieve internal stresses in the deposited film [361, 362]. The presence of 9 ± 1 % of oxygen suggests 

that the rPPF has undergone autoxidation reactions between carbon-centred radicals and 

atmospheric oxygen [207, 292, 363]. The C1s high-resolution peak was curve-fitted with binding 

energies corresponding to C−C/C−H (284.6 ± 0.5 eV), C−O/C−N (286.5 ± 0.5 eV), C=O/N−C=O (287.5 ± 

0.5 eV), and COOH (289 ± 0.5 eV) [309, 353, 364]. The peak fitting further illustrates autoxidation with 

the presence of single and double bonded carbon-oxygen groups (blue and magenta curves in Figure 

5.1.b, respectively) and the minor formation of carboxylic acid functionalities (cyan peak at 289 ± 0.5 

eV). The organic polar groups formed as autoxidative products are known to be beneficial for cellular 

attachment and proliferation [243]. Unlike for chemical-functionalised PPFs, the formation of 

autoxidative products does not diminish the protein immobilisation potential of the rPPFs [58, 264, 

283, 357].  
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The water contact angle (WCA) of the rPPF surface, measured one week after deposition, was 

approximately 59.4˚ (Figure 5.1.c) and that diiodomethane contact angle was 31.4˚. The total surface 

energy was 56.2 mJ.m-2 with dispersive and polar components of 43.6 and 12.6 mJ.m-2, respectively 

[356]. The hydrophilic nature of the rPPF is derived from the free energy of radicals and polar oxidative 

products formed by exposure to atmospheric oxygen [58, 343, 357]. The WCA shows the surface has 

a mildly hydrophilic range (WCA < 90) [65, 66] and, therefore, allows proteins to retain a native 

conformation and biological activity [68]. The 59.4˚ WCA places the rPPF within the optimal wettability 

range for bone lineage cell attachment [374].  

The unpaired electrons representing radicals contained in the rPPF were detected using EPR 

(Figure 5.1.d).  The spectrum contains a symmetrical peak centred at a g-value of 2.003 indicating the 

presence of surface-embedded radicals. The broadness of the peak indicates a variety of carbon-

centred radicals and/or signal anisotropy due to the radicals appearing at the rPPF surface [58, 279, 

343].  The rPPFs have been shown to possess radical densities 1-2 orders of magnitude greater than 

conventional PPFs deposited in the absence of enhanced ion-bombardment [58, 353, 398]. 

  



Page 149 of 214 
 

 

Figure 5.1. Characterisation of the rPPF surface. (a) The elemental composition was 71 ± 4 % carbon, 20 ± 1 % 

nitrogen, and 9 ± 1 % oxygen as calculated from the XPS survey spectrum. (b) The high resolution C1s spectrum 

was curve-fitted with components at binding energies (284.6 ± 0.5 eV (C−C/C−H), 286.5 ± 0.5 eV (C−O/C−N), 

287.5 ± 0.5 eV (C=O/N−C=O), and 289 ± 0.5 eV (COOH). (c) A representative image of the water drop placed on 

the rPPF-coated Ti showing a water contact angle (WCA) of 59.4o. d) A representative EPR spectrum of the rPPF 

deposited on polystyrene. Signal broadening originates from a variety of carbon-centred radicals and/or 

anisotropic signal due to the presences of surface radicals. 

 

5.3.2 Optimisation and characterisation of fibronectin- functionalised rPPF surfaces 
 

The absorbance signal from the FN-ELISA calibration assay increased proportionally to the 

concentration of the primary and secondary antibodies (Figure 5.2.a). The maximum protein-specific 

signal was observed at the concentration of primary 1:2000/ secondary 1:10,000, followed by primary 

1:5000/ secondary 1: 10,000, and primary 1:5000/ secondary 1:20,000. An examination of the signal 

to noise ratios (S:N) showed that the signal sensitivity was maximised using the primary 1:5000/ 

secondary 1:20,000 conditions (S:N = 3.3)(Figure 5.2.b). These dilutions were selected as they 
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provided a strong protein-specific signal and the highest signal sensitivity, according to the signal-to-

noise ratio. The titration curve showed a monolayer formation at approximately 15 µg/mL solution 

concentration (3.4 x 10-8 M), as indicated by the signal plateau in Figure 5.2.c.  

SDS washing of surface with immobilised FN demonstrated significant differences in the covalent 

binding capacities. The rPPF surfaces produced a significant increase in initial absorbance compared 

to the bare titanium, most likely due to changes in adsorption-desorption equilibrium dynamics. The 

rPPF surfaces demonstrated a protein retention ratio of 79 ± 7% after SDS washing. The post-SDS 

washed rPPF surfaces demonstrated an absorbance equivalent to the pre-SDS washing Ti surfaces. A 

significant reduction of surface protein concentration was observed on the bare Ti with only  15 ± 6% 

of the adsorbed protein retention after SDS washing.  

 

Figure 5.2. Fibronectin ELISA surface quantification. a) The calibration of the FN-ELISA conditions showed a 

general signal increase proportional to the concentration of the primary and secondary antibodies. b) The signal 

to noise ratio was calculated for each condition and the optimum is highlighted in purple (S/N = 3.3). c) The 

titration curve of FN suggests that a monolayer of protein is immobilised at a solution concentration of 
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approximately 15 µg/mL. d) SDS washing of FN immobilised on Ti and rPPF show that 79 ± 7% of the adsorbed 

protein on rPPFs is retained after SDS washing while only 15 ± 6% on Ti. Significant differences (p < 0.01) 

compared to non-SDS washed Ti (*) and non-SDS rPPF (#) are indicated. 

 

Many FN-functionalisation concentrations have been reported in the literature for a variety of 

materials and processes. A FN solution concentration of 5 - 10 µg/mL was reported for cyanate-

modified PEEK [87],  20 µg/mL for ion implanted polymers, 50 µg/mL for the ligation of FN to chemical 

brushes via EDC/NHS chemistry [215], while 100 µg/mL was reported for the tresylation process [108, 

109] and silanisation [417]. Concentrations ranging from 500 – 1000 µg/mL have also been reported 

for more complex protein immobilisation processes [185, 214]. The monolayer concentration of 15 

µg/mL required for the functionalisation of rPPF surfaces is placed at the lower end of these reported 

concentrations. The post-SDS FN retention also aligns with the previously reported approximately 80% 

FN retention on cyanate-modified PEEK [87]. Overall, the FN-functionalised rPPFs demonstrate 

significant improvements in protein immobilisation and retention quantities compared to Ti without 

the need for extensive chemical modification.  

 

5.3.3 Optimisation and characterisation of osteocalcin- functionalised rPPF surfaces 
 

Characterisation of the osteocalcin (OCN)-functionalised surfaces via ELISA experienced 

complications due to primary antibody selection. The OCN protein is predominately detected in 

solution via an orientation-independent sandwich ELISA [418, 419] and no information regarding 

attachment to non-bone tissue surfaces was available. Three antibodies aligning with the amino acid 

(AA) sequences for the N-terminal (AA 1-21), mid-sequence (AA 22-35), and C-terminal (AA 36-49) 

were sourced.  
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The N-terminal ELISA calibration assay showed elevated baseline absorbance signals of 0.8-0.9. A 

protein-specific signal of 0.12 was found at primary 1:1000/ secondary 1:10,000 concentrations. 

However, no other combination produced any signal above the baseline. Further testing with blocker 

proteins showed that the absorbances on OCN-functionalised rPPF surfaces were lower than the 

baseline. The consistently elevated baseline signal indicated that the N-terminal primary Ig could be 

interacting non-specifically with the BSA blocking protein. As such, the N-terminal antibody was 

replaced with the mid-sequence and C-terminal primary Igs. 

The mid-sequence OCN-ELISA calibration array was performed. A maximum protein-specific 

absorbance signal of 0.15 was found at the primary 1:2000/ secondary 1:10,000 dilution, as shown in 

Figure 5.3.a. The maximum signal was the most sensitive with a signal to noise ratio (S:N) of 2.7 (Figure 

5.3.b). The titration curve demonstrated a protein-specific signal maximum at 20 μg/mL, but the 30 

μg/mL signal decreased to be level with the 15 μg/mL concentration. This signal decrease, in 

combination with the uncertainty, indicated that the 20 μg/mL might be artificially increased, and the 

15 μg/mL (2.5 x 10-6 M) concentration was taken to be the monolayer concentration (Figure 5.3.c). No 

previous surface immobilisation work could be found to compare with the experimental values. The 

ELISA examination of immobilised protein concentration after SDS washing showed that the rPPFs 

immobilised and retained a significantly greater quantity of protein compared to the bare Ti (Figure 

5.3.d). The rPPF surfaces retained 62 ± 8% of the physically adsorbed OCN. By comparison, the OCN 

was almost completely removed on the bare Ti surfaces. 
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Figure 5.3. OCN mid-sequence ELISA quantification. (a) The calibration of the mid sequence OCN-ELISA antibody 

dilution conditions showed a general signal increase proportional to the secondary Ig concentration. The optimal 

signal is highlighted in purple. (b) The signal to noise ratio was calculated for each condition and the optimum is 

highlighted in purple (S:N = 2.7). (c) The titration curve of OCN produced a monolayer at a protein solution 

concentration of approximately 15 µg/mL. (d) SDS treatment of monolayer OCN surfaces showed SDS resistant 

fractions of 62 ± 8% on rPPF surfaces and near complete removal on Ti. Statistical significance (p < 0.05) is shown 

for absorbances compared to non-SDS washed Ti (*) and rPPF (#). 

 

The C-terminal ELISA system was calibrated, demonstrating a maximum signal at the primary 

1:1000 /secondary 1:10,000 dilution conditions, with an absorbance signal of 0.76 and a signal to noise 

ratio of S:N ≈7.3. The optimised ELISA dilution conditions were used to obtain an OCN titration curve. 

The protein titration curve produced signal strengths that were independent of the protein solution 

concentration over the range of 1 - 30 µg/mL. The absorbance plateau of Abs = 0.09 - 0.1 was thought 

to be due to over-saturation of the secondary-HRP antibody and a rapid reaction of the TMB substrate 

solution. The two surrounding conditions of primary 1:1000/ secondary 1:20,000, and primary 1:2000/ 
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secondary 1:10,000 were used to examine rPPF surfaces with 0 µg/mL, 1 µg/mL, and 15 µg/mL 

immobilised OCN to determine if a difference in protein signal could be produced. However, no 

difference was found between the protein conditions with either ELISA condition. The signal 

saturation across all protein concentrations for the three sets of antibody concentrations suggests 

that the OCN surface is fully saturated by the c-terminal ELISA antibodies. The primary Igs for the 

ELISAs are generally ≈ 10-12 kDa while the secondary Igs conjugated with HRP are ≈ 37-42 kDa (as 

stated on the product information). The difference in the produced absorbance signal between 

individual ELISA systems can be attributed to the catalysed TMB reduction kinetics, given the protein 

functionalised surfaces and the Ig molecular weights are consistent. 

The inability to accurately detect the N-terminal of OCN above the large background was 

unexpected. OCN attaches to the positively charged Ca+ minerals in bone through the negatively 

charged Gla side chains in the 1-22 AA sequence at physiological pH [420]. The net negative charge at 

the 20%N rPPF surface at physiological pH [356] should orient the 1-22 AA sequence away from the 

surface. However, given the protein detection by the C-terminal and mid-sequence antibodies, the 

assays suggest that the pyramidal conformation of OCN was oriented predominately with the N-

terminal contacting the rPPF surface and C-terminal exposed the aqueous environment. 

 

5.3.4 Optimisation and characterisation of fusion protein - functionalised rPPF 

surfaces 

 

The FN-OCN fusion protein was initially examined with a 6x histidine (6His) primary Ig to detect 

the 6His tag inserted at the N-terminal. No significant trend was observed in the ELISA calibration 

performed on the 96 well plates (Figure 5.4.a). The maximum signal was produced at the primary 

1:5,000/ secondary 1:20,000 dilution conditions and possessed a S:N ≈ 2 (Figure 5.4.b). The titration 

curve was performed using the optimised 6His ELISA conditions, but no significant signal beyond the 
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baseline fluctuations could be observed, with the largest signal of Abs = 0.005 ± 0.004 being detected 

on the 10 µg/mL concentration (Figure 5.4.c). Further repetitions confirmed the lack of protein-

specific signal. The inability to detect protein signal could come from the orientation of the protein on 

the tissue culture plastic wells compared to the rPPF surfaces. The 6xhistidine sequence is positively 

charged at physiological pH due to the imidazole side chains on the individual amino acids and could 

influence the fusion protein orientation when in close proximity to the negatively charged rPPF 

surface. However, there are also other factors that influence surface protein orientation as discussed 

in Chapter 1.2. Overall, the 6xhis primary antibody ELISA did not produce sufficient absorbance signals 

for quantification.  

The fusion protein-coated surfaces were examined with the optimised FN and mid-sequence OCN 

ELISAs to determine which of the component protein ELISAs produced the optimal protein-specific 

signal. The OCN and FN ELISAs demonstrated protein-specific signals of 0.091 ± 0.003 and 0.058 ± 

0.002, and S:N ratios 0f 2.02 ± 0.11 and 1.34 ± 0.04, respectively (Figure 5.4.d). The mid-sequence 

OCN ELISA was selected for the titration curve (Figure 5.4.e) and the SDS washing experiments (Figure 

5.4.f). The titration curve showed that the protein concentration signal plateaued between 10 - 15 

µg/mL and plateaued within variation for the greater protein solution concentrations. The optimal 

protein concentration for the FN-OCN proteins was previously reported as 20 µg/mL, so 15 µg/mL (3.8 

x 10-7 M) concentration was selected as a suitable solution concentration to form an adsorbed 

monolayer. The results after SDS washing showed 5 ± 7% protein retention on the Ti, and 73 ± 13% on 

the rPPF surfaces. 
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Figure 5.4. ELISA optimisation and quantification of FN-OCN fusion protein-coated surfaces. The calibration of 

the 6His-ELISA conditions showed an inconsistent relationship between the primary and secondary antibodies 

(a). The signal to noise ratio (b) produced a S:N ≈ 2 for the optimised condition highlighted. (c) The 6xhistidine 

titration curve produced no significant signal after background subtraction. d) The fusion protein surface showed 

considerable signal on both the optimised FN- and OCN- ELISAs. The OCN-mid sequence ELISA was selected due 

to the greater S:N. e) The fusion titration via OCN-ELISA demonstrated a signal saturation at 10 – 15 µg/mL. f) 

SDS washing of monolayers on Ti and rPPF showed fractions of  5 ± 7% and 73 ± 13% were retained, respectively. 

Statistical significance (p < 0.05) is shown for absorbance signals compared to non-SDS washed Ti (*) and rPPF 

(#). 
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5.3.5 Synthesis, optimisation, and characterisation of co-immobilised fibronectin: 

osteocalcin rPPF surfaces 

 

Surfaces comprising of co-immobilised FN and OCN were developed for comparison with the FN-

OCN fusion protein. The potential for cross-reaction between the ELISAs and their non-target proteins 

needed to be investigated before the quantification of the co-immobilised FN:OCN ratios could 

proceed. FN and OCN surfaces were exposed to the opposite ELISA system to gauge for non-specific 

signal that might influence the co-immobilisation results. The assays showed marginal increases in 

signal compared to the corresponding BSA controls. The FN surface examined with the OCN-ELISA 

produced an absorbance of 0.212 ± 0.025, a significant increase (p < 0.05) over the BSA control value 

of 0.172 ± 0.012. The OCN surface examined with FN-ELISA demonstrated a slight increase (0.085 ± 

0.006) over the BSA control signal 0.068 ± 0.008 (p > 0.05). The relative increases in signal on the OCN 

or FN compared to their controls could be due to the difference in non-specific binding affinities of 

the primary Igs. A comparison of primary antibody targeted genetic sequences to the full FN and OCN 

proteins using the web-based Pairwise sequence alignment “Needle” software (EMBOSS) showed no 

correlation between the OCN and FN-primary Ig. However, a strong partial match was found between 

the FN protein and the OCN-primary Ig, which could account for the significant increase on the FN-

functionalised surface. Overall, the cross-reactivity ELISAs revealed that the slightly elevated signals 

on the OCN surfaces compared to their respective controls is due to non-specific binding, while the 

cross-reactivity of the FN surface can be taken into account for the co-immobilisation results. 

 

A sequential 2-step exposure was used to co-immobilised FN and OCN in various ratios. The first 

incubation was carried out with OCN and the FN was then adsorbed onto the OCN fractionally coated 

surface. The solution concentrations used were determined according to the desired monolayer 

fraction as per their individual titration curves. A series of ratios were examined pre- and post- SDS 
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washing with the FN and OCN ELISAs, as shown in Figure 5.5.a. The 100% protein surfaces show similar 

post-SDS proportional retentions as in Figures 5.2.d and 5.3.d, indicative of covalent immobilisation. 

The same conditions resulted in near complete removal of the corresponding protein layers on Ti 

surfaces (Figure 5.5.b). When co-immobilised, the signals of OCN and FN decrease compared to their 

100% controls, most noticeably for OCN prior to SDS washing. The transition from a 100% to 90% OCN 

surface with FN produced a signal reduction resembling SDS washing due to competitive adsorption-

desorption of OCN. The OCN immobilisation follows the expected trends, while the FN shows minimal 

variation across the given ratios. The co-immobilisation sequential 2-step approach accounts for the 

reduction in ELISA signal from competitive adsorption-desorption and the titration trend for the OCN, 

but not the FN behaviour.  

 

Figure 5.5. ELISA quantification of the co-immobilised rPPF surfaces. a) The rPPF surfaces, both pre- and post-

SDS washing, show a non-linear correlation between the OCN and FN concentrations and signal strength. The 

FN signal maintained a near-monolayer signal, while a titration trend was observed in the OCN. b) Ti surface 

showed the drastic removal of the adsorbed proteins under the same SDS washing conditions. c) SDS washed 
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co-immobilised surfaces were compared to their FN concentration equivalent, demonstrating a non-titration 

like signal generation.  

 

The unusual FN-ELISA signal was initially thought to result from adsorbed FN occupying the 

surface. However, the behaviour remained unchanged post-SDS treatment. As such, the observed 

plateau in the FN-ELISA may originate from FN reorientation. For comparison, the immobilisation 

ratios and their monolayer concentration counterparts were investigated side-by-side. The 100%FN, 

50%FN, and 25%FN monolayers appears to produce a signal reduction resembling the titration curve 

(Figure 5.2.c), however, the difference in values is not significant. The 1:1 and 1:3 FN:OCN ratios 

produced equivalent signal (Figure 5.5.c) and showed no significant changes from the 100% 

monolayer signal. The preliminary test suggests that in the co-immobilisation process, changes the FN 

protein conformation or orientation due to altered surface conditions by the presence of the 

incomplete OCN layers. Overall, the 1:3 ratio of FN:OCN was selected for cellular examination as it 

provided optimal signals from both ELISAs, while expressing a substantial difference in surface protein 

composition.   

 

5.4 Discussion 
 

In this study, protein-specific ELISAs were used to optimise the protein immobilisation conditions 

for fibronectin (FN), osteocalcin (OCN), and the custom fusion protein that combined functional 

domains from both of these proteins. The quantities of adsorbed and immobilised proteins on the 

20%N rPPF surfaces was increased over the bare Ti in all cases. The information derived from the 

titration curves and the relative size difference of FN and OCN was used to develop a multi-protein 

interface.  

The quantity of proteins on the Ti and rPPF surfaces, via single or sequential exposures, is 

determined by a competitive adsorption-desorption equilibrium [71, 113, 421]. Proteins will adsorb 
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to the exposed surface based on hydrophobic and electrostatic interactions and become displaced by 

incoming proteins through transitional complexes with the rearrangement driven by relative solution 

partial concentrations and surface affinity [111-113]. The effective monolayer for any given surface 

occurs when the adsorption-desorption dynamic has reached equilibrium. The protein adsorption-

desorption equilibrium on rPPFs is influenced by the probability of covalent bond formation between 

a surface migrating radical and the adsorbed proteins, thus preventing desorption. The competitive 

exchange of proteins will continue but with a reducing effective surface area, as depicted in Figure 

5.6. This mechanism accounts for the observed increase in protein specific signal from the rPPFs 

compared to the Ti, and the significantly different protein retention values [280]. 

 

 

Figure 5.6. A visual representation of protein equilibrium on Ti and rPPF surfaces. The proteins initially adsorb 

onto the Ti and rPPF surfaces. The adsorbed surface proteins will undergo competitive adsorption-desorption 

dynamics as the system reaches equilibrium and the on-rates equal off-rates for each type of protein. The 

adsorbed proteins on the rPPF surfaces form covalent bonds with the surface migrating radicals preventing 

desorption and leading to greater surface protein retention.  



Page 161 of 214 
 

 

The differences in mobilities and binding affinities between proteins makes it difficult to translate 

the single protein titration results into a mixed solution yielding the desired surface coverage ratios 

post immobilisation [113]. Thus, the co-immobilisation of fibronectin and osteocalcin was performed 

by sequential protein solution exposures to allow for greater control of the competitive adsorption–

desorption dynamics and surface composition. In principle, the covalently bound proportions of OCN 

would reduce the effective area, limiting the available sites for FN immobilisation at the surface. The 

rPPF surfaces must have sufficient protein exposure time to ensure the optimal covalent attachment. 

The osteocalcin, immobilised in various ratios, reproduced a concentration behaviour consistent with 

the titration curve, as expected for the first incubated protein solution. During the subsequent 

incubation, the FN bonded to the available surface and displaced the non-covalently bonded OCN 

[111-113].  This explains why the ELISA signal was equivalent to that obtained post-SDS washing in the 

initial OCN retention experiments (Figure 5.5.a). The observed fibronectin signal plateau across all 

protein concentration ratios, both pre- and post SDS washing, contradicts the expected titration curve 

behaviour (Figure 5.2.c, 5.5.a). The uniform signal strength suggests a change in FN adsorption 

dynamics that could invoke a protein reorientation or refolding in response to the partially OCN-

functionalized rPPF surfaces. A reorientation of the bi-polypeptide FN structure (2x 220kDa 

polypeptide units [422]) could potentially double the availability of the primary antibody targeted 

genetic sequence presented in solution. The ELISA signal would then increase by a fraction equivalent 

to the proportion of reoriented FN present. Such unexpected increases in target sequence 

presentation reduce the reliability of ELISA detection for the quantification of immobilised protein 

ratios. 

The examination of protein ratios is a time and resource-intensive process. The quantification of 

multi-protein surfaces via ELISA requires the examination of each protein ratio with all the required 

ELISA systems to determine the concentrations of the individual proteins. Thus, the samples required 
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increase exponentially as more different proteins are included onto the surface. In addition to the 

signal discrepancies from protein reorientation or refolding, the ELISA technique can also introduce 

effective area discrepancies related to the size differences between the proteins and the antibodies 

(Igs). The ELISA signal produced is considered representative of the protein quantity if the target 

protein is larger than the primary (≈ 10 – 12 kDa) and secondary (≈ 37 – 42 kDa) antibodies, e.g., 

fibronectin. However, smaller proteins and peptides can experience an ELISA detection limit based on 

steric hindrance due to the large footprint of the antibodies, which understates the surface protein 

quantity. In contrast, the multi-functionalisation of an implant surface with fusion proteins reduces 

the number of samples required for the characterisation of an immobilisation protocol and increases 

the ELISA accuracy.  For example, the combination of the FN9,10 and OCN 22-49 sequences in a single 

protein allows for protein quantification via a single ELISA using an antibody targeting either of the 

sequences. The fusion protein in this study is reported to be approximately 40 kDa [287, 316] which 

reduces the potential for misrepresentation via ELISA antibody steric hindrance. Overall, the utilisation 

of the fusion protein allows for simpler and more accurate ELISA quantification and greatly simplify 

surface immobilisation protocols. 

ELISAs are one of the most widely used methods of protein quantification being used to detect a 

vast number of proteins both surface bound and in free solution [331]. However, other physical 

techniques can be used for determining the concentrations of immobilised proteins through the 

detection of distinctive heavier elements, such as Br, F, or Cl. Alternatively, the inclusion of fluorescent 

or radionucleotide markers allow for the direct examination of protein quantity and adsorption-

deposition kinetics. Typically, these approaches require the chemical modification of the proteins 

before surface immobilisation. These modifications may alter the protein conformations and, 

therefore, the adsorption-desorption behaviours. The ELISA methodology provides a reproducible and 

reliable approach for protein quantification of both single and co-immobilised protein surfaces. 

 



Page 163 of 214 
 

5.5 Conclusions 
 

The optimisation of fibronectin, osteocalcin, and FN-OCN fusion protein-functionalised rPPF 

surfaces was performed with protein-specific, enzyme-linked immunosorbent assays (ELISAs). Protein 

concentrations required to form a saturated monolayer during the 4˚C overnight incubation was 

determined to be approximately 15 µg/mL. Covalent binding ratios after this length of incubation were 

between 60-80% depending on the protein. A 2-step sequential exposure approach was used for the 

co-immobilisation of OCN and FN to rPPF surfaces to better control the competitive adsorption-

desorption dynamics compared to multiple protein solutions. The subsequently incubated FN 

demonstrated different binding behaviours from the expected single protein behaviour established 

on rPPF surfaces due to the FN interactions with the partially OCN-functionalised surface. Overall, it 

was demonstrated that i) rPPF coated surfaces present a simple and reproducible platform for 

producing single and multifunctional biointerfaces and ii) the optimisation of multi-protein 

biointerfaces is substantially more complex relative that required for multifunctional fusion protein 

biointerfaces. 
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Chapter 6: In vitro investigation of protein-functionalised rPPF 

surfaces to determine osteogenic potential 
 

This chapter reports the osteogenic potency of the protein-functionalised surfaces, as characterised in 

chapter 5, with primary osteoblasts (OBs) and mesenchymal stem cells (MSC). The OB attachment, 

proliferation, and mineralisation were investigated. The fibronectin-osteocalcin fusion protein 

functionalised surfaces demonstrating high levels of cellular attachment and increased mineralisation 

compared to those functionalised with the component proteins. The MSC differentiation was shown to 

be on par with the osteocalcin functionalised signalling surfaces.  

The results from this chapter are reported in “Multifunctional protein-immobilized plasma polymer 

coatings for orthopedic applications.” by Callum A.C. Stewart, Behnam Akhavan, Juichien Hung, Shisan 

Bao, Jun-Hyeog Jang, Steven G Wise, and Marcela M.M. Bilek (Accepted; ACS Biomaterials Science and 

Engineering). 

 

6.1 Introduction 
 

Protein and peptide surface functionalisation provides a versatile approach to improve the 

osseointegration of orthopaedics. The goal of protein functionalisation is to increase the beneficial 

interactions between the implant surface and the biological environment, thereby, leading to more 

optimised osseointegration, as outlined in chapter 1. An increased degree of cellular recruitment and 

bone formation on implant surfaces can reduce the potential for adverse non-integration conditions, 

such as biofilm formation [6, 7, 423] and fibrotic encapsulation [3-5], which require revision surgery 

to correct [2, 3]. Biomolecule-functionalisation may also mitigate the long-term effects of bone 

resorption caused by the lack of mechanotransductive forces (Wolff’s Law) [29-32]. Thus, modifying 

orthopaedic devices to promote osseointegration with the body has the potential to increase patient 

quality of life and implant longevity. 
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The plethora of proteins and peptides investigated to improve osseointegration can be broadly 

classified into three main categories: i) anti-microbial, ii) adhesive extracellular matrix (ECM), and iii) 

bone signalling proteins. Anti-microbial functionalised surfaces focus on the prevention of bacterial 

and fungal infections at the implant site [249, 424]. The biomolecules investigated include bacitracin 

[156, 425], caspofungin [349, 357, 426, 427], and the linker molecule chitosan [136, 145-147, 428-

430], along with hundreds of antimicrobial peptide sequences [431, 432]. The approaches to anti-

microbial surfaces have been reviewed elsewhere [433, 434]. ECM proteins are involved in the 

recruitment and establishment of osteoblasts and stem cells at the surface of the implant. Fibronectin 

and collagen, for example, contain the canonical RGD cell binding motif that interacts with a range of 

cell-surface integrins, including α5β1, α2β1, and αvβ3, to adhere the cells to the protein-

functionalised surface [411]. Bone formation at the ECM-functionalised surface occurs through 

natural mineralisation processes and is typically increased due to the greater cell coverage rather than 

enhanced mineralisation activity [435, 436]. The signalling proteins, for example BMP-2 [409], and 

other signalling molecules, such as Simvastatin [95, 437, 438], increase the rate of bone formation by 

accelerating the differentiation and mineralisation of the adherent cells through the upregulation of 

osteogenic metabolic products, e.g. osteocalcin (OCN/BGlaP), osteopontin (OPN), and alkaline 

phosphatase (ALP) [287, 439, 440]. Osteogenic proteins that promote cell attachment and bone 

formation resemble the natural physiological environment more closely and stimulate native tissue to 

win the ‘race for the surface’ [441, 442], outcompeting bacteria. Osteogenic protein-functionalisation, 

therefore, addresses both biofilm and foreign body reactions as well as providing functional 

integration of the implant.  

The single protein approach to biomolecule functionalisation has shown some success, but a 

deeper understanding of the osseointegration process reveals that a multifunctional protein-coated 

surface is required. The synergistic combination of biological functionalities would allow for increased 

cellular attachment in conjunction with more rapid bone formation, leading to greater 

osseointegration. In this chapter, the osteogenic potency of the multifunctional protein surfaces 
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developed in chapter 5 were comparatively investigated against the single component proteins: FN 

and OCN. The osteoblast (OB) cell affinity for the surfaces were examined through short-term 

attachment and spreading, the longer-term biocompatibility through proliferation, and the osteogenic 

potential through the OB calcium deposition. The protein-functionalised surfaces were examined for 

their differentiation potential with mesenchymal stem cells (MSCs). 

 

6.2 Methods 
 

6.2.1 Substrate preparation 
 

Ti and the biologically favourable 20%N rPPF coated foils were prepared as previously described 

in Chapter 2. In short, the Ti foils were cut to size and cleaned with nitric acid before the deposition of 

the 20%N rPPF. The surfaces were left for 5-7 days before use to ensure the surface chemical and 

physical properties had stabilised (see Chapter 4). An examination of their surface chemical 

composition, wettability, and radical density is outlined in Chapter 5. 

 

6.2.2 Primary cell harvesting and culturing 
 

Primary osteoblasts (OBs) and mesenchymal stem cells (MSCs) were utilised in this study. The 

experiments were conducted in accordance with the Australian Code of Practice for the Care and Use 

of Animals for Scientific Purposes. All personnel involved in the animal procedures have completed an 

approved animal care and ethics course. Primary OBs were harvested from mouse long bones and the 

cultured as described in Chapter 2 [333, 334]. Briefly, mouse long bones were collected, cleaned, and 

cut into 1-2mm2 pieces before being placed in non-differentiating cell media to allow for OB 

outgrowth. The cells were expanded into working cultures and monitored for cell health. 

MSC harvesting and culturing were performed as described in the standard protocol [341] and 

Chapter 2.2.7. Long bones were collected from 7-week-old mice and washed with 70% EtOH. The ends 
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of the bone were removed as for the primary osteoblast extraction. The bone marrow was flushed out 

with DMEM solution and collected. The marrow solution was resuspended and filtered through a 70 

μm cell sieve before being transferred to a well plate for culturing. The cells were cultured in complete 

DMEM without ascorbic acid as not to stimulate osteoblast differentiation and the media changed 

every 3 days. The cells were expanded to working stocks and closely monitored for differentiation or 

ingrowth of other cell types. 

In vitro cell assays play a necessary screening role in the overall biomedical evaluation process 

[443]. Primary cells were chosen to investigate the biological efficacy of the protein-functionalised 

surfaces over their cell line equivalents, like the MC3T3 transformed rat pre-osteoblast cell line [108, 

134, 139, 444-449], as they are more sensitive to chemical cues. Overall, primary cells should be more 

representative of the in vivo environment [332]. 

 

6.2.3 Cell attachment and spreading 
 

The cell attachment and spreading assay was performed on the protein functionalised surfaces 

as described in Chapter 2. Briefly, the 20%N rPPF-coated Ti foils were cut to 0.8 cm x 1 cm to fit the 8-

well chamber slides and protein-functionalised as described in Chapter 2 and 5. The OBs were seeded 

at 10,000 cells per well. The OB seeding media was removed after 1 hr and the surfaces fixed with 

70%EtOH. After washing the samples in a 0.1% Triton solution, the cell cytoskeleton and nucleus were 

stained with ActinRED555™ and DAPI, respectively, and mounted between two glass slides. The cell 

number and spreading on the different surfaces were examined under 5x (≈ 4 mm2) and 10x (≈ 1 mm2) 

magnification (n > 9) on a fluorescence microscope at the corresponding wavelengths. The images 

were analysed with ImageJ. 
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6.2.4 Proliferation assay 
 

The samples for the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium (MTS) proliferation assay were prepared according to the protocol in Chapter 2 and 4. 

The OBs were seeded at 4,000 cells per well and allowed to grow for 14 days. The proliferation was 

measured at day 3, day 6, day 11, and day 14 post seeding, with the media being replaced every 3 

days. At the stated examination time points, the media was removed, and the samples were incubated 

in 40 mM MTS in DMEM solution for 2 hr under dark conditions. 150 µL aliquots were taken after the 

incubation time and the absorbance measured at 490 nm. 

 

6.2.5 Alizarin red mineralisation assays 
 

The mineralisation capacity of the different protein conditions was examined with the AlizarinRed 

stain (ARS) as described in Chapter 2. The Ti, rPPF, and protein-functionalised surfaces were prepared 

as previously described in Chapters 2 and 5, and primary osteoblasts were seeded at 10,000 cells per 

well. The cells were maintained for 1 month washed in PBS, and stained with ARS for 2 hr. The excess 

was removed, and the samples washed gently before being transferred into individual Eppendorf 

tubes. 400 μL of 10% (v/v) acetic acid was added before vortexing and heating to 85˚C for 10 min.  The 

samples were then centrifuged at 16000 g for 15 min, and 50 μL of ammonia hydroxide added to each 

sample. 200 μL aliquots were transferred to a 96 well plate, and the absorbance read at 405 nm. 

 

6.2.6 Mesenchymal stem cell differentiation 
 

ALP production in MSCs was measured via fluorescent microscopy as outlined in Chapter 2. MSCs 

were seeded at 8000 cells/well on the protein-functionalised rPPF surfaces in an 8-well chamber slide. 

The media was changed every 3 days to ensure sufficient nutrients. After 10 and 20 days, the cells 
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were fixed to the foils with EtOH and washed in 0.1% Triton solution. The surfaces were stained with 

Vector Red Alkaline Phosphatase dye (Vector) and DAPI fluorescent mounting media (Agilent). The 

surfaces were then examined with a Zeiss Axio Imager.Z2 fluorescence microscope at 365/560 nm for 

the ALP dye and 358⁄461 nm for the DAPI. The images were analysed with the ‘ImageJ’ software. The 

degree of differentiation was determined by dividing the total area of the Vector Red (µm2) by the 

number of cells (blue nuclei).    

 

6.3 Results 
 

6.3.1 Primary osteoblast attachment and spreading 
 

Osteoblast attachment and spreading were analysed via fluorescence microscopy. The average 

cell number, shown in Figure 6.1.a, revealed that the FN-OCN fusion protein-coated surfaces had the 

highest cell average of 174 ± 35 cells/field of view, followed by the FN and FN:OCN coated surfaces, 

157 ± 35 and 149 ± 38, respectively. All three demonstrate cell attachments significantly greater than 

the 73 ± 25 cells/field of view observed for uncoated titanium surfaces. The OCN and rPPF surfaces 

had cell attachments of 78 ± 30 and 97 ± 25, respectively, showing no significant increase over Ti. The 

average cell size of the OBs (Figure 6.1.b) on the FN, FN:OCN, and fusion protein-coated surfaces were 

2664 ± 421, 2569 ± 529, and 1999 ± 278 µm2, respectively, showing a significant increase in spreading 

over cells on Ti alone (912 ± 203 µm2). The rPPF surfaces also induced a significant increase in cell 

spreading (2213 ± 331 µm2), while OCN (1214 ± 345 µm2) produced a slight, but not significant, 

increase in size compared to Ti. The cell population and spreading for each surface can be observed in 

the corresponding representative fluorescence image panels in Figure 6.1.c. 
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Figure 6.1. Average osteoblast cell quantity (a) and cell size (b) after 1-hour incubation as determined by 

fluorescence cell staining with DAPI/ActinRED. Uncertainties are determined from the standard deviation 

between samples (n = 9). (c) Representative 10x magnification fluorescence microscope images of osteoblast 

cell attachment on bare titanium, rPPF coatings, fibronectin-functionalised (FN), osteocalcin-functionalised 

(OCN), FN-OCN fusion protein-functionalised, and FN:OCN ratio-functionalised surfaces. The cell viability was 

determined by staining with DAPI (blue - nuclei) and cell spreading was determined by staining with ActinRED 

(red - cytoskeletons). 

 

The increased cell number and spreading on the FN, FN:OCN, and fusion surfaces is attributed to 

the presence of the RGD binding sequence in the FN (9, 10) domains. The RGD sequence is one of the 

primary binding sequences in ECM proteins responsible for cellular attachment [124, 414]. Both multi-

functionalised protein-coated surfaces demonstrated cell attachment and spreading on par with the 

FN-functionalised surface, indicating that the RGD sequence was well presented and accessible to the 

cells. OCN and rPPF surfaces provided equivalent cell attachment to Ti as they do not possess binding 

motifs. The cell spreading was significantly increased on the rPPF compared to Ti, possibly due to the 

presence of nitrogen- and oxygen-containing carbon groups at the interface [450]. An examination of 

the overall cellular affinity for the surfaces agrees with the expected trends: the RGD containing 

surfaces (the fusion, FN, and FN:OCN) are favoured most for cell attachment and spreading, followed 

by the organic surfaces (rPPF and OCN), and the inorganic Ti surfaces being least favoured; i.e.  

RGD motif (FN, FN:OCN, fusion) > organic non-binding (OCN, rPPF) > inorganic (Ti) 

 

6.3.2 Osteoblast proliferation  
 

The proliferation of OBs on the proteins functionalised surfaces was determined with MTS. The 

absorbances were observed on day 3, 6, 11, and 14 as shown in Figure 6.2. On day 3, the Ti (0.87 ± 

0.04), FN (1.00 ± 0.21), and FN:OCN (0.96 ± 0.18) surfaces demonstrated elevated absorbance 

compared to the rPPF (0.74 ± 0.01), OCN (0.74 ± 0.04), and fusion (0.78 ± 0.07) protein-functionalised 
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surfaces.  The Ti, rPPF, FN, and FN:OCN surfaces showed steady growth through the day 6 and day 11 

time points. Unfortunately, the day 6 and day 11 samples for OCN and fusion, shown with black strips, 

were compromised due to media leakage and fungal contamination, respectively. The day 14 MTS 

absorbances demonstrate equal proliferation on the Ti (1.20 ± 0.04) and rPPF (1.19 ± 0.05), with the 

FN (1.32 ± 0.09) and FN: OCN (1.33 ± 0.13) surfaces remaining slightly elevated. The OCN (1.10 ± 0.14) 

and fusion (1.01 ± 0.11) protein-functionalised surfaces produced less proliferation signal relative to 

the rPPF and Ti. The osteoblast growth rates showed insignificant variations across all samples. 

 

 

Figure 6.2. MTS proliferation signal for OBs on Ti, rPPF, FN, Ratio, OCN, and fusion surfaces at day 3, day 6, day 

11, and day 14 post seeding. Analysis of the growth ratios showed no difference between the surfaces. The day 

6 and 11 OCN and FN-OCN (black striped) experienced contamination and media leakage. The osteoblasts 

demonstrated steady growth across the time points. The observed statistical significances compared to Ti are 

shown in their representative colours (p < 0.05 - *, p < 0.01 - #). Uncertainty comes from the standard deviation 

(n = 3). 
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The OB proliferation is correlated with the extent of cell attachment and spreading.  The general trend 

of the FN-containing surfaces producing more MTS signal than the OCN and rPPF is based on the 

elevated cell numbers at the attachment stage (figure 6.1. a,b), as the proliferation rates are similar.  

The FN-OCN fusion protein batch utilised in this assay was stored frozen upon delivery by mistake. A 

repeating assay was unsuccessfully attempted due to failed OB surface establishment and premature 

culture apoptosis. The mineralisation assays were prioritised to make most effective use of the 

remaining fusion protein. Primary osteoblasts were unavailable after completion of the mineralisation 

assays due to time constraints. Overall, the Ti, rPPF, and the protein-functionalised surfaces supported 

the attachment, spreading, and proliferation of osteoblasts. 

 

6.3.3 Osteoblast mineralisation  
 

 

The mineralisation potency of the multifunctional surfaces, as determined by the calcium 

concentration, was probed with an Alizarin Red stain (ARS) (Figure 6.3). The first ARS assay on the day 

17 fusion-protein coated surface (Abs = 0.47 ± 0.04) showed a significant increase in calcium (p < 0.05) 

compared to the OCN-functionalised and rPPF surfaces, Abs = 0.32 ± 0.04 and 0.28 ± 0.10, respectively. 

The fusion-functionalised surfaces also produced a highly significant increase (p < 0.01) compared to 

Ti (Abs = 0.25 ± 0.03) (Figure 6.3.a). The following day 25 and day 32 ARS results showed that the 

calcium content of rPPF and protein-functionalised surfaces were equal to or greater than the bare Ti 

surface.  

The second mineralisation assay (Figure 6.3.b) showed some variation on the previous trends. 

The day 20 ARS results showed a considerable increase across all surfaces compared to the Ti, with FN 

producing a significant increase (P < 0.05). The day 26 assay results demonstrated a significant calcium 

increase on the OCN and rPPF surfaces compared to Ti and non-statistical increases on the remaining 
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surfaces. The day 32 mineralisation measurements showed statistically significant increases on the 

protein-functionalised surfaces except for the rPPF and OCN surfaces. 

 

Figure 6.3. The calcium content deposited by primary osteoblasts on the protein-functionalised surfaces was 

determined by the alizarin red assays. Variations in mineralisation trends were observed at the earlier time 

points between the two individual tests performed. The commonalities between the two tests show that: i) the 

protein-functionalised surfaces substantially increase mineralisation compared to Ti, and ii) Signalling surfaces 

(fusion and OCN) induce larger degrees of mineralisation at earlier time points. Statistical significance (p < 0.05) 

compared to Ti is shown for the first (*), second (#), and third ($) time points. Uncertainty comes from the 

standard deviation between samples (n = 3). 
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The mineralisation observed on the single protein-functionalised surfaces is derived from the 

increased cell quantity for the FN and the enhanced mineralisation rate due to OCN signalling, as 

shown by comparing their attachment and mineralisation assays. The two multifunctional surfaces, 

FN: OCN and fusion, presented different mineralisation behaviours related to the nature of the multi-

functionalisation. The FN:OCN ratio surfaces did not demonstrate an enhancement beyond the single 

protein surfaces, potentially due to the inhomogeneous presentation of the two proteins. In contrast, 

the fusion protein-coated surfaces accelerated calcium deposition as the protein is designed to 

uniformly present both signalling and attachment motifs by combining the adhesive FN9-10 domain 

with the signalling capability of the OCN (22-49 amino acid sequence) in a single molecule [287, 316]. 

Overall, the fusion protein demonstrated the greatest mineralisation potential in shorter time frames, 

indicating the significant benefits of its application in orthopaedic implants. 

 

6.3.4 Differentiation of mesenchymal stem cells 
 

The specific fluorescence (SF) of alkaline phosphatase (ALP), as calculated by the total 

fluorescence area per cell quantity (µm2/cell), was used to quantify the differentiation of MSCs into 

osteoblasts under non-differentiating conditions. The samples were examined at day 10 and day 20 

(Figure 6.4). The day 10 SF results demonstrated three statically distinct bands. Titanium produced 

the most ALP with an SF of 592 ± 166 and constituted the statistically increased band relative to the 

rPPF surfaces. The rPPFs (SF = 376 ± 112), fusion-functionalised surfaces (SF = 353 ± 86), OCN-

functionalised surfaces (392 ± 94), and OB conditioning media controls (SF = 323 ± 41) formed the 

middle band. The FN (SF = 224 ± 22) and FN:OCN (SF = 243 ± 24) surfaces demonstrate a significantly 

reduced SF. The day 20 SF results show that the middle band results from day 10 had equalised with 

the titanium. The FN and FN:OCN functionalised surfaces had increased slightly but demonstrated 

significantly less differentiation than the other surfaces. 
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Figure 6.4. Specific fluorescence (SF) indicating the alkaline phosphatase (ALP) production of mesenchymal stem 

cells (MSCs) via fluorescence microscopy. Statistical significance (p < 0.05) between the rPPF and other surfaces 

are shown for day 10 (*) and day 20 (#). Uncertainty comes from the standard deviation (n = 3). 

 

The ALP quantification assay further examined the osteogenic potential of the protein-

functionalised surfaces through their capacity for signalling MSC differentiation. This is an important 

function for orthopaedic surfaces as the osseointegration process involves interactions with 

undifferentiated and pre-osteoblastic cells, as well as fully differentiated osteoblasts. The FN- 

functionalised surfaces produced less MSC differentiation overall as FN is known to be non-

differentiating [451]. The equivalent values for the FN:OCN and FN surfaces confirmed the trends 

observed in the OB mineralisation assays, suggesting that the biological responses to the FN:OCN 

surfaces are dominated by the FN proteins. However, the expected increase in ALP production on the 

OCN and fusion protein surfaces relative to the uncoated Ti was not observed. MSC differentiation is 

governed by the cellular response to the surface topology and chemistry [241, 244, 366, 452] and 

through biological cues from neighbouring cells and the extracellular matrix [366, 453-455]. The day 

10 results showed that the specific fluorescence of the fusion protein surfaces was on par with the 

OCN and rPPF, but the cell number was significantly lower than those for the other surfaces (p < 0.01). 

The drastic reduction in MSC population would greatly impact the intercellular signalling and rates of 
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differentiation relative to the other surfaces. The cell population was equalised across all surfaces by 

the day 20 time point. Further examinations would assist in clarifying the differentiation potential of 

the fusion protein surfaces. 

 

6.4 Discussion 
 

The functionalisation of orthopaedic implants with biological cues for rapid osseointegration is 

essential for reducing the post-operative complications associated with fibrotic encapsulation and 

biofilm formation [4, 356]. This biofunctionalisation strategy requires the development of easily 

reproducible, multifunctional surfaces that encourage rapid cellular attachment and accelerate 

mineralisation. Protein and biomolecule immobilisation represents one direction for producing 

multifunctional orthopaedic interfaces through the co-immobilisation of multiple proteins. 

Alternatively, the benefits may be more practically achieved through the utilisation of synthetic 

multifunctional biomolecules. In this chapter, the osteogenic potential of a surface with co-

immobilised fibronectin and osteocalcin (1:3 FN:OCN) was compared with that of a multifunctional 

fusion protein surface. Both protein surfaces utilised radical-functionalised plasma polymer films 

(rPPFs) to achieve direct covalent bonding of the proteins to the Ti surfaces.   

The most critical component of both multi-functionalisation approaches is the presentation of 

the desired motifs to the biological environment. The primary osteoblasts demonstrated that both 

multifunctional surfaces presented the RGD sequence by the observed increase in cellular attachment 

and spreading (Figure 6.1). However, a significant increase in mineralisation was observed only on the 

fusion protein surfaces (Figure 6.3). This suggests that the OCN signalling sequence in the fusion 

protein is freely available to the biological environment, whereas, the OCN proteins on the FN:OCN 

surfaces are inefficiently presented, whether through obstruction by the FN or below a critical 

concentration. The difference in cellular response was also confirmed in the MSC differentiation assay, 

which showed that the FN:OCN surfaces exhibited non-differentiating effects while the fusion protein 
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surfaces signalled ALP production at lower cell populations. Similar observations of the effectiveness 

of co-immobilised vs fusion protein surfaces were noted in other biomolecule functionalisation work 

[124, 415], where a composite attachment fusion peptide outperformed the 50:50 mixture of the 

component peptides on the surface. The compromised performance was attributed to the 

inhomogeneity of the surface biomolecule layer [124, 415]. The 1:3 FN:OCN ratio selected is a close 

approximation to the 50:50 surface ratio but with a more inhomogeneous surface coverage due to 

the significant size difference between the FN (440 kDa) and the OCN (5.9 kDa) proteins. In contrast, 

the FN-OCN fusion protein surfaces presented the required densities of both the RGD cell binding 

sequence and the OCN signalling sequence homogenously across the surface, resulting in significantly 

greater osteogenic potency. Overall, the multifunctional fusion protein coated rPPF surfaces 

presented the most significant potential for osseointegrating orthopaedic implants based on the 

simplicity of the protein functionalisation and the homogenous availability of cell adhesive RGD and 

mineralisation signalling OCN sequences [124, 415, 416]. 

 

6.5 Conclusions 
 

The functionalisation of titanium orthopaedics with proteins or peptides is a versatile approach to 

improve osseointegration, allowing for the bestowment of active biological functionality onto inert 

implant surfaces. While the current single protein-functionalisation approach has shown success, a 

multifunctional surface is often required for optimal implant osseointegration. In this chapter, the 

osteogenic potential of the two multi-functionalisation surfaces was comparatively examined with 

their single protein counterparts. Osteoblast attachment, spreading, proliferation, and mineralisation 

of the FN-OCN fusion protein surfaces were shown to be equal or greater than the FN and OCN single 

component proteins, while, the cellular responses on the co-immobilised FN:OCN ratio surfaces were 

similar to those on the FN-functionalised surfaces. The differentiation of MSCs on the fusion protein 

surfaces was on par with the OCN protein surfaces, whereas, the ratio surfaces portrayed the non-
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differentiation behaviour of FN. Overall, the findings indicated that the FN-OCN fusion-protein coated 

rPPF surfaces hold significant potential for improving the osseointegration of implantable orthopaedic 

devices. 
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Chapter 7: Concluding summary and Future directions 

 

7.1 Conclusions 

 

Titanium orthopaedic devices are becoming increasingly common with the demand for load-

bearing implants growing annually. However, the biochemical inertness of the devices leads to 

complications requiring additional surgeries. This thesis focussed on developing novel protein-

functionalised plasma polymer biointerfaces to provide a robust, biologically active surface that 

stimulates bone-integration of the devices in a process that is translatable to an industrial context. 

Plasma polymer films (PPFs) are of great interest for biomaterial applications because of their 

versatility and substrate-independence. Conventional PPFs bind proteins through chemical reactions 

with surface chemical functionalities such as amine and carboxyl groups, which require specific 

reagents and complex monitoring. In contrast, the radical-functionalised PPFs (rPPFs) utilised in this 

thesis are able to immobilise multiple proteins onto a surface without the need for chemical reagents. 

Such radical-functionalised coatings were investigated as platforms to biologically functionalise 

titanium for orthopaedic applications. 

A series of rPPFs with varied nitrogen atomic concentrations were investigated to determine the 

optimum coating for titanium surfaces based on the mechanical stability and cellular responses. The 

SEM images of rPPF coatings demonstrated that the 20%N and 30%N coatings were more robust 

under the mechanical stresses of cellular proliferation, aqueous swelling, and dehydration. A slight 

advantage in mechanical stability was observed on the 30%N rPPF. The proliferation assays showed a 

non-significant increase in cell quantity for the 20%N coating over the 30%N based on the day 1 and 

day 3 proliferation results, potentially deriving from a relatively elevated cellular attachment. Both 

rPPF coatings demonstrated the required mechanical stability and stimulated beneficial cellular 
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responses. Hence, these two rPPF-coatings were selected for continued material and biological 

examinations. 

The relatively large quantity of radical electrons and radical flux to the surface of the rPPF coatings 

[217, 264] represent potential complications for biological applications through radical-induced 

cytotoxicity [381, 382]. The changes in surface properties of the 30%N rPPF, observed over 2 weeks, 

followed radical decay dynamics similar to plasma immersion ion implantation (PIII) treated polymers 

[269]. The fluorescence microscopy analysis and proliferation assays of bone lineage cells 

demonstrated no significant biological differences between the high radical flux (aged for only 4 hr) 

and low radical flux (aged for 11 days) rPPFs. The inability of the radical electrons to propagate through 

the peptide bonds in protein backbones is believed to protect cells at the interface from the 

detrimental effects of excess radicals. Thus, rPPF biointerfaces can be used in timeframes favouring 

the desired physical or chemical surface properties, such as wettability for protein attachment, 

without concerns over radical-induced cytotoxicity.  

The 20%N rPPFs were functionalised with fibronectin (FN), osteocalcin (OCN), and a custom-

made FN-OCN fusion protein. Full monolayer functionalisation was achieved at protein solution 

concentrations of 15 µg/mL, lower than the previously published studies using wet chemical methods. 

The majority of this monolayer (60-80%) was retained even when subject to rigorous SDS washing. 

The surfaces possessed greater protein quantities than bare Ti due to covalent binding through surface 

migrating radicals in the adsorption-desorption equilibrium dynamics. The rPPFs were also shown to 

permanently immobilise multiple proteins through a sequential incubations approach not possible 

with chemical or adsorption-based techniques. An unusual FN absorption signal behaviour was 

observed on the ratio surfaces potentially due to the altered surface conditions of the partially OCN 

functionalised interfaces. A 1:3 ratio of FN:OCN was selected for comparative osteogenic examination 

against a multifunctional fusion protein and the individual component proteins. Finally, a simple and 

effective methodology to create multifunctional protein surfaces was demonstrated. 
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A deepening understanding of the osseointegration process revealed that a multifunctional 

surface, that stimulates cell attachment and bone formation simultaneously, is required for optimal 

osseointegration. Primary mouse osteoblasts demonstrated significantly increased cell attachment on 

both multifunctional surfaces; however, only the fusion protein surfaces demonstrated accelerated 

calcium deposition. The considerable difference in osteogenic potency was due to the presentation 

and availability of the canonical RGD and the OCN 22-49 motifs. The homogenous presentation of 

both motifs across the fusion protein surfaces resulted in greater cellular attachment and signalling 

for bone formation. In contrast, the inhomogeneity derived from the random protein immobilisation 

and size difference presented by the co-immobilised ratio surface stimulated cell attachment only. 

The osteogenic potency of the co-immobilised surfaces was also confirmed by a mesenchymal stem 

cell differentiation on par with the non-differentiating FN. This thesis was an initial investigation 

focussing on the rPPF coating properties and examining the protein functionalised surfaces to 

determine the optimal combination. In vivo examination of the optimised surfaces is planned for 

future projects. Overall, the fusion protein-functionalised rPPFs present a highly osteogenic and 

scalable approach for the biofunctionalisation of orthopaedic devices.  

 

7.2 Future directions 

 

This thesis investigated the development of protein-functionalised biointerfaces based on 

radical-functionalised plasma polymer films (rPPFs) for orthopaedic titanium implants. The project 

covered the optimisation of the rPPFs, the characterisation of the multifunctional biointerfaces, and 

the in vitro biological studies to demonstrate their efficacy. The research performed opens multiple 

avenues for further exploration.   

The rPPFs produced in this thesis provide a foundation for other 2D biointerface research [58, 

356, 357]. The non-specific protein-functionalisation capacity of rPPFs provides a versatile platform to 
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investigate the efficacy on a surface of other untested osteogenic biomolecules, such as osteopontin 

or periostin [214, 456-464]. The incorporation of micro-patterning techniques into protein-

functionalisation could be explored to determine if biomolecule patterning improves the osteogenic 

potential of orthopaedics. Alternatively, rPPFs could be transferred to microarray and biosensing 

technologies. The chemical tailoring of rPPFs could also be investigated through the addition of 

reagent monomers containing elements or compounds for specific applications, e.g. strontium, 

calcium, or phosphate groups, to improve bone formation [465].  

The interdisciplinary field of biomaterials and tissue engineering has been transitioning from 2D 

surfaces towards more complex 3D structures, such as those produced through additive 

manufacturing [466-468]. The coating of 3D structures via plasma deposition processes is difficult 

especially when shadowed cavities, such as internal porosity, are present. The coating stability is a 

major issue because of the chemically and mechanically aggressive nature of the in vivo environment, 

and the long-term stability required. The importance of coating stability is further elevated by the 

medical consequences of a delamination event. The rPPF coatings address the stability issues through 

the formation of carbide bonds on the Ti substrates and a high degree of crosslinking created by 

employing more energetic deposition conditions during early stages of the plasma polymerisation 

[285, 309]. Research into the homogenous deposition of rPPFs throughout complex 3D scaffolds and 

the subsequent biomolecule functionalisation would further improve the osseointegration of porous 

3D orthopaedic implants [469]. 

In vivo examination of potential biomedical products, including implantable biointerfaces, is a 

requirement for clinical certification. In vivo animal models provide information that cannot be 

accurately obtained through current 2D in vitro testing, e.g. regarding bone formation rates, foreign 

body reactions, the effects of nutrient and oxygen gradients, and cell ‘cross talk’ [470]. The disparity 

between in vitro and in vivo is an ongoing issue for all forms of biomedical and pharmacological 

research [471] as a significant increase in effectiveness in vitro does not guarantee transfer to the 
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animal model. A significant osseointegration increase in vivo for mouse, rabbit or large animal models 

for protein-functionalised rPPFs would ease the transition of this research into the clinic. 

Plasma polymerisation, unlike wet chemistry methods, has the capacity to be easily scaled and 

incorporated into manufacturing processes, as evident by the application of plasma enhanced 

chemical vapour deposition processes in optics, electronics, and solar cells [288, 289]. The post-

production modification of orthopaedic devices with rPPFs would allow for the transfer of protein-

functionalisation into an implantable device [288, 289]. The unique non-specific immobilisation of 

rPPFs has a greater degree of versatility in the application of proteins; permitting the surfaces to be 

functionalised as part of the manufacturing process or to be functionalised onsite before implantation. 

Previous work has shown at least a 4.5 month longevity for biomolecule functionalisation of rPPFs in 

air [264], allowing for feasible storage and transportation times. The process of implant fabrication, 

rPPF deposition, and device storage will need to be optimised but the potential advantages for 

improved osseointegration and implant lifetime could significantly increase patient quality of life. In 

conclusion, the substrate-independent nature of rPPF surfaces and the scalability of plasma deposition 

techniques allow for the transfer of these easily-producible, multifunctional biointerfaces into the 

next generation of implantable devices.  
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