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Abstract

Bayesian models offer great flexibility, but can be computationally demanding to

fit. The gold standard for fitting Bayesian models, when posterior distributions

are not available analytically, are Monte Carlo Markov Chain methods. However,

these can be slow and prone to convergence problems. Approximate methods

of fitting Bayesian models allow these models to be fit using deterministic algo-

rithms in substantially less time. Variational Bayes (VB) is a method for approxi-

mating the posterior distributions of the model parameters sometimes with only

a slight loss of accuracy. In this thesis, we consider two important problems –

variable selection for linear models, and zero inflated mixed models.

The first problem we address is variable selection, a task of central importance

in modern statistics. Here, Bayesian model selection has the advantage of incor-

porating the uncertainty of the model selection process itself which propagates to

the estimates of the model parameters. Linear regression models with Gaussian

priors are ubiquitous in applied statistics due to their ease of fitting and inter-

pretation. We use the popular g-prior Zellner (1986) for model selection of linear

models with normal priors where g is a prior hyperparameter. This raises the

question of how best to choose g. Liang et al. (2008) show that a fixed choice of g

leads to problems, such as Bartlett’s Paradox and the Information Paradox. These

12
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paradoxes, and other problems, can be avoided by putting a prior on g. Using sev-

eral popular priors on g, we derive exact expressions for the model selection Bayes

Factors in terms of special functions depending only on the sample size, number

of covariates and correlation of the model being considered. We show that these

expressions are accurate, fast to evaluate, and numerically stable. An R package

blma for doing Bayesian linear model averaging using these exact expressions

has been released on GitHub.

For data sets with a small number of covariates, it is computationally feasi-

ble to perform exact model averaging. As the number of covariates increases the

model space becomes too large to explore exhaustively. Recently, Ročková (2017)

introduced Particle EM (PEM), a population-based method for efficiently explor-

ing a subset of the model space with high posterior probability. The population-

based method allows the method to seek multiple local modes, and captures

greater total posterior mass from the model space than choosing a single model

would. We extend this method using Particle Variational Approximation and the

exact posterior marginal likelihood expressions to derive a computationally effi-

cient algorithm for model selection on data sets with a large number of covariates.

We demonstrate the algorithm’s performance on a number of data sets for differ-

ent combinations of g-prior, model selection prior and population size. We also

compare our method to the existing methods such as lasso, SCAD, and MCP pe-

nalized regression methods, and PEM in terms of model selection performance,

and show that our method outperforms these. We also show that total poste-

rior mass increases and mean marginal variable error decreases, as the number of

models in the population increases. Our algorithm performs very well relative to
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previous algorithms in the literature, completing in 8 seconds on a model selection

problem with a sample size of 600 and 7200 covariates.

The second problem we address is zero-inflated models have many applica-

tions in areas such as manufacturing and public health, but pose numerical issues

when fitting them to data. We apply a variational approximation to zero-inflated

Poisson mixed models with Gaussian distributed random effects using a combina-

tion of VB and the Gaussian Variational Approximation (GVA). We demonstrate

that this approximation is accurate and fast on a number of simulated and bench-

mark data sets. We also incorporate a novel parameterisation of the covariance of

the GVA using the Cholesky factor of the precision matrix, similar to Tan and Nott

(2018), and discuss the computational advantages of this parameterisation due to

the sparsity of the precision matrix for mixed models and resolve associated nu-

merical difficulties.



CHAPTER 1

Introduction

1.1. Motivation

The advent of digital computers and the internet have lead to an explosion

in the volume of data being collected. With technological progress marching on,

this trend seems only set to continue and accelerate. In the future, as technology

continues to advance more data will be able to be stored and processed, and so

this trend of increasing volumes of data is set to continue (Gandomi and Haider,

2015). But this data is only of value if it can be analysed and understood.

This incredible increase in the volume of data has introduced new computa-

tional difficulties in processing and modelling such large amounts of data, so-

called Big Data, which is so large that it is difficult to process on one computer.

This data raises new challenges which modern statisticians must be ready to meet.

Approaches to modelling data are needed which can handle large volumes of data

in a computationally efficient manner while retaining the probabilistic underpin-

ning of classical statistics and statistical machine learning, providing a rigorous

underlying theory for inference. This realisation has created an explosion of inter-

est in Data Science, incorporating ideas from both statistics and computer science

in recent years. Machine learning problems are being tackled with algorithms

which use probability models for the data – motivating the development of the

15



16 1. INTRODUCTION

new field of statistical learning which combines many of the best elements of sta-

tistics and machine learning (James et al., 2014; MacKay, 2002; Hastie et al., 2001;

Murphy, 2012).

1.2. Choosing an inferential paradigm

How one proceeds given the above needs can be addressed through an infer-

ential paradigm. The most common of these are the frequentist and Bayesian sta-

tistical paradigms. The difference between frequentist and Bayesian approaches

begins with a difference in philosophy. Frequentists define an event’s probabil-

ity as its’ relative frequency after a large number of trials. While Bayesians view

probability as our reasonable expectation about an event, representing our state

of knowledge about the event.

There are many practical reasons to choose Bayesian approaches to modelling

data. It is flexible in modelling statistical complications, such as missing or hier-

archical data, and complicated models can be built by chaining together multiple

levels of simple models. These models can then be fit to data by calculating the

posterior probability of the parameters using Bayes’ Theorem,

(1) p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

where y is a vector of observed data, θ are the model parameters, p(y|θ) is the like-

lihood function, p(θ) is a prior distribution on θ, and p(y) =
∫
p(y|θ)p(θ)dθ. Here

the integral is performed over the range of θ. If a subset of θ are discrete random

variables then the integral over these parameters is replaced with a combinatorial

sum over all possible values of these discrete random variables.
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There are many models which are difficult to fit under the frequentist para-

digm, as the likelihood can be difficult to maximise for complex models. Further-

more, as the Bayesian paradigm treats each of the parameters in a model as un-

certain, the full uncertainty associated with all of the parameters can be estimated

via the uncertainty in the posterior distribution. This approach avoids many of

the pitfalls of statistical inference encountered with the frequentist approach us-

ing significance testing and p-values (Cox, 2005).

The ability to build a model one component at a time and have the uncertainty

propagate through the model makes Bayesian modelling particularly appropriate

for mixed effects and hierarchical models. In particular, uncertainty regarding

model selection is taken into account in the context of model selection. Thus for

the two classes of problems we consider in this thesis the Bayesian approach is

more suitable.

1.2.1. Bayes Factors. In the Bayesian inferential paradigm, two competing hy-

potheses can be compared using Bayes Factors. The Bayes Factor is the ratio of the

marginal likelihoods under the assumption of each of the models being compared

BF(M1,M2) =
P (y|M1)

P (y|M2)
=

∫
P (θ1|M1)P (y|θ1,M1)dθ1∫
P (θ2|M2)P (y|θ2,M2)dθ2

=
P (M1|y)P (M2)

P (M2|y)P (M1)

where y is the data observed, M1 and M2 are the models being compared and θ1

and θ2 are the model parameter vectors associated with each model respectively.
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1.3. Research problems

In this section, we introduce the major problems that will be addressed in this

thesis. The themes of flexible modelling of data using Generalised Linear Mixed

Models and model selection of linear models with normal priors will be explored.

1.3.1. Exponential family and the canonical form of linear regression mod-

els. The concept of the exponential family of probability distributions was first

introduced by Koopman (1935) and Pitman (1936). The canonical form of a re-

gression model from the exponential family is

(2) p(y|θ) = h(y) exp{θ>T (y)− b(θ)}

for a parameter vector θ ∈ Θ, and observed data y. The sufficient statistic T and h

are functions of the observed data, while the cumulant function b(θ) is a function

of the parameter θ. The cumulant function is the logarithm of the normalisation

constant.

Many commonly used probability distributions of practical interest, such as

the Gaussian, Bernoulli, Poisson, Exponential and Gamma probability distribu-

tions, can be expressed as an exponential family by making an appropriate choice

of h, T and b functions. The exponential family of distributions have several ap-

pealing statistical and computational properties which derive from the convexity

of the parameter space Θ for which the exponential family distribution is defined,

and the convexity of the cumulant function (Jordan, 2010). The mean of an expo-

nential family distribution can be obtained by calculating the first derivative of the

cumulant function and then evaluating at zero, while the variance can be obtained
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by calculating the second derivatives of the cumulant function and evaluating at

zero.

The exponential family of distributions allow us to extend linear models to

more general situations where the response variable is not normally distributed

but may be categorical, discrete or continuous and the relationship between the

response and the explanatory variables need not be of simple linear form. By

choosing the parameterisation θ = Xβ where X is the matrix of observed covari-

ates in Rn×p and β are regression parameters in Rp, for n the sample size and p the

number of covariates, a canonical form of generalised linear regression models

may be written as

(3) log p(y|θ) = y>Xβ − 1>b(Xβ) + 1>c(y)

where c(θ) is the log of h(y) from (2). A choice of b(x) = ex corresponding to

the Poisson family of distributions specifies a Poisson linear model appropriate

for modelling count data, while a choice of b(x) = log(1 + ex) corresponding to

the logistic family of distributions specifies a logistic linear model appropriate to

modelling binary data.

1.3.2. Generalised Linear Mixed Models. Generalised Linear Mixed Models,

an extension of Generalised Linear Models to include both fixed and random ef-

fects, are applicable to many complicated modelling situations.

Linear and generalised linear regression models are the standard tools used

by applied statisticians to explain the relationship between an outcome variable
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and one or more explanatory variables. They provide a general method to anal-

yse quantified relationships between variables within a data set in an easily inter-

pretable way. A standard assumption is that the outcomes are independent, and

that the effect of the explanatory variables on the outcome is fixed. But if the out-

comes are dependent and this assumption is not met, then linear and generalised

linear models can be extended to linear mixed models. These allow us to incorpo-

rate dependencies amongst the observations via the assumption of a more com-

plicated covariance structure, including random effects for different subgroups or

longitudinal data and other extensions such as splines. This additional flexibility

makes their application popular in many fields, such as public health, psychology

and agriculture (Kleinman et al., 2004; Lo and Andrews, 2015; Kachman, 2000).

In the frequentist paradigm, model parameters are fixed and uncertainty en-

ters the model through random errors, which have an associated covariance. The

data is modelled as a combination of these fixed parameters and random errors.

In the Bayesian paradigm, the uncertainty in the parameters and the data is ac-

counted for by the likelihood function.

1.3.2.1. A Canonical Form for Generalised Linear Mixed Models. The generalised

form for linear models in (3) can easily be extended to include random effects.

Following the conventions for Generalised Design of Zhao et al. (2006), we adopt

the canonical form for Generalised Linear Mixed Models exponential family with

Gaussian random effects take the general form

p(y|β,u) = exp {y>(Xβ + Zu)− 1>b(Xβ + Zu) + 1>c(y)},

u|G ∼ N(0,G),
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where the fixed effects are denoted by the vector β, the random effects are denoted

by u and G is the covariance matrix of random effects. The covariance structure in

G is usually chosen to capture the dependencies of interest between the observa-

tions in the application, such as the dependency between repeated observations

on an individual within a longitudinal study, the dependency between observa-

tions within a cluster in a hierarchical model or the spatial dependency between

observations that are close to one another in a spatial model. The design matrix

for the fixed effects is denoted by X and the design matrix for the random effects

are denoted by Z.

Random effects are very flexible in the variety of models they allow us to fit to

our data. Through specification of the covariance structures in the matrix G with

the appropriate data in the design matrix Z, complicated dependencies amongst

the responses y can be specified, allowing modelling of longitudinal data, fit-

ting smoothing splines to the data and modelling spatial relationships between

responses. This allows us to fit hierarchical models with random intercepts and

slopes, capturing levels of variation within groups within the data (Gelman and

Hill, 2007).

While mixed models are very useful for gaining insight into a data set, fitting

them can be computationally challenging. For all but the simplest situations, fit-

ting these models involves computing high-dimensional integrals which are often

analytically and computationally intractable. The standard technique for fitting

Bayesian versions of these models is to use Monte Carlo Markov Chains tech-

niques. Thus, an approximation must be used in order to fit these models within

a reasonable time frame. Our approach to this problem is outlined in Chapter 4.
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1.4. Splines and smoothing

While linear models are statistically convenient to work with and easy to inter-

pret once fitted, the relationship between the response and explanatory variables

may not always be linear in practice. Thus a generalisation of linear models to

nonlinear situations is needed that still retains the beneficial statistical and inter-

pretive properties of linear models as much as possible. The most general form

of the univariate regression problem is yi = f(xi) where f : R → R is unknown,

and we wish to estimate it. Fully nonparametric regression is a difficult problem

to solve, but the problem can be simplified by prespecifying the points at which

the function may change curvature, which we refer to as knots.
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1.4.1. B-Splines. There are many families of basis functions which can be con-

veniently used for function approximation, including orthogonal polynomials.

The B-spline basis (de Boor, 1972) is numerically stable and efficient to compu-

tationally evaluate. A B-Spline is a piecewise polynomial function of degree < n

in a variable x. It is defined over a domain κ0 ≤ x ≤ κm,m = n. The points where

x = κj are known as knots or break points. The number of internal knots is equal

to the degree of the polynomial if there are no knot multiplicities. The knots must

be in ascending order. The number of knots is the minimum for the degree of the

B-spline, which has a non-zero value in the range between the first and last knot.

Each piece of the function is a polynomial of degree less than n between and in-

cluding adjacent knots. A B-Spline is continuous at its knots. When all internal

knots are distinct its derivatives are also continuous up to the derivative of degree

n− 1. If internal knots coincide at a given value of x, the continuity of derivative

order is reduced by 1 for each additional knot.

For any given set of knots, the B-spline for approximating a given function is

a unique linear combination of basis functions recursively defined as

Bi,0(x) :=


1 if κi ≤ x < κi+1; and

0 otherwise,

for i = 1, . . . , K + 2M − 1 and

Bi,k(x;κ) =
x− κi
κi+k − κi

Qi,k−1(x;κ) +
κi+k+1 − x
κi+k+1 − κi+1

Qi+1,k−1(x;κ)
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for i = 1, . . . , K + 2M −m with

Qm,i(x;κ) =


Bm,i(x;κ), κi+m > κi; and

0, otherwise.

We define the B-Spline basis in this way so that the definition remains correct

in the case where knots are repeated in κ. We choose piecewise cubic splines as

cubics are numerically well behaved while still capturing the curvature of func-

tions we wish to approximate well (Press et al., 2007a). Thus we select the knot

sequence κ to be

a = κ1 = κ2 = κ3 = κ4 < κ5 < . . . < κK+5 = κK+6 = κK+7 = κK+8 = b.

There are many ways of choosing knots for applied statistical problems. A

typical approach is to choose the internal knots using the sample quantiles of the

data set being examined. A common choice is to select min(nU/4, 35) internal

knots where nU is the unique number of xi’s.

1.4.2. O’Sullivan Splines. In this section, we follow the discussion of semi-

parametric regression in Ruppert et al. (2003). Using a mixed models setup to fit

spline models protects against overfitting, we construct a Z matrix with the ap-

propriate B-Spline function evaluations in each of row of the matrix, where each

column in the matrix corresponds to one of the knots we have selected.

O’Sullivan introduced a class of penalised splines based on the B-spline ba-

sis functions in O’Sullivan (1986) which are a direct generalisation of smoothing

splines. LetB1, . . . ,BK+4 be the cubic B-spline basis functions defined by the knots
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κ1 to κK+4. O’Sullivan splines are splines which are penalised using the penalty

matrix Ω. Let Ω be the (K + 4)× (K + 4) matrix where the (k, k′)− th element is

Ωkk′ =

∫ b

a

B′′k(x)B′′k′(x)dx.

Then the O’Sullivan spline estimate of the true function f at the point x is

f̂O(x;λ) = Bxν̂O,

where ν̂O = (B>B + λΩ)−1B>y, as shown in Ruppert et al. (2003).

The matrix Ω is defined in this way to penalise oscillation, which is measured

by the second derivative. This penalty differs from the penalty for “penalised B-

Splines” or P-splines in that the P-spline penalty matrix is D>2 D2 where D2 is the

second-order differencing matrix.

1.5. Variable selection

It is often the case in applied statistics that many covariates are available, but

it is unknown a priori which covariates explain the response variable of interest.

An automatic method of exploring which model among many possible candidate

models incorporating these covariates explains the response variable best would

relieve the burden of having to fit and compare the performance of many such

models manually.

The problem of selecting a statistical model from a set of candidate models

given a data set, hence referred to as model selection, is one of the most important

problems encountered in practice by applied statisticians. It is one of the central

tasks of science, and there is a correspondingly large literature on the subject –
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Claeskens and Hjort (2008); Nengjun Yi (2013); Johnstone et al. (2009) together

give a comprehensive overview.

The problem of model selection for normal linear models is particularly well

studied, owing to the popularity and importance of normal linear models in appli-

cations. While new types of model are continually being developed, linear mod-

els with normal priors remain a popular and essential modelling tool owing to the

ease of fitting these models, statistical inference on the parameters and, most im-

portantly, the ease which these models can be interpreted. But for a data set with

a moderate or large number of parameters, the question is immediately raised of

which covariates we should include in our model. One of the problems that we

address in this thesis is variable selection on linear models with normal priors.

The bias-variance trade-off is one of the central issues in statistical learning

(Murphy, 2012; Bishop, 2006; Hastie et al., 2001). The guise this issue takes in

model selection is balancing the quality of the model fit against the complexity of

the model, in an attempt to find a compromise between over-fitting and under-

fitting, in the hope that the model fit will generalise well beyond the training data

we have observed to the general population and that we haven’t simply learned

the noise in the training set.

There have been many approaches to model selection proposed, including cri-

teria based approaches, approaches based on functions of the residual sum of

squares, penalised regression such as the lasso and L1 regression, and Bayesian

modelling approaches. Model selection is a difficult problem in high-dimensional

spaces in general because as the dimension of the space increases, the number of

possible models increases combinatorially (Schelldorfer et al., 2010). Many model



1.5. VARIABLE SELECTION 27

selection algorithms use heuristics in an attempt to search the model space more

efficiently but still find an optimal or near-optimal model within a reasonable

period of time. A major motivation for this field of research is the need for a

computationally feasible approach to performing model selection on large scale

problems where the number of covariates is large.

1.5.1. Frequentist approaches to model selection.

1.5.1.1. Information Criteria. Let γ be a p-dimensional vector of indicators, where

a 1 in the jth position indicates that the jth covariate is included in the model,

while a 0 indicates it is excluded. Thus γ defines a model with covariates drawn

from a p column data matrix X.

In a frequentist context, there are many functions which can be used to judge

which model is best, such as Akaike’s Information Criteria (AIC) and the Bayesian

Information Criteria (BIC). These are functions f : γ → R+ which allow the mod-

els under consideration to be ranked, and the best model chosen from those avail-

able. Thus the optimal model selected by an information criteria is γ∗ = minγ f(γ).

These functions typically attempt to balance log-likelihood against the complexity

of the model, achieving a compromise between each.

Information Criteria are frequently used to compare models. Letting γ denote

the candidate model, Information Criteria take the form “negative twice times the

log-likelihood plus a term penalising for complexity of the mode”

Information Criteria = −2 log p(y|θ̂γ) + complexity penalty,

where θ̂γ is the maximum likelihood estimate of the model parameters θ for the

model γ and log p(y|θ̂γ) is the log-likelihood of that model with that parameter
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estimate and the complexity penalty is a function of the sample size n and the

number of parameters p of the model. Information criteria attempt to successfully

compromise between goodness of fit and model complexity.

The most popular of the Information Criteria is the AIC (Akaike, 1974). AIC

calculates an estimate of the information lost when a given model is used to rep-

resent the process that generates the data and so is an estimator of the Kullback-

Leibler divergence of the true model from the fitted model. The AIC of the model

γ is defined as

AIC(γ) = −2 log p(y|θ̂γ) + 2pγ ,

where pγ is the number of parameters in the model γ. The model with the lowest

AIC is selected as the ‘best’.

Of a similar form as the AIC, but derived via a more Bayesian framework is

the BIC. The BIC approximates the posterior probability of the candidate model

γ. The BIC is defined as

BIC(γ) = −2 log p(y|θ̂γ) + pγ log(n).

This is a more severe penalty for model complexity than in the Akaike’s Infor-

mation Criteria when n is greater than 8. BIC can be shown to be approximately

equivalent to model selection using Bayes Factors in certain contexts (Kass and

Raftery, 1993).

1.5.1.2. Penalised regression. Another approach is to make the process of model

selection can be made implicit in the model fitting process itself. The well-known

lasso regression method (Tibshirani, 1996) takes this approach. As Breiman (1996)

and Efron (2013) showed, while the standard formulation of a linear model is
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unbiased, the goodness of fit of these models is numerically unstable. Breiman

showed that by introducing a penalty on the size of the regression coefficients, as

in ridge regression, this numerical instability can be avoided. This reduces the

variances of the coefficient estimates, at the expense of introducing some bias –

which is another instance of the bias-variance trade-off.

Penalised regression methods trade introducing some bias in the estimator for

reducing the variance and thus fitting a more parsimonious model. The major ad-

vantages are that a model with fewer covariates will be correspondingly easier to

interpret, and that the variance of the regression co-efficient estimator will be less.

In penalised regression, the regression coefficients are subjected to a penalty or

constraint. This is typically expressed as the minimisation of the sum of a good-

ness of fit function such as squared Euclidean distance and a penalty function

β̂penalised = argmin
β

‖y −Xβ‖2
2 + penalty(β).

From a Bayesian perspective, the penalty can be considered as a prior distri-

bution on the regression coefficients where smaller values of β are given more

weight than larger ones. Here the penalised estimate of the regression coefficients

is the mode of their posterior distribution.

1.5.1.3. Ridge regression. Ridge regression is a penalised regression method, in-

troduced in Hoerl and Kennard (1970). The penalty on the regression coefficients

is the Euclidean norm of the regression coefficients. This penalty shrinks the es-

timated coefficients towards zero. The ridge regression coefficients can thus be

estimated by solving the constrained optimisation problem
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β̂ridge = argmin
β

‖y −Xβ‖2
2 subject to ‖β‖2 ≤ λ

where λ is a pre-specified free parameter specifying the amount of regularisation.

This constrained optimisation problem can be transformed by the method of La-

grange multipliers into the sum of the residual sum of squares and the product

of the Lagrange multiplier and the constraint, which acts as a penalty on the Eu-

clidean norm of the regression coefficients.

1.5.1.4. Lasso regression. Lasso regression is a penalised regression method de-

veloped in Tibshirani (1996), which was directly inspired by ridge regression. The

penalty is the l1 norm of the coefficient vector. The lasso regression coefficients

can be estimated by solving the constrained optimisation problem

β̂lasso = argmin
β

‖y −Xβ‖2
2 subject to ‖β‖1 ≤ λ,

where λ is a pre-specified free parameter specifying the amount of regularisation.

Similarly to the constrained optimisation problem for ridge regression, the con-

strained optimisation problem can be transformed by the method of Lagrange

multipliers into the sum of the residual sum of squares and the product of the

Lagrange multiplier and the constraint, which acts as a penalty on the l1 norm of

the regression coefficients. It follows from Minkowski’s inequality that the func-

tion above is convex, and thus the optimisation problem is convex, and can be

solved using standard methods from convex optimisation (Boyd and Vanden-

berghe, 2010). The constraint on the l1 norm has the effect of shrinking the co-

efficients, and setting some of them to zero. This forces the models fit by lasso
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regression to be sparse, providing model selection as part of the model-fitting

process.

A disadvantage of lasso regression is that the constraint on the regression co-

efficients depends on the free tuning parameter which must be selected a priori or

through cross-validation. But a much greater issue is that the model selection pro-

cess intrinsic to lasso regression does not take into account the uncertainty of the

model selection process itself, particularly the selection of λ, as Bayesian model

selection methods do.

1.5.2. Bayesian approaches to Model Selection. Parallel to the frequentist ap-

proaches, model selection can be performed using a Bayesian approach. This can

be done, for example, by using Bayes Factors to compare the marginal likelihoods

of the candidate models to see which is most probable given the observed data

(Kass and Raftery, 1993). Rather than selecting one candidate model, several mod-

els can be combined together using Bayesian model averaging (Hoeting et al.,

1999; Raftery et al., 1997; Fernández et al., 2001; Papaspiliopoulos and Rossell,

2016).

1.5.2.1. Variable selection. A special case of model selection is variable selec-

tion, where the focus is on selecting individual covariates, rather than entire mod-

els. Variable selection approaches search over the variables in the model space for

the best covariates to include in the candidate model. Due to the large number of

possible combinations of covariates – typically 2p where p is the number of covari-

ates, such searches are often stochastic. This approach can either be fully Bayesian

or empirically Bayesian (Cui and George, 2008). This search can be driven by pos-

terior probabilities (Casella and Moreno, 2006), or by Gibbs sampling approaches
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such in George and McCulloch (1993). These two approaches of model selection

and variable selection can be combined (Geweke, 1996). Variable selection can

also be accomplished by selecting the median probability model, consisting of

those models whose posterior inclusion probability is at least 1/2 (Barbieri and

Berger, 2004).

A challenge to applying this method of model selection is that exact model fit-

ting may be computationally infeasible for models involving even moderate num-

bers of observations and covariates, and popular alternatives for fitting Bayesian

models such as Monte Carlo Markov Chains (MCMC) are still extremely compu-

tationally intensive.

1.6. Approximate Bayesian inference

When the prior and model chosen for a Bayesian model is conjugate, the pos-

terior distribution is available in closed form and can be easily calculated. When

the prior is non-conjugate, the integral in Equation 1 to calculate the posterior dis-

tribution is typically intractable and so numerical methods must be used to calcu-

late it approximately. The gold standard for Bayesian inference is to use MCMC

methods such as Metropolis-Hastings or Gibbs sampling. But these methods are

computationally intensive, to the point where they are simply impractical in Big

Data situations where n or p are large. Moreover, they can be prone to conver-

gence problems. Thus there is a need for approximate Bayesian inference meth-

ods which are less computationally intensive while being nearly as accurate for

some models.
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1.6.1. Variational Bayes. We now introduce Variational Bayes (VB), the pop-

ular approximate inference method for Bayesian models. It is used to accelerate

Bayesian model fitting by tens or hundreds of times, with sometimes only minor

loss in accuracy for some models. This method plays a central role in this thesis,

particularly in the third and fourth chapters.

As described previously, Bayesian models may be computationally difficult or

intractable to fit. The calculation of the true posterior distribution for the model is

often either computationally intractable or no closed form exists for the posterior

distribution. We may be able to gain much of the same insight from a given data

set by fitting an accurate approximation of the model, allowing us to summarise

the data and perform statistical inference. Variational approximation aims to ap-

proximate a true, possibly intractable probability distribution p(x) by a simpler,

more tractable distribution q(x) of known form.

Variational approximation often takes the form minimising the Kullback-Leibler

divergence between the true posterior p(θ|y) and an approximating distribution

q(θ), sometimes called a q-density. For an introduction, see Ormerod and Wand

(2010).

The KL divergence between the probability distributions p and q is defined as

KL(q||p) ≡
∫
q(θ) log

[
q(θ)

p(θ|y)

]
dθ.

Suppose that a class of candidate approximating distributions q(θ) is param-

eterised by a vector of variational parameters ξ and write q(θ) ≡ q(θ; ξ). We
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attempt to find an optimal approximating distribution q∗(θ) such that

q∗(θ) = argmin
ξ∈Ξ

KL{q(θ; ξ)||p(θ|y)}.

If θ is partitioned into M partitions θ1, θ2, . . . , θM then a simple form of approxi-

mation to adopt is the factored approximation of the form

q(θ) =
M∏
i=1

q(θi)

where each of the density q(θi) is a member of a parametric family of density func-

tions. This form of approximation is computationally convenient, but assumes

that the partitions of θ are completely independent of one another.

The optimal mean field update for each of the parameters θi can be shown to

be

q∗(θi) ∝ exp [Eq {log p(y;θ)}] .

For details of the proof, and a more thorough introduction to the topic of vari-

ational approximations, see Ormerod and Wand (2010). It can easily be shown

that

log p(y) =

∫
q(θ; ξ) log

[
p(y|θ)p(θ)

q(θ; ξ)

]
dθ + KL(q(θ; ξ)||p(θ|y)).

As the Kullback-Leibler divergence is strictly positive, the first term on the right

hand side is a lower bound on the marginal log-likelihood which we will define

by

log p(y; ξ) ≡
∫
q(θ; ξ) log

[
p(y|θ)p(θ)

q(θ; ξ)

]
dθ

and maximizing log p(y; ξ) with respect to ξ is equivalent to minimizing KL(q(θ; ξ)||p(θ|y)).

The term log p(y; ξ) is referred to as the variational lower bound.
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When the optimal distributions for each q∗i (θi) are calculated, they yield a set of

equations, sometimes called the consistency conditions, which need to be satisfied

simultaneously. These yield a series of mean field updates for the parameters of

each approximating distribution. By executing the mean field update equations in

turn for each parameter in the model, the variational lower bound for the model

p(θ; y) is iteratively increased. It can be shown that by calculating q∗i (θi) for a

particular i with the remaining q∗j (θj), j 6= i fixed, results in a monotonic increase

in the variational lower bound, and thus a monotonic decrease in the Kullback-

Leibler divergence between p(θ|y) and q(θ).

The variational lower bound is maximised iteratively. On each iteration, the

value of each parameter in the model is calculated as the expectation of the full

likelihood relative to the other parameters in the model, which is referred to as

the mean field update. This is done for each parameter in the model in turn until

the variational lower bound’s increase is negligible and convergence is achieved.

Note that this approach can be extended to a wide range of models such as semi-

parametric models as has been formalized by Rohde and Wand (2015).

This approach works well for classes of models where all of the parameters are

conjugate. For more general classes of models, the mean field updates are not ana-

lytically tractable and general gradient-based optimisation methods must be used,

such as for the Gaussian Variational Approximation (Ormerod and Wand, 2012).

These methods are generally difficult to apply in practice, as the problems can

involve the optimisation of many parameters over high-dimensional, constrained

spaces whose constraints cannot be simply expressed.
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Recently, several stochastic Variational Bayes approaches to approximation

problems of this type have emerged. Gershman et al. (2012) used a uniform

weighted mixture of isotropic Gaussians to approximate complex posterior dis-

tributions. The variational lower bound is approximated with first and second-

order Taylor series expansions, and then optimised with L-BFGS. In Kingma and

Welling (2013), the expectations in the expression for the variational lower bound

are approximated using Monte Carlo integration. The variational lower bound is

reparameterised in terms of an auxiliary noise variable such as a standard nor-

mal, to reduce the variance of the Monte Carlo estimate. Tan and Nott (2018)

takes an approach closest to the one we will adopt, using a Gaussian Variational

Approximation. By parameterising the covariance matrix of the Gaussian using

Cholesky factors of the precision matrix, the covariance matrix is guaranteed to be

sparse due to the conditional independence between fixed and random effects of

the mixed model. The variational lower bound can be rewritten so that it does not

depend on the variational parameters. By making a transformation in terms of a

noise variable to standardise the variational parameters, efficient gradient estima-

tors can be derived, then estimated using subsampling of the data set. Sampling

from the fixed normal distribution on each iteration rather than a multivariate

normal depending on the variational parameters in the current iteration reduces

the variance of the estimator. Subsampling of the data set and sampling from the

noise variable make the fitting algorithm doubly stochastic.

Other approximate Bayesian inference techniques exist in the literature, such

as Laplace approximation (Tierney and Kadane, 1986), integrated nested Laplace

approximation (Rue et al., 2009), and Expectation Propagation (Minka, 2013). These
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have been applied to the problem of fitting count models (Barber et al., 2016; Kim

and Wand, 2017). But Expectation Propagation requires very difficult algebra to

complete the derivations required for the updates, and can exhibit convergence

problems. Laplace approximation relies on a Gaussian approximation to the log

of the posterior found by Taylor expanding around the mode, which performs

poorly when the true posterior is not symmetric, as is the case for Poisson regres-

sion models.

1.6.2. Gaussian Variational Approximation. In cases where there is a strong

dependence between partitions of θ, such as between the parameters µ and Σ in a

hierarchical Gaussian model, a factored approximation may not approximate the

true distribution accurately. In this case, an alternate form of approximation may

be used with the parameters considered together to take their dependence into

account. One such form of approximation is the Gaussian Variational Approx-

imation (Ormerod and Wand, 2012), which assumes that the distribution of the

parameters being approximated is multivariate Gaussian. The covariance matrix

of the Gaussian allows the approximation to capture the dependence amongst the

elements of θ, which increases the accuracy of the variational approximation rel-

ative to the factored approximation. This will be the approach used in Chapter

4.

1.6.3. Laplace Method of approximation. Laplace’s method of approxima-

tion, as described in Butler (2007) or MacKay (2002), is used to approximate in-

tegrals of a unimodal function f with negative second derivative at the mode,
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indicating that the function is decreasing rapidly away from this point. The es-

sential idea is that if the function is decreasing rapidly away from the mode, the

bulk of the area under the function will be within a neighbourhood of the mode.

Thus, the integral of the function can be well approximated by an integral over the

neighbourhood of the mode. How large that neighbourhood needs to be is esti-

mated using how fast the function is changing at the mode xm, which is estimated

by |f ′′(xm)|.

Consider an exponential integral of the form∫ b

a

eMf(x)dx

where f(x) is twice differentiable and f ′′(xm) < 0, M ∈ R and a, b ∈ R∪{−∞,∞}.

Let f(x) have a unique mode at xm. Then, Taylor expanding about xm, we have

f(x) = f(xm) + f ′(xm)(x− xm) +
1

2
f ′′(xm)(x− xm)2 +O

(
(x− xm)3

)
.

As f has a global maximum at xm, the first derivative of f is zero at xm. Thus, the

function f(x) may be approximated by

f(x) ≈ f(xm)− 1

2
|f ′′(xm)|(x− xm)2

for x sufficiently close to xm, as the second derivative is negative at xm. This

ensures the approximation of the integral∫ b

a

eMf(x)dx ≈ eMf(xm)

∫ b

a

e−M |f
′′(xm)|(x−xm)2dx
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is accurate. The integral on the right-hand side of the equality is a Gaussian inte-

gral, and thus we find that

∫ b

a

eMf(x)dx ≈

√
2π

M |f ′′(xm)|
eMf(xm).

Thus, we have approximated our integral by a closed form expression. The error

in the approximation is O(1/M). The approximation can be made more accurate

by using a Taylor expansion beyond second order.

1.6.3.1. Extending to multiple dimensions. This approach to approximating inte-

grals extends naturally to multiple dimensions. Consider the second order Taylor

expansion of log f(θ) : Rp → R around the mode θm ∈ Rp given by

log f(θ) ≈ f(θm) + (θ − θm)>∇ log f(θm) + 1
2
(θ − θm)>Hlog f (θm)(θ − θm)

+O(‖θ − θm‖3).

where ∇ log f(θm) is the gradient of the log-likelihood at θm and Hlog f (θm) is the

Hessian matrix of the log-likelihood at θm. Assuming that θm is a stationary point

of log f , then∇f(θm) = 0 and so

log f(θ) ≈ f(θm) +
1

2
(θ − θm)>Hlog f (θm)(θ − θm) +O(‖θ − θm‖3)

at such a point. The quadratic form in θ in the approximate expression for the log

likelihood above leads to a Gaussian approximation for the likelihood

N(θm,−Hlog f (θm)−1).

The approximation is crude but can be quite accurate if the likelihood is symmetric

and unimodal, which is often the case when the sample size is large.
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1.6.4. Other methods: Expectation propagation. Expectation Propagation is

an approximate Bayesian inference method, first proposed in Minka (2001). It

relies on minimising the reverse KL divergence KL(p||q) between the true and

approximating distributions p and q. A factorised form of the distribution

q(θ) =
n∏
i=1

q(θi)

is assumed. In general, fully minimising the KL divergence between p and q is

intractable, so Expectation Propagation approximates this by minimising the KL

divergence of each of the factors individually. It does this by cycling through each

of the factors matching the sufficient statistics of each, incorporating the informa-

tion already in the other factors. The factors are cycled through several times until

convergence is achieved.

While promising, unlike with Variational Bayes, there is no guarantee of con-

vergence, and there is still much work to be done before it is as mature as other

approximation methods like Variational Bayes and Laplace approximation.

A linear model with normal priors allows exact inference on the regression

and model selection parameters in closed form, which might appear to negate the

benefits of a variational approximation to the model. However, the performance

of our variational approximation should remain similar if the priors are altered to

cater for complications such as robustness, while exact Bayesian inference calcu-

lations are no longer possible in closed form in these situations.

1.7. Our contributions

In this section, we briefly outline the major contributions in this thesis.
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• A popular choice of Bayesian model selection is to use regression models

with g-priors. For the Beta Prime prior (Maruyama and George, 2011) we

were able to derive closed form expressions for the posterior distributions

of most of the parameters of the model in terms of the hypergeometric

function.

• An important consideration in model selection is being able to compare

models against one another. Calculation of the Bayes Factors for compar-

ing models requires being able to compute the posterior distribution of g.

In our second chapter, we derive closed form expressions in terms of spe-

cial functions for the posterior distributions of g for a number of choices of

g prior from the literature: Liang’s hyper-g prior, Liang’s hyper-g/n prior

(Liang et al., 2008), Bayarri’s robust g prior (Bayarri et al., 2012) and the

Beta-Prime (Maruyama and George, 2011) prior.

• Exact inference for model selection for linear models with normal priors is

computationally feasible when the number of covariates is small, with p be-

low 40. But exhaustively exploring the search space is not efficient, and of-

ten not computationally feasible for a larger number of covariates. To deal

with this situation, in our fourth chapter, we adopt a population- based

technique inspired by Ročková’s work on population-based EM (Ročková,

2017) to efficiently explore the posterior model space. Instead, approxi-

mate methods can be used to search the parts of the model space for which

the posterior model likelihood is the highest. In our third chapter, we pro-

pose a population-based algorithm, which works by adding or removing
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a covariate at a time to each of the fitted models in the population. We im-

plement this algorithm for a number of model selection priors from the lit-

erature: the Liang’s hyper-g prior, the Liang’s hyper-g/n prior (Liang et al.,

2008), Bayarri’s robust g prior (Bayarri et al., 2012) and the Maruyama and

George Beta-Prime prior (Maruyama and George, 2011).

• We are able to implement this algorithm efficiently by using rank-one up-

dates and downdates and the closed forms of the posteriors for the model

selection priors that we consider. The population-based approach allows

us to estimate the uncertainty in the model selection process.

• Generalised Linear Mixed Models are an appealing way to model data, as

they are flexible enough to model a range of data types and situations. But

the Bayesian versions of these models typically require computationally

demanding MCMC, which can also be prone to convergence problems.

Instead, we consider approximate Bayesian inference techniques, which

are computationally efficient and deterministic.

• It is desirable to use normal priors for the regression coefficients of these

models, as these are easily interpreted. But for Generalised Linear Mixed

Models with a non-normal response, these priors are non-conjugate, mak-

ing VB difficult to apply as the required mean field updates are intractable.

We apply Gaussian Variational Bayes – an extension to Variational Bayes,

to fit a multivariate normal distribution to the regression coefficients of our

models.

• In our fourth chapter, we present a Gaussian Variational Approximation to

a zero-inflated Poisson mixed model which can flexibly incorporate both
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fixed and random effects. This allows us to use our model fitting algorithm

to fit complicated models to the data incorporating random intercepts and

slopes and additive models using O’Sullivan-penalised splines. The model

is fit by optimising the conditional likelihood of the Gaussian component

of the model given the parameters governing zero-inflation and the covari-

ance matrix Σ.

• We present a new parameterisation for the covariance matrix of the Gauss-

ian based on the Cholesky factorisation of the precision matrix, and detail

computation and numerical advantages of this factorisation, owing to its

sparsity when the form of the covariance matrix of the Gaussian is known

due to knowledge of the random effects in the model.



CHAPTER 2

Calculating Bayes factors for linear models using mixture g-priors

Abstract

In this chapter, we consider the numerical evaluation of Bayes factors for linear

models using different mixture g-priors. In particular, we consider hyperpriors

for g leading to closed-form expressions for the Bayes factor including the hyper-

g and hyper-g/n priors of Liang et al. (2008), the beta-prime prior of Maruyama

and George (2011), the robust prior of Bayarri et al. (2012), and the Cake prior of

Ormerod et al. (2017). In particular, we describe how each of these Bayes factors,

except for Bayes factor under the hyper-g/n prior, can be evaluated in an efficient,

accurate and numerically stable manner. We also derive a closed form expression

for the Bayes factor under the hyper-g/n for which we develop a convenient nu-

merical approximation. We implement an R package for Bayesian linear model

averaging, and discuss some associated computational issues. We illustrate the

advantages of our implementation over several existing packages on several small

datasets. 1

1This chapter corresponds to the collaborative paper: Greenaway M.J. & Ormerod J.T (2018). Nu-
merical aspects of calculating Bayes factors for linear models using mixture g-priors. Submitted to
the Journal of Computational and Graphical Statistics.

44
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2.1. Introduction

There has been a large amount of research in recent years into the appropri-

ate choice of suitable and meaningful priors for linear regression models in the

context of Bayesian model selection and averaging. Specification of the prior

structure of these models must be made with great care in order for Bayesian

model selection and averaging procedures to have good theoretical properties. A

key problem in this context occurs when the models have differing dimensions

and non-common parameters where inferences are typically highly sensitive to

the choice of priors for the non-common parameters due to the Jeffreys-Lindley-

Bartlett paradox (Lindley, 1957; Bartlett, 1957; Ormerod et al., 2017). Furthermore,

this sensitivity does not necessarily vanish as the sample size grows (Kass and

Raftery, 1995; Berger and Pericchi, 2001).

Bayes factors in the context of linear model selection (Zellner and Siow, 1980a,b;

Mitchell and Beauchamp, 1988; George and McCulloch, 1993; Fernández et al.,

2001; Liang et al., 2008; Maruyama and George, 2011; Bayarri et al., 2012) have

received an enormous amount of attention. A landmark paper in this field is

Liang et al. (2008). Liang et al. (2008) considers a particular prior structure for

the model parameters. In particular they consider a Zellner’s g-prior (Zellner and

Siow, 1980a; Zellner, 1986) for the regression coefficients where g is a prior hyper-

parameter. The parameter g requires special consideration. If g is set to a large

constant most of the posterior mass is placed on the null model, a phenomenon

sometimes referred to as Bartlett’s paradox. Due to this problem they discuss pre-

vious approaches which set g to a constant, e.g., setting g = n (Kass and Wasser-

man, 1995), g = p2 (Foster and George, 1994), and g = max(n, p2) (Fernández
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et al., 2001). However, Liang et al. (2008) showed that all of these choices lead

to what they call the information paradox, where the posterior probability of the

true model does not tend to 1 as the sample size grows. Finally, Liang et al. (2008)

also consider a local and global empirical Bayes (EB) procedure for selecting g. In

these cases Liang et al. (2008) show that these EB procedures are model selection

consistent except when the true model is the null model (the model containing the

intercept only).

The above problems suggest that a hyperprior should be placed on g. Bayarri

et al. (2012) also discuss in some depth desirable properties priors should have in

the context of linear model averaging and selection. In this chapter we review the

prior structures, specifically the hyperpriors on g, that lead to closed form expres-

sions of Bayes factors for comparing linear models. These include linear models

with Zellner g-priors with mixture g priors including the hyper-g prior of Liang

et al. (2008), the beta-prime prior of Maruyama and George (2011), and the robust

prior of Bayarri et al. (2012), and most recently the Cake prior of Ormerod et al.

(2017). We concern ourselves with the efficient, accurate and numerically stable

evaluation of Bayes factors, Bayesian model averaging, and Bayesian model se-

lection for linear models under the above choices of prior structures for the model

parameters.

Our main contributions in this chapter are as follows.

a) To the above list of hyperpriors on g leading to closed form Bayes factors

we add the hyper-g/n prior of Liang et al. (2008) for which we derive a

new closed form expression for the Bayes factor in terms of the Appell

hypergeometric function.
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b) We derive an alternative expression for the Bayes factor when using the ro-

bust prior of Bayarri et al. (2012) in terms of the Gaussian hypergeometric

function.

c) We describe how the Bayes factors corresponding to the hyper-g prior of

Liang et al. (2008) and robust prior of Bayarri et al. (2012) can be calculated

in an efficient, accurate and numerically stable manner without the need

for special software or approximation.

d) We derive a reasonably accurate approximation for the Appell hyperge-

ometric function which can be calculated in an efficient and numerically

stable manner when the number of non-zero coefficients in a particular

model is strictly greater than 2.

e) We make available a highly efficient and numerically stable R package called

blma available for exact Bayesian linear model averaging using the above

prior structures which is available for download from the following web

address.

http://github.com/certifiedwaif/blma

We demonstrate the advantages of our implementation of exact Bayesian model

averaging over some existing R packages using several small datasets.

The chapter is organised as follows. Section 2.2 describes Bayesian model av-

eraging and model selection for linear models. Section 2.3 outlines and justifies

our chosen model and prior structure for the linear regression model parameters.

Section 2.4 derives closed form expressions for various marginal likelihoods us-

ing different hyperpriors for g and, wherever possible, describes how these may
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be evaluated well numerically. In Section 2.6, we discuss details of our imple-

mentation which made our implementation computationally feasible. In Section

2.7 we perform a series of numerical experiments to show the advantages of our

approach.

2.2. Bayesian linear model selection and averaging

Suppose y = (y1, . . . , yn)T is a response vector of length n, X is an n× p matrix

of covariates where we anticipate a linear relationship between y and X, but do

not know which of the columns of X are important to the prediction of y. Bayesian

model averaging seeks to improve prediction by averaging over multiple predic-

tions over different choices of combinations of predictors.

We consider the linear model for predicting y with design matrix X via

(4) y|α,β, σ2 ∼ Nn(1α + Xβ, σ2I),

where α is the model intercept, β is a coefficient vector of length p, σ2 is the resid-

ual variance, and I is the n× n identity matrix. Without loss of generality, to sim-

plify later calculations, we will standardize y and X so that y = 0, ‖y‖2 = yTy = n,

XT
j 1 = 0, and ‖Xj‖2 = n where Xj is the jth column of X.

Suppose that we wish to perform Bayesian model selection, model averaging

or hypothesis testing where we are interested in comparing how different subsets

of predictors (which correspond to different columns of the matrix X) have on

the response y. To this end, let γ ∈ {0, 1}p be a binary vector of indicators for the

inclusion of the pth column of X in the model where Xγ denotes the design matrix

formed by including only the jth column of X when γj = 1, and excluding it
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otherwise. Letβ−γ denote the elements of the regression co-efficients not included

in the model γ.

In order to keep our exposition as general as possible we will assume a prior

structure of p(α,βγ |γ)p(γ) but, for the time being, we will leave the specific form

of p(α,βγ |γ) and p(γ) unspecified. Let βγ denote the subvector of β of length

|γ| = 1Tγ corresponding to the components of γ which equal 1. Similarly, let β−γ

denote the subvector of β of length p− |γ| corresponding to the components of γ

which equal 0. We adopt a prior on β−γ of the form

(5) p(β−γ |γ) =

p∏
j=1

δ(βj; 0)1−γj ,

where δ(x; a) is the Dirac delta function with location a. The prior on β−γ in (5)

is the spike in a spike and slab prior where the prior on βγ is assumed to be flat

(the slab). There are several variants of the spike and slab prior initially used in

Mitchell and Beauchamp (1988) and later refined in George and McCulloch (1993).

The above structure implies that p(β−γ |y) is a point mass at 0 and leads to alge-

braic and computational simplifications for components of βwhen corresponding

elements of γ are zero. Thus, γj = 0 is equivalent to excluding the corresponding

predictor Xj from the model.

Exact Bayesian model averaging revolves around the posterior probability of

a model γ using Bayes theorem

p(γ|y) =
p(y|γ)p(γ)∑
γ′ p(y|γ ′)p(γ ′)

=
p(γ)BF(γ)∑
γ′ p(γ

′)BF(γ ′)
where p(y|γ) =

∫
p(y,θ|γ) dθ,
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letting θ = (α,β, σ2), using
∑

γ to denote a combinatorial sum over all 2p possible

values of γ, and BF(γ) = p(y|γ)/p(y|0) is the null based Bayes factor for model

γ. Note that the Bayes factor is a statistic commonly used in Bayesian hypoth-

esis testing (Kass and Raftery, 1995; Ormerod et al., 2017). Prediction is based

on the posterior distributions of α and β where p(β|y) =
∑

γ p(β|y,γ) · p(γ|y)

(with similar expressions for α and σ2). The posterior expectation of γ is given by

E(γ|y) =
∑

γ γ · p(γ|y).

If one is required to select a single model, say γ∗, two common choices are the

highest posterior model (HPM) which uses γ∗ = γHPM = argmaxγ{ p(y|γ) }, or the

median posterior model (MPM) where γ∗ is obtained by rounding each element

of E(γ|y) to the nearest integer. The MPM has predictive optimality properties

(Barbieri and Berger, 2004). If the MPM is used for model selection the quantity

E(γ|y) is sometimes referred to as the posterior (variable) inclusion probability

(PIP) vector.

Ignoring for the moment the problems associated with specifying p(α,βγ ,γ),

all of the above quantities are conceptually straightforward. In practice the com-

putation of the quantities p(γ|y), p(β|y) and E(γ|y) are only feasible for small

values of p (say around p = 30). For large values of p we need to pursue alterna-

tives to exact inference.

2.3. Prior specification for linear model parameters

We will specify the prior p(α,β, σ2|γ) as follows

(6) p(α) ∝ 1, βγ |σ2, g,γ ∼ Np(0, gσ
2(XT

γXγ)−1), and p(σ2) ∝ (σ2)−1,
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where we have introduced a new prior hyperparameter g. For the time being we

will defer specification of p(g) and p(γ). We will now justify each element of the

above prior structure.

The priors on α and σ2 are improper Jeffreys priors and have been justified in

Berger et al. (1998). In the context of Bayesian model selection, model averaging or

hypothesis testing α and σ2 appear in all models so that when comparing models

the proportionality constants in the corresponding Bayes factors cancel. It can be

shown that the parameter posteriors are proper provided n ≥ 2 (see Bayarri et al.,

2012).

The prior on βγ is Zellner’s g-prior (see for example, Zellner, 1986) with prior

hyperparameter g. This family of priors for a Gaussian regression model where

the prior covariance matrix of βγ is taken to be a multiple of g with the Fisher

information matrix for β. This places the most prior mass for βγ on the section of

the parameter space where the data is least informative, and makes the marginal

likelihood of the model scale-invariant. Furthermore, this choice of prior removes

a log-determinant of XT
γXγ term from the expression for the marginal likelihood,

which is an additional computational burden to calculate. The prior on βγ com-

bined with the prior on β−γ in (6) constitutes one variant of the spike and slab

prior for β.

An alternative choice of prior on βγ was proposed by Maruyama and George

(2011). Let pγ = |γ|, the number of non-zero elements in γ. We will now describe

their prior on βγ for the case where pγ < n − 1. Let UΛUT be an eigenvalue

decomposition of XT
γXγ where U is an orthonormal pγ × pγ matrix, and Λ =

diag(λ1, . . . , λpγ ) is a diagonal matrix of eigenvalues with λ1 ≥ · · · ≥ λpγ > 0.
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Then Maruyama and George (2011) propose a prior for βγ of the form

(7) βγ |σ2, g ∼ N(0, σ2(UWU>)−1),

where W = diag(w1, . . . , wpγ ) with wj = λj/[νj(1 +g)−1] for some prior hyperpa-

rameters νq < . . . < ν1. Maruyama and George (2011) suggest as a default choice

for the νj’s to use νj = λj/λpγ , for 1 ≤ j ≤ pγ . This choice down-weights the prior

on the rotated parameter space of (Uβ)j when the corresponding eigenvalue λj

is large, which leads to prior variances on the regression coefficients that are ap-

proximately the same size. Note that when ν1 = . . . = νpγ = 1 the prior (7) reduces

to the prior for β in (6).

The choice between (7) and the prior for β in (6) represents a trade-off over

computational efficiency and desirable statistical properties. We choose (6) be-

cause it avoids the computational burden of calculating an eigenvalue or a singu-

lar value decomposition of a pγ × pγ matrix for every model considered, which

typically can be computed in O(p3
γ) floating point operations. It also means that

we can exploit efficient matrix updates to traverse the entire model space in a

computationally efficient manner allowing this to be done feasibly when p is less

than around 30 on a standard 2017 laptop (see Section 2.6 for details).

The marginal likelihood for the model (4) and under prior structure (6). Inte-

grating out α, β, and σ2 from p(y, α,β, σ2|g,γ) we obtain

(8) p(y|g,γ) = K(n)(1 + g)(n−pγ−1)/2(1 + g(1−R2
γ))−(n−1)/2,

where K(n) = [Γ((n − 1)/2)]/[
√
n(nπ)(n−1)/2], and R2

γ = yTXT
γ (XT

γXγ)−1XT
γy/n is

the usual R-squared statistic for model γ. This is the same expression as Liang
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et al. (2008) Equation (5) after simplification. Note that when γ = 0, i.e., the null

model, then pγ = 0, and R2
γ = 0 leading to the simplification p(y|g,0) = K(n) for

all g. Hence, p(y|0) = K(n) provided the hyperprior for g is a proper density. We

will now discuss the specification of g.

2.4. Hyperpriors on g

Here we outline some of the choices of hyperpriors for g used in the literature,

their properties, and where possible how to implement these in an efficient, accu-

rate, and numerically stable manner. We cover the hyper-g and hyper-g/n priors

of Liang et al. (2008), the beta-prime prior of Maruyama and George (2011), the

robust prior of Bayarri et al. (2012), and the Cake prior of Ormerod et al. (2017).

We also considered the prior structure implied by Zellner and Siow (1980a), but

were unable to make meaningful progress on existing methodology for this case.

We show that many of the hyperpriors on g result in Bayes factors which can be

expressed in terms of the Gaussian hypergeometric function denoted 2F1( · , · ; · ; · )

(see for example Chapter 15 of Abramowitz and Stegun, 1972). The Gaussian hy-

pergeometric function is notoriously prone to overflow and numerical instability

(Pearson et al., 2017). When such numerical issues arise Liang et al. (2008) de-

rive a Laplace approximation to 2F1 implemented in the R package BAS. Key to

achieving accuracy, efficiency and numerical stability for several different mixture

g-priors is the following result.

Result 1: For x ∈ (0, 1), c > 1, and b+ 1 > c, a > 0 we have

(9) 2F1(a+ b, 1; a+ 1;x) =
a

x(1− x)

pbeta(x, a, b)

dbeta(x, a, b)
,
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where pbeta(x; a, b) and dbeta(x; a, b) are the cdf and pdf of the beta distribution respec-

tively.

Proof: Using identity 2.5.23 of Abramowitz and Stegun (1972) the cdf of the beta

distribution can be written as

pbeta(x; a, b) =
xa

aBeta(a, b)
· 2F1(a, 1− b; a+ 1;x)

where Beta(a, b) is the beta function. Using the Euler transformation 2F1(a, b; c, x) =

(1− x)c−a−b2F1(c− a, c− b; c, x), and the fact that 2F1(a, b; c, x) = 2F1(b, a; c, x), we

obtain

pbeta(x; a, b) =
xa(1− x)b

aBeta(a, b)
· 2F1(a+ b, 1; a+ 1;x).

Lastly, after rearranging we obtain Result 1.
2

Numerical overflow can be avoided since standard libraries exist for evaluating

pbeta(x, a, b) and dbeta(x, a, b) on the log scale. Recently, Nadarajah (2015) stated

an equivalent result originally derived in Prudnikov et al. (1986).

2.4.1. The hyper-g prior. Initially, Liang et al. (2008) suggest the hyper g-prior

where

(10) pg(g) =
a− 2

2
(1 + g)−a/2,

for a > 2 and g > 0. Combining (8) with (10), we have

(11)
pg(y|γ) = K(n)

a− 2

2

×
∫ ∞

0

(1 + g)−a/2 (1 + g)(n−pγ−1)/2
[
1 + g(1−R2

γ)
]−(n−1)/2

dg.
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After applying 3.197(5) of Gradshteyn and Ryzhik (2007), i.e.,

(12)
∫ ∞

0

xλ−1(1 + x)ν(1 + αx)µdx = Beta(λ,−µ− ν − λ)2F1(−µ, λ;−µ− ν; 1− α),

(which holds provided−(µ+ν) > λ > 0), again using 2F1(a, b; c, x) = 2F1(b, a; c, x),

and using the mappings

λ↔ 1, ν ↔ n− pγ − 1

2
, α↔ 1−R2

γ , and ν ↔ −n− 1

2

leads to

(13) BFg(γ) =
pg(y|γ)

pg(y|0)
=

(
a− 2

pγ + a− 2

)
· 2F1

(
n− 1

2
, 1;

pγ + a

2
;R2

γ

)
.

Using Result 1 the Bayes factor under the hyper-g prior can be written as

(14) BFg(γ) =
a− 2

2R2
γ(1−R2

γ)

pbeta
(
R2

γ ,
pγ+a−2

2
, n−pγ−a+1

2

)
dbeta

(
R2

γ ,
pγ+a−2

2
, n−pγ−a+1

2

) .
Unfortunately, Liang et al. (2008) also showed that (13) is not model selection con-

sistent when the true model is the null model (the model only containing the in-

tercept) and so alternative hyperpriors for g should be used.

2.4.2. The hyper-g/n prior. Given the problems with the hyper-g prior, Liang

et al. (2008) proposed a modified variant of the hyper-g prior which uses

(15) pg/n(g) =
a− 2

2n

(
1 +

g

n

)−a/2
,

which they call the hyper-g/n prior where again a > 2 and g > 0. They show that

this prior leads to model selection consistency. Combining (8) with (15), and using
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the transform g = u/(1− x), the quantity p(y|γ) can be expressed as the integral

(16)

pg/n(y|γ) = K(n)
a− 2

2n

×
∫ 1

0

(1− u)p/2+a/2−2
(
1− u

(
1− 1

n

))−a/2 (
1− uR2

γ

)−(n−1)/2
du.

Employing Equation 3.211 of Gradshteyn and Ryzhik (2007), i.e.,∫ 1

0

xλ−1(1− x)µ−1(1− ux)−δ(1− vx)−σdx = Beta(µ, λ)F1(λ, δ, σ, λ+ µ;u, v)

provided λ > 0 and µ > 0 where F1 is the Appell hypergeometric function in two

variables (Weisstein, 2009), using the mappings

λ↔ 1, µ↔ p+ a− 2

2
, u↔ 1− 1

n
δ ↔ a

2
, v ↔ R2

γ and σ ↔ n− 1

2

and using properties of the Beta and Gamma functions leads to

(17) BFg/n(γ) =
a− 2

n(pγ + a− 2)
F1

(
1,
a

2
,
n− 1

2
;
pγ + a

2
; 1− 1

n
,R2

γ

)
,

which is to our knowledge a new expression for the Bayes factor under the hyper

g/n-prior.

Unfortunately, the expression (17) is extremely difficult to evaluate numeri-

cally since the second last argument of the above F1 is asymptotically close to the

branch point with the last argument at 1. Liang et al. (2008) again suggest Laplace

approximation for this choice of prior. We now derive an alternative approxima-

tion. Using the fact that

F1(1, b1, b2, c; 1, y) = (c−1)

∫ 1

0

(1− t)c−b1−2(1−yt)−b2 dt = (c−1)
2F1(1, b2; c− b1; y)

c− b1 − 1



2.4. HYPERPRIORS ON g 57

and the approximation F1(1, b1, b2, c; 1−1/n, y) ≈ F1(1, b1, b2, c; 1, y) (which should

be reasonable for large n), for pγ > 2 we obtain

(18) BFg/n(γ) ≈ a− 2

2nR2
γ(1−R2

γ)

pbeta
(
R2

γ ,
pγ−2

2
, n−pγ+1

2

)
dbeta

(
R2

γ ,
pγ−2

2
, n−pγ+1

2

) .
For the cases where p ∈ {1, 2} we will use numerical quadrature. When p = 0, we

also have that R2
γ = 0 so BFg/n(γ) = 1. Figure 1 illustrates the differences between

“exact” values of the BFg/n (obtained using numerical quadrature) as a function of

n, pγ , and R2
γ . From this figure we see that the approximation has a good relative

error except for R2
γ values close to 1 when the approximation overestimates the

true value of the log Bayes factor. We found numerical quadrature to be more

reliable than using (17) evaluated using the appell() function in the package

Appell.

2.4.3. Robust prior. Next we will consider the robust hyperprior for g as pro-

posed by Bayarri et al. (2012) designed to have several nice theoretical properties

outlined there. Using the default parameter choices the hyperprior for g used by

Bayarri et al. (2012) corresponds to:

(19) prob(g) = 1
2
r1/2(1 + g)−3/2,

for g > L where L = r− 1 and r = (1 + n)/(1 + pγ). Combining (8) with (19) leads

to an expression for p(y|γ) of the form

(20) prob(y|γ) = K(n)1
2
r1/2

∫ ∞
L

(1 + g)(n−pγ)/2−2(1 + gσ̂2
γ)−(n−1)/2dg,
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FIGURE 1. On the left side panels are plotted the values of log of
BFg/n (light versions of the colours) and their corresponding approx-
imation (dark version of the colours) as a function of n, p over a the
range R2 ∈ (0, 0.999). Right side panels display the log of the abso-
lute value of the exact values of log of BFg/n minus the correspond-
ing approximations. Smaller values indicate better approximations,
larger values indicate worse approximations.
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where σ̂2
γ = 1 − R2

γ is the MLE for σ2 for model (4) when X is replaced with

Xγ under the standardization described in Section 2. Using the substitution x =

r/(g − L) and some minor algebraic manipulation leads to

BFrob(γ) = 1
2
r−pγ/2(σ̂2

γ)−(n−1)/2

×
∫ ∞

0

x(pγ−1)/2(1 + x)(n−pγ−4)/2

(
1 +

(1 + σ̂2
γL)x

(1 + L)σ̂2
γ

)−(n−1)/2

dx.

Using Equation 3.197(5) of Gradshteyn and Ryzhik (2007), i.e. (12), with the map-

pings

λ↔ pγ + 1

2
, ν ↔ n− pγ − 4

2
, α↔

(1 + σ̂2
γL)

(1 + L)σ̂2
γ

, and µ↔ −n− 1

2
,

the conditions required by (12) are satisfied provided α ∈ (−1, 1) (which is a rela-

tively restrictive condition). This leads to

(21) BFrob(γ) =
(
n+1
pγ+1

)−pγ/2 (σ̂2
γ)−(n−1)/2

pγ+1 2F1

(
n−1

2
, pγ+1

2
; pγ+3

2
;

(1−1/σ̂2
γ)(pγ+1)

1+n

)
,

which is the same expression as Equation 26 of Bayarri et al. (2012) modulo nota-

tion.

The expression (21) is difficult to deal with numerically for two reasons. When

σ̂2
γ becomes small the last argument of 2F1 function can become less than−1 which

falls outside the unit interval. The BayesVarSel package which implements this

choice of prior deals with these problems using numerical quadrature.

Instead suppose we begin with the substitution x = g − L which after minor

algebraic manipulation leads to

BFrob(γ) = 1
2
r1/2

(
σ̂2
γ

)−(n−1)/2
∫ ∞

0

(r + x)(n−pγ−4)/2
(

1+σ̂2
γL

σ̂2
γ

+ x
)−(n−1)/2

dx.
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Employing Equation 3.197(1) of Gradshteyn and Ryzhik (2007), i.e.,∫ ∞
0

xν−1(β + x)−µ(x+ γ)−%dx = β−µγν−%Beta(ν, µ− ν + %)2F1(µ, ν;µ+ %; 1− γ/β),

(which holds provided ν > 0, µ > ν − %), with the mappings

ν ↔ 1, β ↔
1 + σ̂2

γL

σ̂2
γ

, µ↔ (n− 1)/2 γ ↔ r and %↔ −(n− pγ − 4)/2,

The conditions of the integral result easily hold. Hence, after some algebraic ma-

nipulation and applying Result 1, and letting R̃2
γ = R2

γ/(1 + Lσ̂2
γ) we obtain

(22) BFrob(γ) =

(
1 + n

1 + pγ

)(n−pγ−1)/2
(
1 + Lσ̂2

γ

)−(n−1)/2

2R̃2
γ(1− R̃2

γ)

pbeta
(
R̃2

γ ,
pγ+1

2
, n−pγ−2

2

)
dbeta

(
R̃2

γ ,
pγ+1

2
, n−pγ−2

2

) .
This expression is numerically far easier to evaluate efficiently and accurately in

a numerically stable manner. Due to simplifications we have 0 ≤ σ̂2
γ < 1, we

also have L > 0 so that the last argument of the 2F1 above is bounded in the unit

interval.

2.4.4. Beta-prime prior. Next we will consider the prior

(23) pbp(g) =
gb(1 + g)−(a+b+2)

Beta(a+ 1, b+ 1)
,

proposed by Maruyama and George (2011) where g > 0, a > −1 and b > −1. This

is a Pearson Type VI or beta-prime distribution. More specifically,

g ∼ Beta-prime(b+ 1, a+ 1)
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using the usual parametrization of the beta-prime distribution (Johnson et al.,

1995). Then combining (8) with (23) the quantity p(y|γ) can be expressed as the

integral

pbp(y|γ) =
K(n)

Beta(a+ 1, b+ 1)

∫ ∞
0

gb(1+g)(n−pγ−1)/2−(a+b+2)(1+g(1−R2
γ))−(n−1)/2dg.

If we choose b = (n − pγ − 5)/2 − a, then the exponent of the (1 + g) term in

the equation above is zero. Using Equation 3.194 (iii) of Gradshteyn and Ryzhik

(2007), i.e., ∫ ∞
0

xµ−1

(1 + βx)ν
dx = β−µBeta(µ, ν − µ),

provided µ, ν > 0 and ν > µ, we obtain

(24) BFbp(y|γ) =
Beta(p/2 + a+ 1, b+ 1)

Beta(a+ 1, b+ 1)
(1−R2

γ)−(b+1)

which is a simplification of the Bayes factor proposed by Maruyama and George

(2011).

Note that (24) is proportional to a special case of the prior structure consid-

ered by Maruyama and George (2011) who refer to this as a model selection cri-

terion (after Zellner’s g prior). This choice of b also ensures that g = O(n) so that

tr{Var(β|g, σ2)} = O(1), preventing Bartlett’s paradox. Note that in comparison

to the priors we have previously discussed, this choice of prior yields a marginal

likelihood that can be expressed entirely with gamma functions, which are well-

behaved numerically. Maruyama and George (2011) showed the prior (23) leads

to model selection consistency. For derivation of the above properties and further

discussion see Maruyama and George (2011).
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2.4.5. BIC via Cake priors. Ormerod et al. (2017) developed the Cake prior,

which allows arbitrarily diffuse priors while avoiding Bartlett’s paradox. Cake

priors can be thought of as a Jefferys prior in the limit as the prior becomes in-

creasingly diffuse and enjoy nice theoretical properties including model selection

consistency. Ormerod et al. (2017) departs from the prior structure (6) and instead

uses

(25)
α|σ2, g ∼ N(0, gσ2), βγ |σ2, g ∼ N

(
0, gσ2

(
1
n
XT

γXγ

)−1
)

and p(g|γj) = δ(g;h1/(1+pγ))

where h is a common prior hyperparameter for all models. After marginalizing

out α, β, σ2 and g the null based Bayes factor for model γ is of the form

log BF(γ;h) = −n
2

log
(

1− h1/(1+pγ )

1+h1/(1+pγ )R
2
γ

)
− pγ

2
log
(
n+ h−1/(1+pγ)

)
.

Taking h→∞we obtain a null based Bayes factor of

(26) BF(γ) = exp
[
−n

2
log
(
1−R2

γ

)
− pγ

2
log (n)

]
= exp

[
−1

2
BIC(γ)

]
where BIC(γ) = n log

(
1−R2

γ

)
+ pγ log(n).

2.5. Prior on the model space/size

The last ingredient to a fully Bayesian model specification is the prior on γ,

sometimes referred to as a prior on the model space, or model size. For this prob-

lems where n < p a uniform prior of the form

(27) p(γ) = 2−p for all γ ∈ {0, 1}p,
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often works well. This is equivalent to p(γj) = 1/2, 1 ≤ j ≤ p Scott and Berger

(2010) state that this model prior provides no multiplicity control in a multiple

testing setting, and uses an a priori model size of p/2 with a standard deviation

of
√
p/2 leading to an a priori large fraction of covariates being included when p

is large. The beta-binomial prior on the model space uses a prior on γ implied by

the hierarchy

(28) p(γ) =

p∏
j=1

ργj(1− ρ)1−γj

where ρ is the prior probability a variable is included in the mode, and a and b are

fixed prior hyperparameters. After marginalizing out ρ we have

(29) p(γ) =
Beta(a+ pγ , b+ p− pγ)

Beta(a, b)
,

which is a beta-binomial distribution on the model size. Note a = b = 1 cor-

responds to a uniform prior on the prior variable inclusion probability (and can

also be viewed as a “flat” prior), but is quite different to placing a uniform prior

on the set of all models. The theory developed by Castillo et al. (2015) suggests

a = 1 and b = pu for some constant u > 1 in the asymptotic regime where p > n

with p growing slightly slower than exponentially.

2.6. Implementation

Key to the feasibility of the model selection and averaging is an efficient imple-

mentation of these procedures. We employ two main strategies to achieve com-

putational efficiency (i) efficient software implementation using highly optimized

software libraries; and (ii) efficient calculation of R-squared values for all models



64 2. CALCULATING BAYES FACTORS FOR LINEAR MODELS USING MIXTURE g-PRIORS

based on using a Gray code and appropriate matrix algebraic simplifications. For

ease of use we implemented an R package called blma. The internals of blma

are implemented in C++ and use the R packages Rcpp and RcppEigen to en-

hance computational performance. The library OpenMP was used to exploit par-

allel computation.

There are two main special functions used in the paper – the Gaussian hy-

pergeometric function, and the Appell hypergeometric function of two variables.

During the implementation process we tried several packages which implemented

the Gaussian hypergeometric function. We found that the R package gsl (Han-

kin, 2006) was the most accurate, numerically stable implementation amongst the

packages we tried. The R package Appell implements the Appell hypergeomet-

ric function (Bové et al., 2013). We also developed our own numerical quadrature

routine to evaluate the Appell hypergeometric function to check our results.

2.6.1. Gray code. The Gray code was originally developed by Frank Gray in

1947 (Press et al., 2007b, Section 22.3) to aid in detecting errors in analog to dig-

ital conversions in communications systems. It is a sequence of binary numbers

whose key feature is that one and only one binary digit is different between bi-

nary numbers in the sequence. Gray codes can be constructed using a sequence

of “reflect” and “prefix” steps. Let Γ1 = (0, 1)T ∈ {0, 1}2×1 be the first Gray code

matrix and let Γk be the kth Gray code matrix. Then we can obtain the (k + 1)th

Gray code matrix given Γk via

Γk+1 =

 0 Γk

1 reflect(Γk)
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where reflect(Γk) is the matrix obtained by reversing the order of rows of Γk, and

the 0 and 1 are vectors of zeros and ones of length 2k respectively. In C and C++

these Gray codes can be efficiently constructed using bit-shift operations on binary

strings in such a way that Γk matrices are never computed and stored explicitly.

Gray codes allow the enumeration of the entire model space in an order which

only adds or removes one covariate from the previous model at a time. We can

then use standard matrix inverse results to perform rank one updates and down-

dates in the calculation of the R2, (XTX)−1 and β̂ values for each model in the

model space.

2.6.2. Model updates and downdates. Both updates and downdates depend

on the fact that the inverse of a real symmetric matrix can be written as

 A B

BT C

−1

=

 I 0

−C−1BT I

 Ã 0

0 C−1

 I −BC−1

0 I

(30)

=

 Ã −ÃBC−1

−C−1BT Ã C−1 + C−1BT ÃBC−1

(31)

where Ã =
(
A−BC−1BT

)−1 provided all inverses in (30) and (31) exist. For both

the update and downdate formula we assume that the quantities XTy, XTX have

been precalculated, and that the (XT
γi

Xγi)
−1, β̂γi

and R2
γi

values have been com-

puted from the previous step. These update/downdate operations are equivalent

to the “sweep” operator described in Goodnight (1979).

We want to update the model inverse matrix, coefficient vector and R2 values

for the model γi+1 where Xγi+1
is the matrix given by Xγi with a column z inserted
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into the appropriate position. For clarity of exposition we will assume that the

column z is located in the last column of Xγi+1
, i.e., Xγi+1

= [Xγi , z]. This can be

achieved, if necessary, by appropriate permuting columns of various matrices.

The updates for the model inverse matrix, coefficient estimates, and R2 values

can be obtained by following the steps below.

a) Calculate ẑ = (XT
γi

Xγi)
−1XT

γi
z, κ = 1/(n− zT ẑ), and s = yT (z− ẑ).

b) The model inverse matrix can be updated via

(XT
γi+1

Xγi+1
)−1 =

 (XT
γi

Xγi)
−1 0

0 0

+ κ

 ẑ

−1

 ẑ

−1

T .
c) The coefficient estimators β̂γi

= (XT
γi

Xγi)
−1XT

γi
y, and

β̂γi+1
= (XT

γi+1
Xγi+1

)−1XT
γi+1

y.

Then using the block inverse formula we have the relation

β̂γi+1
=

 β̂γi

0

− κs
 ẑ

−1

 .
d) The R2 value let R2

γi
= 1

n
yTXγi(X

T
γi

Xγi)
−1XT

γi
y. Then using the block in-

verse formula we have

R2
γi+1

= R2
γi

+
κs2

n
.

Presuming relevant summary quantities have been precomputed the above up-

dates costs O(p2
γi

+ n) time.
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Suppose want to downdate the model summary quantities for the model γi+1

where Xγi+1
is the matrix given by Xγi with a column z removed from the ap-

propriate position. Similarly as for updates for clarity of exposition we will as-

sume that z will be removed from the last column of Xγi , i.e., we assume that

Xγi = [Xγi+1
, z]. Again, this can be achieved by permuting the columns of var-

ious matrices. Then the downdates for model summary values are given by the

following steps.

a) Suppose we partition the matrix (XT
γi

Xγi)
−1 so that

(XT
γi

Xγi)
−1 =

 A b

bT c

 .
Calculate the model inverse matrix by (XT

γi+1
Xγi+1

)−1 = A− c−1bbT .

b) Calculate ẑ = (XT
γi+1

Xγi+1
)−1XT

γi+1
z, κ = 1/(n− zT ẑ), and s = yT (z− ẑ).

c) The coefficient estimates downdate can be obtained via

β̂γi+1
=
[
β̂γi

]
−|γi|

+ κsẑ,

where [β̂γi
]−|γi| removes the last column from β̂γi

.

d) The R2 downdate can be obtained via

R2
γi+1

= R2
γi
− κs2

n
.

Again, presuming relevant summary quantities have been precomputed the up-

dates for all of the above quantities costs O(p2
γi

+ n) time.
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2.7. Numerical results

We will now compare the different Bayes factors under different hyperpriors

on g that we have explored. Firstly we will look at these Bayes factors by compar-

ing them directly. We will then compare the results based on exact Bayesian linear

model averaging on some available datasets.

2.7.1. Numerical comparison of g hyperpriors. Note that each of the Bayes

factors is a function of three quantities R2, pγ and n. Figure 2 illustrates various

log Bayes factors over a grid of pγ values from 1 to 20 and R2 ∈ {0.1, 0.5, 0.9}

and n ∈ {100, 500, 1000}. In the context of Bayesian hypothesis testing values

above the y-axis value 0 indicate that the alternative model is preferred, while

lines below 0 indicate the null model is preferred. Note that Cake priors (BIC)

have the strongest penalty for larger pγ , followed by the beta-prime prior (ZE),

the robust prior, hyper-g/n prior and lastly the hyper-g prior. Increasing n and/or

R2 leads to all of the different Bayes factors becoming increasingly close to one

another. We also see that the appell() function becomes unstable as n and/or

R2 becomes large. For the Bayes factor corresponding to the hyper-g/n prior our

approximation tracks very closely to the methods using the appell() function

and our numerical quadrature approach.

2.7.2. Settings for R packages. We will now compare three different popular

R implementations of Bayesian model averaging on several small datasets. We

compare the R packages BAS (Clyde, 2017), BayesVarSelect (García-Donato

and Forte, 2016), and BMS (Zeugner and Feldkircher, 2015). For each method we
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FIGURE 2. Cake prior or BIC (black), beta-prime prior (blue), hyper-
g prior (red), robust prior (green), hyper-g/n (appell - solid or-
ange), hyper-g/n (quadrature - dashed orange), and hyper-g/n (ap-
proximation - dotted orange). The grey line corresponds to the
Bayes factor equal to 1. Above the grey line the alternative model
is preferred, below the grey line the null model is preferred.
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assumed a uniform prior on the model space, i.e. p(γ) ∝ 2−p. We used the setting

implied by the following commands for each of these methods.

• BAS: We used the command

bas.lm(y~X,prior=prior.val,modelprior=uniform())

where prior.val takes the value "hyper-g", "hyper-g-laplace" or

"hyper-g-n". These correspond to a direct implementation of (13), a

Laplace approximation of (11), and the Laplace approximation of (16) re-

spectively. The value a = 3 is implicitly used.

• BayesVarSelect: We used the command

Bvs(formula="y~.",data=data.frame(y=y,X=X),

prior.betas=prior.val,prior.models="Constant",

time.test=FALSE,n.keep=50000)

where prior.val takes the value "Liangetal" or "Robust". These

correspond to a direct implementation of (13) with a = 3, and a hybrid

approach which uses (21) directly and numerical quadrature based on (20)

if this fails respectively. Again, the value a = 3 is implicitly used.

• BMS: We used the command

bms(cbind(y,X),nmodel=50000,mcmc="enumerate",

g="hyper=3",mprior="uniform")

which uses a direct implementation of (13) for the hyper-g prior with a = 3.

The syntax for blma is relatively straightforward:

blma(vy, mX, prior, mprior, cores = 1L)

where the arguments of blma are explained below.
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• vy – a vector of length n of responses (this vector does not need to be

standardized).

• mX – a design matrix with n rows and p columns (the columns of mX do not

need to be standardized).

• prior – the choice of mixture g-prior used to perform Bayesian model

averaging. The choices available include:

– "BIC" – the Bayesian information criterion obtained by using the

Cake prior of Ormerod et al. (2017).

– "ZE" – special case of the prior structure in Maruyama and George

(2011).

– "liang_g1" – the mixture g-prior of Liang et al. (2008) with prior

hyperparameter a = 3 evaluated directly using (13) where the Gauss-

ian hypergeometric function is evaluated using the gsl library. Note:

this option can lead to numerical problems and is only meant to be

used for comparative purposes.

– "liang_g2" – the mixture g-prior of Liang et al. (2008) with prior

hyperparameter a = 3 evaluated directly using (14).

– "liang_g_n_appell" – the mixture g/n-prior of Liang et al. (2008)

with prior hyperparameter a = 3 evaluated using the appell R

package.

– "liang_g_approx" – the mixture g/n-prior of Liang et al. (2008)

with prior hyperparameter a = 3 using the approximation (18) for

pγ > 2 and numerical quadrature (see below) ofr pγ ∈ {1, 2}.
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– "liang_g_n_quad" – the mixture g/n-prior of Liang et al. (2008)

with prior hyperparameter a = 3 evaluated using a composite trape-

zoid rule.

– "robust_bayarri1" – the robust prior of Bayarri et al. (2012) using

default prior hyperparameter choices evaluated directly using (21)

with the gsl library.

– "robust_bayarri2" – the robust prior of Bayarri et al. (2012) using

default prior hyperparameter choices evaluated directly using (22).

• mprior – the prior to be imposed on the model space. The choices avail-

able include:

– "uniform" – corresponds to the prior p(γ) = 2−p where p is the

number of columns of X, .i.e., a uniform prior on the model space.

– "beta-binomial" – corresponds to a prior of the form

p(γ) =

p∏
j=1

ργj(1− ρ)1−γj and ρ ∼ Beta(a, b),

where ρ is the prior probability a variable is included in the mode,

and a and b are fixed prior hyperparameters. After marginalizing out

ρ we have

p(γ) =
Beta(a+ |γ|, b+ p− |γ|)

Beta(a, b)
,

which is a beta-binomial distribution. Note a = b = 1 corresponds

to a uniform prior on the prior variable inclusion probability. The

values of a and b should be set to be the first and second elements of

the modelpriorvec argument respectively (see below).



2.7. NUMERICAL RESULTS 73

– "bernoulli" – corresponds to a prior of the form

p(γ) =

p∏
j=1

ρ
γj
j (1− ρj)1−γj

where the ρj ∈ (0, 1). The ρj values are specified by modelpriorvec

(see below). Using ρj = 1/2, 1 ≤ j ≤ p corresponds to

mprior=="uniform".

• modelpriorvec – A vector of additional parameters. If mprior=="uniform"

this argument is ignored. If mprior=="beta-binomial" this should be

a postive vector of length 2 corresponding to the shape parameters of a

Beta distribution (the values a and b above). If mprior=="bernoulli"

this should be a vector of length p with values on the interval (0, 1).

• cores – the number of computer cores to use.

The object returned is a list containing:

• vR2 – the vector R-square values for each model;

• vp_gamma – the vector of number of covariates for each model;

• vlogp – the vector of logs of the marginal likelihoods of each model; and

• vinclusion_prob – the vector of posterior inclusion probabilities for

each of the covariates.

Note that we do not return the fitted values of β̂γ which should only be calculated

for a subset of models. We also do not return Γ, the Gray code matrix which we

provide a separate function to calculate. We made the decisions not to return these

quantities to reduce the memory overhead.

A short example fitting the USCrime data described in Section 2.7.3 below.



74 2. CALCULATING BAYES FACTORS FOR LINEAR MODELS USING MIXTURE g-PRIORS

library(blma); library(MASS)

dat <- UScrime

dat[,-c(2,ncol(UScrime))] <- log(dat[,-c(2,ncol(UScrime))])

vy <- dat$y

mX <- data.matrix(cbind(dat[1:15]))

colnames(mX) <- c("log(AGE)","S","log(ED)","log(Ex0)",

"log(Ex1)","log(LF)","log(M)","log(N)","log(NW)",

"log(U1)","log(U2)","log(W)","log(X)","log(prison)",

"log(time)")

blma_result <- blma(vy, mX, prior="ZE")

Results for the above example are summarised as part of the result within Section

2.7.3.

2.7.3. Bayesian linear model averaging on data. We considered several small

datasets to illustrate our methodology. These datasets can be found in the R pack-

ages MASS (Venables and Ripley, 2002) and Ecdat (Croissant, 2016). Table 1 sum-

marizing the sizes, sources, and response variable used for each dataset used. We

chose USCrime data because it is used in most papers in the area and is small

enough so that näive implementations using special functions will not lead to

numerical issues. The Kakadu dataset is chosen to be large enough to begin to

strain the resources of a typical 2018 laptop so that relative differences in speeds

between different packages becomes apparent. Finally, the Kakadu dataset is cho-

sen to lead numerical instability in the direct evaluation of Bayes factors for some

of the priors on g considered in this paper.
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Dataset n p Response R package
UScrime 47 15 y MASS
VietNamI 27765 11 lnhhexp Ecdat
Kakadu 1827 22 income Ecdat

TABLE 1. A summary of the datasets used in the paper and their
respective R packages.

For each of the datasets some minimal preprocessing was used. We first used

the R command na.omit() to remove samples containing missing predictors.

For USCrime all variables except the predictor S were log-transformed. For all

datasets the R command model.matrix() was used to construct the design ma-

trix using all variables except for the response as predictors.

Tables 2, 3, and 4 summarise the times and variable inclusion probabilities, i.e.,

E(γ|y), for all of the mixture g-prior structures we have considered here under a

uniform prior on the model space. All times are based on running R code on a

dedicated server with 48 cores, each running at 2.70GHz, with a total of 512GB

of RAM. The BVS package in the table refers to the BayesVarSelect R package

where we have used a this acronym to save space in the tables.

For Table 2 we see that all of the “exact” methods agree with one another to the

first 2 decimal places. We note that the Laplace approximation is quite accurate

and appears superior to the method “(18)” for the mixture g/n-prior. However, for

both of these approximation methods the discrepancies to their exact counterparts

is roughly the same size, or perhaps even less, than the differences between each

of the choices of mixture g-priors. In terms of speed, BAS and BMLA are the fastest

packages and roughly comparable in speed. Both BMS and BayesVarSelect

are not as fast. For the mixture g-prior we suspect that the package BAS relies
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on Laplace’s method for models where direct evaluation of (13) becomes numer-

ically problematic, which would explain differences between the BAS and blma

packages for the Kakadu dataset.

Note that in Table 4 that many of the variables have posterior probabilities

either close to 0 or close to 1. This is anticipated since n = 27765 is relatively

large (and p is small) leading to a single model dominates the model averaging

procedure.

2.8. Conclusion

We have reviewed the prior structures that lead to closed form expressions for

Bayes factors for linear models. We have described ways that each of these pri-

ors with the exception of the hyper-g/n prior can be evaluated in a numerically

stable manner and have implemented a package blma for performing full exact

Bayesian model averaging using this methodology. Our package is competitive

with BAS and BMS in terms of computational speed, is numerically more stable

and accurate, and offers some different priors structures not offered in BAS. Our

package is much faster than BayesVarSelect and is also numerically more sta-

ble and accurate.
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CHAPTER 3

Particle Variational Approximation

Abstract

Bayesian model averaging has several desirable properties, but it is compu-

tationally expensive unless the number of models to be averaged over is small.

Typically the number of models to be averaged grows exponentially in the num-

ber of covariates and some form of approximation is required. In this paper we

explore a novel particle based collapsed variational approximation for Bayesian

model averaging. The resulting objective function can be optimized in a highly

parallel manner. We explore several different prior specifications which lead to

Bayes factors with closed forms. We show empirically that our approach is fast

and effective for moderately large problems on several simulated and publicly

available data sets, particularly when parallel computing resources are available.

An R package is available implementing our approach.

80
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3.1. Introduction

Bayesian model selection is a powerful set of techniques for model selection.

These techniques are especially useful in problems of high-dimension, such as

bioinformatics problems where the model space is complex and the optimal model

is difficult for statisticians to manually specify. However, Bayesian model se-

lection is computationally expensive, and prone to getting stuck in local min-

ima if the posterior distribution is multimodal. This issue is particularly acute

if the spike-and-slab prior, popular for Bayesian model selection, is used. We

seek to address both problems by proposing a population non-parametric Vari-

ational Bayes approximation algorithm – a population-based optimisation strat-

egy. Maintaining a population of models allows the posterior distribution to be

explored more thoroughly, finding multiple maxima. The variational approxi-

mation’s lower bound includes an entropy term which ensures diversity in the

population by penalising similarity, having the particles in the population repel

each other. This ensures the high probability regions of the posterior distribu-

tion is thoroughly explored, which better reflects model selection uncertainty. In

this chapter, we focus on the important case of model selection for normal linear

models with priors as described in Section 2.3.

Mitchell and Beauchamp (1988) initially proposed the spike-and-slab prior dis-

tribution on regression coefficients not currently included in the model – which

places a mixture of a point mass ‘spike’ at 0 and a diffuse uniform distribution

‘slab’ elsewhere. The approach was further developed by Madigan and Raftery

(1994) to incorporate an alternative Bayesian approach that takes full account of

the true model uncertainty by averaging over a small subset of models, and an
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efficient search algorithm for finding these models. George and McCulloch (1997)

investigated computational methods for posterior evaluation and exploration in

this setting, and using Gray Code sequencing and Markov Chain Monte Carlo to

explore the model space in moderate and large-sized problems respectively. More

recently, Ishwaran and Rao (2005) developed a rescaled spike-and-slab model

which improves effective variable selection in terms of risk misclassification by

using selective shrinkage.

Existing approaches to the problem of model selection focus upon finding a

single best model as quickly as possible, using the least computational effort (You

and Ormerod, 2014; Ročková and George, 2014). Exploring the model space using

only one model at a time will provide a misleading view of the uncertainty in the

posterior, as it is typically highly multimodal.

Many computational schemes for Bayesian model selection exist, using Monte

Carlo Markov Chains techniques to approximate the posterior distribution of γ.

However, these schemes are both computationally intensive and can become

trapped in local maxima of the posterior distribution if the distribution is high-

dimensional and multi-modal, as is the case with popular choices of prior for

Bayesian model selection problems, such as spike-and-slab priors. The difficulty

of becoming trapped in local maxima can be partially mitigated by using population-

based Monte Carlo Markov Chains (MCMC) schemes such as Jasra et al. (2007),

Bottolo and Richardson (2010), Hans et al (2007), Liang and Wong (2000). How-

ever, this increases the computational cost of sampling from the posterior distri-

butions still further, especially in high-dimensional problems.
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Ročková (2017) introduced the notion of Particle Expectation Maximisation

(EM) . Rather than searching for a single optimal model, Particle EM instead

maintains a population of models (particles). This allows the algorithm to explore

more of the posterior model space, gaining a better estimate of the uncertainty in

the model selection process than an algorithm involving only a single model. It

also allows the particles to “interact”, searching for the essential posterior modes

together. In Particle EM, this is done by incorporating an “entropy term” in the

variational lower bound, which ensures diversity amongst the models in the pop-

ulation, preventing all particles from simply seeking the global posterior modes.

The algorithm is deterministic.

We build upon this work by proposing a fixed-form parametric Variational

Bayes approximation of γ. We adopt a prior structure incorporating the Cake

prior introduced in Ormerod et al. (2017) for variable selection, which avoids

the Lindley and Bartlett’s paradoxes. The difficulties in implementing practical

Bayesian model selection schemes have been noted in Chipman et al. (2014). As

our marginal likelihood expression is a function only of n, pγ and R2
γ , our model

selection algorithm can be executed efficiently using rank-one updates and down-

dates to compute R2
γ∗ for each of the models γ∗ that we consider. To ensure

uniqueness of the K models in the population, before a new candidate model

with a covariate added or removed is considered, the population of existing mod-

els is checked to see if it already exists in the population. If so, the addition or

removal of the covariate is skipped and the next candidate model considered.
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Our variational approximation of the posterior model probability is a weighted

sum of the indicators of the covariates of the model, where the weights are deter-

mined by the relative contribution of each covariate to the model fit in all particles

in the population, balanced against the diversity of the particles.

q(γ) =
K∑
k=1

wkI(γk)

Our main contributions are:

a) Our algorithm searches over the binary strings γ directly, as the estimates

of β are available in closed form once γ is known.

b) We make use of a population–based optimisation scheme to search the

model space. We take advantage of the population of solutions by in-

corporating a penalty for lack of entropy, which ensures diversity in the

population of solutions.

c) Our model can incorporate different hyperpriors on g and γ. Using a hy-

perprior on g avoids Lindley’s paradox and Bartlett’s paradox, the model

selection paradoxes which arise when a fixed choice of g is made.
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3.2. Bayesian linear model averaging

The Bayes factors introduced in the previous chapter play a key role in Bayesian

linear model averaging. Via Bayes theorem the posterior probability of a model is

given by

p(γ|y) =
p(y|γ)p(γ)∑
γ′ p(y|γ ′)p(γ ′)

=
p(γ)BF(γ)∑
γ′ p(γ

′)BF(γ ′)

where
∑

γ denotes a combinatorial sum over all 2p possible values of γ, and p(γ)

is the chosen prior on γ. Numerical overflow can be avoided by dividing through

the numerator and denominator of p(γ|y) by the largest product p(γ)BF(γ) and

performing calculations on the log scale. The posterior expectation of γ is given

by E(γ|y) =
∑

γ γ · p(γ|y). The median posterior model is obtained by rounding

E(γ|y) to the nearest integer and has desirable optimality properties (Barbieri and

Berger, 2004).

3.3. Particle based variational approximation

We will now present a population based variational collapsed Bayes approxi-

mation (PVA) approach to model selection which is more appropriate to use when

p is larger than, say, around 30. This approach is closely related to the PEM method

of Ročková (2017), where the main difference being that here we work in a fully

Bayesian framework and we consider a wider range of prior structure specifica-

tions.
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The marginal likelihood for y is given by

p(y) =
∑
γ

[∫
p(y, α,β, σ2, g|γ)p(α,β, σ2, g|γ) dα dβ dσ2 dg

]
p(γ)

=
∑
γ

p(y,γ),

which is generic to the prior distribution specification for p(α,β, σ2, g|γ) and p(γ).

Our approach is to collapse over α, β, σ2, and g, and then use a variational approx-

imation to the posterior probability of the model γ. This can be done using any

combination of the prior specifications described in Section 3.2. This is conceptu-

ally equivalent to the collapsed variational approximation technique developed

by Teh et al. (2006) who used the concept of collapsing over a subset of variables

in the context of Latent Dirichlet Allocation models.

We specify the q-density for γ parametrically by

(32) q(γ) =
K∑
k=1

wkI(γ = γk)

where 0 < wk ≤ 1,
∑K

k=1 wk = 1, Γ = [γ1, . . . ,γK ] is a population of models (with

individual γk referred to as particles), and I( · ) is the indicator function. Here w

and Γ are variational parameters of the probability mass function q(γ).

Using q(γ) we derive the following variational lower bound on log p(y) via

(33)

log p(y) = log

[∑
γ

q(γ)

{
p(y,γ)

q(γ)

}]
≥
∑
γ

q(γ) log p(y,γ)−
∑
γ

q(γ) log q(γ)

≡ log p(y; w,Γ)
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where going from the first to the second line of (33) is obtained using Jensen’s

inequality. Maximizing the right hand of (33) tightens the bound improving the

quality of the approximation p(y; w,Γ) to p(y). It can be shown that the difference

between log p(y) and log p(y; w,Γ) is the Kullback-Leibler divergence between

p(γ|y) and q(γ).

The second term of (33) is related to the entropy of q. Following Ročková (2017)

the variational lower bound for log p(y) is given by

(34) log p(y; w,Γ) =
K∑
k=1

wk log p(y,γk)− wk logwk

which has been simplified under the assumption that population of particles γ1, . . . ,γK

contains only unique particles.

Since log p(y; w,Γ) is a lower bound we can maximize this bound with respect

to w and Γ to make the bound as tight as possible. The main body of the algorithm

to optimize log p(y; w,Γ) is a two–stage process. This process is similar to that of

a tabu search Glover (1986).

In the first stage, we iterate through the population of bitstrings, using a greedy

search strategy in an attempt to alter each bit in the model bitstring to increase the

log likelihood. If the log-likelihood for the new bitstring is no higher than the

previous bitstring, then the alteration is rejected and the next alteration tried. The

alterations are also rejected if the new bitstring already exists within the popula-

tion, ensuring that the constraint that all models in the population are unique is

maintained.

In the second stage, we re–calculate the weights for each individual in the

population, based on the likelihood of that model relative to the data p(y;βγ) and
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use this to re–calculate the probability–based weights wi for each bitstring in the

population. This is then used to re–calculate the lower bound

log p(y; w,Γ) =
K∑
k=1

wk log p(y;γk)−wk log wk

which is the sum of the weighted log-likelihood of the population and the en-

tropy of the probability weights. These two stages repeat until the lower bound

converges.

Note that for fixed w each of the γk’s can be optimized independently since

(34) is an additive function of γk’s. Hence, the first stage optimizes log p(y; w,Γ)

with respect to Γ in a greedy search over each of the γk’s. To be more concrete,

let γ(i)
jk = (γ1k, . . . , γj−1,k, i, γj+1,k, . . . , γpk)

T . We optimize w and γ1, . . . ,γK by ex-

ecuting the algorithm given in Algorithm 1 below. Let p denote the vector of

posterior probabilities for each of the models in the population, while H is the

entropy of the entire population. Thus log p(y; w,Γ) balances the weighted pos-

terior probabilities of the particles in the population against the diversity within

that population.

Since only one component is modified during each iteration of the inner loop of

the algorithm, model updates and downdates can be efficiently used to implement

the Algorithm 1 (for details see Chapter 2).

Convergence is declared for a particular particle when no element of the par-

ticle is updated over j = 1, . . . , p. Convergence of the algorithm is declared when

all particles have been converged. Note that optimization over each of the γk’s can
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Algorithm 1 The PVA algorithm

while log p(y; w,Γ) is still different from the previous iteration do

for k = 1, . . . , K do

for j = 1, . . . , p do

if p(y,γ(1)
jk ) > p(y,γ

(0)
jk ) then

γjk = 1
else

γjk = 0
end if

end for

wk = p(y,γk)/
∑K

j=1 p(y,γj)
end for

Calculate log p(y; w,Γ) =
∑K

k=1 wk log p(y;γk)−wk log wk

end while

be performed independently and as such implemented in an embarrassingly par-

allel manner. There is no need to re-optimize Γ for different w since the optimal

values of the γk’s are independent of w.

Once the matrix Γ is fitted, duplicate particles can be discarded. Let γ∗1, . . . ,γ∗K∗

denote the selected set of K∗ unique particles. Then the optimal value of the wk’s

satisfy

(35) wk =
p(y,γ∗k)∑K∗

j=1 p(y,γ
∗
j)

=
p(γ∗k)BF(γ∗k)∑K∗

j=1 p(γ
∗
j)BF(γ∗j)

, 1 ≤ k ≤ K∗.

The approximate posterior inclusion probabilities, which we will denote ω can be

calculated using ω =
∑K∗

k=1 wkγ
∗
k. The median posterior model can be obtained by

rounding the elements of ω.

The main requirement of the above strategy is that closed form expressions for

BF(γk), 1 ≤ k ≤ K are needed, or at least approximated in some way. Different
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specifications of the prior distributions lead to different approximations of exact

Bayesian model averaging.

We implement the above algorithm in C++which we developed into an R pack-

age we call BLMA. The internals of BLMA are implemented in C++ and use the R

packages Rcpp and RcppEigen to enhance computational performance. The li-

brary OpenMP was used to exploit parallel computation.

3.4. Numerical results

We will now assess the performance of PVA. In Section 3.4.1 we compare PVA

against exact Bayesian model averaging for four small examples with p < 30 via

the R package blma using the implementation outlined in Greenaway & Ormerod

(2018). All of the following results were obtained in the R version 3.4.2 (R Core

Team, 2017) and all figures were developed using the R package ggplot2. In

sections 3.4.3 – 3.4.5 we will consider examples with p > 30 where it is infeasible

to perform Bayesian model averaging exactly. Most simulations were run on a

64 bit Windows 10 Intel i7-7600MX central processing unit at 2.8GHz with 2 hy-

perthreaded cores and 32GB of random access memory. Multicore comparisons

were run on a dedicated server using E5-2697v2 processors with 24 hyperthreaded

cores and 512GB of RAM.

3.4.1. Comparing PVA against exact results. We considered several small

data sets to illustrate our methodology for situations where we could compare

PVA against a gold standard. These data sets can be found in the R packages

MASS (Venables and Ripley, 2002), ISLR James et al. (2014) and Ecdat (Croissant,

2016). Table 1 summarizes the sizes, sources, and response variable for each data
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set used. For each of the data sets some minimal preprocessing was used. We first

used the R command na.omit() to remove samples containing missing predic-

tors. For USCrime all variables except the predictor S were log-transformed. For

all data sets the R command model.matrix() was used to construct the design

matrix using all variables except for the response as predictors. The routines in

‘blma’ standardise the response and covariate matrix.

Dataset n p Response R package
UScrime 47 15 y MASS
College 777 17 Grad.Rate ISLR
Hitters 263 19 Salary ISLR
Kakadu 1827 22 income Ecdat

TABLE 1. A summary of the data sets used in the paper and their
respective R packages.

To measure the quality of approximation of PVA to BMA we will use two metrics.

The total posterior mass (TPM), and the mean marginal variable error (MMVE).

These are given by

TPM =
K∗∑
k=1

p(γ∗k|y) and MMVE =
1

p

p∑
j=1

|ωj − E(γj|y)|.

Note that the quantities p(γ∗k|y) and E(γj|y) are available as outputs of the func-

tion blma() from the R package blma. The average values of TPM and MMVE

over 100 random initial values of Γ for each of the data sets where independently

γkj ∼ Bernoulli(1/10), 1 ≤ j ≤ p, 1 ≤ k ≤ K over a grid of K values from K = 25

to K = 500 are summarised in Figure 5. From this figure we see that both TPM

and MMVE increase and decrease with K respectively. For each of the data set at

least 50% of the total posterior mass is captured with less than K = 200 particles.
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The mean absolute error in posterior inclusion probability with this value of K is

roughly 0.05 which indicates that the median posterior model is reasonably well

approximated.

3.4.2. Competing method settings. For data sets with p > 45 it is not feasible

to perform exact BMA. For these examples we instead compare the model selec-

tion performance of PVA against the Lasso, SCAD and MCP penalized regres-

sion methods as implemented by the R package ncvreg (Breheny and Huang,

2011), PEM using the R package PEM (obtained via personal communication with

Veronika Ročková), and Bayesian model averaging via MCMC using the R pack-

age BAS. The setting are implied by the R commands below.

• Penalized regression via ncvreg package. We used the following com-

mand.

ncvreg(mX,vy,penalty=penalty)

where penalty is "MCP", "SCAD" or "lasso" corresponding to the penal-

ties of the same name as described in Breheny and Huang (2011). For these

methods we make use of the extended Bayesian information criteria (EBIC)

(Chen et al., 2008) to choose the tuning parameter λ. The EBIC minimizes

EBIC(λ) = n log(RSSλ/n) + dλ [log(n) + 2 log(p)] ,

where RSSλ is the estimated residual sum of squares ‖y−Xβ̂λ‖2, β̂λ is the

estimated value of β for a particular value of λ and dλ is the number of

non-zero elements of β̂λ. This differs from the regular BIC by an addition
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of a 2dλ log(p) term. Wang and George (2007) showed that this criterion

performs well in several contexts.

• Particle EM via the PEM package. We used the following command.

PEM(vy,mX,v0,v1,type="betabinomial",

penalty="entropy",epsilon=1.0E-5,theta=0.5,

a=1,b=p,alpha=1,current=t(mGamma),weights="FALSE")

where γkj ∼ Bernoulli(ρ), 1 ≤ j ≤ p, 1 ≤ k ≤ K with K = 200 (not-

ing that the initial population matrix in PVA is the transpose of the initial

population matrix used by PEM). The choices used for rho, v0 and v1 are

different for each data set and are described in each of the sections below.

• MCMC via the BAS package: We used the following command.

bas.lm(vy~mX, prior="g-prior", modelprior=uniform(),

initprobs="uniform", MCMC.iterations=1e7)

The estimated median posterior model is used for the purposes of model

selection.

• MCMC via the BMS package: We used the following command.

res.bms <- bms(cbind(vy,mX), burn = 1000, iter = 1000000,

nmodel = 10000, mcmc = "bd", g = "BRIC", mprior = "random",

mprior.size = NA, user.int = TRUE, start.value = start.value,

g.stats = TRUE, logfile = TRUE, logstep = 100000,

force.full.ols = FALSE, fixed.reg=numeric(0))

where start.value is the value of γ given by PVA.
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We used simulated data in each of the sections below in such a way that the

true data generating model was known. We used the F1-score (see Rijsbergen,

1979) to assess the quality of model selection for each of the above models, which

is defined to be the harmonic mean between precision and recall given by

F1 =
2 · TP

2 · TP + FP + FN

with TP , FP and FN being the number of true positives, false positives and false

negatives respectively. Note that F1 is a value between 0 and 1 and higher val-

ues are preferred. We use this measure to avoid prefererring either of the two

boundary models, that is, selecting none or all of the variables.

3.4.3. Simulated high-dimensional example. We first present an example where

n > p and p is relatively small (p = 12), to allow for the full enumeration of

the model space. Later, we show an example for the important p > n case.

We compare our results against the Lasso (Tibshirani, 1996), SCAD (Fan and Li,

2001), MCP (Zhang, 2010), BMS (Zeugner and Feldkircher, 2015) and VARBVS (Car-

bonetto and Stephens, 2011) algorithms.

Our first numerical experiment is designed to show that our algorithm suc-

cessfully finds the posterior models of high probability, overcoming the difficul-

ties of optimising over the multi-modal spike-and-slab posterior. This example

is taken from (Ročková, 2017). We consider a random sample of n = 50 ob-

servations on p = 12 predictors. Xi ∼ Np(0,Σ) for i = 1, . . . , n where Σ =

bdiag(Σ1,Σ1,Σ1,Σ1) with Σ1 = (σij)
3,3
i,j=1 where σij = 0.9 for i 6= j and σii = 1.

The true model is β0 = (1.3, 0, 0, 1.3, 0, 0, 1.3, 0, 0, 1.3, 0, 0)>. The responses are then

generated from y = Xβ0 + ε, where ε ∼ Nn(0, In).
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A comparison of the performance of PVA for the hyper-g, robust Bayarri, Beta-

prime and Cake priors on g and the uniform, beta-binomial(1, 1) and beta-binomial(1,

p) priors on γ using F1 score is presented in the top panel of Figure 1. A com-

parison of the performance of the MCP, SCAD, lasso, PVA, BMS, BAS and PEM

methods using F1 score is given in the bottom panel of Figure 1.

From the top panel of 1 we see that beta-binomial(1,1) and beta-binomial(1,p)

priors on γ lead to better performances. From th bottom panel we see that PVA

with beta-binomial(1,1) or beta-binomial(1,p) priors on γ performs about better

than MCP, SCAD, lasso, and PEM methods, and about the same as BAS. PVA

with a uniform prior performs similarly to BMS.

3.4.3.1. Exploration of the posterior model space. If the covariates in a model se-

lection problem are highly collinear then the posterior distribution will be highly

multi-modal when a spike-and-slab prior structure is used. This can make seeking

the optimal model very challenging, due to the many local optima. In this section,

we present a series of numerical experiments which demonstrate the capability of

our algorithm to successfully find the models with high posterior probability in

such situations.

Our population of bit strings Γ(0) = (γ
(0)
1 , . . . ,γ

(0)
K ) with K = 20 particles was

randomly initialised from a sequence of independent Bernoulli trials with prob-

ability of success 1/2. Figure 2 shows all 4096 posterior model probabilities for

a data set simulated from a regression model with 12 covariates, ordered by the

model’s bit strings, represented by blue dots. Superimposed over this are the

models found by PVA, represented by red dots. We can clearly see a few peaks
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FIGURE 1. Top panel: Comparison of the performance of the PVA
method on the high-dimensional data set with different g and γ pri-
ors using F1 score. The hyper-g, robust Bayarri, Beta-prime and
Cake priors on g and the uniform, beta-binomial(1, 1) and beta-
binomial(1, p) priors on γ are used. Bottom panel: Comparison of
the performance of the MCP, SCAD, lasso, PVA, BMS, BAS and PEM
methods on the high-dimensional data set using F1 score. For PVA,
the robust Bayarri prior on g and the uniform, beta-binomial(1, 1)
and beta-binomial(1, p) priors on γ are used.
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in the full posterior distribution. Our experiment aims to show that most of these

posterior peaks are successfully identified by our algorithm.

As Figure 2 shows, in the plots of the log posterior probabilities of the models,

the particles can be seen clustering at the highest probability models first, then

spreading through the medium and low probability models. From these plots we

can see that once K is high enough, there is a good variety of high, medium and

low posterior probability models in the population of particles. The coverage of

the posterior probability distribution by the population of particles is high, as the
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particles tend to cluster towards the higher posterior probability models as PVA’s

greedy search algorithm proceeds.

3.4.4. Communities and crime data set. We use the Communities & Crime

data set obtained from the UCI Machine Learning Repository

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime

The data collected was part of a study by Redmond and Baveja (2002) combining

socio-economic data from the 1990 United States Census, law enforcement data

from the 1990 United States Law Enforcement Management and Administrative

Statistics survey, and crime data from the 1995 Federal Bureau of Investigation’s

Uniform Crime Reports.

The raw data consists of 2215 samples of 147 variables the first 5 of which we

regard as non-predictive, the next 124 are regarded as potential covariates while

the last 18 variables are regarded as potential response variables. Roughly 15%

of the data is missing. We proceed with a complete case analysis of the data. We

first remove any potential covariates which contained missing values leaving 101

covariates. We also remove the variables rentLowQ and medGrossRent since

these variables appeared to be nearly linear combinations of the remaining vari-

ables (the matrix X had two singular values approximately 10−9 when these vari-

ables were included). We use the nonViolPerPop variable as the response. We

then remove any remaining samples where the response is missing. The remain-

ing data set consist of 2118 samples and 99 covariates. Finally, the response and

covariates are standardized to have mean 0 and standard deviation 1. Empirical

correlations between variables range from 3.3× 10−5 to 0.999.
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Here we center the X matrix and simulate new data from y = Xβ0 + ε where

ε = (ε1, . . . , εn)> and the εi are independently drawn with εi ∼ N(0, σ2) where

σ2 = ‖yraw−Xβ0‖/n and yraw denotes the original response vector. The data was

fit using a linear model. Variables with p-values below 0.05 were considered in

the model, i.e, the corresponding value of γ was set to 1. The MLE coefficients

divided by 4 where taken to be the true values of the coefficient in order to make

the problem more difficult, i.e., we set β0 = β̂/4.

A comparison of the performance of PVA for the hyper-g, robust Bayarri, Beta-

prime and Cake priors on g and the uniform, beta-binomial(1, 1) and beta-binomial(1,

p) priors on γ using F1 score is presented in the top panel of Figure 3. A com-

parison of the performance of the MCP, SCAD, lasso, PVA, BMS, BAS and PEM

methods using F1 score is given in the bottom panel of Figure 3.

From the top panel of 3 we see that all model priors lead to similar perfor-

mances. From th bottom panel we see that PVA performs similarly to BAS and

BMS and better than penalized regression and PEM methods.

3.4.5. Quantitative trait loci data set. For our final p > n simulation example

we will use the design matrix based on an experiment on a backcross population

of n = 600 individuals for a single large chromosome of 1800 cM. This giant chro-

mosome was covered by 121 evenly spaced markers from Xu (2007). Nine of the

markers overlapped with QTL of the main effects and 13 out of the
(

121
2

)
= 7260

possible marker pairs had interaction effects. The X matrix combines the main

effects and interaction effects to make a 600 × 7381 matrix. The values of the true

coefficients are listed in Table 1 of Xu (2007) ranging from 0.77 to 4.77 in absolute
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FIGURE 3. Top panel: Comparison of the performance of the PVA
method on the Communities and Crime data set with different g
and γ priors using F1 score. The hyper-g, robust Bayarri, Beta-prime
and Cake priors on g and the uniform, beta-binomial(1, 1) and beta-
binomial(1, p) priors on γ are used. Bottom panel: Comparison of
the performance of the MCP, SCAD, lasso, PVA, BMS, BAS and PEM
methods on the Communities and Crime data set using F1 score. For
PVA, the robust Bayarri prior on g and the uniform, beta-binomial(1,
1) and beta-binomial(1, p) priors on γ are used.
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magnitude and correlations range from 0 to 0.8 where most of the higher correla-

tion occurs along the off-diagonal values of the correlation matrix of the covari-

ates. Here we center the X matrix and simulate new data from y = Xβ0 +εwhere

ε = (ε1, . . . , εn)> and the εi are independently drawn with εi ∼ N(0, 20). Similar

simulation studies were conducted in Xu (2007) and Kärkkäinen and Sillanpää

(2012). This process was repeated 50 times. For this simulation setting PVA has

the best model selection accuracy, smallest MSEs and smallest parameter biases of

all the methods compared. The Lasso, SCAD, MCP, EMVS, BAS and BMS meth-

ods took 1.5, 1.5, 1.8, 1229, 2011, 5327 seconds respectively. Our implementation

is quite fast, e.g., we fit a n = 600 and p ≈ 7200 problem with K = 100 particles in

1-2 minutes on a standard 2018 laptop using a single core. On a dedicated server

with 48 cores the same problem can be fit in around 8 seconds on 20 cores, and as

little as around 5 seconds when all cores are used.

A comparison of the performance of PVA for the hyper-g, robust Bayarri, Beta-

prime and Cake priors on g and the uniform, beta-binomial(1, 1) and

beta-binomial(1, p) priors on γ using F1 score is presented in the top panel of

Figure 4. A comparison of the performance of the MCP, SCAD, lasso, PVA, BMS,

BAS and PEM methods using F1 score is given in the bottom panel of Figure 4.

From the top panel of 4 we see that beta-binomial(1, 1) and beta-binomial(1, p)

lead to similar performances. From th bottom panel we see that PVA with

beta-binomial(1, 1) and beta-binomial(1, p) performs similarly to BAS and better

than penalized regression, PEM and BMS methods.

3.4.6. Comparison of PVA against other model selection methods on simu-

lated data sets. The method used to assess the quality of the variable selection
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was to generate data from a known true model γ, and then compare this against

the model γ̂ found by each of the model selection methods that we compared. We

then calculated the F1 score for γ̂.

The experiments were repeated with the Cake prior, Maruyama’s Beta-prime

prior, Liang’s hyper-g prior and Bayarri’s robust prior. The results of the algo-

rithm were found to be insensitive to the choice of prior. For each combination of

population size, data set, and prior the experiment was repeated 50 times.

3.5. Variable inclusion for small data sets

We compared variable selection using PVA against exact variable selection on

five small data sets, Hitters, Bodyfat, Wage, College and US Crime. The vari-

able inclusion probabilities were estimated by taking the sum of the columns of

the population of models selected Γ weighted by marginal likelihood of each

model. The exact variable inclusion probabilities were calculated by summing

the columns of the matrix of all possible models Γ weighted by the marginal like-

lihood of each model. The mean relative error of the variable inclusion probabil-

ities estimated by PVA was calculated, and the results of these comparisons are

presented in Table 3.5. The number of particles in the population K affected the

variable inclusion probability in the variables selected by PVA, while the mar-

ginal probability p(γ|y) used to weight models in Γ seemed to have only a very

minor impact. When the robust Bayarri prior is chosen to rank models in PVA,

the marginal probability p(γ|y) changes a lot as opposed to ranking models with

other priors. Variables with low posterior probability are truncated to 0, as PVA
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seeks higher posterior probability models, ignoring the lower posterior probabil-

ity models.

Dataset Prior <= 0.5 > 0.5
K = 20 K = 50 K = 100 K = 20 K = 50 K = 100

Bodyfat BIC 0.63 0.48 0.37 0.07 0.01 0.02
Liang’s hyper-g prior 0.66 0.52 0.42 0.07 0.01 0.02
Bayarri’s robust prior 0.65 0.52 0.40 0.07 0.01 0.02
beta-prime prior 0.65 0.51 0.39 0.06 0.01 0.02

College BIC 0.70 0.58 0.49 0.03 0.02 0.03
Liang’s hyper-g prior 0.90 0.78 0.64 0.06 0.06 0.06
Bayarri’s robust prior 0.88 0.78 0.63 0.06 0.06 0.06
beta-prime prior 0.82 0.66 0.57 0.03 0.06 0.06

Hitters BIC 0.74 0.64 0.50 0.12 0.07 0.06
Liang’s hyper-g prior NaN 0.81 0.83 NaN 0.17 0.07
Bayarri’s robust prior 0.84 0.81 0.75 0.29 0.17 0.07
beta-prime prior 0.79 0.72 0.67 0.27 0.13 0.05

USCrime BIC 0.82 0.70 0.64 0.47 0.15 0.12
Liang’s hyper-g prior 0.76 0.71 0.64 0.45 0.16 0.12
Bayarri’s robust prior 0.79 0.70 0.61 0.35 0.14 0.08
beta-prime prior 0.76 0.70 0.64 0.45 0.16 0.13

Wage BIC 0.67 0.49 0.35 0.00 0.00 0.00
Liang’s hyper-g prior 0.69 0.47 0.33 0.00 0.00 0.00
Bayarri’s robust prior 0.69 0.47 0.32 0.00 0.00 0.00
beta-prime prior 0.69 0.47 0.32 0.00 0.00 0.00

TABLE 2. Relative error of the variable inclusion probability esti-
mated by PVA to the exact variable inclusion probability, partitioned
by exact probability under or equal to 0.5 and over 0.5

The same general trends were observed in all small data sets. Total poste-

rior probability is higher for the beta- binomial model prior than for the uniform

model prior, while the variable inclusion error is lower. This same general trend

is seen regardless of g-prior. Total posterior probability increases with increased

population size K, while variable inclusion error decreases. Although the PVA

algorithm is deterministic, variation in the results amongst the trials is seen due

to the random initialisation of Γ.
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3.6. Conclusion

We have proposed a deterministic Bayesian model selection algorithm which

is computationally efficient and simple. Like Particle EM (Ročková, 2017), our

algorithm maintains a population of solutions and ensures diversity of that popu-

lation to explore the uncertainty of the selected model. This gives far more infor-

mation about the model selection process than simply choosing one best model.

However, whereas Particle EM uses a spike-and-slab prior for the regression co-

efficients, our approach uses a g-prior, which avoids the Bartlett’s Paradox and

Information Paradox. Importantly, both approaches can be implemented using

rank-one updates and downdates and the model selection posterior probabilities

are available in closed form, which allows the algorithm to be implemented in a

computationally efficient manner.

While previously model selection algorithms using the Maruyama, Liang-g

and robust Bayarri priors have typically been implemented using MCMC, our

algorithm allows the advantages of these priors while using a deterministic algo-

rithm. The PVA algorithm presented in this chapter is implemented in the blma

package in the pva() function.
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FIGURE 5. PVA was run on the Kakadu data set. The total posterior
model probability and error in posterior variable inclusion proba-
bility were calculated using the exact posterior model and variable
inclusion probability from every possible sub-model. These were
calculated for a range of population sizes from 25 to 500, in 25 model
increments. As the population increases, the total posterior model
probability increases while the error in posterior variable inclusion
probability decreases. The labels at the top of each panel refer to
model prior used, while the labels to the right of each row refer to
the choice of g-prior.



CHAPTER 4

Gaussian Variational Approximation of

Zero-inflated Mixed Models

Abstract

In this chapter we consider variational inference for zero-inflated Poisson (ZIP)

regression models using a latent variable representation. The model is extended

to include random effects which allow simple incorporation of spline and other

modelling structures. Several variational approximations to the resulting set of

models are presented, including a novel approach based on the inverse covariance

matrix rather than the covariance matrix of the approximate posterior density for

the random effects. This parameterisation improves upon the computational cost

and numerical stability of previous methods. We demonstrate these approxima-

tions on simulated and real data sets.

107
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4.1. Introduction

Count data with a large number of zeros arises in many areas of application,

such as data arising from physical activity studies, insurance claims, hospital vis-

its or defects in manufacturing processes. Zero inflation is a frequent cause of

overdispersion in Poisson data, and not accounting for the extra zeros may lead

to biased parameter estimates. These models have been used for many applica-

tions, including defects in manufacturing in Lambert (1992), horticulture in Hall

(2000), length of stay data from hospital admissions (Yau et al., 2003), psychol-

ogy pharmaceutical studies (Min and Agresti, 2005), traffic accidents on roadways

(Shankar et al., 1997) and longitudinal studies (Lee et al., 2006).

The strength of this approach derives from modelling the zero and non-zero

count data separately as a mixture of distributions for the zero and non-zero com-

ponents, allowing analysis of both the proportion of zeros in the data set and

the conditions for the transition from zero observations to non-zero observations.

When combined with a multivariate mixed model regression framework, an ex-

tremely rich class of models can be fit allowing a broad range of applications to be

addressed. Often the transition from zero to non-zero has a direct interpretation

in the area of application, and is interesting in its’ own right.

Bayesian estimation methods for zero-inflated models were developed in Ghosh

et al. (2006) using Monte Carlo Markov Chain (MCMC) implemented with Win-

BUGS, and in Vatsa and Wilson (2014) using a Variational Bayes solution to the

inverse zero-inflated Poisson regression problem. While simple forms of these

models are easy to fit with standard maximum likelihood techniques, more gen-

eral models incorporating random effects, splines and missing data typically have
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no closed form solutions and hence present a greater computational challenge to

fit.

Fitting these models is typically done with MCMC techniques, but these tech-

niques can be computationally intensive and prone to convergence problems.

Other fitting methods such as the Variational Bayes approach above can be in-

flexible, not allowing complicated models incorporating random effects, splines

and missing data.

We build upon a latent variable representation of these models to allow a

tractable Semiparametric Mean Field Variational Bayes approximation to be de-

rived. Semiparametric Mean Field Variational Bayes is an approximate Bayesian

inference method as detailed in Ormerod and Wand (2010) and Rohde and Wand

(2015), which allows us to fit close approximations to these models using a deter-

ministic algorithm which converges much more quickly.

We allow a flexible regression modelling approach incorporating both fixed

and random effects by using a Gaussian Variational Approximation (GVA) as de-

fined in Ormerod and Wand (2012) on the regression parameters to allow a non-

conjugate Gaussian prior to be used. This makes the resulting Gaussian posterior

distribution of the regression parameters easier to interpret. Posterior inference

on the other parameters are performed with Mean Field Variational Bayes.

The focus of this chapter is on developing methods of fitting flexible ZIP re-

gression models accurately, and showing the advantages of our methods to previ-

ously presented methods. We also investigate stability problems that can arise

when using naive versions of these methods, and the modifications to the fit-

ting methods we devised to mitigate these problems. In Section 4.2 we define
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our model and provide a framework for our approach incorporating regression

modelling and random effects. In Section 4.3 we focus on several approaches to

fitting the Gaussian component of our model. In Section 4.4, we present new pa-

rameterisations for use in these algorithms which offers substantial advantages in

accuracy, numerical stability and computational speed. In Section 4.5 we perform

numerical experiments on simulated data which demonstrate these advantages.

In Section 4.6 we show an application of our pure Poisson model fitting method to

a hierarchical model studying the effect of ethnicity on the rate of police stops, and

an application of our zero-inflated Poisson model fitting method to a multi- level

longitudinal study of pest control in apartments. Finally, in Section 5 we conclude

with a discussion of the results. An appendix contains details of the derivation of

the variational lower bound for our model.

4.2. Zero-inflated models

In this section we present a Bayesian zero-inflated Poisson model for count

data with extra zeros. After introducing the latent variable representation of Bayesian

zero-inflated models, we first extend this to a model incorporating fixed effects re-

gression modelling, and extend the model again to a more flexible mixed model

approach incorporating both fixed and random effects.
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4.2.1. Modelling zero-inflated Poisson data. We consider a sample of counts

yi, 1 ≤ i ≤ n, where there are an excessive number of zeros for a Poisson model,

but the sample is otherwise well-modelled by a Poisson distribution. A popu-

lar approach using latent variables views the data as the product of two data-

generating processes, a Bernoulli process that determines whether the data is def-

initely zero, and a second process where data is generated from a Poisson distri-

bution which may be zero.

(36) P (Yj = yi) =

 ρ+ (1− ρ)e−λ, yi = 0

(1− ρ)λ
yie−λ

yi!
, yi ≥ 1.

This model yields the probability distribution specified in Equation (36). Note

that this allows zeros to be generated from the model in one of two ways – either

from the Bernoulli process generating a zero or from the Bernoulli process gener-

ating a Poisson sample which is then zero. A latent variable representation of this

parameterisation introduces the latent variables ri which equal 1 when yi > 0 and

0 otherwise.

(37)
P (Yi = yi|ri) =

exp(−λri)(λri)yi
yi!

and

ri ∼ Bernoulli(1− ρ).

This leads to the specification for the probability distribution used in (37) where

Bernoulli(π) denotes the probability distribution πk(1− π)1−k, with k ∈ {0, 1} and

π ∈ [0, 1].

Let p be the number of fixed effects, m be the number of groups in the random

effects and b be the block size for each of those groups. We use 1p and 0p to denote



112 4. GAUSSIAN VARIATIONAL APPROXIMATION OF ZERO-INFLATED GLMMS

the p × 1 column vectors with all entries equal to 1 and 0, respectively. Let y be

the n × 1 vector of counts. The Euclidean norm of a column vector v, defined to

be
√

v>v, is denoted by ‖v‖. For a p × 1 vector a, we let diag(a) denote the p × p

matrix with the elements of a along its’ diagonal.

The function expit(x) denotes the function 1/(1+exp(−x)) which is the inverse

of the logit function.

We can extend the model naturally to a multiple covariate regression model

by using a log link function on the response variable and replacing the parameter

λ in the model above with x>i β to specify the mean, where xi,β ∈ Rp, with xi the

vector of observed predictors and β the vector of regression coefficients. Letting

r = (r1, . . . , rn), the model becomes

log p(y|r,β) = y>R(Xβ)− r> exp (Xβ)− 1>n log Γ(y + 1n), and

ri|ρ ∼ Bernoulli(1− ρ), 1 ≤ i ≤ n,

where X is the n× p matrix whose ith row equals xi and R = diag(r).

4.2.2. Extending to mixed models, incorporating random effects. To be able

to construct multivariate models with as much generality as possible, we wish to

specify the full model as a General Design Bayesian Generalized Linear Mixed

Model, as in Zhao et al. (2006). This allows for a very rich class of models, which

can incorporate features such as random intercepts and slopes, within-subject cor-

relation and smoothing splines, as in Wand and Ormerod (2008), into our models.

The zero-inflated model regression model introduced above can be extended

to a flexible mixed model by incorporating the latent variable r which controls the
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mixture of the zero and non-zero components from the zero-inflated model above

into a Poisson mixed model likelihood.

When the indicator rij = 0, the likelihood is 1 for yij = 0 and 0 for all yij > 0,

and when the indicator rij = 1, the likelihood is a Poisson mixed model regres-

sion likelihood for yij . rij is a Bernoulli indicator with probability ρ, allowing a

proportion of zero- inflation in the observed data to be specified. The jth predic-

tor/response pair for the ith group is denoted by (xij, yij), 1 ≤ j ≤ ni, 1 ≤ i ≤ m,

where xij ∈ R, and the yij are non-negative integers. For each 1 ≤ i ≤ m, define

the ni × 1 vectors yij = [yi1, . . . , yini ]
> as the response vector. Vectors y1, . . . , ym are

assumed to be independent of each other. We develop a zero-inflated regression

model incorporating both fixed effects β and random effects u. The log-likelihood

for one observation is then

log p(yij|rij,β,u) = yijrij(x
>
i β + z>iju)− rij exp(x>ijβ + z>iju)− log Γ(yij + 1),

rij|ρ ∼ Bernoulli(ρ), 1 ≤ i ≤ m, 1 ≤ j ≤ n, and

ρ ∼ Beta(α, β).

We now extend this to multiple dimensional random effects. Let C = [X,Z] and

ν =
[
β>,u>

]>
. The multivariate model with multiple observations is then

log p(y|r,β,u) = y>R(Cν)− r> exp (Cν)− 1>n log Γ(y + 1n), and

ri ∼ Bernoulli(ρ), 1 ≤ i ≤ n,
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with priors

log p(Σuu) = Inverse Wishart(Ψ, v),

ρ ∼ Beta(α, β),

β|σ2
β ∼ Np(0, σ

2
βI), and

u|G ∼ Nmb(0,G),

where X is n× p, Z is n×mb and Σuu is mb×mb and Ψ is b× b. The covariance of

G = Cov(u) ≡ blockdiag1≤i≤m(Σuu) ≡ Im ⊗ Σuu. Inverse Wishart(Ψ, v) denotes

the probability distribution

|Ψ| v2
2
vp
2 Γp

(
v
2

) |X|−v+p+1
2 exp

[
−1

2
tr(ΨX−1)

]
where Γp(x) denotes the multivariate gamma function and tr is the trace function.

The covariance matrix of random effects Σ will depend on the mixed model

being fit. In the random intercept case, Σ = σ2
uI while in the random slopes case

Σ =

 σ2
u1

ρu1u2σu1σu2

ρu1u2σu1σu2 σ2
u2


where σ2

u1
is the variance of the random intercepts, σ2

u2
is the variance of the ran-

dom slopes and ρu1u2 is the correlation between the random intercepts and ran-

dom slopes.

In the spline case, we use the cubic spline basis

{
1, x, x2, x3, (x− κ1)3

+, . . . , (x− κK)3
+

}
,
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where K is the number of knots. Here Σ is a K + 2 banded matrix. Banded
matrices are highly sparse, and matrix operations can be performed on them in
O(K) time. The matrix Σ is symmetric. For K = 3, the contents of Σ are

Σ =



σ2
intercept ρinterceptx ρinterceptx2 ρinterceptx3 0 0 0

ρinterceptx σ2
x ρxx2 ρxx3 ρx(x−κ1)3+

0 0

ρinterceptx2 ρxx2 σ2
x2

ρx2x3 ρx2(x−κ1)
3
+

ρx2(x−κ2)
3
+

0

ρinterceptx3 ρxx3 ρx2x3 σ2
x3

ρx3(x−κ1)
3
+

ρx3(x−κ2)3+
ρx3(x−κ3)

3
+

0 ρx(x−κ1)
3
+

ρx2(x−κ1)
3
+

ρx3(x−κ1)
3
+

σ2
(x−κ1)

3
+

ρ(x−κ1)
3
+(x−κ2)

3
+

ρ(x−κ1)
3
+(x−κ3)

3
+

0 0 ρx2(x−κ2)3+
ρx3(x−κ2)

3
+

ρ(x−κ1)
3
+(x−κ2)

3
+

σ2
(x−κ2)

3
+

ρ(x−κ2)
3
+(x−κ3)

3
+

0 0 0 ρx3(x−κ3)
3
+

ρ(x−κ1)
3
+(x−κ3)

3
+

ρ(x−κ2)
3
+(x−κ3)

3
+

σ2
(x−κ3)

3
+



.

4.2.3. Variational Bayes approximation to the zero-inflated Poisson model.

We choose a factored variational approximation for the model of the form

q(ν, σ2
u, r0, ρ) = q(ν)q(Σuu)q(r0)q(ρ),

where we define r0 = {ri : yi = 0}, and

q(ν) = N(µ,Λ),

q(σ2
u) = Inverse Wishart

(
Ψ +

m∑
i=1

(µiµ
>
i + Λuiui), v +m

)
, and

q(ri) = Bernoulli(pi),

with

pi =


expit

[
ψ(αq(ρ))− ψ(βq(ρ))− exp (c>i µ+ 1

2
c>i Λci)

]
, when yi = 0 ; and

1, otherwise.
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The approximation for r is given by

(38)
q(r) ∝ exp

[
E−q(r)y

>R(Cµ)− r> exp (Cν)− 1
2
ν>Σuuν

]
= exp

{
y>RCµ− r> exp [Cµ+ 1

2
diag(CΛC>)]

}
.

We observe that this expression is close in form to the likelihood of a Pois-

son regression model with random effects. Poisson regression models are non-

conjugate with normal priors, and hence the mean field updates for the regression

parameters do not have closed form expressions. But by assuming a multivariate

normal distribution for the regression coefficients parameterised by µ and Λ, the

model can still be fit using a Gaussian Variational Approximation for β and u

jointly. Techniques for efficiently fitting these models are described in Ormerod

and Wand (2012); Challis and Barber (2013); Opper and Archambeau (2009). GVA

has also been shown to have good asymptotic properties in Hall et al. (2011). The

model can be fit using Algorithm 2 below. The derivation of the variational lower

bound is given in Appendix 4.A.

4.3. Optimising the approximation over the regression coefficients

The most computationally and numerically difficult part of Algorithm 2 above

is optimising the mean and covariance of the Gaussian approximation to the re-

gression coefficients [β,u]>. In this section, we compare the accuracy, stability

and speed of four different algorithms for fitting the Gaussian component of our

model, q(µ,Λ) in Algorithm 2. We compare these approaches for accuracy, com-

putational complexity and stability. The measure of accuracy we use to assess our

approximations is
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Algorithm 2 Iterative scheme for obtaining the parameters in the optimal densities
q∗(µ,Λ), q∗(Σuu) and q∗(ρ)

Require: αq(ρ) ← αρ + 1>p, pq(Σuu) ← p+ 1

while the increase in log p(y; q) is significant do

Optimise µ and Λ using y,C,p and Σuu

βq(ρ) ← βρ + n− 1>p

η ← − exp
[
Cµ+ 1

2
diag(CΛC>)

]
+ (ψ(αq(ρ))− ψ(βq(ρ)))1n

pq(r0) ← expit(η)

Ψq(Σuu) ← Ψ +
∑m

i=1(µiµ
>
i + Λuiui)

Σuu ← [Ψq(Σuu)/(v − d− 1)]−1

end while

Accuracy = 1− 1
2

∫
‖f(θ)− g(θ)‖dθ

where f(θ) is the true distribution we’re approximating and g(θ) is the approxi-

mating distribution.

Our first attempts at implementation of some of these algorithms were prone

to numerical stability problems when initialised from some starting points. We

also discuss the modifications we made to these algorithms to enhance their nu-

merical stability.

4.3.1. Laplace-Variational Approximation. The Laplace-Variational Approxi-

mation method is based on Laplace’s method of approximating integrals, as intro-

duced in Section 1.6.3. The variational lower bound is approximated by a Gauss-

ian centred at its mode.
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This yields the following approximation to the variational lower bound

(39) log p(µ,Λ; y) ≈ y>PCµ− p> exp (Cµ)− 1
2
µ>Σ−1µ.

This expression can be iteratively optimised with respect to µ and Λ using the

Newton-Raphson method, with the derivatives for µ and Λ given in Appendix

4.B.1. The steps of the algorithm are shown in Algorithm 3.

Upon implementing the algorithm and performing numerical experiments, we

observed numerical issues which had to be dealt with in order for the algorithm

to successfully complete. We implemented checks for error conditions, and steps

to recover from the error conditions should they arise.

If during an iteration of the Laplace-Variational approximation algorithm the

inversion of Λ fails, or the diagonal elements of Λ become negative when Λ must

be positive-definite, then µ and Λ were reverted to the previous iteration’s µ and

Λ values and the algorithm was terminated.

If after calculating the gradient of the Gaussian Variational lower bound with

respect to µ, any of its’ elements were driven to NaN or∞ due to numeric over-

flow followed by matrix inversion during the computation,µ and Λ were reverted

to the previous iteration’s µ and Λ values and the algorithm was terminated.

4.3.2. Gaussian Variational Approximation. The full variational likelihood

for a Generalised Linear Mixed model is computationally difficult to calculate,

requiring the evaluation of a high dimensional integral. However, Ormerod and

Wand (2012) devised an accurate approximation to the full variational likelihood,

the Gaussian Variational Lower Bound, which only requires the evaluation of a

substantially simpler univariate integral.
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Algorithm 3 Laplace scheme for optimising log p(µ,Λ; y)

Require: C,Σ,p,y set as in Algorithm 2.
µ← 0

H← [−C>diag(pe(Cµ))C−Σ−1]−1

while the increase in log p(µ,Λ; y) is significant do
Λ←

[
PC>diag(exp (Cµ))C + Σ−1

]−1

If Λ cannot be inverted, or any diagonal element of Λ is negative, revert to
previous Λ and break

H← [−C>diag(pe(Cµ))C−Σ−1]−1

If any element of H is NaN or∞, break

g← C>[r>y − r> exp (C>µ)]−Σ−1µ

µ← µ+ Λg

end while

To optimise the Gaussian component of the lower bound in each iteration of

Algorithm 2, optimalµ and Λ values must be found while keeping the other varia-

tional parameters fixed. The variational lower bound is not necessarily unimodal

if p and Σ are free to vary, leading to potential problem of optimising to a lo-

cal rather than the global maximum. However, for fixed p and Σ, the variational

lower bound is log-concave with respect toµ and Λ, and so standard optimisation

methods such as L-BFGS-B as described in, for example, Liu and Nocedal (1989)

and Nocedal and Wright (2006), work well. This leads to an extremely accurate

approximation of the posterior probability estimated by MCMC at the expense of

some additional computational effort. Care must be taken in the parameterisa-

tion of Λ, as it is both of high dimension (p + mb)2 and constrained to be semi-
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positive definite. We present and compare two approaches to parameterising the

covariance matrix Λ below.

4.3.2.1. Covariance parameterisation Λ = R>R. This parameterization has been

used elsewhere, e.g., Pinheiro and Bates (2000). We fit the Gaussian component of

our approximation in Algorithm 2 by maximising the variational lower bound is

(40)
log p(µ,Λ; y) = y>PCµ− p> exp{Cµ+ 1

2
diag(CΛC>)}

−1
2
µ>Σ−1µ− 1

2
tr(Σ−1Λ) + 1

2
log |Λ|+ 1

2
log |Σ−1|+ p

2
,

with respect to µ and Λ, keeping p, Σ and ρ fixed.

The first variant of the GVA algorithm that we present optimises the Gaussian

variational lower bound of the log likelihood with respect to µ and the Cholesky

decomposition R of Λ, that is, Λ = R>R. This ensures that Λ remains positive

definite, and reduces the number of parameters we have to optimise over in order

to optimise Λ to the (p + 1)p/2, as R is lower triangular. We refer to this as the

covariance parameterisation. The resulting lower bound is

(41)
log p(µ,Λ; y) = y>PCµ− p> exp{Cµ+ 1

2
diag(CΛC>)}

−1
2
µ>Σ−1µ− 1

2
tr(Σ−1Λ) + log |R|+ 1

2
log |Σ−1|+ p

2
,

which can be optimised with L-BFGS-B using the derivatives in Appendix 4.B.2.

4.3.2.2. Precision parameterisation Λ = (R>R)−1. The second variant of the

GVA algorithm is similar to the first, but instead of optimising the Gaussian vari-

ational lower bound with respect to µ and the Cholesky factor R of Λ, we instead

optimise the Cholesky factor of the inverse of Λ, i.e., Λ = (RR>)−1.
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The Gaussian variational lower bound in this parameterisation is

(42)
log p(µ,Λ; y) = yPCµ− p> exp{Cµ+ 1

2
diag(CΛC>)}

−1
2
µ>Σ−1µ− 1

2
tr(Σ−1Λ) + 1

2
log |Σ−1|+ p

2
− log |R|.

The derivative with respect to µ is the same as that in the first variant of the algo-

rithm, but as the parameterisation of Λ has changed, the derivative with respect

to Λ is

(43)

∂ log p(µ,Λ; y)

∂Λ
= (Λ−1 + H)(−ΛRΛ)

= −(I + HΛ)RΛ

= −(RΛ + HΛRΛ),

where H = (PC)>diag(exp(Cµ+ 1
2
CΛC>))PC−Σ−1.

4.3.2.3. GVA fixed point. This variant of the algorithm uses Newton-Raphson-

like fixed point updates on the Gaussian variational lower bound. We optimise the

same variational lower bound as in the covariance parameterisation above, using

the derivatives below. The steps are detailed in Algorithm 4 where the deriva-

tives are as presented in Appendix 4.B.3. As this algorithm involves a simple

Newton-Raphson style update step, it is computationally simple to implement,

but potentially unstable as there is no adaptation of step size, as in L-BFGS-B.

For efficiency, the inversion of Λ within the algorithm was implemented using

the block inverse formula, where the matrix was partitioned

Λ =

Λββ Λβu

Λ>βu Λuu
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with Λββ the p × p approximation of the fixed effects covariance, Λβu the p ×mb

approximation of the covariances between the fixed and random effects and Λuu

the mb×mb approximation of the random effects covariance.

Sometimes in the course of executing the algorithm, we observed numerical

issues which had to be dealt with in order for the algorithm to successfully com-

plete. If the block Λuu could not be inverted on an iteration, we reverted to µ

and Λ from the previous iteration. If after updating µ any element of the vector

was NaN, we reverted to the µ and Λ from the previous iteration. This greatly

improved the numerical stability of the algorithm.

Algorithm 4 The GVA Newton-Raphson fixed point iterative scheme for obtain-
ing the optimal µ and Λ given y, C and p.

Require: g = PC(y −C> exp(Cµ+ 1
2
diag(CΛC>)))−Σ−1µ.

while the increase in log p(µ,Λ; y) is significant do
g← C>p{y − [exp(Cµ+ 1

2
diag(CΛC>))]} −Σ−1µ

H← −C>diag(p> exp(Cµ+ 1
2
diag(CΛC>)))−Σ−1

Λ← (−H)−1 using block inversion on H

If the inversion fails, revert to previous µ and Λ and exit the loop

µ← µ+ Λg

If any element of µ is∞ or NaN, revert to previous µ and Λ and exit the loop

end while
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4.4. Parameterisations for Gaussian Variational Approximation

4.4.1. Covariance parameterisation of Λ. To ensure symmetry of Λ, we pa-

rameterise the covariance matrix in terms of Λ’s Cholesky factor R. We optimise

over the space (µ,R), where µ ∈ Rp+mb and R is a lower-triangular (p + mb) ×

(p+mb) matrix. Then

Rij =


exp(Rij), i = j;

Rij, i > j; and

0, otherwise.

We exponentiate the diagonal to ensure positive-definiteness of R. We parame-

terise Λ as Λ = RR> so that is is guaranteed to be symmetric, and the number of

parameters is reduced from p2 to p(p− 1)/2, some of which are constrained.

This parameterisation can lead to numeric overflow when the diagonals of R

become moderately large, which can lead to singular matrices when attempting

to invert Λ. We addressed this issue by defining a new parameterisation using the

piecewise function below, which is exponential for arguments less than a thresh-

old t, and quadratic for arguments greater than or equal to t

(44) f(rij) =


erij , rij < t; and

ar2
ij + brij + c, rij ≥ t;

and then choosing the coefficients a, b and c such that the function, first and second

derivatives would agree at rij = t. This ensured that the function did not grow
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too quickly as the parameters varied, mitigating the issue of numerical overflow

for this parameterisation.

To find the coefficients a, b and c for the above function, we solved the system

of equations presented below formed by repeatedly differentiating the quadratic

at rij = t and equating it with et we have

(45)

et = at2 + bt + c

et = 2at + b

et = 2a

to obtain a = et/2, b = (1− t)et and c = [1− t2/2− (1− t)t]et.

We also addressed the problem of numeric overflow by working with the

Cholesky factorisation of Λ−1 rather than Λ, allowing us to solve a system of equa-

tions rather than invert and multiply by a matrix, which is also faster and more

numerically stable. We used knowledge of the regression model we are fitting to

specify a sparse matrix structure, greatly reducing the dimension of the problem

and thus improving both computational speed and numeric accuracy.

Recall that any symmetric matrix Λ can be written as a product of its Cholesky

factors, Λ = RR> where R is lower triangular. The matrix R is unique if Rii ≥ 0
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and 
R11 0 0

R21 R22 0

R31 R32 R33




R11 R21 R31

0 R22 R32

0 0 R33



=


R2

11 symmetric

R21R11 R2
21 + R2

22

R31R11 R31R21 + R32R22 R2
31 + R2

32 + R2
33

 .

We exploit this structure, by interchanging the fixed and random effects in the

design matrix C = [X,Z] to C = [Z,X], and re-ordering the dimensions of µ,Λ

and Σ in the same manner, using the independence between the blocks relating

to the random effects in Z to induce sparsity in the Cholesky factor R of Λ−1, as

can be seen in Figures 1 and 2. Thus the Gaussian q(ν) ∼ N(µ,Λ) can be opti-

mised over a space of dimension 1
2
p(p+ 1) + pq + 1

2
q(q + 1) rather than dimension

1
2
(p + mq)(p + mq + 1) as in the dense parameterisation. This leads to substantial

performance gains when m is large, as is typically the case in problems of prac-

tical importance such as longitudinal or clinical trials with many subjects or the

application presented in Section 4.6.

By re-ordering the fixed and random effects in Λ, we end up with a covariance

structure which is sparse in the first diagonal block.
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FIGURE 1. Inverse Covariance matrix of approximate posterior for
ν – Fixed effects before random effects and random before fixed ef-
fects.
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FIGURE 2. Cholesky factor of Inverse Covariance matrix of approx-
imate posterior for ν – Fixed effects before random effects and ran-
dom before fixed effects.

4.4.2. Precision parameterisation. The GVA is fit by maximising the Gauss-

ian Variational Lower Bound, which is parameterised by a mean vector µ and a

covariance matrix Λ. The simplest parameterisation of µ is the natural param-

eterisation, but the covariance matrix has many possible parameterisations. Co-

variance matrices are positive semi-definite, and hence symmetric, so they have
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a unique Cholesky factorisation. Parameterising the covariance matrix in terms

of the Cholesky factor allows us to represent the square covariance matrix using

only a lower triangular matrix with half as many non-zero elements. Thus the

Cholesky factor is a convenient way to parameterising covariance matrices.

Another advantage of parameterising using the precision matrix is that the

covariance matrix contains the marginal covariances between the elements of ν,

while the precision matrix contains the conditional covariances between those el-

ements. In generalised linear mixed models, fixed and random effects are con-

ditionally independent, implying sparsity in the precision matrix although not

necessarily in the covariance matrix.

The variational lower bound of a GVA takes the form given below.

(46)

log p(y;µ,Λ) = y>Cµ− 1>B(Cµ,diag(CΛC>)) + 1>c(y)

−1
2
µ>Σ−1µ− 1

2
tr(Σ−1Λ)

+1
2

log |Λ| − 1
2

log |Σ|+ d
2
.

Let Ω = Λ−1, the precision matrix. Then if we reparameterise the variational

lower bound in terms of Ω we obtain the function below.

(47)

F (Ω) = y>Cµ− 1>B(Cµ,diag(CΩ−1C>)) + 1>c(y)

−1
2
µ>Σ−1µ− 1

2
tr(Σ−1Ω−1)

−1
2

log |Ω| − 1
2

log |Σ|+ d
2
.

When the variational lower bound is optimised, by the first-order optimality

conditions, ∂F
∂Ωjk

= 0. Then using matrix calculus and the properties of the trace
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operator

∂F
∂Ωjk

= −1
2
tr(Ω−1 ∂Ω

∂Ωjk
) + 1

2
tr(Σ−1Ω−1 ∂Ω

∂Ωjk
Ω−1)

−1
2
tr{C>diag(B(2)(Cµ,diag(CΩ−1C>)))CΩ−1 ∂Ω

∂Ωjk
Ω−1}

= −1
2
[tr(Ω−1ΩΩ−1 ∂Ω

∂Ωjk
)− tr(Σ−1Ω−1 ∂Ω

∂Ωjk
Ω−1)

+tr{Ω−1C>diag(B(2)(Cµ,diag(CΩ−1C>)))CΩ−1 ∂Ω
∂Ωjk
}]

= −1
2
tr{Ω−1[Ω−C>diag(B(2)(Cµ,diag(CΩ−1C>)))C−Σ−1]Ω−1 ∂Ω

∂Ωjk
}

As Ω−1 6= 0 and ∂Ω
∂Ωjk

6= 0, this implies Ω = C>diag(B(2))C + Σ−1. Thus the

sparsity of Ω depends on the structure of C and Σ, which depends on the model

specified.

We optimise over the space (µ,R) as in the Section 4.4, but now the elements

of the Cholesky factor are parameterised as

Rij =


exp(−Rij), i = j

Rij, i > j

0, otherwise.

This new choice of parameterisation allows us to calculate 1
2
diag(CΛC>) by solv-

ing the linear systems Ra = Ci, i = 1, . . . , n for a and then calculating a>a where

Ci = the ith row of C, rather than calculating diag(CΛC>) directly.

A final advantage of this parameterisation is its’ greater numerical accuracy.

Matrix multiplication and back substitution are both equally numerically accu-

rate and stable - as shown in Golub and Van Loan (2013) §2.7.8 and §3.1.2 or Tre-

fethen and Bau (1997) Lecture 17, and the precision matrix will be sparse due to

the specification of the mixed model/conditional independence. This implies that
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the numerical accuracy of the inversion will be higher as there are fewer non-zero

entries in the Cholesky factor of the precision matrix than of the Cholesky fac-

tor of the covariance matrix. Thus parameterising the variational lower bound

in terms of the precision matrix will have the same or higher numerical accuracy

than parameterising in terms of the covariance matrix.

Finally, we have outlined several versions of the Gaussian variational approx-

imation. Sometimes these give qualitatively different results and the question

arises how we would choose amongst them. While we do not have theory to

support this, our pragmatic advice is to choose a method we would choose the

method (amongst those that converge) is the method that achieves the highest

lower bound value.

4.5. Numerical results

The accuracy of each of the model fitting algorithms presented in Section 4.3

was assessed by comparing the approximating distribution of each parameter

with the posterior distribution of MCMC samples of that parameter. One million

MCMC samples were generated using RStan (Carpenter et al., 2016; Stan Devel-

opment Team, 2016). The accuracy of examples using random intercept, random

slope and spline models were evaluated using this method.
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Algorithm Mean (seconds) Standard deviation (seconds)
Laplace’s method 0.37 0.07
GVA covariance parameterisation 2.04 1.24
GVA precision parameterisation 0.38 0.66
GVA fixed point 0.05 0.07

TABLE 1. Table of results - Speed.

Laplace’s Method GVA (Λ = RR>) GVA NP (Λ = (RR>)−1) GVA FP
β1 85% 90% 91% 90%
β2 76% 98% 99% 99%
Mean of u’s 81% 94% 94% 94%
σ2
u1

66% 66% 66% 66%
ρ 99% 99% 99% 99%

TABLE 2. Table of accuracy - Random intercept model.

4.5.1. Simulated data. For each of these simulations, the model is as presented

in Section 4.2. Several common application scenarios were simulated and their

accuracy evaluated. A random intercept model was simulated with β = (2, 1)>,

ρ = 0.5, m = 20, ni = 10 and b = 1. The results are presented in Table 2. A random

slope model was simulated with β = (2, 1)>, ρ = 0.5, m = 20, ni = 10 and b = 2.

The results are presented in Table 3. Spline model was fit to a data set generated

from the function 3 + 3 sin (πx) on the interval [−1, 1]. The resulting model fits are

presented in Figure 4.5.1.

To assess the speed of each approach, a test case was constructed of a ran-

dom slope model with m = 50 groups, each containing ni = 100 individuals. A

model was then fit to this data set ten times using each algorithm, and the results

averaged. These results are presented in Table 1.

The median accuracy of the algorithms was assessed by running them on 100

randomly generated data sets. The results are presented in Figure 3 and Figure 4.
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FIGURE 3. Boxplots of accuracies of the parameter estimates for a
random intercept model after 100 repeated runs on simulated data.
We see that the accuracy of the parameter estimates is quite stable,
and the median accuracies are high.
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Laplace’s Method GVA (Λ = RR>) GVA (Λ = (RR>)−1) GVA FP
β1 67% 88% 88% 88%
β2 70% 89% 88% 89%
Mean of u 70% 91% 91% 91%
σ2
u1

71% 73% 73% 73%
σ2
u2

68% 69% 69% 69%
ρ 91% 90% 90% 90%

TABLE 3. Table of accuracy - Random slope model.

4.5.2. Numerical stability of the parameterisation. The stability of this scheme

was tested by calculating the accuracy of the approximations fit with a range of

safe exponential thresholds, the results of which are presented in Figure 4.5.2. The

variational approximation was found to be stable, with the accuracy largely insen-

sitive to the choice of threshold.

We repeated our numerical experiments with the new parameterisation, vary-

ing the threshold within reasonable bounds and found that the numerical experi-

ments no longer resulted in overflow, and that the numerical accuracy of the ap-

proximation was still very good.

The stability of the GVA algorithm with the parameterisation Λ = (R>R)−1

depends on the threshold chosen for the safe exponential function. When the

threshold is set to 2, the algorithm is stable for all starting points within the grid

except 6. When the threshold is set to∞, equivalent to using the naive exp param-

eterisation, the algorithm encounters numerical errors for every starting point on

the grid.
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FIGURE 5. Comparison of VB and MCMC spline fits with the true function.

4.5.3. Stability of the GVA precision parameterisation algorithm for differ-

ent starting points. The numerical stability of each fitting algorithm in Section

4.3 was assessed by initialising each algorithm from a range of different starting

points. Errors due to numerical instability and the fitted µwere recorded for each

starting point.
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FIGURE 6. Accuracy of approximation of parameters versus the safe
exponential threshold.

A data set of 100 individuals in ten groups (m = 10) was generated from a

model with a fixed intercept and slope, and a random intercept. µ was initialised

from a grid of points on the interval [−4.5, 5] for intercept and slope, spaced 0.1

apart. The error counts are presented in Table 4. Plots of the starting locations
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Algorithm Error count
Laplace’s algorithm 12
GVA Λ = R>R 1306
GVA Λ = (R>R)−1 6
GVA NR fixed point 992

TABLE 4. Count of numerical errors for each algorithm during sta-
bility tests.

which resulted in numerical errors when the fitting algorithm was run are pre-

sented in 4.5.3.

The GVA algorithm with the Λ = (RR>)−1 parameterisation was less prone to

instability due to starting point when the safe exponential parameterisation was

used then when it was not used, as can be seen from Figure 4.5.3.

4.5.4. Stability of the GVA fixed point algorithm for different starting points.

The naive fixed point algorithm was extremely unstable for many starting points,

as can be seen from Figure 4.5.4. The variant of the algorithm which checked

whether the inversion of the Λuu block of Λ was performed successfully was much

more stable, and did not suffer from any numeric errors at all over the range of

starting points we tested. The algorithm is able to abort safely, and allow the Vari-

ational Bayes algorithm to update the other parameters before trying to fit the

Gaussian component of the model again until the correct parameters are accu-

rately estimated.

4.6. Applications

We now present numerical results for the application of our model fitting al-

gorithms to several publicly available data sets.
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FIGURE 7. Starting locations which caused the GVA fitting algo-
rithm to fail with numeric errors. The true model had fixed parame-
ters β = (2, 1)> and random intercepts. There were ten groups in the
hierarchical model each with ten individuals (m = 10, ni = 10). In
the left figure the starting points which lead to numeric errors when
the safe exponential was used are shown, while in the right figure
the starting points which lead to numeric errors when the safe expo-
nential was not used are plotted.

4.6.1. Poisson example without zero-inflated component – Police stops. The

data set used for this example was the police stop example from Chapter 15 of

Gelman and Hill (2007). The model fit was

yep ∼ Poisson(nepe
ν)

where ν = β0 + βeethnicitye + αccrime + up, with priors

α ∼ N(0, σ2
α), β ∼ N(0, σ2

β), and up ∼ N(0, σ2
u),
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FIGURE 8. Starting locations which caused the fixed point fitting al-
gorithm to fail with numeric errors. The true model had fixed pa-
rameters β = (2, 1)> and random intercepts. There were ten groups
in the hierarchical model each with ten individuals (m = 10, ni =
10).
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Covariate Posterior Mean Lower 95% CI Upper 95% CI Accuracy
Intercept [African-Americans] 4.04 3.98 4.07 85%
β2 [hispanics] −0.45 −0.46 −0.43 99%
β3 [whites] −1.38 −1.40 −1.37 99%
α1 [weapons crimes] 0.58 0.57 0.59 90%
α2 [property crimes] −0.19 −0.21 −0.17 92%
α3 [drug crimes] −0.75 −0.77 −0.73 95%
Random intercept 1.32 −0.19 2.20 87%
σ2
u 8.57 1.02 24.35 67%

TABLE 5. Table of results - Police stops.

Algorithm Time in seconds
Laplace 0.07
GVA precision paramaterisation 0.90
GVA fixed point 0.06

TABLE 6. Table of speeds - Police stops.

the index p corresponds to each precinct, e is the index of ethnicity (African-

Americans, hispanics or whites), and c is the index of category of crime (violent

crimes, weapons crimes, property crimes or drug crimes). The random intercepts

up allow for variation in the base rates of stops across precincts, the coefficients βj

measure the effect of ethnicity on the rate of police stops and the coefficients αk

measure the effect of each type of crime on the rate. The model finds the relation-

ship between the number of police stops in each precinct and ethnicity for each

type of crime.

The model was fit using the GVA algorithm with the Λ = (R>R)−1 param-

eterisation, using the prior aρ = 3, bρ = 1 on ρ. Accuracy of the approximation

was assessed by comparing the fitted distribution for each parameter to a kernel

density estimate of the parameter’s distribution from 1 million samples from the

equivalent model using Stan. The results are presented in Table 5 and Figure 9.
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FIGURE 9. Accuracy of parameter estimates for police stops.
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4.6.2. Zero–inflated example – Cockroaches in apartments. The model de-

scribed in this section was fit to the cockroach data set from Section 6.7 of Gelman

and Hill (2007), taken from a study on the effect of integrated pest management

in controlling cockroach levels in urban apartments. The data set contains data

on 160 treatment and 104 control apartments, along with the response yi in each

apartment of the number of cockroaches caught in a set of traps. The apartments

had the traps deployed for different numbers of days, referred to as trap days,

which was handled by using a log offset (Agresti, 2002). The predictors in the

data set included the pre-treatment roach level, a treatment indicator, the time of

the observation and an indicator for whether the apartment is in a senior building

restricted to the elderly.

In the example application presented in this paper, the zero component rep-

resents an apartment completely free of roaches, while the non-zero component

represents an apartment where roaches have been able to live and reproduce, pos-

sibly in spite of pest control treatment aimed at preventing them from doing so.

The model fit was

yi =


0, if Ri = 0, and

Poisson(eXiβ+Ziu), if Ri = 1,

with priors

Ri ∼ Bernoulli(ρ), ρ ∼ Beta(a, b), β ∼ N(0, σ2
βI),

u ∼ N(0,Σ) and Σ ∼ Inverse-Wishart(Ψ, v)
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Covariate Posterior Mean Lower 95% CI Upper 95% CI Accuracy
Intercept 3.42 3.20 3.65 96%
Time −0.14 −0.05 −0.02 98%
Time:Treatment −0.31 −0.43 −0.14 99%
Random intercept −1.60 −1.71 −1.49 98%
σ2
u1

3.29 2.02 8.48 64%
ρ 0.51 0.50 0.55 63%

TABLE 7. The posterior means, 95% credible intervals and accuracy
of the fixed and random effects, σ2

u1
and ρ for the Roach model.

Algorithm Time in seconds
Laplace 0.68
GVA 2.02
GVA inv. param 1.70
GVA fixed point 0.17

TABLE 8. The runtimes in seconds for fitting algorithms when fit-
ting the roach model.

and prior hyperparameters a = 1, b = 1, σ2
β = 105, Ψ = 10−5I and v = 2. These

priors were chosen to be vaguely informative for the variance components and a

uniform prior for the zero-inflation proportion latent variable ρ. The fixed effects

covariates included in the model were time in days and time in days× pest control

treatment. A random intercept to account for variation between the apartment

buildings was included.

The GVA algorithm with the Λ = (R>R)−1 parameterisation was used to fit

a random intercept model to the Roaches data set provided in Gelman and Hill

(2007). The fitted coefficients and accuracy results are presented in Table 7.

4.6.3. Example - Biochemists. The model described in this section was fit to

the biochemistry data set analysed by Long (1990). The sample was taken from

915 biochemistry graduate students. The outcome yi is the number of articles
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FIGURE 10. Accuracy graphs for roach model. The height of the
graphs have been scaled to be the same height.

published in the last three years of the PhD. The covariates were the gender of the

student, coded 1 for female and 0 for male, the marital status of the student (1 for
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Covariate Posterior Mean Lower 95% CI Upper 95% CI Accuracy
Intercept 0.86 0.65 1.06 95%
Female −0.18 −0.29 −0.08 95%
Married 0.06 −0.05 0.18 96%
Children under age 6 −0.08 −0.15 −0.01 97%
PhD 0.03 −0.02 −0.01 97%

TABLE 9. The posterior means, 95% credible intervals and accuracy
of the fixed effects for the Biochemists model.

married, 0 for unmarried), the number of children under age six and the prestige

of the PhD program.

In this example application, the zero component represents the number of bio-

chemists who did not publish any articles during the last three years of their PhD.

Examination of the data reveals that this number is higher than would be expected

if the data followed a purely Poisson distribution – 30% of biochemistry graduate

students published no articles in their final years whereas a Poisson distribution

would predict only 18%. This justifies our choice of model. The model fit was

yi =


0, ifRi = 0, and

Poisson(eν), if Ri = 1,

where ν = β1 + β2female + β3married + β4children under age 6 + β5PhD, with

priors Ri ∼ Bernoulli(ρ), ρ ∼ Beta(A,B) and β ∼ N(0, σ2
βI) and A = 1, B = 1

and σ2
β = 10, 000. The model was fit using the GVA precision parameterisation

algorithm. The resulting model fit is presented in Table 4.6.3 The accuracy of the

parameter estimates is presented in Figure 4.6.3. As this is a fixed effects model

with a large number of samples relative to the number of parameters being fit, we

are able to estimate all of the parameters with great accuracy.
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FIGURE 11. Accuracy of the approximations of the parameters fit to
the biochemists data.

4.6.4. Example - Owls. The model described in this section was fit to the Owls

data set taken from Zuur et al. (2009). The sample consists of 599 observations
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Algorithm Time in seconds
Laplace 0.12
GVA 0.60
GVA inv. param 0.53
GVA fixed point 0.07

TABLE 10. The run times in seconds for fitting algorithms when fit-
ting the Biochemists model.

made of owls grouped across 25 nests.The fixed covariates fit in the model were

food treatment (Deprived or Satiated), a categorical variable, and arrival time, a

continuous covariate. The variation between the 25 different nests sampled from

was modelled by a random intercept u. The model fit was

yi =


0, ifRi = 0, and

Poisson(eν), if Ri = 1,

where ν = β2I(Food Treatment = Satiated) + β3I(Arrival Time) + un and n is the

n-th nest. We specified the priorsRi ∼ Bernoulli(ρ), ρ ∼ Beta(A,B), β ∼ N(0, σ2
βI),

u ∼ N(0, σ2
u) and σ2

u ∼ Inverse-Gamma(s, t) with σ2
β = 10, 000, A = 1, B = 1,

s = 10−2 and r = 10−2 on the parameters in the model.

The model was fit using the GVA precision parameterisation algorithm. The

accuracy of the parameter estimates is shown in Figure 12, while the runtime of

the algorithms is shown in Table 12. We draw attention to the difference in run-

times between the covariance and precision parameterisations. The algorithm us-

ing the precision parameterisation fits the model significantly faster with a run-

time of 1.88 seconds versus 5.66 seconds for the covariance parameterisation.
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FIGURE 12. Accuracy of the approximations of the parameters fit to
the Owls data.
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Covariate Posterior Mean Lower 95% CI Upper 95% CI Accuracy
Satiated −0.22 −0.21 −0.21 93%
Arrival Time −0.07 −0.07 −0.07 80%
Random intercept (nest) 0.34 −5.28 5.96 82%
σ2
u1

7.90 3.21 468.12 87%
ρ 0.74 0.70 0.77 99%

TABLE 11. The posterior means, 95% credible intervals and accu-
racy of the fixed and random effects, σ2

u1
and ρ for the Owls model.

Algorithm Time in seconds
Laplace 0.78
GVA covariance parameterisation 13.95
GVA precision parameterisation 2.15
GVA fixed point 0.25

TABLE 12. The run times of the fitting algorithms for the Owls
model in seconds.

4.7. Conclusion

We described a Variational Bayes approximation to Zero-Inflated Poisson re-

gression models which allows such models to be fit with considerable generality.

We have also devised and extensively tested a number of alternative approaches

for fitting such models, and extended one of these alternative approaches with a

new parameterisation. Using MCMC methods as the gold standard to test against,

we have assessed the accuracy and computational speed of these algorithms.

We applied our model fitting algorithms to a number of data sets to fit a range

of models. The Cockroaches model in Section 4.6.2 had few fixed covariates, a

random intercept for each apartment building and incorporated zero-inflation.

The Police stops model in Section 4.6.1 was a pure Poisson mixed model, with

no zero-inflation and a random intercept for precincts/locality. The Biochemists

model in Section 4.6.3 was zero-inflated with fixed effects. The Owls model in
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Section 4.6.4 was zero-inflated, with a random intercepts for each nest. There

were a large number of nests (m = 27). We were able to estimate the variance

component for this model very accurately.

The use of Mean Field Variational Bayes allows estimation of Bayesian ZIP

models in a fraction of the time taken to fit the same model using even the best

MCMC methods available, with only a small loss of accuracy. This is of great

utility in applications where speed matters, such as when applied statisticians

are comparing and choosing amongst many candidate models, as is typical in

practice.

The new parameterisation of GVA using the Cholesky factorisation of the in-

verse of Λ presented in Section 4.4 provides significant advantages when used to

estimate mixed models.

Mixed models have covariance matrices with a block structure, due to the de-

pendence structure of the random effects. The precision parameterisation pre-

sented in this chapter is able to preserve this sparsity within the structure of the

Cholesky factors of the inverses of the covariance matrices use in the variational

lower bound by re-ordering the rows and columns of the matrices so that the

random effects blocks appear first. The Owls example presented in this chapter

shows the computational advantages of this approach when the number of groups

m in the model is large (m = 27 in this case) – as the covariance parameterisation

takes 46 seconds to fit whereas the inverse parameterisation only takes 3 seconds.

This clearly demonstrates advantage of using sparsity to reduce the dimension

of the optimisation problem to be solved when models are being fit – as only the

non-zero values in the covariance matrices need to be optimised over. This allows
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models to be fit more quickly, and with greatly improved numerical stability and

without loss of accuracy.

While all of the fitting algorithms presented in this chapter except the Laplace’s

approximation algorithm were able to fit ZIP random and fixed effects models

with high accuracy, and the Gaussian inverse parameterisation and fixed point

algorithms were able to do so at high speed, they could be numerically unstable

depending on the data the model was being fit to and their starting points. In the

case of the Gaussian inverse parameterisation algorithm, the source of the prob-

lem was tracked down to the exponential function used in the parameterisation

of the diagonal of the Cholesky factor of the precision matrix combined with the

exponential that arises in the derivation of the Gaussian variational lower bound

for Poisson mixed models – leading to frequent numeric overflows during the

fitting process. This problem, once discovered, was mitigated by replacing the

exponential parameterisation of the diagonal of the Cholesky factor with a piece-

wise function which is exponential beneath a threshold and quadratic above that

threshold. This was shown to greatly increase the numeric stability of the GVA

inverse parameterisation for a range of starting points.

Some of the algorithms which we experimented with were found to be very

sensitive to their initial conditions. While these algorithms are typically initialised

with a starting point as close as possible to the final solution, this gives some

sense of the stability of each algorithm. We were able to develop a variant of

the algorithm that employs a parameterisation which is much more numerically

stable, and demonstrate this numerical stability for a range of models.
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4.A. Calculation of the variational lower bound

The variational lower bound is Eq{log p(y,θ)− log q(θ)} = T1 + T2 + T3, where

T1 = Eq[log p(y,ν)− log q(ν)]

= yPCµ− p> exp
{
Cµ+ 1

2
diag(CΛC>)

}
− 1> log Γ(y + 1)

+p+m
2

(1 + log 2π) + 1
2

log |Λ|,

T2 = Eq {log p(Σuu)− log q(Σuu)}

= Eq
{
v/2(log |Ψ| − log |Ψ + µuµ

>
u + Λuu|) + 1

2
log 2 + 1

2
log |Σuu|

+ log Γp+1(v/2)− log Γp(v/2) + 1
2
tr((µuµ

>
u + Λuu)Σ−1

uu)
}

= v/2
(

log |Ψ| − log |Ψ + µuµ
>
u + Λuu|

)
+ 1

2
log 2

+1
2
Eq log |Σuu|+ log Γp+1(v/2)− log Γp(v/2)

+1
2
tr
[
Im + Ψ(Ψ + µuµ

>
u + Λuu)−1/(v + p+ 2)

]
T3 = −p> log p− (1− p)> log(1− p)− log Beta(αρ, βρ) + log Beta(αq, βq)

with Eq log |Σuu| = m log 2 + log
∣∣Ψ + µuµ

>
u + Λuu

∣∣+
∑m

i=1 Ψ
(
v−i+1

2

)
.

4.B. Calculation of derivatives

4.B.1. Derivatives for Laplace-Gaussian variational approximation.

∂ log p(µ,Λ;y)
∂µ

≈ PC(y − exp (Cµ))−Σ−1µ and
∂ log p(µ,Λ;y)

∂Λ
≈ −C>diag(pe(Cµ))C−Σ−1.

4.B.2. Derivatives for parameterisation Λ = RR>.

∂ log p(µ,Λ;y)

∂µ
= PC(y −C> exp(Cµ+ 1

2
diag(CΛC>)))−Σ−1µ and

∂ log p(µ,Λ;y)

∂Λ
=
{
Λ−1 −PC> exp(Cµ+ 1

2
diag(CΛC>))PC)−Σ−1

}
R.
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4.B.3. Derivatives for fixed point approach.

∂ log p(µ,Λ;y)

∂µ
= C>p

[
y −C exp{Cµ+ 1

2
diag(CΛC>)}

]
−Σ−1µ and

∂ log p(µ,Λ;y)

∂Λ
= −C>diag[p> exp{Cµ+ 1

2
diag(CΛC>)}]−Σ−1.



CHAPTER 5

Future Directions

We conclude by briefly summarising the content of the thesis and outline potential

research directions we seek to pursue.

5.1. Calculating Bayes factors for g-priors

In Chapter 2 we reviewed the prior structures that lead to closed form ex-

pressions for Bayes factors for linear models. We have described ways that each

of these priors, except for the hyper-g/n prior can be evaluated in a numerically

stable manner and have implemented a package blma for performing full exact

Bayesian model averaging using this methodology. Our package is competitive

with BAS and BMS in terms of computational speed, is numerically more stable

and accurate, and offers some different priors structures not offered in BAS. Our

package is much faster than BayesVarSelect and is also numerically more sta-

ble and accurate.

We are currently working on several extensions to this work. Firstly, we are

working on a parallel implementation of the package which will allow for exact

Bayesian inference for problems roughly the size p ≈ 30. While a prototype of

this work has been developed which runs on Linux using OpenMP, and displayed

good performance as the number of cores used increased, we found it difficult

to get the parallel code to work reliably on Macintosh and Windows computers.
153
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As the majority of R users use these two platforms, we feel this is an important

technical issue to resolve. Our algorithm could also be ported to GPUs.

Secondly, we are currently implementing Markov Chain Monte Carlo (MCMC)

and population based MCMC methods for exploring the model space when p >

30. We can also see several obvious paths to extend this work to Generalised

Linear Models - either using the approach described in Li and Clyde (2015) or by

using Laplace approximations.

Thirdly, we are working on fast numerically stable quadrature based methods

for the hyper-g/n and Zellner-Siow based priors. Further we are deriving exact

expressions for parameter posterior distributions under some of the prior struc-

tures we have considered here. Many of these parameter posterior distributions

are expressed in terms of special functions whose numerical evaluation must be

handled with care.

5.2. Particle Variational Approximation

In Chapter 3 we developed PVA, a fast method for approximate Bayesian

model averaging. There are several planned future extensions to this work. Firstly,

we would like to generalise the PVA approach to linear models and generalised

linear models, to be able to perform model selection for regression models appli-

cable to a wider range of types of data. The computational approach would again

either calculate Bayes factors based on the ideas of Li and Clyde (2015) or by using

Laplace approximations. Additional care needs to be exercised for these models

as the likelihood can often become irregular for a significant portion of models in

the process of model selection.
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Secondly, although the algorithm already runs in parallel on multicore CPUs

using OpenMP, we believe even greater gains in performance could be achieved

by porting the algorithm to run on GPUs, or by using distributed computing such

as OpenMPI.

Thirdly, and most excitingly, we could examine modifications to the PVA al-

gorithm itself. The way the algorithm currently ensures diversity amongst the

particles in the population is to reward increases in entropy, weighted by the hy-

perparameter λ. The current version of the algorithm hard codes λ to 1, but it

would be interesting to alter λ and as in the Population EM algorithm of Ročková

(2017) and observe the effect on model selection performance. The algorithm also

currently maintains diversity in the population by maintaining uniqueness of ev-

ery particle within the population. It would be interesting to relax this constraint

and compare the effect on model performance.

5.3. Zero-inflated models via Gaussian Variational Approximation

This chapter presents the essential ideas necessary for a high performance

implementation for model fitting of ZIP regression models. The majority of the

performance improvements over existing approaches come from avoiding unnec-

essary matrix inversion, which is a computationally expensive and numerically

unstable process taking O(p3) flops, and from constructing and calculating with

sparse matrices. The gains of these approaches, particularly from sparse matrix

techniques, can be difficult to fully realise in R without expert knowledge of the

underlying implementation and libraries.
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Our application of these ideas to Andrew Gelman’s data showed that the new

parameterisation very effectively speeds up fitting zero-inflated mixed models to

real world data with a large number of groups, while still maintaining excellent

accuracy versus an MCMC approach. This demonstrates the applicability of the

ideas presented within this chapter to real world data sets.

The first directions for future research stemming from this chapter would be

generalising the approximation to other zero-inflated models which handle overdis-

persion in the data without the need for a random intercept, such as the zero-

inflated negative binomial model.

Furthermore, much more exploration could be done on alternative parame-

terisations of the covariance matrix in the Gaussian Variational Approximation

(GVA). The specific parameterisation of the diagonal of the Cholesky factor as a

piecewise exponential/quadratic polynomial function was chosen largely for con-

venience.

The current mean field update and GVA algorithms use the entire sample.

For large samples in the Big Data era, this may not be computationally feasible.

Other authors such as Tan and Nott (2018) have used doubly stochastic algorithms

which both sub-sample the data and use noise to approximate the integral expres-

sion for the expectation of the variational lower bound. The sub-sampling in par-

ticular is very appealing in a Big Data context. We wish to experiment with this

class of algorithm, and compare the performance and accuracy of this kind of dou-

bly stochastic algorithm with the more traditional mean field and GVA algorithms

presented in Chapter 4.
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