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GLOSSARY  

Following abbreviations are used in this thesis 

 

NPs ……………. Nanoparticles 

Aln-Cur-NPs…...Alendronate conjugated curcumin nanoparticles 

Cur-NPs………...Curcumin nanoparticles 

CLSM…………. Confocal laser scanning microscopy 

OPG………….... Osteoprotegrin 

M-CSF………… Macrophage colony stimulating factor 

TGF-β…………. Transforming growth factor-β 

RANKL………...Receptor activator of NF- κB ligand 

PTHrP…………. Parathyroid hormone related protein 

PDGF…………...Platelet derived growth factor 

IGF……………...Insulin like growth factor 

HPLC…………...High performance liquid chromatography 

LC…………….... Loading capacity 

IL………………. Interleukin 

SRE……………. Skeletal related events 

CTSK……………Cathepsin K 

BMP-2…………. Bone morphogenetic protein 

PEG…………......Poly ethylene glycol 

MTTT…………...3-(4,5-Dimethylthiazole-2-Yl)-2,5-Diphenyltetrazolium Bromide
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THESIS CHAPTERS ABSTRACTS 

            CHAPTER 1 

It is about thesis introduction and thesis chapters. It also includes historical perspective of 

breast cancer bone metastasis and aims and objectives of my work.        

             CHAPTER 2 

Abstract: Background: Breast cancer is the most frequently diagnosed malignancy in women 

worldwide. Breast cancer tends to metastasize to bone. Around 70% of the breast cancer patients 

eventually develop bone metastasis. After the bone invasion, metastatic cells alter the balance between 

osteoblastic and osteoclastic activities, leading to skeletal complications, characterized by pain and 

pathological fractures and hence worsening the patient's quality of life. Once tumor invades the bone, 

it is hard to treat it with the so-far available treatments options (e.g. bisphosphonates and denosumab). 

Bone metastasis should be essentially controlled, in cancer treatment and there is a strong need to 

explore new, more efficient therapeutic targets. This review discusses the bone physiological processes 

and the recent advances in exploring different pathways involved in bone metastasis. Furthermore, 

some novel treatment options, which are under preclinical and clinical investigations, are highlighted. 

Conclusion: A deeper understanding of these metastatic pathways can provide oncology researchers 

with novel avenues for treating bone metastasis, one of the main challenges to cure breast cancer. The 

restoration of healthy bone environment will not only improve the patient's quality of life but also 

reduces the tumor burden. 

Keywords: Bone Metastasis, Targeted strategies, Osteoblasts, Osteoclasts, Bone resorption, Novel 

targets, RANKL/RANK,  

 

            CHAPTER 3 

Abstract 

The most common cancer among women is breast cancer. According to an estimation by breast cancer 

network Australia, 18,087 women will be diagnosed with breast cancer in 2018. About 70% of the 

breast cancer patients develop bone metastasis. In pre-clinical investigations, curcumin reported to be 

non-toxic even at doses of 12 g per day. However, with this high dose of curcumin, only 50 nM plasma 

concentration is achieved. The reason for this low plasma concentration of curcumin is low water 

solubility and instability. We have previously developed a new nanoformulation of curcumin (Cur-NP) 

with enhanced physicochemical properties as well as improved antitumor activity in breast cancer cell 

lines. Furthermore, we have formulated alendronate-conjugated curcumin nanoparticles (Aln-Cur-NPs) 

for the targeted delivery of the drug payload (curcumin in this project) to the bone. This project aims to 

investigate the in vitro biological effects of Aln-Cur-NPs that are developed to prevent breast cancer 

bone metastasis.  The loading capacity and particle size of the new batch fabricated for this study was 

determined and was shown to be consistent with previous batches of Aln-Cur-NPs and Cur-NPs. The 

loading capacity was found to be 4% and 5.7%, and the size was 28 nm and 23 nm for Aln-Cur-NP and 

Cur-NP, respectively. In vitro anti-tumor activity of the curcumin nanoparticles with and without 

alendronate conjugation, was evaluated in three different breast cancer cell lines and reported as IC50 

values equivalent to the concentration of curcumin. A significantly higher antitumor activity was 

observed for Aln-Cur-NP compared to Cur-NP with IC50 values of 13.9, 22.2 and 7.7 µg/mL for MCF-

7, MDA-MB-231 and SK-BR-3, respectively. This study showed the enhanced anticancer activity of 
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curcumin nanoparticles conjugated with alendronate compared to Cur-NPs, which strongly supports 

the synergistic effect of curcumin/bisphosphonates combination considering the similar amount of 

uptaken curcumin by the cancer cells for both nanoparticle formulations. The impact of nanoparticles 

on the viability of MDA-MB-231 cells was also investigated using recording time lapse image 

technology by IncuCyte® Zoom over two days. It was demonstrated that the uptake of raw 

curcumin was much less, and it precipitated outside the cells while, curcumin encapsulated in 

nanoparticles was effectively uptaken by the cancer cells. In the same experiment, we observed 

that Aln-Cur-NPs reduced the viability of the cells more effectively than Cur-NPs and raw 

curcumin. 

The uptake of Aln-Cur-NPs and Cur-NPs in nucleus and cytoplasm in MDA-MB-231after 24 hours of 

treatment was revealed by Confocal Scanning Laser Microscopy. The qualitative analysis of confocal 

images showed higher uptake for Aln-Cur-NPs compared to raw curcumin (p ˂0.0001) and no uptake 

for the untreated (PBS) control. Parathyroid Hormone Related Protein (PTHrP) release is increased by 

cancer cells in bone microenvironment and promotes osteoclastic activity and contribute to osteolytic 

bone metastases. The effect of our Nanoparticles on the release of PTHrP was determined by PTHrP 

ELISA assay for quantitative measurement of human PTHrP concentration released by MDA-MB-231 

cells. MDA-MB-231 cells were treated with alendronate-modified and non-modified curcumin 

nanoparticles. Results showed a reduction in the release of PTHrP by MDA-MB-231 cell lines by both 

curcumin nanoparticles compared to the negative control (PBS-treated). Cur-NP and Aln-Cur-NPs 

showed twice higher activity in reducing the release of PTHrP compared to raw curcumin. These results 

suggested the possibility of reducing osteolytic activity of the cancer cells in bone metastasis. These 

preliminary data suggest Aln-Cur-NPs can offer promises in preventing and treating breast cancer bone 

metastases.   

 

           CHAPTER 4 

             It includes the conclusion and future directions.. 

           CHAPTER 5 

            It includes appendices related to my publications and conference presentations. 
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CHAPTER 1 

INTRODUCTION 

1.1. Thesis Organization 

This thesis is comprised of four chapters. Chapter 1 encompasses the introduction of thesis. It also 

includes aims and objective of my work. Chapter 2 includes a review article which has already been 

published in the journal “Current Pharmaceutical design”. The publication’s title is: “Different targeting 

strategies to prevent breast cancer bone metastases”. This chapter includes introduction to breast cancer 

bone metastases, normal bone functioning, mechanism of breast cancer bone metastases, treatment 

strategies for breast cancer bone metastases, novel treatment strategies for preventing breast cancer 

bone metastases.  

Chapter 3 is comprised of the manuscript of the paper which we are intended to publish soon on the 

topic “The pharmacological evaluation of an advanced formulation of curcumin to prevent breast cancer 

bone metastases’. This chapter includes the In-vitro evaluation of Alendronate –conjugated curcumin 

nanoparticles (Aln-Cur-NPs). In-vitro experiments include drug loading capacity measurement, 

anticancer activity of Aln-Cur-NPs, uptake studies of nanoparticles using confocal laser scanning 

microscopy (CLSM) and live cell analysis using IncuCyte. Chapter 4 is about conclusion, future 

directions and final remarks. Chapter 5 includes different appendices attached to thesis. 

1.2. Historical Perspective  

Cancer that spreads beyond breast to other organs is called breast cancer. According to a survey 

conducted by Australian Breast Cancer Network, 15,600 women and 145 men were diagnosed with 

breast cancer in 2015. It’s almost 42 women each day were diagnosed having breast cancer. For women 

of 85 years old age group, 1 in 8 women was diagnosed to have breast cancer. In 2020, this number is 

expected to increase up to 17,210 women with breast cancer (1). About 90-95% of breast cancer patients 

are diagnosed in early stages. Breast cancer tends to metastasize to distant organs.  Almost 20-30% of 

the breast cancer patients develop metastatic disease (2). 

Bone is the most common metastatic organ (1). About 70% of metastatic patients develop bone 

metastases. Bone metastases is associated with skeletal morbidity (2). Furthermore, Bone is the storage 

area for different growth factors like transforming growth factor (TGF-β), insulin-like growth factor 

(IGF)-I and II, fibroblasts growth factor (FGF)-I and II and platelet derived growth factors. Once these 

growth factors get stimulated by cancer cells they further support the tumor growth in bone. About half 

of the patients suffer skeletal related events (SREs). SREs include spinal cord compression, pathological 

fractures and pain requiring radiation therapy or surgery (3, 4).   High blood flow to the bone marrow 

and bone environment favors the residency and growth of cancer cells in the bone (5). 

Currently available treatment options for bone metastases are bisphosphonates and denosumab. Other 

than these, radiopharmaceuticals, radiotherapy and surgery are of clinical value in managing bone 

metastases. Currently available treatment options focus on improving patient’s quality of life by 

improving functional independence, preventing further SREs, managing pain and reducing pain. 

Unfortunately no preventive treatment is available (6).    
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AIMS & OBJECTIVE 

Once breast cancer spreads to the bones it is incurable, thus there is an absolute need for a preventative 

treatment against bone metastasis. Curcumin, a non-toxic plant extract has recently attracted much 

attention in medicine due to its remarkable therapeutic actions. We have demonstrated that formulating 

curcumin in nanoparticles significantly promotes its anti-cancer activities. In this project, we will extend 

this research by investigating the possible combination therapy to prevent breast cancer cells from 

spreading to the bones using curcumin and bisphosphonates, which are well-known anti-bone-

resorptive agents currently used in palliative treatment in patients with bone metastatic cancer. The 

project will test the hypothesis that curcumin nanoparticles coated with bisphosphonates will reduce the 

risk of breast cancer bone metastasis. 

 

The overall objectives of this research are: 

 

• Preparation of nanoparticles following our previous work.  

• Determination of loading capacity of nanoparticles. 

• Determination of anti-proliferative effects of nanoparticles. 

• Investigation of uptake of nanoparticles by MDA-MB-231 cells. 

• Determining the inhibitory effect of curcumin nanoparticles on the release of PTHrP peptide. 

 

 

Nanoparticles are safe and effective in cancer treatment. Nanoparticles also provide targeted therapy to 

cancer cells with direct killing of cancer cells without damaging the healthy cells. That is why they are 

most widely researched as a treatment option for cancer.  

Firstly, curcumin nanoparticles were made according to our previous work.  Our first target was to 

determine the loading capacity of nanoparticles and loading of curcumin in each nanoparticle should 

be determined. 

Secondly, anti-proliferative effect of curcumin nanoparticles should be evaluated to determine IC50 

values of curcumin nanoparticles.  

Thirdly, to assure cellular internalization of nanoparticles, up-take studies were done. 

Fourthly, effect of our nanoparticles was determined on the release of PTHrP from cancer cells.  
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CHAPTER 2 

DIFFERENT TARGETING STRATEGIES FOR TREATING 

BREAST CANCER BONE METASTASES. 

 

 

This chapter has been published in current pharmaceutical design as   

Irshad I, Varamini P. Different Targeting Strategies for Treating Breast Cancer Bone 

Metastases. Current pharmaceutical design. 2018 Jun 19. 
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DIFFERENT TARGETING STRATEGIES FOR TREATING BREAST CANCER 

BONE METASTASES. 

Breast Cancer Bone Metastasis: Different targeting strategies. 

Iram Irshad, Pegah Varamini* 

Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia. 

*Address correspondence to Dr Pegah Varamini: Faculty of Pharmacy (A16), The University of Sydney, NSW, 

2006 Australia. T: +61 2 8627 0809 F: +61 2 9351 4391 E: pegah.varamini@sydney.edu.au 

Abstract 

Abstract: Background: Breast cancer is the most frequently diagnosed malignancy in women worldwide. Breast 

cancer tends to metastasize to bone. Around 70% of the breast cancer patients eventually develop bone metastasis. 

After the bone invasion, metastatic cells alter the balance between osteoblastic and osteoclastic activities, leading 

to skeletal complications, characterized by pain and pathological fractures and hence worsening the patient's 

quality of life. Once tumor invades the bone, it is hard to treat it with, the so-far available treatments options (e.g. 

bisphosphonates and denosumab). Bone metastasis should be essentially controlled, in cancer treatment and there 

is a strong need to explore new, more efficient therapeutic targets. This review discusses the bone physiological 

processes and the recent advances in exploring different pathways involved in bone metastasis. Furthermore, some 

novel treatment options, which are under preclinical and clinical investigations, are highlighted. Conclusion: A 

deeper understanding of these metastatic pathways can provide oncology researchers with novel avenues for 

treating bone metastasis, one of the main challenges to cure breast cancer. The restoration of healthy bone 

environment will not only improve the patient's quality of life but also reduces the tumor burden. 

 

Keywords: Bone Metastasis, Targeted strategies, Osteoblasts, Osteoclasts, Bone resorption, Novel targets, 

RANKL/RANK,  

 

1. INTRODUCTION 

According to the Australian Institute of health and welfare 2017 report, 17730 Australians (17,586 of women and 

144 of men) are diagnosed with breast cancer and this number will increase to 18,235 Australians by 2018. Around 

3,000 patients died of breast cancer in 2017 (1), mainly due to advanced breast cancer. Patients with advanced 

breast cancer disease undergo aggressive therapy and most of them experience severe side effects. Roughly, 70% 

of metastatic breast cancer  patients develop bone metastasis, which may be complicated or uncomplicated bone 

metastasis. Uncomplicated bone metastasis can be characterized as the metastasis involving painful bone but not 

associated with existing pathologic fracture, spinal cord compression or cauda equina compression, while 

complicated bone metastasis is characterized by pathological fractures and spinal cord and cauda equina 

compression (2) (Fig. 1.1). Sometimes those associated with soft tissue components or those within weight bearing 

bones at high risk of fracture are also considered complicated. Bone metastases result in skeletal-related events 

(SREs) that can be described as spinal cord compression hypercalcemia, pathological fractures (excluding 

significant traumas), necessity for surgery to bone or bone radiation therapy (3). The microenvironment, where 

bone linked with bone marrow is ideal for tumor growth (4). Transcriptional analysis showed the involvement of 

gene for chemokines (CXCR4) involved in homing, matrix metalloproteinases (MMPs) involved in invasion, 

fibroblast growth factor (FGF) involved in angiogenesis, Interleukin-11(IL-11) and osteopontin (OPN) involved 

in osteolysis. It was shown that tumor cells that cause bone metastasis are characterized to invade healthy bone 



14 

 

tissue, increasing their multiplication and causing skeletal destruction (5, 6). This ongoing process eventually 

leads to an increase in bone pain, immobilization and progressively worsening the quality of life (7). 

This review will first provide an insight into the healthy bone physiological processes. Subsequently, mechanisms 

involved in breast cancer metastasis to bone in addition to some novel targets and treatment options that are under 

investigation will also be discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. NORMAL BONE FUNCTIONS 

Bone constitutes human skeleton. Human skeleton has structural and locomotor functions as well as being a 

calcium reservoir. During growth, the bone size is increased. Bone mineralization occurs during childhood and 

adolescence period (8).  

 

2.1. Modelling 

Through modelling the bones are shaped and adapt to load bearing and other influences. Modeling leads to bone 

mass, size and geometrical changes.   

 

2.2. Remodelling 

Microfracture repair happens regularly in normal individuals throughout their lives. This involves existing bone 

resorption, new bone deposition and mineralization. The whole process is called remodeling. An adult’s skeleton 

undergoes complete remodeling every decade. Bone remodeling regulation is crucial to explain bone metastasis 

as malignant tumor exploit these pathways to boost cancer growth and bone destruction. Bone remodeling 

involves the contribution of 2 types of cells including 1) osteoblasts liable for bone matrix production, 

mineralization, and remodeling process initiation and 2) osteoclasts accountable for bone resorption. 

 

2.3. Bone Formation and Resorption  

Bone growth, modelling and remodeling are based on bone formation and bone growth. Osteoblasts are 

responsible for bone formation.  

 

 2.3.1. Osteoblasts  

Osteoblasts contribute to the synthesis and mineralization of osteoid. Osteoid is a material responsible for bone 

shape, hardiness, and resilience. Some parameters that can be used to measure bone formation include 1) osteoid 

components like osteonectin, osteopontin and osteocalcin and 2) bone-specific alkaline phosphatase (BSAP). 

 

2.3.2. Osteocytes 

Osteoblasts which get captured into the new bone matrix (9, 10) are named as osteocytes. Osteocytes constitute 

90% of bone cells and are developed from osteoblasts who have completed their role in bone formation. 

Fig. (1.1). Changes in the bone structure from healthy bone tissue (A) to pathological fractures due to the cancer 

cell invasion and bone metastasis (D). 

Healthy bone Bone metastasis Pathological fractures Spongy bone after tumor 

invasion 

A B C D 
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Osteocytes develop into the osteocyte-osteoclast-osteoblast network system. Osteocytes are responsible for 

healing microfractures and harmonize remodeling (11). When microfracture occurs, osteocytes undergo apoptosis 

and sends signals to osteoclasts to begin bone resorption and remodeling. Osteocytes have regulatory roles on 

osteoclasts (8). 

 

2.3.3. Osteoclasts 

Osteoclasts execute bone resorption through the fusion to the bone, constituting a ring of firm junctions that are 

regulated by  α5β3 integrins (12). After binding, osteoclasts secrete acids and proteases (e.g., lysosomal 

cathepsins, MMPs phosphatases). Acids dissolve hydroxyapatite from bone and cathepsin, in contact with MMPs, 

degrades the collagen matrix. Osteoclasts endocytose debris from bone degradation. Later, osteoclasts discharge 

their content (high levels of calcium, magnesium, phosphates and products of collagen) into the blood stream and 

thus can be used to determine the value of overall bone resorptive activity of serum or urine. Osteoclasts 

differentiation is critically effected by receptor activator of nuclear factor-κB (RANK) ligand and macrophage 

colony-stimulating factor (M-CSF) (8). 

 

2.3.4. Mechanism of Normal Bone Remodeling 

In normal bone remodeling, osteoblasts express RANKL (NF- κB ligand) that binds to RANK on the surface of 

osteoclasts and their precursors. This binding regulates the osteoclasts differentiation from their precursors. 

Osteoclasts activation and survival lead to increased bone resorption. However, osteoblasts secrete osteoprotegrin 

(OPG) that inhibit excessive bone resorption by binding to RANKL and prevent binding with RANK. Hence, the 

balance between RANKL/Osteoprotegrin expression determines the bone mass in both normal and disease state 

(13).   Osteoblasts and osteoclasts are the basic units of normal bone remodeling (Fig. 1.2A). Osteoblasts are 

derived from mesenchymal stem cells under control of osteoblastic transcription factor called Runx2. 

Mononuclear myeloid precursors are fused to form pre-osteoclast. Pre-osteoclasts are differentiated into activated, 

multinuclear osteoclasts. This differentiation is controlled by colony-stimulating factor (M-CSF) and RANKL 

(receptor activator for NF- κB ligand). After activation, osteoclasts get adhered to bone and cause degradation of 

bone. Osteoblasts also produce a decoy receptor to RANKL called osteoprotegerin (OPG). The RANKL to OPG 

ratio is determinant of osteoclast activity. Bone lining cells and osteocytes also constitute osteoblastic lineage. 

 

3. CANCER BONE METASTASES 

 

3.1. Mechanism of Bone Metastasis 

After invading the bone marrow microenvironment (Fig. 1.2B) tumor cells disrupt the RANKL/osteoprotegrin 

(OPG) expression balance that leads to the over-production of osteoclasts. Additionally, tumor cells induce 

angiogenesis that enhances bone resorption and makes the bone tissue irregular and weak, causes abnormal bone 

formation via osteoblasts (14, 15), structural malformation, fracture and bone pain (16). Bone resorption is 

responsible for the release of various factors such as transforming growth factor (TGF-β and IGF1) and calcium. 

These further aggravate tumor growth and deregulation of RANKL/OPG expression. This is a vicious tumor 

growth cycle where increased bone resorption reinforces more tumor growth and vice versa (17). Relocation of 

cancer cells to the bone disturbs the normal cycle of the bone turnover, forms lytic, sclerotic tissue or mixed 

metastasis, which leads to substantial pain and reduced prognosis (18, 19). Once cancer cell crosses the intrinsic 

barriers, it will take over the control of additional homeostatic factors (20). Different environmental barriers that 

cancer cells have to cross include physical barrier (basement membrane), chemical barriers (hypoxia, reactive 

oxygen species and low pH), and biological barriers (immune surveillance, regulatory extracellular matrix, 

inhibitory cytokines) (21, 22). Breast cancer cells establish strong interaction with the microenvironment once 

released from primary tumor site and reside in the bone marrow (23). After that, breast cancer cells secrete factors 

that activate NF- κB ligand (RANKL)-dependent and -independent stimulation of osteoclast bone resorption (24). 

Fig. 1.2A shows some pathways in normal bone environment and Fig. 1.2B shows mechanism of metastatic bone 

environment. Breast cancer cells in malignant bone microenvironment secrete growth factors, cytokines and 

parathyroid hormone-related protein (PTHrP) which have negative impact on osteoblast function. In malignant 

bone environment, RANKL is increased and OPG is reduced which leads to more osteoclast formation and bone 
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degradation. A significant reduction occurs in osteoblasts differentiation and no more osteoid is available to 

compensate osteoclastic bone resorption.  

Current therapeutic targets include RANKL, PTHrP and bone hydroxyapatite. Matrix metalloproteinases 

(MMPs), cathepsin K and transforming growth factors (TGF)-β Insulin-like growth factor (IGF), monocyte 

chemotactic protein-1 (MCP-1), Platelet-derived growth factor (PDGF), Vascular endothelial growth factor 

(VEGF) are also under investigation to target bone metastases (25) ( Fig. 1.2B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1.2). The Bone Microenvironment (25). A) Normal bone remodeling processes, B) osteolytic bone 

metastases. 

 

3.2. Bone Pain 

Cancer pain is caused mostly due to metastatic bone disease (26-28). However, it is notable that not all bone 

metastasis lead to pain and pain intensity is not always proportional to size and degree of metastatic lesions in the 

bone. Metastatic bone pain is mostly a neuropathic pain, transmitted by primary efferent nociceptor peripheral 

nerves. These peripheral nerves have many types of receptors for noxious stimuli detection, including acidity, 

lipid metabolites, heat and inflammatory molecules. Persistent acidic and inflammatory environment of metastatic 

lesions cause sustained stimulation, allodynia (central pain sensitization) and hyperalgesia (hypersensitivity to 

pain). Thus, any agent that has potential to antagonize inflammatory mediators can be a potential therapeutic agent 

for managing cancer pain. A single or multiple radiotherapy sessions delivering 8Gy or 20Gy was helpful in 

managing this type of pain (29). Radioisotopes can be administered as a drink, capsule or injection into a vein 

(30). Radioisotopes are easy to administer, less toxic and effective in subclinical metastatic sites but cannot be 

delivered in precise doses (31). Analgesics are recommended for managing metastatic bone pain. Standards of 

care should be accompanied with bone-modifying agents to manage cancer bone pain as they could exert a 

synergistic effect (3).  

 

4.  TREATMENT STRATEGIES 

 

4.1. Treatment for Uncomplicated Bone Metastases 

Treatment options available for treating uncomplicated bone metastasis include bone-targeted agents along with 

radiation therapy. It has been proved that both single and multi-fractionated radiotherapy is equally effective for 

treating uncomplicated bone metastasis (32). 

 A B 



17 

 

 

4.2. Treatment for Complicated Bone Metastases 

Treatment options for complicated bone metastasis mainly include bone surgery and radiotherapy. Zoledronic 

acid, pamidronate or denosumab are recommended to be administered because they have been shown to delay the 

use of analgesics. In a phase III randomized clinical trial, a single dose of 8 Gy radiation was found to be effective 

for palliating spinal cord compression. For the patients who were suffering from bone metastases neuropathic 

pain however, multifractionated treatment (20Gy in 5 fractions) was shown to be more effective than a single 

fractionated treatment (8 Gy in 1 fraction).  

 

4.3. Radiation Therapy 

Mechanism of pain relief following radiation therapy is poorly understood. Many clinical trials with different 

scoring and reporting methods are available but guidelines for irradiation are still unclear because of great 

variation in beneficial results. Three different types of radiation therapy are used including local-field, wide-field 

and radionuclide therapy are shown in Table 1.1 (33).      

 

Table 1.1:  Radiation therapy for bone metastases (33). 

Radiation 

Therapy 

Delivering 

method 

Pain relief rate Examples Indications 

Local-field 

radiation 

therapy 

Conventional 

treatment 

Delivered using 

photons 

80-90%  40-46 Gy/ 20-23 

fractions 

30-36 Gy/10-12 

fractions Gy 

Used for patients with 

localized pain: less than 

four metastatic sites 

without visceral sites (lung, 

liver, central nervous 

system). 

Wide-field 

radiation 

therapy 

Systemic 

radiation therapy 

MeV units (from 

Co 60 to 15 MeV 

linear 

acceleration) 

64-100%  

50-66% of patients 

maintain pain relief 

for remaining life 

 

Upper wide field 

treatment (from 

skull to L2-3) is 6 

Gy 

Lower-wide field 

(from L3-4 to above 

the knees) or mid-

body wide field 

treatment (from L1 

to upper third of the 

femurs) is 8 Gy 

Used for widespread 

symptomatic bone 

metastases or as an 

adjuvant to local-field 

irradiation to reduce 

frequency of re-treatment. 

Radionuclide 

therapy 

Systemic 

radiation therapy 

Radioisotopes 

(high linear 

energy transfer) 

37-91% from 89St* 

58% from 186Re* 

72% of 153Sm* 

  89St 

  186Re 

  153Sm 

  223Ra 

It is used in combination 

with bisphosphonates and 

radiation therapy in the 

treatment of bone 

metastatic disease.  

*St: Strontium, Re: Rhenium, Sm: Samarium, Ra: Radium 
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5.  BONE-TARGETED AGENTS 

 

5.1. Inorganic Pyrophosphates 

Inorganic pyrophosphate analogs, also called bisphosphonates, can exert their role via two mechanisms (34): 

1) Interfering with and hampering the osteoclast survival process. 

2) Stimulating the apoptosis of osteoclasts  

Through these mechanisms, bisphosphonates can regulate bone turnover and reduce tumor-related bone resorption 

(34). Bisphosphonates can be classified into amino-bisphosphonates and non-amino bisphosphonates. Among 

these, amino-bisphosphonates are predominantly utilized in clinical interventions (34, 35).  Ibandronate, 

pamidronate and zoledronic acid (amino-containing) and clondronate (non-amino containing), are 

bisphosphonates (Fig. 1.3) available in clinic to treat bone metastasis from breast cancer (34), prostate cancer 

(36), lung cancer (37) and multiple myeloma (38, 39). Some examples of derivatives in clinical trials are shown 

in Table 1.2 (40). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1.3). Chemical structures of some bisphosphonates 

Zoledroni acid 

Clondronic acid Pamidronic acid 

Ibandronic acid 
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5.2. Denosumab   

Denosumab is a human monoclonal anti-RANKL antibody used for the treatment of osteoporosis, bone 

metastasis, treatment-induced bone loss, and giant cell tumor of bone (41). It inhibits the activation of RANK 

receptors by directly binding to these receptors on the surface of osteoclasts (42).   Inhibition of RANKL-RANK 

receptor interaction by denosumab causes reduction in tumor-induced bone demolition (41, 42). Some clinical 

trials involving denosumab are shown in Table 1.3 (40). 

 

Table 1.3. Clinical Trials for Denosumab (40). 

 

Name  Study 

Phase 

Country Clinical trial 

Gov. Identifier 

Status 

Can denosumab prevent recurrence in the bone 

when given in early stage breast cancer?    

Phase III Argentina 

and 40 other 

countries 

NCT01077154 Ongoing 

Does denosumab reduces the rate of first 

clinical fracture in women with non-metastatic 

breast cancer receiving aromatase inhibitor? 

Phase III Austria, 

Sweden 

NCT00556374 Ongoing 

Study of denosumab with zoledronic acid in 

treatment of bone metastasis in subjects with 

Breast cancer. 

Phase III Argentina 

and 35 other 

countries 

NCT00321464 Completed 

08/03/2017 

Study of denosumab in breast cancer subjects 

with bone metastasis who have not previously 

been treated with bisphosphonates therapy. 

Phase II United 

States 

NCT00091832 Completed 

28/01/2017 

A study to evaluate denosumab in young 

patients with primary breast cancer. 

Phase III Australia, 

Belgium 

NCT01864798 Terminated 

05/09/2017 

 

Study of denosumab as adjuvant treatment for 

women with high risk early breast cancer 

receiving neoadjuvant or adjuvant therapy. 

Phase III Argentina 

and 40 other 

countries 

NCT01077154 Ongoing 

Table 1.2: Clinical Trials for Bisphosphonates (40). 

Goal Study Type Country Clinical trial 

Gov. Identifier 

Status 

Oral bisphosphonates(Alendronate sodium) 

to prevent bone loss in postmenopausal 

women with early breast cancer, receiving 

anastrozole therapy and determine how long 

treatment is needed. 

Phase III Australia NCT00122356 Completed 

13/03/2013 

Identification of Risk Factors` for skeletal 

related events in breast cancer patients 

receiving bisphosphonates for bone 

metastasis. 

Cohort Canada NCT01144481 Completed 

07/01/2015 

Studying long term bone quality in women 

with breast cancer receiving bisphosphonates 

(Clondronate sodium, demeclocycline 

hydrochloride, ibandronate sodium, 

tetracycline hydrochloride, zoledronic acid) 

Observational  United 

States 

NCT00873808 Withdrawn 

10/04/2013 

Safety and efficacy of zoledronic acid when 

added to standard therapies in patients with 

breast cancer and metastatic bone lesions. 

Phase III Germany NCT00372710 Terminated 

23/11/2009 
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5.3. Effectiveness of bisphosphonates in Clinical Trials. 

Bisphosphonates including clodronate, pamidronate, ibandronate and zoledronic acids were widely studied in 

women with breast cancer bone metastasis. These Placebo-controlled trials indicated the effectiveness of 

bisphosphonates for reducing SREs and are summarized in Table 1.4 (43-52). 

 

Table 1.4.  Placebo controlled trials of bisphosphonates (53).  

 

Name Hypercalcemia  Skeletal 

Morbidity 

SREs Pain 

Clodronate 

1600 mg orally daily vs. 

Placebo (43-45) 

Total 

hypercalcemic 

events 

reduced 

Reduced 

Fractures 

Increased time to first 

SREs 

Reduced Pain 

intensity 

Pamidronate 

45 mg i.v. every 3 weeks vs. 

placebo (46) 

   Increased Pain 

relief 

Pamidronate 

90 mg i.v. every 3-4 weeks vs. 

placebo for 2 years  (47) 

  Reduced Proportion of 

patients With SREs 

complications 

 

Pamidronate 

60 mg i.v. every 4 weeks vs. 

placebo (48). 

Increased time to 

hypercalcemic 

events   

 Reduced SREs Increased time 

to progression 

of pain 

Ibandronate 2 mg or 6 mg i.v. 

every 3-4 weeks vs. placebo for 

2 years (49) 

 Reduced 

mean no. of 

bone events 

Increased time to first 

SREs 

 

Ibandronate 50 mg orally daily 

vs. placebo for 96 weeks (50) 

 Reduced 

skeletal 

morbidity 

Decreased risk of skeletal 

related events 

 

Ibandronate 6 mg i.v. every 4 

weeks vs. placebo for 24 

months (51) 

  Reduced Proportion of 

patients With SREs 

complications 

Increased time to first 

SREs 

 

Zoledronic Acid 

4 mg i.v. every 4 weeks vs. 

placebo for 1 year (52) 

  Reduced rate of SREs 

 

Increased time to first 

SREs 

 

 

 

 

5.4. Adverse Effects and Management of Bone-Targeted Therapies   

 

5.4.1. Acute Phase Reaction 

Acute phase reaction (APR) is a systemic host defense response by which the innate immune mechanisms are 

activated due to inflammation, injury or infection. About 10 to 30 % of patients who have been treated with 

zoledronic acid and denosumab were shown to experience APR side effects. This can be observed during first 

three days after treatment. During this process, there is an increase in the number of acute phase proteins (APRs) 

that are involved in homeostasis, causing influenza-like symptoms, chills, fever, lethargy, increased protein 

catabolism, reduced appetite, flushing, bone pain, hypotension, myalgia, and arthralgia (54-57). Laboratory 

analysis shows increased tumor necrosis factor-alpha (TNFα) and interleukin-6, neutrophilia, and leukocytosis. 
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Most of the reactions are spontaneously reversed after 72 hours of first dose application or can also be managed 

with non-steroidal anti-inflammatory drugs and antipyretics (54-56, 58).  

 

5.4.2. Nephrotoxicity 

Bisphosphonates have a renal route of excretion. About 40-70% of administered dose of bisphosphonates is 

excreted through kidneys (57, 59, 60). Unmetabolized bisphosphonates accumulate in tubular cells and can cause 

apoptosis which leads to acute kidney injury. This type of renal injury could be reversible (e.g. zoledronic acid) 

or irreversible (e.g. pamidronate). Denosumab is least likely to cause renal injury and can be used as a choice of 

medication for patients with kidney failure and dependent on dialysis (56, 61, 62). Preventive measures include 

monitoring of phosphate, serum creatinine, calcium levels and avoiding the administration of multiple nephrotoxic 

drugs. Patients with renal impairment should get a reduced dose of zoledronic acid (63). 

 

5.4.3. Hypocalcemia 

Chances of hypocalcemia with bisphosphonates therapy are 3.4-6% and with denosumab treatment is 5.5-13%. 

Clinical manifestation could be, general weakness, lethargy, and fatigue (64-66). Calcium and vitamin D 

supplements are vital, especially for patients having pre-existing vitamin D or renal insufficiency, 

hypomagnesaemia, impaired thyroid and parathyroid activity, geriatric patients or patients having gastric surgery.   

 

5.4.4. Jaw Osteonecrosis 

Jaw osteonecrosis is caused by vascularization defects in the maxilla or the mandibular bone. This may occur 

followed by head and neck radiotherapy, use of bisphosphonates or denosumab (67, 68). During the last decade, 

2% of cases of jaw osteonecrosis have been linked with denosumab therapy and 1.4% with zoledronate therapy. 

Oral health evaluation during bisphosphonates and denosumab therapy is critical to consider. It is essential to 

avoid invasive dental procedures (69, 70). 

 

5.4.5. Rare Side Effects 

Denosumab and bisphosphonates can cause conjunctivitis, scleritis, uveitis (70-75), dermatitis, eczema, rashes 

(76, 77) or rare atypical femur bone fracture (78, 79). 

 

6. NOVEL BONE-TARGETED AGENTS 

Although denosumab and bisphosphonates are potential agents in improving the quality of life of patients with 

breast cancer bone metastasis, they have not been proved to provide progression-free and overall survival 

improvement from the disease. So, research to explore new potential therapeutic agents is going on. Bone 

destruction due to breast cancer is a complicated process and mediators that can serve as the basis for developing 

novel targeted agents are under investigation (80-82).  

 

6.1. Novel targets for osteoclast-mediated bone resorption inhibition   

 

6.1.1. RANKL/RANK 

RANKL/RANK pathway plays a key role in the regulation of bone resorption (41). Osteoblasts have RANKL 

which is a transmembrane surface protein and can be cleaved by proteases into soluble form (83). RANKL (both 

Soluble and membrane-bound forms) can bind to RANK receptors present on the surface of osteoclast precursor. 

After binding with the receptor, they will cause osteoclastogenesis. OPG is a cytokine receptor and a RANKL 

antagonist which is produced by osteoblasts and has the ability to inhibit RANKL/RANK interaction (41). 

Deregulation of RANKL and OPG balance is observed in breast cancer (84). Thus, OPG has potential to reduce 

bone destruction and reduce SREs in breast cancer bone metastasis. This activity is exhibited by enhanced 

osteoclast activity and is confirmed in OPG knockout mice (85-87). 

 

6.1.2. c-Src Kinase Inhibitors 

Cellular Src Kinase (c-Src) is a member of Src family (non-receptor tyrosine kinases), also known as proto-

oncogene c-Src. C-Src phosphorylates specific tyrosine residues in other proteins. Elevated c-Src levels are 

associated with cancer progression (88, 89). c-Src is engaged in performing multiple functions including adhesion, 
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invasion, migration, metastasis, and angiogenesis via chemokine receptor signaling  (CXCL12/CXCR4/Akt) 

pathway or by inhibiting the functions of apoptosis - inducing ligand pathway (90). Enhanced expression and 

increased activity of c-Src has been investigated in a variety of cancers. Inhibitors of c-Src kinases have been 

proven to play a pivotal role in tumor cell invasion and proliferation. Selective tyrosine kinase inhibitors (TKIs) 

cause inhibition of c-Src kinases by blocking osteoclast differentiation (91, 92). Some preclinical investigations 

reported that dasatinib, bosutinib, and saracatinib have inhibited osteoclast differentiation (90, 93, 94). Dasatinib 

monotherapy has proven efficacious in advanced breast cancer bone metastasis patients (95, 96). Related clinical 

trials are shown (Table 1.5). 

 

Table 1.5.  Investigated targets for the treatment of bone metastasis (40). 

 Target Compound Phase Country Clinical trial 

Gov. Identifier 

Status 

Cathepsin K odanacatib Phase 

III 

United 

States 

NCT00691899 Withdrawn 

12/08/2016 

C-Src dasatinb Phase 

II 

United 

States 

NCT00410813 Completed 

02/072017 

Ανβ3 integrin etaracizumab  None      

TGFβ fresolimumab  None    

 trabedersen None    

 galunisertib None    

CXCL12/CXCR4 plerixafor None    

 LY2510924 None    

 

 

6.1.3. Cathepsin K (CTSK) 

Cysteine cathepsins are among hydrolytic enzymes and members of the family of papain-like cysteine proteases 

in lysosome. A cysteine lysosomal protease, called cathepsin K or CTSK is primarily present in osteoclasts. It 

induces degradation of bone collagen and ultimately causes bone resorption (84, 97). A preclinical investigation 

done in animal models of breast cancer bone metastasis showed cathepsin K inhibitors are effective in preventing 

bone destruction. Furthermore,  cathepsin K antagonist can play their role not only in bone resorption inhibition 

but also in stimulation of bone formation (98). Cathepsin K may directly act on cancer cells. Odanactinib (a 

cathepsin K inhibitor) has been proved to successfully reduce the level of bone resorption marker called urinary 

N-telopeptide of type-I collagen. However, there may be some disadvantages associated with cathepsin K 

inhibitors. For example, balicatib (AAE-581, Novartis) is a nitrogen-containing cathepsin K has the ability to 

accumulate in lysosomes. Due to this accumulation, activities of other lysosomal cysteine cathepsins are inhibited 

which may lead to severe adverse effects like stroke and skin reactions. For example, morphea-like skin reactions 

are noticed in a phase II clinical trial in which patients received balicatib therapy for 12 months. As a result, 

balicatib was withdrawn from clinical trials (97, 99). This adverse effect is not shown by odanacatib (MK-0822, 

Merck), which is under clinical trial investigation for osteoporosis treatment. Odanacatib has successfully reduced 

bone resorption markers in a phase-II trial in women having breast cancer bone metastasis after four weeks of 
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therapy (100).  But odanacatib was withdrawn from the regulatory approval process due to increased risk of stroke 

(101). 

 

6.1.4. Integrins 

Integrins belong to a heterodimeric transmembrane glycoprotein family that mediates adhesion to extracellular 

matrix proteins and immunoglobulins. So far, 24 heterodimers have been developed by incorporating 18α and 8β 

subunits. Many types of integrins have an association with bone metastasis but ανβ3 performs a more crucial role 

in osteoclast function and bone metastasis (102). According to a preclinical study, some peptidic (e.g. S247, 

cilengitide, ATN-161) and non-peptidic (e.g. PSK1404) compounds that target ανβ3 could inhibit osteolysis and 

tumor growth in bone metastasis animal models (103, 104). These ανβ3 inhibitors, not only antagonized the 

osteoclast-mediated bone resorption but PSK1404 also prevented bone colonization by cancer cells expressing 

ανβ3 integrins at the dosage regimen that does not block bone resorption (103). GLPG0187, ATN-161, IMGN388, 

cilengitide are different ανβ3 antagonists which are in clinical trials for breast cancer bone metastasis 

(105).Clinical trial investigations revealed that L-000845704 (a non-peptide antagonist developed by Merck) 

could, inhibit bone resorption in osteoporosis. Investigations are underway to study its applications in oncology 

as well (105).  

 

6.1.5. Proteasome 

Proteasome is an extra-lysosomal proteolytic enzyme complex. The ubiquitin-proteasome system is involved in 

degrading intracellular proteins. This system involves the tagging of many intracellular proteins with ubiquitin 

(which is a small regulatory protein) and then these intracellular proteins are recognized by 26S proteasome 

complex, resulting in the degradation of these proteins into small peptides. Many proteasome inhibitors (PIs) are 

under clinical investigation. Preclinical data suggested that PIs exert their effect on three kinds of cells. First, by 

inhibition of osteoclast differentiation and their function (106). Second, they enhance bone formation through 

stimulating osteoblasts differentiation, up-regulating bone morphogenetic protein 2 (BMP-2) and inhibiting runt-

related transcription factor (RUNX2) (107). Finally, PIs block cell proliferation and activate apoptosis in many 

cancer cells (108, 109) and induce osteolysis in breast and prostate cancer bone metastasis in animal models(110, 

111). However, clinical trials did not show the expected results. 

 

6.1.6. Hedgehog 

Cancer progression involves the activation of Hedgehog (Hh) signaling pathway (112) which is also important in 

the regulation of cancer stem cells. Hh ligand (Desert, Indian and Sonic Hh) bind to transmembrane protein 

receptors (Patched receptors). Hh Inhibitors exert direct cytotoxic effects on cancer cells. In preclinical animal 

models, Hh inhibitors blocked osteoclastogenesis and bone metastasis. A phase II clinical trial was designed to 

investigate the effect of selective SMO (it is a smoothened protein encoded by SMO gene) antagonist (sonidegib) 

in early stage breast cancer (NCT01757327), but it was withdrawn before enrolment. 

 

6.2. Novel targets for restoration of osteoblast functions 

 

6.2.1. Dickkopf-1 (DKK-1) 

Wnt signaling pathways are protein signal transduction pathways that pass signals into the cell through cell surface 

receptors. DKK-1 is a glycoprotein with a significant role in amphibian’s head formation via antagonizing the 

Wnt signaling pathway. Osteoblastogenesis process involves Wnt signaling pathway. Wnt proteins in association 

with low density lipoprotein receptor-related proteins 5 and 6 (LRP5/6), bind Frizzled receptors (G Protein-

coupled receptors) and initiates signaling via β-catenin. This process activates different genes involved in 

osteoblastogenesis (113). DKK-1 binds to LRP5/6 and blocks its binding with Wnt-1, causing breakdown of β-

catenin and inhibit osteoblast differentiation. DKK-1 was shown to be elevated in serum and bone marrow of 

patients with multiple myeloma (114). Neutralizing antibodies that block DKK-1 cause reduction in osteolysis, 

skeletal tumor growth in addition to an increase in the osteoblast number and osteocalcin level in the serum (115, 

116). There are some preclinical and clinical evidence that breast cancer cells that metastasize to bone secrete 

DKK-1 (117). A Phase I clinical trial investigates a combination of DKK1-neutralizing antibody, BHQ880 and 

zoledronate in myeloma patients(117). 
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6.2.2. Sclerostin 

Sclerostin is a secreted glycoprotein that is encoded by SOST gene. It is produced by osteocytes. Sclerostin 

promotes migration, invasion of cancer cells and osteolysis and has anti-anabolic effect on bone formation. 

Sclerostin binding to LRP5 receptors can be blocked by antibodies that neutralize sclerostin (118). Sclerostin 

neutralizing antibody is used to treat osteoporosis e.g. romosozumab (119). However, no clinical trial is available 

to study the effects of sclerostin-blockers on metastatic bone disease. 

 

6.2.3. Activin A 

Activin A is widely distributed in all human tissues and belongs to TGF-β family of growth factors. Serine and 

threonine kinase transmembrane receptors mediate the effects of activin A. Activin A activates ActR1B or ALK-

4 type 1 receptors that leads to the phosphorylation of receptor-regulated Smad proteins (RSmad4), Smad2, 

Smad3 and Smad4. Activin A gets entered in the nucleus that results in gene transcription regulation in bone cells. 

Activin A activates bone degradation, triggers osteoclast differentiation and inhibits osteoblast differentiation 

(120). Higher serum levels of Activin-A are found in breast cancer patients with bone metastasis as compared to 

the patients without bone metastasis (121). Therefore, this cytokine can be regarded as a potential target for more 

specific treatment measures for skeletal metastasis. In an in vivo humanized multiple myeloma induced bone 

disease model, Activin A targeting by a soluble decoy receptor, reversed osteoblast inhibition and inhibited tumor 

growth (122). RAP-011 is an activin type IIA receptor fused to a murine IgG-Fc fragment can restore bone mass 

(123). Recently, different groups have shown the combined effect of RAP-011 with Act RIIA receptors to serve 

as potential therapeutic targets in treatment of skeletal metastasis. RAP-011 can be measured as biochemical 

marker of bone metastatic disease (121). Sotatercept (ACE-011), a recombinant activin receptor type IIA and 

human globulin G (IgG), binds to activin A receptors. Sotatercept is potentially important for preventing bone 

loss and deposition of new bone in myeloma patients with osteolytic lesions (124). Sotatercept treatment 

demonstrated clinically significant decrease in bone pain, increase in the bone formation biomarkers, antitumor 

activity and increase in hemoglobin levels (125, 126).  

 

6.2.4. Endothelin-1 

Endothelins are peptides that constrict blood vessels. They produce their effect by binding to their receptors, ETA 

and ETB1, ETB2 and ETC receptors. Breast cancer cells produce endothelin-1 (ET-1) that activates mitogenesis in 

osteoblasts, resulting a reduction in osteoclast activity (127). ETA antagonist ABT-627 (atrasentan) could inhibit 

osteoblastic breast cancer bone metastasis (128). Bosentan is a dual endothelin receptor antagonist (ETA and ETB 

receptor) approved to be used in treatment of pulmonary artery hypertension. This mixed inhibitor was shown to 

block breast cancer bone metastasis in vivo (129).  

 

6.3. Novel Targets for Bone-Derived Growth Factors 

 

6.3.1. Transforming growth factor-Beta (TGF-β) Signaling 

TGF-β is a multifunctional cytokine of transforming growth factor superfamily, having four different isoforms 

(TGF-β1, TGF-β2, TGF-β3 and TGF-β4). 

TGF-β binds to TGF-β type I receptor (ALK5) and TGF-β type II receptors (TβRII) which are serine/threonine 

heterodimeric kinases. It phosphorylates Smad2 and Smad3 which are TGF-β specific mediators. This 

Phosphorylated complex then binds to Smad4 and translocates to the nucleus and regulates TGF-β genes. TGF-β 

in turn regulates the growth of many factors like IL-6, IL-8, IL-11, integrin ανβ3, MMP-1 and CXCR-4 which 

play a key role in bone metastasis (130).   

Hence inhibition of the TGF-β signaling can be considered as a potential target to reduce bone metastasis. Many 

strategies have been developed to block TGF-β signaling including TβRI inhibitors, dominant negative TβRII, 

neutralizing TGF-β antibodies and antisense oligonucleotides. These have been investigated to inhibit bone 

metastasis to breast cancer in preclinical trials. Although the effects of these TGF-β inhibitors have been 

investigated in different types of cancers, no clinical trials have been performed to explore their effect in breast 

cancer bone metastasis (130, 131).   

Epithelial-to-mesenchymal transition (EMT) process has been found to play a role in cancer and metastasis 

progression. In this process, epithelial cells gain migratory and invasive properties and become mesenchymal 
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stem cells and initiate metastasis. TGF-β signaling through Smad pathway serves as an effector of this process 

(132). Exogenous Bone morphogenetic protein-7 (BMP-7) inhibits TGF-β signaling which antagonizes EMT 

signaling in prostate and breast cancer bone metastasis model in animals (133, 134). Another animal study 

revealed the role of TGF-β signaling in the regulation of the Jagged1-Notch pathway. Jagged1 is a cell surface 

protein that regulates Notch signaling pathway. Up-regulation of JAG 1 has been found to be associated with poor 

breast cancer survival rates. MRK-003, a γ-secretory inhibitor, has shown to inhibit Jagged1-Notch signaling 

pathway and hence cause a reduction in bone metastasis to breast cancer (135). These findings revealed that a 

strategy against breast cancer bone metastasis can be developed based on TGF- β-dependent EMT signaling, γ-

secretase or BMP-7 inhibitors. 

 

6.3.2. Insulin-like Growth Factors (IGFs)   

Insulin-like growth factors (IGF-I and IGF-II) exist abundantly in bone and have been involved in spreading, 

development and aggressiveness of many different cancers. IGFs exert their action by binding to IGF type I 

receptors (IGF-IR). IGFs activate IGF-IR/Akt/NF-kB pathway, stimulates proliferation and increases bone tumor 

burden (136). An IGF-IR inhibitor e.g, PQIP (Chemical formula C3OH31N7) reduced the osteolytic lesion size 

in breast cancer bone metastases (137).  

 

6.4. Novel Agents Targeting Bone Environment 

 

6.4.1. Chemokine Receptor Signaling (CXCL-12/CXCR-4) 

Almost all types of cells secrete chemokines.  Most of the chemokines are involved in adaptive and innate immune 

systems, while a few of chemokines such as CXCL-12 that are produced by the osteoblasts, play a pivotal role in 

the regulation of cellular trafficking. It is proved that chemokines play a vital role in cancer metastasis (138). 

Chemokine receptors like, CXCR3, CCR4, CXCR4, CCR5 and CCR7 and especially CXCR, are found to be 

involved in the metastasis regulation process. CXCR4 is found to play a fundamental role in organ-specific breast 

cancer metastasis, including liver, lung and bone metastasis. In these organs CXCL-12 (CXCR4 ligand) is 

produced in high quantity (138).  

The proposed mechanism is that after CXCL-12 binds to CXCR4 and activates the non-receptor Src, tyrosine 

kinase, AKT pathway is activated in bone marrow breast cancer cells (139). Consequently, the CXCL-12/CXCR-

4 pathway can serve as a targeted therapy to treat bone metastasis. Synthetic peptide antagonist like CTCE-9908 

and antibodies could block this CXCL-12/CXCR-4 pathway and reduce bone and lung metastases caused by 

breast cancer cells in preclinical experiments (140, 141).   

 

6.4.2. Cadherin-11 

Osteoblasts and bone marrow stromal cells express cadherin-11, which is a member of type 2 cadherin family. In 

one animal study it was demonstrated that the overexpression of cadherin-11 in breast cancer cells was associated 

with metastasis to bone but not to the lungs. This finding suggested that cadherin-11 can be used as a specific and 

novel target for treating bone metastasis. Yet, no agent has reached clinical trial (136). 

 

6.4.3. Targeting Runx2 

The bone transcription factor Runx2 that is a member of Runt-Related Transcription factor (Runx) family has 

crucial role in bone development by controlling osteoblasts and osteoclast processes (142, 143).  It has been 

proved that Runx2 facilitate the interaction between cancer cells and the microenvironment of bone. Runx2 

suppresses the ubiquitination of oculo-dento-digital dysplasia-hypoxia inducing factor (ODDD) HIF-1α by 

directly binding to ODDD-HIF-1α. Vascular angiogenesis during endrochondral bone formation is regulated by 

HIF-1α and vascular endothelial growth factor (VEGF). Runx2 has been identified to be involved in tumor 

invasion by regulating matrix metallopeptidase 9 (MMP9) (144). It has also been proved to play a crucial role in 

osteoclasts activation by gene regulation for OPN, M-CSF and PTHrP. Runx2 indirectly blocks Wnt signaling 

pathway and promotes activation of osteoclasts (144). 
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6.4.4. Targeting microRNAs (miRNAs) 

MicroRNAs (miRNAs) belong to 21-23nucleotide- noncoding, long RNAs which are transcribed by RNA 

polymerase types II and III. Generally, miRNA cause either mRNA degradation or translational silencing by 

binding to their complementary site at the 3-untranslated region (145). It is evident that normal and cancer cells 

have different expressions for miRNAs. They can either enhance or inhibit the development and progression of 

the tumor. Many types of miRNAs have been found to be involved in regulation of bone metastasis (146). Thus, 

miRNAs involved in bone metastasis development can serve as a target for treating breast cancer bone metastasis. 

Very few miRNAs, e.g. miR-141 and miR-219, are found to inhibit osteoclast activity and osteolytic activity in 

breast cancer bone metastasis. miR-203 and miR-219 also have reducing effects on breast cancer bone metastasis 

(147). Several miRNAs associated with cancer have been discovered in humans, including miR-10b, miR-16-2, 

miR26a1, miR26-a2, miR-126, miR-17-92, miR-15b (148). 

Several miRNAs, either directly or indirectly, regulate Runx2 in breast cancer progression. miRNAs are associate 

with bone metastasis initiation (let-7g, miR-146a, miR-335, osteolytic activity (miR-133a, miR-190). Further 

investigation is required to explore the regulatory role of Runx2 via miRNA and its potentials as a novel target 

for bone metastases (144). 

 

6.5. Targeting Cancer Stem Cells 

Stem-like cells (CSCs) are tumorigenic cells and may generate tumors through the stem cell renewal and 

differentiation (149, 150). The bone marrow biopsy sample from cancer patients showed that majority of early 

metastatic cells have CSC markers (150, 151). In a recent pre-clinical study, CD44-positive CSC-like cells were 

shown to have an increased capacity to metastasize to bone (152). Cancer stem cells markers include CD44 

(breast, prostate and liver cancers), E-Cadherin (prostate, breast and brain cancers), CD166 (cellular proliferation), 

CD13 (liver cancer), CD90 (liver, breast and lungs cancers), CD105 (renal, breast and liver cancers (153, 

154))The CSC biology is yet to be fully understood. CSCs and their niches could be considered as targets for 

preventing and treating breast cancer bone metastasis (154).  

 

6.6. FDA approved Drugs for Cancer Treatment available on the market. 

Some of the FDA approved breast cancer drugs are given in Table 1.6.  
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Table 1.6: Some FDA approved drugs for breast cancer available on the  market (19) 

 

Brand Name Generic Name Manufacturer Drug 

Type 

Indication Approval Date 

Perjeta Pertuzumab Genentech Monoclonal 

Antibody 

First line treatment of 

HER2+ metastatic breast 

cancer 

June 2012 

Halaven Eribulin 

mesylate 

Eisai Macrocyclic 

Ketone 

Analogue 

Metastatic breast cancer November 

2010 

Xgeva Denosumab Amgen Human 

Monoclonal 

Antibody 

Preventing skeletal-

related events in patients 

with bone metastasis 

from solid tumors 

November 

2010 

Evista Raloxifene 

hydrochloride 

Eli Lilly Estrogen 

receptor 

modulator 

Prevention/Treatment of 

osteoporosis and 

reduction of breast cancer 

risk in postmenopausal 

women 

September 

2007 

Ixempra ixabepilone Bristol-Myers 

Squibb 

Epothilone B 

Analog 

 

Breast Cancer October 2007 

Tykerb lapatinib GlaxosmithKline Dual Tyrosine 

Kinase Inhibitor 

Breast cancer March 2007 

Herceptin Trastuzumab Genentech Monoclonal 

Antibody 

Metastatic breast cancer October 1998 

Nolvadex Tamoxifen 

citrate 

AstraZeneca Selective 

estrogen 

receptor 

modulator 

Breast Cancer October 1998 

Xeloda Capecitabine Roche Antimetabolite Advanced breast cancer 

tumors 

April 1998 

Quadramet Samarium Sm 

153 

Lexidronam 

Injection 

Dupont Merck 

Pharmaceutical 

Company 

Chelated 

complex 

Pain associated with bone 

cancer 

March 1997 

Aredia Pamidronate 

disodium for 

injection 

Chiron Nitrogen 

containing 

Bisphosphonate

s 

Osteolytic bone 

metastasis of breast 

cancer 

August 1996 

Arimidex Anastrozole Astrazeneca Aromatase 

Inhibitor 

Advanced breast cancer 

in postmenopausal 

women 

January 1996 

Taxotere Docetaxel Rhone Poulenc 

Rorer 

 

Microtubule 

Inhibitor 

Locally advanced or 

metastatic breast cancer 

May 1996 
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7. CONCLUSION  

Bone metastasis significantly affects the quality of life of patients with breast cancer and new targeted strategies 

are in urgent demand to prevent and palliate skeletal events. Currently available clinical treatments can often 

shrink or slow the growth of bone metastases. However, these treatments are not able to eradicate bone metastatic 

foci. Bone metastasis progresses over time and leads to SREs, substantial morbidity and mortality and there is 

insufficient evidence available to demonstrate which bone modifying agent is the preferred choice. Advances in 

the discovery of different novel targets described in this review, not only provides insights into making a better 

use of the currently available agents but also the development of new targeted therapeutic interventions. These 

novel targets can also be used in combination with the treatment options available in clinic to effectively inhibit 

the development of bone metastasis in women with breast cancer. More in-depth preclinical and clinical 

investigations are required to optimize the current treatment strategies by elucidating the interactions between 

tumor cells and bone microenvironment to reach maximum effectiveness. Further investigations are warranted to 

discover new agents that can prevent bone metastasis in breast cancer patients to avoid the associated morbidity 

and mortality due to the bone metastasis. 
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Abstract 

The most common cancer among women is breast cancer. According to an estimation by breast cancer 

network Australia, 18,087 women will be diagnosed with breast cancer in 2018. About 70% of the 

metastatic breast cancer patients develop bone metastasis. In pre-clinical investigations, curcumin was 

reported to be non-toxic even at doses of 12 g per day. However, with this high dose of curcumin, 

plasma concentration of curcumin is only 50 nM. The reason for this low plasma concentration of 

curcumin is low water solubility and instability. We have previously developed a new nanoformulation 

of curcumin (Cur-NP) with enhanced physicochemical properties as well as improved antitumor 

activity in breast cancer cell lines. Furthermore, we have formulated alendronate-conjugated curcumin 

nanoparticles (Aln-Cur-NPs) for the targeted delivery of the drug payload (curcumin in this project) to 

the bone. This project aims to investigate the in vitro biological effects of Aln-Cur-NPs that are 

developed to prevent breast cancer bone metastasis.  The loading capacity and particle size of the new 

batch fabricated for this study was determined and was shown to be consistent with previous batches 

of Aln-Cur-NPs and Cur-NPs. The loading capacity was found to be 4% and 5.7%, and the size was 28 

nm and 23 nm for Aln-Cur-NP and Cur-NP, respectively. In vitro anti-tumor activity of the curcumin 

nanoparticles with and without alendronate conjugation, was evaluated in three different breast cancer 

cell lines and reported as IC50 values equivalent to the concentration of curcumin. A significantly higher 

antitumor activity was observed for Aln-Cur-NP compared to Cur-NP with IC50 values of 13.9, 22.2 

and 7.7 µg/mL for MCF-7, MDA-MB-231 and SK-BR-3, respectively. This study showed the enhanced 

anticancer activity of curcumin nanoparticles conjugated with alendronate compared to Cur-NPs, which 

strongly supports the synergistic effect of curcumin/bisphosphonates combination considering the 

similar amount of uptaken curcumin by the cancer cells for both nanoparticle formulations. The impact 

of nanoparticles on the viability of MDA-MB-231 cells was also investigated using recording 

time lapse image technology by IncuCyte® Zoom over two days. It was demonstrated that the 

uptake of raw curcumin was much less, and it precipitated outside the cells while curcumin 

encapsulated in nanoparticles was effectively uptaken by the cancer cells. In the same 

experiment, we observed that Aln-Cur-NPs reduced the viability of the cells more effectively 

than Cur-NPs and raw curcumin. 

The uptake of Aln-Cur-NPs and Cur-NPs in nucleus and cytoplasm in MDA-MB-231after 24 hours of 

treatment was revealed by Confocal Scanning Laser Microscopy. The qualitative analysis of confocal 
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images showed higher uptake for Aln-Cur-NPs compared to raw curcumin (p ˂0.0001) and no uptake 

for the untreated (PBS) control. Parathyroid Hormone Related Protein (PTHrP) release is increased by 

cancer cells in bone microenvironment and promotes osteoclastic activity and contribute to osteolytic 

bone metastases. The effect of our nanoparticles on the release of PTHrP was determined by PTHrP 

ELISA assay for quantitative measurement of human PTHrP concentration released by MDA-MB-231 

cells. MDA-MB-231 cells were treated with alendronate-modified and non-modified curcumin 

nanoparticles. Results showed a reduction in the release of PTHrP by MDA-MB-231 cell lines by both 

curcumin nanoparticles compared to the negative control (PBS-treated). Cur-NP and Aln-Cur-NPs 

twice higher activity on the reduction in the release of PTHrP compared to raw curcumin. These results 

suggested the possibility of reducing osteolytic activity of the cancer cells in bone metastasis. These 

preliminary data suggest Aln-Cur-NPs can offer promises in preventing and treating breast cancer bone 

metastases.   

 

1. Introduction 

The most commonly diagnosed cancer in women is breast cancer (1). About 70% of the metastatic 

breast cancer patients develop bone metastasis (2). Median survival for patients with breast cancer bone 

metastasis is 19-25 months (3). Bone metastasis is a major cause of morbidity as it leads to impaired 

mobility, pathologic fractures, severe pain, bone marrow aplasia, spinal cord compression and 

hypercalcaemia (2). The biggest problem encountered in treating cancer is the inability to deliver 

effective drug to the cancer cells without affecting the normal cells (4). The new treatment strategy for 

treating cancer requires targeted delivery of drug to only cancer cells with more advantages and less 

side effects (5). 

Tumor cells interact with the microenvironment of specific organs to produce metastatic lesio ns 

(6). According to Stephen Paget’s ‘seed and soil’ hypothesis, tumor cells act as ‘seeds’ and have 

affinity for particular ‘soil’, that is, the ‘organ’ (7, 8). Once cancer cells target a specific organ, 

they take control of the whole environment (Fig. 2.1). Cancer cells during epithelial-to-

mesenchymal transition (EMT), loose epithelial polarization and cell surface intercellular 

adhesion proteins in order to exhibit mesenchymal properties (9). Subsequently, tumor cells 

release proteolytic enzymes to dissolve extracellular matrix of tumor stroma (10).Then, cancer 

cells can invade local tissue, migrate to the surrounding cells (11, 12) and enter the systemic 

circulation, known as circulating-tumor cells (CTC) (13-15). Furthermore, tumor cells develop 

certain mechanisms to escape from immune cells through mechanisms that involve up-regulation 

of CD47 proteins (16, 17). Cancer cells develop different signaling pathways to promote CTCs 

to develop metastatic lesions. One of these signaling pathways is the development of chemokine 

receptor (CXCL12-CXCR4) signaling for cancer cell adhesion and survival (18-23). Different 

studies demonstrated the expression of non-receptor cytoplasmic tyrosine kinase (Src) in the bone 

marrow through stimulation of CXCL12-CXCR4 receptors and by increased resistance to tumor 

necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) in bone marrow 

microenvironment (24).  

After invasion to bone, cancer cells become either osteolytic (promote bone break down) or 

osteoblastic (promote bone formation) (25). Breast cancer normally cause osteolytic lesions and 

have the highest rates of fracture (26).  
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Recently, it is demonstrated that T cells and B cells immune cells can also produce receptor 

activator of nuclear factor kappa-B ligand (RANKL binds RANK on osteoclasts), affect 

osteoclastogenesis and  proliferate bone metastatic environment (27). Adipocytes support cancer 

cells to survive as an energy source (28, 29). Tumor cells secrete osteolytic factors such as 

vascular endothelial growth factor receptor (VEGF), PTHrP, Interleukin-6 (IL-6), IL-8 and IL-

11. These factors stimulate osteoclastic bone resorption either directly stimulating osteoclast or 

indirectly by increasing the RANKL/OPG ratio. Osteoprotegerin (OPG) is a decoy receptor to 

RANKL produced by osteoblasts. Tumor cells secrete various growth factors like platelet -derived 

growth factors (PDGFs), bone morphogenetic proteins (BMPs), transforming growth factor 

(TGF-β) and fibroblasts growth factors (FGFs) help in osteoblasts differentiation (30, 31). 

Osteoblasts form osteocytes and get captured in the bone. Osteocytes regulate osteoclast 

development through macrophage colony stimulating factor (M-CSF), receptor activator of 

nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). They also inhibit 

osteoblasts differentiation (Fig. 2.2) (27, 32).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2. 2): Different mediators released during bone metastases 

Fig. (2.1):  Effect of cancer cells on bone microenvironment 
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Osteoblasts also secrete TGF-β and IGFs into mineralized bone matrix. Hydroxyapatite (bone 

mineral structure) liberates BMPs, TGF-β, IGFs and FGFs. These factors further worsen the 

metastatic lesions (33). PTHrP predominantly increase osteolytic lesions (34). 

 

Treatment strategy for bone metastases revolves around three main principles [33]. These 

principles include; 1 treatment of cancer cells to prevent their invasion to the bone; 2) targeting 

bone microenvironment to inhibit the vicious cycle phenomenon caused by bone resorption as a 

consequence of bone metastatic cancer and; 3) use of palliative therapies to improve quality of 

life of cancer patients (35). Bone metastases are incurable and associated with significant 

morbidity due to so-called skeletal-related events (SREs) defined as pathological fractures, 

pain, spinal cord compression, etc. and reduced quality of life in women with advanced breast 

cancer (36, 37). Despite the use of these increasingly potent bone-targeted agents, progress in 

terms of absolute reductions in the occurrence of SREs is modest, more effective therapies are 

clearly needed. 

Curcumin, the active ingredient of turmeric (Curcuma longa) possesses anti-oxidant and anti-metastatic 

properties (38-42). It is non-toxic even at high doses (8–12 g/day) (42-46). However, several 

properties limit its therapeutic potential such as its low metabolic stability and poor water 

solubility (i.e, 0.001 mg/mL) (43-46). Different strategies can be used to improve the solubility, 

stability and accumulation of drug molecules in cancerous cells. Use of nanodrug delivery systems has 

been shown to be a promising strategy to address these issues (47-51). Moreover, surfactant used in 

such micellar preparations (the commonly used ones being  polyethylene glycol (PEG), pluronic 

F-127 (52) and chitosan (50)) prevent protein adsorption, reducing the chances of 

reticuloendothelial system (RES) clearance and improving  the enhanced permeability and 

retention (EPR) effect in tumors (49).  

We have previously developed a nanoparticle drug delivery system which could improve the 

solubility issue associated with the use of curcumin (53). In the current project, we used the 

targeting and anti-bone-resorptive potential of bisphosphonates (54) together with anticancer 

and anti-bone-resorptive effects of curcumin (55, 56) to prevent and treat breast cancer bone 

metastasis.  

To target curcumin to the bone, we conjugated the nanoparticles with alendronate. Alendronate 

will increase the accumulation of the nanoparticles to the bone. Alendronate is a   

bisphosphonates drug used for treating osteoporosis and other bone diseases and it inhibits bone 

demineralization (57). Alendronate is one of the most extensively studied bisphosphonates in 

treating osteoporosis. Bisphosphonates exert their effect after binding to the bone mineral due to 

their high affinity to bone calcium, appearing at a high concentration in resorption lacunae  

(cavities formed by osteoclasts for bone resorption) (Fig. 2.3). After binding, bisphosphonates 

are internalized by the osteoclasts, leading to a disruption in bone resorption processes (3, 58). 

Several studies suggest that bisphosphonates cause apoptosis of osteoclasts and thus may have 

direct apoptotic effect on tumor cells (3, 58). In cancer treatment, bisphosphonates are considered 

as standard treatment for tumor-induced hypercalcemia and bone metastasis (59). They are also 

clinically effective in osteoporosis, osteogenesis imperfecta (brittle bone disease) and Paget’s 

disease (abnormal enlargement and weakening of bone disease) (60-62). 
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In our current study, we have studied the biological characteristics of alendronate -modified 

curcumin nanomicelles in breast cancer cells. In this current study, we have performed various 

in-vitro biological evaluations. 

 

Fig. (2.3): Targeted drug delivery system to the bone. 

2. Materials and Methods:  

2.1. General 

Compounds: Curcumin (purity > 80%) and pluronic acid® F-127 were purchased from Sigma-

Aldrich Australia. Alendronate sodium trihydrate was obtained from Alcon-Biosciences 

PVT.LTD. India.  

Cancer Cells: Human breast cancer cells MDA-MB-231, MCF-7 and SK-BR-3 were gifts from 

Professor Robert Baxter’s laboratory which were purchased from ATCC. MDA-MB-231cells 

were cultured in 5% Fetal Bovine Serum (FBS) Roswell Park Memorial Institute (RPMI) 

medium. MCF-7 and SK-BR-3 cells were cultured in 10% Fetal Bovine Serum (FBS) Roswell 

Park Memorial Institute (RPMI) medium. Breast cancer cells were maintained at 37º C 

humidified 5 % CO2 and 95 % O2 atmosphere.  

Instruments: High performance liquid chromatography (HPLC), Leica Spe-ll Confocal Laser 

Scanning Microscopy (CLSM), IncuCyte Zoom, IncuCyte S3, Human PTHLH® ELISA Kit was kindly 

supplied by Wuhan Fine Biological Technology Co., LTD. Flat-bottomed well plates and pipettes were 

supplied by Corning. Australia.  

Solvents: HPLC grade dichloromethane (DCM), HPLC grade acetonitrile (MeCN), HPLC grade 

methanol (MeOH), DMSO were purchased from sigma. ProLong Gold Antifade mounting media, 

Hoechst labelling solution were purchased from Solarbio. Australia., Triton-X 100, 4% formaldehyde, 

Phosphate Buffere saline (PBS), FBS, MTT reagent were obtained from sigma. TGF-β was supplied by 

Prospec-Tany Technogene.LTD. Purified deionized water was prepared using the Milli-Q system.  
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2.2.  Preparation of Nanoparticles 

Curcumin nanoparticles and alendronate nanoparticles were prepared using anti -solvent method 

according to our previous studies which has been submitted for publication. Poloxomer F-127 

(10 g) was converted to F-127-COOH by dissolving in DCM (45 mL) by succinic 

anhydride reaction. F-127-COOH wasbe purified by precipitation with ice cold water. 

Sodium alendronate (500 mg) was dissolved in water. It was added to the mixture of F-

127-COOH (2 g) and Milli-Q water (70mL). Amino terminal of alendronate was bind to 

the carboxyl group of modified F-127. After dialysis for 24 hours, Aln-Cur-NP was 

freeze-dried and characterization was done by NMR (52).  

 Characterization of Nanoparticles: 

2.2.1. Determination of Loading Capacity (LC%) & Drug Encapsulation Efficiency 

High performance liquid chromatography (HPLC) was used to determine drug loading (LC%) of the 

new prepared batches of nanoparticles. About 5 mg of curcumin-loaded nanoparticles were dissolved 

in water. Unloaded curcumin was removed by centrifugation at 10,000 RPM for 10 min. 

Supernatant was collected, lyophilized and dissolved in 20 mL of dichloromethane (DCM) to disrupt 

micelles. Extra DCM was removed by evaporation, and dry mass (entrapped curcumin) was collected. 

This dry mass was dissolved in HPLC solvent (5 ml) to achieve a 1 mg/mL solution (As we have used 

curcumin loaded nanoparticles).. Briefly, 50 µL of sample was injected into the HPLC system using 

Solvent A (40% methanol + 10% water) and Solvent B (50% acetonitrile) as the mobile phase at a flow 

rate of 1 mL/min with an isocratic pump at 25 0C and C18 column (Nova-Pak, 150 x 4.6 mm, 4µm). 

The following equation was used to calculate drug loading and a standard curve was plotted for raw 

curcumin (Figure 4).                                            

  (%) LC = [Entrapped Drug / Nanoparticles weight] x 100 

Drug encapsulation efficiency (DEE) was determined using following equation 

DEE = (Experimental drug loading / Theoretical drug loading (TDL)) x 100 

2.3.  In vitro biological evaluations 

2.3.1.  In vitro anticancer activities of the nanoparticles (MTT Viability Studies) 

The in vitro anti-cancer properties of nanoparticles were investigated against three breast cancer cell 

lines with different receptor expression characteristics including MDA-MB-231, MCF-7 and SK-BR-3 

using MTT cell viability assay. The cells were passaged and plated (at 90 μL/well) in flat-bottomed 96-

well plates at 2 × 105 cells/mL. Drug solutions were prepared by dissolving Aln-Cur-NPs and Cur-NPs 

and void nanoparticles in PBS while raw curcumin solution was prepared by dissolving it in 0.5% 

DMSO at curcumin equivalent concentrations of 0.1, 1, 10, 25, 50 or 100 µM (n = 3 in triplicate). 

Treated cells were incubated for 48 h followed by MTT assay (63). Void nanoparticles made from F-

127 were used as control. IC50 values were interpolated and normalized based on the loading capacity 

data. 

2.4.  Cellular Uptake Studies 

Sub-confluent MDA-MB-231 cells were passaged and seeded at 80,000/200 µL cells per well in 24 

well plate and allowed to adhere for 2 days. After 2 days, medium was renewed with 5%FBS RPMI for 

30 minutes. Cells were treated with Aln-Cur-NPs, Cur-NPs and raw curcumin at 10 µM concentration 

equivalent to curcumin and PBS (negative control) for 24 h. Next day, all wells were washed three times 
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with 100 µL of PBS. Cells were fixed using 4% formaldehyde. Triton-X 100 was used to permeabilize 

the cells. Hoechst labelling solution was used for staining the nuclei. Washing was repeated to remove 

Hoechst solution. The slides were mounted with mounting media and viewed under Leica spe-ll 

confocal laser scanning microscope at Bosch Institute, The University of Sydney. Curcumin is 

naturally fluorescent in the green spectrum. 

2.5.  Live Cell Imaging: 

IncuCyte® Zoom & S3 Live-Cell Analysis System (Essen Bioscience, USA) were used to examine the 

cytotoxic effect and uptake of NPs by MDA-MB 231 cell lines in two independent experiments. The 

uptake of NPs was determined depending on the natural fluorescence of curcumin which can be detected 

in the green channel of IncuCyte® S3. MDA-MB 231 cells were seeded at 9000 cells/well in a flat-

bottomed 96 well plate and allowed to adhere for 24 h. Cells were treated with Cur-NP, Aln-Cur-NP 

and raw curcumin in triplicates and at concentrations of 12.5, 25, 50 µM based on the amount of 

equivalent curcumin. PBS was used as a negative control. Time lapse images were taken using 20x 

magnification power at 2 h intervals for 48 h.  

In another experiment, the effects of our NPs on cell viability was determined against MDA-MB-231 

cell lines using IncuCyte® Zoom. MDA-MB-231 cells were seeded at 2000 cells/well and were allowed 

to adhere overnight. Cur-NP, Aln-Cur-NP, Raw curcumin at their IC50 concentrations (obtained from 

MTT studies) were added to the wells. Cytotoxic effect was determined over the period of 3 days. 

2.6.  PTHrP ELISA Assay  

PTHrP ELISA assay was performed using Human PTHLH® (Human Parathyroid Hormone-related 

Protein) ELISA kit, 96 tests (Fine Test). Sub-confluent human breast cancer MDA-MB-231 cells were 

plated at 5X104 cells per well (n=2) in 96 well plate and allowed to adhere for 24 h. Next day, cells were 

preincubated in 80 µL of medium and with 20 µL of Cur, Cur NP and Aln-Cur-Np at IC25 and IC50 

concentrations (based on MTT assay results) for 4 h. Medium was then refreshed with the addition of 

100 µL of recombinant human TGF-β1 (5 ng/mL) for 24 h. Samples were diluted by addition of 50 µL 

of supernatant to 75 µL of sample dilution buffer in Eppendorf tubes. Cell culture supernatant was 

centrifuged for 20 minutes to remove insoluble impurities and cell debris at 1000×g at 2 - 8°C. Clear 

supernatant was collected and used in the assay immediately. ELISA plate wells were washed 2 times 

before adding standard, sample and control wells. After that all ELISA assay steps were done according 

to manufacturer’s instructions. At the end ELISA plate was read using microplate reader at 450nm 

immediately.  

3. Results 

3.1. Determination of loading capacity 

Loading capacity for new batches of Aln-Cur-NPs (batch #3) and Aln-Cur-NPs (batch #4) was found 

to be 4% and 3.7% respectively. Loading capacity for Cur-NPs was found to be 5.7%. Loading 

capacity of Cur-NPs was higher than Aln-Cur-NPs (Fig. 2.4). 

 

 

 

 

 

Nano-particles Interpolated 

Values 

Loading 

Capacity 

Encapsulation 

Efficiency 

 

Aln-Cur-NPs#3 

Aln-Cur-NPs#4 

Cur-NPs 

39.5 µg/ml 

36.7 µg/ml 

57 µg/ml 

4% 

3.7% 

5.7% 

80% 

74% 

57% 
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                Fig. (2. 4): Loading Capacity (%) of two batches of alendronate-conjugated curcumin-loaded nanoparticles. 

3.2. Schematic Representation of Aln-Cur-NP 

Figure 2.5 represents scheme for formation of Aln-Cur-Nanoparticles. 

 

 

      Fig. (2.5): Schematic representation of formation of Aln-Cur-Nanoparticles. 

3.3.  In vitro anticancer activities of curcumin nanoparticles 

Aln-Cur-NPs and Cur-NPs were studied for their direct antiproliferative properties on three breast 

cancer cells, MCF-7, MDA-MB-231 and SK-BR-3 (Table 2.1).  

Table 2.1. IC50 values obtained against breast cancer cells 

 

 

 

 

MCF-7  

  

NP or Control IC50 (µg/mL) 

NP or control IC50 (µg/mL) 

Aln-Cur NPa 13.9 ± 1.6 

Cur-NPb 31.0 ± 4.0 

Void NPc >1000 

 

 

 

MDA-MB-231  

NP or control IC50 (µg/mL) 

Aln-Cur NP 22.2 ± 4.8 

Cur-NP 51.6 ± 21.7 

Void NP >1000 

 

 

 

SK-BR-3 

 

NP or control IC50 (µg/mL) 

Aln-Cur NP 7.7 ± 2.5 

Cur-NP 61.6 ± 10.9 

Void NP >1000 

aalendronate-conjugated curcumin nanoparticles, bcurcumin nanoparticles, c void nanoparticles. 
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Fig. (2.6). Comparison between the in vitro antitumor activity of alendronate-conjugated (Aln-Cur-NPs) vs. unconjugated NPs 

(Cur-NPs). Two Way ANOVA, Dunnett's Post Hoc multiple comparisons test. * P<0.05, ** P<0.01 and *** P<0.001 when 

compared with Cur-NP (mean + SD). 

 

Antitumor activity of the raw curcumin and curcumin nanoparticles with/without alendronate 

conjugation is shown as IC50 values in Table 2.1. A higher antitumor activity was observed for Aln-

Cur-NP as compared to Cur-NP with IC50 values obtained at 13.9, 22.2 and 7.7 µg/mL for MCF-7, 

MDA-MB-231 and SK-BR-3, respectively. IC50 values greater than 1000 µg/mL for void nanoparticles 

indicate that there was no adverse effect of the polymer alone against tested cancer cell lines. Figure 5 

demonstrates a comparison between Aln-Cur-NPs and Cur-NPs. This suggests that the addition of 

alendronate to the formulation enhanced the anti-cancer properties of the NPs, which indicates the 

hypothesis of curcumin/bisphosphonates combination synergistic effect. 

 

3.4. Cellular internalization by confocal laser scanning microscopy (CLSM) 

In vitro nanoparticles uptake and drug internalization were evaluated using CLSM in MDA-MB-

231 breast cancer cells after 24 h of drug treatment. Preliminary studies were done to optimize 

nanoparticles concentration and incubation times (data not shown). Curcumin is  auto-fluorescent 

in nature. Cellular internalization is shown in the form of green fluorescence intensity. Cellular 

internalization of Aln-Cur-NPs and Cur-NPs to MDA-MB-231 cell lines was found to be more 

than raw curcumin. MDA-MB-231 cancer cells treated with raw curcumin were shown to achieve 

weaker fluorescence intensity, i.e. less drug uptake was noticed. In the negative control group 

(PBS), no green fluorescence was detected (Fig.  2.7). We also performed quantitative analysis 

which confirmed statistically significant increase in the uptake of curcumin in both NPs forms as 

compared to raw curcumin (Fig. 2.8). However, there was no statistically significant difference 

between the two different NPs, Aln-Cur-NPs and Cur-NPs. 
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  FITC Channel (For Drug)   Hoechst Channel (For 

nucleus) 

Overlay Image 

Raw 

curcumin 

 

 

 

 

 

 

 

 

 

 

 

Cur-NP 

 

 

 

 

 

 

 

 

 

 

Aln-Cur-

NP 

 
 

 

 

 

PBS 

 

   

Fig. (2. 7). Cellular internalization of curcumin in MDA-MB-231 cancer cells after treating the cells at 10 µM concentration. 

Confocal Laser Scanning microscopy images. Cells were incubated with nanoparticles for 24 hours at 37°C in MDA-MB-231 

cell lines. Curcumin appears in green fluorescence, nuclei appear in blue fluorescence and overlay appear as combination of 

green and blue image.   
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Fig. (2. 8): Statistical analysis of uptake of Aln-Cur-NP and Cur-NPs by MDA-MB-231 cancer cells as compared to raw 

curcumin showed there is significant difference between uptake of NPs and raw curcumin, while no significant difference was 

observed in the uptake of Aln-Cur-NPs and Cur-NPs. * P<0.05, ** P<0.01, *** P<0.001 and **** P<0.0001. 

6.3 Live cell imaging  

The results of IncuCyte® S3 and IncuCyte® Zoom  live cell imaging clearly showed a significant 

uptake of nanoparticles by MDA-MB-231 cells. The uptake of raw curcumin was much less than 

the two NP forms, and it could be mostly seen outside the cells (green dots) whereas the 

nanoparticles were detected inside the cells (Fig. 2. 9A and Fig. 2.9B). Furthermore, a lower 

viability was observed by the Aln-Cur-NP-treated cells as compared to Cur-NP-treated cells and 

raw curcumin. One important finding was that curcumin inside nanoparticles converted to 

curcumin crystals after they had killed the cells. More crystals were observed with Aln -Cur-NPs 

as compared to Cur-NPs. 
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  1 h Image  3 h Image  48 h Image 
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Fig. (2. 9A). IncuCyte®S3 images comparing the uptake of Cur-NP, Aln-Cur-NP and raw curcumin at 1h, 3h, and 48 h after 

adding the drug at 12.5 µM concentration based on the amount of equivalent curcumin. 
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Fig. (2. 9B). IncuCyte®Zoom images comparing the cytotoxicity of raw curcumin, Cur-NP, Aln-Cur-NP over the period of 3 

days after adding the drug at IC50 concentration. 

6.3.  PTHrP ELISA Assay  

Effect of nanoparticles on the release of PTHrP by MDA-MB-231 cells was determined after 24 h of 

treatment. TGF-β was also added to stimulate the release of PTHrP by MDA-MB-231 cancer cells. Aln-

Cur-NPs, Cur-NPs, raw curcumin were used at IC25 and IC50 concentrations. At the end of experiment 

absorbance was measured using microplate reader at 450 nm. The amount of PTHrP released by MDA-

MB-231 cells treated with Aln-Cur-NP at IC50 and IC25 concentrations equivalent of curcumin was 

reduced to 152.6 pg/mL and 137.4 pg/mL, respectively, compared to the negative control (PBS) at 

above 1669.2 pg/mL. Cancer cells treated with Cur-NPs at IC50 and IC25 concentrations, reduced the 

release of PTHrP to 217.4 pg/mL and 141.1 pg/mL, respectively. Raw curcumin also showed some 

inhibitory effect on release of PTHrP by MDA-MB-231 cancer cell lines with values equal to 189.7 

pg/mL and 330.3 pg/mL IC50 and IC25 concentration (Fig. 2.10).  
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Fig. (2.10). Effect of curcumin (C-IC50, C-IC25), curcumin nanoparticles (Cur-NP IC50, Cur-NP IC25), alendronate 

nanoparticles (Aln-Cur-NP IC50 and IC25) and PBS on the release of PTHrP in MDA-MB-231 cells was determined using 

Human PTHLH (Parathyroid hormone-related protein) ELISA kit (Fine Test).  

 

Results clearly showed nanoparticles have reducing effect on release of PTHrP from MDA-MB-231 

cells as compared to the negative control (PBS). Aln-Cur-NP showed maximum reducing effect on 

PTHrP release from MDA-MB-231 cells.  

Discussion 

In this study, we investigated the biological behavior of curcumin nanoformulations with and without 

alendronate conjugation for the prevention and treatment of breast cancer bone metastasis. Curcumin 

is extracted from rhizome of Curcuma longa and is a widely studied molecule (64). It has cytotoxic, 

anti-oxidant, anti-proliferative potential. However, the challenge with its application as a medicine is 

the poor bioavailability due the very low solubility in water.  Curcumin has poor absorption, 

biodistribution and bioavailability. Most of the curcumin get metabolized in the intestine and 

liver which result in a rapid degradation and elimination from the body. Two major pathways 

identified in curcumin metabolism in the intestine are O-conjugation (form to form curcumin 

glucuronide and curcumin sulfate) and reduction (to form tetrahydrocurcumin, 

hexahydrocurcumin, and hexahydrocurcuminol) (65, 66). Curcumin may also undergo 

intensive second metabolism in the liver. The major metabolites are glucuronides of 

tetrahydrocurcumin and hexahydrocurcumin, with dihydroferulic acid and traces of ferulic acid 

as further metabolites (65, 66). Most of elimination occurs through feces and negligible amount 

of curcumin is excreted in the urine. 

We used a nanoformulation strategy to improve the solubility and poor stability of curcumin. 

Nanoformulation has been shown to be a strategy to improve the antitumor properties of curcumin in 

against breast, prostate, cervical and pancreatic cancer cells (67-69). Bisphosphonates are a class of 

drugs that are used for osteoporosis to prevent bone loss. Bisphosphonates are characterized as 
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compound having double C-P bonds. Bisphosphonates have high affinity for the hydroxyapatite of the 

bone. Bone will selectively uptake bisphosphonates in two steps 1) first due to the bone resorption effect 

of osteoclasts, hydroxyapatite crystals are exposed (physicochemical action) and 2) bisphosphonates 

get attracted towards hydroxyapatite of the bone and are uptaken by osteoclasts and inhibit bone 

resorption (cellular effect) (70). All bisphosphonates possess common P-C-P bond. The only difference 

is in their side chain which produces different chemical structures for bisphosphonates (71).  

Preclinical data suggested that bisphosphonates may also reduce cell viability and proliferation by 

increasing apoptosis in tumor cells. They may also possess anti-angiogenesis, anti-neoplastic and 

immunomodulatory effects. Bisphosphonates can also decrease tumor cell adhesion and invasion (72, 

73). Due to anti-osteoclastic properties of bisphosphonates, they are potent inhibitors of bone resorption. 

Other mechanism for their direct inhibition of cancer cells growth might be their anti-angiogenic 

potential (74). In many studies, alendronate has been proved to exert anti-proliferative effects against 

different cancer cells such as breast, myeloma, neuroblastoma and melanoma (75).  

Recently, polymeric micelles have been  widely investigated as  promising anticancer drug 

delivery carriers (76, 77). Drugs encapsulated in micelles have been shown to have a more 

accumulation in solid tumors in comparison with free drugs. This increased accumulation of 

drug might be because of enhanced permeability and retention effect (EPR). Pluronic acid (Fig. 

2.11) is the most widely used polymeric vehicle for micelle formation. It is highly compatible 

with biological fluids. Pluronic acid is a triple block structure comprised of poly(ethylene oxide 

(PEO)) and poly(propylene oxide)(PPO)) chains. PEO segment of F-127 is hydrophilic in 

nature while PPO segment is hydrophobic. PPO segment incorporates hydrophobic drugs. Due 

to the self-assembly nature of F-127, it forms spherical core at critical micelles concentration 

(CMC) (78). CMC for F-127 is about 0.26-0.8wt% (79) and we have previously optimized the 

ratios of curcumin to F127 within this CMC range to achieve the best particle size and stability 

(data under publication).   

 

 

 

Fig. (2.11). Chemical structure of F-127 

In our study, we have conjugated curcumin nanoparticles with alendronate aiming to achieve synergistic 

anticancer in addition to anti-bone resorption effect. It was proposed that alendronate not only target 

curcumin nanoparticles to the bone but also will exert some direct anti-bone resorption and cytotoxic 

effect in combination and synergistic effect with curcumin. 

We have formulated two new batches of Aln-Cur-NPs.  Loading capacity for Aln-Cur-NPs is 4 % and 

3.7 % while for Cur-NPs it is 5.7 %. Nanomicelles proved to increase water solubility.  

The effect of Aln-Cur-NPs and Cur-NPs was also determined on the proliferation of MDA-

MB-231, MCF-7 and SK-BR-3 cells through cell viability MTT assay. Mitochondrial 

reduction of MTT in three breast cancer cells by Aln -Cur-NPs and Cur-NPs was found to 

occur in a dose dependent manner. We compared the antiproliferative activity and IC 50 values 

of Aln-Cur-NPs and Cur-NPs with raw curcumin and void-NPs. Increased antiproliferative 

effect of Aln-Cur-NPs relative to Cur-NPs and raw curcumin, indicated the direct inhibitory 

effect of alendronate when it is in combination with curcumin in the micellar formations. 
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Curcumin was released from nanomicelles in the form of crystals after being used by the 

cells. In previous studies, it was shown that following cell death due  to curcumin’s effect, 

curcumin was first precipitated out as amorphous nanospheres. Amorphous nanospheres then 

aggregated to form needle shaped crystals (80). In our experiments we showed that the 

amorphous form of curcumin which was loaded in the nanoparticles was the effective 

form.  

Cellular internalization of nanomicelles was determined using CLSM. CLSM provides 

exciting opportunities for imaging nanomicelles internalization into breast cancer cells. 

CLSM has capacity to reject out-of-focus light and provides sharp and high-contrast images 

of cells (81). Curcumin is auto-fluorescent in nature. The internalization of curcumin by 

MDA-MB-231 cells at concentration of 10µM equivalent to curcumin after 24 h of treatment 

was observed for Aln-Cur-NPs and Cur-NPs and raw curcumin. Curcumin showed green 

fluorescence in the images obtained with CLSM, suggesting the curcumin  is released from 

nanomicelles. The cell’s nucleus was counterstained with Hoechst labelling solution and was 

appeared as blue in CLSM images. While curcumin appeared as bright green signals in CLSM 

images. Brighter green signals were noticed in MDA-MB-231 cells treated with Aln-Cur-NPs 

compared to cells treated with Cur-NPs while much less green signals were observed for 

MDA-MB-231 cells treated with raw curcumin and no green signals were observed in the 

negative control. This indicated that in both nanomicelle-treated cells there is a higher 

amount of curcumin.  

In two different experiments the effect of nanoparticles on live cells was examined using 

IncuCyte. The uptake of Cur-NPs and Aln-Cur-NP was more than raw curcumin. While no 

significant difference was observed in uptake of Cur-NP and Aln-Cur-NP. These results from 

IncuCyte were in line with our quantitative analysis performed using confocal images. The 

nonsignificant difference in the uptake of Cur -NPs and Aln-Cur-NP indicates that the higher 

cytotoxic effect of Aln-Cur-NPs on MDA-MB-231 cells confirmed by both MTT and 

IncuCyte is due to the synergistic effect of alendronate and curcumin.  

PTHrP exerts its action by acting via PTHrP receptors (PTHrP-R). It is a protein that mediates autocrine 

(secreted and acted on the same cell through autocrine receptors) and paracrine (secreted by cell and 

acts on neighboring cells) functions (82). On the bone, PTHrP exerts its effect through endocrine action 

(83, 84). PTHrP has role in development of normal breast growth and physiology. PTHrP released by 

epithelial cells contributes to the development of breast in embryos (85). In adult’s breast, myoepithelial 

cells release PTHrP and it acts on periductal stroma and inhibits ductal extension. During lactation, 

PTHrP secreted by alveolar epithelial into maternal circulation and stimulates milk production (86). 

PTHrP is produced by tumor cells and promotes osteoclastic activity and osteolytic bone metastasis 

(87). The role of PTHrP in the development of primary tumor is not clear. About 60% of primary breast 

cancer patients and 70% of patients with bone metastases have increased PTHrP levels. A higher PTHrP 

and mRNA 1-139 expression is correlated with the development of invasive bone metastasis (83). 

Tumor-derived PTHrP stimulates vicious cycle for bone metastasis. It also stimulates tumor cell 

adhesion, proliferation and survival (88). During osteolytic resorption, TGF-β is released by bone 

matrix. TGF-β stimulates the release of PTHrP from tumor cells (89). Then PTHrP causes bone 

resorption and stimulates vicious cycle for bone metastasis (83). Results of a study revealed that 

knocking down of PTHrP in MDA-MB-231 cells could be a potential treatment option for breast cancer 

and skeletal metastasis. Knocking down of PTHrP stimulates different mechanisms like, decrease in A1 

proteins & cyclins D1 levels, increase in levels of LC3-II & Beclin 1, autophagosomes formation, 

cleavage of caspase 8 and induced tumor cells apoptosis. All these processes can inhibit tumor growth 
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and hence skeletal metastasis (90). Curcuminoids are proved to have inhibitory effect on PTHrP 

secretion by MDA-MB-231 cells (91) and also prevent TGf-β induction of PTHrP (92). In our study, 

the effect of our nanoparticles (Aln-cur-NPs and Cur-NPs) at IC50 and IC25 concentrations showed a 

decrease in the release of PTHrP by MDA-MB-231 cells. Alendronate has proved to have cytotoxic 

effect (93). Aln-Cur-NPs and Cur-NPs showed the highest reducing effects on release of PTHrP by 

MDA-MB-231 cells. While with cells treated with PBS, a high concentration of PTHrP was released 

by MDA-MB-231 cells. These results are in line with previous reports on the preventative effects of 

curcumin on the secretion of PRHrP in breast cancer cells, which results in the inhibition of bone 

resorption activation (55). 

Conclusion 

Curcumin was encapsulated in pluronic F-127 nanoparticles. Alendronate not only made our 

formulation targeted to the bone, but it also synergized the anticancer activity. The results of MTT assay 

confirmed the anticancer effect of Aln-Cur-NPs on different cancer cells. CLSM images confirmed the 

uptake of nanoparticles by MDA-MB-231 cells. The uptake and cytotoxicity of NPs was confirmed by 

IncuCyte®. The results of PTHrP ELISA confirmed the inhibitory effect of Aln-Cur-NPs on release of 

PTHrP by MDA-MB-231 cells and can be evaluated by in-vivo studies. 

In conclusion, our results showed that alendronate-conjugated curcumin nanoparticles are promising 

candidate for in-vivo studies for enhanced anticancer effect of curcumin in breast cancer bone 

metastases.  

We are hoping to develop a promising targeted drug to prevent breast cancer bone metastases 

with less side effect profile as compared to conventional therapy.  
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CHAPTER 4 

CONCLUSIONS, FUTURE DIRECTIONS & FINAL 

REMARKS 

 The advent of nanotechnology opened a new horizon in direct targeting of cancer cells without 

harming the normal cells. This thesis research tried to fill a gap of lack of preventive therapy 

for breast cancer bone metastases. Different experiment performed with Alendronate 

conjugated nanoparticles shown promising results in preventive and treating breast cancer bone 

metastases. Loading capacity determination showed the efficient loading of curcumin into 

nanoparticles. Antiproliferative activities of Aln-Cur-NPs was found to be better than Cur-NPs 

in MDA-MB-231, MCF-7 and SK-BR-3 cancer cells. CLSM verified the uptake of NPs by 

MDA-MB-231 cancer cells. PTHrP assay showed the inhibitory effect of Aln-Cur-NPs on 

release of PTHrP peptide and hence inhibition of bone metastases. We conclude that this 

combination of Aln and curcumin has shown synergistic effect on killing cancer cells. This 

synergistic effect is because of alendronate itself effect on cancer cells and bone and cytotoxic 

effect of curcumin.   

 

FUTURE DIRECTIONS 

The results obtained validate the efficacy of Aln-Cur-NPs as compared to raw curcumin and 

Cur-NPs.  

In future we may investigate the affinity of Aln-Cur-NPs for bone and evaluate its effect on 

bone-resorption.  

Our promising results may also point towards the in vivo biological evaluation of alendronate 

conjugated curcumin nanoparticles to prevent breast cancer bone metastases.  

 

FINAL REMARKS 

We anticipate the alendronate conjugated curcumin nanoparticles developed in our project has 

great potential to prevent breast cancer bone metastases. There is a strong need to evaluate this 

research more in in vivo studies. 
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CHAPTER 5 
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APPENDIX 2 

Presentations…… 

 Presented in “Postgraduate Conference” at The University of Sydney in 2017. 

 Presented in “3 MT Presentation” at The University of Sydney in July 2018. 
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 Presented in a conference on “Joint Event on Global Pharmacovigilance and Advanced 
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